WorldWideScience

Sample records for monitoring temperature rise

  1. Temperature rise of installed FCC

    Science.gov (United States)

    Hankins, J. D.

    1976-01-01

    Report discusses temperature profiles of installed FCC for wood and tile surfaces. Three-conductor FCC was tested at twice nominal current-carrying capacity over bare floor and under carpet, with result indicating that temperature rise is not a linear function of current with FCC at this level.

  2. Calculation of Temperature Rise in Calorimetry.

    Science.gov (United States)

    Canagaratna, Sebastian G.; Witt, Jerry

    1988-01-01

    Gives a simple but fuller account of the basis for accurately calculating temperature rise in calorimetry. Points out some misconceptions regarding these calculations. Describes two basic methods, the extrapolation to zero time and the equal area method. Discusses the theoretical basis of each and their underlying assumptions. (CW)

  3. Measuring temperature rise during orthopaedic surgical procedures.

    Science.gov (United States)

    Manoogian, Sarah; Lee, Adam K; Widmaier, James C

    2016-09-01

    A reliable means for measuring temperatures generated during surgical procedures is needed to recommend best practices for inserting fixation devices and minimizing the risk of osteonecrosis. Twenty four screw tests for three surgical procedures were conducted using the four thermocouples in the bone and one thermocouple in the screw. The maximum temperature rise recorded from the thermocouple in the screw (92.7±8.9°C, 158.7±20.9°C, 204.4±35.2°C) was consistently higher than the average temperature rise recorded in the bone (31.8±9.3°C, 44.9±12.4°C, 77.3±12.7°C). The same overall trend between the temperatures that resulted from three screw insertion procedures was recorded with significant statistical analyses using either the thermocouple in the screw or the average of several in-bone thermocouples. Placing a single thermocouple in the bone was determined to have limitations in accurately comparing temperatures from different external fixation screw insertion procedures. Using the preferred measurement techniques, a standard screw with a predrilled hole was found to have the lowest maximum temperatures for the shortest duration compared to the other two insertion procedures. Future studies evaluating bone temperature increase need to use reliable temperature measurements for recommending best practices to surgeons.

  4. Study on the real-time monitoring system of temperature rise of overload relay%过载继电器温升性能实时监测系统的研究

    Institute of Scientific and Technical Information of China (English)

    赵靖英; 江民; 赵彦飞; 姚帅亮

    2016-01-01

    温升特性是影响过载继电器保护可靠性的关键。以典型过载继电器产品为研究对象,分析了传热原理,对温度场进行了仿真研究,选取了温升监测点;确定了温升监测方法,基于PIC16 F877 A单片机完成了温升性能实时监测系统的设计;进行了不同整定电流倍数下温升实时监测结果的分析,并与理论结果和仿真结果进行了对比,结果基本一致,验证了系统的可行性。%Temperature rise characteristic is the key factor which affects the reliability of overload relay.The typical overload relay is taken as research object.After the heat transfer principle of overload relay is analyzed and the tem-perature field is simulated, the temperature monitoring points are selected.The method of temperature rise monitoring is determined.Based on PIC16F877A, the real-time monitoring system of temperature rise performance is designed. The real-time monitoring results with different setting current times are analyzed.The results of real-time monitoring, theoretical analysis and simulation are compared to verify the feasibility of the system.

  5. The effects of residual temperature rise on ultrasound heating.

    Science.gov (United States)

    Karagoz, Irfan; Kartal, M Kemal

    2005-12-01

    In recent theoretical studies, the temperature rise produced by diagnostic ultrasound was estimated by solving the Bioheat Transfer Equation (BHTE) but ignoring the initial temperature rise. The temperature rise was determined in our study by the BHTE including an initial temperature rise. We discuss how the initial temperature rise occurs during an ultrasound examination, and how the initial temperature rise affects subsequent ultrasound heating. We theoretically show that the temperature rise produced by the ultrasound examination (exposure time of 500 s) in a tissue sample having an initial temperature rise was higher than that in a tissue sample with no initial temperature rise that was exposed to ultrasound (exposure time of 1200 s). The theoretical results for these two cases were 5.64 degrees C and 3.58 degrees C, respectively. In our experimental study, the highest temperature rise was measured in the presence of an initial temperature rise as in the theoretical study under the same exposure conditions. Mean temperature rises for tissue without an initial temperature rise and for tissue with an initial temperature rise were 2.42 +/- 0.13 degrees C and 3.62 +/- 0.17 degrees C, respectively. Both theoretical and experimental studies show that unless the initial temperature rise produced by the first ultrasound examination decreases to 0 degrees C, the next ultrasound examination on the same tissue sample may cause the temperature rise to be higher than expected.

  6. Maine River Temperature Monitoring

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We collect seasonal and annual temperature measurements on an hourly or quarter hourly basis to monitor habitat suitability for ATS and other species. Temperature...

  7. High Temperature ESP Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Jack Booker; Brindesh Dhruva

    2011-06-20

    The objective of the High Temperature ESP Monitoring project was to develop a downhole monitoring system to be used in wells with bottom hole well temperatures up to 300°C for measuring motor temperature, formation pressure, and formation temperature. These measurements are used to monitor the health of the ESP motor, to track the downhole operating conditions, and to optimize the pump operation. A 220 ºC based High Temperature ESP Monitoring system was commercially released for sale with Schlumberger ESP motors April of 2011 and a 250 ºC system with will be commercially released at the end of Q2 2011. The measurement system is now fully qualified, except for the sensor, at 300 °C.

  8. Nitinol Temperature Monitoring Devices

    Science.gov (United States)

    1976-01-09

    AD-A021 578 NITINOL TEMPERATURE MONITORING DEVICES William J. Buehler, et al Naval Surface Weapons Center Silver Spring, Maryland 9 January 1976...LABORATORY S NITINOL TEMPERATURE MONITORING DEVICES 9 JANUARY 1976 NAVAL SURFACE WEAPONS CENTER WHITE OAK LABORATORY SILVER SPRING, MARYLAND 20910 * Approved...GOVT ACCESSION NO. 3. RECIPIIENT’S CATALOG NUMBER NSWC/WOL/TR 75-140 ____ ______ 4 TITLE (and Subtitle) 5. TYPE OF REPCRT & PERIOD COVERED Nitinol

  9. Cannibalism by damselflies increases with rising temperature.

    Science.gov (United States)

    Start, Denon; Kirk, Devin; Shea, Dylan; Gilbert, Benjamin

    2017-05-01

    Trophic interactions are likely to change under climate warming. These interactions can be altered directly by changing consumption rates, or indirectly by altering growth rates and size asymmetries among individuals that in turn affect feeding. Understanding these processes is particularly important for intraspecific interactions, as direct and indirect changes may exacerbate antagonistic interactions. We examined the effect of temperature on activity rate, growth and intraspecific size asymmetries, and how these temperature dependencies affected cannibalism in Lestes congener, a damselfly with marked intraspecific variation in size. Temperature increased activity rates and exacerbated differences in body size by increasing growth rates. Increased activity and changes in body size interacted to increase cannibalism at higher temperatures. We argue that our results are likely to be general to species with life-history stages that vary in their temperature dependencies, and that the effects of climate change on communities may depend on the temperature dependencies of intraspecific interactions. © 2017 The Author(s).

  10. Rising Temperatures Reduce Global Wheat Production

    Science.gov (United States)

    Asseng, S.; Ewert, F.; Martre, P.; Rötter, R. P.; Lobell, D. B.; Cammarano, D.; Kimball, B. A.; Ottman, M. J.; Wall, G. W.; White, J. W.; Reynolds, M. P.; Alderman, P. D.; Prasad, P. V. V.; Aggarwal, P. K.; Anothai, J.; Basso, B.; Biernath, C.; Challinor, A. J.; De Sanctis, G.; Doltra, J.; Fereres, E.; Garcia-Vila, M.; Gayler, S.; Hoogenboom, G.; Hunt, L. A.; Izaurralde, R. C.; Jabloun, M.; C. D. Jones,; Kersebaum, K. C.; Koehler, A-K.; Müller, C.; Naresh Kumar, S.; Nendel, C.; O’Leary, G.; Olesen, J. E.; Palosuo, T.; Priesack, E.; Eyshi Rezaei, E.; Ruane, A. C.; Semenov, M. A.; Shcherbak, I.; Stöckle, C.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Thorburn, P. J.; Waha, K.; Wang, E.; Wallach, D.; Wolf, J.; Zhao, Z.; Zhu, Y.

    2015-01-01

    Crop models are essential tools for assessing the threat of climate change to local and global food production. Present models used to predict wheat grain yield are highly uncertain when simulating how crops respond to temperature. Here we systematically tested 30 different wheat crop models of the Agricultural Model Intercomparison and Improvement Project against field experiments in which growing season mean temperatures ranged from 15 degrees C to 32? degrees C, including experiments with artificial heating. Many models simulated yields well, but were less accurate at higher temperatures. The model ensemble median was consistently more accurate in simulating the crop temperature response than any single model, regardless of the input information used. Extrapolating the model ensemble temperature response indicates that warming is already slowing yield gains at a majority of wheat-growing locations. Global wheat production is estimated to fall by 6% for each degree C of further temperature increase and become more variable over space and time.

  11. Temperature rise and wear of sliding contact of alloy steels

    Science.gov (United States)

    Goswami, Arindam Roy; Sardar, Santanu; Karmakar, Santanu Kumar

    2016-07-01

    The tribo-failure of machine elements under relative sliding velocities is greatly affected by frictional heating and resultant contact temperature rise. Nevertheless, the tribo-failure of automotive components is a combined effect of mechanical, thermal and chemical phenomena. Over the decades, there have been developed a number of different mathematical models for predicting surface temperature rise at sliding contact under different geometries of asperity contacts and operating conditions. The experimental investigation is still relevant today to find out the surface temperature rise at sliding contact along with the outcomes of friction and wear under various operating conditions for real time applications. The present work aims at finding average surface temperature rise at different sliding velocities, normal loads with different surface roughness experimentally. It also involves to prepare two different rough surfaces of alloy steels and to study their influences in the process of generating contact temperature rise under a given operating conditions.

  12. Experimental study on effects of CBM temperature-rising desorption

    Institute of Scientific and Technical Information of China (English)

    MA Dong-min; LIN Ya-bing

    2012-01-01

    To study the effects of CBM (coal bed methane) temperature-rising desorption,isothermal adsorption/desorption experiments on three ranks (anthracite,coking coal and lignite) of coal at different temperatures were designed based on the traditional CBM decompression desorption.The experimental results indicate that temperature-rising desorption is more effective in high-rank coal,and ever-increasing temperature of high-rank coal reservoir can reduce the negative effects of coal matrix shrinkage in the process of production and improve the permeability of the coal reservoir as well.It is also revealed that the technique of temperature-rising desorption applied in higher-rank coal reservoir can enhance CBM recovery ratio.This study provided theoretical support for the application of temperature-rising desorption technique in practical discharging and mining projects,which can effectively tackle the gas production bottleneck problem.

  13. Stability of peatland carbon to rising temperatures

    Science.gov (United States)

    Wilson, R. M.; Hopple, A. M.; Tfaily, M. M.; Sebestyen, S. D.; Schadt, C. W.; Pfeifer-Meister, L.; Medvedeff, C.; McFarlane, K. J.; Kostka, J. E.; Kolton, M.; Kolka, R. K.; Kluber, L. A.; Keller, J. K.; Guilderson, T. P.; Griffiths, N. A.; Chanton, J. P.; Bridgham, S. D.; Hanson, P. J.

    2016-12-01

    Peatlands contain one-third of soil carbon (C), mostly buried in deep, saturated anoxic zones (catotelm). The response of catotelm C to climate forcing is uncertain, because prior experiments have focused on surface warming. We show that deep peat heating of a 2 m-thick peat column results in an exponential increase in CH4 emissions. However, this response is due solely to surface processes and not degradation of catotelm peat. Incubations show that only the top 20-30 cm of peat from experimental plots have higher CH4 production rates at elevated temperatures. Radiocarbon analyses demonstrate that CH4 and CO2 are produced primarily from decomposition of surface-derived modern photosynthate, not catotelm C. There are no differences in microbial abundances, dissolved organic matter concentrations or degradative enzyme activities among treatments. These results suggest that although surface peat will respond to increasing temperature, the large reservoir of catotelm C is stable under current anoxic conditions.

  14. Final cook temperature monitoring

    Science.gov (United States)

    Stewart, John; Matthews, Michael; Glasco, Marc

    2006-04-01

    Fully cooked, ready-to-eat products represent one of the fastest growing markets in the meat and poultry industries. Modern meat cooking facilities typically cook chicken strips and nuggets at rates of 6000 lbs per hour, and it is a critical food safety issue to ensure the products on these lines are indeed fully cooked. Common practice now employs oven technicians to constantly measure final cook temperature with insertion-type thermocouple probes. Prior research has demonstrated that thermal imagery of chicken breasts and other products can be used to predict core temperature of products leaving an oven. In practice, implementation of a system to monitor core temperature can be difficult for several reasons. First, a wide variety of products are typically produced on the same production line and the system must adapt to all products. Second, the products can be often hard to find because they often leave the process in random order and may be touching or even overlapping. Another issue is finite measurement time which is typically only a few seconds. Finally, the system is subjected to a rigorous sanitation cycle and must hold up under wash down conditions. To address these problems, a calibrated 320x240 micro-bolometer camera was used to monitor the temperature of formed, breaded poultry products on a fully cooked production line for a period of one year. The study addressed the installation and operation of the system as well as the development of algorithms used to identify the product on a cluttered conveyor belt. It also compared the oven tech insertion probe measurements to the non-contact monitoring system performance.

  15. Stability of peatland carbon to rising temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, R. M.; Hopple, A. M.; Tfaily, M. M.; Sebestyen, S. D.; Schadt, C. W.; Pfeifer-Meister, L.; Medvedeff, C.; McFarlane, K. J.; Kostka, J. E.; Kolton, M.; Kolka, R. K.; Kluber, L. A.; Keller, J. K.; Guilderson, T. P.; Griffiths, N. A.; Chanton, J. P.; Bridgham, S. D.; Hanson, P. J.

    2016-12-13

    Peatlands contain one-third of the world’s soil carbon (C), mostly in the deep permanently saturated anoxic zone (i.e., catotelm)1 where C mineralization rates may be constrained, in part, by low temperatures; yet all soil warming experiments to date have focused on the response of peatland C degradation to surface warming2, 3. If the slow decomposition of deep peat C is due to kinetic constraints, then increasing temperatures at depth should cause parallel increases in carbon dioxide (CO2) and/or methane (CH4) production rates. Increasing CH4 emissions are of particular concern because CH4 has a sustained-flux global warming potential (SGWP) 45-times greater than CO2 over a 100- year timeframe4, creating a significant positive feedback to climate warming. Using a novel whole-ecosystem scale experiment in a regression-based design we show that ecosystem scale warming of deep peat exponentially increased CH4 emissions —but not ecosystem respiration of CO2— in the first year. Multiple lines of evidence, including laboratory incubations and in situ analyses of 14C, dissolved gases, and microbial community metabolic potential, indicate that CH4 emissions increased due to surface processes and not degradation of deep C. Our results indicate that rapid changes to the large bank of deep buried C in temperate peatlands may be minimal under future climatic warming.

  16. Research on temperature rise of hoisting machine disk brake

    Institute of Scientific and Technical Information of China (English)

    MA Jun; JANG Hai-bo

    2012-01-01

    A mathematical model and finite element model for analysis of temperature rise of the hoisting machine brake system was constructed,limit conditions were defined,and the law of temperature rise of brake shoes during emergent brake course was analyzed and calculated by using finite element software.By analyzing the calculation results,the law of temperature change of surface of brake disk and shoes during the braking process was found.The law of brake shoes surface temperature distribution and the law of temperature change along with thickness of brake shoes at brake time 0.5 s,1.0 s and 1.5 s was analyzed.A hoisting machine emergent braking test was carried out.Finally,the author concluded that velocity rebound in the process of hoisting machine emergent brake is due to decreased friction coefficient caused by the temperature rise of the brake shoes surface.

  17. Rising soil temperature in China and its potential ecological impact

    Science.gov (United States)

    Zhang, Hui; Wang, Enli; Zhou, Daowei; Luo, Zhongkui; Zhang, Zhengxiang

    2016-01-01

    Global warming influences a series of ecological processes and ecosystems’ stability. Although comprehensive studies have been done to investigate responses of various ecosystem processes to rising air temperatures, less is known about changes in soil temperatures and their impact on below-ground processes, particularly in deep layers. Herein, we used 50 y of temperature data (1962–2011) from 360 sites in China to assess spatio-temporal changes in soil temperatures from the surface to a depth of 3.20 m. We determined, apparently for the first time, that soil surface temperature increased 31% more than air temperature, potentially leading to more carbon release to the atmosphere than predicted. Annual mean surface temperature increased by 2.07–4.04 and 0.66–2.21 °C in northern and southern China, respectively, with the greatest in winter. Warming occurred as deep as 3.20 m. The soil temperature rise was predicted to have increased soil respiration by up to 28%, reinforcing climate warming and extending the potential growing season by up to 20 d across China. However, use of only air temperature to estimate soil temperature changes would underestimate those impacts. In conclusion, these results highlighted the importance of soil warming and of using soil temperature to assess and predict soil processes. PMID:27765953

  18. Rising soil temperature in China and its potential ecological impact

    Science.gov (United States)

    Zhang, Hui; Wang, Enli; Zhou, Daowei; Luo, Zhongkui; Zhang, Zhengxiang

    2016-10-01

    Global warming influences a series of ecological processes and ecosystems’ stability. Although comprehensive studies have been done to investigate responses of various ecosystem processes to rising air temperatures, less is known about changes in soil temperatures and their impact on below-ground processes, particularly in deep layers. Herein, we used 50 y of temperature data (1962–2011) from 360 sites in China to assess spatio-temporal changes in soil temperatures from the surface to a depth of 3.20 m. We determined, apparently for the first time, that soil surface temperature increased 31% more than air temperature, potentially leading to more carbon release to the atmosphere than predicted. Annual mean surface temperature increased by 2.07–4.04 and 0.66–2.21 °C in northern and southern China, respectively, with the greatest in winter. Warming occurred as deep as 3.20 m. The soil temperature rise was predicted to have increased soil respiration by up to 28%, reinforcing climate warming and extending the potential growing season by up to 20 d across China. However, use of only air temperature to estimate soil temperature changes would underestimate those impacts. In conclusion, these results highlighted the importance of soil warming and of using soil temperature to assess and predict soil processes.

  19. Radiation monitoring for the HTTR rise-to-power test (1) and (2)'

    Energy Technology Data Exchange (ETDEWEB)

    Nakazawa, Takashi; Yoshino, Toshiaki; Yasu, Katsuji; Ashikagaya, Yoshinobu; Kikuchi, Toshiki [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    2001-02-01

    The High Temperature Engineering Test Reactor (HTTR) is the first high temperature gas-cooled research reactor in Japan. This reactor is a helium-gas-cooled and graphite-moderated reactor with a thermal output of 30 MW. The rated operation temperature of the outlet coolant is 850degC. (During high temperature test operation, this reaches 950degC). The first criticality of the HTTR was attained in November 1998. The single loaded, parallel loaded operation with a thermal output of 9 MW (called the HTTR Rise-to-Power Test (1)) was completed between September 16, 1999 and July 8, 2000. The single loaded, parallel loaded continuous operation with a thermal output of 20 MW (called the HTTR Rise-to-Power Test (2)) has also been carried out, but it was shutdown at the halfway stage by a single from the reactor, when the thermal output was 16.5 MW and the reactor outlet coolant temperature was 500degC. This report describes the radiation monitoring carried out during the HTTR Rise-to-Power Tests (1) and (2)'. The data measured by the various radiation monitors is also reported. These data will be used for the estimation of radiation levels (such as the radiation dose equivalent rate, the radioactive concentration in effluents, etc.) for the next HTTR Rise-to-Power Test, and for periodic inspections. (author)

  20. Why farmers’ sowing dates hardly change when temperature rises

    NARCIS (Netherlands)

    Oort, van P.A.J.; Timmermans, B.G.H.; Swaaij, van A.C.P.M.

    2012-01-01

    Previous studies have shown that temperature rise leads to an earlier onset of spring in wild plant species and that farmers are not keeping track of climate change. Crop growth models and experiments show yield gains to be obtained from earlier sowing. Why do farmers not sow earlier? We propose

  1. Temperature rise during photoradiation therapy of malignant tumors

    Energy Technology Data Exchange (ETDEWEB)

    Svaasand, L.O.; Doiron, D.R.; Dougherty, T.J.

    1983-01-01

    This report discusses the optical and thermal distribution during photoradiation therapy of malignant tumors. Emphasis is put on the therapeutic procedure with the light dose delivered through an inserted optical fiber. Theoretical predictions and experimental results indicate that the temperature rise during the procedure may give rise to hyperthermal cell kill. The report discusses the extent of the regions with hyperthermal bioeffects in terms of tissue parameters as optical absorption and scattering, thermal conductivity, specific heat, blood flow, and optical dose parameters as optical power and exposure time. Key words: photoradiation therapy, hematoporphyrin derivative, hyperthermia

  2. Estimating Hardness from the USDC Tool-Bit Temperature Rise

    Science.gov (United States)

    Bar-Cohen, Yoseph; Sherrit, Stewart

    2008-01-01

    A method of real-time quantification of the hardness of a rock or similar material involves measurement of the temperature, as a function of time, of the tool bit of an ultrasonic/sonic drill corer (USDC) that is being used to drill into the material. The method is based on the idea that, other things being about equal, the rate of rise of temperature and the maximum temperature reached during drilling increase with the hardness of the drilled material. In this method, the temperature is measured by means of a thermocouple embedded in the USDC tool bit near the drilling tip. The hardness of the drilled material can then be determined through correlation of the temperature-rise-versus-time data with time-dependent temperature rises determined in finite-element simulations of, and/or experiments on, drilling at various known rates of advance or known power levels through materials of known hardness. The figure presents an example of empirical temperature-versus-time data for a particular 3.6-mm USDC bit, driven at an average power somewhat below 40 W, drilling through materials of various hardness levels. The temperature readings from within a USDC tool bit can also be used for purposes other than estimating the hardness of the drilled material. For example, they can be especially useful as feedback to control the driving power to prevent thermal damage to the drilled material, the drill bit, or both. In the case of drilling through ice, the temperature readings could be used as a guide to maintaining sufficient drive power to prevent jamming of the drill by preventing refreezing of melted ice in contact with the drill.

  3. Evaluation of temperature rise with different curing methods and units in two composite resins

    Directory of Open Access Journals (Sweden)

    Tabatabaei M

    2006-01-01

    Full Text Available Background and Aim: The majority of commercial curing units in dentistry are of halogen lamp type. The new polymerizing units such as blue LED are introduced in recent years. One of the important side effects of light curing is the temperature rise in composite resin polymerization which can affect the vitality of tooth pulp. The purpose of this study was to evaluate the temperature rise in two different composite resins during polymerization with halogen lamps and blue LED. Materials and Methods: This experimental study investigated the temperature rise in two different composites (Hybrid, Tetric Ceram/Nanofilled, Filteke Supreme of A2 shade polymerized with two halogen lamps (Coltolux 50, 350 mW/cm2 and Optilux 501 in standard, 820 mW/cm2 and Ramp, 100-1030 mW/cm2 operating modes and one blue LED with the intensity of 620 mW/cm2. Five samples for each group were prepared and temperature rise was monitored using a k-type thermocouple. Data were analyzed by one-way ANOVA, two-way ANOVA and Tukey HSD tests with P<0.05 as the limit of significance. Results: Light curing units and composite resins had statistically significant influence on the temperature rise (p<0.05. Significantly, lower temperature rise occurred in case of illumination with Coltolux 50.There was no significant difference between Optilux 501 in standard curing mode and LED. Tetric Ceram showed higher temperature rise. Conclusion: According to the results of this study the high power halogen lamp and LED could produce significant heat which may be harmful to the dental pulp.

  4. RISE

    DEFF Research Database (Denmark)

    Ortenzi, M.; Petrini, F.; Bontempi, F.

    2013-01-01

    This paper originates from a European research proposal entitled RISE (Resilient Infrastructures and Structures against Emergencies). In RISE the assessment of the resilience of an urban development is carried out within an effective theoretical framework in which the large scale urban built infr...

  5. RISE

    DEFF Research Database (Denmark)

    Ortenzi, M.; Petrini, F.; Bontempi, F.;

    2013-01-01

    This paper originates from a European research proposal entitled RISE (Resilient Infrastructures and Structures against Emergencies). In RISE the assessment of the resilience of an urban development is carried out within an effective theoretical framework in which the large scale urban built infr...

  6. The Impacts of Rising Temperatures on Aircraft Takeoff Performance

    Science.gov (United States)

    Coffel, Ethan; Thompson, Terence R.; Horton, Radley M.

    2017-01-01

    Steadily rising mean and extreme temperatures as a result of climate change will likely impact the air transportation system over the coming decades. As air temperatures rise at constant pressure, air density declines, resulting in less lift generation by an aircraft wing at a given airspeed and potentially imposing a weight restriction on departing aircraft. This study presents a general model to project future weight restrictions across a fleet of aircraft with different takeoff weights operating at a variety of airports. We construct performance models for five common commercial aircraft and 19 major airports around the world and use projections of daily temperatures from the CMIP5 model suite under the RCP 4.5 and RCP 8.5 emissions scenarios to calculate required hourly weight restriction. We find that on average, 10 - 30% of annual flights departing at the time of daily maximum temperature may require some weight restriction below their maximum takeoff weights, with mean restrictions ranging from 0.5 to 4% of total aircraft payload and fuel capacity by mid- to late century. Both mid-sized and large aircraft are affected, and airports with short runways and high temperatures, or those at high elevations, will see the largest impacts. Our results suggest that weight restriction may impose a non-trivial cost on airlines and impact aviation operations around the world and that adaptation may be required in aircraft design, airline schedules, and/or runway lengths.

  7. ITS Temperature Monitoring

    CERN Document Server

    Savin, A E; CERN. Geneva; Gerasimov, S F

    1999-01-01

    The results of the R&D done under the ISTC#345 grant are presented for consideration for possible future application. The choice of the temperature sensors is described. Thin-film miniature Pt-sensors were produced and the results of the metrological studies of the manufactured samples are presented. The multi-channel temperature data readout system prototype and results of long-term stability tests are discussed. List of figures: Figure 1 Thin film Pt-thermometer topology Figure 2 Studies of long-term stability of Pt-thermometers Figure 3 DT structural scheme Figures 4 & 5 Output data ADC read operation, Control register ADC write operation

  8. Study of temperature rises and forces on drilling bone

    Science.gov (United States)

    Srikanth Venkataraman, Ananya

    Many different approaches have been used to prepare, store and test bone samples in order to determine its physical properties. The need to establish a standard method of specimen preparation and storage prior to experimental testing, contributed greatly to the primary part of this study. When mechanized cutting tools such as saws and drills are used, heat is produced and this raises the temperature of both the tool and the material being cut. In orthopedic and dental practices, high-speed tools are often applied to bones and teeth, and heat from these operations may result in thermal necrosis [1]. Since this can have a negative impact on the outcome of an orthopedic procedure, temperatures must be kept below the threshold that results in bone necrosis. The initial set of experiments was performed to determine the conditions under which the mechanical properties of the bone changed so as to establish the most suitable testing conditions. The hardness variation of the bone samples, under different annealing treatment conditions was used as the indicating parameter for evaluation of the change in the mechanical properties. Establishing the most appropriate section of the metacarpal sample for testing, by studying the anisotropy of the bone was another determining parameter. The second step was to examine the effects of conventional drilling as well as modulation assisted drilling on the temperature rise generated in the bone during these machining processes. In addition to this, a set of experiments were performed to ascertain how lubrication affected the temperature rise during drilling. The dynamic portions of the torque and thrust traces as well as the specific energies were compared for the different drilling conditions. Modulation showed no significant effect on the mean torque, thrust, specific energies of cutting, or temperature rise. Lubrication (flooding and misting) in both the modulation and no modulation cases drastically reduced the temperature rise

  9. Determination of Temperature Rise and Temperature Differentials of CEMII/B-V Cement for 20MPa Mass Concrete using Adiabatic Temperature Rise Data

    Science.gov (United States)

    Chee Siang, GO

    2017-07-01

    Experimental test was carried out to determine the temperature rise characteristics of Portland-Fly-Ash Cement (CEM II/B-V, 42.5N) of Blaine fineness 418.6m2/kg and 444.6m2/kg respectively for 20MPa mass concrete under adiabatic condition. The estimation on adiabatic temperature rise by way of CIRIA C660 method (Construction Industry Research & Information Information) was adopted to verify and validate the hot-box test results by simulating the heat generation curve of the concrete under semi-adiabatic condition. Test result found that Portland fly-ash cement has exhibited decrease in the peak value of temperature rise and maximum temperature rise rate. The result showed that the temperature development and distribution profile, which is directly contributed from the heat of hydration of cement with time, is affected by the insulation, initial placing temperature, geometry and size of concrete mass. The mock up data showing the measured temperature differential is significantly lower than the technical specifications 20°C temperature differential requirement and the 27.7°C limiting temperature differential for granite aggregate concrete as stipulated in BS8110-2: 1985. The concrete strength test result revealed that the 28 days cubes compressive strength was above the stipulated 20MPa characteristic strength at 90 days. The test demonstrated that with proper concrete mix design, the use of Portland flyash cement, combination of chilled water and flake ice, and good insulation is effective in reducing peak temperature rise, temperature differential, and lower adiabatic temperature rise for mass concrete pours. As far as the determined adiabatic temperature rise result was concern, the established result could be inferred for in-situ thermal properties of 20MPa mass concrete application, as the result could be repeatable on account of similar type of constituent materials and concrete mix design adopted for permanent works at project site.

  10. Wireless Sensor Node Design of Smart Grid Meters Temperature Rise Monitoring%智能电能表温升检测无线传感节点设计

    Institute of Scientific and Technical Information of China (English)

    赵波; 马宇明; 赵敏

    2014-01-01

    According to the problems in smart grid meters temperature rise test, a new auto-test system based on wireless sensor network is proposed. The wireless sensor node design is introduced, and the key technologies are analyzed. The hardware PCB and physical node is illustrated.%针对智能电能表温升检测存在的问题,提出了一种基于无线传感网的自动检测系统,进而阐述了传感器节点的设计,介绍了节点设计的关键技术,给出了硬件印制板图和实物图。

  11. Passive electronic identification with temperature monitoring. [Temperature monitor for cattle

    Energy Technology Data Exchange (ETDEWEB)

    Holm, D.M.; Bobbett, R.E.; Koelle, A.R.; Landt, J.A.; Sanders, W.M.; Depp, S.W.; Seawright, G.L.

    1976-01-01

    The United States Department of Agriculture (USDA) and the Energy Research and Development Administration (ERDA) have been supporting an electronic identification and temperature monitoring project at the Los Alamos Scientific Laboratory (LASL) since early 1973. The development, so far, indicates that a subdermally-implanted, electronic transponder (having no batteries) can be remotely activated and transmit temperature and identification information back to a receiver in a few tenths of a second. If this electronic identification and temperature monitoring system is developed into a commercially available product line, and is widely accepted by the cattle industry, it will enable them to carry out more extensive management practices. Better management can result in greater efficiency and productivity. The system will also enable regulatory agencies to trace the movements of diseased animals through commerce, and thus assist in disease control measures. Work so far has been concentrated primarily on determining the technical feasibility of the electronic concepts. (auth)

  12. Perioperative thermoregulation and temperature monitoring.

    Science.gov (United States)

    Insler, Steven R; Sessler, Daniel I

    2006-12-01

    patients becoming sufficiently hypothermic. Mild hypothermia in the perioperative period has been associated with adverse outcomes, including impaired drug metabolism, prolonged recovery from anesthesia, cardiac morbidity, coagulopathy, wound infections, and postoperative shivering. Perioperative temperature monitoring devices vary by transducer type and site monitored. More important than the specific device is the site of temperature monitoring. Sites that are accessible during surgery and give an accurate reflection of core temperature include esophageal, nasopharynx, bladder, and rectal sites. Core temperature also may be estimated reasonably using axillary temperature probes except under extreme thermal conditions. Rather than taking a passive approach to thermal management, anesthesiologists need to be proactive in monitoring patients in cold operating rooms and use available technology to prevent gross disturbances in the core temperature. Various methods are available to achieve this. Prewarming patients reduces redistribution hypothermia and is an effective strategy for maintaining intraoperative normothermia. Additionally, forced-air warming and circulating water garments also have been shown to be effective. Heating intravenous fluids does not warm patients, but does prevent fluid-induced hypothermia in patients given large volumes of fluid. This article examined the evolutionary adaptations people possess to combat inadvertent hypothermia and hyperthermia. Because thermal disturbances are associated with severe consequences, the standard of care is to monitor temperature during general anesthesia and to maintain normothermia unless otherwise specifically indicated.

  13. Evaluation of temperature rise in a tissue mimicking material during HIFU exposure

    Energy Technology Data Exchange (ETDEWEB)

    Maruvada, S; Liu, Y; Herman, B A; Harris, G R, E-mail: subha.maruvada@fda.hhs.gov [Food and Drug Administration, Center for Devices and Radiological Health, 10903 New Hampshire Ave., Bldg., Silver Spring, MD 20993 (United States)

    2011-02-01

    In pre-clinical testing it is essential to characterize clinical high intensity focused ultrasound (HIFU) devices using tissue-mimicking materials (TMMs) with well known characteristics, including temperature rise and cavitation properties. The purpose of this study was to monitor cavitation behavior and correlate its effect with temperature rise in a HIFU TMM containing an embedded thermocouple. A 75-{mu}m fine wire thermocouple was embedded in a hydrogel-based TMM previously developed for HIFU. HIFU at 1.1 and 3.3 MHz was focused at the thermocouple junction. Focal pressures from 1-11 MPa were applied and the temperature profiles were recorded. Three hydrophones were used to monitor cavitation activity during sonication. A hydrophone confocal with the HIFU transducer and a cylindrical hydrophone lateral to the HIFU beam were used as passive cavitation detectors for spectral analysis of signals, and a needle hydrophone placed beyond the HIFU focus was used to record changes in the pressure amplitude due to blockage by bubbles at or near the focus. B-mode imaging scans were employed to visualize bubble presence during sonication. In a separate measurement, schlieren imaging was used to monitor the change in field distribution behind the TMM. All hydrophone methods correlated well with cavitation in the TMM.

  14. Fuel processor temperature monitoring and control

    Science.gov (United States)

    Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.

    2002-01-01

    In one embodiment, the method of the invention monitors one or more of the following conditions: a relatively low temperature value of the gas stream; a relatively high temperature value of the gas stream; and a rate-of-change of monitored temperature. In a preferred embodiment, the rate of temperature change is monitored to prevent the occurrence of an unacceptably high or low temperature condition. Here, at least two temperatures of the recirculating gas stream are monitored over a period of time. The rate-of-change of temperature versus time is determined. Then the monitored rate-of-change of temperature is compared to a preselected rate-of-change of value. The monitoring of rate-of-change of temperature provides proactive means for preventing occurrence of an unacceptably high temperature in the catalytic reactor.

  15. Relationship Between Hysteresis Dissipated Energy and Temperature Rising in Fiber-Reinforced Ceramic-Matrix Composites Under Cyclic Loading

    Science.gov (United States)

    Longbiao, Li

    2016-06-01

    In this paper, the relationship between hysteresis dissipated energy and temperature rising of the external surface in fiber-reinforced ceramic-matrix composites (CMCs) during the application of cyclic loading has been analyzed. The temperature rise, which is caused by frictional slip of fibers within the composite, is related to the hysteresis dissipated energy. Based on the fatigue hysteresis theories considering fibers failure, the hysteresis dissipated energy and a hysteresis dissipated energy-based damage parameter changing with the increase of cycle number have been investigated. The relationship between the hysteresis dissipated energy, a hysteresis dissipated energy-based damage parameter and a temperature rise-based damage parameter have been established. The experimental temperature rise-based damage parameter of unidirectional, cross-ply and 2D woven CMCs corresponding to different fatigue peak stresses and cycle numbers have been predicted. It was found that the temperature rise-based parameter can be used to monitor the fatigue damage evolution and predict the fatigue life of fiber-reinforced CMCs.

  16. Channel Islands, Kelp Forest Monitoring, Sea Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset from the Channel Islands National Park's Kelp Forest Monitoring Program has subtidal temperature data taken at permanent monitoring sites. Since 1993,...

  17. The design of remote temperature monitoring system

    Science.gov (United States)

    Li, Biqing; Li, Zhao; Wei, Liuren

    2017-08-01

    This design is made on the basis of the single-chip microcomputer remote temperature monitoring system. STC89C51RC is the main core part, this design use the sensor DHT11 of temperature or humidity and wireless transceiver NRF24L01 the temperature of the test site for long-range wireless measurement and monitoring. The design contains the main system and the small system, of which the main system can show the actual test site temperature and humidity values, voice broadcast, out of control and receive data alarm function; The small system has the function of temperature and humidity, temperature monitoring and sending data. After debugging, the user customizable alarm upper and lower temperature, when the temperature exceeds limit value, the main system of buzzer alarm immediately. The system has simple structure, complete functions and can alarm in time, it can be widely used remote temperature acquisition and monitoring of the site.

  18. Field Monitoring of Column Shortenings in a High-Rise Building during Construction

    Directory of Open Access Journals (Sweden)

    Hyo Seon Park

    2013-10-01

    Full Text Available The automatic monitoring of shortenings of vertical members in high-rise buildings under construction is a challenging issue in the high-rise building construction field. In this study, a practical system for monitoring column shortening in a high-rise building under construction is presented. The proposed monitoring system comprises the following components: (1 a wireless sensing system and (2 the corresponding monitoring software. The wireless sensing system comprises the sensors and energy-efficient wireless sensing units (sensor nodes, master nodes, and repeater nodes, which automate the processes for measuring the strains of vertical members and transmitting the measured data to the remote server. The monitoring software enables construction administrators to monitor real-time data collected by the server via an Internet connection. The proposed monitoring system is applied to actual 66-floor and 72-floor high-rise buildings under construction. The system enables automatic and real-time measurements of the shortening of vertical members, which can result in more precise construction.

  19. High-Arctic butterflies become smaller with rising temperatures.

    Science.gov (United States)

    Bowden, Joseph J; Eskildsen, Anne; Hansen, Rikke R; Olsen, Kent; Kurle, Carolyn M; Høye, Toke T

    2015-10-01

    The response of body size to increasing temperature constitutes a universal response to climate change that could strongly affect terrestrial ectotherms, but the magnitude and direction of such responses remain unknown in most species. The metabolic cost of increased temperature could reduce body size but long growing seasons could also increase body size as was recently shown in an Arctic spider species. Here, we present the longest known time series on body size variation in two High-Arctic butterfly species: Boloria chariclea and Colias hecla. We measured wing length of nearly 4500 individuals collected annually between 1996 and 2013 from Zackenberg, Greenland and found that wing length significantly decreased at a similar rate in both species in response to warmer summers. Body size is strongly related to dispersal capacity and fecundity and our results suggest that these Arctic species could face severe challenges in response to ongoing rapid climate change.

  20. Temperature rise of He Ⅱ forced flow and its negative Joule-Thomson effect

    Institute of Scientific and Technical Information of China (English)

    CHEN Yu; JU Yong-lin; ZHENG Qing-rong; LU Xue-sheng; GU An-zhong

    2009-01-01

    The temperature rise of He Ⅱ transfer system due to the negative Joule-Thomson (JT) effect is one of the major problems in the He Ⅱ forced flow system design. Negative Joule-Thomson effect of the He Ⅱ forced flow was analyzed and calculated in this paper. The temperature rise due to the heat leak along the transfer pipeline was calculated by the simplified equation and was modified by considering the negative Joule-Thomson effect. The modified results were compared with the temperature rise obtained by non-linear differential equations with consideration of the pressure gradient. The results show that the pressure gradient has strong effect on the temperature distribution. The modified results are in good agreement with the values calculated by the complicated equation, which verifies the effectiveness of the simplified equation in calculating the temperature rise when the negative JT effect of He Ⅱ is known.

  1. Counter-measure to prevent temperature rise of stand pipe and primary upper shielding in HTTR

    Energy Technology Data Exchange (ETDEWEB)

    Kunitomi, Kazuhiko; Tachibana, Yukio; Hontani, Kohji [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment] [and others

    1997-09-01

    When primary coolant temperature reached approximately 110degC during a preliminary non-nuclear heat up test in the High Temperature Engineering Test Reactor (HTTR), temperatures of stand pipes and a primary upper shielding increased more than expected. The cause of the temperature rise was investigated by tests and analyses, and we determined a counter-measure. We also confirmed that a modified structure due to this counter-measure does not affect flow distribution in the core, and is not in contact with a control rod wire. This paper describes the cause of the temperature rise, the modified structure and evaluation of effect of the modified structure. (author)

  2. Curie temperature rising by fluorination for Sm2Fe17

    Directory of Open Access Journals (Sweden)

    Matahiro Komuro

    2013-02-01

    Full Text Available Fluorine atoms can be introduced to Sm2Fe17 using XeF2 below 423 K. The resulting fluorinated Sm2Fe17 powders have ferromagnetic phases containing Sm2Fe17FY1(0temperature from 403 K for Sm2Fe17 to 675 K. This increase can be explained by the magneto-volume effect.

  3. Temperature Rise at the Edges of Dark Molecular Clouds

    Institute of Scientific and Technical Information of China (English)

    MAO Xin-Jie

    2000-01-01

    Two-fluid magnetohydrodynanic equations are applied to dark molecular clouds that are composed of neutrals mixed with minor charged particles, weakly ionized gas systems. The result shows the temperatures are higher at the cloud edges than at their inner regions, the cause of which is that the cloud potential, released as clouds contract particularly at their edges, along with some dissipated rotational kinetic energy is converted into thermal.The cloud contracting is due to the loss of the magnetic field that threads it through ambipolar diffusion.Nevertheless, without the support of the magnetic and the centrifugal forces in the direction of the magnetic field assumed to be parallel to the cloud rotating axis, the cloud collapses in that direction when its mass is over the Jeans mass.

  4. Rail temperature rise characteristics caused by linear eddy current brake of high-speed train

    Directory of Open Access Journals (Sweden)

    Xiaoshan Lu

    2014-12-01

    Full Text Available The rail temperature rises when the linear eddy current brake of high-speed train is working, which may lead to a change of rail physical characteristics or an effect on train operations. Therefore, a study concerning the characteristics of rail temperature rise caused by eddy current has its practical necessity. In the research, the working principle of a linear eddy current brake is introduced and its FEA model is established. According to the generation mechanism of eddy current, the theoretical formula of the internal energy which is produced by the eddy current is deduced and the thermal load on the rail is obtained. ANSYS is used to simulate the rail temperature changes under different conditions of thermal loads. The research result shows the main factors which contribute to the rising of rail temperature are the train speed, brake gap and exciting current. The rail temperature rises non-linearly with the increase of train speed. The rail temperature rise curve is more sensitive to the exciting current than the air gap. Moreover, the difference stimulated by temperature rising between rails of 60 kg/m and 75 kg/m is presented as well.

  5. Temperature Monitoring and Perioperative Thermoregulation

    Science.gov (United States)

    Sessler, Daniel I.

    2008-01-01

    Most clinically available thermometers accurately report the temperature of whatever tissue is being measured. The difficulty is that no reliably core-temperature measuring sites are completely non-invasive and easy to use — especially in patients not having general anesthesia. Nonetheless, temperature can be reliably measured in most patients. Body temperature should be measured in patients having general anesthesia exceeding 30 minutes in duration, and in patients having major operations under neuraxial anesthesia. Core body temperature is normally tightly regulated. All general anesthetics produce a profound dose-dependent reduction in the core temperature triggering cold defenses including arterio-venous shunt vasoconstriction and shivering. Anesthetic-induced impairment of normal thermoregulatory control, and the resulting core-to-peripheral redistribution of body heat, is the primary cause of hypothermia in most patients. Neuraxial anesthesia also impairs thermoregulatory control, although to a lesser extant than general anesthesia. Prolonged epidural analgesia is associated with hyperthermia whose cause remains unknown. PMID:18648241

  6. Method of temperature rising velocity and threshold control of electron beam brazing

    Institute of Scientific and Technical Information of China (English)

    Xuedong Wang; Shun Yao

    2005-01-01

    In order to accommodate electron beam to the brazing of the joints with various curve shapes and the brazing of thermo sensitive materials, the method of electron beam scanning and brazing temperature control was developed, in which electron beam was controlled to scan according to predefined scanning track, and the actual temperature rising velocity of the brazed seam was limited in an allowed scope by detecting the brazed seam temperature, calculating the temperature rising velocity and adjusting the beam current during the brazing process; in addition, through the setting of the highest allowed temperature, the actual temperature of the brazed seam could be controlled not exceeding the threshold set value, and these two methods could be employed alone or jointly. It is shown that high precision temperature control in electron beam brazing could be realized and the productivity be increased by the proposed method.

  7. In Situ Monitoring of Temperature inside Lithium-Ion Batteries by Flexible Micro Temperature Sensors

    Directory of Open Access Journals (Sweden)

    Pei-Chi Chen

    2011-10-01

    Full Text Available Lithium-ion secondary batteries are commonly used in electric vehicles, smart phones, personal digital assistants (PDA, notebooks and electric cars. These lithium-ion secondary batteries must charge and discharge rapidly, causing the interior temperature to rise quickly, raising a safety issue. Over-charging results in an unstable voltage and current, causing potential safety problems, such as thermal runaways and explosions. Thus, a micro flexible temperature sensor for the in in-situ monitoring of temperature inside a lithium-ion secondary battery must be developed. In this work, flexible micro temperature sensors were integrated into a lithium-ion secondary battery using the micro-electro-mechanical systems (MEMS process for monitoring temperature in situ.

  8. In situ monitoring of temperature inside lithium-ion batteries by flexible micro temperature sensors.

    Science.gov (United States)

    Lee, Chi-Yuan; Lee, Shuo-Jen; Tang, Ming-Shao; Chen, Pei-Chi

    2011-01-01

    Lithium-ion secondary batteries are commonly used in electric vehicles, smart phones, personal digital assistants (PDA), notebooks and electric cars. These lithium-ion secondary batteries must charge and discharge rapidly, causing the interior temperature to rise quickly, raising a safety issue. Over-charging results in an unstable voltage and current, causing potential safety problems, such as thermal runaways and explosions. Thus, a micro flexible temperature sensor for the in in-situ monitoring of temperature inside a lithium-ion secondary battery must be developed. In this work, flexible micro temperature sensors were integrated into a lithium-ion secondary battery using the micro-electro-mechanical systems (MEMS) process for monitoring temperature in situ.

  9. Methane-based in situ temperature rise measurement in a diode-pumped rubidium laser.

    Science.gov (United States)

    Wang, Rui; Yang, Zining; Wang, Hongyan; Xu, Xiaojun

    2017-02-15

    We measured active zone temperature rise of an operational diode-pumped rubidium laser non-perturbatively with methane-based near-infrared tunable diode laser spectroscopy (TDLAS). For a Rb+ methane diode-pumped alkali laser (DPAL), the temperature rise was obtained. Especially, the temperature differences (∼10  K) between lasing and un-lasing cases were well identified, which demonstrated a high sensitivity of the method. To our knowledge, this is the first demonstration of extending the methane-based TDLAS method to DPAL study.

  10. A MODIFIED THERMAL VISCOPLASTIC CONSTITUTIVE LAW INVOLVING THE EFFECT OF TEMPERATURE RISE RATE

    Institute of Scientific and Technical Information of China (English)

    Huang Chenguang; Duan Zhuping

    2000-01-01

    At high temperature rise rate, the mechanical properties of 10 # steel were determined ex perimentally in a very wide range of temperature and strain rates. A new constitutive relationship was put for ward, which can fit with the experimental results and describe various phenomena observed in our experim ents. Meanwhile, some interesting characteristics about the temperature rise rate, strain and strain rate hard ening and thermal softening are also shown in this paper. Finally, the reliability of the constitutive law and the correctness of the constitutive parameters were verified by comparing the calculation results with the ex perimental data.

  11. Effects of different dentin thicknesses and air cooling on pulpal temperature rise during laser welding.

    Science.gov (United States)

    Secilmis, Asli; Bulbul, Mehmet; Sari, Tugrul; Usumez, Aslihan

    2013-01-01

    The neodymium/yttrium-aluminum-garnet (Nd/YAG) laser has been suggested to repair broken prostheses in the mouth. This study investigated the effects of different dentin thicknesses and air cooling on pulpal temperature rise during laser welding. Three intact human maxillary molars were prepared for full-veneer crown. For each tooth, dentin thicknesses in mesiobuccal cusp was 2, 3, or 4 mm. Twenty dies were duplicated from each of the prepared teeth. For metal copings with 0.5-mm thickness, wax patterns were prepared with dip wax technique directly onto each of dies. All patterns were sprued and invested. The castings were made using a nickel-chromium alloy (Nicromed Premium, Neodontics). A hole with 0.5-mm diameter was prepared on the mesiobuccal cusp of each crown. The Nd/YAG laser (9.85 W; 1 Hz repetition rate; fluence, 1.230 J/cm(2); Fidelis Plus 3, Fotona) was used for welding with or without air cooling (n = 10). The temperature rise was measured in pulpal chamber with a J-type thermocouple wire that was connected to a data logger. Differences between start and highest temperature reading were taken, and temperature rise values were compared using two-way analysis of variance and Tukey's honestly significant difference tests (α = .05). Pulpal temperature rise varied significantly depending on the dentin thickness and air cooling (p cooling group induced significantly the highest temperature increases. There were no significant differences between 2- and 3-mm dentin thicknesses groups (p > 0.05); however, pulpal temperature rise was the lowest for 4-mm dentin thickness group (p cooling was used in 2-mm dentin thickness group. Laser welding on base metal castings with Nd/YAG laser can be applied with air cooling to avoid temperature rises known to adversely affect pulpal health when dentin thickness is 2 or 3 mm.

  12. Temperature rise during polymerization of different cavity liners and composite resins

    Directory of Open Access Journals (Sweden)

    Ozcan Karatas

    2015-01-01

    Full Text Available Objective: The purpose of this study was to evaluate the thermal insulating properties of different light curing cavity liners and composite resins during light emitting diode (LED curing. Materials and Methods: Sixty-four dentin discs, 1 mm thick and 8 mm in diameter, were prepared. Specimens were divided into four groups. Calcium hydroxide (Ca[OH] 2 , resin-modified glass ionomer cement, flowable composite and adhesive systems were applied to dentin discs according to the manufacturers′ instructions. The rise in temperature during polymerization with a LED curing unit (LCU was measured using a K-type thermocouple connected to a data logger. Subsequently, all specimens were randomly divided into one of two groups. A silorane-based composite resin and a methacrylate-based composite resin were applied to the specimens. Temperature rise during polymerization of composite resins with LCU were then measured again. Data were analyzed using one-way ANOVA and post hoc Tukey analyses. Results: There were significant differences in temperature rise among the liners, adhesives, and composite resins (P < 0.05. Silorane-based composite resin exhibited significantly greater temperature rises than methacrylate-based resin (P < 0.05. The smallest temperature rises were observed in Ca(OH 2 specimens. Conclusion: Thermal insulating properties of different restorative materials are important factors in pulp health. Bonding agents alone are not sufficient to protect pulp from thermal stimuli throughout curing.

  13. Auto-Test on Motor Temperature Rising in Electric Vehicles with Mutual MRAS

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A new method to calculate the motor temperature rising in electric vehicle (EV) is proposed based on the stator resistance identification. The measure theory of the motor temperature rising with the stator resistance is discussed at first. An enhanced magnetism motor dynamic math model is built which is the research object. Then the resistance identification system model is built on the mutual model reference adaptive system (MRAS) theory. The simulation diagram of the mutual MRAS model is constructed and the resistance identification performance is studied in different motor states. Simulation results indicate that the stator resistance identification model with the mutual MRAS is effective. At the same time, the identification of motor temperature rising is possible with the identification of the stator resistance.

  14. Lifetime-Temperature Rise Model for the Evaluation of Degradation in Electric Connections/Contacts

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.T.; Kim, N.J. [Daejin University, Pochon (Korea)

    2002-02-01

    In this paper, 'lifetime-temperature rise model' based on the 'lifetime-resistance model' is theoretically proposed, in order to find out the evaluation method of degradation and the residual lifetime by use of infrared image camera for electric connections/contacts. Two assumptions have been builded up for the 'lifetime-temperature rise model' ; one is associated with the linear relationship between the temperature rise {delta}K and contact resistance, and the other the functional relationship between the temperature of electric connections/contacts and the operating time presenting in the 'lifetime-resistance model'. To prove the proposed model, experiments have been performed for various electric connections/contacts. >From the experimental results, measured values were quite similar to the calculated values, which proved the above-mentioned two assumptions. Therefore, by use of 'lifetime-temperature rise model', it is possible to estimate the trend of degradation and the residual lifetime for electric connections/contacts through the temperature measurements. (author). 5 refs., 7 figs., 3 tabs.

  15. Experimental studies on temperature rise within a hydrogen cylinder during refueling

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yan-Lei; Zhao, Yong-Zhi; Zhao, Lei; Li, Xiang; Chen, Hong-gang; Zheng, Jin-Yang [Institute of Process Equipment, Zhejiang University, Hangzhou 310027 (China); Zhang, Li-Fang; Zhao, Hui; Sheng, Run-Hua; Xie, Tian; Hu, Dong-Hao [Beijing Feichi Lvneng Power Sources Corporation, Beijing 100094 (China)

    2010-04-15

    In this research, experiments were performed to investigate the thermal behaviors such as temperature rise and distributions inside 35 MPa, 150 L hydrogen storage cylinders during its refueling. The main factors affecting the temperature rise in the fast fill process such as the mass filling rate and initial pressure in the cylinder were considered. The experimental results show that the mass filling rate is a constant when the ratio of the pressure in the tank to the cylinder is higher than 1.7, and the mass filling rate decreases when the ratio is lower than 1.7; the temperature inside the cylinder increases nonlinearly in the filling process and the maximum value of temperature rise at the interface of the cylinder exists in the caudal region; the temperature rise reaches a larger value with a lower initial pressure in the cylinder or a higher mass filling rate. Furthermore, the limit of mass filling rate in the case of different ambient temperature was obtained. (author)

  16. Root dentin strain and temperature rise during endodontic treatment and post rehabilitation.

    Science.gov (United States)

    Amade, Euridsse Sulemane; Novais, Veridiana Resende; Roscoe, Marina Guimarães; Azevedo, Fabiane Maria Ferreira; Bicalho, Aline Aredes; Soares, Carlos José

    2013-01-01

    This study investigated the effects of endodontic treatment procedures and different post systems rehabilitation steps on the strain and temperature rise on apical and cervical root dentin regions. Twenty-one extracted human canine teeth had two strain gages attached to the distal root surface and two thermocouples attached to the mesial root surface (cervical and apical). The strain and temperature rise were recorded during the following procedures: root canal preparation, final rinse and drying, root canal filling and canal relief. Then the teeth were divided into three groups (n=7), according to the type of post system: CPC, cast post and core; FGP, fiberglass post; and PSP, prefabricated steel post. Data continued to be recorded during the post space preparation, post modeling (only for CPC), post trying and post cementation. Data were subjected to a two-way ANOVA followed by Tukey's test (α=0.05). The post-space preparation caused the highest temperature rise (4.0-14.9 °C) and the highest strain in the apical region during irrespective of post type. The resin cement light-activation resulted in significant temperature increases in the cervical region for all of the groups. The canal relief and the post-space preparation produced highest temperature rises. The CPC post modeling resulted in higher root strain level similarly the level of post preparation. The PSP resulted in highest strain during post trying and post cementation.

  17. Frictional Performance and Temperature Rise of a Mining Nonasbestos Brake Material during Emergency Braking

    Directory of Open Access Journals (Sweden)

    Jiusheng Bao

    2015-01-01

    Full Text Available By simulating emergency braking conditions of mine hoisters, tribological experiments of a mining nonasbestos brake material sliding on E355CC steel friction disc investigated a pad-on-disc friction tester. It is shown that, under combined influence of braking velocity and pressure, the lubricating film and micro-convex-apices on wear surface would have complex physicochemical reactions which make the instant friction coefficient rise gradually while the instant surface temperature rises first and then falls. With the antifriction effect from lubricating film and the desquamating of composite materials, the mean friction coefficient decreases first, then rises, and decreases again with the increasing of initial braking velocity. And with the existence of micro-convex-apices and variation from increment ratio of load and actual contacting area, it rises first and then falls with the increasing of braking pressure. However, the mean surface temperature rises obviously with the increasing of both initial braking velocity and braking pressure for growth of transformed kinetic energy. It is considered that the friction coefficient cannot be considered as a constant when designing brake devices for mine hoisters. And special attention should be paid to the serious influence of surface temperature on tribological performance of brake material during emergency braking.

  18. Effects of Temperature Rise and Increase in CO2 Concentration on Simulated Wheat Yields in Europe

    NARCIS (Netherlands)

    Nonhebel, Sanderine

    1996-01-01

    A crop-growth-simulation model based on SUCROS87 was used to study effects of temperature rise and increase of atmospheric CO2 concentration on wheat yields in several regions in Europe. The model simulated potential and water-limited crop production (growth with ample supply of nutrients and in the

  19. Analysis of the effects of rising temperature for embankments under seismic loads in cold regions

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The effect of temperature rising for frozen soil because of dynamic load was investigated by indoor tests.Roadway and railway embankments are always loaded by dynamic loads such as earthquakes and vehicles.Because the Qinghai-Tibetan Plateau is a re-gion where earthquakes occur frequently,it is essential to consider the temperature-rising effect of earthquakes or vehicles on railway and road embankment.In this paper and according to the theories of heat transfer and dynamic equilibrium equations,as-suming frozen soil as thermal elastic-viscoplastic material,taking the combination of thermal and mechanical stresses into account,we present the numerical formulae of this dynamic problem,and the computer program of the two-dimensional finite element is written.Using the program,the dynamic response analyses for embankments loaded by earthquake are worked out.Analysis in-dicated that the temperature-rising effect result from earthquakes for embankment in nonuniform distribution in some small areas,the maximum rising temperature is 0.16 ?C for consideration in this paper.

  20. In vitro study of the pulp chamber temperature rise during light-activated bleaching

    Directory of Open Access Journals (Sweden)

    Thaise Graciele Carrasco

    2008-10-01

    Full Text Available This study evaluated in vitro the pulp chamber temperature rise induced by the light-activated dental bleaching technique using different light sources. The root portions of 78 extracted sound human mandibular incisors were sectioned approximately 2 mm below the cementoenamel junction. The root cavities of the crowns were enlarged to facilitate the correct placing of the sensor into the pulp chamber. Half of specimens (n=39 was assigned to receive a 35% hydrogen peroxide gel on the buccal surface and the other halt (n=39 not to receive the bleaching agent. Three groups (n=13 were formed for each condition (bleach or no bleach according to the use of 3 light sources recommended for dental bleaching: a light-emitting diode (LEDlaser system, a LED unit and a conventional halogen light. The light sources were positioned perpendicular to the buccal surface at a distance of 5 mm and activated during 30 s. The differences between the initial and the highest temperature readings for each specimen were obtained, and, from the temperature changes, the means for each specimen and each group were calculated. The values of temperature rise were compared using Kruskal-Wallis test at 1% significance level. Temperature rise varied significantly depending on the light-curing unit, with statistically significant differences (p0.01. When the bleaching agent was applied, there were significant differences among groups (p<0.01: halogen light induced the highest temperature rise (1.41±0.64ºC, and LED-laser system the lowest (0.33±0.12ºC; however, there was no difference between LED-laser system and LED unit (0.44±0.11ºC. LED and LED-laser system did not differ significantly from each other regardless the temperature rise occurred with or without bleaching agent application. It may be concluded that during light-activated tooth bleaching, with or without the bleaching agent, halogen light promoted higher pulp chamber temperature rise than LED unit and LED

  1. Response of N2O Emissions of Farmland Ecosystem on Temperature Rising

    Institute of Scientific and Technical Information of China (English)

    Liusong LIU; Jiancheng SHI

    2012-01-01

    [Objective] The aim was to study on response of N2O emissions of farm- land ecosystem on temperature rising. [Methed] In farmland ecosystem in Huaibei City in Anhui Province, N2O emission by twelve varieties of crop on temperature was researched with DeNitrification-DeComposition (NDC). [Result] Response of dry- land crop on temperature rising can be divided into three categories, as follows: The first category, N2O emission of crop changed little during the temperature increasing, for example, from 0 to 3 %;, the emissions by potatoes, cotton, maize and rapeseed increased little and decreased little when temperature changed from 1.5 to 3 ℃. Crops of the second category declined with temperature increasing in N2O emission, for example, N2O emission decreased by 8.1% with temperature increasing from 0 to 3 ℃, including sugar cane, tobacco, wheat, soybean and pea. In third category, N2O emission of crop grew with temperature increasing, for example, the emission of rice, vegetables and fruit trees increased by 22.8% when the temperature grew from 0 to 3 ℃. [Conclusion] The research indicated that N2O emission in ecosystem of drv farmland increased little with temoerature risina.

  2. Passive SiC irradiation temperature monitor

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, G.E.

    1996-04-01

    A new, improved passive irradiation temperature monitoring method was examined after an irradiation test at 627{degrees}C. The method is based on the analysis of thermal diffusivity changes during postirradiation annealing of polycrystalline SiC. Based on results from this test, several advantages for using this new method rather than a method based on length or lattice parameter changes are given.

  3. Dominant factors affecting temperature rise in simulations of human thermoregulation during RF exposure

    Science.gov (United States)

    Laakso, Ilkka; Hirata, Akimasa

    2011-12-01

    Numerical models of the human thermoregulatory system can be used together with realistic voxel models of the human anatomy to simulate the body temperature increases caused by the power absorption from radio-frequency electromagnetic fields. In this paper, the Pennes bioheat equation with a thermoregulatory model is used for calculating local peak temperatures as well as the body-core-temperature elevation in a realistic human body model for grounded plane-wave exposures at frequencies 39, 800 and 2400 MHz. The electromagnetic power loss is solved by the finite-difference time-domain (FDTD) method, and the discretized bioheat equation is solved by the geometric multigrid method. Human thermoregulatory models contain numerous thermophysiological and computational parameters—some of which may be subject to considerable uncertainty—that affect the simulated core and local temperature elevations. The goal of this paper is to find how greatly the computed temperature is influenced by changes in various modelling parameters, such as the skin blood flow rate, models for vasodilation and sweating, and clothing and air movement. The results show that the peak temperature rises are most strongly affected by the modelling of tissue blood flow and its temperature dependence, and mostly unaffected by the central control mechanism for vasodilation and sweating. Almost the opposite is true for the body-core-temperature rise, which is however typically greatly lower than the peak temperature rise. It also seems that ignoring the thermoregulation and the blood temperature increase is a good approximation when the local 10 g averaged specific absorption rate is smaller than 10 W kg-1.

  4. Low temperature monitoring system for subsurface barriers

    Science.gov (United States)

    Vinegar, Harold J.; McKinzie, II. Billy John

    2009-08-18

    A system for monitoring temperature of a subsurface low temperature zone is described. The system includes a plurality of freeze wells configured to form the low temperature zone, one or more lasers, and a fiber optic cable coupled to at least one laser. A portion of the fiber optic cable is positioned in at least one freeze well. At least one laser is configured to transmit light pulses into a first end of the fiber optic cable. An analyzer is coupled to the fiber optic cable. The analyzer is configured to receive return signals from the light pulses.

  5. Temperature Rise Comparison of Switchgear in SF6, N2, and Air

    Directory of Open Access Journals (Sweden)

    Feng Hao

    2013-01-01

    Full Text Available Based on the heat conduction equation, fluid flow governing equation and radiation heat transfer equation, a multi-physics coupled mathematical model is established, the convection heat transfer problem between solid and fluid is solved by wall function. The three dimensional thermal field in a type of switchgear filled respectively with SF6, N2, and air are calculated and analyzed to discuss the feasibility of using air or N2 as the substitution of SF6 by the finite volume method. The results show that the temperature field in three gases are similar in the switchgear. The temperature rise of current-carrying loop is the highest in SF6 and is the lowest in the air. So the conclusion could be made that air or N2 can replace SF6 as the insulating gas of switchgear on the perspective of temperature rise.

  6. EGFR-targeted magnetic nanoparticle heaters kill cancer cells without a perceptible temperature rise.

    Science.gov (United States)

    Creixell, Mar; Bohórquez, Ana C; Torres-Lugo, Madeline; Rinaldi, Carlos

    2011-09-27

    It is currently believed that magnetic nanoparticle heaters (MNHs) can kill cancer cells only when the temperature is raised above 43 °C due to energy dissipation in an alternating magnetic field. On the other hand, simple heat conduction arguments indicate that in small tumors or single cells the relative rates of energy dissipation and heat conduction result in a negligible temperature rise, thus limiting the potential of MNHs in treating small tumors and metastatic cancer. Here we demonstrate that internalized MNHs conjugated to epidermal growth factor (EGF) and which target the epidermal growth factor receptor (EGFR) do result in a significant (up to 99.9%) reduction in cell viability and clonogenic survival in a thermal heat dose dependent manner, without the need for a perceptible temperature rise. The effect appears to be cell type specific and indicates that magnetic nanoparticles in alternating magnetic fields may effectively kill cancer cells under conditions previously considered as not possible.

  7. On rising temperature trends at Dehradun in Doon valley of Uttarakhand, India

    Indian Academy of Sciences (India)

    Omvir Singh; Poonam Arya; Bhagwan Singh Chaudhary

    2013-06-01

    Climate change is one of the most important issues among researchers, scientists, planners and politicians in the present times. Of all the climatic elements, temperature plays a major role in detecting climatic change brought about by urbanization and industrialization. This paper, therefore, attempts to study the temperature changes at Dehradun city by analyzing the time series data of annual maximum, minimum and mean temperature from 1967 to 2007. Data for the study has been analyzed in three parts by running linear regression and by taking anomalies for the whole period from 1967 to 2007, phase one 1967–1987 and phase two 1988–2007. The study of linear trend indicated increasing trends in annual maximum, annual minimum and annual mean temperatures. During 1967–2007 annual maximum, annual minimum and annual mean temperatures increased about 0.43°C, 0.38°C and 0.49°C, respectively. The analysis of temperature data in two phases also revealed an increase in annual maximum, annual minimum and annual mean temperature. However, temperature increase in second phase was more pronounced in relation to first phase. During second phase (1988–2007) annual maximum, annual minimum and annual mean temperatures increased about 0.42°C, 0.59°C and 0.54°C, respectively. The perceptible increase in temperature during second phase is mainly attributed to urbanization and industrialization process initiated at Dehradun particularly after becoming the state capital of newly carved out state of Uttarakhand since the year 2000. The analysis also highlight significantly the role of extreme vulnerability of rising temperatures at Dehradun and urban population will constantly be affected by the change in the temperature which controls the comfort level of the inhabitants. Also, the rising temperatures in Doon valley are not a healthy signature for crop production and water resources in the region.

  8. Food storage temperatures monitored at retail

    Directory of Open Access Journals (Sweden)

    Eleonora Sarno

    2013-04-01

    Full Text Available Aim of the present work is to report data concerning the maintenance of the cold chain by retail food business operators. A total of 401 refrigerators and 105 freezers from 112 retails (big, medium, small size were monitored for display temperatures. In addition, the surface temperature of 341 stored food products was recorded. Storage temperatures were respected in the majority of retail markets, with the exception of small retails, where cold chain was not respected. Among all food samples, yogurt was stored at temperature higher than law limits. Our findings show that retailers, in particular those from small markets, are not always familiar with cold chain maintenance. In our opinion, much more attention should be paid in keeping food at cold temperature in order to ensure food safety.

  9. Effects of rising temperature on the viability of an important sea turtle rookery

    Science.gov (United States)

    Laloë, Jacques-Olivier; Cozens, Jacquie; Renom, Berta; Taxonera, Albert; Hays, Graeme C.

    2014-06-01

    A warming world poses challenges for species with temperature-dependent sex determination, including sea turtles, for which warmer incubation temperatures produce female hatchlings. We combined in situ sand temperature measurements with air temperature records since 1850 and predicted warming scenarios from the Intergovernmental Panel on Climate Change to derive 250-year time series of incubation temperatures, hatchling sex ratios, and operational sex ratios for one of the largest sea turtles rookeries globally (Cape Verde Islands, Atlantic). We estimate that light-coloured beaches currently produce 70.10% females whereas dark-coloured beaches produce 93.46% females. Despite increasingly female skewed sex ratios, entire feminization of this population is not imminent. Rising temperatures increase the number of breeding females and hence the natural rate of population growth. Predicting climate warming impacts across hatchlings, male-female breeding ratios and nesting numbers provides a holistic approach to assessing the conservation concerns for sea turtles in a warming world.

  10. Dynamic Temperature Rise Mechanism and Some Controlling Factors of Wet Clutch Engagement

    Directory of Open Access Journals (Sweden)

    Zhang Zhigang

    2016-01-01

    Full Text Available The friction transmission model of wet clutch is established to analyze the friction transmission mechanism of its engagement. The model is developed by applying both the average flow model and the elastic contact model between the friction disk and separator plate. The key components during wet clutch engagement are the separator plate, friction disk, and lubricant. The one-dimension transient models of heat transfer in radial direction for the three components are built on the basis of the heat transfer theory and the conservation law of energy. The friction transmission model and transient heat transfer models are coupled and solved by using the Runge-Kutta numerical method, and the radial temperature distribution and their detailed parametric study for the three components are conducted separately. The simulation results show that the radial temperature for the three components rises with the increase of radius in engagement. The changes in engagement pressure, lubricant viscosity, friction lining permeability, combined surface roughness RMS, equivalent elasticity modulus, difference between dynamic and static friction coefficients, and lubricant flow have important influence on the temperature rise characteristics. The proposed models can get better understanding of the dynamic temperature rise characteristics of wet clutch engagement.

  11. Rising sea levels will reduce extreme temperature variations in tide-dominated reef habitats

    Science.gov (United States)

    Lowe, Ryan Joseph; Pivan, Xavier; Falter, James; Symonds, Graham; Gruber, Renee

    2016-01-01

    Temperatures within shallow reefs often differ substantially from those in the surrounding ocean; therefore, predicting future patterns of thermal stresses and bleaching at the scale of reefs depends on accurately predicting reef heat budgets. We present a new framework for quantifying how tidal and solar heating cycles interact with reef morphology to control diurnal temperature extremes within shallow, tidally forced reefs. Using data from northwestern Australia, we construct a heat budget model to investigate how frequency differences between the dominant lunar semidiurnal tide and diurnal solar cycle drive ~15-day modulations in diurnal temperature extremes. The model is extended to show how reefs with tidal amplitudes comparable to their depth, relative to mean sea level, tend to experience the largest temperature extremes globally. As a consequence, we reveal how even a modest sea level rise can substantially reduce temperature extremes within tide-dominated reefs, thereby partially offsetting the local effects of future ocean warming. PMID:27540589

  12. Hydro-galvanic and rising - temperature bath therapy for chronic elbow epicondylitis: a comparative study

    Directory of Open Access Journals (Sweden)

    C. Mucha

    2004-02-01

    Full Text Available The efficacy of two different regimens of physiotherapy for epicondylitis was compared. A combination treatment with hydrogalvanic four-cell bath and arm bath with rising temperature, which had showed good effects in treatment of tennis elbow in an earlier observational study (Mucha 1987, was compared with the analgesic interference current treatment often recommended in the literature (Sadil and Sadil 1994, Noteboom et al 1994, Becker and Reuter 1982. For this study, 60 patients with epicondylitis that was resistant to conservative treatment were randomized into two groups for comparison. In group 1, interference currents were administered twice a day for six weeks and group 2 received combination treatment with the hydrogalvanic four-cell bath and rising- temperature arm bath once a day for six weeks. Criteria for inclusion, control and appraisal were laid down prospectively. Several parameters were used, recorded and statistically evaluated as outcome measures.  These were active joint range of movement of the elbow, grip strength, pain provocation with muscle contraction, palpation pain and pain with functional activities.  The results showed a significant superiority of combination treatment over therapy with interference current. It is therefore recommended that hydrogalvanic four-cell bath and arm bath with rising temperature should be carried out before considering surgical treatment for chronic epicondylitis.

  13. 21 CFR 882.5500 - Lesion temperature monitor.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lesion temperature monitor. 882.5500 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5500 Lesion temperature monitor. (a) Identification. A lesion temperature monitor is a device used to monitor the tissue...

  14. The influence of photosynthetic acclimation to rising CO2 and warmer temperatures on leaf and canopy photosynthesis models

    Science.gov (United States)

    There is an increasing necessity to understand how climate change factors, particularly increasing atmospheric concentrations of CO2 ([CO2]) and rising temperature, will influence photosynthetic carbon assimilation (A). Based on theory, an increased [CO2] concomitant with a rise in temperature will ...

  15. The rising demand for energy: a potential for optical fiber sensors in the monitoring sector

    Science.gov (United States)

    Bosselmann, Thomas; Willsch, Michael; Ecke, Wolfgang

    2008-03-01

    For a long time electric power was taken as a natural unlimited resource. With globalization the demand for energy has risen. This has brought rising prices for fossil fuels, as well as a diversification of power generation. Besides conventional fossil, nuclear plants are coming up again. Renewable energy sources are gaining importance resulting in recent boom of wind energy plants. In the past reliability and availability and an extremely long lifetime were of paramount importance. Today this has been added by cost, due to the global competition and the high fuel costs. New designs of power components have increased efficiency using lesser material. Higher efficiency causes inevitably higher stress on the materials, of which the machines are built. As a reduction of lifetime is not acceptable and maintenance costs are expected to be at a minimum, condition monitoring systems are going to being used now. This offers potentials for fiber optic sensor applications.

  16. Radiation monitoring data of the HTTR rise-to-power test. Results up to 30 MW operation on the rated operation mode

    Energy Technology Data Exchange (ETDEWEB)

    Ashikagaya, Yoshinobu; Yoshino, Toshiaki; Yasu, Katsuji; Sawa, Kazuhiro [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Kurosawa, Yoshiaki [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2002-12-01

    The High Temperature Engineering Test Reactor (HTTR) have completed the Rise-to-Power test of 9 MW (the single and parallel loaded operation) in the rated operation mode, the rated operation mode and the high-temperature test operation mode with a thermal output of 20 MW (the single and parallel loaded operation). After that the Rise-to-Power test in the rated operation mode (the reactor outlet coolant temperature of 850degC) with a thermal output of 30 MW (the single and parallel loaded operation) were performed between October 20, 2001 and March 11, 2002. This report describes the radiation monitoring data carried out during the HTTR Rise-to-Power test in the rated operation mode with a thermal output of 30 MW. The dose equivalent rate the radioactive air concentration in the working place where the radiation workers enter during the reactor operation were respectively the back ground level and the lower detection limit. There were no release of the radioactive gaseous effluents to the environment through the stack. These radiation monitoring showed clearly the radiation level were very low. This report also describes the part of radiation monitoring data in the HTTR first cycle operation carried out during July 6, 2002 from March 20, 2002. (author)

  17. Radiation monitoring data of the HTTR rise-to-power test. Results up to 30 MW operation on the rated operation mode

    Energy Technology Data Exchange (ETDEWEB)

    Ashikagaya, Yoshinobu; Yoshino, Toshiaki; Yasu, Katsuji; Sawa, Kazuhiro [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Kurosawa, Yoshiaki [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2002-12-01

    The High Temperature Engineering Test Reactor (HTTR) have completed the Rise-to-Power test of 9 MW (the single and parallel loaded operation) in the rated operation mode, the rated operation mode and the high-temperature test operation mode with a thermal output of 20 MW (the single and parallel loaded operation). After that the Rise-to-Power test in the rated operation mode (the reactor outlet coolant temperature of 850degC) with a thermal output of 30 MW (the single and parallel loaded operation) were performed between October 20, 2001 and March 11, 2002. This report describes the radiation monitoring data carried out during the HTTR Rise-to-Power test in the rated operation mode with a thermal output of 30 MW. The dose equivalent rate the radioactive air concentration in the working place where the radiation workers enter during the reactor operation were respectively the back ground level and the lower detection limit. There were no release of the radioactive gaseous effluents to the environment through the stack. These radiation monitoring showed clearly the radiation level were very low. This report also describes the part of radiation monitoring data in the HTTR first cycle operation carried out during July 6, 2002 from March 20, 2002. (author)

  18. Climate change impacts in the Mediterranean resulting from a 2C global temperature rise

    Energy Technology Data Exchange (ETDEWEB)

    Giannakopoulos, C.; Tin, T. [National Observatory of Athens, Athens (Greece); Bindi, M.; Moriondo, M. [Department of Agronomy and Land Management, Florence (Italy)

    2005-07-01

    The goal of the present study is to provide the first piece of the puzzle in understanding the impacts of a 2C global temperature rise on the Mediterranean region, using high temporal resolution climate model output that has been made newly available. The analysis has been based on the temperature, precipitation and wind daily outputs of the HadCM3 model using the IPCC SRES A2 and B2 emission scenarios. The study is focussed on the thirty-year period (2031-2060) centred on the time that global temperature is expected to reach 2C above pre-industrial levels, as defined by an earlier companion study. Changes in both the mean (temperature, precipitation) and the extremes (heatwaves, drought) under the different scenarios were assessed. The impacts of these climatic changes on energy demand, forest fire, tourism and agriculture were subsequently investigated either using existing numerical models or an expertbased approach. Based on recent studies, the impacts on biodiversity, water resources and sea level rise in the region were also discussed.

  19. Effect of LED and Argon Laser on Degree of Conversion and Temperature Rise of Hybrid and Low Shrinkage Composite Resins

    Science.gov (United States)

    Pahlevan, Ayob; Tabatabaei, Masumeh Hasani; Arami, Sakineh; Valizadeh, Sara

    2016-01-01

    Objectives: Different light curing units are used for polymerization of composite resins. The aim of this study was to evaluate the degree of conversion (DC) and temperature rise in hybrid and low shrinkage composite resins cured by LED and Argon Laser curing lights. Materials and Methods: DC was measured using FTIR spectroscopy. For measuring temperature rise, composite resin samples were placed in Teflon molds and cured from the top. The thermocouple under samples recorded the temperature rise. After initial radiation and specimens reaching the ambient temperature, reirradiation was done and temperature was recorded again. Both temperature rise and DC data submitted to one-way ANOVA and Tukey-HSD tests (5% significance). Results: The obtained results revealed that DC was not significantly different between the understudy composite resins or curing units. Low shrinkage composite resin showed a significantly higher temperature rise than hybrid composite resin. Argon laser caused the lowest temperature rise among the curing units. Conclusion: Energy density of light curing units was correlated with the DC. Type of composite resin and light curing unit had a significant effect on temperature rise due to polymerization and curing unit, respectively. PMID:27843507

  20. Global Sea Surface Temperature and Sea Level Rise Estimation with Optimal Historical Time Lag Data

    Directory of Open Access Journals (Sweden)

    Mustafa M. Aral

    2016-11-01

    Full Text Available Prediction of global temperatures and sea level rise (SLR is important for sustainable development planning of coastal regions of the world and the health and safety of communities living in these regions. In this study, climate change effects on sea level rise is investigated using a dynamic system model (DSM with time lag on historical input data. A time-invariant (TI-DSM and time-variant dynamic system model (TV-DSM with time lag is developed to predict global temperatures and SLR in the 21st century. The proposed model is an extension of the DSM developed by the authors. The proposed model includes the effect of temperature and sea level states of several previous years on the current temperature and sea level over stationary and also moving scale time periods. The optimal time lag period used in the model is determined by minimizing a synthetic performance index comprised of the root mean square error and coefficient of determination which is a measure for the reliability of the predictions. Historical records of global temperature and sea level from 1880 to 2001 are used to calibrate the model. The optimal time lag is determined to be eight years, based on the performance measures. The calibrated model was then used to predict the global temperature and sea levels in the 21st century using a fixed time lag period and moving scale time lag periods. To evaluate the adverse effect of greenhouse gas emissions on SLR, the proposed model was also uncoupled to project the SLR based on global temperatures that are obtained from the Intergovernmental Panel on Climate Change (IPCC emission scenarios. The projected SLR estimates for the 21st century are presented comparatively with the predictions made in previous studies.

  1. Fathers in hot water: rising sea temperatures and a Northeastern Atlantic pipefish baby boom.

    Science.gov (United States)

    Kirby, Richard R; Johns, David G; Lindley, John A

    2006-12-22

    We report unprecedented numbers of juvenile snake pipefish, Entelurus aequoreus, in continuous plankton records of the Northeastern Atlantic since 2002. Increased sea surface temperatures (SSTs) in the Northern Hemisphere, linked to global warming, are a likely cause. Analysis of a long-term time-series of SST data in the Northeastern Atlantic shows a rise in winter, spring and summer sea temperatures (January-September), when the eggs of E. aqueoreus, which are brooded by the male, are developing and the larvae are growing in plankton. From what is known of the reproductive biology of closely related species, we suggest that the increased abundance of larval and juvenile E. aequoreus in the plankton as far west as the Mid-Atlantic Ridge may reflect the impact of temperature on abundance, through its effects on the operational sex ratio and potential reproductive rate, the onset of the breeding season and juvenile survival in this sex role reversed fish.

  2. Influence of whitening gel on pulp chamber temperature rise by in-office bleaching technique

    Directory of Open Access Journals (Sweden)

    Sandro Cordeiro Loretto

    Full Text Available INTRODUCTION: Dental bleaching is a conservative method for the aesthetic restoration of stained teeth. However, whitening treatments are likely to cause adverse effects when not well planned and executed. OBJECTIVE: This study evaluated the influence of whitening gel on temperature rise in the pulp chamber, using the in-office photoactivated dental bleaching technique. MATERIAL AND METHOD: The root portion of an upper central human incisor was sectioned 3mm below the cemento-enamel junction. The root canal was enlarged to permit the insertion of the K-type thermocouple sensor (MT-401 into the pulp chamber, which was filled with thermal paste to facilitate the transfer of heat during bleaching. Three photosensitive whitening agents (35% hydrogen peroxide were used: Whiteness HP (FGM, Whiteness HP Maxx (FGM and Lase Peroxide Sensy (DMC. An LED photocuring light (Flash Lite - Discus Dental was used to activate the whitening gels. Six bleaching cycles were performed on each group tested. The results were submitted to one-way ANOVA and LSD t-test (α<0.05. RESULT: The lowest mean temperature variation (ºC was detected for Lase Peroxide Sensy (0.20, while the highest was recorded for Whiteness HP (1.50. CONCLUSION: The Whiteness HP and Whiteness HP Maxx whitening gels significantly affected the temperature rise in the pulp chamber during bleaching, and this variation was dependent on the type of whitening gel used.

  3. Evaluation of abnormal high temperature rises in tulip bulbs caused by direct solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Y.

    1981-01-01

    Tulip bulbs were exposed to direct sun light of mid July to examine the actual bulb temperature rises and later injuries appearance. It was evident that inner part of bulb temperature rose to the degree about 50/sup 0/C in a short time of exposure. And subsequent high level equilibrium came from one hour later. These measurements are agreeable to the amount of direct solar radiation in this season (about 1.0 cal / cm/sup 2/ / min) and the Plank's law. Severe Dryed Reppi during one hour exposure, and Gummosis like exudation, in this case not coloredless but brown colored liquid, during continuous 3 hours of exposure appeared universally. In observation after one month storage, scale burning hardened and greish colored on one part of outer scales from only one hour exposure, or perfect bulb rot from the exposure over 1 (in 8 cm bulbs) or 3 (in 12 cm bulbs) hours were recognized. It was considered that large bulbs were less damaged than small bulbs because degree of temperature rises in tulip bulb increased in inverse proportion to the bulb radius (..delta..T = 3 I/4 c r p) especially. 10 references, 2 figures, 2 tables.

  4. Characterization of the temperature rise in a single cell during photoacoustic tomography at the nanoscale

    Science.gov (United States)

    Samant, Pratik; Chen, Jian; Xiang, Liangzhong

    2016-07-01

    We are developing a label-free nanoscale photoacoustic tomography (nPAT) for imaging a single living cell. nPAT uses a laser-induced acoustic pulse to generate a nanometer-scale image. The primary motivation behind this imaging technique is the imaging of biological cells in the context of diagnosis without fluorescent tagging. During this procedure, thermal damage due to the laser pulse is a potential risk that may damage the cells. A physical model is built to estimate the temperature rise and thermal relaxation during the imaging procedure. Through simulations using finite element methods, two lasers (532 nm at 5 ps pulse duration and 830 nm at 0.2 ps pulse duration) were simulated for imaging red blood cells (RBCs). We demonstrate that a single 5-ps pulse laser with a 400-Hz repetition rate will generate a steady state temperature rise of less than a Kelvin on the surface of the RBCs. All the simulation results show that there is no significant temperature rise in an RBC in either single pulse or multiple pulse illumination with a 532-nm laser with 219 W fluence. Therefore, our simulation results demonstrate the thermal safety of an nPAT system. The photoacoustic signal generated by this laser is on the order of 2.5 kPa, so it should still be large enough to generate high-resolution images with nPAT. Frequency analysis of this signal shows a peak at 1.47 GHz, with frequencies as high as 3.5 GHz still being present in the spectrum. We believe that nPAT will open an avenue for disease diagnosis and cell biology studies at the nanometer-level.

  5. Calculation of eddy current losses and temperature rises at the stator end portion of hydro generators

    Energy Technology Data Exchange (ETDEWEB)

    Kunckel, S.; Klaus, G.; Liese, M.

    2003-04-01

    This paper deals with a calculation method of eddy current losses and temperature rises at the stator end teeth of hydro generators. It can be used for analysing and evaluating different design variants when optimising the stator core end portion. The calculation method simulates the three-dimensional local core end field, but uses only a two-dimensional calculation model. Amongst all the stator teeth it treats the tooth with the highest axial and radial magnetic flux impact. The paper presents a collection of calculation algorithms of the method and provides some results gained for two different stator core end designs. (Author)

  6. A zero-power warming chamber for investigating plant responses to rising temperature

    Directory of Open Access Journals (Sweden)

    K. F. Lewin

    2017-09-01

    Full Text Available Advances in understanding and model representation of plant and ecosystem responses to rising temperature have typically required temperature manipulation of research plots, particularly when considering warming scenarios that exceed current climate envelopes. In remote or logistically challenging locations, passive warming using solar radiation is often the only viable approach for temperature manipulation. However, current passive warming approaches are only able to elevate the mean daily air temperature by  ∼  1.5 °C. Motivated by our need to understand temperature acclimation in the Arctic, where warming has been markedly greater than the global average and where future warming is projected to be  ∼  2–3 °C by the middle of the century; we have developed an alternative approach to passive warming. Our zero-power warming (ZPW chamber requires no electrical power for fully autonomous operation. It uses a novel system of internal and external heat exchangers that allow differential actuation of pistons in coupled cylinders to control chamber venting. This enables the ZPW chamber venting to respond to the difference between the external and internal air temperatures, thereby increasing the potential for warming and eliminating the risk of overheating. During the thaw season on the coastal tundra of northern Alaska our ZPW chamber was able to elevate the mean daily air temperature 2.6 °C above ambient, double the warming achieved by an adjacent passively warmed control chamber that lacked our hydraulic system. We describe the construction, evaluation and performance of our ZPW chamber and discuss the impact of potential artefacts associated with the design and its operation on the Arctic tundra. The approach we describe is highly flexible and tunable, enabling customization for use in many different environments where significantly greater temperature manipulation than that possible with existing passive warming

  7. Multi-scale predictions of massive conifer mortality due to chronic temperature rise

    Science.gov (United States)

    McDowell, Nathan G.; Williams, A.P.; Xu, C.; Pockman, W. T.; Dickman, L. T.; Sevanto, S.; Pangle, R.; Limousin, J.; Plaut, J.J.; Mackay, D.S.; Ogee, J.; Domec, Jean-Christophe; Allen, Craig D.; Fisher, Rosie A.; Jiang, X.; Muss, J.D.; Breshears, D.D.; Rauscher, Sara A.; Koven, C.

    2015-01-01

    Global temperature rise and extremes accompanying drought threaten forests and their associated climatic feedbacks. Our ability to accurately simulate drought-induced forest impacts remains highly uncertain in part owing to our failure to integrate physiological measurements, regional-scale models, and dynamic global vegetation models (DGVMs). Here we show consistent predictions of widespread mortality of needleleaf evergreen trees (NET) within Southwest USA by 2100 using state-of-the-art models evaluated against empirical data sets. Experimentally, dominant Southwest USA NET species died when they fell below predawn water potential (Ψpd) thresholds (April–August mean) beyond which photosynthesis, hydraulic and stomatal conductance, and carbohydrate availability approached zero. The evaluated regional models accurately predicted NET Ψpd, and 91% of predictions (10 out of 11) exceeded mortality thresholds within the twenty-first century due to temperature rise. The independent DGVMs predicted ≥50% loss of Northern Hemisphere NET by 2100, consistent with the NET findings for Southwest USA. Notably, the global models underestimated future mortality within Southwest USA, highlighting that predictions of future mortality within global models may be underestimates. Taken together, the validated regional predictions and the global simulations predict widespread conifer loss in coming decades under projected global warming.

  8. Forage quality declines with rising temperatures, with implications for livestock production and methane emissions

    Science.gov (United States)

    Lee, Mark A.; Davis, Aaron P.; Chagunda, Mizeck G. G.; Manning, Pete

    2017-03-01

    Livestock numbers are increasing to supply the growing demand for meat-rich diets. The sustainability of this trend has been questioned, and future environmental changes, such as climate change, may cause some regions to become less suitable for livestock. Livestock and wild herbivores are strongly dependent on the nutritional chemistry of forage plants. Nutrition is positively linked to weight gains, milk production and reproductive success, and nutrition is also a key determinant of enteric methane production. In this meta-analysis, we assessed the effects of growing conditions on forage quality by compiling published measurements of grass nutritive value and combining these data with climatic, edaphic and management information. We found that forage nutritive value was reduced at higher temperatures and increased by nitrogen fertiliser addition, likely driven by a combination of changes to species identity and changes to physiology and phenology. These relationships were combined with multiple published empirical models to estimate forage- and temperature-driven changes to cattle enteric methane production. This suggested a previously undescribed positive climate change feedback, where elevated temperatures reduce grass nutritive value and correspondingly may increase methane production by 0.9 % with a 1 °C temperature rise and 4.5 % with a 5 °C rise (model average), thus creating an additional climate forcing effect. Future methane production increases are expected to be largest in parts of North America, central and eastern Europe and Asia, with the geographical extent of hotspots increasing under a high emissions scenario. These estimates require refinement and a greater knowledge of the abundance, size, feeding regime and location of cattle, and the representation of heat stress should be included in future modelling work. However, our results indicate that the cultivation of more nutritious forage plants and reduced livestock farming in warming regions

  9. Leaf litter decomposition rates increase with rising mean annual temperature in Hawaiian tropical montane wet forests

    Directory of Open Access Journals (Sweden)

    Lori D. Bothwell

    2014-12-01

    Full Text Available Decomposing litter in forest ecosystems supplies nutrients to plants, carbon to heterotrophic soil microorganisms and is a large source of CO2 to the atmosphere. Despite its essential role in carbon and nutrient cycling, the temperature sensitivity of leaf litter decay in tropical forest ecosystems remains poorly resolved, especially in tropical montane wet forests where the warming trend may be amplified compared to tropical wet forests at lower elevations. We quantified leaf litter decomposition rates along a highly constrained 5.2 °C mean annual temperature (MAT gradient in tropical montane wet forests on the Island of Hawaii. Dominant vegetation, substrate type and age, soil moisture, and disturbance history are all nearly constant across this gradient, allowing us to isolate the effect of rising MAT on leaf litter decomposition and nutrient release. Leaf litter decomposition rates were a positive linear function of MAT, causing the residence time of leaf litter on the forest floor to decline by ∼31 days for each 1 °C increase in MAT. Our estimate of the Q10 temperature coefficient for leaf litter decomposition was 2.17, within the commonly reported range for heterotrophic organic matter decomposition (1.5–2.5 across a broad range of ecosystems. The percentage of leaf litter nitrogen (N remaining after six months declined linearly with increasing MAT from ∼88% of initial N at the coolest site to ∼74% at the warmest site. The lack of net N immobilization during all three litter collection periods at all MAT plots indicates that N was not limiting to leaf litter decomposition, regardless of temperature. These results suggest that leaf litter decay in tropical montane wet forests may be more sensitive to rising MAT than in tropical lowland wet forests, and that increased rates of N release from decomposing litter could delay or prevent progressive N limitation to net primary productivity with climate warming.

  10. The detection of wind turbine shaft misalignment using temperature monitoring.

    OpenAIRE

    2016-01-01

    Temperature is a parameter increasingly monitored in wind turbine systems. This paper details a potential temperature monitoring technique for use on shaft couplings. Such condition monitoring methods aid fault detection in other areas of wind turbines. However, application to shaft couplings has not previously been widely researched. A novel temperature measurement technique is outlined, using an infra-red thermometer which can be applied to online condition monitoring. The method was va...

  11. Temperature rise during Er:YAG cavity preparation of primary enamel.

    Science.gov (United States)

    Contente, Marta Maria Martins Giamatei; de Lima, Fabrício Augusto; Galo, Rodrigo; Pécora, Jesus Djalma; Bachmann, Luciano; Palma-Dibb, Regina Guenka; Borsatto, Maria Cristina

    2012-01-01

    This study aimed to assess in vitro thermal alterations taking place during the Er:YAG laser cavity preparation of primary tooth enamel at different energies and pulse repetition rates. Forty healthy human primary molars were bisected in a mesio-distal direction, thus providing 80 fragments. Two small orifices were made on the dentin surface to which type K thermocouples were attached. The fragments were individually fixed with wax in a cylindrical Plexiglass® abutment and randomly assigned to eight groups, according to the laser parameters (n = 10): G1 - 250 mJ/ 3 Hz, G2 - 250 mJ/ 4 Hz, G3 - 250 mJ/ 6 Hz, G4 - 250 mJ/10 Hz, G5 - 250 mJ/ 15 Hz, G6 - 300 mJ/ 3 Hz, G7 - 300 mJ/ 4 Hz and G8 - 300 mJ/ 6 Hz. An area of 4 mm(2) was delimited. Cavities were done (2 mm long × 2 mm wide × 1 mm thick) using non-contact (12 mm) and focused mode. Temperature values were registered from the start of laser irradiation until the end of cavity preparation. Data were analyzed by one-way ANOVA and Tukey test (p ≤ 0.05). Groups G1, G2, G6, and G7 were statistically similar and furnished the lowest mean values of temperature rise. The set 250 mJ/10 and 15 Hz yielded the highest temperature values. The sets 250 and 300 mJ and 6 Hz provided temperatures with mean values below the acceptable critical value, suggesting that these parameters ablate the primary tooth enamel. Moreover, the temperature elevation was directly related to the increase in the employed pulse repetition rates. In addition, there was no direct correlation between temperature rise and energy density. Therefore, it is important to use a lower pulse frequency, such as 300 mJ and 6 Hz, during cavity preparation in pediatric patients.

  12. Transient temperature rise in a mouse due to low-frequency regional hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Trakic, Adnan; Liu Feng; Crozier, Stuart [School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Qld 4072 (Australia)

    2006-04-07

    A refined nonlinear heat transfer model of a mouse has been developed to simulate the transient temperature rise in a neoplastic tumour and neighbouring tissue during regional hyperthermia using a 150 kHz inductive coil. In this study, we incorporate various bio-energetic enhancements to the heat transfer equation and numerical validations based on experimental findings for the mouse, in terms of nonlinear metabolic heat production, homeothermy, blood perfusion parameters, thermoregulation, psychological and physiological effects. The discretized bio-heat transfer equation has been validated with the commercial software FEMLAB on a canonical multi-sphere object before applying the scheme to the inhomogeneous mouse voxel phantom. The time-dependent numerical results of regional hyperthermia of mouse thigh have been compared with the available experimental temperature results with only a few small disparities. During the first 20 min of local unfocused heating, the temperature in the tumour and the surrounding tissue increased by around 7.5 deg. C. The objective of this preliminary study was to develop a validated electrothermal numerical scheme for inductive hyperthermia of a small mammal with the intention of expanding the model into a complete numerical solution involving ferromagnetic nanoparticles for targeted heating of tumours at low frequencies. In addition, the numerical scheme herein could assist in optimizing and tailoring of focused electromagnetic fields for hyperthermia.

  13. Laser Resistance of Endotracheal Tubes II: ObservedTemperature Rise and Theoretical Explanation.

    Science.gov (United States)

    Foth, H J

    1999-03-01

    An infrared camera was used to measure the temperature rise which takes place in endotracheal tubes exposed to a 20 W CO2 laser beam. It was seen that a metallic tube was heated up within 1 s to temperatures of 200-300°C which was very destructive to the PVC conduits inside the tube. A compound tube, on the other hand, reached temperatures of only 60°C at its inner surface after an exposure of 20 s. The experimental results can be explained by a physical model which uses the heat conduction and the heat capacities of both tubes. Whereas heat conduction in the metal tube is isotropic, heat conduction in the compound tube is anisotropic with a high conductivity along the outer surface and a low conductivity to the inside. This anisotropy and the cooling mechanism in the compound tube due to vaporising water are the reason for the high laser resistance of the tube.

  14. An alternative method to record rising temperatures during dental implant site preparation: a preliminary study using bovine bone

    Directory of Open Access Journals (Sweden)

    Domenica Laurito

    2010-12-01

    Full Text Available Overheating is constantly mentioned as a risk factor for bone necrosis that could compromise the dental implant primary stability. Uncontrolled thermal injury can result in a fibrous tissue, interpositioned at the implant-bone interface, compromising the long-term prognosis. The methods used to record temperature rise include either direct recording by thermocouple instruments or indirect estimating by infrared thermography. This preliminary study was carried out using bovine bone and a different method of temperatures rising estimation is presented. Two different types of drills were tested using fluoroptic thermometer and the effectiveness of this alternative temperature recording method was evaluated.

  15. Response of leaf litter decomposition to rises in atmospheric CO2 and temperature

    Science.gov (United States)

    Hammrich, A.; Flury, S.; Gessner, M. O.

    2007-05-01

    Atmospheric concentrations of CO2 have considerably increased in the last century and are expected to rise further. Elevated CO2 concentrations not only increase global temperature but also have potential to change plant litter quality, for example by increasing lignin content, changing C:N ratios and altering tannin contents. These chemical changes may interact with increased temperature to alter litter decomposition. To test whether changes in litter quality and warming affect decomposition, we conducted a field experiment with leaf litter collected from six species of mature deciduous trees exposed to either ambient or elevated CO2 levels. We used a set of 16 enclosures installed in four blocks in a freshwater marsh in a prealpine lake to test for the effects of CO2-mediated litter quality and temperature and the interaction of both factors. We measured leaf mass loss of the twelve litter types in control and heated enclosures (4 °C above ambient) and also in the open marsh. In contrast to expectations, species decomposing at low (oak and beech) and medium (hornbeam and maple) rates showed faster mass loss when leaves were grown under elevated CO2 conditions, whereas fast-decomposing species (cherry and basswood) showed no clear response. The accelerated decomposition of CO2-enriched litter could be due to higher amounts of nonstructural carbohydrates, which may have been either leached or readily degraded. Warming had a surprisingly small influence on mass loss of the tested litter species, and interactive effects were weak. These results suggest that direct and indirect effects of elevated CO2 levels on litter decomposition may not be readily predictable from first principles.

  16. Northern Mariana Islands Marine Monitoring Team Sea Temperature Measurements

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Site specific monitoring of sea temperature is conducted using submersible temperature dataloggers at selected sites and depths around the islands of Saipan and Rota.

  17. In vivo temperature rise in anesthetized human pulp during exposure to a polywave LED light curing unit.

    Science.gov (United States)

    Runnacles, Patrício; Arrais, Cesar Augusto Galvão; Pochapski, Marcia Thais; Dos Santos, Fábio André; Coelho, Ulisses; Gomes, João Carlos; De Goes, Mário Fernando; Gomes, Osnara Maria Mongruel; Rueggeberg, Frederick Allen

    2015-05-01

    This in vivo study evaluated pulp temperature (PT) rise in human premolars during exposure to a light curing unit (LCU) using selected exposure modes (EMs). After local Ethics Committee approval, intact first upper premolars, requiring extraction for orthodontic reasons, from 8 volunteers, received infiltrative and intraligamental anesthesia. The teeth (n=15) were isolated using rubber dam and a minute pulp exposure was attained. A sterile probe from a wireless, NIST-traceable, temperature acquisition system was inserted directly into the coronal pulp chamber, and real time PT (°C) was continuously monitored while the buccal surface was exposed to polywave light from a LED LCU (Bluephase 20i, Ivoclar Vivadent) using selected EMs allowing a 7-min span between each exposure: 10-s either in low (10-s/L) or high (10-s/H); 5-s-turbo (5-s/T); and 60-s-high (60-s/H) intensities. Peak PT values and PT increases from baseline (ΔT) after exposure were subjected to one-way, repeated measures ANOVAs, and Bonferroni's post hoc tests (α=0.05). Linear regression analysis was performed to establish the relationship between applied radiant exposure and ΔT. All EMs produced higher peak PT than the baseline temperature (p<0.001). The 60-s/H mode generated the highest peak PT and ΔT (p<0.001), with some teeth exhibiting ΔT higher than 5.5°C. A significant, positive relationship between applied radiant exposure and ΔT (r(2)=0.916; p<0.001) was noted. Exposing intact, in vivo anesthetized human upper premolars to a polywave LED LCU increases PT, and depending on EM and the tooth, PT increase can be higher than the critical ΔT, thought to be associated with pulpal necrosis. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. Real-time optoacoustic monitoring of temperature in tissues

    Energy Technology Data Exchange (ETDEWEB)

    Larina, Irina V [Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, TX 77555-0456 (United States); Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-0456 (United States); Larin, Kirill V [Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, TX 77555-0456 (United States); Esenaliev, Rinat O [Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, TX 77555-0456 (United States); Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-0456 (United States); Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX 77555-0456 (United States)

    2005-08-07

    To improve the safety and efficacy of thermal therapy, it is necessary to map tissue temperature in real time with submillimetre spatial resolution. Accurate temperature maps may provide the necessary control of the boundaries of the heated regions and minimize thermal damage to surrounding normal tissues. Current imaging modalities fail to monitor tissue temperature in real time with high resolution and accuracy. We investigated a non-invasive optoacoustic method for accurate, real-time monitoring of tissue temperature during thermotherapy. In this study, we induced temperature gradients in tissue and tissue-like samples and monitored the temperature distribution using the optoacoustic technique. The fundamental harmonic of a Q-switched Nd : YAG laser ({lambda} = 1064 nm) was used for optoacoustic wave generation and probing of tissue temperature. The tissue temperature was also monitored with a multi-sensor temperature probe inserted in the samples. Good agreement between optoacoustically measured and actual tissue temperatures was obtained. The accuracy of temperature monitoring was better than 1{sup 0}C, while the spatial resolution was about 1 mm. These data suggest that the optoacoustic technique has the potential to be used for non-invasive, real-time temperature monitoring during thermotherapy.

  19. Experimental study on solid state reduction of chromite with rising temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kekkonen, M.; Syynimaa, A.; Holappa, L.

    1998-07-01

    The solid state reduction of preoxidized sintered chromite pellets, raw pellets, process pellets and lumpy ores have been studied with rising temperature 700-1520 deg C under CO-atmosphere in order to better simulate the conditions in the upper part of a real submerged arc furnace. According to the reduction degree curves the reduction behaviour of chromite pellets seems to be similar. The reduction rate was slow at the beginning but increased rapidly when the temperature reached about 1000 deg C. The final reduction degree was highest in the case of process pellets and lowest in the case of raw pellet. In the case of preoxidized pellets there was not much difference of the reduction rate and final reduction degree between different oxidation states. In the case of lumpy ores the reduction rate and the final reduction degree was much lower compared to the pellets. Optical photographs, phase and microanalysis show that the reduction has proceeded further in the surface of the samples and confirmed also that the reduction degree remained lower in the case of raw pellet and lumpy ores which was also seen from the reduction degree curves. According to the experiments in the case of preoxidized pellets the effect of oxidation state on the reduction rate was not observed due to small difference in the oxidation state of the samples. But when comparing the reduction of preoxidized pellets and unoxidised raw pellet we can say that preoxidation promotes the reduction. The final reduction degree of the raw pellet remained lower than in the case of preoxidized pellets. (orig.)

  20. Study of the temperature rise induced by a focusing transducer with a wide aperture angle on biological tissue containing ribs

    Science.gov (United States)

    Xin, Wang; Jiexing, Lin; Xiaozhou, Liu; Jiehui, Liu; Xiufen, Gong

    2016-04-01

    We used the spheroidal beam equation to calculate the sound field created by focusing a transducer with a wide aperture angle to obtain the heat deposition, and then we used the Pennes bioheat equation to calculate the temperature field in biological tissue with ribs and to ascertain the effects of rib parameters on the temperature field. The results show that the location and the gap width between the ribs have a great influence on the axial and radial temperature rise of multilayer biological tissue. With a decreasing gap width, the location of the maximum temperature rise moves forward; as the ribs are closer to the transducer surface, the sound energy that passes through the gap between the ribs at the focus decreases, the maximum temperature rise decreases, and the location of the maximum temperature rise moves forward with the ribs. Project supported by the National Basic Research Program of China (Grant Nos. 2012CB921504 and 2011CB707902), the National Natural Science Foundation of China (Grant No. 11274166), the Fundamental Research Funds for the Central Universities, China (Grant No. 020414380001), the Fund from State Key Laboratory of Acoustics, Chinese Academy of Sciences (Grant No. SKLA201401), China Postdoctoral Science Foundation (Grant No. 2013M531313), and the Priority Academic Program Development of Jiangsu Higher Education Institutions and SRF for ROCS, SEM.

  1. Effect of composite resin polymerization modes on temperature rise in human dentin of different thicknesses: an in vitro study

    Energy Technology Data Exchange (ETDEWEB)

    Baggio Aguiar, Flavio Henrique; Kanda Peres Barros, Gisele; Alves Nunes Leite Lima, Debora; Bovi Ambrosano, Glaucia Maria; Lovadino, Jose Roberto [Piracicaba School of Dentistry, Campinas State University, Av. Limeira, 901, SP (Brazil)

    2006-09-15

    The aim of this in vitro study was to evaluate the effect of different polymerization modes on temperature rise in human dentin of different thicknesses, and to evaluate the relation between dentin thickness and temperature rise (TR). For this purpose, 60 specimens were assigned into 20 groups (n = 3): five polymerization modes (1-conventional; 2-soft-start; 3-high intensity; 4-ramp cure: progressive and high intensity; 5-high intensity with the tip of the light-curing unit at a distance of 1.3 cm for 10 s and the tip leaning on the sample) at four dentin thicknesses (0, 1, 2, 3 mm). During composite sample polymerization (2 mm), the temperature was measured by a digital laser thermometer (CMSS2000-SL/SKF). The statistical analyses were conducted by ANOVA (p = 0.05) and post-hoc Tukey's test. There were statistical differences of TR among polymerization modes and dentin thicknesses. The temperature rise was dependent on the polymerization mode and the dentin thickness: the thicker the dentin and the lower the polymerization mode energy, the lower the temperature rise.

  2. Effects of implant drilling parameters for pilot and twist drills on temperature rise in bone analog and alveolar bones.

    Science.gov (United States)

    Chen, Yung-Chuan; Hsiao, Chih-Kun; Ciou, Ji-Sih; Tsai, Yi-Jung; Tu, Yuan-Kun

    2016-11-01

    This study concerns the effects of different drilling parameters of pilot drills and twist drills on the temperature rise of alveolar bones during dental implant procedures. The drilling parameters studied here include the feed rate and rotation speed of the drill. The bone temperature distribution was analyzed through experiments and numerical simulations of the drilling process. In this study, a three dimensional (3D) elasto-plastic dynamic finite element model (DFEM) was proposed to investigate the effects of drilling parameters on the bone temperature rise. In addition, the FE model is validated with drilling experiments on artificial human bones and porcine alveolar bones. The results indicate that 3D DFEM can effectively simulate the bone temperature rise during the drilling process. During the drilling process with pilot drills or twist drills, the maximum bone temperature occurred in the region of the cancellous bones close to the cortical bones. The feed rate was one of the important factors affecting the time when the maximum bone temperature occurred. Our results also demonstrate that the elevation of bone temperature was reduced as the feed rate increased and the drill speed decreased, which also effectively reduced the risk region of osteonecrosis. These findings can serve as a reference for dentists in choosing drilling parameters for dental implant surgeries.

  3. Projecting the impacts of rising seawater temperatures on the distribution of seaweeds around Japan under multiple climate change scenarios

    OpenAIRE

    Takao, Shintaro; Kumagai, Naoki H; Yamano, Hiroya; FUJII, Masahiko; YAMANAKA, Yasuhiro

    2014-01-01

    Seaweed beds play a key role in providing essential habitats and energy to coastal areas, with enhancements in productivity and biodiversity and benefits to human societies. However, the spatial extent of seaweed beds around Japan has decreased due to coastal reclamation, water quality changes, rising water temperatures, and heavy grazing by herbivores. Using monthly mean sea surface temperature (SST) data from 1960 to 2099 and SST-based indices, we quantitatively evaluated the effects of war...

  4. Projecting the impacts of rising seawater temperatures on the distribution of seaweeds around Japan under multiple climate change scenarios

    OpenAIRE

    Takao, Shintaro; Kumagai, Naoki H; Yamano, Hiroya; FUJII, Masahiko; YAMANAKA, Yasuhiro

    2015-01-01

    Seaweed beds play a key role in providing essential habitats and energy to coastal areas, with enhancements in productivity and biodiversity and benefits to human societies. However, the spatial extent of seaweed beds around Japan has decreased due to coastal reclamation, water quality changes, rising water temperatures, and heavy grazing by herbivores. Using monthly mean sea surface temperature (SST) data from 1960 to 2099 and SST-based indices, we quantitatively evaluated the effects of war...

  5. Historical Consumption of Heating Natural Gas and Thermal Monitoring of a Multifamily High-Rise Building in a Temperate/Cold Climate in Argentina

    Directory of Open Access Journals (Sweden)

    Celina Filippín

    2012-12-01

    Full Text Available This paper analyzes the historical consumption of natural gas in a multifamily high-rise building and the monitored winter thermal behavior of an apartment sample. The building is located in the center of Argentina (latitude: 36º27’S; longitude: 64º27’W, where the climate is a cold temperate with an absolute minimum temperature that may reach −10 °C. The building has two blocks, North and South. The building’s annual gas consumption and its variability between 1996 and 2008 are shown. The South block consumed 78% more gas, a situation expected due to lower solar resource availability and greater vulnerability regarding strong and cold SW winds. Indoor temperatures monitored during 2009 in four apartments are described. The outdoor minimum temperature reached −5 °C, with solar irradiance around 500 W/m2 at midday. Results showed that the average indoor temperatures were 20.1, 20.6, 24.0 and 22.1 °C. The highest consumption value corresponded to the apartment exposed to SW cold winds. Compared to the rest of the building, the apartment on the top floor consumes 59% more energy than the average for the gas consumed throughout the year. The authors assume that the energy potentials of intervention are different, and not necessarily all the apartments should have the same technological response.

  6. Characteristics of temperature rise in variable inductor employing magnetorheological fluid driven by a high-frequency pulsed voltage source

    Science.gov (United States)

    Lee, Ho-Young; Kang, In Man; Shon, Chae-Hwa; Lee, Se-Hee

    2015-05-01

    A variable inductor with magnetorheological (MR) fluid has been successfully applied to power electronics applications; however, its thermal characteristics have not been investigated. To evaluate the performance of the variable inductor with respect to temperature, we measured the characteristics of temperature rise and developed a numerical analysis technique. The characteristics of temperature rise were determined experimentally and verified numerically by adopting a multiphysics analysis technique. In order to accurately estimate the temperature distribution in a variable inductor with an MR fluid-gap, the thermal solver should import the heat source from the electromagnetic solver to solve the eddy current problem. To improve accuracy, the B-H curves of the MR fluid under operating temperature were obtained using the magnetic property measurement system. In addition, the Steinmetz equation was applied to evaluate the core loss in a ferrite core. The predicted temperature rise for a variable inductor showed good agreement with the experimental data and the developed numerical technique can be employed to design a variable inductor with a high-frequency pulsed voltage source.

  7. Characteristics of temperature rise in variable inductor employing magnetorheological fluid driven by a high-frequency pulsed voltage source

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho-Young; Kang, In Man, E-mail: imkang@ee.knu.ac.kr [School of Electronics Engineering, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Shon, Chae-Hwa [Korea Electrotechnology Research Institute, Changwon 642-120 (Korea, Republic of); Lee, Se-Hee, E-mail: shlees@knu.ac.kr [Department of Electrical Engineering, Kyungpook National University, Daegu 702-701 (Korea, Republic of)

    2015-05-07

    A variable inductor with magnetorheological (MR) fluid has been successfully applied to power electronics applications; however, its thermal characteristics have not been investigated. To evaluate the performance of the variable inductor with respect to temperature, we measured the characteristics of temperature rise and developed a numerical analysis technique. The characteristics of temperature rise were determined experimentally and verified numerically by adopting a multiphysics analysis technique. In order to accurately estimate the temperature distribution in a variable inductor with an MR fluid-gap, the thermal solver should import the heat source from the electromagnetic solver to solve the eddy current problem. To improve accuracy, the B–H curves of the MR fluid under operating temperature were obtained using the magnetic property measurement system. In addition, the Steinmetz equation was applied to evaluate the core loss in a ferrite core. The predicted temperature rise for a variable inductor showed good agreement with the experimental data and the developed numerical technique can be employed to design a variable inductor with a high-frequency pulsed voltage source.

  8. Temperature Sensor Feasibility Study of Wireless Sensor Network Applications for Heating Efficiency Maintenance in High-Rise Apartment Buildings

    Directory of Open Access Journals (Sweden)

    Freliha B.

    2015-06-01

    Full Text Available Cities are responsible for 60%-80% of the world’s energy use and for approximately the same percentage of greenhouse gas emissions. The existing multi-apartment buildings of multifamily housing sector are often energy inefficient, and the heating system does not ensure optimization of heat distribution of individual apartments. Heat distribution, heating system balancing, heat loss detection and calculation, individual heat energy accounting are difficult tasks to accomplish. This article deals with the temperature monitoring system designed to retrieve temperature differences necessary for overall building heat monitoring and individual apartment monitoring. The sensor testing case study process and its measurements are analysed.

  9. Distributed strain monitoring for bridges: temperature effects

    Science.gov (United States)

    Regier, Ryan; Hoult, Neil A.

    2014-03-01

    To better manage infrastructure assets as they reach the end of their service lives, quantitative data is required to better assess structural behavior and allow for more informed decision making. Distributed fiber optic strain sensors are one sensing technology that could provide comprehensive data for use in structural assessments as these systems potentially allow for strain to be measured with the same accuracy and gage lengths as conventional strain sensors. However, as with many sensor technologies, temperature can play an important role in terms of both the structure's and sensor's performance. To investigate this issue a fiber optic distributed strain sensor system was installed on a section of a two span reinforced concrete bridge on the TransCanada Highway. Strain data was acquired several times a day as well as over the course of several months to explore the effects of changing temperature on the data. The results show that the strain measurements are affected by the bridge behavior as a whole. The strain measurements due to temperature are compared to strain measurements that were taken during a load test on the bridge. The results show that even a small change in temperature can produce crack width and strain changes similar to those due to a fully loaded transport truck. Future directions for research in this area are outlined.

  10. Technological monitoring of subgrade construction on high-temperature permafrost

    Institute of Scientific and Technical Information of China (English)

    Svyatoslav Ya. Lutskiy; Taisia V. Shepitko; Alexander M. Cherkasov

    2015-01-01

    Three stages of complex technological monitoring for the increase of high-temperature-permafrost soil bearing capacity are described. The feasibility of process monitoring to improve the targeted strength properties of subgrade bases on frozen soils is demonstrated. The rationale for the necessity of predictive modeling of freeze-thaw actions during the subgrade construction period is provided.

  11. Earthquake Monitoring at 9 deg 50'N on the East Pacific Rise: Latest Results and Implications for Integrated Models

    Science.gov (United States)

    Doermann, L.; Waldhauser, F.; Tolstoy, M.

    2008-12-01

    Ocean bottom seismograph (OBS) data were recorded continuously between October 2003 and January 2007 at the Ridge 2000 Bull's Eye site at 9°50'N on the East Pacific Rise (EPR) using a 4 x 4 km array of up to 12 instruments with approximately annual turnaround. These data have provided exciting insights into fundamental processes at fast-spreading ridges including volcanism and hydrothermal circulation. They also are providing critical linkages for understanding the geological, chemical and biological data at this site. Results from the first OBS deployment have shown that we are able to monitor microseismicity on a fine enough scale to image the fundamental structure of a hydrothermal circulation cell, and we have identified an on-axis down-flow zone and a hydrothermal cracking front overlying the axial magma chamber (Tolstoy et al., 2008). Our results show that hydrothermal circulation at the EPR is dominantly along-axis with narrowly focused down-flow at small kinks in the axial summit trough (AST). There appear to be two distinct circulation cells within the 9°49'N-9°51'N area, and these correlate well with temperature, chemical and biological observations. The rate of seismic events recorded at the array were ~2 orders of magnitude higher than anticipated based on prior results from this area (>320,000 events recorded versus ~4,500 anticipated), and therefore the processing task is considerable. In addition to hand-picking phase arrival times from periods of particular interest, we are also working on improved automatic detection tools to speed up processing of data from the remaining years and the use of waveform cross-correlation to improve event locations. Preliminary results to date suggest that the basic structure imaged in the 2003-2004 earthquake data persists, with seismicity rates continuing to climb leading up to the January 2006 eruption. We will present the most recent earthquake locations and discuss how they fit into results from the 2003

  12. Impacts of rising air temperatures on electric transmission ampacity and peak electricity load in the United States

    Science.gov (United States)

    Bartos, Matthew; Chester, Mikhail; Johnson, Nathan; Gorman, Brandon; Eisenberg, Daniel; Linkov, Igor; Bates, Matthew

    2016-11-01

    Climate change may constrain future electricity supply adequacy by reducing electric transmission capacity and increasing electricity demand. The carrying capacity of electric power cables decreases as ambient air temperatures rise; similarly, during the summer peak period, electricity loads typically increase with hotter air temperatures due to increased air conditioning usage. As atmospheric carbon concentrations increase, higher ambient air temperatures may strain power infrastructure by simultaneously reducing transmission capacity and increasing peak electricity load. We estimate the impacts of rising ambient air temperatures on electric transmission ampacity and peak per-capita electricity load for 121 planning areas in the United States using downscaled global climate model projections. Together, these planning areas account for roughly 80% of current peak summertime load. We estimate climate-attributable capacity reductions to transmission lines by constructing thermal models of representative conductors, then forcing these models with future temperature projections to determine the percent change in rated ampacity. Next, we assess the impact of climate change on electricity load by using historical relationships between ambient temperature and utility-scale summertime peak load to estimate the extent to which climate change will incur additional peak load increases. We find that by mid-century (2040-2060), increases in ambient air temperature may reduce average summertime transmission capacity by 1.9%-5.8% relative to the 1990-2010 reference period. At the same time, peak per-capita summertime loads may rise by 4.2%-15% on average due to increases in ambient air temperature. In the absence of energy efficiency gains, demand-side management programs and transmission infrastructure upgrades, these load increases have the potential to upset current assumptions about future electricity supply adequacy.

  13. Hydronic Heating Retrofits for Low-Rise Multifamily Buildings: Boiler Control Replacement and Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, J.; Henderson, H.; Varshney, K.

    2014-09-01

    The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency. Efficient operation of the heating system faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68 degrees F) than day (73 degrees F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.

  14. ESTIMATION OF THE TEMPERATURE RISE OF A MCU ACID STREAM PIPE IN NEAR PROXIMITY TO A SLUDGE STREAM PIPE

    Energy Technology Data Exchange (ETDEWEB)

    Fondeur, F; Michael Poirier, M; Samuel Fink, S

    2007-07-12

    Effluent streams from the Modular Caustic-Side Solvent Extraction Unit (MCU) will transfer to the tank farms and to the Defense Waste Processing Facility (DWPF). These streams will contain entrained solvent. A significant portion of the Strip Effluent (SE) pipeline (i.e., acid stream containing Isopar{reg_sign} L residues) length is within one inch of a sludge stream. Personnel envisioned the sludge stream temperature may reach 100 C during operation. The nearby SE stream may receive heat from the sludge stream and reach temperatures that may lead to flammability issues once the contents of the SE stream discharge into a larger reservoir. To this end, personnel used correlations from the literature to estimate the maximum temperature rise the SE stream may experience if the nearby sludge stream reaches boiling temperature. Several calculation methods were used to determine the temperature rise of the SE stream. One method considered a heat balance equation under steady state that employed correlation functions to estimate heat transfer rate. This method showed the maximum temperature of the acid stream (SE) may exceed 45 C when the nearby sludge stream is 80 C or higher. A second method used an effectiveness calculation used to predict the heat transfer rate in single pass heat exchanger. By envisioning the acid and sludge pipes as a parallel flow pipe-to-pipe heat exchanger, this method provides a conservative estimation of the maximum temperature rise. Assuming the contact area (i.e., the area over which the heat transfer occurs) is the whole pipe area, the results found by this method nearly matched the results found with the previous calculation method. It is recommended that the sludge stream be maintained below 80 C to minimize a flammable vapor hazard from occurring.

  15. The temperature and humidity monitoring system for PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Kuemmel, Miriam [Institut fuer Experimentalphysik I, Ruhr-Universitaet Bochum (Germany); Collaboration: PANDA-Collaboration

    2014-07-01

    The electromagnetic calorimeter (EMC) of the PANDA detector to be constructed at FAIR consists of lead tungstate (PWO) crystals, which have a temperature dependent light yield. To achieve the design energy resolution, the EMC must be operated at -25 {sup circle} C, where temperature fluctuations of at most 0.1 {sup circle} C are acceptable. This results in high demands on the precision and resolution of the temperature monitoring. Ultra-thin platinum resistance temperature detectors (RTDs) are needed to measure the temperature in the densely packed EMC. The RTDs are read out by the temperature and humidity monitoring system for PANDA (THMP). Both have been developed at Ruhr-Universitaet Bochum. Not only the RTDs, but also the readout electronics has to be calibrated individually to suffice the high demands. Both, the calibration procedure and improvements in the electronic read out system are presented.

  16. [The development of a respiration and temperature monitor].

    Science.gov (United States)

    Du, X; Wu, B; Liu, Y; He, Q; Xiao, J

    2001-12-01

    This paper introduces the design of a monitoring system to measure the respiration and temperature of a body with an 8Xc196 single-chip microcomputer. This system can measure and display the respiration wave, respiration frequency and the body temperature in real-time with a liquid crystal display (LCD) and give an alarm when the parameters are beyond the normal scope. In addition, this device can provide a 24 hours trend graph of the respiration frequency and the body temperature parameters measured. Data can also be exchanged through serial communication interfaces (RS232) between the PC and the monitor.

  17. Three years of insecticide resistance monitoring in Anopheles gambiae in Burkina Faso: resistance on the rise?

    Directory of Open Access Journals (Sweden)

    Badolo Athanase

    2012-07-01

    Full Text Available Abstract Background and methods A longitudinal Anopheles gambiae s.l. insecticide-resistance monitoring programme was established in four sentinel sites in Burkina Faso. For three years, between 2008 and 2010, WHO diagnostic dose assays were used to measure the prevalence of resistance to all the major classes of insecticides at the beginning and end of the malaria transmission season. Species identification and genotyping for target site mutations was also performed and the sporozoite rate in adults determined. Results At the onset of the study, resistance to DDT and pyrethroids was already prevalent in An. gambiae s.l. from the south-west of the country but mosquitoes from the two sites in central Burkina Faso were largely susceptible. Within three years, DDT and permethrin resistance was established in all four sites. Carbamate and organophosphate resistance remains relatively rare and largely confined to the south-western areas although a small number of bendiocarb survivors were found in all sites by the final round of monitoring. The ace-1R target site resistance allele was present in all localities and its frequency exceeded 20% in 2010 in two of the sites. The frequency of the 1014F kdr mutation increased throughout the three years and by 2010, the frequency of 1014F in all sites combined was 0.02 in Anopheles arabiensis, 0.56 in An. gambiae M form and 0.96 in An. gambiae S form. This frequency did not differ significantly between the sites. The 1014S kdr allele was only found in An. arabiensis but its frequency increased significantly throughout the study (P = 0.0003 and in 2010 the 1014S allele frequency was 0.08 in An. arabiensis. Maximum sporozoite rates (12% were observed in Soumousso in 2009 and the difference between sites is significant for each year. Conclusion Pyrethroid and DDT resistance is now established in An. gambiae s.l. throughout Burkina Faso. Results from diagnostic dose assays are highly variable within and

  18. Monitoring temperature and pressure over surfaces using sensitive paints

    Science.gov (United States)

    Guerrero-Viramontes, J. Ascención; Moreno Hernández, David; Mendoza Santoyo, Fernando; Morán Loza, José Miguel; García Arreola, Alicia

    2007-03-01

    Two techniques for monitoring temperature and pressure variations over surfaces using sensitive paints are presented. The analysis is done by the acquisition of a set of images of the surface under analysis. The surface is painted by a paint called Pressure Sensitive Paint (PSP) for pressure measurements and Temperature Sensitive Paints (TSP) for temperature measurements. These kinds of paints are deposited over the surface under analysis. The recent experimental advances in calibration process are presented in this paper.

  19. Temperature rise induced in Si by continuous xenon arc lamp radiation

    Science.gov (United States)

    Lietoila, A.; Gold, R. B.; Gibbons, J. F.

    1982-02-01

    It is shown that practical beam annealing of silicon can be accomplished with a high intensity arc lamp. The use of a one-dimensional, steady-state solution for temperature is justified. The Kirchhoff transform is utilized to include the temperature dependence of the thermal conductivity. Surface temperatures produced by a xenon arc lamp are calculated for 300- and 375-μm thick silicon samples, using substrate temperatures of 350 and 500 °C. It is shown that substantial reduction of the radiation intensity required for a given surface temperature can be obtained by placing a quartz wafer between the silicon sample and the heat sink.

  20. Structural Design of Temperature-Rising Zone and Temperature-Falling Zone in Pusher Kiln%推板窑升降温段结构设计

    Institute of Scientific and Technical Information of China (English)

    苏文生

    2011-01-01

    The pusher kiln is widely used to heat the electronic material with high temperature as a sintefing device. On the basis of the pressure distribution in the pusher kiln, the structural characteristics of the temperature-rising zone and the temperature-falling zone are introduced.%推板窑作为热工烧结设备,广泛应用于电子材料高温处理.本文从推板窑的压强分布特点人手,介绍了升降温段的结构特点.

  1. Silicon Carbide Temperature Monitor Processing Improvements. Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Unruh, Troy Casey [Idaho National Lab. (INL), Idaho Falls, ID (United States); Daw, Joshua Earl [Idaho National Lab. (INL), Idaho Falls, ID (United States); Al Rashdan, Ahamad [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-01-29

    Silicon carbide (SiC) temperature monitors are used as temperature sensors in Advanced Test Reactor (ATR) irradiations at the Idaho National Laboratory (INL). Although thermocouples are typically used to provide real-time temperature indication in instrumented lead tests, other indicators, such as melt wires, are also often included in such tests as an independent technique of detecting peak temperatures incurred during irradiation. In addition, less expensive static capsule tests, which have no leads attached for real-time data transmission, often rely on melt wires as a post-irradiation technique for peak temperature indication. Melt wires are limited in that they can only detect whether a single temperature is or is not exceeded. SiC monitors are advantageous because a single monitor can be used to detect for a range of temperatures that occurred during irradiation. As part of the process initiated to make SiC temperature monitors available at the ATR, post-irradiation evaluations of these monitors have been previously completed at the High Temperature Test Laboratory (HTTL). INL selected the resistance measurement approach for determining irradiation temperature from SiC temperature monitors because it is considered to be the most accurate measurement. The current process involves the repeated annealing of the SiC monitors at incrementally increasing temperature, with resistivity measurements made between annealing steps. The process is time consuming and requires the nearly constant attention of a trained staff member. In addition to the expensive and lengthy post analysis required, the current process adds many potential sources of error in the measurement, as the sensor must be repeatedly moved from furnace to test fixture. This time-consuming post irradiation analysis is a significant portion of the total cost of using these otherwise inexpensive sensors. An additional consideration of this research is that, if the SiC post processing can be automated, it

  2. A controlled intervention study concerning the effect of intended temperature rise on house dust mite load

    DEFF Research Database (Denmark)

    Sidenius, Kirsten E; Hallas, Thorkil E; Poulsen, Lars K.

    2002-01-01

    In epidemiological studies, increased indoor temperature--producing a lower relative humidity--is associated with low house dust mite (HDM) load. Twenty-eight dwellings were allocated for either intervention (12/15 completed) or control (11/13 completed). In the intervention group, participants...... were asked to increase the bedroom temperature by at least 3 degrees C compared to the self-assessed temperature of the previous winter. Dust samples were repeatedly collected from mattress and floor, and bedroom temperature and relative humidity were recorded hourly throughout one year. Dust...... C). Groups turned out not to be comparable with respect to initial (self-assessed) bedroom temperature (lowest in the intervention group). There was a significant seasonal variation, with doubled Der 1 concentrations in dust collected in July-November compared to January-May samples. No effect...

  3. The oasis effect and summer temperature rise in arid regions - case study in Tarim Basin

    Science.gov (United States)

    Hao, Xingming; Li, Weihong; Deng, Haijun

    2016-10-01

    This study revealed the influence of the oasis effect on summer temperatures based on MODIS Land Surface Temperature (LST) and meteorological data. The results showed that the oasis effect occurs primarily in the summer. For a single oasis, the maximum oasis cold island intensity based on LST (OCILST) was 3.82 °C and the minimum value was 2.32 °C. In terms of the annual change in OCILST, the mean value of all oases ranged from 2.47 °C to 3.56 °C from 2001 to 2013. Net radiation (Rn) can be used as a key predictor of OCILST and OCItemperature (OCI based on air temperature). On this basis, we reconstructed a long time series (1961–2014) of OCItemperature and Tbase(air temperature without the disturbance of oasis effect). Our results indicated that the reason for the increase in the observed temperatures was the significant decrease in the OCItemperature over the past 50 years. In arid regions, the data recorded in weather stations not only underestimated the mean temperature of the entire study area but also overestimated the increasing trend of the temperature. These discrepancies are due to the limitations in the spatial distribution of weather stations and the disturbance caused by the oasis effect.

  4. Hanford coring bit temperature monitor development testing results report

    Energy Technology Data Exchange (ETDEWEB)

    Rey, D.

    1995-05-01

    Instrumentation which directly monitors the temperature of a coring bit used to retrieve core samples of high level nuclear waste stored in tanks at Hanford was developed at Sandia National Laboratories. Monitoring the temperature of the coring bit is desired to enhance the safety of the coring operations. A unique application of mature technologies was used to accomplish the measurement. This report documents the results of development testing performed at Sandia to assure the instrumentation will withstand the severe environments present in the waste tanks.

  5. Response Variability across Diverse Rice Accessions under Rising Temperature and Increasing Atmospheric Carbon Dioxide

    Science.gov (United States)

    Evaluating variability of rice response to concurrent increases in CO2 and temperature forecasted for future climates is a prerequisite step towards characterizing the genetic architecture underlying this response. Expanding on previous single cultivar studies, we evaluated eleven biogeographically ...

  6. Temperature rise and parasitic infection interact to increase the impact of an invasive species.

    Science.gov (United States)

    Laverty, Ciaran; Brenner, David; McIlwaine, Christopher; Lennon, Jack J; Dick, Jaimie T A; Lucy, Frances E; Christian, Keith A

    2017-04-01

    Invasive species often detrimentally impact native biota, e.g. through predation, but predicting such impacts is difficult due to multiple and perhaps interacting abiotic and biotic context dependencies. Higher mean and peak temperatures, together with parasites, might influence the impact of predatory invasive host species additively, synergistically or antagonistically. Here, we apply the comparative functional response methodology (relationship between resource consumption rate and resource supply) in one experiment and conduct a second scaled-up mesocosm experiment to assess any differential predatory impacts of the freshwater invasive amphipod Gammarus pulex, when uninfected and infected with the acanthocephalan Echinorhynchus truttae, at three temperatures representative of current and future climate. Individual G. pulex showed Type II predatory functional responses. In both experiments, infection was associated with higher maximum feeding rates, which also increased with increasing temperatures. Additionally, infection interacted with higher temperatures to synergistically elevate functional responses and feeding rates. Parasitic infection also generally increased Q10 values. We thus suggest that the differential metabolic responses of the host and parasite to increasing temperatures drives the synergy between infection and temperature, elevating feeding rates and thus enhancing the ecological impact of the invader. Copyright © 2017 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  7. Ciguatera incidence in the US Virgin Islands has not increased over a 30-year time period despite rising seawater temperatures.

    Science.gov (United States)

    Radke, Elizabeth G; Grattan, Lynn M; Cook, Robert L; Smith, Tyler B; Anderson, Donald M; Morris, J Glenn

    2013-05-01

    Ciguatera fish poisoning is the most common marine food poisoning worldwide. It has been hypothesized that increasing seawater temperature will result in increasing ciguatera incidence. In St. Thomas, US Virgin Islands, we performed an island-wide telephone survey (N = 807) and a medical record review of diagnosed ciguatera cases at the emergency department of the sole hospital and compared these data with comparable data sources collected in 1980. Annual incidence from both recent data sources remained high (12 per 1,000 among adults in the telephone survey). However, the combined data sources suggest that incidence has declined by 20% or more or remained stable over 30 years, whereas seawater temperatures were increasing. Illness was associated with lower education levels, higher levels of fish consumption, and having previous episodes of ciguatera; population shifts from 1980 to 2010 in these factors could explain an incidence decline of approximately 3 per 1,000, obscuring effects from rising seawater temperature.

  8. Food Legumes and Rising Temperatures: Effects, Adaptive Functional Mechanisms Specific to Reproductive Growth Stage and Strategies to Improve Heat Tolerance

    Directory of Open Access Journals (Sweden)

    Kumari Sita

    2017-10-01

    Full Text Available Ambient temperatures are predicted to rise in the future owing to several reasons associated with global climate changes. These temperature increases can result in heat stress- a severe threat to crop production in most countries. Legumes are well-known for their impact on agricultural sustainability as well as their nutritional and health benefits. Heat stress imposes challenges for legume crops and has deleterious effects on the morphology, physiology, and reproductive growth of plants. High-temperature stress at the time of the reproductive stage is becoming a severe limitation for production of grain legumes as their cultivation expands to warmer environments and temperature variability increases due to climate change. The reproductive period is vital in the life cycle of all plants and is susceptible to high-temperature stress as various metabolic processes are adversely impacted during this phase, which reduces crop yield. Food legumes exposed to high-temperature stress during reproduction show flower abortion, pollen and ovule infertility, impaired fertilization, and reduced seed filling, leading to smaller seeds and poor yields. Through various breeding techniques, heat tolerance in major legumes can be enhanced to improve performance in the field. Omics approaches unravel different mechanisms underlying thermotolerance, which is imperative to understand the processes of molecular responses toward high-temperature stress.

  9. Potential decline in geothermal energy generation due to rising temperatures under climate change scenarios

    Science.gov (United States)

    Angel, E.; Ortega, S.; Gonzalez-Duque, D.; Ruiz-Carrascal, D.

    2016-12-01

    Geothermal energy production depends on the difference between air temperature and the geothermal fluid temperature. The latter remains approximately constant over time, so the power generation varies according to local atmospheric conditions. Projected changes in near-surface air temperatures in the upper levels of the tropical belt are likely to exceed the projected temperature anomalies across many other latitudes, which implies that geothermal plants located in these regions may be affected, reducing their energy output. This study focuses on a hypothetical geothermal power plant, located in the headwaters of the Claro River watershed, a key high-altitude basin in Los Nevados Natural Park, on the El Ruiz-Tolima volcanic massif, in the Colombian Central Andes, a region with a known geothermal potential. Four different Atmospheric General Circulation Models where used to project temperature anomalies for the 2040-2069 prospective period. Their simulation outputs were merged in a differentially-weighted multi-model ensemble, whose weighting factors were defined according to the capability of individual models to reproduce ground truth data from a set of digital data-loggers installed in the basin since 2008 and from weather stations gathering climatic variables since the early 50s. Projected anomalies were computed for each of the Representative Concentration Pathways defined by the IPCC Fifth Assessment Report in the studied region. These climate change projections indicate that air temperatures will likely reach positive anomalies in the range +1.27 ºC to +3.47 ºC, with a mean value of +2.18 ºC. Under these conditions, the annual energy output declines roughly 1% per each degree of increase in near-surface temperature. These results must be taken into account in geothermal project evaluations in the region.

  10. Dynamic time warping for temperature compensation in structural health monitoring

    Science.gov (United States)

    Douglass, Alexander; Harley, Joel B.

    2017-02-01

    Guided wave structural health monitoring uses ultrasonic waves to identify changes in structures. To identify these changes, most guided wave methods require a pristine baseline measurement with which other measurements are compared. Damage signatures arise when there is a deviation between the baseline and the recorded measurement. However, temperature significantly complicates this analysis by creating misalignment between the baseline and measurements. This leads to false alarms of damage and significantly reduces the reliability of these systems. Several methods have been created to account for these temperature perturbations. Yet, most of these compensation methods fail in harsh, highly variable temperature conditions or require a prohibitive amount of prior data. In this paper, we use an algorithm known as dynamic time warping to compensate for temperature in these harsh conditions. We demonstrate that dynamic time warping is able to account for temperature variations whereas the more traditional baseline signal stretch method is unable to resolve damage under high temperature fluctuations.

  11. Effect of Contact Temperature Rise During Sliding on the Wear Resistance of TiNi Shape Memory Alloys

    Directory of Open Access Journals (Sweden)

    S.K. Roy Chowdhury

    2013-03-01

    Full Text Available The high wear resistance of TiNi shape memory alloys has generally been attributed to its pseudoelastic nature. In the present work the hardening effect due to its phase transformation from martensite to austenite due to frictional heating during sliding has been considered. Based on existing constitutive models that represent the experimental results of TiNi shape memory alloys a theoretical model of the dependence of wear-resistance on the contact temperature rise has been developed. The analysis was further extended to include the operating and surface roughness parameters. The model essentially indicates that for these alloys wear decreases with the rise in contact temperature over a wide range of load, speed and surface roughness combination during sliding. This means that the wear resistance of these alloys results from the very cause that is normally responsible for the increased wear and seizure of common engineering materials. Preliminary wear tests were carried out with TiNi alloys at varying ambient temperature and varying load-speed combinations and the results agree well with the theoretical predictions.

  12. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores

    NARCIS (Netherlands)

    Bale, J.S.; Masters, G.J.; Hodkinson, I.D.; Awmack, C.; Bezemer, T.M.; Brown, V.K.; Butterfield, J.; Buse, A.; Coulson, J.C.; Farrar, J.; Good, J.E.G.; Harrington, R.; Hartley, S.; Jones, T.H.; Lindroth, R.L.; Press, M.C.; Symrnioudis, I.; Watt, A.D.; Whittaker, J.B.

    2002-01-01

    This review examines the direct effects of climate change on insect herbivores. Temperature is identified as the dominant abiotic factor directly affecting herbivorous insects. There is little evidence of any direct effects Of CO2 or UVB. Direct impacts of precipitation have been largely neglected i

  13. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores

    NARCIS (Netherlands)

    Bale, J.S.; Masters, G.J.; Hodkinson, I.D.; Awmack, C.; Bezemer, T.M.; Brown, V.K.; Butterfield, J.; Buse, A.; Coulson, J.C.; Farrar, J.; Good, J.E.G.; Harrington, R.; Hartley, S.; Jones, T.H.; Lindroth, R.L.; Press, M.C.; Symrnioudis, I.; Watt, A.D.; Whittaker, J.B.

    2002-01-01

    This review examines the direct effects of climate change on insect herbivores. Temperature is identified as the dominant abiotic factor directly affecting herbivorous insects. There is little evidence of any direct effects Of CO2 or UVB. Direct impacts of precipitation have been largely neglected

  14. Leaf litter decomposition rates increase with rising mean annual temperature in Hawaiian tropical montane wet forests

    Science.gov (United States)

    Lori D. Bothwell; Paul C. Selmants; Christian P. Giardina; Creighton M. Litton

    2014-01-01

    Decomposing litter in forest ecosystems supplies nutrients to plants, carbon to heterotrophic soil microorganisms and is a large source of CO2 to the atmosphere. Despite its essential role in carbon and nutrient cycling, the temperature sensitivityof leaf litter decay in tropical forest ecosystems remains poorly resolved, especially in tropical...

  15. THERMAL POST-BUCKLING OF AN ELASTIC BEAMS SUBJECTED TO A TRANSVERSELY NON-UNIFORM TEMPERATURE RISING

    Institute of Scientific and Technical Information of China (English)

    李世荣; 程昌钧; 周又和

    2003-01-01

    Based on the nonlinear geometric theory of axially extensible beams and by usingthe shooting method, the thermal post-buckling responses of an elastic beams, withimmovably simply supported ends and subjected to a transversely non-uniformly distributedtemperature rising, were investigated. Especially, the influences of the transversetemperature change on the thermal post-buckling deformations were examined and thecorresponding characteristic curves were plotted. The numerical results show that theequilibrium paths of the beam are similar to what of an initially deformed beam because ofthe thermal bending moment produced in the beam by the transverse temperature change.

  16. Silicon solar cell monitors high temperature furnace operation

    Science.gov (United States)

    Zellner, G. J.

    1968-01-01

    Silicon solar cell, attached to each viewpoint, monitors that incandescent emission from the hot interior of a furnace without interfering with the test assembly or optical pyrometry during the test. This technique can provide continuous indication of hot spots or provide warning of excessive temperatures in cooler regions.

  17. Effects of elevated temperatures and rising sea level on Arctic Coast

    Science.gov (United States)

    Barnes, Peter W.

    1990-01-01

    Ice is a major agent on the inner shelf, gouging the bottom, increasing hydraulic scour, transporting sediment, and influencing river flood patterns. Rapid coastal retreat is common and low barrier islands and beaches are constantly changing due to the influence of permafrost, ice-push, waves, and currents. Coastal processes are presently a balance between the influence of ice and the action of waves and currents. Quantitative values for processes are poorly known, however our qualitative understanding is nearly complete. Climatic warming and rising sea levels would decrease the temporal and aerial extent of coastal ice thereby expanding the role of waves and currents. As a result, shoreline retreat rates would increase, producing a transgressive erosional surface on the low coastal plain. With increased wave activity, beaches and barrier islands presently nourished by ice push processes would decay and disappear. Increased sediment supply from a deeply thawed, active layer would release more sediments to rivers and coasts. Additional research should be focused on permafrost and sea ice processes active during freeze up and breakup; the two seasons of most vigorous activity and change.

  18. Wireless device for monitoring the temperature - moisture regime in situ

    Science.gov (United States)

    Hudec, Ján; Štofanik, Vladimír; Vretenár, Viliam; Kubičár, Ľudovít

    2014-05-01

    This contribution presents the wireless device for monitoring the temperature - moisture regime in situ. For the monitoring so called moisture sensor is used. Principle of moisture sensor is based on measuring the thermal conductivity. Moisture sensor has cylindrical shape with about 20 mm diameter and 20 mm length. It is made of porous material identical to the monitored object. The thermal conductivity is measured by hot-ball method. Hot-ball method is patented invention of the Institute of Physic SAS. It utilizes a small ball, diameter up to 2 mm, in which sensing elements are incorporated. The ball produces heat spreading into surrounding material, in our case into body of the moisture sensor. Temperature of the ball is measured simultaneously. Then change of the temperature, in steady state, is inversely proportional to the thermal conductivity. Such moisture sensor is inserted into monitored wall. Thermophysical properties of porous material are function of moisture. Moisture sensors are calibrated for dry and water saturated state. Whole the system is primarily intended to do long-term monitoring. Design of a new electronic device was needed for this innovative method. It covers all needed operations for measurement. For example energizing hot-ball sensor, measuring its response, storing the measured data and wireless data transmission. The unit is able to set parameters of measurement via wireless access as well. This contribution also includes the description of construction and another features of the wireless measurement system dedicated for this task. Possibilities and functionality of the system is demonstrated by actual monitoring of the tower of St. Martin's Cathedral in Bratislava. Correlations with surrounding meteorological conditions are presented. Some of them can be also measured by our system, right in the monitoring place.

  19. Temperature Rise Within a Mobile Refuge Alternative—Experimental Investigation and Model Validation

    Science.gov (United States)

    Yantek, David; Klein, Mark; Bissert, Peter; Matetic, Rudy

    2017-01-01

    Mine Safety and Health Administration (MSHA) regulations require underground coal mines to install refuge alternatives (RAs). In the event of a disaster, RAs must be able to provide a breathable air environment for 96 h. The interior environment of an occupied RA, however, may become hot and humid during the 96 h due to miners’ metabolic heat and carbon dioxide scrubbing system heat. The internal heat and humidity may result in miners suffering heat stress or even death. To investigate heat and humidity buildup with an occupied RA, the National Institute for Occupational Safety and Health (NIOSH) conducted testing on a training ten-person, tent-type RA in its Safety Research Coal Mine (SRCM) in a test area that was isolated from the mine ventilation system. The test results showed that the average measured air temperature within the RA increased by 11.4°C (20.5 °F) and the relative humidity approached 90% RH. The test results were used to benchmark a thermal simulation model of the tested RA. The validated thermal simulation model predicted the average air temperature inside the RA at the end of 96 h to within 0.6 °C (1.1 °F) of the measured average air temperature.

  20. Heat Death Associations with the built environment, social vulnerability and their interactions with rising temperature.

    Science.gov (United States)

    Eisenman, David P; Wilhalme, Holly; Tseng, Chi-Hong; Chester, Mikhail; English, Paul; Pincetl, Stephanie; Fraser, Andrew; Vangala, Sitaram; Dhaliwal, Satvinder K

    2016-09-01

    In an extreme heat event, people can go to air-conditioned public facilities if residential air-conditioning is not available. Residences that heat slowly may also mitigate health effects, particularly in neighborhoods with social vulnerability. We explored the contributions of social vulnerability and these infrastructures to heat mortality in Maricopa County and whether these relationships are sensitive to temperature. Using Poisson regression modeling with heat-related mortality as the outcome, we assessed the interaction of increasing temperature with social vulnerability, access to publicly available air conditioned space, home air conditioning and the thermal properties of residences. As temperatures increase, mortality from heat-related illness increases less in census tracts with more publicly accessible cooled spaces. Mortality from all internal causes of death did not have this association. Building thermal protection was not associated with mortality. Social vulnerability was still associated with mortality after adjusting for the infrastructure variables. To reduce heat-related mortality, the use of public cooled spaces might be expanded to target the most vulnerable.

  1. Experimental modeling of the influence of the rise in average summer temperatures on carbon circulation in tundra ecosystems

    Science.gov (United States)

    Barkhatov, Yu. V.; Tikhomirov, A. A.; Ushakova, S. A.; Shikhov, V. N.; Bartsev, S. I.; Degermendzhi, A. G.

    2016-11-01

    A sealed vegetation chamber was designed and constructed for physical simulation of climate conditions in the Subarctic zone during the spring-summer time. The small laboratory tundra-simulating ecosystem (TSE) was created for comparative evaluation of the rates of soil respiration and of the total balance of carbon fluxes in tundra ecosystems. The test experiment was performed to study the TSE response to a temperature rise in air and soil by 2°C in terms of the intensity of the CO2 flux. It was shown that this increase in temperature would cause a pronounced shift in the balance of CO2 production and utilization in the ecosystem from near-zero values to a stable generation of 24 μmol/h of CO2 per 1 kg of dry biomass.

  2. Effect of new innovative restorative carbomised glass cement on intrapulpal temperature rise: an ex-vivo study

    Directory of Open Access Journals (Sweden)

    Murat Selim BOTSALI

    2016-01-01

    Full Text Available Abstract This study aimed to evaluate the temperature changes that occurred in the pulp chamber when using GCP Glass Carbomer Fill (GCP and two different resin-modified glass-ionomer (RGI restorative materials at different dentin thicknesses. A standardized Class I occlusal cavity with 1 mm or 2 mm dentin thickness was prepared in the extracted human molar teeth. RGI and GCP fills were placed in the cavities and cured with two different light-curing units. This study included a total of 120 samples, with 20 samples in each group. The pulp microcirculation method was used for measuring the intrapulpal temperature changes. Statistical analysis was performed using the two-way ANOVA and Tukey HSD multiple comparison tests. Statistically significant differences were observed between 1 mm and 2 mm dentin thicknesses (p 0.05. The highest temperature changes were observed with 1 mm dentin thickness. While RGI materials in both dentin thicknesses did not cause temperature changes that were harmful to the pulp, GCP CarboLED LCU caused the highest intrapulpal temperature rise, and these values were borderline harmful to the dental pulp.

  3. Temperature rise in objects due to optical focused beam through atmospheric turbulence near ground and ocean surface

    Science.gov (United States)

    Stoneback, Matthew; Ishimaru, Akira; Reinhardt, Colin; Kuga, Yasuo

    2013-03-01

    We consider an optical beam propagated through the atmosphere and incident on an object causing a temperature rise. In clear air, the physical characteristics of the optical beam transmitted to the object surface are influenced primarily by the effect of atmospheric turbulence, which can be significant near the ground or ocean surface. We use a statistical model to quantify the expected power transfer through turbulent atmosphere and provide guidance toward the threshold of thermal blooming for the considered scenarios. The bulk thermal characteristics of the materials considered are used in a thermal diffusion model to determine the net temperature rise at the object surface due to the incident optical beam. These results of the study are presented in graphical form and are of particular interest to operators of high power laser systems operating over large distances through the atmosphere. Numerical examples include a CO2 laser (λ=10.6 μm) with: aperture size of 5 cm, varied pulse duration, and propagation distance of 0.5 km incident on 0.1-mm copper, 10-mm polyimide, 1-mm water, and 10-mm glass/resin composite targets. To assess the effect of near ground/ocean laser propagation, we compare turbulent (of varying degrees) and nonturbulent atmosphere.

  4. Arctic Sea ice decay simulated for a CO2-induced temperature rise

    Science.gov (United States)

    Parkinson, C. L.; Kellogg, W. W.

    1981-01-01

    A large scale numerical time-dependent model of sea ice that takes into account the heat fluxes in and out of the ice, the seasonal occurrence of snow, and ice motions was used in an experiment to determine the response of the Arctic Ocean ice pack to a warming of the atmosphere. The degree of warming specified is that expected for a doubling of atmospheric carbon dioxide with its associated greenhouse effect, a condition that could occur before the middle of the next century. The results of three 5-year simulations with a warmer atmosphere and varied boundary conditions were: (1) that in the face of a 5 K surface atmospheric temperature increase the ice pack disappeared completely in August and September but reformed in the central Arctic Ocean in mid fall; (2) that the simulations were moderately dependence on assumptions concerning cloud cover; and (3) that even when atmospheric temperature increases of 6-9 K were combined with an order-of-magnitude increase in the upward heat flux from the ocean, the ice still appeared in winter. It should be noted that a year-round ice-free Arctic Ocean has apparently not existed for a million years or more.

  5. High Temperature Transducers for Online Monitoring of Microstructure Evolution

    Energy Technology Data Exchange (ETDEWEB)

    Lissenden, Cliff [Pennsylvania State Univ., State College, PA (United States); Tittmann, Bernhard [Battelle Energy Alliance, LLC, Idaho Falls, ID (United States)

    2015-03-30

    A critical technology gap exists relative to online condition monitoring (CM) of advanced nuclear plant components for damage accumulation; there are not capable sensors and infrastructure available for the high temperature environment. The sensory system, monitoring methodology, data acquisition, and damage characterization algorithm that comprise a CM system are investigated here. Thus this work supports the DOE mission to develop a fundamental understanding of advanced sensors to improve physical measurement accuracy and reduce uncertainty. The research involves a concept viability assessment, a detailed technology gap analysis, and a technology development roadmap.

  6. Coral mass spawning predicted by rapid seasonal rise in ocean temperature.

    Science.gov (United States)

    Keith, Sally A; Maynard, Jeffrey A; Edwards, Alasdair J; Guest, James R; Bauman, Andrew G; van Hooidonk, Ruben; Heron, Scott F; Berumen, Michael L; Bouwmeester, Jessica; Piromvaragorn, Srisakul; Rahbek, Carsten; Baird, Andrew H

    2016-05-11

    Coral spawning times have been linked to multiple environmental factors; however, to what extent these factors act as generalized cues across multiple species and large spatial scales is unknown. We used a unique dataset of coral spawning from 34 reefs in the Indian and Pacific Oceans to test if month of spawning and peak spawning month in assemblages of Acropora spp. can be predicted by sea surface temperature (SST), photosynthetically available radiation, wind speed, current speed, rainfall or sunset time. Contrary to the classic view that high mean SST initiates coral spawning, we found rapid increases in SST to be the best predictor in both cases (month of spawning: R(2) = 0.73, peak: R(2) = 0.62). Our findings suggest that a rapid increase in SST provides the dominant proximate cue for coral mass spawning over large geographical scales. We hypothesize that coral spawning is ultimately timed to ensure optimal fertilization success.

  7. Coral mass spawning predicted by rapid seasonal rise in ocean temperature

    KAUST Repository

    Keith, Sally A.

    2016-05-11

    Coral spawning times have been linked to multiple environmental factors; however, to what extent these factors act as generalized cues across multiple species and large spatial scales is unknown. We used a unique dataset of coral spawning from 34 reefs in the Indian and Pacific Oceans to test if month of spawning and peak spawning month in assemblages of Acropora spp. can be predicted by sea surface temperature (SST), photosynthetically available radiation, wind speed, current speed, rainfall or sunset time. Contrary to the classic view that high mean SST initiates coral spawning, we found rapid increases in SST to be the best predictor in both cases (month of spawning: R2 = 0.73, peak: R2 = 0.62). Our findings suggest that a rapid increase in SST provides the dominant proximate cue for coral mass spawning over large geographical scales. We hypothesize that coral spawning is ultimately timed to ensure optimal fertilization success.

  8. Precision temperature monitoring (PTM) and Humidity monitoring (HM) sensors of the CMS electromagnetic calorimeter

    CERN Multimedia

    2006-01-01

    A major aspect for the ECAL detector control is the monitoring of the system temperature and the verification that the required temperature stability of the crystal volume and the APDs, expected to be (18 ± 0.05)C, is achieved. The PTM is designed to read out thermistors, placed on both the front and back of the crystals, with a relative precision better than 0.01 C. In total there are ten sensors per supermodule. The humidity level in the electronics compartment is monitored by the HM system and consists of one humidity sensor per module.

  9. New cryogenic temperature monitor: PLT-HPT-32

    Science.gov (United States)

    Viera Curbelo, Teodora Aleida; Martín-Fernández, Sergio Gonzáles; Hoyland, R.; Vega-Moreno, A.; Cozar Castellano, Juan; Gómez Reñasco, M. F.; Aguiar-González, M.; Pérez de Taoro, Angeles; Sánchez-de la Rosa, V.; Rubiño-Martín, J. A.; Génova-Santos, R.

    2016-07-01

    The PLT-HPT-32, a new cryogenic temperature monitor, has been developed by the Institute of Astrophysics of the Canary Islands (IAC) and an external engineering company (Sergio González Martín-Fernandez). The PLT-HPT-32 temperature monitor offers precision measurement in a wide range of cryogenic and higher-temperature applications with the ability to easily monitor up to 32 sensor channels. It provides better measurement performance in applications where researchers need to ensure accuracy and precision in their low cryogenic temperature monitoring. The PLT-HPT-32 supports PTC RTDs such as platinum sensors, and diodes such as the Lake Shore DT-670 Series. Used with silicon diodes, it provides accurate measurements in cryo-cooler applications from 16 K to above room temperature. The resolution of the measurement is less than 0.1K. Measurements can be displayed in voltage units or Kelvin units. For it, two different tables can be used. One can be programmed by the user, and the other one corresponds to Lake Shore DT670 sensor that comes standard. There are two modes of measuring, the instantaneous mode and averaged mode. In this moment, all channels must work in the same mode but in the near future it expected to be used in blocks of eight channels. The instantaneous mode takes three seconds to read all channels. The averaged mode takes one minute to average twenty samples in all channels. Alarm thresholds can be configured independently for each input. The alarm events, come from the first eight channels, can activate the unit's relay outputs for hard-wired triggering of other systems or audible annunciators. Activate relays on high, low, or both alarms for any input. For local monitoring, "Stand-Alone Mode", the front panel of the PLT-HPT-32 features a bright liquid crystal display with an LED backlight that shows up to 32 readings simultaneously. Plus, monitoring can be done over a network "Remote Control Mode". Using the Ethernet port on the PLT-HPT-32, you

  10. Influence of nanoscale temperature rises on photoacoustic generation: Discrimination between optical absorbers based on thermal nonlinearity at high frequency.

    Science.gov (United States)

    Simandoux, Olivier; Prost, Amaury; Gateau, Jérôme; Bossy, Emmanuel

    2015-03-01

    In this work, we experimentally investigate thermal-based nonlinear photoacoustic generation as a mean to discriminate between different types of absorbing particles. The photoacoustic generation from solutions of dye molecules and gold nanospheres (same optical densities) was detected using a high frequency ultrasound transducer (20 MHz). Photoacoustic emission was observed with gold nanospheres at low fluence for an equilibrium temperature around 4 °C, where the linear photoacoustic effect in water vanishes, highlighting the nonlinear emission from the solution of nanospheres. The photoacoustic amplitude was also studied as a function of the equilibrium temperature from 2 °C to 20 °C. While the photoacoustic amplitude from the dye molecules vanished around 4 °C, the photoacoustic amplitude from the gold nanospheres remained significant over the whole temperature range. Our preliminary results suggest that in the context of high frequency photoacoustic imaging, nanoparticles may be discriminated from molecular absorbers based on nanoscale temperature rises.

  11. Rising Mediterranean Sea Surface Temperatures Amplify Extreme Summer Precipitation in Central Europe

    Science.gov (United States)

    Volosciuk, Claudia; Maraun, Douglas; Semenov, Vladimir A.; Tilinina, Natalia; Gulev, Sergey K.; Latif, Mojib

    2016-08-01

    The beginning of the 21st century was marked by a number of severe summer floods in Central Europe associated with extreme precipitation (e.g., Elbe 2002, Oder 2010 and Danube 2013). Extratropical storms, known as Vb-cyclones, cause summer extreme precipitation events over Central Europe and can thus lead to such floodings. Vb-cyclones develop over the Mediterranean Sea, which itself strongly warmed during recent decades. Here we investigate the influence of increased Mediterranean Sea surface temperature (SST) on extreme precipitation events in Central Europe. To this end, we carry out atmosphere model simulations forced by average Mediterranean SSTs during 1970-1999 and 2000-2012. Extreme precipitation events occurring on average every 20 summers in the warmer-SST-simulation (2000-2012) amplify along the Vb-cyclone track compared to those in the colder-SST-simulation (1970-1999), on average by 17% in Central Europe. The largest increase is located southeast of maximum precipitation for both simulated heavy events and historical Vb-events. The responsible physical mechanism is increased evaporation from and enhanced atmospheric moisture content over the Mediterranean Sea. The excess in precipitable water is transported from the Mediterranean Sea to Central Europe causing stronger precipitation extremes over that region. Our findings suggest that Mediterranean Sea surface warming amplifies Central European precipitation extremes.

  12. Remote temperature monitoring and electronic identification in food animals

    Energy Technology Data Exchange (ETDEWEB)

    Seawright, G.L.; Holm, D.M.; Sanders, W.M.

    1977-01-01

    Two radiotelemetric systems were developed for remote monitoring of body temperature in livestock. A battery-powered transmitter system was developed as a laboratory tool for remote continuous monitoring of ear-canal temperatures in animals used in vaccine trials and in studies of livestock diseases. An automated data-recording and processing system was also developed. Pilot studies in cattle indicate that the system will be a valuable quantitative tool for vaccine testing and animal experiments. A second telemetry system was developed for widescale use in the livestock industry. It relies on an implantable passive (no batteries) transponder that is energized by an external source of microwaves to transmit temperature and decimal digit identification to a remote receiver. The animal identification feature, coupled with computers, offers the livestock producer unprecedented capabilities for efficient management of his operation. The temperature feature of transponders can aid in disease detection and control, disease diagnosis, and stress and ovulation detection. Its use for identifying temperature markers in disease and stress-tolerent breeding stock may be valuable in selective breeding programs.

  13. A Remote Temperature Monitoring System Based on GSM

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>This paper has discussed the home and abroad’s current situation of temperature monitoring system and compared the advantages and disadvantages of several common methods.According to cold storage,container, medicines library and greenhouse’s requirements on temperature,this thesis has analyzed the advantages and significance of the system and elaborated each module’s function and implementation based on hardware and software’s introduction and demonstrated the pictures of its practical application and the alarm information saved in the SD card which extracted from the database.

  14. Advanced targeted monitoring of high temperature components in power plants

    Energy Technology Data Exchange (ETDEWEB)

    Roos, E.; Maile, K.; Jovanovic, A. [MPA Stuttgart (Germany)

    1998-12-31

    The article presents the idea of targeted monitoring of high-temperature pressurized components in fossil-fueled power plants, implemented within a modular software system and using, in addition to pressure and temperature data, also displacement and strain measurement data. The concept has been implemented as a part of a more complex company-oriented Internet/Intranet system of MPA Stuttgart (ALIAS). ALIAS enables to combine smoothly the monitoring results with those of the off-line analysis, e. g. sensitivity analyses, comparison with preceding experience (case studies), literature search, search in material databases -(experimental and standard data), nonlinear FE-analysis, etc. The concept and the system have been implemented in real plant conditions several power plants in Germany and Europe: one of these applications and its results are described more in detail in the presentation. (orig.) 9 refs.

  15. Stable microwave radiometry system for long term monitoring of deep tissue temperature

    Science.gov (United States)

    Stauffer, Paul R.; Rodriques, Dario B.; Salahi, Sara; Topsakal, Erdem; Oliveira, Tiago R.; Prakash, Aniruddh; D'Isidoro, Fabio; Reudink, Douglas; Snow, Brent W.; Maccarini, Paolo F.

    2013-02-01

    Background: There are numerous clinical applications for non-invasive monitoring of deep tissue temperature. We present the design and experimental performance of a miniature radiometric thermometry system for measuring volume average temperature of tissue regions located up to 5cm deep in the body. Methods: We constructed a miniature sensor consisting of EMI-shielded log spiral microstrip antenna with high gain onaxis and integrated high-sensitivity 1.35GHz total power radiometer with 500 MHz bandwidth. We tested performance of the radiometry system in both simulated and experimental multilayer phantom models of several intended clinical measurement sites: i) brown adipose tissue (BAT) depots within 2cm of the skin surface, ii) 3-5cm deep kidney, and iii) human brain underlying intact scalp and skull. The physical models included layers of circulating tissue-mimicking liquids controlled at different temperatures to characterize our ability to quantify small changes in target temperature at depth under normothermic surface tissues. Results: We report SAR patterns that characterize the sense region of a 2.6cm diameter receive antenna, and radiometric power measurements as a function of deep tissue temperature that quantify radiometer sensitivity. The data demonstrate: i) our ability to accurately track temperature rise in realistic tissue targets such as urine refluxed from prewarmed bladder into kidney, and 10°C drop in brain temperature underlying normothermic scalp and skull, and ii) long term accuracy and stability of +0.4°C over 4.5 hours as needed for monitoring core body temperature over extended surgery or monitoring effects of brown fat metabolism over an extended sleep/wake cycle. Conclusions: A non-invasive sensor consisting of 2.6cm diameter receive antenna and integral 1.35GHz total power radiometer has demonstrated sufficient sensitivity to track clinically significant changes in temperature of deep tissue targets underlying normothermic surface

  16. Engine Oil Condition Monitoring Using High Temperature Integrated Ultrasonic Transducers

    Directory of Open Access Journals (Sweden)

    Jeff Bird

    2011-01-01

    Full Text Available The present work contains two parts. In the first part, high temperature integrated ultrasonic transducers (IUTs made of thick piezoelectric composite films, were coated directly onto lubricant oil supply and sump lines of a modified CF700 turbojet engine. These piezoelectric films were fabricated using a sol-gel spray technology. By operating these IUTs in transmission mode, the amplitude and velocity of transmitted ultrasonic waves across the flow channel of the lubricant oil in supply and sump lines were measured during engine operation. Results have shown that the amplitude of the ultrasonic waves is sensitive to the presence of air bubbles in the oil and that the ultrasound velocity is linearly dependent on oil temperature. In the second part of the work, the sensitivity of ultrasound to engine lubricant oil degradation was investigated by using an ultrasonically equipped and thermally-controlled laboratory testing cell and lubricant oils of different grades. The results have shown that at a given temperature, ultrasound velocity decreases with a decrease in oil viscosity. Based on the results obtained in both parts of the study, ultrasound velocity measurement is proposed for monitoring oil degradation and transient oil temperature variation, whereas ultrasound amplitude measurement is proposed for monitoring air bubble content.

  17. High temperature integrated ultrasonic transducers for engine condition monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, M.; Jen, C.K. [National Research Council of Canada, Boucherville, PQ (Canada). Industrial Materials Inst.; Wu, K.T. [McGill Univ., Montreal, PQ (Canada). Dept. of Electrical and Computer Engineering; Bird, J.; Galeote, B. [National Research Council of Canada, Ottawa, ON (Canada). Inst. for Aerospace Research; Mrad, N. [Department of National Defence, Ottawa, ON (Canada). Air Vehicles Research Station

    2009-07-01

    Piezoelectric ultrasonic transducers (UTs) are used for real-time, in-situ or off-line nondestructive evaluation (NDE) of large metallic structures such as airplanes, automobiles, ships, pressure vessels and pipelines because of their subsurface inspection capability, fast inspection speed, simplicity and cost-effectiveness. The objective of this study was to develop and evaluate effective integrated ultrasonic transducers (IUT) technology to perform non-intrusive engine NDE and structural health monitoring (SHM). High temperature IUTs made of bismuth titanate piezoelectric film greater than 50 {mu}m in thickness were coated directly onto a modified CF700 turbojet engine outer casing, oil sump and supply lines and gaskets using sol-gel spray technology. The assessment was limited to temperatures up to 500 degrees C. The center frequencies of the IUTs were approximately 10 to 17 MHz. Ultrasonic signals obtained in pulse/echo measurements were excellent. High temperature ultrasonic performance will likely be obtained in the transmission mode as well. The potential applications of the developed IUTs include non-intrusive real-time temperature, lubricant oil quality and metal debris monitoring within a turbojet engine environment. 9 refs., 13 figs.

  18. Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers

    Science.gov (United States)

    Kraaijenbrink, P. D. A.; Bierkens, M. F. P.; Lutz, A. F.; Immerzeel, W. W.

    2017-09-01

    Glaciers in the high mountains of Asia (HMA) make a substantial contribution to the water supply of millions of people, and they are retreating and losing mass as a result of anthropogenic climate change at similar rates to those seen elsewhere. In the Paris Agreement of 2015, 195 nations agreed on the aspiration to limit the level of global temperature rise to 1.5 degrees Celsius ( °C) above pre-industrial levels. However, it is not known what an increase of 1.5 °C would mean for the glaciers in HMA. Here we show that a global temperature rise of 1.5 °C will lead to a warming of 2.1 ± 0.1 °C in HMA, and that 64 ± 7 per cent of the present-day ice mass stored in the HMA glaciers will remain by the end of the century. The 1.5 °C goal is extremely ambitious and is projected by only a small number of climate models of the conservative IPCC’s Representative Concentration Pathway (RCP)2.6 ensemble. Projections for RCP4.5, RCP6.0 and RCP8.5 reveal that much of the glacier ice is likely to disappear, with projected mass losses of 49 ± 7 per cent, 51 ± 6 per cent and 64 ± 5 per cent, respectively, by the end of the century; these projections have potentially serious consequences for regional water management and mountain communities.

  19. The Rover Environmental Monitoring Station Ground Temperature Sensor: A Pyrometer for Measuring Ground Temperature on Mars

    OpenAIRE

    2010-01-01

    We describe the parameters that drive the design and modeling of the Rover Environmental Monitoring Station (REMS) Ground Temperature Sensor (GTS), an instrument aboard NASA’s Mars Science Laboratory, and report preliminary test results. REMS GTS is a lightweight, low-power, and low cost pyrometer for measuring the Martian surface kinematic temperature. The sensor’s main feature is its innovative design, based on a simple mechanical structure with no moving parts. It includes an in-flight cal...

  20. MRI monitoring of high-temperature ultrasound therapy

    Science.gov (United States)

    McDannold, Nathan Judson

    More than fifty years ago, it was demonstrated that ultrasound could penetrate deep into tissue and induce a biological response. By focusing the ultrasound beam, localized heating in soft tissue is possible, allowing for a completely non-invasive technique to thermally ablate diseased tissue. Despite many promising results and advances in the last fifty years, widespread clinical implementation of therapeutic heating with ultrasound has not occurred because of the difficulty in guiding and monitoring the procedure. Magnetic resonance imaging (MRI) has been shown capable of monitoring thermal therapies such as focused ultrasound surgery. With MRI, the tumor can be accurately detected and targeted. Temperature-sensitive MRI techniques can be used to guide and monitor the ultrasound therapy. Thermal tissue damage induced by the ultrasound can be imaged. The purpose of this work was to test the use of MRI for guiding and monitoring high temperature ultrasound surgery. MRI-derived thermal imaging, which maps temperature-induced changes in the water proton resonant frequency, was implemented in a series of experiments. The first experiments demonstrated that MRI-derived temperature and thermal dose measurements correctly predict the onset of tissue damage in vivo, while the applied ultrasound power does not. The accuracy of the MRI-derived thermometry during long ultrasound exposures was also verified, and the limit of the technique in light of heating-induced tissue swelling was demonstrated. The accuracy of the thermometry to estimate online the extent of tissue damage was verified at the exposure time limit. Methods for using the temperature information gathered with MRI to estimate the ultrasound treatment parameters were also demonstrated experimentally. Focused ultrasound surgery in tumor models (animal and clinical breast tumor treatments) was shown feasible and demonstrated the need for image guidance. Finally, two new pulse sequences were shown capable of

  1. Temperature effects in ultrasonic Lamb wave structural health monitoring systems.

    Science.gov (United States)

    Lanza di Scalea, Francesco; Salamone, Salvatore

    2008-07-01

    There is a need to better understand the effect of temperature changes on the response of ultrasonic guided-wave pitch-catch systems used for structural health monitoring. A model is proposed to account for all relevant temperature-dependent parameters of a pitch-catch system on an isotropic plate, including the actuator-plate and plate-sensor interactions through shear-lag behavior, the piezoelectric and dielectric permittivity properties of the transducers, and the Lamb wave dispersion properties of the substrate plate. The model is used to predict the S(0) and A(0) response spectra in aluminum plates for the temperature range of -40-+60 degrees C, which accounts for normal aircraft operations. The transducers examined are monolithic PZT-5A [PZT denotes Pb(Zr-Ti)O3] patches and flexible macrofiber composite type P1 patches. The study shows substantial changes in Lamb wave amplitude response caused solely by temperature excursions. It is also shown that, for the transducers considered, the response amplitude changes follow two opposite trends below and above ambient temperature (20 degrees C), respectively. These results can provide a basis for the compensation of temperature effects in guided-wave damage detection systems.

  2. Is temperature the main cause of dengue rise in non-endemic countries? The case of Argentina.

    Science.gov (United States)

    Carbajo, Aníbal E; Cardo, María V; Vezzani, Darío

    2012-07-06

    Dengue cases have increased during the last decades, particularly in non-endemic areas, and Argentina was no exception in the southern transmission fringe. Although temperature rise has been blamed for this, human population growth, increased travel and inefficient vector control may also be implicated. The relative contribution of geographic, demographic and climatic of variables on the occurrence of dengue cases was evaluated. According to dengue history in the country, the study was divided in two decades, a first decade corresponding to the reemergence of the disease and the second including several epidemics. Annual dengue risk was modeled by a temperature-based mechanistic model as annual days of possible transmission. The spatial distribution of dengue occurrence was modeled as a function of the output of the mechanistic model, climatic, geographic and demographic variables for both decades. According to the temperature-based model dengue risk increased between the two decades, and epidemics of the last decade coincided with high annual risk. Dengue spatial occurrence was best modeled by a combination of climatic, demographic and geographic variables and province as a grouping factor. It was positively associated with days of possible transmission, human population number, population fall and distance to water bodies. When considered separately, the classification performance of demographic variables was higher than that of climatic and geographic variables. Temperature, though useful to estimate annual transmission risk, does not fully describe the distribution of dengue occurrence at the country scale. Indeed, when taken separately, climatic variables performed worse than geographic or demographic variables. A combination of the three types was best for this task.

  3. Estimation of Critical Rate of Temperature Rise for Thermal Explosion of First Order Autocatalytic Decomposition Reaction Systems by Using Non-isothermal DSC

    Institute of Scientific and Technical Information of China (English)

    GUO Peng-jiang; LU Gui-e; JIANG Ji-you; HU Rong-zu; ZHANG Hai; XIA Zhi-ming; SONG Ji-rong; GAO Sheng-li; NING Bin-ke; SHI Qi-zhen; LIU Rong

    2004-01-01

    A method of estimating the critical rate of temperature rise for the thermal explosion of first order autocatalytic decomposition reaction systems by using non-isothermal DSC is presented. The information was obtained on the increasing rate of temperature for the first order autocatalytic decomposition of nitrocellulose containing 13.86% nitrogen converting into the thermal explosion.

  4. Projecting the impacts of rising seawater temperatures on the distribution of seaweeds around Japan under multiple climate change scenarios.

    Science.gov (United States)

    Takao, Shintaro; Kumagai, Naoki H; Yamano, Hiroya; Fujii, Masahiko; Yamanaka, Yasuhiro

    2015-01-01

    Seaweed beds play a key role in providing essential habitats and energy to coastal areas, with enhancements in productivity and biodiversity and benefits to human societies. However, the spatial extent of seaweed beds around Japan has decreased due to coastal reclamation, water quality changes, rising water temperatures, and heavy grazing by herbivores. Using monthly mean sea surface temperature (SST) data from 1960 to 2099 and SST-based indices, we quantitatively evaluated the effects of warming seawater on the spatial extent of suitable versus unsuitable habitats for temperate seaweed Ecklonia cava, which is predominantly found in southern Japanese waters. SST data were generated using the most recent multiple climate projection models and emission scenarios (the Representative Concentration Pathways or RCPs) used in the Coupled Model Intercomparison Project phase 5 (CMIP5). In addition, grazing by Siganus fuscescens, an herbivorous fish, was evaluated under the four RCP simulations. Our results suggest that continued warming may drive a poleward shift in the distribution of E. cava, with large differences depending on the climate scenario. For the lowest emission scenario (RCP2.6), most existing E. cava populations would not be impacted by seawater warming directly but would be adversely affected by intensified year-round grazing. For the highest emission scenario (RCP8.5), previously suitable habitats throughout coastal Japan would become untenable for E. cava by the 2090s, due to both high-temperature stress and intensified grazing. Our projections highlight the importance of not only mitigating regional warming due to climate change, but also protecting E. cava from herbivores to conserve suitable habitats on the Japanese coast.

  5. Food crops face rising temperatures: An overview of responses, adaptive mechanisms, and approaches to improve heat tolerance

    Directory of Open Access Journals (Sweden)

    Neeru Kaushal

    2016-12-01

    Full Text Available The rising temperatures are resulting in heat stress for various agricultural crops to limit their growth, metabolism, and leading to significant loss of yield potential worldwide. Heat stress adversely affects normal plant growth and development depending on the sensitivity of each crop species. Each crop species has its own range of temperature maxima and minima at different developmental stages beyond which all these processes get inhibited. The reproductive stage is on the whole more sensitive to heat stress, resulting in impaired fertilization to cause abortion of flowers. During seed filling, heat stress retards seed growth by affecting all the biochemical events to reduce seed size. Unfavorable temperature may significantly affect photosynthesis, respiration, water balance, and membrane stability of leaves. To combat heat stress, plants acquire various defense mechanisms for their survival such as maintaining membrane stability, and scavenging reactive oxygen species by generating antioxidants and stress proteins. Thermo-tolerance can be improved by the accumulation of various compounds of low molecular mass known as thermo-protectants as well as phyto-hormones. Exogenous application of these molecules has benefited plants growing under heat stress. Alternatively, transgenic plants over-expressing the enzymes catalyzing the synthesis of these molecules may be raised to increase their endogenous levels to improve heat tolerance. In recent times, various transgenics have been developed with improved thermo-tolerance having potential benefits for inducing heat tolerance in food crops. Updated information about of the effects of heat stress on various food crops and their responses as well as adaptive mechanisms is reviewed here.

  6. THE EFFECT OF GAZE ANGLE ON THE EVALUATIONS OF SAR AND TEMPERATURE RISE IN HUMAN EYE UNDER PLANE-WAVE EXPOSURES FROM 0.9 TO 10 GHZ.

    Science.gov (United States)

    Diao, Yinliang; Leung, Sai-Wing; Chan, Kwok Hung; Sun, Weinong; Siu, Yun-Ming; Kong, Richard

    2016-12-01

    This article investigates the effect of gaze angle on the specific absorption rate (SAR) and temperature rise in human eye under electromagnetic exposures from 0.9 to 10 GHz. Eye models in different gaze angles are developed based on biometric data. The spatial-average SARs in eyes are investigated using the finite-difference time-domain method, and the corresponding maximum temperature rises in lens are calculated by the finite-difference method. It is found that the changes in the gaze angle produce a maximum variation of 35, 12 and 20 % in the eye-averaged SAR, peak 10 g average SAR and temperature rise, respectively. Results also reveal that the eye-averaged SAR is more sensitive to the changes in the gaze angle than peak 10 g average SAR, especially at higher frequencies. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Electrodynamic energy harvester for electrical transformer's temperature monitoring system

    Indian Academy of Sciences (India)

    Farid Khan; Shadman Razzaq

    2015-10-01

    The development of an electrodynamic energy harvester (EDEH) for operating a wireless temperature monitoring system for electrical transformer is reported in this work. Analytical modeling, fabrication and characterization of EDEH prototype are performed. The developed EDEH consists of a mild steel core, a wound copper coil and Teflon housing. COMSOL Multiphysics software is used to optimize the design of the harvester. The split-cylindrical design of the developed EDEH permitted the harvester to be wrapped around the output power cable of the electrical transformer without shutting-off the power or disconnecting the power cable. From the electrical transformer, at current levels of 27, 72 and 155 A in the main power line, the energy harvester produced maximum RMS load voltages of 0.356, 1.09 and 2.58 V respectively, when connected to 100 load resistance. However, at matching impedance of 24 (resistance of the coil), the EDEH produced the maximum power levels of 2.99, 19.66 and 112.03 mW for a cable currents of 27, 72 and 155 A respectively. The simulation results of the devised analytical model of the harvester are in good agreement with the experimental results. Moreover, at a cable current of 93 A, when the harvester is connected to the rectifying circuit, the optimum impedance shifted to 185 and the maximum power of 19 mW is generated at that load. The reduction in power generation is attributed to the power consumption of the rectifying circuit. When the rectified DC voltage is used to charge a 3.8 V, Nickel–Cadmium (Ni–Cd) rechargeable battery, it took 3 h to completely charge the battery from 1 to 3.85 V. With the charged battery a wireless temperature sensor node is successfully operated for monitoring the temperature of the electrical transformer.

  8. Temperature-monitored optical treatment for radial tissue expansion.

    Science.gov (United States)

    Bak, Jinoh; Kang, Hyun Wook

    2017-07-01

    Esophageal stricture occurs in 7-23% of patients with gastroesophageal reflux disease. However, the current treatments including stent therapy, balloon dilation, and bougienage involve limitations such as stent migration, formation of the new strictures, and snowplow effect. The purpose of the current study was to investigate the feasibility of structural expansion in tubular tissue ex vivo during temperature-monitored photothermal treatment with a diffusing applicator for esophageal stricture. Porcine liver was used as an ex vivo tissue sample for the current study. A glass tube was used to maintain a constant distance between the diffuser and tissue surface and to evaluate any variations in the luminal area after 10-W 1470-nm laser irradiation for potential stricture treatment. The 3D goniometer measurements confirmed roughly isotropic distribution with less than 10% deviation from the average angular intensity over 2π (i.e., 0.86 ± 0.09 in arbitrary unit) from the diffusing applicator. The 30-s irradiation increased the tissue temperature up to 72.5 °C, but due to temperature feedback, the interstitial tissue temperature became saturated at 70 °C (i.e., steady-state error = ±0.4 °C). The irradiation times longer than 5 s presented area expansion index of 1.00 ± 0.04, signifying that irreversible tissue denaturation permanently deformed the lumen in a circular shape and secured the equivalent luminal area to that of the glass tube. Application of a temperature feedback controller for photothermal treatment with the diffusing applicator can regulate the degree of thermal denaturation to feasibly treat esophageal stricture in a tubular tissue.

  9. An in-vitro study to compare the temperature rise in the pulp chamber by direct method using three different provisional restorative materials.

    Science.gov (United States)

    Piplani, Ankita; Suresh Sajjan, M C; Ramaraju, A V; Tanwani, Tushar; Sushma, G; Ganathipathi, G; Jagdish, K; Agrawal, Anil

    2016-01-01

    The provisional restorative materials in fixed prosthodontics are basically bis-GMA resins which releases exothermic temperature while polymerization which can damage the pulp. Intrapulpal temperature exceeding 42.5°C found to result in irreversible damage to the pulp. The remaining thickness of dentine after tooth preparation control the conduction of heat released by the resins. (1) To quantify the temperature changes in the pulp chamber using different provisional restorative materials. (2) To evaluate the peak temperature time of different materials used. (3) To compare the intrapulpal temperature changes with a variation in the width of the finish line. Two intact mandibular molars were selected and designated as Specimen A and B. Tooth preparation was done to prepare a finish line of 1.2 mm and 1 mm width, respectively. Three provisional restorative materials were considered and they were grouped as Group I-Cool temp, Group II-Protemp-4, Group III-Integrity. A J thermocouple probe was placed into the pulp chamber to determine the rise in temperature. The temperature was recorded during polymerization at 30-s intervals until the peak temperature was reached. The same procedure was repeated for fabricating remaining provisional crowns. A total of 45 provisional crowns were fabricated for each specimen. Kruskal-Wallis test revealed that there was a significant difference in the temperature changes associated with the provisional restorative materials used. All the three provisional restorative materials were compared for 1.2 mm and 1 mm wide finish line. Integrity produced the highest temperature rise and the maximum temperature recorded was 40.2°C in 1.2 mm wide finish line. However, for a 1 mm wide finish line, Protemp-4 produced the highest temperature rise and the maximum temperature recorded was 40.3°C. It was observed that peak temperatures with Specimen B were more when compared with Specimen A. Cool temp showed least temperature rise in the pulp

  10. Starting Phenomena and Temperature-rise under vvvf Supply of Three-Phase Squirrel-Cage ac Traction Motor of Electric Locomotive

    Science.gov (United States)

    Paul, R. N.; Arya, L. D.; Verma, H. K.

    2012-09-01

    In three-phase squirrel-cage ac traction motor, temperature-rise calculation during variable-voltage and variable-frequency starting is of vital importance and has to be predicted and critically examined. Under voltage source inverter supply with PWM, the generation of harmonics by inverter supply reduces the output during starting due to higher harmonic losses, thereby reducing the starting tractive effort in kN on locomotive wheel. Stator and rotor temperature-rises during starting have been determined for average acceleration torque in segmental zone (calculated from variable acceleration) which have been presented in the paper with both copper and aluminium alloy rotor bars.

  11. 关于镀镍铜母线温升的分析%Analysis of Temperature Rise of Electroless Nickel Plating Copper Bus

    Institute of Scientific and Technical Information of China (English)

    刘燕

    2012-01-01

    通过对镀镍铜母线产生温升进行分析,通过对镀镍过程以及镀层成分进行分析,提出控制镀镍层中有害元素的含量来解决降低温升的措施.%This article analyzes the temperature rise and process of the electroless nickel plating copper bus, its and the coating composi tion and puts forward the measures that the temperature rise is lowered is used to control the harmful element in nickel plating layer.

  12. Development of assemblages associated with alvinellid colonies on the walls of high-temperature vents at the East Pacific Rise

    Science.gov (United States)

    Pradillon, F.; Zbinden, M.; Le Bris, N.; Hourdez, S.; Barnay, A.-S.; Gaill, F.

    2009-09-01

    Several species of the polychaete family Alvinellidae may be considered as 'ecosystem engineer' because, by building their tubes, they modify the architecture of the hydrothermal fluid-seawater interface on the walls of vent chimneys. This affects the thermal and chemical gradients, and creates a mosaic of micro-niches, which could enable colonization by a variety of less-tolerant species. On high temperature vents of the Juan de Fuca Ridge, Alvinellid-dominated communities colonizing first mineral surfaces are followed by a succession of communities with different species composition. On the East Pacific Rise (EPR), tubes of Alvinella spp, may seal the mineral surface on which they grow and decrease fluid seepage, or tubes may become encrusted in mineral precipitations. An alvinellid colony may therefore persist for only a restricted time period at a given place. Here we investigated the development of alvinellid colonies on the EPR vent sites in order to detect whether a succession of new species less tolerant would follow colonization by Alvinella spp. or if different assemblages are forming depending on local conditions. Using a specially designed device called TRAC (titanium ring for alvinellid colonization), we described the evolution of newly formed colonies. Fifteen experiments were conducted on several chimneys of the 9°N and 13°N vent fields of the EPR, over durations ranging from 5 days up to 5 months. Through video analysis, different types of colonies were identified, characterized by increasing thickness of the Alvinella coverage, decreasing fluid flow bathing the colony, and decreasing surface temperatures. We showed that the assemblage formed by minerals, tubes, and organisms is produced at a very high rate. While animals may colonize the new surface in less than a week, and tubes are also quickly produced ( Alvinella species may grow their tube up to 1 cm day -1 during the early stages of colonization), mineral precipitation progressively

  13. Ultrasonic Approach to Nonivasive Temperature Monitoring During Microwave Thermotherapy

    Directory of Open Access Journals (Sweden)

    J. Vrba

    2001-06-01

    Full Text Available Microwave thermotherapy (MT is an oncological treatment. At presentthe invasive thermometer probes are clinically used for temperaturemeasuring during an MT. Any invasive handling of tumors is ofhigh-risk. A new possible method of noninvasive monitoring oftemperature distribution in tissue has been developed. An MT treatmentof the experimentally induced pedicle-tumors of the rat was prepared.For 100 rat samples a strong correlation between the mean gray level inthe ROIs in the ultrasound pictures and the invasively measuredtemperature in the range 37-44 °C was found. The correlationcoefficient of the mean gray level and the invasively measuredtemperature is 0.96a0.05. A system for representation of changes ofspatial temperature distribution of the whole tumor during MT ispresented.

  14. Evaluation and Monitoring of Jpss Land Surface Temperature Data

    Science.gov (United States)

    Yu, Y.; Yu, P.; Liu, Y.; Csiszar, I. A.

    2016-12-01

    Land Surface Temperature (LST) is one of environmental data records (EDRs) produced operationally through the U.S. Joint Polar Satellite System (JPSS) mission. LST is an important parameter for understanding climate change, modeling the hydrological and biogeochemical cycles, and is a prime candidate for Numerical Weather Prediction (NWP) assimilation models. Recently, the international LST and Emissivity Working Ggroup (ILSTE-WG) is promoting to the inclusion of the LST as essential climate variable (ECV) in the Global Climate Observation System (GCOS) of the Word Meteorological Organization (WMO). At the Center for Satellite Applications and Research (STAR) of National Atmospheric and Oceanic Administration (NOAA), we, are as a science team, are responsible to for the science of JPSS LST production. In this work, we present our activities and accomplishments on the JPSS LST evaluation and monitoring since the launch of the first JPSS satellite, i.e. S-NPP, satellite. Beta version, provisional version, and validated stage 1 version of the S-NPP LST products which were announced in May 2013, July 2014, and March 2015, respectively. Evaluation of the LST products have been performed versus ground measurements and other polar-orbiting satellite LST data (e,g. MODIS LSTs); some results will be illustrated. A daily monitoring system of the JPSS LST production has been developed, which presents daily, weekly and monthly global LST maps and inter-comparison results on the STAR JPSS program website. Further, evaluation of the enterprise LST algorithm for JPSS mission which is in development at STAR currently are presented in this work. Finally, evaluation and monitoring plan of the LST production for the JPSS-1 satellite are also presented.

  15. FID navigator-based MR thermometry method to monitor small temperature changes in the brain of ventilated animals.

    Science.gov (United States)

    Boulant, Nicolas; Bottlaender, Michel; Uhrig, Lynn; Giacomini, Eric; Luong, Michel; Amadon, Alexis; Massire, Aurélien; Larrat, Benoît; Vignaud, Alexandre

    2015-01-01

    An MR thermometry method is proposed for measuring in vivo small temperature changes engendered by external RF heat sources. The method relies on reproducible and stable respiration and therefore currently applies to ventilated animals whose breathing is carefully controlled. It first consists in characterizing the stability of the main magnetic field as well as the variations induced by breathing during a first monitoring stage. Second, RF heating is applied while the phase and thus temperature evolutions are continuously measured, the corrections due to breathing and field drift being made thanks to the data accumulated during the first period. The RF heat source is finally stopped and the temperature rise likewise is continuously monitored during a third and last stage to observe the animal cooling down and to validate the assumptions made for correcting for the main field variation and the physiological noise. Experiments were performed with a clinical 7 T scanner on an anesthetized baboon and with a dedicated RF heating setup. Analysis of the data reveals a precision around 0.1°C, which allows us to reliably measure sub-degree temperature rises in the muscle and in the brain of the animal.

  16. Determination of tissue thermal conductivity by measuring and modeling temperature rise induced in tissue by pulsed focused ultrasound.

    Directory of Open Access Journals (Sweden)

    Tamara Kujawska

    Full Text Available A tissue thermal conductivity (Ks is an important parameter which knowledge is essential whenever thermal fields induced in selected organs are predicted. The main objective of this study was to develop an alternative ultrasonic method for determining Ks of tissues in vitro suitable for living tissues. First, the method involves measuring of temperature-time T(t rises induced in a tested tissue sample by a pulsed focused ultrasound with measured acoustic properties using thermocouples located on the acoustic beam axis. Measurements were performed for 20-cycle tone bursts with a 2 MHz frequency, 0.2 duty-cycle and 3 different initial pressures corresponding to average acoustic powers equal to 0.7 W, 1.4 W and 2.1 W generated from a circular focused transducer with a diameter of 15 mm and f-number of 1.7 in a two-layer system of media: water/beef liver. Measurement results allowed to determine position of maximum heating located inside the beef liver. It was found that this position is at the same axial distance from the source as the maximum peak-peak pressure calculated for each nonlinear beam produced in the two-layer system of media. Then, the method involves modeling of T(t at the point of maximum heating and fitting it to the experimental data by adjusting Ks. The averaged value of Ks determined by the proposed method was found to be 0.5±0.02 W/(m·°C being in good agreement with values determined by other methods. The proposed method is suitable for determining Ks of some animal tissues in vivo (for example a rat liver.

  17. The effect of temperature rise on microstructural properties of cement-based materials: correlation of experimental data and a simulation approach

    NARCIS (Netherlands)

    Susanto, A.; Koleva, D.A.; Van Breugel, K.

    2015-01-01

    This work reports on the influence of stray current flow on temperature rise in hardening cement-based materials and consequently altered cement hydration. To simulate stray current, different levels of electrical current were applied to cement paste and mortar specimens immediately after casting. I

  18. The effect of temperature rise on microstructural properties of cement-based materials: correlation of experimental data and a simulation approach

    NARCIS (Netherlands)

    Susanto, A.; Koleva, D.A.; Van Breugel, K.

    2015-01-01

    This work reports on the influence of stray current flow on temperature rise in hardening cement-based materials and consequently altered cement hydration. To simulate stray current, different levels of electrical current were applied to cement paste and mortar specimens immediately after casting.

  19. Assessment of Temperature Rise and Time of Alveolar Ridge Splitting by Means of Er:YAG Laser, Piezosurgery, and Surgical Saw: An Ex Vivo Study

    Directory of Open Access Journals (Sweden)

    Jacek Matys

    2016-01-01

    Full Text Available The most common adverse effect after bone cutting is a thermal damage. The aim of our study was to evaluate the bone temperature rise during an alveolar ridge splitting, rating the time needed to perform this procedure and the time to raise the temperature of a bone by 10°C, as well as to evaluate the bone carbonization occurrence. The research included 60 mandibles (n=60 of adult pigs, divided into 4 groups (n=15. Two vertical and one horizontal cut have been done in an alveolar ridge using Er:YAG laser with set power of 200 mJ (G1, 400 mJ (G2, piezosurgery unit (G3, and a saw (G4. The temperature was measured by K-type thermocouple. The highest temperature gradient was noted for piezosurgery on the buccal and lingual side of mandible. The temperature rises on the bone surface along with the increase of laser power. The lower time needed to perform ridge splitting was measured for a saw, piezosurgery, and Er:YAG laser with power of 400 mJ and 200 mJ, respectively. The temperature rise measured on the bone over 10°C and bone carbonization occurrence was not reported in all study groups. Piezosurgery, Er:YAG laser (200 mJ and 400 mJ, and surgical saw are useful and safe tools in ridge splitting surgery.

  20. Assessment of Temperature Rise and Time of Alveolar Ridge Splitting by Means of Er:YAG Laser, Piezosurgery, and Surgical Saw: An Ex Vivo Study.

    Science.gov (United States)

    Matys, Jacek; Flieger, Rafał; Dominiak, Marzena

    2016-01-01

    The most common adverse effect after bone cutting is a thermal damage. The aim of our study was to evaluate the bone temperature rise during an alveolar ridge splitting, rating the time needed to perform this procedure and the time to raise the temperature of a bone by 10°C, as well as to evaluate the bone carbonization occurrence. The research included 60 mandibles (n = 60) of adult pigs, divided into 4 groups (n = 15). Two vertical and one horizontal cut have been done in an alveolar ridge using Er:YAG laser with set power of 200 mJ (G1), 400 mJ (G2), piezosurgery unit (G3), and a saw (G4). The temperature was measured by K-type thermocouple. The highest temperature gradient was noted for piezosurgery on the buccal and lingual side of mandible. The temperature rises on the bone surface along with the increase of laser power. The lower time needed to perform ridge splitting was measured for a saw, piezosurgery, and Er:YAG laser with power of 400 mJ and 200 mJ, respectively. The temperature rise measured on the bone over 10°C and bone carbonization occurrence was not reported in all study groups. Piezosurgery, Er:YAG laser (200 mJ and 400 mJ), and surgical saw are useful and safe tools in ridge splitting surgery.

  1. Measurements of soil temperature for monitoring of the soil water behavior in an embankment slope during periodic rainfall

    Science.gov (United States)

    Yoshioka, M.; Takakura, S.; Ishizawa, T.; Sakai, N.

    2013-12-01

    One of the most common causes of slope disaster (e.g. landslide, slope failure and debris flow) is heavy rainfall. Distributions of soil moisture and soil suction stress are changed by rain water infiltration. Monitoring of soil water behavior is crucial for prediction of the slope disaster. This study focuses on soil temperatures of a slope as a detector for monitoring soil water behavior. Soil temperature is varied by soil water condition, this is, infiltrating water transports thermal energy downward and thermal property of soil is shifted by containing of soil water. The purpose of this study is to detect the changes in soil water behavior caused by infiltration of rainfalls using measurement of soil temperature. For this purpose, we had carried out the measurements of soil temperature during various rainfalls (Yoshioka et al., 2013). In addition, we measured soil temperature and soil water content at several depths in a slope of an experimental embankment during various intensities of periodic and/or continuous rainfalls. In this presentation, we represent the details of the experiments and the results. Experiments were performed using the experimental embankment at NIED in Japan, which is about 7.3 meters tall and 27 meters wide. The embankment is located in a large-scale rainfall simulator. This facility is about 73 meters long, 48 meters wide and 20 meters tall. We measured soil temperature and volumetric water contents in the slope of the embankment, meteorological condition and rain water temperature. The rainfall intensities were 30, 60, 90 and 120 mm/h. The artificial rainfalls were carried out 10th, 17th, 24th, 31st, May and 10th, 11th, 12th June, 2013. As the results, soil temperature at many points in all experimental days rose caused by rainfalls, but the temperature at some points didn't change. We had two forms of soil temperature changes; one was a steep rise and the other was a gradual rise. In the case of periodic rainfall, soil temperature at

  2. Phase I for the Use of TOPEX-Poseidon and Jason-1 Radar Altimetry to Monitor Coastal Wetland Inundation and Sea Level Rise in Coastal Louisiana

    Science.gov (United States)

    Brozen, Madeline; Batina, Matthew; Parker, Stephen; Brooks, Christopher

    2010-01-01

    The objective of the first phase of this project was to determine the feasibility of applying satellite altimetry data to monitor sea level rise and inundation within coastal Louisiana. Global sea level is rising, and coastal Louisiana is subsiding. Therefore, there is a need to monitor these trends over time for coastal restoration and hazard mitigation efforts. TOPEX/POSEIDON and Jason-data are used for global sea level estimates and have also been demonstrated successfully in water level studies of lakes, river basins, and floodplains throughout the world. To employ TOPEX/POSEIDON and Jason-1 data in coastal regions, the numerous steps involved in processing the data over non-open ocean areas must be assessed. This project outlined the appropriate methodology for processing non-open ocean data, including retracking and atmospheric corrections. It also inventoried the many factors in coastal land loss including subsidence, sea level rise, coastal geomorphology, and salinity levels, among others, through a review of remote sensing and field methods. In addition, the project analyzed the socioeconomic factors within the Coastal Zone as compared to the rest of Louisiana. While sensor data uncertainty must be addressed, it was determined that it is feasible to apply radar altimetry data from TOPEX/POSEIDON and Jason 1 to see trends in change within Coastal Louisiana since

  3. The Rover Environmental Monitoring Station Ground Temperature Sensor: A Pyrometer for Measuring Ground Temperature on Mars

    Directory of Open Access Journals (Sweden)

    Miguel Ramos

    2010-10-01

    Full Text Available We describe the parameters that drive the design and modeling of the Rover Environmental Monitoring Station (REMS Ground Temperature Sensor (GTS, an instrument aboard NASA’s Mars Science Laboratory, and report preliminary test results. REMS GTS is a lightweight, low-power, and low cost pyrometer for measuring the Martian surface kinematic temperature. The sensor’s main feature is its innovative design, based on a simple mechanical structure with no moving parts. It includes an in-flight calibration system that permits sensor recalibration when sensor sensitivity has been degraded by deposition of dust over the optics. This paper provides the first results of a GTS engineering model working in a Martian-like, extreme environment.

  4. The Effect in Vitro of Ionizing Irradiation and Small Rises in Temperature on the Uptake and Release of Labelled Lipids by the Human Erythrocyte Membrane

    DEFF Research Database (Denmark)

    Hansen, Heinz Johs. Max; Karle, H.; Stender, S.

    1978-01-01

    1. The effect of X-irradiation (50 000 rad) and an increase in temperature from 37 to 42° C on the synthesis, uptake and release of labelled lipids by erythrocytes was studied in plasma incubations in vitro. 2. Both irradiation and a rise in temperature resulted in an enhanced synthesis of [32P......]phosphatidic acid in the erythrocytes. 3. The uptake by the erythrocytes of 14C- and 3H-labelled cholesterol, [14C, 32P]phosphatidylethanolamine and [14C, 32P]phosphatidylcholine from plasma lipoproteins was increased by a rise in temperature but not by irradiation. These labelled lipids were apparently taken up...... in the ratio in which they were found in plasma. They were not released from the erythrocytes in the same manner....

  5. Microwave sensor design for noncontact process monitoring at elevated temperature

    Science.gov (United States)

    Yadam, Yugandhara Rao; Arunachalam, Kavitha

    2016-02-01

    In this work we present a microwave sensor for noncontact monitoring of liquid level at high temperatures. The sensor is a high gain, directional conical lensed horn antenna with narrow beam width (BW) designed for operation over 10 GHz - 15 GHz. Sensor design and optimization was carried out using 3D finite element method based electromagnetic (EM) simulation software HFSS®. A rectangular to circular waveguide feed was designed to convert TE10 to TE11 mode for wave propagation in the conical horn. Swept frequency simulations were carried out to optimize antenna flare angle and length to achieve better than -10 dB return loss (S11), standing wave ratio (SWR) less than 2.0, 20° half power BW (HPBW) and 15 dB gain over 10 GHz - 15 GHz. The sensor was fabricated using Aluminum and was characterized in an anechoic test box using a vector network analyzer (E5071C, Agilent Technologies, USA). Experimental results of noncontact level detection are presented for boiling water in a metal canister.

  6. Robust, low-cost data loggers for stream temperature, flow intermittency, and relative conductivity monitoring

    Science.gov (United States)

    Chapin, Thomas; Todd, Andrew S.; Zeigler, Matthew P.

    2014-01-01

    Water temperature and streamflow intermittency are critical parameters influencing aquatic ecosystem health. Low-cost temperature loggers have made continuous water temperature monitoring relatively simple but determining streamflow timing and intermittency using temperature data alone requires significant and subjective data interpretation. Electrical resistance (ER) sensors have recently been developed to overcome the major limitations of temperature-based methods for the assessment of streamflow intermittency. This technical note introduces the STIC (Stream Temperature, Intermittency, and Conductivity logger); a robust, low-cost, simple to build instrument that provides long-duration, high-resolution monitoring of both relative conductivity (RC) and temperature. Simultaneously collected temperature and RC data provide unambiguous water temperature and streamflow intermittency information that is crucial for monitoring aquatic ecosystem health and assessing regulatory compliance. With proper calibration, the STIC relative conductivity data can be used to monitor specific conductivity.

  7. Using distributed temperature sensing to monitor field scale dynamics of ground surface temperature and related substrate heat flux

    NARCIS (Netherlands)

    Bense, V.F.; Read, T.; Verhoef, A.

    2016-01-01

    We present one of the first studies of the use of distributed temperature sensing (DTS) along fibre-optic cables to purposely monitor spatial and temporal variations in ground surface temperature (GST) and soil temperature, and provide an estimate of the heat flux at the base of the canopy layer

  8. Effects of Temperature Rise Rate on Pyrolysis of Plastic Wastes%升温速率对废塑料热解过程的影响

    Institute of Scientific and Technical Information of China (English)

    石耀华; 马晓波; 陈德珍; 周恭明

    2011-01-01

    In this paper, pyrolysis experiments of plastic wastes, i.e. polyethylene ( PE), polypropylene (PP), polyvinylchloride(PVC) and their mixtures, were made at temperature rise rates of lO℃/min,20℃/min and 30℃/min in nitrogen atmosphere in which the temperature was from 20℃ to 700℃.Effects of pyrolysis process of waste plastics at different temperature rise rate were analyzed, and kinetics investigations were carried out by Coast - Redfern integration method. Pyrolysis characteristics and kinetic parameters of these three kinds of plastic wastes and their mixtures were obtained. The results show that temperature rise rate has an influence on pyrolysis rate, pyrolysis temperature range, activation energy and pre -exponential factor. The greater temperature rise rate, the faster pyrolysis reacts, the greater activation energy required, the more energy consumption on pyrolysis process. Therefore, in the pyrolysis process of waste plastics, temperature rise rate, pyrolysis materials, pyrolysis temperature and other conditions should be considered integrally. This research can provide theoretical and experimental data for the design of pyrolysis technology of plastic wastes.%选取废旧塑料聚乙烯(polyethylene,PE)、聚丙烯(polypropylene,PP)、聚氯乙烯(polyvi-nyl chloride,PVC)及其混合物,在氮气气氛下进行热解实验,实验温度从室温到700℃,升温速率分别为10℃/min、20℃/min和30℃/min.讨论了不同升温速率对废塑料热解过程的影响,并采用Coast-Redfem法进行了热解动力学分析,得到了三种废塑料及其混合物的热解特性及反应动力学、参数.研究结果表明,升温速率对热解速率,热解温度段,活化能,频率因子都有影响.升温速率越快,热解反应越快,所需的活化能也越大,热解过程对能量的消耗越多.因此,在废塑料热解过程中,要综合考虑升温速率,热解原料,热解温度等条件.本文可为废塑料热解工艺的研究提供理论依据和参考数据.

  9. Influence of Temperature Rise on Shunt DC Motor Performance%温升对并励直流电动机性能的影响

    Institute of Scientific and Technical Information of China (English)

    陈旭东; 冯攀

    2011-01-01

    Because the resistance of the field winding is much larger than that of the armature, the influence of temperature rise on the performance of shunt motor is marked. The modeling and simulation in Matlab were presented,and studied that influence on the motor physical parameters and performance by the temperature rise was studied. The results show that it is counteractive on motor performance between armature and field winding among temperature rise. In order to depress the influence,the armature stuffs whose temperature coefficient is large was selected.%并励直流电动机因励磁绕组电阻远大于电枢绕组电阻,温升对电机性能的影响较为显著.该文在Mat-lab软件平台下,对并励电动机进行了建模和仿真,着重研究温升导致的电机物理参数和工作性能的变化,结果显示励磁线圈和电枢线圈在温升过程中对电机性能的影响具有“反效果”,因此可以选用具有较大温度系数的电枢绕组材料来降低温升的影响.

  10. Influence of particles on the loading capacity and the temperature rise of water film in Ultra-high speed hybrid bearing

    Science.gov (United States)

    Zhu, Aibin; Li, Pei; Zhang, Yefan; Chen, Wei; Yuan, Xiaoyang

    2015-04-01

    Ultra-high speed machining technology enables high efficiency, high precision and high integrity of machined surface. Previous researches of hybrid bearing rarely consider influences of solid particles in lubricant and ultra-high speed of hybrid bearing, which cannot be ignored under the high speed and micro-space conditions of ultra-high speed water-lubricated hybrid bearing. Considering the impact of solid particles in lubricant, turbulence and temperature viscosity effects of lubricant, the influences of particles on pressure distribution, loading capacity and the temperature rise of the lubricant film with four-step-cavity ultra-high speed water-lubricated hybrid bearing are presented in the paper. The results show that loading capacity of the hybrid bearing can be affected by changing the viscosity of the lubricant, and large particles can improve the bearing loading capacity higher. The impact of water film temperature rise produced by solid particles in lubricant is related with particle diameter and minimum film thickness. Compared with the soft particles, hard particles cause the more increasing of water film temperature rise and loading capacity. When the speed of hybrid bearing increases, the impact of solid particles on hybrid bearing becomes increasingly apparent, especially for ultra-high speed water-lubricated hybrid bearing. This research presents influences of solid particles on the loading capacity and the temperature rise of water film in ultra-high speed hybrid bearings, the research conclusions provide a new method to evaluate the influence of solid particles in lubricant of ultra-high speed water-lubricated hybrid bearing, which is important to performance calculation of ultra-high speed hybrid bearings, design of filtration system, and safe operation of ultra-high speed hybrid bearings.

  11. Influence of Particles on the Loading Capacity and the Temperature Rise of Water Film in Ultra-high Speed Hybrid Bearing

    Institute of Scientific and Technical Information of China (English)

    ZHU Aibin; LI Pei; ZHANG Yefan; CHEN Wei; YUAN Xiaoyang

    2015-01-01

    Ultra-high speed machining technology enables high efficiency, high precision and high integrity of machined surface. Previous researches of hybrid bearing rarely consider influences of solid particles in lubricant and ultra-high speed of hybrid bearing, which cannot be ignored under the high speed and micro-space conditions of ultra-high speed water-lubricated hybrid bearing. Considering the impact of solid particles in lubricant, turbulence and temperature viscosity effects of lubricant, the influences of particles on pressure distribution, loading capacity and the temperature rise of the lubricant film with four-step-cavity ultra-high speed water-lubricated hybrid bearing are presented in the paper. The results show that loading capacity of the hybrid bearing can be affected by changing the viscosity of the lubricant, and large particles can improve the bearing loading capacity higher. The impact of water film temperature rise produced by solid particles in lubricant is related with particle diameter and minimum film thickness. Compared with the soft particles, hard particles cause the more increasing of water film temperature rise and loading capacity. When the speed of hybrid bearing increases, the impact of solid particles on hybrid bearing becomes increasingly apparent, especially for ultra-high speed water-lubricated hybrid bearing. This research presents influences of solid particles on the loading capacity and the temperature rise of water film in ultra-high speed hybrid bearings, the research conclusions provide a new method to evaluate the influence of solid particles in lubricant of ultra-high speed water-lubricated hybrid bearing, which is important to performance calculation of ultra-high speed hybrid bearings, design of filtration system, and safe operation of ultra-high speed hybrid bearings.

  12. Stream Temperature Monitoring on Togiak National Wildlife Refuge, Alaska, 2001-2012

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Stream temperature was monitored at 18 sites on 14 rivers in Togiak National Wildlife Refuge between 2001 and 2012. Temperature was recorded on an hourly basis using...

  13. Effect of several thermoplastic canal filling techniques on surface temperature rise on roots with simulated internal resorption cavities: an infrared thermographic analysis.

    Science.gov (United States)

    Ulusoy, Ö I; Yılmazoğlu, M Z; Görgül, G

    2015-02-01

    To evaluate the surface temperature rise using an infrared thermal imaging camera on roots with and without simulated internal resorption cavities, during canal filling with injectable (Obtura II), carrier-based (Soft-Core) gutta-percha and continuous wave of condensation (System B) techniques. Root canals of 60 mandibular premolar teeth were instrumented to an apical size of 40. Circular artificial internal resorption cavities with a diameter of 2.40 mm were prepared on the root canal walls of 30 teeth. All teeth were divided into six groups of 10 specimen and root filled as follows: group 1 (teeth with internal resorption): thermoplasticized injectable gutta-percha (Obtura II), group 2 (teeth without internal resorption): thermoplasticized injectable gutta-percha (Obtura II), group 3 (teeth with internal resorption): carrier-based gutta-percha (Soft-Core), group 4 (teeth without internal resorption): carrier-based gutta-percha (Soft-Core), group 5 (teeth with internal resorption): continuous wave of condensation (System B) and group 6 (teeth without internal resorption): continuous wave of condensation (System B). The surface temperature changes during filling of canals were measured with an infrared thermal imaging camera. The thermograms were recorded at 2-s intervals over a period of 40 s to determine the maximum temperature rise at the apical, middle and cervical thirds of the root surface. The data were statistically analysed with one-way anova and Tukey HSD post hoc or Kruskal-Wallis and Bonferroni-adjusted Mann-Whitney U-tests if appropriate. The temperature rise on the surface of roots with artificial resorptive defects was significantly higher compared with the ones without defects in the Obtura II and System B groups (P internal resorption was associated with the maximum temperature rise in the apical (4.3 ± 2.1) and middle (19.5 ± 8.9) thirds amongst the groups (P internal resorptive cavities resulted in surface temperature rise over the critical

  14. 大容量空冷发电机通风及温升研究%Ventilation and Temperature-rise of Large Rate Air-cooled Turbogenerator

    Institute of Scientific and Technical Information of China (English)

    陈楠

    2001-01-01

    本文介绍了济南发电设备厂利用瑞士ABB技术开发的新型空冷汽轮发电机的温升及通风冷却技术特点。%It is introduced that the temperature-rise and ventilation of newair-cooled turbogenerator which designed and manufactured by JPEF with the technology of ABB corporation of switzerland.

  15. Pilot study to monitor body temperature of dairy cows with a rumen bolus

    NARCIS (Netherlands)

    Ipema, A.H.; Goense, D.; Hogewerf, P.H.; Houwers, H.W.J.; Roest, H.I.J.

    2008-01-01

    A bolus containing a mote (temperature sensor, processor and radio) was placed in the rumen of a fistulated cow to monitor body temperature. Rumen temperature was measured every minute and stored in the internal buffer of the mote. The measured temperature was also transmitted to a base station by

  16. Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types.

    Science.gov (United States)

    Meisberger, Eric W; Bakker, Sjoerd J G; Cune, Marco S

    2015-12-01

    Ultrasonic instrumentation under magnification may facilitate mobilization of screw remnants but may induce heat trauma to surrounding bone. An increase of 5°C is considered detrimental to osseointegration. The objective of this investigation was to examine the rise in temperature of the outer implant body after 30 s of ultrasonic instrumentation to the inner part, in relation to implant type, type of ultrasonic equipment, and the use of coolants in vitro. Two ultrasonic devices (Satelec Suprasson T Max and Electro Medical Systems (EMS) miniMaster) were used on five different implant types that were provided with a thermo couple (Astra 3.5 mm, bone level Regular CrossFit (RC) 4.1 mm, bone level Narrow CrossFit (NC) 3.3 mm, Straumann tissue level regular body regular neck 3.3 mm, and Straumann tissue level wide body regular neck 4.8 mm), either with or without cooling during 30 s. Temperature rise at this point in time is the primary outcome measure. In addition, the mean maximum rise in temperature (all implants combined) was assessed and statistically compared among devices, implant systems, and cooling mode (independent t-tests, ANOVA, and post hoc analysis). The Satelec device without cooling induces the highest temperature change of up to 13°C, particularly in both bone level implants (p < 0.05) but appears safe for approximately 10 s of continuous instrumentation, after which a cooling down period is rational. Cooling is effective for both devices. However, when the Satelec device is used with coolant for a longer period of time, a rise in temperature must be anticipated after cessation of instrumentation, and post-operational cooling is advised. The in vitro setup used in this experiment implies that care should be taken when translating the observations to clinical recommendations, but it is carefully suggested that the EMS device causes limited rise in temperature, even without coolant.

  17. Observation and Measurement of Temperature Rise and Distribution on GaAs Photo-cathode Wafer with a 532nm Drive Laser and a Thermal Imaging Camera

    Energy Technology Data Exchange (ETDEWEB)

    Shukui Zhang, Stephen Benson, Carlos Hernandez-Garcia

    2011-03-01

    Significant temperature rise and gradient are observed from a GaAs photo-cathode wafer irradiated at various power levels with over 20W laser power at 532nm wavelength. The laser power absorption and dissipated thermal distribution are measured. The result shows a clear indication that proper removal of laser induced heat from the cathode needs to be considered seriously when designing a high average current or low quantum efficiency photo-cathode electron gun. The measurement method presented here provides a useful way to obtain information about both temperature and thermal profiles, it also applies to cathode heating study with other heating devices such as electrical heaters.

  18. Warehouse multipoint temperature and humidity monitoring system design based on Kingview

    Science.gov (United States)

    Ou, Yanghui; Wang, Xifu; Liu, Jingyun

    2017-04-01

    Storage is the key link of modern logistics. Warehouse environment monitoring is an important part of storage safety management. To meet the storage requirements of different materials, guarantee their quality in the greatest extent, which has great significance. In the warehouse environment monitoring, the most important parameters are air temperature and relative humidity. In this paper, a design of warehouse multipoint temperature and humidity monitoring system based on King view, which realizes the multipoint temperature and humidity data real-time acquisition, monitoring and storage in warehouse by using temperature and humidity sensor. Also, this paper will take the bulk grain warehouse as an example and based on the data collected in real-time monitoring, giving the corresponding expert advice that combined with the corresponding algorithm, providing theoretical guidance to control the temperature and humidity in grain warehouse.

  19. Thermographic analysis of the effect of composite type, layering method, and curing light on the temperature rise of photo-cured composites in tooth cavities.

    Science.gov (United States)

    Kim, Min-Jung; Kim, Ryan Jin-Young; Ferracane, Jack; Lee, In-Bog

    2017-07-28

    The purpose of this study was to investigate temperature rise in the composite and dentin of a class I cavity in extracted human molars under different restoration conditions, including the use of different composite types, layering methods, and curing lights. Open occlusal cavities were prepared on 28 extracted human molars. A conventional (Filtek Z250) and a bulk-fill (Filtek Bulk Fill Posterior; BFP) composite were used to restore the preparations. BFP was incrementally layered or bulk-filled. Bulk-filled BFP was cured with two different lights, the Elipar S10 and the BeLite. Each layer was illuminated for 20s, while thermograms of the specimens were recorded for 100s using an infrared thermal camera. Temperature changes on the composite and dentin surfaces were obtained at points of interest (POI) pertaining to successive incremental distances of 0.75mm from the top of the cavity to the pulp. The polymerization kinetics of each composite was determined using photo-differential scanning calorimetry. The greatest temperature rise was observed 0.75mm apical from the top of the cavity. All groups showed over 6°C maximum temperature rise (ΔTmax) at the pulpal side of the dentin. Upon curing, Z250 reached ΔT=5°C faster than BFP; however, ΔTmax of the two composites were comparable at any POI. Bulk filling showed greater ΔTmax than incremental filling at 0.75mm apical from the top and in the middle of the cavity. The Elipar S10 light generated faster temperature changes in the curing composite at all recorded positions throughout the depth of the cavity and greater ΔTmax in all POIs compared to BeLite. Real-time thermographic analysis demonstrated that the composite type and layering method did not influence the temperature rise at the pulpal side of dentin during composite restoration of an occlusal preparation in a tooth. The amount and initial rate of temperature increase was most affected by the radiant exposure of the light curing unit. Within the

  20. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks

    Directory of Open Access Journals (Sweden)

    Guangwen Fan

    2015-09-01

    Full Text Available Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications.

  1. Does the Response of Leaf Photosynthetic Productivity to Rising Atmospheric Temperature and CO2 Scale Up to the Canopy?

    Science.gov (United States)

    Theory predicts that interacting increases in temperature and CO2 will synergistically enhance leaf photosynthesis but how this interaction will scale to affect canopy and ecosystem productivity is less clear. Numerous factors contribute to this uncertainty including higher canopy temperatures from ...

  2. Rising Star

    OpenAIRE

    Worley, Christiana

    2012-01-01

    Rising Star is a novel about appearances. Thailand Allen is a girl who thinks she understands what she sees. But when what she sees are cracks in her perfect world, maturation and new sight are not far off. Before growth can occur, Thailand must undergo a painful process of learning that carries with it embarrassment, sorrow, anger and confusion. Thailand lives with her mother in a small Texas town called Rising Star. Rising Star is like every other small town with its community gather...

  3. Effect of temperature rising of cylindrical lithium-ion batteries%圆柱形锂离子电池温升效应研究

    Institute of Scientific and Technical Information of China (English)

    周方; 李茂德

    2011-01-01

    电池在应用过程中的热效应问题不仅直接影响着电池的性能与寿命,还存在一定的安全隐患.电池自身的物性参数直接影响着电池的产热效应.通过在不同温度下对圆柱形锰酸锂电池的内阻进行实验测量,针对圆柱形锂离子动力电池的内阻所引起的温升特性建立起相关传热模型和数值计算以及实验验证,重点分析圆柱形锂离子电池的物性参数之一——内阻对电池本身温升效应的影响.结果表明,圆柱形锂离子电池的内阻对电池温升有较大影响,电池的温升分析计算中取定值内阻的计算结果误差较大.%Thermal effect occurred in the application of battery not only effects the performance and life of battery, but also brings a hidden danger to the battery. The physical parameters of battery directly influence the thermal effect. The internal resistance of cylindrical LiMn2O4 battery was measured under different temperatures, the heat transfer model was built based on the temperature rising characteristics caused by internal resistance of cylindrical Li-ion battery, and the physical parameters were analyzed. The results show that the internal resistance has a significant impact on the battery temperature rising under the decided conditions. The battery temperature rising has a larger calculation error at a constant resistance.

  4. Study of the Effect of Reduced Iron Temperature Rising on Total Carbon Formation in Iron Reactor Isobaric and Cooling Zone

    Directory of Open Access Journals (Sweden)

    Bayu Alamsari

    2010-01-01

    Full Text Available We presented the mathematical model in the iron reactor. The model was limited to Isobaric Zone and Cooling Zone termed as IZ and CZ, respectively. The simulation was done by adapting the heat and mass transfer equations. The main purpose of this paper is to estimate the temperature increasing effect of reduced-iron on sponge-iron quality. The calculations are solved using Finite Element Method (FEM. The results showed that the temperature and concentration values from the simulation have high similarity to the reference data with Root-Mean-Square Error (RMSE about 0.7. The formation of total-carbon in the both zones decreased metallization degree until 1.72%. The increase in reduced-iron temperature higher than 1200 K produces total-carbon higher than 3%. Thus the increase in reduced-iron temperature more than 1200 K is not recommended because it can decrease metallization degree.

  5. Noncontact Monitoring of Surface Temperature Distribution by Laser Ultrasound Scanning

    Science.gov (United States)

    Yamada, Hiroyuki; Kosugi, Akira; Ihara, Ikuo

    2011-07-01

    A laser ultrasound scanning method for measuring a surface temperature distribution of a heated material is presented. An experiment using an aluminum plate heated up to 120 °C is carried out to verify the feasibility of the proposed method. A series of one-dimensional surface acoustic wave (SAW) measurements within an area of a square on the aluminum surface are performed by scanning a pulsed laser for generating SAW using a galvanometer system, where the SAWs are detected at a fixed location on the surface. An inverse analysis is then applied to SAW data to determine the surface temperature distribution in a certain direction. The two-dimensional distribution of the surface temperature in the square is constructed by combining the one-dimensional surface temperature distributions obtained within the square. The surface temperature distributions obtained by the proposed method almost agrees with those obtained using an infrared radiation camera.

  6. Out-of-Pile Thermal Simulation Test of Temperature Monitors Used in CEFR

    Institute of Scientific and Technical Information of China (English)

    HUANG; Chen; SU; Yan-jing; CUI; Chao

    2012-01-01

    <正>Eutectic alloys are often used for passive temperature monitoring of irradiation experiments. The irradiation temperature is estimated according to the melting state of the eutectic alloys. The temperature range of materials irradiation test in China Experimental Fast Reactor (CEFR) is around 450-650 ℃. The alloys used

  7. Sensor programming and concept implementation of a temperature monitoring system, using Arduino as prototyping platform

    DEFF Research Database (Denmark)

    Sbîrnă, Sebastian; Søberg, Peder Veng; Sbîrnă, Liana Simona

    2016-01-01

    The present work reports the programming paradigms that have been developed for a temperature monitoring system able to provide accurate data regarding food temperatures inside refrigerated vehicles and alert the driver accordingly, in relation to which temperature states are encountered. The men...

  8. Photorespiration and temperature dependence of oxygen evolution in tomato plants monitored by open photoacoustic cell technique

    Science.gov (United States)

    Vargas-Luna, M.; Madueño, L.; Gutiérrez-Juárez, G.; Bernal-Alvarado, J.; Sosa, M.; González-Solís, J. L.; Sánchez-Rocha, S.; Olalde-Portugal, V.; Alvarado-Gil, J. J.; Campos, P.

    2003-01-01

    The open photoacoustic cell was used to monitor the evolution rate of oxygen from tomato leaves. Estimates of the relative amount of released oxygen in vivo and in situ conditions as influenced by ambient temperature are being presented. Photorespiration phenomenon is shown to dominate above a critical temperature. The evolution of this critical point is analyzed as a function of the environmental temperature.

  9. Comparison of temperature rise in pulp chamber during polymerization of materials used for direct fabrication of provisional restorations: An in-vitro study

    Science.gov (United States)

    Khajuria, Rajat R.; Madan, Ravi; Agarwal, Swatantra; Gupta, Reecha; Vadavadgi, Sunil V.; Sharma, Vikas

    2015-01-01

    Objective: The purpose is to compare temperature rise in the pulp chamber during fabrication of provisional crowns using different materials and on different types of teeth using direct technique. Materials and Methods: An extracted, sound, caries free maxillary central incisor and a mandibular molar were selected for the study and crown preparations of all ceramic and all metal were done on central incisor and mandibular molar, respectively. Materials tested were DPI tooth molding self-curing material and protemp-4. Addition silicone putty was used as a matrix and 80 provisional crowns were fabricated, of which 40 were on central incisor and 40 on mandibular molar. Depending on the type of material used, they were further divided into two subgroups: Each comprising 20 provisional crowns. Temperature readings were recorded using K type of thermocouple with 0.1°C precision digital thermometer. Statistical Analysis Used: Analysis of variance, Tukey honest significant difference and Kruskall–Wallis H-test. Results: Statistically significant difference exists between two materials tested on the basis of peak temperature achieved and time taken by a particular material to reach peak temperature. Peak temperature achieved was highest for provisional crowns with DPI tooth molding self-curing material on maxillary central incisor (40.39 + 0.46), followed by DPI tooth molding self-curing material on mandibular molar (40.03 + 0.32), protemp-4 on maxillary central incisor (39.46 + 0.26) and least with protemp-4 on mandibular molar (39.09 + 0.33). The time taken to reach peak temperature was almost double in DPI tooth molding self-curing material (5 min) than in protemp-4. Conclusion: Polymethyl methacrylate resin produced higher intra-pulpal rise when compared to newer generation bis-acrylic composite. PMID:26038649

  10. 单元组合潜油永磁电机流热耦合温升模型研究∗%Flow-thermal Coupling Temperature Rise Model of Modular Submersible PM Motor

    Institute of Scientific and Technical Information of China (English)

    张炳义; 刘忠奇; 冯桂宏

    2015-01-01

    Submersible motor works in high⁃temperature and high⁃pressure well fluids for a long term and its running temperature cannot be monitored in real time so as to cause motor overburning�For the reason, an indoor flow⁃thermal coupling temperature rise model is built for the modular submersible pm motor�Thermal conductivity coefficient and heat emission coefficient are preliminarily calculated by empirical formula to conduct 3D finite ele⁃ment temperature rise calculation in order to obtain temperature distribution of indoor model components�Relevant thermal conductivity coefficient and heat emission coefficient are modified based on temperature rise test data of 0�5 kW prototype�Optimized data is imported into downhole flow⁃thermal coupling temperature rise model of modular submersible motor�Boundary conditions for heat convection of crude oil outside motor shell and those for heat con⁃vection of lubricants between rotors are built to obtain an accurate downhole flow⁃thermal coupling temperature rise model of modular submersible motor in order to provide a reliable theoretical basis for selection of thermal load for the submersible motor.%潜油电机长期工作在高温、高压的井液中,无法实时监测其运行温度,可能导致电机过热烧毁。为此,建立了潜油永磁电机室内流热耦合温升模型,通过经验公式初算电机各部件的导热系数和散热系数,进行3D有限元温升计算,得到了室内模型各部件的温度分布情况。并基于0�5 kW样机室内温升试验数据对相关导热系数及散热系数进行修正。将优化后的数据导入到单元组合潜油电机井下流热耦合温升模型中。建立电机机壳外侧的原油对流换热边界条件和定、转子之间的润滑油对流换热边界条件,得到了准确的潜油电机井下流热耦合温升模型,为潜油电机热负荷的选取提供了可靠的理论依据。

  11. [Research on explosive temperature network monitoring system based on the linear frequency shift of spectrum].

    Science.gov (United States)

    Wen, Qiang; Lian, Su-Jie; Zhang, Chen; Zhao, Hui; Zhao, Yu; Wang, Gao; Xu, De-Gang; Yao, Jian-Quan

    2014-03-01

    In order to obtain the different position temperature changes in the process of explosive casting accurate, stability and comprehensive, we designed the temperature monitoring system based on fiber Bragg grating spectral shift. Through the fiberoptic network, the system can monitor the different point temperature of melt-cast explosive real-time. According to the function of linear frequency shift of fiber Bragg grating wavelength with the grating of temperature, we get the temperature of different positions. Four channels share a broadband light source with a coupler. The Bragg wavelengths of the 5 gratings of each fiber are separated from each other. Using the gratings designed, spliced and packaged by our own, we can obtain temperature data through the demodulator. The temperature data was processed by the Origin to draw diagram time-temperature curve. The results show that the measured temperature data of the fiber Bragg grating can meet the requirements of experiment.

  12. Numerical study of RF exposure and the resulting temperature rise in the foetus during a magnetic resonance procedure

    Energy Technology Data Exchange (ETDEWEB)

    Hand, J W; Li, Y; Hajnal, J V [Imaging Sciences Department, Imperial College London (Hammersmith Campus), London W12 0NN (United Kingdom)], E-mail: j.hand@imperial.ac.uk

    2010-02-21

    Numerical simulations of specific absorption rate (SAR) and temperature changes in a 26-week pregnant woman model within typical birdcage body coils as used in 1.5 T and 3 T MRI scanners are described. Spatial distributions of SAR and the resulting spatial and temporal changes in temperature are determined using a finite difference time domain method and a finite difference bio-heat transfer solver that accounts for discrete vessels. Heat transfer from foetus to placenta via the umbilical vein and arteries as well as that across the foetal skin/amniotic fluid/uterine wall boundaries is modelled. Results suggest that for procedures compliant with IEC normal mode conditions (maternal whole-body averaged SAR{sub MWB} {<=} 2 W kg{sup -1} (continuous or time-averaged over 6 min)), whole foetal SAR, local foetal SAR{sub 10g} and average foetal temperature are within international safety limits. For continuous RF exposure at SAR{sub MWB} = 2 W kg{sup -1} over periods of 7.5 min or longer, a maximum local foetal temperature >38 deg. C may occur. However, assessment of the risk posed by such maximum temperatures predicted in a static model is difficult because of frequent foetal movement. Results also confirm that when SAR{sub MWB} = 2 W kg{sup -1}, some local SAR{sub 10g} values in the mother's trunk and extremities exceed recommended limits.

  13. ABS线性增压可控温度区间的研究%A Research on the Controllable Temperature Range for Linear Pressure Rise in ABS

    Institute of Scientific and Technical Information of China (English)

    姚静; 刘胜凯; 张晋; 李腾; 孔祥东

    2015-01-01

    针对防抱制动系统( ABS)低温环境下线性增压失效问题,通过阀芯的受力分析,推导了阀口开度自稳定条件;利用电磁场和流场的数值模拟,分析了环境温度对增压阀电磁力和流体作用力的影响;结果表明,要满足阀口开度自稳定条件,确保线性增压,ABS的可控温度区间为-17~120℃;利用HCU性能试验台对ABS的实测验证了仿真结果。%Aiming at the problem of the failure in maintaining linear pressure-rise in ABS under low tem-perature, a self-stabilization condition for the opening of booster valve is derived through the force analysis of valve core. Numerical simulations on both electromagnetic field and flow field are conducted to analyze the effects of ambi-ent temperature on the electromagnetic and hydraulic forces. The results show that for meeting the self-stabilization condition of valve opening and hence assuring linear pressure-rise in ABS, the controlled temperature range should be -17℃ ~120℃, which is verified by a ABS test on HCU performance tester.

  14. CALCULATED TEMPERATURE RISE AND THERMAL ELONGATION OF STRUCTURAL COMPONENTS, DEPENDING ON ACTION INTEGRAL OF INJECTED LIGHTNING CURRENTS

    DEFF Research Database (Denmark)

    Madsen, Søren Find

    2005-01-01

    expressions established, accounts for the geometry of the structure (round conductor, rectangular cross section, pipe, plane sheet, etc), the material properties (Aluminum, Copper, Carbon Fiber Composites, etc.), the frequency of the current (skin depth) and the Specific Energy (Action Integral). For linear...... structures (wires, bars etc.), the result is the resistance of the structure, the final temperature, and the thermal elongation depending on geometry and material properties. Regarding arc injection in the centre of plane specimens the equations enables calculation of the temperature as a function...

  15. Alkenone temperature records and biomarker flux at the subtropical front on the chatham rise, SW Pacific Ocean

    Science.gov (United States)

    Sikes, Elisabeth L.; O'Leary, Teresa; Nodder, Scott D.; Volkman, John K.

    2005-05-01

    Alkenones and a suite of sterol biomarkers were examined in two sediment trap arrays deployed at 300 m depth in subtropical and subantarctic waters to the east of New Zealand from late winter to autumn in 1996-1997. The two traps were located within 200 km of one another and the main difference between the two sites are the differential physical, chemical, and biological characteristics of the different water masses in which they were situated. The alkenone-based reconstructions of water temperatures (U37K') were compared to the COADS monthly averaged satellite and real-time weekly temperatures for the deployment period. The records correlate well with seasonal sea surface temperatures (SST) for the 9 months of the deployment, with temperature reconstructions within 2 °C of regional monthly averages for most of the year. There are a few short periods of poorer agreement where alkenone-based reconstructions deviate by up to 4 °C in both traps. Weekly averages of satellite SST obtained during the time of the deployment indicate that these deviations were not associated with short-term changes in surface temperatures overlying the traps. These instances of poor correlation are not due to lateral advection of particles, but rather seem to reflect differences in environmental controls on alkenone-derived SSTs in the two water masses. Subantarctic traps showed deviations only to warmer than average temperatures. These occurred in early winter and late summer, during times of low lipid fluxes, suggesting that slow growth associated with light limitation may have affected unsaturation levels in the alkenones. The subtropical traps showed deviations only to cooler temperatures, which occurred in the late summer to early autumn. These biases occurred during times of highest lipid fluxes and lowest nutrients in the surface mixed-layer. Alkenone temperatures during maximum flux periods were too cool to be caused by subsurface production alone, suggesting that nutrient

  16. Evaluation of a Novel Temperature Sensing Probe for Monitoring and Controlling Glass Temperature in a Joule-Heated Glass Melter

    Energy Technology Data Exchange (ETDEWEB)

    A. D. Watkins; C. A. Musick; C. Cannon (AccuTru Int' l Corp); N. M. Carlson; P. D. Mullenix (INEEL); R. D. Tillotson

    1999-04-29

    A self-verifying temperature sensor that employs advanced contact thermocouple probe technology was tested in a laboratory-scale, joule-heated, refractory-lined glass melter used for radioactive waste vitrification. The novel temperature probe monitors melt temperature at any given level of the melt chamber. The data acquisition system provides the real-time temperature for molten glass. Test results indicate that the self-verifying sensor is more accurate and reliable than classic platinum/rhodium thermocouple and sheath assemblies. The results of this test are reported as well as enhancements being made to the temperature probe. To obtain more reliable temperature measurements of the molten glass for improving production efficiency and ensuring consistent glass properties, optical sensing was reviewed for application in a high temperature environment.

  17. Numerical studies of tool diameter on strain rates, temperature rises and grain sizes in friction stir welding

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhao; Qi, Wu [Dalian University of Technology, Dalian (China)

    2015-10-15

    Fully coupled thermo-mechanical model is used to obtain the true strain components. The sizes of the TMAZ and the SZ are predicted according to the different behaviors of the traced material particles. The strain rate and the temperature histories are used to calculate the Zener-Hollomon parameter and then the grain size in the SZ. Results indicate that the contribution from the temperatures is much more important than the one from the deformations. The strain rates at the advancing side are higher than the ones at the retreating side on the top surface but become symmetrical on the bottom surface. The widths of the TMAZ and the SZ become narrower in smaller shoulder diameter. Smaller shoulder can lead to smaller grain size in the SZ.

  18. Ciguatera Incidence in the US Virgin Islands Has Not Increased over a 30-Year Time Period Despite Rising Seawater Temperatures

    OpenAIRE

    Radke, Elizabeth G.; Grattan, Lynn M.; Cook, Robert L.; Tyler B Smith; Anderson, Donald M.; Morris, J. Glenn

    2013-01-01

    Ciguatera fish poisoning is the most common marine food poisoning worldwide. It has been hypothesized that increasing seawater temperature will result in increasing ciguatera incidence. In St. Thomas, US Virgin Islands, we performed an island-wide telephone survey (N = 807) and a medical record review of diagnosed ciguatera cases at the emergency department of the sole hospital and compared these data with comparable data sources collected in 1980. Annual incidence from both recent data sourc...

  19. Numerical study of RF exposure and the resulting temperature rise in the foetus during a magnetic resonance procedure

    Science.gov (United States)

    Hand, J. W.; Li, Y.; Hajnal, J. V.

    2010-02-01

    Numerical simulations of specific absorption rate (SAR) and temperature changes in a 26-week pregnant woman model within typical birdcage body coils as used in 1.5 T and 3 T MRI scanners are described. Spatial distributions of SAR and the resulting spatial and temporal changes in temperature are determined using a finite difference time domain method and a finite difference bio-heat transfer solver that accounts for discrete vessels. Heat transfer from foetus to placenta via the umbilical vein and arteries as well as that across the foetal skin/amniotic fluid/uterine wall boundaries is modelled. Results suggest that for procedures compliant with IEC normal mode conditions (maternal whole-body averaged SARMWB 38 °C may occur. However, assessment of the risk posed by such maximum temperatures predicted in a static model is difficult because of frequent foetal movement. Results also confirm that when SARMWB = 2 W kg-1, some local SAR10g values in the mother's trunk and extremities exceed recommended limits.

  20. Nonintrusive fast response oxygen monitoring system for high temperature flows

    Science.gov (United States)

    Oh, Daniel B.; Stanton, Alan C.

    1993-01-01

    A new technique has been developed for nonintrusive in situ measurement of oxygen concentration, gas temperature, and flow velocity of the test media in hypersonic wind tunnels. It is based on absorption of near-infrared radiation from inexpensive GaAlAs laser diodes used in optoelectronics industry. It is designed for simultaneous measurements along multiple lines of sight accessed by fiber optics. Molecular oxygen concentration is measured from the magnitude of absorption signals; rotational gas temperature is measured from the intensity ratio of two oxygen absorption lines; and the flow velocity is measured from the Doppler shift of the absorption line positions. This report describes the results of an extensive series of tests of the prototype instrument in laboratory flames emphasizing assessment of the instruments capabilities for quantitative measurement of O2 concentration (mole fraction) and gas temperature.

  1. TEMPERATURE DISTRIBUTION MONITORING AND ANALYSES AT DIFFERENT HEATING CONTROL PRINCIPLES

    DEFF Research Database (Denmark)

    Simone, Angela; Rode, Carsten; Olesen, Bjarne W.

    2010-01-01

    control sensor which was already installed. The room was heated by means of electrical radiators, which should be able to control the indoor environment to guarantee the desired thermal conditions for the occupants and to supply heat according to desired load patterns. Five series of experiments were done......In the last decades significant efforts have been made to reduce energy use in buildings. Heating, cooling and ventilation systems are responsible for 30-40% of the energy consumption in buildings. Although they are evaluated based on the energy performance they should guarantee the desired thermal...... comfort conditions for the building occupants. During the winter and spring of 2009 a study based on analyses of the local temperatures distribution in a room was performed. The purpose was to compare the temperature distribution in the room with the temperature measured and logged by the heating system...

  2. In-Situ Real-Time Temperature Monitoring of Thermal Protection Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This program addresses the need for interfacial and in-depth temperature monitoring of thermal protection systems (TPS). Novel, linear drive, eddy current methods...

  3. Design of online monitoring and forecasting system for electrical equipment temperature of prefabricated substation based on WSN

    Science.gov (United States)

    Qi, Weiran; Miao, Hongxia; Miao, Xuejiao; Xiao, Xuanxuan; Yan, Kuo

    2016-10-01

    In order to ensure the safe and stable operation of the prefabricated substations, temperature sensing subsystem, temperature remote monitoring and management subsystem, forecast subsystem are designed in the paper. Wireless temperature sensing subsystem which consists of temperature sensor and MCU sends the electrical equipment temperature to the remote monitoring center by wireless sensor network. Remote monitoring center can realize the remote monitoring and prediction by monitoring and management subsystem and forecast subsystem. Real-time monitoring of power equipment temperature, history inquiry database, user management, password settings, etc., were achieved by monitoring and management subsystem. In temperature forecast subsystem, firstly, the chaos of the temperature data was verified and phase space is reconstructed. Then Support Vector Machine - Particle Swarm Optimization (SVM-PSO) was used to predict the temperature of the power equipment in prefabricated substations. The simulation results found that compared with the traditional methods SVM-PSO has higher prediction accuracy.

  4. "Ultrasound Monitoring of Temperature Change during Interstitial Laser Thermotherapy of Liver: An In Vitro Study"

    Directory of Open Access Journals (Sweden)

    T. Gorji-Ara

    2007-07-01

    Full Text Available Background/objective: In thermal tissue ablation, it is very important to control the increase in the temperature for having an efficient ablation therapy. We conducted this study to determine the efficacy of measuring pixel shift of ultrasound B-mode images as a function of change in tissue temperature. Materials and Methods: By fixing some microthermocouples in liver tissues, temperature at different points was monitored invasively in vitro during laser-induced thermotherapy. According to our results, optimum power and exposure time were determined for ultrasound temperature monitoring. Simultaneously, noninvasive temperature monitoring was performed with ultrasound B-mode images. These images were saved on computer from 25ºC to 95ºC with 10 ºC steps. The speed of sound changes with each 10°C temperature change that produce virtual shifts in the scatter positions. Using an image processing method, the pixel shift due to 10 °C temperature change was extracted by motion detection. Results: The cubic regression function between the mean pixel shifts on ultrasound B-mode images caused by the change in speed of sound, which in turn was a function of the mean change in temperature, was evaluated. When temperature increased, pixel shift occurs in ultrasound images. The maximum pixel shift was observed between 60 to 70 ºC (temperature changes (ΔT of 35–45 ºC. After 70ºC, the local pixel shift due to change in the speed of sound in liver tissue had an irregular decreasing. Pearson correlation coefficient between invasive and non-invasive measurements for 10°C temperature changes was 0.93 and the non-linear function was suitable for monitoring of temperature. Conclusion: Monitoring of changes in temperature based on pixel shifts observed in ultrasound B-mode images in interstitial laser thermotherapy of liver seems a good modality.

  5. Data acquisition for low-temperature geothermal well tests and long-term monitoring. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.

    1992-09-01

    Groundwater monitoring is an essential part of the development of a low-temperature geothermal field for production and injection wells. State water resource and environmental departments are requiring both geothermal well testing and long-term monitoring as a part of the permitting process for geothermal developments. This report covers water-level measurement methods, instruments used for well testing, geochemical sampling, examples of data acquisition and regulatory mandates on groundwater monitoring.

  6. Data acquisition for low-temperature geothermal well tests and long-term monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.

    1992-09-01

    Groundwater monitoring is an essential part of the development of a low-temperature geothermal field for production and injection wells. State water resource and environmental departments are requiring both geothermal well testing and long-term monitoring as a part of the permitting process for geothermal developments. This report covers water-level measurement methods, instruments used for well testing, geochemical sampling, examples of data acquisition and regulatory mandates on groundwater monitoring.

  7. Data Acquisition for Low-Temperature Geothermal Well Tests and Long-Term Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.

    1992-03-01

    Groundwater monitoring is an essential part of the development of a low-temperature geothermal field for production and injection wells. State water resource and environmental departments are requiring both geothermal well testing and long-term monitoring as a part of the permitting process for geothermal developments. This report covers water-level measurement methods, instruments used for well testing, geochemical sampling, examples of data acquisition and regulatory mandates on groundwater monitoring.

  8. Design and Evaluation of a Pressure and Temperature Monitoring System for Pressure Ulcer Prevention

    OpenAIRE

    Farve Daneshvar Fard; Sahar Moghimi; Reza Lotfi

    2014-01-01

    Introduction Pressure ulcers are tissue damages resulting from blood flow restriction, which occurs when the tissue is exposed to high pressure for a long period of time. These painful sores are common in patients and elderly, who spend extended periods of time in bed or wheelchair. In this study, a continuous pressure and temperature monitoring system was developed for pressure ulcer prevention. Materials and Methods The monitoring system consists of 64 pressure and 64 temperature sensors on...

  9. Effects of rapid temperature rising on nitrogen removal and microbial community variation of anoxic/aerobic process for ABS resin wastewater treatment.

    Science.gov (United States)

    Luo, Huilong; Song, Yudong; Zhou, Yuexi; Yang, Liwei; Zhao, Yaqian

    2017-02-01

    ABS resin wastewater is a high-temperature nitrogenous organic wastewater. It can be successfully treated with anoxic/aerobic (A/O) process. In this study, the effect of temperature on nitrogen removal and microbial community after quick temperature rise (QTR) was investigated. It was indicated that QTR from 25 to 30 °C facilitated the microbial growth and achieved a similar effluent quality as that at 25 °C. QTR from 25 to 35 °C or 40 °C resulted in higher effluent concentration of chemical oxygen demand (COD), biochemical oxygen demand (BOD5), total nitrogen (TN), and total phosphorus (TP). Illumina MiSeq pyrosequencing analysis illustrated that the richness and diversity of the bacterial community was decreased as the temperature was increased. The percentage of many functional groups was changed significantly. QTR from 25 to 40 °C also resulted in the inhibition of ammonia oxidation rate and high concentration of free ammonia, which then inhibited the growth of NOB (Nitrospira), and thus resulted in nitrite accumulation. The high temperature above 35 °C promoted the growth of a denitrifying bacterial genus, Denitratisoma, which might increase N2O production during the denitrification process.

  10. Rising sea level, temperature, and precipitation impact plant and ecosystem responses to elevated CO2 on a Chesapeake Bay wetland: review of a 28-year study.

    Science.gov (United States)

    Drake, Bert G

    2014-11-01

    An ongoing field study of the effects of elevated atmospheric CO2 on a brackish wetland on Chesapeake Bay, started in 1987, is unique as the longest continually running investigation of the effects of elevated CO2 on an ecosystem. Since the beginning of the study, atmospheric CO2 increased 18%, sea level rose 20 cm, and growing season temperature varied with approximately the same range as predicted for global warming in the 21st century. This review looks back at this study for clues about how the effects of rising sea level, temperature, and precipitation interact with high atmospheric CO2 to alter the physiology of C3 and C4 photosynthetic species, carbon assimilation, evapotranspiration, plant and ecosystem nitrogen, and distribution of plant communities in this brackish wetland. Rising sea level caused a shift to higher elevations in the Scirpus olneyi C3 populations on the wetland, displacing the Spartina patens C4 populations. Elevated CO2 stimulated carbon assimilation in the Scirpus C3 species measured by increased shoot and root density and biomass, net ecosystem production, dissolved organic and inorganic carbon, and methane production. But elevated CO2 also decreased biomass of the grass, S. patens C4. The elevated CO2 treatment reduced tissue nitrogen concentration in shoots, roots, and total canopy nitrogen, which was associated with reduced ecosystem respiration. Net ecosystem production was mediated by precipitation through soil salinity: high salinity reduced the CO2 effect on net ecosystem production, which was zero in years of severe drought. The elevated CO2 stimulation of shoot density in the Scirpus C3 species was sustained throughout the 28 years of the study. Results from this study suggest that rising CO2 can add substantial amounts of carbon to ecosystems through stimulation of carbon assimilation, increased root exudates to supply nitrogen fixation, reduced dark respiration, and improved water and nitrogen use efficiency.

  11. 电热油汀温升及舒适性研究%The Study on Temperature Rise and Thermal Comfort of Oil-filled Electric Heater

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    In order to solve the contradiction of oil-filled electric heater temperature rise being up to nation-al standard and meeting user comfort requirements, factors which affect heating effect are analyzed. Through con-ducting the optimization design such as oil-filled electric heater structure optimization, heating element selection optimization, the experiment results can meet the national standard for temperature rise, and meet the user′s comfort requirement, so that the result provides valuable reference to modify and design for the future.%  为解决目前电热油汀温升符合国标和满足用户舒适性要求的矛盾,本文分析影响电热油汀取暖效果的因素,通过对电热油汀结构优化、发热管选型优化等方法,经过温升测试及舒适性模拟测试证明,可以满足国家标准对温升的要求和用户的舒适性要求,为以后电热油汀的改进和优化设计提供了参考。

  12. TEMPERATURE MONITORING OPTIONS AVAILABLE AT THE IDAHO NATIONAL LABORATORY ADVANCED TEST REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    J.E. Daw; J.L. Rempe; D.L. Knudson; T. Unruh; B.M. Chase; K.L Davis

    2012-03-01

    As part of the Advanced Test Reactor National Scientific User Facility (ATR NSUF) program, the Idaho National Laboratory (INL) has developed in-house capabilities to fabricate, test, and qualify new and enhanced sensors for irradiation testing. To meet recent customer requests, an array of temperature monitoring options is now available to ATR users. The method selected is determined by test requirements and budget. Melt wires are the simplest and least expensive option for monitoring temperature. INL has recently verified the melting temperature of a collection of materials with melt temperatures ranging from 100 to 1000 C with a differential scanning calorimeter installed at INL’s High Temperature Test Laboratory (HTTL). INL encapsulates these melt wires in quartz or metal tubes. In the case of quartz tubes, multiple wires can be encapsulated in a single 1.6 mm diameter tube. The second option available to ATR users is a silicon carbide temperature monitor. The benefit of this option is that a single small monitor (typically 1 mm x 1 mm x 10 mm or 1 mm diameter x 10 mm length) can be used to detect peak irradiation temperatures ranging from 200 to 800 C. Equipment has been installed at INL’s HTTL to complete post-irradiation resistivity measurements on SiC monitors, a technique that has been found to yield the most accurate temperatures from these monitors. For instrumented tests, thermocouples may be used. In addition to Type-K and Type-N thermocouples, a High Temperature Irradiation Resistant ThermoCouple (HTIR-TC) was developed at the HTTL that contains commercially-available doped molybdenum paired with a niobium alloy thermoelements. Long duration high temperature tests, in furnaces and in the ATR and other MTRs, demonstrate that the HTIR-TC is accurate up to 1800 C and insensitive to thermal neutron interactions. Thus, degradation observed at temperatures above 1100 C with Type K and N thermocouples and decalibration due to transmutation with tungsten

  13. Evaluations of University of Wisconsin Silicon Carbide Temperature Monitors 300 LO and 400 LO B

    Energy Technology Data Exchange (ETDEWEB)

    K. L. Davis; J. L. Rempe; D. L. Knudson; B. M. Chase; T. C. Unruh

    2011-12-01

    Silicon carbide (SiC) temperature monitors 05R4-02-A KG1403 (300 LO) and 05R4-01-A KG1415 (400 LO B) were evaluated at the High Temperature Test Lab (HTTL) to determine their peak irradiation temperatures. HTTL measurements indicate that the peak irradiation temperature for the 300 LO monitor was 295 {+-} 20 C and the peak irradiation temperature for the 400 LO B monitor was 294 {+-} 25 C. Two silicon carbide (SiC) temperature monitors irradiated in the Advanced Test Reactor (ATR) were evaluated at the High Temperature Test Lab (HTTL) to determine their peak temperature during irradiation. These monitors were irradiated as part of the University of Wisconsin Pilot Project with a target dose of 3 dpa. Temperature monitors were fabricated from high density (3.203 g/cm3) SiC manufactured by Rohm Haas with a nominal size of 12.5 mm x 1.0 mm x 0.75 mm (see Attachment A). Table 1 provides identification for each monitor with an expected peak irradiation temperature range based on preliminary thermal analysis (see Attachment B). Post irradiation calculations are planned to reduce uncertainties in these calculated temperatures. Since the early 1960s, SiC has been used as a post-irradiation temperature monitor. As noted in Reference 2, several researchers have observed that neutron irradiation induced lattice expansion of SiC annealed out when the post-irradiation annealing temperature exceeds the peak irradiation temperature. As noted in Reference 3, INL uses resistivity measurements to infer peak irradiation temperature from SiC monitors. Figure 1 depicts the equipment at the HTTL used to evaluate the SiC monitors. The SiC monitors are heated in the annealing furnace using isochronal temperature steps that, depending on customer needs, can range from 50 to 800 C. This furnace is located under a ventilation hood within the stainless steel enclosure. The ventilation system is activated during heating so that any released vapors are vented through this system. Annealing

  14. Laser-induced reversion of $\\delta^{'}$ precipitates in an Al-Li alloy: Study on temperature rise in pulsed laser atom probe

    CERN Document Server

    Khushaim, Muna; Al-Kassab, Talaat

    2015-01-01

    The influence of tuning the laser energy during the analyses on the resulting microstructure in a specimen utilizing an ultra-fast laser assisted atom probe was demonstrated by a case study of a binary Al-Li alloy. The decomposition parameters, such as the size, number density, volume fraction and composition of $\\delta^{'}$ precipitates, were carefully monitored after each analysis. A simple model was employed to estimate the corresponding specimen temperature for each value of the laser energy. The results indicated that the corresponding temperatures for the laser energy in the range of 10 to 80 pJ are located inside the miscibility gap of the binary Al-Li phase diagram and fall into the metastable equilibrium field. In addition, the corresponding temperature for a laser energy of 100 pJ was in fairly good agreement with reported range of $\\delta^{'}$ solvus temperature, suggesting a result of reversion upon heating due to laser pulsing.

  15. Tropical cyclones in a year of rising global temperatures and a strengthening El Niño

    Science.gov (United States)

    Shultz, James M; Shepherd, J Marshall; Bagrodia, Rohini; Espinel, Zelde

    2014-01-01

    The year 2015 is notable for the coincidence of several strong climate indicators that having bearing on the occurrence and intensity of tropical cyclones worldwide. This year, 2015, is clearly on track to become the warmest on record in terms of global temperatures. During the latter half of 2015, a very strong El Niño has formed and is predicted to build impressively, perhaps rivaling the memorable El Niño of 1997/1998. Warm Pacific Ocean temperatures, coupled with a strengthening El Niño, have supported the proliferation of Western North Pacific basin typhoons and Eastern/Central North Pacific Hurricanes. Most notable among these, Hurricane Patricia formed on October 20, 2015 and experienced extremely rapid intensification to become the strongest hurricane in the history of the Western Hemisphere and then weakened just as abruptly before dissipating on October 24, 2015. Rather than an aberration, these climate patterns of 2015 represent an ongoing trend with implications for the disaster health of coastal populations worldwide. PMID:28229010

  16. Statistical significance of rising and oscillatory trends in global ocean and land temperature in the past 160 years

    CERN Document Server

    Østvand, Lene; Rypdal, Martin

    2013-01-01

    Various interpretations of the notion of a trend in the context of global warming are discussed, contrasting the difference between viewing a trend as the deterministic response to an external forcing and viewing it as a slow variation which can be separated from the background spectral continuum of long-range persistent climate noise. The emphasis in this paper is on the latter notion, and a general scheme is presented for testing a multi-parameter trend model against a null hypothesis which models the observed climate record as an autocorrelated noise. The scheme is employed to the instrumental global sea-surface temperature record and the global land-temperature record. A trend model comprising a linear plus an oscillatory trend with period of approximately 60 yr, and the statistical significance of the trends, are tested against three different null models: first-order autoregressive process, fractional Gaussian noise, and fractional Brownian motion. The linear trend is significant in all cases, but the o...

  17. New climatic targets against global warming: will the maximum 2 °C temperature rise affect estuarine benthic communities?

    Science.gov (United States)

    Crespo, Daniel; Grilo, Tiago Fernandes; Baptista, Joana; Coelho, João Pedro; Lillebø, Ana Isabel; Cássio, Fernanda; Fernandes, Isabel; Pascoal, Cláudia; Pardal, Miguel Ângelo; Dolbeth, Marina

    2017-06-20

    The Paris Agreement signed by 195 countries in 2015 sets out a global action plan to avoid dangerous climate change by limiting global warming to remain below 2 °C. Under that premise, in situ experiments were run to test the effects of 2 °C temperature increase on the benthic communities in a seagrass bed and adjacent bare sediment, from a temperate European estuary. Temperature was artificially increased in situ and diversity and ecosystem functioning components measured after 10 and 30 days. Despite some warmness effects on the analysed components, significant impacts were not verified on macro and microfauna structure, bioturbation or in the fluxes of nutrients. The effect of site/habitat seemed more important than the effects of the warmness, with the seagrass habitat providing more homogenous results and being less impacted by warmness than the adjacent bare sediment. The results reinforce that most ecological responses to global changes are context dependent and that ecosystem stability depends not only on biological diversity but also on the availability of different habitats and niches, highlighting the role of coastal wetlands. In the context of the Paris Agreement it seems that estuarine benthic ecosystems will be able to cope if global warming remains below 2 °C.

  18. Engine Oil Condition Monitoring Using High Temperature Integrated Ultrasonic Transducers

    OpenAIRE

    Jeff Bird; Cheng-Kuei Jen; Zhigang Sun; Pierre Sammut; Brian Galeote; Makiko Kobayashi; Kuo-Ting Wu; Nezih Mrad

    2011-01-01

    The present work contains two parts. In the first part, high temperature integrated ultrasonic transducers (IUTs) made of thick piezoelectric composite films, were coated directly onto lubricant oil supply and sump lines of a modified CF700 turbojet engine. These piezoelectric films were fabricated using a sol-gel spray technology. By operating these IUTs in transmission mode, the amplitude and velocity of transmitted ultrasonic waves across the flow channel of the lubricant oil in supply and...

  19. A Wireless Portable High Temperature Data Monitor for Tunnel Ovens

    Directory of Open Access Journals (Sweden)

    Ricardo Mayo Bayón

    2014-08-01

    Full Text Available Tunnel ovens are widely used in the food industry to produce biscuits and pastries. In order to obtain a high quality product, it is very important to control the heat transferred to each piece of dough during baking. This paper proposes an innovative, non-distorting, low cost wireless temperature measurement system, called “eBiscuit”, which, due to its size, format and location in the metal rack conveyor belt in the oven, is able to measure the temperature a real biscuit experience while baking. The temperature conditions inside the oven are over 200 °C for several minutes, which could damage the “eBiscuit” electronics. This paper compares several thermal insulating materials that can be used in order to avoid exceeding the maximum operational conditions (80 °C in the interior of the “eBiscuit. The data registered is then transmitted to a base station where information can be processed to obtain an oven model. The experimental results with real tunnel ovens confirm its good performance, which allows detecting production anomalies early on.

  20. Influence of nanoscale temperature rises on photoacoustic generation: discrimination between optical absorbers based on nonlinear photoacoustics at high frequency

    CERN Document Server

    Simandoux, Oliver; Gâteau, Jérôme; Bossy, Emmanuel

    2013-01-01

    In the thermoelastic regime, photoacoustic sensing of optical absorption relies on conversion from light to acoustic energy via the coefficient of thermal expansion \\beta. In this work, we confront confront experimental measurements to theoretical predictions of nonlinear photoacoustic generation based on the dynamic variation of \\beta(T) during the optical excitation of absorbers in aqueous solution. The photoacoustic generation from solutions of organic dye and gold nanospheres (with same optical densities), illuminated with 532 nm nanosecond pulses, was detected using a high frequency ultrasound transducer (center frequency 20 MHz). Photoacoustic emission was observed with gold nanospheres at low fluence (a few mJ/cm2) for an equilibrium temperature around 4{\\deg}C, where the linear photoacoustic effect in water vanishes, highlighting the nonlinear emission from the solution of nanospheres. Under the same condition, no emission was observed with the absorbing organic dye. At a fixed fluence of 5 mJ/cm2, th...

  1. Impact of the 3 °C temperature rise on bacterial growth and carbon transfer towards higher trophic levels: Empirical models for the Adriatic Sea

    Science.gov (United States)

    Šolić, Mladen; Krstulović, Nada; Šantić, Danijela; Šestanović, Stefanija; Kušpilić, Grozdan; Bojanić, Natalia; Ordulj, Marin; Jozić, Slaven; Vrdoljak, Ana

    2017-09-01

    The Mediterranean Sea (including the Adriatic Sea) has been identified as a 'hotspot' for climate change, with the prediction of the increase in water temperature of 2-4 °C over the next few decades. Being mainly oligotrophic, and strongly phosphorus limited, the Adriatic Sea is characterized by the important role of the microbial food web in production and transfer of biomass and energy towards higher trophic levels. We hypothesized that predicted 3 °C temperature rise in the near future might cause an increase of bacterial production and bacterial losses to grazers, which could significantly enlarge the trophic base for metazoans. This empirical study is based on a combined 'space-for-time substitution' analysis (which is performed on 3583 data sets) and on an experimental approach (36 in situ grazing experiments performed at different temperatures). It showed that the predicted 3 °C temperature increase (which is a result of global warming) in the near future could cause a significant increase in bacterial growth at temperatures lower than 16 °C (during the colder winter-spring period, as well as in the deeper layers). The effect of temperature on bacterial growth could be additionally doubled in conditions without phosphorus limitation. Furthermore, a 3 °C increase in temperature could double the grazing on bacteria by heterotrophic nanoflagellate (HNF) and ciliate predators and it could increase the proportion of bacterial production transferred to the metazoan food web by 42%. Therefore, it is expected that global warming may further strengthen the role of the microbial food web in a carbon cycle in the Adriatic Sea.

  2. Temperature modeling and emulation of an ASIC temperature monitor system for Tightly-Coupled Processor Arrays (TCPAs)

    OpenAIRE

    E. Glocker; S. Boppu; Chen, Q; Schlichtmann, U.; Teich, J.; D. Schmitt-Landsiedel

    2014-01-01

    This contribution provides an approach for emulating the behaviour of an ASIC temperature monitoring system (TMon) during run-time for a tightly-coupled processor array (TCPA) of a heterogeneous invasive multi-tile architecture to be used for FPGA prototyping. It is based on a thermal RC modeling approach. Also different usage scenarios of TCPA are analyzed and compared.

  3. GMDH and neural networks applied in temperature sensors monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bueno, Elaine Inacio, E-mail: ebueno@cefetsp.b [Instituto Federal de Educacao, Ciencia e Tecnologia, Braganca Paulista, SP (Brazil); Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Pereira, Iraci Martinez; Silva, Antonio Teixeira e, E-mail: martinez@ipen.b, E-mail: teixeira@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    In this work a monitoring system was developed based on the Group Method of Data Handling (GMDH) and Neural Networks (ANNs) methodologies. This methodology was applied to the IEA-R1 research reactor at IPEN by using a database obtained from a theoretical model of the reactor. The IEA-R1 research reactor is a pool type reactor of 5 MW, cooled and moderated by light water, and uses graphite and beryllium as reflector. The theoretical model was developed using the Matlab GUIDE toolbox. The equations are based in the IEA-R1 mass and energy inventory balance and physical as well as operational aspects are taken into consideration. This methodology was developed by using the GMDH algorithm as input variables to the ANNs. The results obtained using the GMDH and ANNs were better than that obtained using only ANNs. (author)

  4. A GSM-Based Remote Temperature and Humidity Monitoring System for Granary

    Directory of Open Access Journals (Sweden)

    Zheng Xiao Xi

    2016-01-01

    Full Text Available A remote temperature and humidity monitoring system is designed based on the GSM technology and MSP430. With the digital sensor DSB1820 and SHT11, the temperature and humidity of the granary are detected, and these parameters can be adjusted with the controlling system to adapt various working conditions. Through the GSM system, the detected data could be sent to various monitoring devices, such as cellphones and laptops. These data can be used for data display, inquiry, controlling and storage at the remote terminals. The experimental results show that the system is convenient and concise, which meets the remote monitoring demand for the modern granary.

  5. Antagonistic Effects of Ocean Acidification and Rising Sea Surface Temperature on the Dissolution of Coral Reef Carbonate Sediments

    Directory of Open Access Journals (Sweden)

    Daniel Trnovsky

    2016-11-01

    Full Text Available Increasing atmospheric CO2 is raising sea surface temperature (SST and increasing seawater CO2 concentrations, resulting in a lower oceanic pH (ocean acidification; OA, which is expected to reduce the accretion of coral reef ecosystems. Although sediments comprise most of the calcium carbonate (CaCO3 within coral reefs, no in situ studies have looked at the combined effects of increased SST and OA on the dissolution of coral reef CaCO3 sediments. In situ benthic chamber incubations were used to measure dissolution rates in permeable CaCO3 sands under future OA and SST scenarios in a coral reef lagoon on Australia’s Great Barrier Reef (Heron Island. End of century (2100 simulations (temperature +2.7°C and pH -0.3 shifted carbonate sediments from net precipitating to net dissolving. Warming increased the rate of benthic respiration (R by 29% per 1°C and lowered the ratio of productivity to respiration (P/R; ΔP/R = -0.23, which increased the rate of CaCO3 sediment dissolution (average net increase of 18.9 mmol CaCO3 m-2 d-1 for business as usual scenarios. This is most likely due to the influence of warming on benthic P/R which, in turn, was an important control on sediment dissolution through the respiratory production of CO2. The effect of increasing CO2 on CaCO3 sediment dissolution (average net increase of 6.5 mmol CaCO3 m-2 d-1 for business as usual scenarios was significantly less than the effect of warming. However, the combined effect of increasing both SST and pCO2 on CaCO3 sediment dissolution was non-additive (average net increase of 5.6 mmol CaCO3 m-2 d-1 due to the different responses of the benthic community. This study highlights that benthic biogeochemical processes such as metabolism and associated CaCO3 sediment dissolution respond rapidly to changes in SST and OA, and that the response to multiple environmental changes are not necessarily additive.

  6. Online Chip Temperature Monitoring Using υce-Load Current and IR Thermography

    DEFF Research Database (Denmark)

    Ghimire, Pramod; Pedersen, Kristian Bonderup; Trintis, Ionut

    2015-01-01

    This paper presents on-state collector-emitter voltage (υce, on)-load current (Ic) method to monitor chip temperature on power insulated gate bipolar transistor (IGBT) modules in converter operation. The measurement method is also evaluated using infrared (IR) thermography. Temperature dependencies...

  7. 78 FR 65306 - Best Practices for Continuous Monitoring of Temperature and Flow in Wadeable Streams

    Science.gov (United States)

    2013-10-31

    ... AGENCY Best Practices for Continuous Monitoring of Temperature and Flow in Wadeable Streams AGENCY...: EPA is announcing a 30-day public comment period for the draft document titled, ``Best Practices for... Development. The report describes best practices for the deployment of continuous temperature and flow sensors...

  8. Monitoring and Modeling Temperature Variations Inside Silage Stack Using Novel Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Green, Ole; Shahrak Nadimi, Esmaeil; Blanes-Vidal, Victoria

    2009-01-01

    Abstract: By monitoring silage temperature at different locations inside silage stacks, it is possible to detect any significant increases in temperature occurring during silage decomposition. The objectives of this study were: (1) to develop novel noninvasive wireless sensor nodes for measuring ...

  9. Monitoring and modeling temperature variations inside silage stacks using novel wireless sensor networks

    DEFF Research Database (Denmark)

    Green, O.; Nadimi, E.S.; Blanes-Vidal, V.

    2009-01-01

    By monitoring silage temperature at different locations inside silage stacks, it is possible to detect any significant increases in temperature occurring during silage decomposition. The objectives of this study were: (1) to develop novel noninvasive wireless sensor nodes for measuring the temper...

  10. Design and implementation of temperature and humidity monitoring system for poultry farm

    Science.gov (United States)

    Purnomo, Hindriyanto Dwi; Somya, Ramos; Fibriani, Charitas; Purwoko, Angga; Sadiyah, Ulfa

    2016-10-01

    Automatic monitoring system gains significant interest in poultry industry due to the need of consistent environment condition. Appropriate environment increase the feed conversion ratio as well as birds productivity. This will increase the competitiveness of the poultry industry. In this research, a temperature and humidity monitoring system is proposed to observer the temperature and relative humidity of a poultry house. The system is intended to be applied in the poultry industry with partnership schema. The proposed system is equipped with CCTV for visual monitoring. The measured temperature and humidity implement wireless sensor network technology. The experiment results reveals that proposed system have the potential to increase the effectiveness of monitoring of poultry house in poultry industry with partnership schema.

  11. Polysilicon-based flexible temperature sensor for brain monitoring with high spatial resolution

    Science.gov (United States)

    Wu, Zhizhen; Li, Chunyan; Hartings, Jed; Ghosh, Sthitodhi; Narayan, Raj; Ahn, Chong

    2017-02-01

    Temperature is one of the most important variables in brain monitoring, since changes of focal brain temperature are closely coupled to cerebral physiology and pathophysiological phenomena in injured brain. In this work, a highly accurate temperature sensor with polysilicon thermistors has been developed on flexible polyimide for monitoring brain temperature with high spatial resolution. The temperature sensors have a response time of 1.5 s and sensitivity of  -0.0031 °C-1. Thermal hysteresis of the sensor in the physiological temperature range of 30-45 °C was found to be less than 0.1 °C. With silicon nitride as the passivation layer, the temperature sensor exhibits drift of less than 0.3 °C for 3 d in water. In vivo tests of the sensor show a low noise level of 0.025  ±  0.03 °C, and the expected transient increases in cortical temperature associated with cortical spreading depolarization. The temperature sensor developed in this work is suitable for monitoring brain temperature with the desired high sensitivity and resolution.

  12. Monitoring Temperature in High Enthalpy Arc-heated Plasma Flows using Tunable Diode Laser Absorption Spectroscopy

    Science.gov (United States)

    Martin, Marcel Nations; Chang, Leyen S.; Jeffries, Jay B.; Hanson, Ronald K.; Nawaz, Anuscheh; Taunk, Jaswinder S.; Driver, David M.; Raiche, George

    2013-01-01

    A tunable diode laser sensor was designed for in situ monitoring of temperature in the arc heater of the NASA Ames IHF arcjet facility (60 MW). An external cavity diode laser was used to generate light at 777.2 nm and laser absorption used to monitor the population of electronically excited oxygen atoms in an air plasma flow. Under the assumption of thermochemical equilibrium, time-resolved temperature measurements were obtained on four lines-of-sight, which enabled evaluation of the temperature uniformity in the plasma column for different arcjet operating conditions.

  13. 爆轰波温升效应研究分析%The Research and Analysis for the Temperature Rise of the Detonation Wave

    Institute of Scientific and Technical Information of China (English)

    匡志平; 袁训康

    2012-01-01

    在爆轰波CJ理论模型和热力学相关理论的基础上,简明扼要地介绍了爆炸冲击波引起的温度升高量值相关公式的推导过程,然后利用显式动力有限元分析软件AUTODYN对TNT炸药在空气中爆炸引起的温升效应进行了有限元模拟.计算方法选用欧拉方法,并将一维楔形单元计算结果映射到三维模型,计算过程中实时观测边界点速度、动量守恒及能量守恒曲线,以在保证温度计算精度的基础上缩短计算时间.模拟结果与相关TNT炸药爆炸温度升高红外测量试验结果进行了定性的对比分析,得出温升效应迟于冲击波超压影响,并且其影响范围较超压影响偏小的结论.%The formulas of the temperature-rise caused by the detonation wave were obtained basing on the CJ model and the thermodynamic theory. Then the temperature-rise was simulated by the AUTODYN, in which the Euler method was used to solve the ID wedge element, and the reslut was reflected to the 3D model. In the computing process, the speed of boundary point, the conversation of energy and x-dimension momentum were recorded to ensure the accuracy of results and short the computing time. The simulation results of TNT explosion using AUTODYN were compared with ones that were obtained from the infrared measurement test. The results show that the temperature-rise spreaded slower than the hyperpressure and had smaller spread area.

  14. TEMPERATURE DISTRIBUTION MONITORING AND ANALYSES AT DIFFERENT HEATING CONTROL PRINCIPLES

    DEFF Research Database (Denmark)

    Simone, Angela; Rode, Carsten; Olesen, Bjarne W.

    2010-01-01

    In the last decades significant efforts have been made to reduce energy use in buildings. Heating, cooling and ventilation systems are responsible for 30-40% of the energy consumption in buildings. Although they are evaluated based on the energy performance they should guarantee the desired thermal...... control sensor which was already installed. The room was heated by means of electrical radiators, which should be able to control the indoor environment to guarantee the desired thermal conditions for the occupants and to supply heat according to desired load patterns. Five series of experiments were done...... under different control strategies of the heating system (Pseudo Random Binary Sequence signal controlling all the heaters (PRBS) or thermostatic control of the heaters (THERM)). A comparison of the measured temperatures within the room, for the five series of experiments, shows a better correlation...

  15. On-Line Life Monitoring Technique for Tube Bundles of Boiler High-Temperature Heating Surface

    Institute of Scientific and Technical Information of China (English)

    Yang Dong; Wang Zhongyuan

    2005-01-01

    High-temperature heating surface such as superheater and reheater of large-sized utility boiler all experiences a relatively severe working conditions. The failure of boiler tubes will directly impact the safe and economic operation of boiler. An on-line life monitoring model of high-temperature heating surface was set up according to the well-known L-M formula of the creep damages. The tube wall metal temperature and working stress was measured by on-line monitoring, and with this model, the real-time calculation of the life expenditure of the heating surface tube bundles were realized. Based on the technique the on-line life monitoring and management system of high-temperature heating surface was developed for a 300 MW utility boiler. An effective device was thus suggested for the implementation of the safe operation and the condition-based maintenance of utility boilers.

  16. The use of thermal imaging to monitoring skin temperature during cryotherapy: A systematic review

    Science.gov (United States)

    Matos, Filipe; Neves, Eduardo Borba; Norte, Marco; Rosa, Claudio; Reis, Victor Machado; Vilaça-Alves, José

    2015-11-01

    Cryotherapy has been applied on clinical injuries and as a method for exercise recovery. It is aimed to reduce edema, nervous conduction velocity, and tissue metabolism, as well as to accelerate the recovery process of the muscle injury induced by exercise. Objective: This review aim to investigate the applicability of thermal imaging as a method for monitoring skin temperature during cryotherapy. Method: Search the Web of Science database using the terms "Cryotherapy", "Thermography", "Thermal Image" and "Cooling". Results: Nineteen studies met the inclusion criteria and pass the PEDro scale quality evaluation. Evidence support the use of thermal imaging as a method for monitoring the skin temperature during cryotherapy, and it is superior to other contact methods and subjective methods of assessing skin temperature. Conclusion: Thermography seems to be an efficient, trustworthy and secure method in order to monitoring skin temperature during cryotherapy application. Evidence supports the use of thermography in detriment of contact methods as well as other subjective ones.

  17. The design of multi temperature and humidity monitoring system for incubator

    Science.gov (United States)

    Yu, Junyu; Xu, Peng; Peng, Zitao; Qiang, Haonan; Shen, Xiaoyan

    2017-01-01

    Currently, there is only one monitor of the temperature and humidity in an incubator, which may cause inaccurate or unreliable data, and even endanger the life safety of the baby. In order to solve this problem,we designed a multi-point temperature and humidity monitoring system for incubators. The system uses the STC12C5A60S2 microcontrollers as the sender core chip which is connected to four AM2321 temperature and humidity sensors. We select STM32F103ZET6 core development board as the receiving end,cooperating with Zigbee wireless transmitting and receiving module to realize data acquisition and transmission. This design can realize remote real-time observation data on the computer by communicating with PC via Ethernet. Prototype tests show that the system can effectively collect and display the information of temperature and humidity of multiple incubators at the same time and there are four monitors in each incubator.

  18. BSI插头温升不确定度的分析和计算%Analysis and Calculation on Measurement Uncertainty of Temperature Rise of BSI Plug

    Institute of Scientific and Technical Information of China (English)

    刘波; 李忠耀

    2013-01-01

    测量不确定度是与测量结果密切联系的,是表明测量结果分散性的一个参数。在测量结果的完整表示中应该包括测量不确定度。本文以英标插头温升测试为例介绍了测量不确定度的分析和计算。%Uncertainty of measurement is in close relationship with the test result, and is the parameter of measurement results of dispersion. The complete test result shall include uncertainty of measurement. This paper introduces the measurement uncertainty analysis and calculation of temperature rise test of British plug.

  19. The impacts of a plume-rise scheme on earth system modeling: climatological effects of biomass aerosols on the surface temperature and energy budget of South America

    Science.gov (United States)

    de Menezes Neto, Otacilio L.; Coutinho, Mariane M.; Marengo, José A.; Capistrano, Vinícius B.

    2017-08-01

    Seasonal forest fires in the Amazon are the largest source of pollutants in South America. The impacts of aerosols due to biomass burning on the temperature and energy balance in South America are investigated using climate simulations from 1979 to 2005 using HadGEM2-ES, which includes the hot plume-rise scheme (HPR) developed by Freitas et al. (Estudos Avançados 19:167-185, 2005, Atmos Chem Phys 7:3385-3398, 2007, Atmos Chem Phys 10:585-594, 2010). The HPR scheme is used to estimate the vertical heights of biomass-burning aerosols based on the thermodynamic characteristics of the underlying model. Three experiments are performed. The first experiment includes the HPR scheme, the second experiment turns off the HPR scheme and the effects of biomass aerosols (BIOMASS OFF), and the final experiment assumes that all biomass aerosols are released at the surface (HPR OFF). Relative to the BIOMASS OFF experiment, the temperature decreased in the HPR experiment as the net shortwave radiation at the surface decreased in a region with a large amount of biomass aerosols. When comparing the HPR and HPR OFF experiments, the release of biomass aerosols higher on the atmosphere impacts on temperature and the energy budget because the aerosols were transported by strong winds in the upper atmospheric levels.

  20. Design and Evaluation of a Pressure and Temperature Monitoring System for Pressure Ulcer Prevention

    Directory of Open Access Journals (Sweden)

    Farve Daneshvar Fard

    2014-08-01

    Full Text Available Introduction Pressure ulcers are tissue damages resulting from blood flow restriction, which occurs when the tissue is exposed to high pressure for a long period of time. These painful sores are common in patients and elderly, who spend extended periods of time in bed or wheelchair. In this study, a continuous pressure and temperature monitoring system was developed for pressure ulcer prevention. Materials and Methods The monitoring system consists of 64 pressure and 64 temperature sensors on a 40×50 cm2 sheet. Pressure and temperature data and the corresponding maps were displayed on a computer in real-time. Risk assessment could be performed by monitoring and recording absolute pressure and temperature values, as well as deviations over time. Furthermore, a posture detection procedure was proposed for sitting posture identification. Information about the patient’s movement history may help caregivers make informed decisions about the patient’s repositioning and ulcer prevention strategies. Results Steady temporal behaviour of the designed system and repeatability of the measurements were evaluated using several particular tests. The results illustrated that the system could be utilized for continuous monitoring of interface pressure and temperature for pressure ulcer prevention. Furthermore, the proposed method for detecting sitting posture was verified using a statistical analysis. Conclusion A continuous time pressure and temperature monitoring system was presented in this study. This system may be suited for pressure ulcer prevention given its feasibility for simultaneous monitoring of pressure and temperature and alarming options. Furthermore, a method for detecting different sitting postures was proposed and verified. Pressure ulcers in wheelchair-bound patients may be prevented using this sitting posture detection method.

  1. Precipitation Mediates the Response of Carbon Cycle to Rising Temperature in the Mid-to-High Latitudes of the Northern Hemisphere.

    Directory of Open Access Journals (Sweden)

    Xin Lin

    Full Text Available Over the past decades, rising air temperature has been accompanied by changes in precipitation. Despite relatively robust literature on the temperature sensitivity of carbon cycle at continental to global scales, less is known about the way this sensitivity is affected by precipitation. In this study we investigate how precipitation mediates the response of the carbon cycle to warming over the mid-to-high latitudes in the Northern Hemisphere (north of 30 °N. Based on atmospheric CO2 observations at Point Barrow (BRW in Alaska, satellite-derived NDVI (a proxy of vegetation productivity, and temperature and precipitation data, we analyzed the responses of carbon cycle to temperature change in wet and dry years (with precipitation above or below the multiyear average. The results suggest that, over the past three decades, the net seasonal atmospheric CO2 changes at BRW were significantly correlated with temperature in spring and autumn, yet only weakly correlated with temperature and precipitation during the growing season. We further found that responses of the net CO2 changes to warming in spring and autumn vary with precipitation levels, with the absolute temperature sensitivity in wet years roughly twice that in dry years. The analyses of NDVI and climate data also identify higher sensitivity of vegetation growth to warming in wet years for the growing season, spring and summer. The different temperature sensitivities in wet versus dry years probably result from differences in soil moisture and/or nutrient availability, which may enhance (inhibit the responsiveness of carbon assimilation and/or decomposition to warming under high (low precipitation levels. The precipitation-mediated response of the terrestrial carbon cycle to warming reported here emphasizes the important role of precipitation in assessing the temporal variations of carbon budgets in the past as well as in the future. More efforts are required to reduce uncertainty in future

  2. Precipitation Mediates the Response of Carbon Cycle to Rising Temperature in the Mid-to-High Latitudes of the Northern Hemisphere.

    Science.gov (United States)

    Lin, Xin; Li, Junsheng; Luo, Jianwu; Wu, Xiaopu; Tian, Yu; Wang, Wei

    2015-01-01

    Over the past decades, rising air temperature has been accompanied by changes in precipitation. Despite relatively robust literature on the temperature sensitivity of carbon cycle at continental to global scales, less is known about the way this sensitivity is affected by precipitation. In this study we investigate how precipitation mediates the response of the carbon cycle to warming over the mid-to-high latitudes in the Northern Hemisphere (north of 30 °N). Based on atmospheric CO2 observations at Point Barrow (BRW) in Alaska, satellite-derived NDVI (a proxy of vegetation productivity), and temperature and precipitation data, we analyzed the responses of carbon cycle to temperature change in wet and dry years (with precipitation above or below the multiyear average). The results suggest that, over the past three decades, the net seasonal atmospheric CO2 changes at BRW were significantly correlated with temperature in spring and autumn, yet only weakly correlated with temperature and precipitation during the growing season. We further found that responses of the net CO2 changes to warming in spring and autumn vary with precipitation levels, with the absolute temperature sensitivity in wet years roughly twice that in dry years. The analyses of NDVI and climate data also identify higher sensitivity of vegetation growth to warming in wet years for the growing season, spring and summer. The different temperature sensitivities in wet versus dry years probably result from differences in soil moisture and/or nutrient availability, which may enhance (inhibit) the responsiveness of carbon assimilation and/or decomposition to warming under high (low) precipitation levels. The precipitation-mediated response of the terrestrial carbon cycle to warming reported here emphasizes the important role of precipitation in assessing the temporal variations of carbon budgets in the past as well as in the future. More efforts are required to reduce uncertainty in future precipitation

  3. Impedance monitoring at tendon-anchorage via mountable PZT interface and temperature-effect compensation

    Science.gov (United States)

    Huynh, Thanh-Canh; Nguyen, Tuan-Cuong; Choi, Sang-Hoon; Kim, Jeong-Tae

    2016-04-01

    In this study, the pre-stress force in pre-stressed concrete (PSC) girders is monitored via mountable PZT interface under varying temperature. Firstly, an impedance-based technique using mountable PZT interface is proposed for pre-stress-loss monitoring in tendon-anchorage systems. A cross correlation-based temperature-effect compensation algorithm using an effective frequency shift (EFS) of impedance signatures is visited. Secondly, lab-scale experiments are performed on a PSC girder instrumented with a mountable PZT interface at tendon-anchorage. A series of temperature variation and pre-stress-loss events are simulated for the lab-scale PSC girder. Thirdly, the feasibility of the mountable PZT interface for pre-stress-loss monitoring in tendon-anchorage is experimentally verified under constant temperature conditions. Finally, the PZT interface device is examined for pre-stress-loss monitoring under temperature changes to validate its applicability. The temperature effect on impedance signatures is compensated by minimizing cross-correlation deviation between impedance patterns of the mountable PZT interface.

  4. A Study on the Temperature Correlation of B-mode Ultrasonic Image Gray for Noninvasive Temperature Monitoring in Hyperthermia

    Institute of Scientific and Technical Information of China (English)

    WU Shui-cai; Ren Xin-ying; Bai Yan-ping; Zeng Yi

    2006-01-01

    This paper deals with the temperature correlation of gray scale of Bmode ultrasound image from heated tissue. In this study, many in-vitro fresh pig livers are heated in a temperature range from 28℃ to 45℃, from which a series of B-mode ultrasonic images of livers were obtained. The gray-value is evaluated from the ultrasound images respectively. A correlation of the mean gray value of the selected regions (12×12 pixels) in B-mode ultrasonic images of liver and its temperature was pointed out. And the experiment results agreed the evaluation well. And it is possible to monitor the tissue temperature changing in hyperthermia using this correlation.

  5. Development of On-Line Monitoring Systems for High Temperature Components in Power Plants

    Directory of Open Access Journals (Sweden)

    Hongcai Zhang

    2013-11-01

    Full Text Available To accurately detect deformation and extend the component life beyond the original design limits, structural safety monitoring techniques have attracted considerable attention in the power and process industries for decades. In this paper an on-line monitoring system for high temperature pipes in a power plant is developed. The extension-based sensing devices are amounted on straight pipes, T-Joints and elbows of a main steam pipeline. During on-site monitoring for more than two years, most of the sensors worked reliably and steadily. However, the direct strain gauge could not work for long periods because of the high temperature environment. Moreover, it is found that the installation and connection of the extensometers can have a significant influence on the measurement results. The on-line monitoring system has a good alarming function which is demonstrated by detecting a steam leakage of the header.

  6. Development of on-line monitoring systems for high temperature components in power plants.

    Science.gov (United States)

    Zhang, Hongcai; Jia, Jiuhong; Wang, Ning; Hu, Xiaoyin; Tu, Shan-Tung; Zhou, Shaoping; Wang, Zhengdong

    2013-11-13

    To accurately detect deformation and extend the component life beyond the original design limits, structural safety monitoring techniques have attracted considerable attention in the power and process industries for decades. In this paper an on-line monitoring system for high temperature pipes in a power plant is developed. The extension-based sensing devices are amounted on straight pipes, T-Joints and elbows of a main steam pipeline. During on-site monitoring for more than two years, most of the sensors worked reliably and steadily. However, the direct strain gauge could not work for long periods because of the high temperature environment. Moreover, it is found that the installation and connection of the extensometers can have a significant influence on the measurement results. The on-line monitoring system has a good alarming function which is demonstrated by detecting a steam leakage of the header.

  7. Development of On-Line Monitoring Systems for High Temperature Components in Power Plants

    Science.gov (United States)

    Zhang, Hongcai; Jia, Jiuhong; Wang, Ning; Hu, Xiaoyin; Tu, Shan-Tung; Zhou, Shaoping; Wang, Zhengdong

    2013-01-01

    To accurately detect deformation and extend the component life beyond the original design limits, structural safety monitoring techniques have attracted considerable attention in the power and process industries for decades. In this paper an on-line monitoring system for high temperature pipes in a power plant is developed. The extension-based sensing devices are amounted on straight pipes, T-Joints and elbows of a main steam pipeline. During on-site monitoring for more than two years, most of the sensors worked reliably and steadily. However, the direct strain gauge could not work for long periods because of the high temperature environment. Moreover, it is found that the installation and connection of the extensometers can have a significant influence on the measurement results. The on-line monitoring system has a good alarming function which is demonstrated by detecting a steam leakage of the header. PMID:24233026

  8. High Temperatures Health Monitoring of the Condensed Water Height in Steam Pipe Systems

    Science.gov (United States)

    Lih, Shyh-Shiuh; Bar-Cohen, Yoseph; Lee, Hyeong Jae; Badescu, Mircea; Bao, Xiaoqi; Sherrit, Stewart; Takano, Nobuyuki; Ostlund, Patrick; Blosiu, Julian

    2013-01-01

    Ultrasonic probes were designed, fabricated and tested for high temperature health monitoring system. The goal of this work was to develop the health monitoring system that can determine the height level of the condensed water through the pipe wall at high temperature up to 250 deg while accounting for the effects of surface perturbation. Among different ultrasonic probe designs, 2.25 MHz probes with air backed configuration provide satisfactory results in terms of sensitivity, receiving reflections from the target through the pipe wall. A series of tests were performed using the air-backed probes under irregular conditions, such as surface perturbation and surface disturbance at elevated temperature, to qualify the developed ultrasonic system. The results demonstrate that the fabricated air-backed probes combined with advanced signal processing techniques offer the capability of health monitoring of steam pipe under various operating conditions.

  9. High Temperatures Health Monitoring of the Condensed Water Height in Steam Pipe Systems

    Science.gov (United States)

    Lih, Shyh-Shiuh; Bar-Cohen, Yoseph; Lee, Hyeong Jae; Badescu, Mircea; Bao, Xiaoqi; Sherrit, Stewart; Takano, Nobuyuki; Ostlund, Patrick; Blosiu, Julian

    2013-01-01

    Ultrasonic probes were designed, fabricated and tested for high temperature health monitoring system. The goal of this work was to develop the health monitoring system that can determine the height level of the condensed water through the pipe wall at high temperature up to 250 deg while accounting for the effects of surface perturbation. Among different ultrasonic probe designs, 2.25 MHz probes with air backed configuration provide satisfactory results in terms of sensitivity, receiving reflections from the target through the pipe wall. A series of tests were performed using the air-backed probes under irregular conditions, such as surface perturbation and surface disturbance at elevated temperature, to qualify the developed ultrasonic system. The results demonstrate that the fabricated air-backed probes combined with advanced signal processing techniques offer the capability of health monitoring of steam pipe under various operating conditions.

  10. Ethernet Based Remote Monitoring And Control Of Temperature By Using Rabbit Processor

    Directory of Open Access Journals (Sweden)

    B.V.S.GOUD

    2012-09-01

    Full Text Available Networking is a major component of the processes and control instrumentation systems as the network’s architecture solves many of the Industrial automation problems. There is a great deal of benefits in the process of industrial parameters to adopt the Ethernet control system. Hence an attempt has been made to develop an Ethernet based remote monitoring and control of temperature. In the present work the experimental result shows that remote monitoring and control system (RMACS over the Ethernet.

  11. In situ monitoring of internal surface temperature of the historic building envelope

    Science.gov (United States)

    Labovská, Veronika; Katunský, Dušan

    2016-06-01

    Historical building envelope is characterized by a large accumulation that impact is mainly by changing the inner surface temperature over time. The minimum value of the inner surface temperature is set Code requirements. In the case of thermal technology assessment of building envelope contemplates a steady state external temperature and internal environment, thereby neglecting the heat accumulation capacity of building envelopes. Monitoring surface temperature in real terms in situ shows the real behavior of the building envelope close to reality. The recorded data can be used to create a numerical model for the simulation.

  12. Using Wireless Sensor Networks to Achieve Intelligent Monitoring for High-Temperature Gas-Cooled Reactor

    Directory of Open Access Journals (Sweden)

    Jianghai Li

    2017-01-01

    Full Text Available High-temperature gas-cooled reactors (HTGR can incorporate wireless sensor network (WSN technology to improve safety and economic competitiveness. WSN has great potential in monitoring the equipment and processes within nuclear power plants (NPPs. This technology not only reduces the cost of regular monitoring but also enables intelligent monitoring. In intelligent monitoring, large sets of heterogeneous data collected by the WSN can be used to optimize the operation and maintenance of the HTGR. In this paper, WSN-based intelligent monitoring schemes that are specific for applications of HTGR are proposed. Three major concerns regarding wireless technology in HTGR are addressed: wireless devices interference, cybersecurity of wireless networks, and wireless standards selected for wireless platform. To process nonlinear and non-Gaussian data obtained by WSN for fault diagnosis, novel algorithms combining Kernel Entropy Component Analysis (KECA and support vector machine (SVM are developed.

  13. The high-dose and high-temperature monitors of reactor irradiation based on insulators

    Directory of Open Access Journals (Sweden)

    V.A. Stepanov

    2015-10-01

    It has been experimentally shown that the use of Al2O3 single crystals and BN ceramics provides means of monitoring the temperature of irradiation from 370 to 1900 K. The temperature is derived from measurements of the optical absorption or X-ray diffraction line shifts after post-radiation annealing of the monitors. We discuss the applicability of (a the optical absorption and F-center luminescence spectroscopies of irradiated Al2O3 single crystals for gamma dose evaluation and (b the isotopic analysis of irradiated BN ceramics for neutron dose evaluation.

  14. INTELLIGENT MONITORING SYSTEM WITH HIGH TEMPERATURE DISTRIBUTED FIBEROPTIC SENSOR FOR POWER PLANT COMBUSTION PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Kwang Y. Lee; Stuart S. Yin; Andre Boheman

    2004-12-26

    The objective of the proposed work is to develop an intelligent distributed fiber optical sensor system for real-time monitoring of high temperature in a boiler furnace in power plants. Of particular interest is the estimation of spatial and temporal distributions of high temperatures within a boiler furnace, which will be essential in assessing and controlling the mechanisms that form and remove pollutants at the source, such as NOx. The basic approach in developing the proposed sensor system is three fold: (1) development of high temperature distributed fiber optical sensor capable of measuring temperatures greater than 2000 C degree with spatial resolution of less than 1 cm; (2) development of distributed parameter system (DPS) models to map the three-dimensional (3D) temperature distribution for the furnace; and (3) development of an intelligent monitoring system for real-time monitoring of the 3D boiler temperature distribution. Under Task 1, improvement was made on the performance of in-fiber grating fabricated in single crystal sapphire fibers, test was performed on the grating performance of single crystal sapphire fiber with new fabrication methods, and the fabricated grating was applied to high temperature sensor. Under Task 2, models obtained from 3-D modeling of the Demonstration Boiler were used to study relationships between temperature and NOx, as the multi-dimensionality of such systems are most comparable with real-life boiler systems. Studies show that in boiler systems with no swirl, the distributed temperature sensor may provide information sufficient to predict trends of NOx at the boiler exit. Under Task 3, we investigate a mathematical approach to extrapolation of the temperature distribution within a power plant boiler facility, using a combination of a modified neural network architecture and semigroup theory. The 3D temperature data is furnished by the Penn State Energy Institute using FLUENT. Given a set of empirical data with no analytic

  15. V/X接线牵引变压器的温升特性%Temperature Rise Characteristics of V/X Wiring Traction Transformer

    Institute of Scientific and Technical Information of China (English)

    韦国; 闵英杰; 周利军; 吕玮; 吴广宁

    2011-01-01

    According to the unique connection mode, electrical characteristics and load characteristics, the internal thermal circuit of V/X wiring traction transformer was established based on the thermoelectricity analogy principle and the thermal transfer process in transformer.Referring to the circuit theory, the differential equation for calculating temperature rise was deduced.According to the relationships among the thermal characteristic parameters, the calculation model was constructed for the internal temperature rise of V/X wiring traction transformer.The process of an electric locomotive running in and out the power supply section of a V/X wiring traction transformer was taken for example, the temperature curves of the top layer oil and the winding hot-spot were simulated.Through analyzing the influencing factors of winding insulation life and based on the characteristics of traction load, a calculation method for insulation life loss applicable to V/X wiring traction transformer was proposed.%针对V/X接线牵引变压器独特的接线方式、电气特性和负载特性,基于热电类比原理和变压器内部热传递过程建立V/X接线牵引变压器内部热路模型.参照电路理论推导温升计算微分方程,并根据热特征参量问的相互关系,建立V/X接线牵引变压器内部温升计算模型.以1台机车从驶入到驶出某V/X接线牵引变压器供电区间的过程为例,仿真计算顶层油温度曲线和绕组热点温度曲线.分析绕组绝缘寿命的影响因素,并根据牵引负荷的特点,提出适用于V/X接线牵引变压器的绝缘寿命损失计算方法.

  16. The Utility of Continuous Temperature Monitoring of Refrigerators in a Long-Term Care Facility.

    Science.gov (United States)

    Worz, Chad; Postolski, Josh; Williams, Kevin

    2017-04-01

    It is the current practice in most long-term care facilities to use manual logs when documenting refrigerator temperatures. This process is commonly associated with poor or fabricated compliance, little oversight, and documentation errors, both because of overt omissions and unsubstantiated values. It is also well-established that medication storage requirements are mandated by the Centers for Medicare & Medicaid Services (CMS). This analysis demonstrates the potential risk of poor cold-chain management of medications and establishes the possible utility of digitally recorded continuous temperature monitoring over manual logs. This small case-oriented review of a large nursing facility's storage process attempts to expose the risk associated with improper medication storage. The primary outcome of the study was to determine if a difference existed between temperature logs completed manually compared with those done with a continuous monitor. American Thermal Instruments (ATI) thermometers were placed into each of the existing refrigerators in a 147-bed nursing facility. Through a mobile app, the data recorded in each refrigerator were compiled into daily reports. Data were collected from a total of 12 refrigerators, 3 of which were medication refrigerators. Logging intervals were done over a 263-minute period and compiled the lowest recorded temperature, highest recorded temperature, and the average temperature for each refrigerator. In addition, reports showing the real-time results were compiled using the ATI DataNow service. All of the refrigerators analyzed had highest temperature recorded readings exceeding the maximum allowable temperature (50°F for refrigerator). All of the refrigerators had lowest temperature recorded readings below the minimum allowable temperature (32°F for refrigerators). All of the refrigerators also reported average temperatures outside of the allowable temperature range. The results necessitated the replacement of a refrigerator and

  17. Laser-induced reversion of δ′ precipitates in an Al-Li alloy: Study on temperature rise in pulsed laser atom probe

    KAUST Repository

    Khushaim, Muna Saeed Amin

    2016-06-14

    The influence of tuning the laser pulse energy during the analyses on the resulting microstructure in a specimen utilizing an ultra-fast laser assisted atom probe was demonstrated by a case study of a binary Al-Li alloy. The decomposition parameters, such as the size, number density, volume fraction, and composition of δ\\' precipitates, were carefully monitored after each analysis. A simple model was employed to estimate the corresponding specimen temperature for each value of the laser energy. The results indicated that the corresponding temperatures for the laser pulse energy in the range of 10 to 80 pJ are located inside the miscibility gap of the binary Al-Li phase diagram and fall into the metastable equilibrium field. In addition, the corresponding temperature for a laser pulse energy of 100 pJ was in fairly good agreement with reported range of δ\\' solvus temperature, suggesting a result of reversion upon heating due to laser pulsing. © 2016 Wiley Periodicals, Inc.

  18. Laser-induced reversion of δ' precipitates in an Al-Li alloy: Study on temperature rise in pulsed laser atom probe.

    Science.gov (United States)

    Khushaim, Muna; Gemma, Ryota; Al-Kassab, Talaat

    2016-08-01

    The influence of tuning the laser pulse energy during the analyses on the resulting microstructure in a specimen utilizing an ultra-fast laser assisted atom probe was demonstrated by a case study of a binary Al-Li alloy. The decomposition parameters, such as the size, number density, volume fraction, and composition of δ' precipitates, were carefully monitored after each analysis. A simple model was employed to estimate the corresponding specimen temperature for each value of the laser energy. The results indicated that the corresponding temperatures for the laser pulse energy in the range of 10 to 80 pJ are located inside the miscibility gap of the binary Al-Li phase diagram and fall into the metastable equilibrium field. In addition, the corresponding temperature for a laser pulse energy of 100 pJ was in fairly good agreement with reported range of  δ' solvus temperature, suggesting a result of reversion upon heating due to laser pulsing. Microsc. Res. Tech. 79:727-737, 2016. © 2016 Wiley Periodicals, Inc.

  19. Research on Raman-OTDR sensing based Optical Phase Conductor (OPPC) temperature monitoring and the section temperature field

    Science.gov (United States)

    Tong, Jie; Yang, Delong; Gao, Qiang; Lei, Yuqing; Chen, Xi

    2013-12-01

    OPPC (Optical Phase Conductor) is a particular type of electric optical cables which composite the fiber unit into the structure of traditional phase lines. The special design fully leverages the power system's own line resources and achieves dual functions of power transmission and communication simultaneously, particularly in the power distribution networks. Furthermore, Raman optical time domain reflectometry (ROTDR) based distributed temperature sensing (DTS) system integrates with OPPC, that is to plant a single or several multimode optical fibers into the fiber unit of OPPC, which can realize the remote, online, continuous measure and location for the conductor's temperature. This kind of monitoring system has many advantages such as anti-electromagnetic interference, information sensing and data transmission unification, long life-cycle, light weight, long transmission distance and non-power supply on site. But nonetheless, there is still a problem has to been resolved, that is whether the temperature of DTS fiber's position represents exactly the one of OPPC's. This article takes the section temperature field of 400/50 OPPC as the research object. Based on the temperature data measured by the Raman distributed temperature optical fiber sensor, a large number of finite element analysis and experiments are developed. The DTS measurement results under different actual working conditions of current-carrying capacity, wind velocity and environment temperature are quantitative analyzed. The changing rules and the relationships among the measurement results of DTS, the maximum and the surface temperatures of OPPC, and the results of numerical simulations and experiments have been proposed and demonstrated. On the whole, the main contributions of this paper are: (1) According to the structure of 400/50 OPPC, the Fluid-Structure Interaction (FSI) methodology and the steady section temperature field model are established which can reveal the OPPC's temperature

  20. Criteria for temperature monitoring in ferrocyanide waste tanks at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, K.D.; Dukelow, G.T.

    1994-09-01

    This report is relevant to the twenty underground waste storage tanks at the Hanford Site that have been identified as potentially containing a significant amount of ferrocyanide compounds. Tanks believed to contain > 1,000 gram moles of ferrocyanide have been classified as Watch List tanks. This report addresses temperature monitoring criteria for the Ferrocyanide Watch List tanks. These criteria must comply with governing regulations to ensure that safe continued storage of the tank wastes is not jeopardized. Temperature monitoring is defined in this report as the routine as the routine continuous measurement of a waste tank temperature with an output that is tied to an actively interrogated information collection system that includes an automated warning of temperature increases beyond the established limits.

  1. 内置式减振镗杆温升的分析与研究%Research on the Temperature Rise of Built-in Damping Boring Bar

    Institute of Scientific and Technical Information of China (English)

    肖平; 冯烨; 曾海波

    2011-01-01

    In the deep hole cutting process chatter of boring bar seriously affects the quality of hole.However, suppression of vibration has very big relations with working temperature of boring bar. This article mainly studied on the performance of vibration isolation after temperature rise in work. Based on the structural design and simplified three-dimensional model of boring bar, according to the first law of thermodynamics, heat generated by the vibration of built-in shock absorber could be analyzed. On the side steady heat analysis and transient thermal analysis of boring bars was analyzed by use of finite element analysis software ANSYS Workbench, finally it concluded the results of vibration absorption and temperature changes of damping liquid.%深孔加工中镗杆的颤振严重影响孔的加工质量,而振动的抑制与镗杆的内部工作温度有很大关系.文章主要研究镗杆在工作中,温度升高以后对镗杆减振性能的影响.通过对镗杆的结构设计和三维模型的简化,根据热力学第一定律,对镗杆内置减振器振动产生的热量进行分析,运用有限元分析软件ANSYS Workbench,对镗杆进行稳态热分析和瞬态热分析,最后得出镗杆减振效果和阻尼液的温度变化情况.

  2. Tunable Diode Laser Sensors to Monitor Temperature and Gas Composition in High-Temperature Coal Gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Ronald [Stanford Univ., CA (United States); Whitty, Kevin [Univ. of Utah, Salt Lake City, UT (United States)

    2014-12-01

    The integrated gasification combined cycle (IGCC) when combined with carbon capture and storage can be one of the cleanest methods of extracting energy from coal. Control of coal and biomass gasification processes to accommodate the changing character of input-fuel streams is required for practical implementation of integrated gasification combined-cycle (IGCC) technologies. Therefore a fast time-response sensor is needed for real-time monitoring of the composition and ideally the heating value of the synthesis gas (here called syngas) as it exits the gasifier. The goal of this project was the design, construction, and demonstration an in situ laserabsorption sensor to monitor multiple species in the syngas output from practical-scale coal gasifiers. This project investigated the hypothesis of using laser absorption sensing in particulateladen syngas. Absorption transitions were selected with design rules to optimize signal strength while minimizing interference from other species. Successful in situ measurements in the dusty, high-pressure syngas flow were enabled by Stanford’s normalized and scanned wavelength modulation strategy. A prototype sensor for CO, CH4, CO2, and H2O was refined with experiments conducted in the laboratory at Stanford University, a pilot-scale at the University of Utah, and an engineering-scale gasifier at DoE’s National Center for Carbon Capture with the demonstration of a prototype sensor with technical readiness level 6 in the 2014 measurement campaign.

  3. Investigations into un-mitigated troposphere and multipath effects on kinematic GPS for 3-dimensional monitoring of high rise buiding movements

    OpenAIRE

    2006-01-01

    Monitoring is a process of observing any changes on a monitored subject. Deformation monitoring is a process which consists of four stages: specification, design, implementation and analysis [Kennie et al., 1990], with the structure being monitored on a daily, hourly or continuous basis for any changes in position, size and shape. With the Global Positioning System (GPS), a 24-hour all weather monitoring system can be established. However, for kinematic GPS, un-mitigated troposphere and multi...

  4. 最近150年气温升高的新认识%New Opinion about Temperature Rising for the Recent 150 Years

    Institute of Scientific and Technical Information of China (English)

    韩艳; 赵国永; 王义民; 潘湘龙; 江蕾蕾; 向梅

    2016-01-01

    A large number of evidence obtained from instrumental and geologic data support the conclusion that temperature has been rising for recent 150 years .By comparing the temporal variations between climate change and insolation variation at different time scales ,the results showed that climate change on the earth was controlled by variation of the solar radiation .According to the estimated solar radiation derived from the earth orbit parameters ,the insolation would be decreased from present time to the future 10ka years ,thus indicating that the climate will shift to cold gradually .In the past 150 years ,the temperature rising has been interpreted in two factors ,one was human anthropogenic activity and the other is nature forcing .IPCC pointed to the fact that the human activity exerted the dominant influence on recent warming .IPCC overstated the anthropogenic effct on the global warming .Seen from a longer time scale ,the recent 150 years warming is transient ,which can be considered as a subprime fluctuation under the background of future colder trend .%气象观测数据和地质记录数据显示最近150年气温呈升高趋势。研究了不同时间尺度气候变化与太阳辐射量变化之间的关系。结果表明:太阳辐射量变化是控制地球上气候变化的重要因素。根据地球轨道参数估算出来太阳辐射量变化,现今及未来约1万年太阳辐射量具有逐渐减少趋势,意味着气候逐渐变冷。最近150年气温升高包括人为因素和自然因素,IPCC(Intergovernmental Panel on Climate Change)夸大了人类活动导致全球变暖的结果。在万年时间尺度上,最近150年气温升高可以看作是逐渐变冷大背景下的次级波动,气候变暖是短暂的过程。

  5. CT-based temperature monitoring during hepatic RF ablation : Feasibility in an animal model

    NARCIS (Netherlands)

    Bruners, Philipp; Pandeya, Ganga D.; Levit, Elena; Roesch, Eva; Penzkofer, Tobias; Isfort, Peter; Schmidt, Bernhardt; Greuter, Marcel J. W.; Oudkerk, Matthijs; Schmitz-Rode, Thomas; Kuhl, Christiane K.; Mahnken, Andreas H.

    2012-01-01

    Purpose: The aim of this paper was to establish non-invasive CT-based temperature monitoring during hepatic radiofrequency (RF) ablation in an ex vivo porcine model followed by transfer of the technique into a feasibility in vivo experiment. Materials and methods: Bipolar RF ablations were performed

  6. A microprocessor based, multi-channel low-temperature monitoring system

    NARCIS (Netherlands)

    Kuiper, B.W.; Dijk, van M.H.H.

    1982-01-01

    A multi-channel low-temperature monitoring system and its design considerations are presented. The system is microprocessor based and specially designed to interface thermoresistive sensors in cryogenic experiments. The system can be easily expanded to accept any type of physical transducer and to p

  7. Best practices for continuous monitoring of temperature and flow in wadeable streams

    Science.gov (United States)

    Jen Stamp; Anna Hamilton; Michelle Craddock; Laila Parker; Allison H. Roy; Daniel J. Isaak; Zach Holden; Margaret Passmore; Britta G. Bierwagen

    2014-01-01

    The United States Environmental Protection Agency (U.S. EPA) is working with its regional offices, states, tribes, river basin commissions and other entities to establish Regional Monitoring Networks (RMNs) for freshwater wadeable streams. To the extent possible, uninterrupted, biological, temperature and hydrologic data will be collected on an ongoing basis at RMN...

  8. Intelligent Monitoring System With High Temperature Distributed Fiberoptic Sensor For Power Plant Combustion Processes

    Energy Technology Data Exchange (ETDEWEB)

    Kwang Y. Lee; Stuart S. Yin; Andre Boheman

    2005-12-26

    The objective of the proposed work is to develop an intelligent distributed fiber optical sensor system for real-time monitoring of high temperature in a boiler furnace in power plants. Of particular interest is the estimation of spatial and temporal distributions of high temperatures within a boiler furnace, which will be essential in assessing and controlling the mechanisms that form and remove pollutants at the source, such as NOx. The basic approach in developing the proposed sensor system is three fold: (1) development of high temperature distributed fiber optical sensor capable of measuring temperatures greater than 2000 C degree with spatial resolution of less than 1 cm; (2) development of distributed parameter system (DPS) models to map the three-dimensional (3D) temperature distribution for the furnace; and (3) development of an intelligent monitoring system for real-time monitoring of the 3D boiler temperature distribution. Under Task 1, we set up a dedicated high power, ultrafast laser system for fabricating in-fiber gratings in harsh environment optical fibers, successfully fabricated gratings in single crystal sapphire fibers by the high power laser system, and developed highly sensitive long period gratings (lpg) by electric arc. Under Task 2, relevant mathematical modeling studies of NOx formation in practical combustors. Studies show that in boiler systems with no swirl, the distributed temperature sensor may provide information sufficient to predict trends of NOx at the boiler exit. Under Task 3, we investigate a mathematical approach to extrapolation of the temperature distribution within a power plant boiler facility, using a combination of a modified neural network architecture and semigroup theory. The 3D temperature data is furnished by the Penn State Energy Institute using FLUENT. Given a set of empirical data with no analytic expression, we first develop an analytic description and then extend that model along a single axis. Extrapolation

  9. Monitoring of temperature profiles and surface morphologies during laser sintering of alumina ceramics

    Directory of Open Access Journals (Sweden)

    Bin Qian

    2014-06-01

    Full Text Available Additive manufacturing of alumina by laser is a delicate process and small changes of processing parameters might cause less controlled and understood consequences. The real-time monitoring of temperature profiles, spectrum profiles and surface morphologies were evaluated in off-axial set-up for controlling the laser sintering of alumina ceramics. The real-time spectrometer and pyrometer were used for rapid monitoring of the thermal stability during the laser sintering process. An active illumination imaging system successfully recorded the high temperature melt pool and surrounding area simultaneously. The captured images also showed how the defects form and progress during the laser sintering process. All of these real-time monitoring methods have shown a great potential for on-line quality control during laser sintering of ceramics.

  10. Documentation pckage for the RFID temperature monitoring system (Of Model 9977 packages at NTS).

    Energy Technology Data Exchange (ETDEWEB)

    Chen, K.; Tsai, H.; Decision and Information Sciences

    2009-02-20

    The technical basis for extending the Model 9977 shipping package periodic maintenance beyond the one-year interval to a maximum of five years is based on the performance of the O-ring seals and the environmental conditions. The DOE Packaging Certification Program (PCP) has tasked Argonne National Laboratory to develop a Radio-Frequency Identification (RFID) temperature monitoring system for use by the facility personnel at DAF/NTS. The RFID temperature monitoring system, depicted in the figure below, consists of the Mk-1 RFId tags, a reader, and a control computer mounted on a mobile platform that can operate as a stand-alone system, or it can be connected to the local IT network. As part of the Conditions of Approval of the CoC, the user must complete the prescribed training to become qualified and be certified for operation of the RFID temperature monitoring system. The training course will be administered by Argonne National Laboratory on behalf of the Headquarters Certifying Official. This is a complete documentation package for the RFID temperature monitoring system of the Model 9977 packagings at NTS. The documentation package will be used for training and certification. The table of contents are: Acceptance Testing Procedure of MK-1 RFID Tags for DOE/EM Nuclear Materials Management Applications; Acceptance Testing Result of MK-1 RFID Tags for DOE/EM Nuclear Materials Management Applications; Performance Test of the Single Bolt Seal Sensor for the Model 9977 Packaging; Calibration of Built-in Thermistors in RFID Tags for Nevada Test Site; Results of Calibration of Built-in Thermistors in RFID Tags; Results of Thermal Calibration of Second Batch of MK-I RFID Tags; Procedure for Installing and Removing MK-1 RFID Tag on Model 9977 Drum; User Guide for RFID Reader and Software for Temperature Monitoring of Model 9977 Drums at NTS; Software Quality Assurance Plan (SQAP) for the ARG-US System; Quality Category for the RFID Temperature Monitoring System; The

  11. Monitoring of temperature-mediated adipose tissue phase transitions by refractive-index measurements

    Science.gov (United States)

    Yanina, I. Yu.; Popov, A. P.; Bykov, A. V.; Tuchin, V. V.

    2014-10-01

    Monitoring of temperature-mediated adipose tissue phase transitions were studied in vitro using an Abbe refractometer. The 1-2-mm thick porcine fat tissues slices were used in the experiments. The observed change in the tissue was associated with several phase transitions of lipid components of the adipose tissue. It was found that overall heating of a sample from the room to higher temperature led to more pronounced and tissue changes in refractive index if other experimental conditions were kept constant. We observed an abrupt change in the refractive index in the temperature range of 37-60 °C.

  12. An integrated microfluidic chip enabling control and spatially resolved monitoring of temperature in micro flow reactors.

    Science.gov (United States)

    Hoera, Christian; Ohla, Stefan; Shu, Zhe; Beckert, Erik; Nagl, Stefan; Belder, Detlev

    2015-01-01

    A strength of microfluidic chip laboratories is the rapid heat transfer that, in principle, enables a very homogeneous temperature distribution in chemical processes. In order to exploit this potential, we present an integrated chip system where the temperature is precisely controlled and monitored at the microfluidic channel level. This is realized by integration of a luminescent temperature sensor layer into the fluidic structure together with inkjet-printed micro heating elements. This allows steering of the temperature at the microchannel level and monitoring of the reaction progress simultaneously. A fabrication procedure is presented that allows for straightforward integration of thin polymer layers with optical sensing functionality in microchannels of glass-polydimethylsiloxane (PDMS) chips of only 150 μm width and 29 μm height. Sensor layers consisting of polyacrylonitrile and a temperature-sensitive ruthenium tris-phenanthroline probe with film thicknesses of about 0.5 to 6 μm were generated by combining blade coating and abrasion techniques. Optimal coating procedures were developed and evaluated. The chip-integrated sensor layers were calibrated and investigated with respect to stability, reproducibility, and response times. These microchips allowed observation of temperature in a wide range with a signal change of around 1.6 % per K and a maximum resolution of around 0.07 K. The device is employed to study temperature-controlled continuous micro flow reactions. This is demonstrated exemplarily for the tryptic cleavage of coumarin-modified peptides via fluorescence detection.

  13. Fluorescein filled photonic crystal fiber sensor for simultaneous ultraviolet light and temperature monitoring

    Science.gov (United States)

    Tatar, Peter; Kacik, Daniel; Tarjanyi, Norbert

    2016-07-01

    We present a novel structure composed of a photonic crystal fiber filled with fluorescein dissolved in water spliced between two conventional multimode fibers. Based on unique features of the fluorescein luminescence it is possible to adjust its emission spectrum to required spectral region. With increasing value of the fluorescein solvent pH factor, the peak wavelength of the emission spectrum is shifting to longer wavelength values. Since the excitation spectrum of fluorescein is relatively wide, this optical fiber sensor could be used for an efficient ultraviolet light monitoring. The detection limit at the level 0.24 mW with 490 nm excitation wavelength is presented. Moreover the emission spectrum is temperature sensitive what provides possibility of simultaneous ultraviolet light and temperature monitoring. Also the temperature sensitivity of the structure based on intermodal interference investigation for a compensation purposes and structure usage as spectrum enlarger are outlined.

  14. Imaging technique for real-time temperature monitoring during cryotherapy of lesions

    Science.gov (United States)

    Petrova, Elena; Liopo, Anton; Nadvoretskiy, Vyacheslav; Ermilov, Sergey

    2016-11-01

    Noninvasive real-time temperature imaging during thermal therapies is able to significantly improve clinical outcomes. An optoacoustic (OA) temperature monitoring method is proposed for noninvasive real-time thermometry of vascularized tissue during cryotherapy. The universal temperature-dependent optoacoustic response (ThOR) of red blood cells (RBCs) is employed to convert reconstructed OA images to temperature maps. To obtain the temperature calibration curve for intensity-normalized OA images, we measured ThOR of 10 porcine blood samples in the range of temperatures from 40°C to -16°C and analyzed the data for single measurement variations. The nonlinearity (ΔTmax) and the temperature of zero OA response (T0) of the calibration curve were found equal to 11.4±0.1°C and -13.8±0.1°C, respectively. The morphology of RBCs was examined before and after the data collection confirming cellular integrity and intracellular compartmentalization of hemoglobin. For temperatures below 0°C, which are of particular interest for cryotherapy, the accuracy of a single temperature measurement was ±1°C, which is consistent with the clinical requirements. Validation of the proposed OA temperature imaging technique was performed for slow and fast cooling of blood samples embedded in tissue-mimicking phantoms.

  15. Unobtrusive Monitoring of Neonatal Brain Temperature Using a Zero-Heat-Flux Sensor Matrix.

    Science.gov (United States)

    Atallah, Louis; Bongers, Edwin; Lamichhane, Bishal; Bambang-Oetomo, Sidarto

    2016-01-01

    The temperature of preterm neonates must be maintained within a narrow window to ensure their survival. Continuously measuring their core temperature provides an optimal means of monitoring their thermoregulation and their response to environmental changes. However, existing methods of measuring core temperature can be very obtrusive, such as rectal probes, or inaccurate/lagging, such as skin temperature sensors and spot-checks using tympanic temperature sensors. This study investigates an unobtrusive method of measuring brain temperature continuously using an embedded zero-heat-flux (ZHF) sensor matrix placed under the head of the neonate. The measured temperature profile is used to segment areas of motion and incorrect positioning, where the neonate's head is not above the sensors. We compare our measurements during low motion/stable periods to esophageal temperatures for 12 preterm neonates, measured for an average of 5 h per neonate. The method we propose shows good correlation with the reference temperature for most of the neonates. The unobtrusive embedding of the matrix in the neonate's environment poses no harm or disturbance to the care work-flow, while measuring core temperature. To address the effect of motion on the ZHF measurements in the current embodiment, we recommend a more ergonomic embedding ensuring the sensors are continuously placed under the neonate's head.

  16. Optimal battery charging, Part I: Minimizing time-to-charge, energy loss, and temperature rise for OCV-resistance battery model

    Science.gov (United States)

    Abdollahi, A.; Han, X.; Avvari, G. V.; Raghunathan, N.; Balasingam, B.; Pattipati, K. R.; Bar-Shalom, Y.

    2016-01-01

    In this paper we present a closed-form solution to the problem of optimally charging a Li-ion battery. A combination of three cost functions is considered as the objective function: time-to-charge (TTC), energy losses (EL), and a temperature rise index (TRI). First, we consider the cost function of the optimization problem as a weighted sum of TTC and EL. We show that the optimal charging strategy in this case is the well-known Constant Current-Constant Voltage (CC-CV) policy with the value of the current in the CC stage being a function of the ratio of weighting on TTC and EL and of the resistance of the battery. Then, we extend the cost function to a weighted sum of TTC, EL and TRI and derive an analytical solution for the problem. It is shown that the analytical solution can be approximated by a CC-CV with the value of current in the CC stage being a function of ratio of weighting on TTC and EL, resistance of the battery and the effective thermal resistance.

  17. On0Line Fuel Failure Monitor for Fuel Testing and Monitoring of Gas Cooled Very High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ayman I. Hawari; Mohamed A. Bourham

    2010-04-22

    IVery High Temperature Reactors (VHTR) utilize the TRISO microsphere as the fundamental fuel unit in the core. The TRISO microsphere (~ 1- mm diameter) is composed of a UO2 kernel surrounded by a porous pyrolytic graphite buffer, an inner pyrolytic graphite layer, a silicon carbide (SiC) coating, and an outer pyrolytic graphite layer. The U-235 enrichment of the fuel is expected to range from 4% – 10% (higher enrichments are also being considered). The layer/coating system that surrounds the UO2 kernel acts as the containment and main barrier against the environmental release of radioactivity. To understand better the behavior of this fuel under in-core conditions (e.g., high temperature, intense fast neutron flux, etc.), the US Department of Energy (DOE) is launching a fuel testing program that will take place at the Advanced Test Reactor (ATR) located at Idaho National Laboratory (INL). During this project North Carolina State University (NCSU) researchers will collaborate with INL staff for establishing an optimized system for fuel monitoring for the ATR tests. In addition, it is expected that the developed system and methods will be of general use for fuel failure monitoring in gas cooled VHTRs.

  18. Intelligent Monitoring System with High Temperature Distributed Fiberoptic Sensor for Power Plant Combustion Processes

    Energy Technology Data Exchange (ETDEWEB)

    Kwang Y. Lee; Stuart S. Yin; Andre Boehman

    2006-09-26

    The objective of the proposed work is to develop an intelligent distributed fiber optical sensor system for real-time monitoring of high temperature in a boiler furnace in power plants. Of particular interest is the estimation of spatial and temporal distributions of high temperatures within a boiler furnace, which will be essential in assessing and controlling the mechanisms that form and remove pollutants at the source, such as NOx. The basic approach in developing the proposed sensor system is three fold: (1) development of high temperature distributed fiber optical sensor capable of measuring temperatures greater than 2000 C degree with spatial resolution of less than 1 cm; (2) development of distributed parameter system (DPS) models to map the three-dimensional (3D) temperature distribution for the furnace; and (3) development of an intelligent monitoring system for real-time monitoring of the 3D boiler temperature distribution. Under Task 1, we have set up a dedicated high power, ultrafast laser system for fabricating in-fiber gratings in harsh environment optical fibers, successfully fabricated gratings in single crystal sapphire fibers by the high power laser system, and developed highly sensitive long period gratings (lpg) by electric arc. Under Task 2, relevant mathematical modeling studies of NOx formation in practical combustors have been completed. Studies show that in boiler systems with no swirl, the distributed temperature sensor may provide information sufficient to predict trends of NOx at the boiler exit. Under Task 3, we have investigated a mathematical approach to extrapolation of the temperature distribution within a power plant boiler facility, using a combination of a modified neural network architecture and semigroup theory. Given a set of empirical data with no analytic expression, we first developed an analytic description and then extended that model along a single axis.

  19. Core Temperature Monitoring in Obstetric Spinal Anesthesia Using an Ingestible Telemetric Sensor.

    Science.gov (United States)

    du Toit, Leon; van Dyk, Dominique; Hofmeyr, Ross; Lombard, Carl J; Dyer, Robert A

    2017-08-09

    Perioperative hypothermia may affect maternal and neonatal outcomes after obstetric spinal anesthesia. Core temperature is often poorly monitored during spinal anesthesia, due to the lack of an accurate noninvasive core temperature monitor. The aim of this study was to describe core temperature changes and temperature recovery during spinal anesthesia for elective cesarean delivery. We expected that obstetric spinal anesthesia would be associated with a clinically relevant thermoregulatory insult (core temperature decrease >1.0°C). A descriptive study was conducted in 28 women. An ingestible telemetric temperature sensor was used to record core temperature over time (measured every 10 seconds). The primary outcome was the maximum core temperature decrease after spinal anesthetic injection. The secondary outcomes were lowest absolute core temperature, time to lowest temperature, time to recovery of core temperature, hypothermic exposure (degree-hours below 37.0°C), and the time-weighted hypothermic exposure (median number of degrees below 37.0°C per hour). Basic descriptive statistics, median spline smooth, and integration of the area below the 37.0°C line of the temperature-over-time curve were utilized to analyze the data. Intestinal temperature decreased by a mean (standard deviation) of 1.30°C (0.31); 99% confidence interval (CI), 1.14 to 1.46 after spinal anesthetic injection. The median (interquartile range [IQR]) time to temperature nadir was 0.96 (0.73-1.32) hours (95% CI, 0.88-1.22). Fourteen of the 28 participants experienced intestinal temperatures below 36.0°C after spinal injection. Temperature was monitored for a minimum of 8 hours after spinal injection. In 8 of 28 participants, intestinal temperature did not recover to baseline during the monitored period. A median (IQR) of 4.59 (3.38-5.92) hours (95% CI, 3.45-5.90) was required for recovery to baseline intestinal temperature in the remaining 20 patients. Participants experienced a median (IQR

  20. Thermal monitoring and indoor temperature predictions in a passive solar building in an arid environment

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Eduardo [Programa de Pos-Graduacao em Tecnologia, Departamento de Construcao Civil, Universidade Tecnologica Federal do Parana, Av. Sete de Setembro, 3165-Curitiba 80230-901 (Brazil); Givoni, Baruch [Department of Architecture, School of Arts and Architecture, UCLA, Los Angeles, CA (United States); Ben Gurion University (Israel)

    2008-11-15

    In this paper, results of a long-term temperature monitoring in a passive solar house, located at the Sede-Boqer Campus of the Ben-Gurion University, in the Negev region of Israel are presented. Local latitude is 30.8 N and the elevation is approximately 480 m above sea level. The climate of the region is characterized by strong daily and seasonal thermal fluctuations, dry air and clear skies with intense solar radiation. The monitored building consists of a two storey, passive solar house and belongs to a student dormitory complex located at the Sede-Boqer Campus. Formulae were developed, based on part of the whole monitoring period, representing the measured daily indoor maximum, average and minimum temperatures. The formulae were then validated against measurements taken independently in different time periods. In managing the building, the main objective in the winter was to bring up the indoor temperature by direct and indirect solar gains while in the summer it was to keep the temperature down. Therefore, analysis of the data and development of predictive formulas of the indoor temperatures were done separately for the winter and for the summer. Measured data of each season were then divided into two sub-periods, the first one used to generate formulas based on measured data (generation) and the second for testing the predictability of the formulas by independent data (validation). In general, a fairly good agreement was verified between onsite measurements and results of the formulae, with regard to daily indoor maximum, average and minimum temperatures. The issue of using outdoor temperatures measured in the adjacent street canyon instead of those registered at the local meteorological site for evaluating the building's cooling demand is also addressed in the paper. The developed formulae were here used for estimating the building's thermal and energy performance in summer, taking into account: (1) solely climatic data from the meteorological

  1. PARAMETRICAL IDENTIFICATION OF DIFFERENTIAL-DIFFERENCE HEAT TRANSFER MODEL DURING LIDAR TEMPERATURE MONITORING

    Directory of Open Access Journals (Sweden)

    K. A. Klyukvin

    2017-01-01

    Full Text Available The paper deals with the parametrical identification method of differential-difference heat transfer models during determining of lidar temperature condition. The problem is solved for enclosure external flange that is the most thermally influenced device part. During researches carried out in a climatic chamber, discrepancy of the both flange temperature and mounted on it sensor temperature is detected. The need of measuring system thermal inertia compensation for the purpose of error decrease is proved. The algorithm for transient flange temperature determining by forward heat transfer problem solution is formed. The inverse procedure is carried out for the purpose of discrepancy minimizing between true object temperature and measured temperature. Computational experiments are carried out for calculating lidar enclosure flange temperature field under known external heat transfer conditions with the use of special computer program and experimental data. The experiment results enable to conclude about the value of error emerging because of temperature measuring system thermal inertia. We show application feasibility for proposed method of parametrical identification of differential-difference heat transfer model in object for error decrease during the device temperature monitoring and control.

  2. A NEW NON-INVASIVE DEVICE TO MONITOR CORE TEMPERATURE ON EARTH AND IN SPACE

    Directory of Open Access Journals (Sweden)

    Hanns-Christian Gunga

    2012-06-01

    Full Text Available Accurate measurement of the core body temperature (cbt is fundamental to the study of human temperature regulation. As standard sites for the placement of cbt measurement sensors have been used: the rectum, the bladder, the esophagus, the nasopharynx and the acoustic meatus. Nevertheless those measurement sites exhibit limited applicability under field conditions, in rescue operations or during peri- and postoperative long-term core temperature monitoring. There is, indeed, a high demand for a reliable, non-invasive, easy to handle telemetric device. But the ideal non-invasive measurement of core temperature has to meet requirements such as i a convenient measurement site, ii no bias through environmental conditions, and iii a high sensitivity of the sensor regarding time shift and absolute temperature value. Recently, together with the Draegerwerke AG we have developed a new heat flux measurement device (so-called "Double Sensor" as a non-invasive cbt sensor aiming to meet the requirements described above. Four recent studies in humans will be summarized and discussed to show the applicability of this new non-invasive method to monitor core temperature under different environmental and clinical settings on Earth and in space.

  3. Geophysical Methods for Monitoring Temperature Changes in Shallow Low Enthalpy Geothermal Systems

    Directory of Open Access Journals (Sweden)

    Thomas Hermans

    2014-08-01

    Full Text Available Low enthalpy geothermal systems exploited with ground source heat pumps or groundwater heat pumps present many advantages within the context of sustainable energy use. Designing, monitoring and controlling such systems requires the measurement of spatially distributed temperature fields and the knowledge of the parameters governing groundwater flow (permeability and specific storage and heat transport (thermal conductivity and volumetric thermal capacity. Such data are often scarce or not available. In recent years, the ability of electrical resistivity tomography (ERT, self-potential method (SP and distributed temperature sensing (DTS to monitor spatially and temporally temperature changes in the subsurface has been investigated. We review the recent advances in using these three methods for this type of shallow applications. A special focus is made regarding the petrophysical relationships and on underlying assumptions generally needed for a quantitative interpretation of these geophysical data. We show that those geophysical methods are mature to be used within the context of temperature monitoring and that a combination of them may be the best choice regarding control and validation issues.

  4. Locatable-body temperature monitoring based on semi-active UHF RFID tags.

    Science.gov (United States)

    Liu, Guangwei; Mao, Luhong; Chen, Liying; Xie, Sheng

    2014-03-26

    This paper presents the use of radio-frequency identification (RFID) technology for the real-time remote monitoring of body temperature, while an associated program can determine the location of the body carrying the respective sensor. The RFID chip's internal integrated temperature sensor is used for both the human-body temperature detection and as a measurement device, while using radio-frequency communication to broadcast the temperature information. The adopted RFID location technology makes use of reference tags together with a nearest neighbor localization algorithm and a multiple-antenna time-division multiplexing location system. A graphical user interface (GUI) was developed for collecting temperature and location data for the data fusion by using RFID protocols. With a puppy as test object, temperature detection and localization experiments were carried out. The measured results show that the applied method, when using a mercury thermometer for comparison in terms of measuring the temperature of the dog, has a good consistency, with an average temperature error of 0.283 °C. When using the associated program over the area of 12.25 m2, the average location error is of 0.461 m, which verifies the feasibility of the sensor-carrier location by using the proposed program.

  5. Application of acoustical thermometry to noninvasive monitoring of internal temperature during laser hyperthermia

    Science.gov (United States)

    Krotov, Eugene V.; Yakovlev, Ivan V.; Zhadobov, Maxim; Reyman, Alexander M.; Zharov, Vladimir P.

    2002-06-01

    This work present the results of experimental study of applicability of acoustical brightness thermometry (ABT) in monitoring of internal temperature during laser hyperthermia and interstitial therapy. In these experiments the radiation of pulse repetition Nd:YAG laser (1064 nm) and continuous diode laser (800 nm) were used as heating sources. Experiments were performed in vitro by insertion of optical fiber inside the objects - optically transparent gelatin with incorporated light absorbing heterogeneities and samples of biological tissues (e.g. liver). During laser heating, internal temperature in absorbing heterogeneity and at fiber end were monitored by means of multi-channel ABT. The independent temperature control was performed with tiny electronic thermometer incorporated in heated zones. The results of experiments demonstrated reasonable sensitivity and accuracy of ABT for real-time temperature control during different kind of laser thermal therapies. According to preliminary data, ABT allow to measure temperature in depth up to 3-5 cm (depends on tissue properties) with spatial resolution some mm. Obtained data show that ABT is a very promising tool to give quantitative measure for different types of energy deposition (laser, microwave, focused ultrasound etc) at the depth commonly encountered in tumors of vital organs. Besides, ABT could give information about diffusion effects in heated zones or optical absorption. This work was supported by Russian Foundation for Basic Research and 6th competition-expertise of young scientists of Russian Academy of Sciences.

  6. Updating temperature monitoring on reciprocating compressor connecting rods to improve reliability

    Directory of Open Access Journals (Sweden)

    Jim Townsend

    2016-03-01

    The compressors are used to move CO2 and boost the gas to the required field pressure, usually around 2,200 psig. Reciprocating compressors are flexible and able to handle wide capacity and condition swings, offer an efficient method of compressing almost any gas composition in a wide range of pressures and have numerous applications and wide power ratings. This makes them a vital component in various industrial facilities. Condition monitoring of critical rotating machinery is widely accepted by operators of centrifugal compressors. However, condition monitoring of reciprocating machinery such as compressors and internal combustion engines has not received the same degree of acceptance. This paper examines the reliability impact as a result of upgrading the temperature monitoring devices on the connecting rods of electric driven reciprocating compressors. A cost analysis is also presented to demonstrate that the upgrade in hardware and software will eventually yield a saving in the operating cost.

  7. A Data Transmission Algorithm Based on Dynamic Grid Division for Coal Goaf Temperature Monitoring

    Directory of Open Access Journals (Sweden)

    Qingsong Hu

    2014-01-01

    Full Text Available WSN (wireless sensor network is a perfect tool of temperature monitoring in coal goaf. Based on the three-zone theory of goaf, the GtmWSN model is proposed, and its dynamic features are analyzed. Accordingly, a data transmission scheme, named DTDGD, is worked out. Firstly, sink nodes conduct dynamic grid division on the GtmWSN according to virtual semicircle. Secondly, each node will confirm to which grid it belongs based on grid number. Finally, data will be delivered to sink nodes with greedy forward and hole avoidance. Simulation results and field data showed that the GtmWSN and DTDGD satisfied the lifetime need of goaf temperature monitoring.

  8. D-Shaped Polarization Maintaining Fiber Sensor for Strain and Temperature Monitoring

    Science.gov (United States)

    Qazi, Hummad Habib; Mohammad, Abu Bakar; Ahmad, Harith; Zulkifli, Mohd Zamani

    2016-01-01

    A D-shaped polarization-maintaining fiber (PMF) as fiber optic sensor for the simultaneous monitoring of strain and the surrounding temperature is presented. A mechanical end and edge polishing system with aluminum oxide polishing film is utilized to perform sequential polishing on one side (lengthwise) of the PMF in order to fabricate a D-shaped cross-section. Experimental results show that the proposed sensor has high sensitivity of 46 pm/µε and 130 pm/°C for strain and temperature, respectively, which is significantly higher than other recently reported work (mainly from 2013) related to fiber optic sensors. The easy fabrication method, high sensitivity, and good linearity make this sensing device applicable in various applications such as health monitoring and spatial analysis of engineering structures. PMID:27649195

  9. One crop breeding cycle from starvation? How engineering crop photosynthesis for rising CO2 and temperature could be one important route to alleviation.

    Science.gov (United States)

    Kromdijk, Johannes; Long, Stephen P

    2016-03-16

    Global climate change is likely to severely impact human food production. This comes at a time when predicted demand for primary foodstuffs by a growing human population and changing global diets is already outpacing a stagnating annual rate of increase in crop productivity. Additionally, the time required by crop breeding and bioengineering to release improved varieties to farmers is substantial, meaning that any crop improvements needed to mitigate food shortages in the 2040s would need to start now. In this perspective, the rationale for improvements in photosynthetic efficiency as a breeding objective for higher yields is outlined. Subsequently, using simple simulation models it is shown how predicted changes in temperature and atmospheric [CO2] affect leaf photosynthetic rates. The chloroplast accounts for the majority of leaf nitrogen in crops. Within the chloroplast about 25% of nitrogen is invested in the carboxylase, Rubisco, which catalyses the first step of CO2 assimilation. Most of the remaining nitrogen is invested in the apparatus to drive carbohydrate synthesis and regenerate ribulose-1:5-bisphosphate (RuBP), the CO2-acceptor molecule at Rubisco. At preindustrial [CO2], investment in these two aspects may have been balanced resulting in co-limitation. At today's [CO2], there appears to be over-investment in Rubisco, and despite the counter-active effects of rising temperature and [CO2], this imbalance is predicted to worsen with global climate change. By breeding or engineering restored optimality under future conditions increased productivity could be achieved in both tropical and temperate environments without additional nitrogen fertilizer. Given the magnitude of the potential shortfall, better storage conditions, improved crop management and better crop varieties will all be needed. With the short time-scale at which food demand is expected to outpace supplies, all available technologies to improve crop varieties, from classical crop breeding to

  10. Effect of Gradually Temperature Rising and Reduction of Ore in Lumpy Zone on the Permeability%高炉块状带矿石逐渐升温还原对料层透气性影响

    Institute of Scientific and Technical Information of China (English)

    赵宏博; 程树森; 白永强; 马金芳; 万雷; 王尉平

    2011-01-01

    为了模拟高炉块状带内矿石还原过程对料层透气性的影响,根据实际高炉料层的运动升温及煤气成分的变化情况,设计了模拟矿石在高炉块状带行程的试验方法,建立了能够实时监测料层压差和矿石还原度的试验装置,给出了矿石逐渐升温还原对料层透气性影响的量化评价指标,并实测了某高炉烧结矿、球团矿、块矿、混合矿石在逐渐升温过程中的料层压差和还原度变化,得出逐渐升温还原后的粉化指标和料层压差增加率具有很好的一致性。与原有的低温还原粉化测试方法相比,该方法更适合用于判断高炉整个块状带内矿石还原对料层透气性的影响,更有利于评价矿石性能对高炉操作的影响。试验还研究了原始粒径、还原失重、还原温度、还原时间、加热、转鼓、泡水对矿石粉化程度的影响。%To simulate the effect of iron ore reduction in lumpy zone on the permeability of stock column in BF,the experimental methods were designed according to the actual movement of burden,temperature distribution and gas compositions.The equipments were built which could monitor the pressure drop of burden column and reduction index of ore at real-time.The evaluating indicators for the effects of gradually temperature rise and reduction of ore on the permeability of burden column were given.The pressure drop of burden column and the reduction index of sinter,pellet,lump ore and mixed ores were tested.It is found that the degradation index after gradually temperature rise and reduction has good correlation with the increment rate of pressure drop of burden column,which is more proper to judge the effect of ore reduction in the entire lumpy zone in BF on the permeability of burden column and to evaluate the effect of ore property on BF operation than conventional low temperature test of reduction degradation.The influences of testing factors on the ore degradation were also

  11. Temperature- and pH-sensitive wearable materials for monitoring foot ulcers

    Science.gov (United States)

    Salvo, Pietro; Calisi, Nicola; Melai, Bernardo; Dini, Valentina; Paoletti, Clara; Lomonaco, Tommaso; Pucci, Andrea; Di Francesco, Fabio; Piaggesi, Alberto; Romanelli, Marco

    2017-01-01

    Foot ulcers account for 15% of comorbidities associated with diabetes. Presently, no device allows the status of foot ulcers to be continuously monitored when patients are not hospitalized. In this study, we describe a temperature and a pH sensor capable of monitoring diabetic foot and venous leg ulcers developed in the frame of the seventh framework program European Union project SWAN-iCare (smart wearable and autonomous negative pressure device for wound monitoring and therapy). Temperature is measured by exploiting the variations in the electrical resistance of a nanocomposite consisting of multiwalled carbon nanotubes and poly(styrene-b-(ethylene-co-butylene)-b-styrene). The pH sensor used a graphene oxide (GO) layer that changes its electrical potential when pH changes. The temperature sensor has a sensitivity of ~85 Ω/°C in the range 25°C–50°C and a high repeatability (maximum standard deviation of 0.1% over seven repeated measurements). For a GO concentration of 4 mg/mL, the pH sensor has a sensitivity of ~42 mV/pH and high linearity (R2=0.99). PMID:28203074

  12. ELEVATED TEMPERATURE SENSORS FOR ON-LINE CRITICAL EQUIPMENT HEALTH MONITORING

    Energy Technology Data Exchange (ETDEWEB)

    James Sebastian

    2005-03-01

    The objective of this research program is to improve high temperature piezoelectric aluminum nitride (AlN) sensor technology to make it useful for instrumentation and health monitoring of current and future electrical power generation equipment. The program will extend the temperature range of the sensor from approximately 700 C to above 1000 C, and ultrasonic coupling to objects at these temperatures will be investigated and tailored for use with the sensor. The chemical vapor deposition (CVD) AlN deposition process was successfully transferred from film production on tungsten carbide substrates to titanium alloy and silicon carbide (SiC) substrates in the first year of the program, and additional substrates were evaluated. In the second year of the program, additional substrate research was performed with the goal of improving the performance of using SiC substrates. While greatly improved bandwidth was achieved, sensor survival at elevated temperature remains problematic. The elevated temperature coupling work continued with significant experimentation. Molten glasses were found to work within a limited temperature range, but metal foils applied with heat and pressure were found to have superior performance overall. The final year of the program will be dedicated to making further advances in AlN/ substrate behavior, and the design and implementation of a sensor demonstration experiment at very high temperature in a simulated industrial application.

  13. Elevated Temperature Sensors for On-Line Critical Equipment Health Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    James Sebastian

    2006-03-31

    The objective of the program was to improve high temperature piezoelectric aluminum nitride (AlN) sensor technology to make it useful for instrumentation and health monitoring of current and future electrical power generation equipment. Improvements were aimed primarily at extending the useful temperature range of the sensor from approximately 700 C to above 1000 C, and investigating ultrasonic coupling to objects at these temperatures and tailoring high temperature coupling for use with the sensor. During the project, the chemical vapor deposition (CVD) AlN deposition process was successfully transferred from film production on tungsten carbide substrates to titanium alloy and silicon carbide (SiC) substrates. Film adhesion under thermal cycling was found to be poor, and additional substrate materials and surface preparations were evaluated. A new, porous SiC substrate improved the performance but not to the point of making the films useful for sensors. Near the end of the program, a new family of high temperature piezoelectric materials came to the attention of the program. Samples of langasite, the most promising member of this family, were obtained and experimental data showed promise for use up to the 1000 C target temperature. In parallel, research successfully determined that metal foil under moderate pressure provided a practical method of coupling ultrasound at high temperature. A conceptual sensor was designed based upon these methods and was tested in the laboratory.

  14. INTELLIGENT MONITORING SYSTEM WITH HIGH TEMPERATURE DISTRIBUTED FIBEROPTIC SENSOR FOR POWER PLANT COMBUSTION PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Kwang Y. Lee; Stuart S. Yin; Andre Boheman

    2003-12-26

    The objective of the proposed work is to develop an intelligent distributed fiber optical sensor system for real-time monitoring of high temperature in a boiler furnace in power plants. Of particular interest is the estimation of spatial and temporal distributions of high temperatures within a boiler furnace, which will be essential in assessing and controlling the mechanisms that form and remove pollutants at the source, such as NOx. The basic approach in developing the proposed sensor system is three fold: (1) development of high temperature distributed fiber optical sensor capable of measuring temperatures greater than 2000 C degree with spatial resolution of less than 1 cm; (2) development of distributed parameter system (DPS) models to map the three-dimensional (3D) temperature distribution for the furnace; and (3) development of an intelligent monitoring system for real-time monitoring of the 3D boiler temperature distribution. Under Task 1, the efforts focused on developing an innovative high temperature distributed fiber optic sensor by fabricating in-fiber gratings in single crystal sapphire fibers. So far, our major accomplishments include: Successfully grown alumina cladding layers on single crystal sapphire fibers, successfully fabricated in-fiber gratings in single crystal sapphire fibers, and successfully developed a high temperature distributed fiber optic sensor. Under Task 2, the emphasis has been on putting into place a computational capability for simulation of combustors. A PC workstation was acquired with dual Xeon processors and sufficient memory to support 3-D calculations. An existing license for Fluent software was expanded to include two PC processes, where the existing license was for a Unix workstation. Under Task 3, intelligent state estimation theory is being developed which will map the set of 1D (located judiciously within a 3D environment) measurement data into a 3D temperature profile. This theory presents a semigroup

  15. Spatial Soil Temperature and Moisture Monitoring Across the Transylvanian Plain, in Romania

    Science.gov (United States)

    Rusu, Teodor; Weindorf, David; Haggard, Beatrix; Moraru, Paula Ioana; Sopterean, Mara Lucia

    2011-01-01

    The Transylvanian Plain, Romania is an important region for agronomic productivity. However, limited soils data and adoption of best management practices hinder land productivity. Soil temperatures of the Transylvanian Plain were evaluated using a set of twenty datalogging stations positioned throughout the plain. Soil temperatures were monitored at the surface and at 10, 30, and 50 cm depths, and soil moisture was monitored at 10 cm. Preliminary results indicate that most soils of the Transylvanian Plain will have a mesic temperature regime. However, differences in seasonal warming and cooling trends across the plain were noted. These have important implications for planting recommendations. Growing degree days (GDDs) are preferred over maturity ratings, because they can account for temperature anomalies. The crop being considered for this study was corn. The base temperature (BT) was set at 10oC, and the upper threshold was 30oC. Two methods were used to calculate GDDs; 1) minimum and maximum daily temperatures, and 2) 24 h of averaged temperature data. Growing degree days were run from 110-199 day of year (DOY) to represent approximate planting date to tasseling. The DOY that 694 accumulated growing degree days (AGDDs) was reached at each site was then analyzed to identify differences across the TP. Three sites failed to reach 694 AGDDs by DOY 199, and were excluded from comparisons to other results. Averaged values were used to create spline interpolation maps with ArcMap 9.2 (ESRI, Redlands, CA, USA). The southeastern portion of the TP was found to tassel a month earlier assuming a planting date of 109 DOY. Four DeKalb® corn hybrids were then selected based on GDDs to tasseling, drydown, drought tolerance, and insect resistance. With a better understanding of the GDD trends across the TP, more effective planting and harvesting could be accomplished by Romanian farmers to maximize agronomic production.

  16. Organisation and analysis of temperature data measured within the Swiss Permafrost Monitoring Network (PERMOS)

    Science.gov (United States)

    Noetzli, Jeannette; Voelksch, Ingo

    2014-05-01

    The Swiss permafrost monitoring network (PERMOS) has been running since 2000 and developed from a loose network of research sites towards an operational network with long-term funding and integration into national and international monitoring structures. The monitoring strategy follows a landform based approach to capture the interaction of subsurface thermal conditions with the atmosphere in a comprehensive picture of permafrost in the Swiss Alps and includes three observation elements: (1) ground temperatures in boreholes and at the surface around the drill site, (2) changes in unfrozen water content at the drill sites, and (3) permafrost creep velocities. They are observed in different landforms (e.g., rock walls, rock glaciers, scree slopes) because topography and site characteristics are decisive for different changes in subsurface thermal regimes. Three of the ten monitoring principles formulated by the Global Climate Observing System (GCOS) for field measurement relate to the management and quality of data and metadata and state that data management systems are an essential element of climate monitoring systems. For these purposes a data management system is built up that (1) ensures comparability and quality of the data, (2) provides secure and long-term storage in a robust and flexible system with customised access for basic and advanced users and data exchange with data centres and (3) at the same time keeps the (time) effort needed to a minimum. To this end, a relational database was set up and processing protocols are developed for standardization relying on open source products. As of today, the PERMOS data base includes data from the three key observation elements as well as other available ancillary data from most of the Swiss permafrost research sites with time series of up to more than 20 years and more for temperature measurements. This finally builds the basis for comprehensive and joint analyses across sites and parameters within the SNF

  17. Online Decorrelation of Humidity and Temperature in Chemical Sensors for Continuous Monitoring

    CERN Document Server

    Huerta, Ramon; Fonollosa, Jordi; Rulkov, Nikolai F; Rodriguez-Lujan, Irene

    2016-01-01

    A method for online decorrelation of chemical sensor readings from the effects of environmental humidity and temperature variations is proposed. The goal is to improve the accuracy of electronic nose measurements for continuous monitoring by processing data from simultaneous readings of environmental humidity and temperature. The electronic nose setup built for this study included eight different metal-oxide sensors, temperature and humidity sensors with a wireless communication link to PC. This wireless electronic nose was used to monitor air for two years in the residence of one of the authors and collected data continuously during 510 full days with a sampling rate of 2 samples per second. To estimate the effects of variations in air humidity and temperature on the chemical sensors readings, we used a standard energy band model for an n-type metal-oxide sensor. The main assumption of the model is that variations in sensor conductivity can be expressed as a nonlinear function of changes in the semiconductor...

  18. Body Temperature Monitoring Using Subcutaneously Implanted Thermo-loggers from Holstein Steers.

    Science.gov (United States)

    Lee, Y; Bok, J D; Lee, H J; Lee, H G; Kim, D; Lee, I; Kang, S K; Choi, Y J

    2016-02-01

    Body temperature (BT) monitoring in cattle could be used to early detect fever from infectious disease or physiological events. Various ways to measure BT have been applied at different locations on cattle including rectum, reticulum, milk, subcutis and ear canal. In other to evaluate the temperature stability and reliability of subcutaneous temperature (ST) in highly fluctuating field conditions for continuous BT monitoring, long term ST profiles were collected and analyzed from cattle in autumn/winter and summer season by surgically implanted thermo-logger devices. Purposes of this study were to assess ST in the field condition as a reference BT and to determine any location effect of implantation on ST profile. In results, ST profile in cattle showed a clear circadian rhythm with daily lowest at 05:00 to 07:00 AM and highest around midnight and rather stable temperature readings (mean±standard deviation [SD], 37.1°C to 37.36°C±0.91°C to 1.02°C). STs are 1.39°C to 1.65°C lower than the rectal temperature and sometimes showed an irregular temperature drop below the normal physiologic one: 19.4% or 36.4% of 54,192 readings were below 36.5°C or 37°C, respectively. Thus, for BT monitoring purposes in a fever-alarming-system, a correction algorithm is necessary to remove the influences of ambient temperature and animal resting behavior especially in winter time. One way to do this is simply discard outlier readings below 36.5°C or 37°C resulting in a much improved mean±SD of 37.6°C±0.64°C or 37.8°C±0.55°C, respectively. For location the upper scapula region seems the most reliable and convenient site for implantation of a thermo-sensor tag in terms of relatively low influence by ambient temperature and easy insertion compared to lower scapula or lateral neck.

  19. Weibull拟合的钠硫电池加热模块温升分析%Temperature rise analysis of heating module for sodium-sulfur battery based on Weibull fitting

    Institute of Scientific and Technical Information of China (English)

    张建平; 韩熠; 刘宇; 朱群志

    2015-01-01

    为分析钠硫电池加热模块的温升过程,分别基于三维瞬态导热方程和Weibull函数建立了加热模块的理论模型和试验温升数据的拟合模型,数值模拟了钠硫电池加热模块温升过程与瞬态温度分布,探讨Weibull参数对升温曲线的影响规律。结果表明:Weibull拟合模型能够精确描述加热模块的温升过程,可靠度较高;模块内部整体温升率随时间和距离模块中心的长度均呈非线性降低趋势;形状参数和尺度参数分别决定了分段温升和整体温升的效率,这为钠硫电池加热模块以及其他加热装置的优化设计提供参考。%In order to analyze the temperature rise of the heating module for sodium⁃sulfur battery, the theoretical model of the heating module and fitting model of the experimental temperature data were established on the basis of 3D transient heat conduction equation and Weibull function, respectively, and also the temperature rise process and the transient temperature distribution of heating module for sodium⁃sulfur battery were numerically simulated, and the effects of Weibull parameters on the temperature rise curve were further investigated. The results indicate that the Weibull fitting model could accurately describe the temperature rise process of heating module with high reliability, and the temperature rise rate inside the whole heating module presents nonlinearly decreasing trend with the increase of time, as well as the length from the module center. Furthermore, shape and scale parameter dominate the efficiency of the sectional temperature rise and the overall one respectively, and the technical reference is provided for the optimal design of heating module for sodium⁃sulfur battery and other heating devices.

  20. [A Novel Method of Soil Moisture Content Monitoring by Land Surface Temperature and LAI].

    Science.gov (United States)

    Gao, Zhong-ling; Zheng, Xiao-po; Sun, Yue-jun; Wang, Jian-hua

    2015-11-01

    Land surface temperature (Ts) is influenced by soil background and vegetation growing conditions, and the combination of Ts and vegetation indices (Vis) can indicate the status of surface soil moisture content (SMC). In this study, Advanced Temperature Vegetation Dryness Index (ATVDI) used for monitoring SMC was proposed on the basis of the simulation results with agricultural climate model CUPID. Previous studies have concluded that Normalized Difference Vegetation Index (NDVI) easily reaches the saturation point, andLeaf Area Index (LAI) was then used instead of NDVI to estimate soil moisture content in the paper. With LAI-Ts scatter diagram established by the simulation results of CUPID model; how Ts varied with LAI and SMC was found. In the case of the identical soil background, the logarithmic relations between Ts and LAI were more accurate than the linear relations included in Temperature Vegetation Dryness Index (TVDI), based on which ATVDI was then developed. LAI-Ts scatter diagram with satellite imagery were necessary for determining the expression of the upper and lower logarithmic curves while ATVDI was used for monitoring SMC. Ts derived from satellite imagery were then transformed to the Ts-value which has the same SMC and the minimum LAI in study area with look-up table. The measured SMC from the field sites in Weihe Plain, Shanxi Province, China, and the products of LAI and Ts (MOD15A2 and MOD11A2, respectively) produced by the image derived from Moderate Resolution Imaging Spectrometer (MODIS) were collected to validate the new method proposed in this study. The validation results shown that ATVDI (R² = 0.62) was accurate enough to monitor SMC, and it achieved better result than TVDI. Moreover, ATVDI-derived result were Ts values with some physical meanings, which made it comparative in different periods. Therefore, ATVDI is a promising method for monitoring SMC in different time-spatial scales in agricultural fields.

  1. High Temperature Monitoring the Height of Condensed Water in Steam Pipes

    Science.gov (United States)

    Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Badescu, Mircea; Bao, Xiaoqi; Sherrit, Stewart; Widholm, Scott; Ostlund, Patrick; Blosiu, Julian

    2011-01-01

    An in-service health monitoring system is needed for steam pipes to track through their wall the condensation of water. The system is required to measure the height of the condensed water inside the pipe while operating at temperatures that are as high as 250 deg. C. The system needs to be able to make real time measurements while accounting for the effects of cavitation and wavy water surface. For this purpose, ultrasonic wave in pulse-echo configuration was used and reflected signals were acquired and auto-correlated to remove noise from the data and determine the water height. Transmitting and receiving the waves is done by piezoelectric transducers having Curie temperature that is significantly higher than 250 deg. C. Measurements were made at temperatures as high as 250 deg. C and have shown the feasibility of the test method. This manuscript reports the results of this feasibility study.

  2. High Temperature Monitoring the Height of Condensed Water in Steam Pipes

    Science.gov (United States)

    Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Badescu, Mircea; Bao, Xiaoqi; Sherrit, Stewart; Widholm, Scott; Ostlund, Patrick; Blosiu, Julian

    2011-01-01

    An in-service health monitoring system is needed for steam pipes to track through their wall the condensation of water. The system is required to measure the height of the condensed water inside the pipe while operating at temperatures that are as high as 250 deg. C. The system needs to be able to make real time measurements while accounting for the effects of cavitation and wavy water surface. For this purpose, ultrasonic wave in pulse-echo configuration was used and reflected signals were acquired and auto-correlated to remove noise from the data and determine the water height. Transmitting and receiving the waves is done by piezoelectric transducers having Curie temperature that is significantly higher than 250 deg. C. Measurements were made at temperatures as high as 250 deg. C and have shown the feasibility of the test method. This manuscript reports the results of this feasibility study.

  3. In situ Monitoring of the Rising of Aqueous Solution Meniscus for a Partially Immersed Silver Electrode during Electrochemical Reduction of Oxygen

    Institute of Scientific and Technical Information of China (English)

    谢青季; 张友玉; 郭阳辉; 苏孝礼; 李云龙; 姚守拙

    2001-01-01

    Rising phenomena of aqueous solution meniscus were found for the silver electrode of a 5 MHz piezoelectric quartz crystal (PQC) partially immersed in Na2SO4, NaClO4, HClO4 and NaF aqueous solutions at oxygen reduction potentials, respectively. A detailed study revealed that a decrease in contact-angle hysteresis ( or a contact-angle decrease) and a continued collection of the water product at the solid-gas-solution interface during oxygen reduction, rather than the electrocapillary effect and an agitation effect induced by the oscillation of PQC, are responsible for the meniscus- rising phenomena. In addition, in situ determination of the immersed height of a partially immersed Ag electrode was studied on the basis of simultaneous measurements of the electroacoustic admittance and electrochemical impedance.

  4. Monitoring of solidification in the continuous casting mold by temperature sensors

    Science.gov (United States)

    Pyszko, René; Příhoda, Miroslav; Čarnogurská, Mária

    2016-06-01

    Defects of continuously cast strand, such as unevenness of shell thickness or cracks as well as unstable casting parameters result in changes of strand surface temperature which affect heat flux and temperature field in the mold wall. Methods based on the principle of measurement and mathematical processing of temperatures in the mold wall are used for the purposes of diagnostics of the shell formation process, prediction of surface and subsurface quality and breakout danger, adjustment of the casting axis or condition monitoring of the oscillating mechanism. Measured values of temperatures in the wall depend on the exact position of the sensor in the wall, especially in the normal direction to the mold working surface. Ensuring the accurate and constant distance between the sensor and the mold surface is technically demanding; therefore it is necessary to correct the measured temperatures mathematically. The article describes two methods for correcting the measured temperatures, based on physical and statistical principles that have been developed and used in a real diagnostics system. Practical applications of the methods for diagnostics of strand surface quality and breakout prediction are presented.

  5. A small temperature rise may contribute towards the apparent induction by microwaves of heat-shock gene expression in the nematode Caenorhabditis Elegans.

    Science.gov (United States)

    Dawe, Adam S; Smith, Brette; Thomas, David W P; Greedy, Steve; Vasic, Nebojsa; Gregory, Andrew; Loader, Benjamin; de Pomerai, David I

    2006-02-01

    We have previously reported that low intensity microwave exposure (0.75-1.0 GHz CW at 0.5 W; SAR 4-40 mW/kg) can induce an apparently non-thermal heat-shock response in Caenorhabditis elegans worms carrying hsp16-1::reporter genes. Using matched copper TEM cells for both sham and exposed groups, we can detect only modest reporter induction in the latter exposed group (15-20% after 2.5 h at 26 degrees C, rising to approximately 50% after 20 h). Traceable calibration of our copper TEM cell by the National Physical Laboratory (NPL) reveals significant power loss within the cell (8.5% at 1.0 GHz), accompanied by slight heating of exposed samples (approximately 0.3 degrees C at 1.0 W). Thus, exposed samples are in fact slightly warmer (by microwaves (1.0 GHz and 0.5 W) in the silver-plated cell also show no detectable induction of reporter expression relative to sham controls in the copper cell. Thus, the 20% "microwave induction" observed using two copper cells may be caused by a small temperature difference between sham and exposed conditions. In worms incubated for 2.5 h at 26.0, 26.2, and 27.0 degrees C with no microwave field, there is a consistent and significant increase in reporter expression between 26.0 and 26.2 degrees C (by approximately 20% in each of the six independent runs), but paradoxically expression levels at 27.0 degrees C are similar to those seen at 26.0 degrees C. This surprising result is in line with other evidence pointing towards complex regulation of hsp16-1 gene expression across the sub-heat-shock range of 25-27.5 degrees C in C. elegans. We conclude that our original interpretation of a non-thermal effect of microwaves cannot be sustained; at least part of the explanation appears to be thermal.

  6. Artificial Neural Network-Based Monitoring of the Fuel Assembly Temperature Sensor and FPGA Implementation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    Numerous methods have been developed around the world to model the dynamic behavior and detect a faulty operating mode of a temperature sensor. In this context, we present in this study a new method based on the dependence between the fuel assembly temperature profile on control rods positions, and the coolant flow rate in a nuclear reactor. This seems to be possible since the insertion of control rods at different axial positions and variations in flow rate of the reactor coolant results in different produced thermal power in the reactor. This is closely linked to the instant fuel rod temperature profile. In a first step, we selected parameters to be used and confirmed the adequate correlation between the chosen parameters and those to be estimated by the proposed monitoring system. In the next step, we acquired and de-noised the data of corresponding parameters, the qualified data is then used to design and train the artificial neural network. The effective data denoising was done by using the wavelet transform to remove a various kind of artifacts such as inherent noise. With the suitable choice of wavelet level and smoothing method, it was possible for us to remove all the non-required artifacts with a view to verify and analyze the considered signal. In our work, several potential mother wavelet functions (Haar, Daubechies, Bi-orthogonal, Reverse Bi-orthogonal, Discrete Meyer and Symlets) were investigated to find the most similar function with the being processed signals. To implement the proposed monitoring system for the fuel rod temperature sensor (03 wire RTD sensor), we used the Bayesian artificial neural network 'BNN' technique to model the dynamic behavior of the considered sensor, the system correlate the estimated values with the measured for the concretization of the proposed system we propose an FPGA (field programmable gate array) implementation. The monitoring system use the correlation. (authors)

  7. Automatic underwater radiotelemetry system to monitor temperature responses of fish in a freshwater environment

    Energy Technology Data Exchange (ETDEWEB)

    Prepejchal, W.; Thommes, M.M.; Spigarelli, S.A.; Haumann, J.R.; Hess, P.E.

    1980-11-01

    An automated radiotelemetry system developed to monitor body and water temperature of free-swimming fish is described. The receiving and data acquisition unit can be programmed to monitor as many as 16 transmitters (fish); each transmitter can time-multiply data from up to 9 resistive transducers. A typical transmitter with saddle-type attachment, suitable for fish weighing 1 to over 10 kg, has a submerged weight of less than 10 g. The typical range is 2700 m for fish 1 m below the surface. Complete schematics and operational logic are provided for the receiver and data processing printed circuit boards, for 3 types of fish transmitters, and for an environmental parameter monitor. Construction methods, calibration and tagging procedures, and the required computer programs are detailed. This system was in operation for 3 years at the Point Beach Nuclear Power Plant, Two Creeks, Wisconsin. Of the 89 fish tagged, 77 fish provided useable body and water temperature information with tracking times ranging from 0.5 to 505 hours. Modifications which would further improve the system's reliability are discussed.

  8. Automatic underwater radiotelemetry system to monitor temperature responses of fish in a freshwater environment

    Energy Technology Data Exchange (ETDEWEB)

    Prepejchal, W.; Thommes, M.M.; Spigarelli, S.A.; Haumann, J.R.; Hess, P.E.

    1980-11-01

    An automated radiotelemetry system developed to monitor body and water temperature of free-swimming fish is described. The receiving and data acquisition unit can be programmed to monitor as many as 16 transmitters (fish); each transmitter can time-multiply data from up to 9 resistive transducers. A typical transmitter with saddle-type attachment, suitable for fish weighing 1 to over 10 kg, has a submerged weight of less than 10 g. The typical range is 2700 m for fish 1 m below the surface. Complete schematics and operational logic are provided for the receiver and data processing printed circuit boards, for 3 types of fish transmitters, and for an environmental parameter monitor. Construction methods, calibration and tagging procedures, and the required computer programs are detailed. This system was in operation for 3 years at the Point Beach Nuclear Power Plant, Two Creeks, Wisconsin. Of the 89 fish tagged, 77 fish provided useable body and water temperature information with tracking times ranging from 0.5 to 505 hours. Modifications which would further improve the system's reliability are discussed.

  9. Selective Cluster-Based Temperature Monitoring System for Homogeneous Wireless Sensor Networks

    Institute of Scientific and Technical Information of China (English)

    Sudhanshu Tyagi; Sudeep Tanwar; Sumit Kumar Gupta; Neeraj Kumar; Joel JPC Rodrigues

    2014-01-01

    Over the past few decades, there has been a revolution in ICT, and this has led to the evolution of wireless sensor networks (WSN), in particular, wireless body area networks. Such networks comprise a specialized collection of sensor nodes (SNs) that may be deployed randomly in a body area network to collect data from the human body. In a health monitoring system, it may be es-sential to maintain constant environmental conditions within a specific area in the hospital. In this paper, we propose a tempera-ture-monitoring system and describe a case study of a health-monitoring system for patents critically ill with the same disease and in the same environment. We propose Enhanced LEACH Selective Cluster (E-LEACH-SC) routing protocol for monitoring the tem-perature of an area in a hospital. We modified existing Selective Cluster LEACH protocol by using a fixed-distance-based thresh-old to divide the coverage region in two subregions. Direct data transmission and selective cluster-based data transmission ap-proaches were used to provide short-range and long-distance coverage for the collection of data from the body of ill patients. Ex-tensive simulations were run by varying the ratio of node densities of the two subregions in the health-monitoring system. Last Node Alive (LNA), which is a measure of network lifespan, was the parameter for evaluating the performance of the proposed scheme. The simulation results show that the proposed scheme significantly increases network lifespan compared with traditional LEACH and LEACH-SC protocols, which by themselves improve the overall performance of the health-monitoring system.

  10. Transcutaneous Carbon Dioxide Monitoring with Reduced-Temperature Probes in Very Low Birth Weight Infants.

    Science.gov (United States)

    Aly, Safwat; El-Dib, Mohamed; Mohamed, Mohamed; Aly, Hany

    2017-04-01

    Background Obtaining blood gases in very low birth weight (VLBW) infants is an invasive procedure. Studies using transcutaneous carbon dioxide (tcPCO2) have reported variable skin complications with high-temperature probes. No enough data available on tcPCO2 monitoring using reduced-temperature probes (41°C). Objective The objective of this study was to assess reliability and safety of tcPCO2 monitoring at reduced-temperature probe in VLBW infants. Design and Methods A prospective study was conducted on VLBW infants. tcPCO2 was monitored for 12 hours. Default skin probe temperature was adjusted at 41°C. Blood gases were done as clinically indicated. Arterial partial pressure of CO2 (PaCO2) as well as capillary CO2 were compared with simultaneous tcPCO2. Results A total of 124 data points were identified from 50 patients (gestational age [GA] = 28.1 ± 2.4 weeks and birth weight [BW] = 1,035 ± 291 g). Patients were supported with continuous positive airway pressure (40%), noninvasive positive pressure ventilation (16%), mechanical ventilation (18%), and high-frequency oscillation ventilation (24%). PaCO2 was measured using either capillary (58%) or arterial (42%) samples. Mean CO2 did not differ between tcPCO2 (51.3 ± 16) and PaCO2 (49.1 ± 13.7) mm Hg. tcPCO2 showed positive correlation with partial pressure of CO2 (r = 0.6, p < 0.001). This correlation continued to be significant after controlling for GA, postmenstrual age, type of sample, and pH. No skin complications were reported. Conclusion tcPCO2 monitoring using a temperature of 41°C is feasible and reliable in VLBW infants. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  11. Kinetics of pulpal temperature rise during light curing of 6 bonding agents from different generations, using light emitting diode and quartz-tungsten-halogen units: An in-vitro simulation

    Science.gov (United States)

    Khaksaran, Najmeh Khatoon; Kashi, Tahereh Jafarzadeh; Rakhshan, Vahid; Zeynolabedin, Zahra Sadat; Bagheri, Hossein

    2015-01-01

    Background: Application of bonding agents (BA) into deep cavities and light curing them might increase pulpal temperature and threaten its health. The purpose of this study was to evaluate temperature rise of pulp by light curing six BA using two different light curing units (LCU), through a dent in wall of 0.5 mm. Materials and Methods: This in vitro experiment was carried out on 96 slices of the same number of human third molars (6 BAs × 2 LCUs × 8 specimens in each group). There were 6 groups of BAs: N Bond, G-Bond, OptiBond XTR, Clearfil SE, Adper Single Bond 2 and V Bond. Each group of BA (n = 16) had two subgroups of light emitting diode (LED) and quartz-tungsten-halogen light cure units (n = 8). Each of these 16 specimens were subjected to light emitting for 20 s, once without any BAs (control) and later when a BA was applied to surface of disk. Temperature rises in 140 s were evaluated. Their mean temperature change in first 20 s were calculated and analyzed using two-way repeated-measures and one-way analysis of variance (ANOVA) and Tukey (α = 0.05). Furthermore rate of temperature increase was calculated for each material and LCU. Results: Minimum and maximum temperature rises in all subgroups were 1.7 and 2.8°C, respectively. Repeated measures ANOVA showed that both of adhesive and LCU types had significant effect on temperature rise after application of adhesives. Tukey post-hoc analysis showed Clearfil SE showed significantly higher temperature rise in comparison with Adper Single bond 2 (P = 0.047) and N Bond (P = 0.038). Temperature rose in a linear fashion during first 30-40 s and after that it was non-linear. Conclusion: 20 s of light curing seems safe for pulpal health (with critical threshold of 5.5°C). However, in longer durations and especially when using LED units, the process should be broken to two sessions. PMID:25878684

  12. Kinetics of pulpal temperature rise during light curing of 6 bonding agents from different generations, using light emitting diode and quartz-tungsten-halogen units: An in-vitro simulation

    Directory of Open Access Journals (Sweden)

    Najmeh Khatoon Khaksaran

    2015-01-01

    Full Text Available Background: Application of bonding agents (BA into deep cavities and light curing them might increase pulpal temperature and threaten its health. The purpose of this study was to evaluate temperature rise of pulp by light curing six BA using two different light curing units (LCU, through a dent in wall of 0.5 mm. Materials and Methods: This in vitro experiment was carried out on 96 slices of the same number of human third molars (6 BAs × 2 LCUs × 8 specimens in each group. There were 6 groups of BAs: N Bond, G-Bond, OptiBond XTR, Clearfil SE, Adper Single Bond 2 and V Bond. Each group of BA (n = 16 had two subgroups of light emitting diode (LED and quartz-tungsten-halogen light cure units (n = 8. Each of these 16 specimens were subjected to light emitting for 20 s, once without any BAs (control and later when a BA was applied to surface of disk. Temperature rises in 140 s were evaluated. Their mean temperature change in first 20 s were calculated and analyzed using two-way repeated-measures and one-way analysis of variance (ANOVA and Tukey (α = 0.05. Furthermore rate of temperature increase was calculated for each material and LCU. Results: Minimum and maximum temperature rises in all subgroups were 1.7 and 2.8°C, respectively. Repeated measures ANOVA showed that both of adhesive and LCU types had significant effect on temperature rise after application of adhesives. Tukey post-hoc analysis showed Clearfil SE showed significantly higher temperature rise in comparison with Adper Single bond 2 (P = 0.047 and N Bond (P = 0.038. Temperature rose in a linear fashion during first 30-40 s and after that it was non-linear. Conclusion: 20 s of light curing seems safe for pulpal health (with critical threshold of 5.5°C. However, in longer durations and especially when using LED units, the process should be broken to two sessions.

  13. High temperature monitoring of silicon carbide ceramics by confocal energy dispersive X-ray fluorescence spectrometry

    Science.gov (United States)

    Li, Fangzuo; Liu, Zhiguo; Sun, Tianxi

    2016-04-01

    In the present work, we presented an alternative method for monitoring of the oxidation situation of silicon carbide (SiC) ceramics at various high temperatures in air by measuring the Compton-to-Rayleigh intensity ratios (ICo/IRa) and effective atomic numbers (Zeff) of SiC ceramics with the confocal energy dispersive X-ray fluorescence (EDXRF) spectrometer. A calibration curve of the relationship between ICo/IRa and Zeff was established by using a set of 8 SiC calibration samples. The sensitivity of this approach is so high that it can be easily distinguished samples of Zeff differing from each other by only 0.01. The linear relationship between the variation of Zeff and the variations of contents of C, Si and O of SiC ceramics were found, and the corresponding calculation model of the relationship between the ΔZ and the ΔCC, ΔCSi, and ΔCO were established. The variation of contents of components of the tested SiC ceramics after oxidation at high temperature was quantitatively calculated based on the model. It was shown that the results of contents of carbon, silicon and oxygen obtained by this method were in good agreement with the results obtained by XPS, giving values of relative deviation less than 1%. It was concluded that the practicality of this proposed method for monitoring of the oxidation situation of SiC ceramics at high temperatures was acceptable.

  14. Structural health monitoring of localized internal corrosion in high temperature piping for oil industry

    Science.gov (United States)

    Eason, Thomas J.; Bond, Leonard J.; Lozev, Mark G.

    2015-03-01

    Crude oil is becoming more corrosive with higher sulfur concentration, chloride concentration, and acidity. The increasing presence of naphthenic acids in oils with various environmental conditions at temperatures between 150°C and 400°C can lead to different internal degradation morphologies in refineries that are uniform, non-uniform, or localized pitting. Improved corrosion measurement technology is needed to better quantify the integrity risk associated with refining crude oils of higher acid concentration. This paper first reports a consolidated review of corrosion inspection technology to establish the foundation for structural health monitoring of localized internal corrosion in high temperature piping. An approach under investigation is to employ flexible ultrasonic thin-film piezoelectric transducer arrays fabricated by the sol-gel manufacturing process for monitoring localized internal corrosion at temperatures up to 400°C. A statistical analysis of sol-gel transducer measurement accuracy using various time of flight thickness calculation algorithms on a flat calibration block is demonstrated.

  15. Exploration of ion temperature profile measurements at JET using the upgraded neutron profile monitor

    Energy Technology Data Exchange (ETDEWEB)

    Marocco, D.; Esposito, B.; Riva, M. [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, C.P. 65, Frascati I-00044, Roma (Italy); Collaboration: JET-EFDA Contributors

    2012-10-15

    The neutron profile monitor (NPM), routinely used at the Joint European Torus for neutron emissivity profile measurements, consists of two fan-shaped arrays of collimators and each line of sight (LOS) is equipped with a NE213 liquid organic scintillator for simultaneous measurements of the 2.5 MeV and 14 MeV neutrons. A digital system developed in ENEA has replaced the analog acquisition electronics and now enables the NPM to perform spatially resolved neutron spectrometry by providing neutron pulse height spectra (PHS) for each LOS. However, the NPM was not originally designed as a spectrometer and, therefore, lacks several key features, such as detailed measurements of the detector response functions and the presence of detector stability monitors. We present a proof of principle of ion temperature profile measurements derived from the NPM PHS in high plasma current discharges using simulated detector response functions.

  16. High temperature monitoring of silicon carbide ceramics by confocal energy dispersive X-ray fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fangzuo; Liu, Zhiguo; Sun, Tianxi, E-mail: stx@bnu.edu.cn

    2016-04-15

    Highlights: • X-ray scattering was used for monitoring oxidation situation of SiC ceramics. • A calibration curve was obtained. • The confocal X-ray scattering technology was based on polycapillary X-ray optics. • The variations of contents of components of SiC ceramics were obtained. - Abstract: In the present work, we presented an alternative method for monitoring of the oxidation situation of silicon carbide (SiC) ceramics at various high temperatures in air by measuring the Compton-to-Rayleigh intensity ratios (I{sub Co}/I{sub Ra}) and effective atomic numbers (Z{sub eff}) of SiC ceramics with the confocal energy dispersive X-ray fluorescence (EDXRF) spectrometer. A calibration curve of the relationship between I{sub Co}/I{sub Ra} and Z{sub eff} was established by using a set of 8 SiC calibration samples. The sensitivity of this approach is so high that it can be easily distinguished samples of Z{sub eff} differing from each other by only 0.01. The linear relationship between the variation of Z{sub eff} and the variations of contents of C, Si and O of SiC ceramics were found, and the corresponding calculation model of the relationship between the ΔZ and the ΔC{sub C}, ΔC{sub Si}, and ΔC{sub O} were established. The variation of contents of components of the tested SiC ceramics after oxidation at high temperature was quantitatively calculated based on the model. It was shown that the results of contents of carbon, silicon and oxygen obtained by this method were in good agreement with the results obtained by XPS, giving values of relative deviation less than 1%. It was concluded that the practicality of this proposed method for monitoring of the oxidation situation of SiC ceramics at high temperatures was acceptable.

  17. An inductively powered telemetry system for temperature, EKG, and activity monitoring

    Science.gov (United States)

    Fryer, T. B.; Lund, G. F.; Williams, B. A.

    1978-01-01

    An implant telemetry system for the simultaneous monitoring of temperature, activity, and EKG from small animals, such as rats, was designed with the feature that instead of a battery the system is energized by an inductive field. A 250 kHz resonant coil surrounds the cage (30 x 30 x 20 cm) and provides the approximately 100 microns of power required to operate the implant transmitter while allowing the animal unrestrained movement in the cage. The implant can also be battery operated if desired. RF transmission is in the 8-10 MHz band, which allows the use of a simple, essentially single IC chip, receiver.

  18. FBG system for temperature monitoring under electromagnetic immersed and harsh oil and gas reservoir environment

    Science.gov (United States)

    Villnow, Michael; Bosselmann, Thomas; Willsch, Michael; Kaiser, Joachim

    2014-05-01

    A common way to explore oil out of tar sand is to use a technique called Steam Assisted Gravity Drainage SAGD. This method can be enhanced by using an inductive heater (EM-SAGD). To monitor the heat dissipation of the inductor a measurement system for this harsh electromagnetic environment is needed. In this paper different optical temperature measurement systems are compared to find the most suitable system for this kind of application. A field test with great results was performed, where the performance of the inductor and the FBG measurement system were demonstrated.

  19. Assessing Static Performance of the Dashengguan Yangtze Bridge by Monitoring the Correlation between Temperature Field and Its Static Strains

    OpenAIRE

    Gao-Xin Wang; You-Liang Ding; Peng Sun; Lai-Li Wu; Qing Yue

    2015-01-01

    Taking advantage of the structural health monitoring system installed on the steel truss arch girder of Dashengguan Yangtze Bridge, the temperature field data and static strain data are collected and analyzed for the static performance assessment of the bridge. Through analysis, it is found that the static strain changes are mainly caused by temperature field (temperature and temperature difference) and train. After the train-induced static strains are removed, the correlation between the rem...

  20. Numerical Evaluation of Seepage Monitoring in Embankment Dams Utilizing Temperature Method

    Directory of Open Access Journals (Sweden)

    Mohammad Amin Kalantari

    2016-06-01

    Full Text Available Dams are an important part of this nation’s infrastructure. When populations at risk are located close to a dam, it is important to accurately predict the breach outflow hydrograph and its timing relative to events in the failure process that could trigger the start of evacuation efforts. Surge waves resulting from dam breaks have been responsible for numerous losses of life. Sudden reservoir drawdown caused by partial breach of a dam can create a surge within the reservoir. Positive and negative surges are generally observed in open channels. Positive surges that occur due to tidal origins are referred to as tidal bores. They also occur upstream of a control structure that is opened rapidly or the failure time is very low. For a stationary observer the negative surge appears to be a gentle lowering of the free surface. Methods of seepage monitoring and assessment can play a critical role in the field of embankment dams’ safety. Increased seepage could simultaneously be occurred with internal erosion. Internal erosion is known as one of the main reasons of dam failure, causes increased seepage due to loss of fine grain sizes. As a result, seepage monitoring system is substantial part of embankment dams monitoring system. Gradually, internal erosion progresses in the dam and is difficult to be detected by conventional methods. Many of seepage measurement systems are not sensitive enough to detect small variations in seepage flow. Measurement of temperature is one of the most affordable methods in embankment dams seepage monitoring. Monitoring and examination of dams could be carried out benefiting built-in accessories, borehole method, non-destructive test methods and etc. In this research, different methods of seepage monitoring in embankment dams are investigated concentrating on temperature method. Among others, temperature is one of the most important physical parameters that depend directly on internal erosion. Thermometry therefore

  1. Monitoring Lake Temperature at Kodiak, Togiak and Alaska Peninsula/Becharof National Wildlife Refuges: 2011 Progress Report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Instrument arrays were established to conduct long-term, all-season monitoring of water temperature at eight lakes on Kodiak, Togiak, and Alaska Peninsula/Becharof...

  2. Design and development of long-period grating sensors for temperature monitoring

    Indian Academy of Sciences (India)

    Smita Chaubey; Purushottam Joshi; Manoj Kumar; Rajesh Arya; A K Nath; Sanjay Kher

    2007-10-01

    Long Period Gratings (LPGs) have been developed using carbon dioxide laser in a standard optical fibre. LPGs with a periodicity of 600 m and grating length of 24 mm have been inscribed on standard single mode fibre. Such gratings have been used in designing temperature sensors and temperature is monitored up to 80°C. The sensitivity of such type of sensor is 0·06 nm/° C where as for standard Fibre Bragg Grating (FBG) it is 0·011 nm/°C. The LPG performance is also evaluated after -ray irradiation for total dose of 5 KGy and has not shown any effect on transmission spectrum.

  3. Distributed Wireless Monitoring System for Ullage and Temperature in Wine Barrels

    Science.gov (United States)

    Zhang, Wenqi; Skouroumounis, George K.; Monro, Tanya M.; Taylor, Dennis K.

    2015-01-01

    This paper presents a multipurpose and low cost sensor for the simultaneous monitoring of temperature and ullage of wine in barrels in two of the most important stages of winemaking, that being fermentation and maturation. The distributed sensor subsystem is imbedded within the bung of the barrel and runs on battery for a period of at least 12 months and costs around $27 AUD for all parts. In addition, software was designed which allows for the remote transmission and easy visual interpretation of the data for the winemaker. Early warning signals can be sent when the temperature or ullage deviates from a winemakers expectations so remedial action can be taken, such as when topping is required or the movement of the barrels to a cooler cellar location. Such knowledge of a wine’s properties or storage conditions allows for a more precise control of the final wine quality. PMID:26266410

  4. Dynamic Drought Monitoring in Guangxi Using Revised Temperature Vegetation Dryness Index

    Institute of Scientific and Technical Information of China (English)

    LU Yuan; TAG Heping; WU Hua

    2007-01-01

    Moderate resolution imaging spectroradiometer (MODIS) data are very suitable for vast extent, long term and dynamic drought monitoring for its high temporal resolution, high spectral resolution and moderate spatial resolution. The composite Enhanced Vegetation Index (EVI) and composite land surface temperature (Ts) obtained from MODIS data MOD11A2 and MOD13A2 were used to construct the EVI-rs space. And Temperature Vegetation Dryness Index (TVDI) was calculated to evaluate the agriculture drought in Guangxi province, China in October of 2006. The results showed that the drought area in Guangxi was evidently increasing and continuously deteriorating from the middle of September to the middle of November. The TVDI, coming from the EVI-rs space, could effectively indicate the spatial distribution and temporal evolution of drought, so that it could provide a strong technical support for the forecasting agricultural drought in south China.

  5. Fiber Bragg Grating Measuring System for Simultaneous Monitoring of Temperature and Humidity in Mechanical Ventilation

    Directory of Open Access Journals (Sweden)

    Carlo Massaroni

    2017-04-01

    Full Text Available During mechanical ventilation, the humidification of the dry air delivered by the mechanical ventilator is recommended. Among several solutions, heated wire humidifiers (HWHs have gained large acceptance to be used in this field. The aim of this work is to fabricate a measuring system based on fiber Bragg grating (FBG for the simultaneous monitoring of gas relative humidity (RH and temperature, intended to be used for providing feedback to the HWHs’ control. This solution can be implemented using an array of two FBGs having a different center wavelength. Regarding RH monitoring, three sensors have been fabricated by coating an FBG with two different moisture-sensitive and biocompatible materials: the first two sensors were fabricated by coating the grating with a 3 mm × 3 mm layer of agar and agarose; to investigate the influence of the coating thickness to the sensor response, a third sensor was developed with a 5 mm × 5 mm layer of agar. The sensors have been assessed in a wide range of RH (up to 95% during both an ascending and a subsequent descending phase. Only the response of the 3 mm × 3 mm-coated sensors were fast enough to follow the RH changes, showing a mean sensitivity of about 0.14 nm/% (agar-coated and 0.12 nm/% (agarose-coated. The hysteresis error was about <10% in the two sensors. The contribution of temperature changes on these RH sensors was negligible. The temperature measurement was performed by a commercial FBG insensitive to RH changes. The small size of these FBG-based sensors, the use of biocompatible polymers, and the possibility to measure both temperature and RH by using the same fiber optic embedding an array of two FBGs make intriguing the use of this solution for application in the control of HWHs.

  6. Fatigue monitoring and analysis of orthotropic steel deck considering traffic volume and ambient temperature

    Institute of Scientific and Technical Information of China (English)

    SONG; YongSheng; DING; YouLiang

    2013-01-01

    Fatigue has gradually become a serious issue for orthotropic steel deck used for long-span bridges. Two fatigue effects, namely number of stress cycles and equivalent stress amplitude, were introduced as investigated parameters in this paper. Investigation was focused on their relationships with traffic volume and ambient temperature by using 7-months fatigue monitoring data of an actual bridge. A fatigue analytical model considering temperature-induced changes in material property of asphalt pavement was established for verifying these relationships. The analysis results revealed that the number of stress cycles and equivalent stress amplitude showed a linear correlation with the traffic volume and ambient temperature, respectively, and that the rib-to-deck welded joint was much more sensitive to the traffic volume and ambient temperature than the rib-to-rib welded joint. The applicability of the code-recommended model for fatigue vehicle loading was also discussed, which revealed that the deterministic vehicle loading model requires improvement to account for significant randomness of the actual traffic conditions.

  7. Monitoring temperatures in coal conversion and combustion processes via ultrasound. [Ultrasonic thermometry proposal

    Energy Technology Data Exchange (ETDEWEB)

    Gopalsami, N.; Raptis, A. C.; Mulcahey, T. P.

    1980-02-01

    A study of the state-of-the-art of instrumentation for monitoring temperatures in coal conversion and combustion systems has been carried out. The instrumentation types studied include Thermocouples, Radiation Pyrometers, and Acoustical Thermometers. The capabilities and limitations of each type are reviewed. The study determined that ultrasonic thermometry has the potential of providing viable instrumentation. Consequently, a feasibility study of the ultrasonic thermometry was undertaken. A mathematical model of a pulse-echo ultrasonic temperature measurement system is developed using linear system theory. The mathematical model lends itself to the adaptation of generalized correlation techniques for the estimation of propagation delays. Computer simulations are made to test the efficacy of the signal processing techniques for noise-free as well as noisy signals. Based on the theoretical study, acoustic techniques to measure temperature in reactors and combustors are feasible. To experimentally verify the technique it is needed (a) to test the available sensor materials at high temperatures under erosive and corrosive conditions and (b) upon the selection of the appropriate sensor material to validate the proposed signal processing technique. The base for the applicability of this technique will be the frequency of operation, which will determine the length of the sensor and the noise background at the frequency of interest. It is, however, believed that the proposed technique will provide reliable estimates under the noise background.

  8. Characterizing the Air Temperature Drop in Mediterranean Courtyards from Monitoring Campaigns

    Directory of Open Access Journals (Sweden)

    Enrique Ángel Rodríguez Jara

    2017-08-01

    Full Text Available As microclimate modifiers, courtyards may be a good passive strategy for enhancing thermal comfort and reducing the energy demands of buildings. Thus, it is necessary to be able to quantify their tempering effect in dominant summer climates. This is frequently done using calculation methods based on CFD, but these have the drawback of their high computational cost and complexity, so their use is limited to advanced users with a high level of knowledge. Thus, an alternative is required based on a simplified method that can explain and predict the air temperature drop in courtyards. This would be extremely useful for professionals looking for the optimal design of this kind of space through energy assessment programs integrating these methods. This study proposes a simplified method of characterization that aims to identify the functional dependencies of the decrease in air temperatures in courtyards, and so to predict the air temperature inside them from that outside, if available. From the results of several experimental campaigns, three variables have been identified that characterize the decrease in the air temperature in courtyards, all of which depend on the confinement factor of the courtyard. Finally, the proposed predictive method was validated by means of an additional monitoring campaign. The results show a good fit of the calculated values to the measured ones, R2 being equal to 0.98.

  9. Internal and External Temperature Monitoring of a Li-Ion Battery with Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    Susana Novais

    2016-08-01

    Full Text Available The integration of fiber Bragg grating (FBG sensors in lithium-ion cells for in-situ and in-operando temperature monitoring is presented herein. The measuring of internal and external temperature variations was performed through four FBG sensors during galvanostatic cycling at C-rates ranging from 1C to 8C. The FBG sensors were placed both outside and inside the cell, located in the center of the electrochemically active area and at the tab-electrode connection. The internal sensors recorded temperature variations of 4.0 ± 0.1 °C at 5C and 4.7 ± 0.1 °C at 8C at the center of the active area, and 3.9 ± 0.1 °C at 5C and 4.0 ± 0.1 °C at 8C at the tab-electrode connection, respectively. This study is intended to contribute to detection of a temperature gradient in real time inside a cell, which can determine possible damage in the battery performance when it operates under normal and abnormal operating conditions, as well as to demonstrate the technical feasibility of the integration of in-operando microsensors inside Li-ion cells.

  10. Novel Concrete Temperature Monitoring Method Based on an Embedded Passive RFID Sensor Tag.

    Science.gov (United States)

    Liu, Yongsheng; Deng, Fangming; He, Yigang; Li, Bing; Liang, Zhen; Zhou, Shuangxi

    2017-06-22

    This paper firstly introduces the importance of temperature control in concrete measurement, then a passive radio frequency identification (RFID) sensor tag embedded for concrete temperature monitoring is presented. In order to reduce the influences of concrete electromagnetic parameters during the drying process, a T-type antenna is proposed to measure the concrete temperature at the required depth. The proposed RFID sensor tag is based on the EPC generation-2 ultra-high frequency (UHF) communication protocol and operates in passive mode. The temperature sensor can convert the sensor signals to corresponding digital signals without an external reference clock due to the adoption of phase-locked loop (PLL)-based architecture. Laboratory experimentation and on-site testing demonstrate that our sensor tag embedded in concrete can provide reliable communication performance in passive mode. The maximum communicating distance between reader and tag is 7 m at the operating frequency of 915 MHz and the tested results show high consistency with the results tested by a thermocouple.

  11. Novel Concrete Temperature Monitoring Method Based on an Embedded Passive RFID Sensor Tag

    Directory of Open Access Journals (Sweden)

    Yongsheng Liu

    2017-06-01

    Full Text Available This paper firstly introduces the importance of temperature control in concrete measurement, then a passive radio frequency identification (RFID sensor tag embedded for concrete temperature monitoring is presented. In order to reduce the influences of concrete electromagnetic parameters during the drying process, a T-type antenna is proposed to measure the concrete temperature at the required depth. The proposed RFID sensor tag is based on the EPC generation-2 ultra-high frequency (UHF communication protocol and operates in passive mode. The temperature sensor can convert the sensor signals to corresponding digital signals without an external reference clock due to the adoption of phase-locked loop (PLL-based architecture. Laboratory experimentation and on-site testing demonstrate that our sensor tag embedded in concrete can provide reliable communication performance in passive mode. The maximum communicating distance between reader and tag is 7 m at the operating frequency of 915 MHz and the tested results show high consistency with the results tested by a thermocouple.

  12. HadISDH land surface multi-variable humidity and temperature record for climate monitoring

    Directory of Open Access Journals (Sweden)

    K. M. Willett

    2014-06-01

    Full Text Available HadISDH.2.0.0 is the first gridded, multi-variable humidity and temperature climate-data product that is homogenised and annually updated. It provides physically consistent estimates for specific humidity, vapour pressure, relative humidity, dew point temperature, wet bulb temperature, dew point depression and temperature. It is a monthly-mean gridded (5° by 5° product with uncertainty estimates that account for spatio-temporal sampling, climatology calculation, homogenisation and irreducible random measurement effects. It provides a unique tool for the monitoring of a variety of humidity-related variables which have different impacts and implications for society. HadISDH.2.0.0 is shown to be in good agreement both with other estimates where they are available, and with theoretical understanding. The dataset is available from 1973 to the present. The theme common to all variables is of a warming world with more water vapour present in the atmosphere. The largest increases in water vapour are found over the tropics and Mediterranean. Over the tropics and high northern latitudes the surface air over land is becoming more saturated. However, despite increasing water vapour over the mid-latitudes and Mediterranean, the surface air over land is becoming less saturated. These observed features may be due to atmospheric circulation changes, land–sea warming disparities and reduced water availability or changed land surface properties.

  13. Internal and External Temperature Monitoring of a Li-Ion Battery with Fiber Bragg Grating Sensors.

    Science.gov (United States)

    Novais, Susana; Nascimento, Micael; Grande, Lorenzo; Domingues, Maria Fátima; Antunes, Paulo; Alberto, Nélia; Leitão, Cátia; Oliveira, Ricardo; Koch, Stephan; Kim, Guk Tae; Passerini, Stefano; Pinto, João

    2016-08-30

    The integration of fiber Bragg grating (FBG) sensors in lithium-ion cells for in-situ and in-operando temperature monitoring is presented herein. The measuring of internal and external temperature variations was performed through four FBG sensors during galvanostatic cycling at C-rates ranging from 1C to 8C. The FBG sensors were placed both outside and inside the cell, located in the center of the electrochemically active area and at the tab-electrode connection. The internal sensors recorded temperature variations of 4.0 ± 0.1 °C at 5C and 4.7 ± 0.1 °C at 8C at the center of the active area, and 3.9 ± 0.1 °C at 5C and 4.0 ± 0.1 °C at 8C at the tab-electrode connection, respectively. This study is intended to contribute to detection of a temperature gradient in real time inside a cell, which can determine possible damage in the battery performance when it operates under normal and abnormal operating conditions, as well as to demonstrate the technical feasibility of the integration of in-operando microsensors inside Li-ion cells.

  14. Novel Wireless Sensor System for Monitoring Oxygen, Temperature and Respiration Rate of Horticultural Crops Post Harvest

    Directory of Open Access Journals (Sweden)

    Ole Green

    2011-08-01

    Full Text Available In order to design optimal packages, it is of pivotal importance to determine the rate at which harvested fresh fruits and vegetables consume oxygen. The respiration rate of oxygen (RRO2 is determined by measuring the consumed oxygen per hour per kg plant material, and the rate is highly influenced by temperature and gas composition. Traditionally, RRO2 has been determined at discrete time intervals. In this study, wireless sensor networks (WSNs were used to determine RRO2 continuously in plant material (fresh cut broccoli florets at 5 °C, 10 °C and 20 °C and at modified gas compositions (decreasing oxygen and increasing carbon dioxide levels. Furthermore, the WSN enabled concomitant determination of oxygen and temperature in the very close vicinity of the plant material. This information proved a very close relationship between changes in temperature and respiration rate. The applied WSNs were unable to determine oxygen levels lower than 5% and carbon dioxide was not determined. Despite these drawbacks in relation to respiration analysis, the WSNs offer a new possibility to do continuous measurement of RRO2 in post harvest research, thereby investigating the close relation between temperature and RRO2. The conclusions are that WSNs have the potential to be used as a monitor of RRO2 of plant material after harvest, during storage and packaging, thereby leading to optimized consumer products.

  15. Elevated Temperature Sensors for On-Line Critical Equipment Health Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    James Sebastian

    2003-09-29

    The objective of this research program is to improve high temperature piezoelectric aluminum nitride (AlN) sensor technology to make it useful for instrumentation and health monitoring of current and future electrical power generation equipment. The program will extend the temperature range of the sensor from approximately 700 C to above 1000 C, and ultrasonic coupling to objects at these temperatures will be investigated and tailored for use with the sensor. The chemical vapor deposition (CVD) AlN deposition process was successfully transferred from film production on tungsten carbide substrates to titanium alloy and silicon carbide (SiC) substrates. Further evaluation of the piezoelectric films on titanium caused it to be discarded as a candidate material due to an excessive thermal expansion coefficient mismatch, causing film failure upon reheating from room temperature. Deposition on SiC is proceeding well, with a highly conductive grade of silicon carbide required for practical use. Additional substrate materials, including refractory metals and conductive ceramics, have been considered but are generally not promising in light of the experience with titanium. Pulsed laser deposition (PLD) was investigated as an alternate means of creating the films as an alternative to CVD. A concurrent effort has focused on investigation of means of coupling ultrasound from the sensor into the test object at high temperature. A literature search combined with preliminary experimentation has resulted in the selection of two methods for coupling: low melting point glasses and metal foil- pressure couplant. The work in the next two years of the program will include continued improvement of the CVD deposition process, experimental testing of films and coupling at high temperatures, and a laboratory demonstration of the sensor in a simulated industrial application

  16. Study on Infrared Temperature Rising of Polyurethane Foams Under Compression Loading%聚氨酯泡沫塑料在压缩加载过程的红外辐射研究

    Institute of Scientific and Technical Information of China (English)

    周红萍; 温茂萍; 李丽; 张伟斌

    2009-01-01

    对5种不同密度的聚氨酯泡沫塑料进行了等应变速率的单轴压缩加载实验,监测了过程中的红外辐射信息变化规律.实验结果表明:聚氨酯泡沫塑料在压缩加载过程中,前期表现为整体温升,后期红外辐射温度增幅变大,并在样品中间出现局部升温更显著的特征.样品的升温幅度与其密度存在正相关的线性关系.0.5g/cm~3的聚氨酯泡沫塑料在压缩至25%应变时温升达到了1.8℃.%The uniaxial compression loading experiments under constant rate of five kinds of polyurethane foams of different densities were undone,and infrared radiation was tested in the compression progress.The result shows that the polyurethane foams samples have slowly intergrate temperature rising in the early period,while the amplification of infrared radiation temperature rising was increased and samples had local heat pots in the middle of samples in the later period.The temperature rising have linear relationship with samples'densities.The temperature rising of polyurethane foams with density of 0.5g/cm~3 is up to 1.8℃while polyurethane foams is compressed to 25%.

  17. Magnetotelluric and temperature monitoring after the 2011 sub-Plinian eruptions of Shinmoe-dake volcano

    Science.gov (United States)

    Aizawa, Koki; Koyama, Takao; Uyeshima, Makoto; Hase, Hideaki; Hashimoto, Takeshi; Kanda, Wataru; Yoshimura, Ryokei; Utsugi, Mitsuru; Ogawa, Yasuo; Yamazaki, Ken'ichi

    2013-06-01

    Three sub-Plinian eruptions took place on 26-27 January 2011 at Shinmoe-dake volcano in the Kirishima volcanic group, Japan. During this event, GPS and tiltmeters detected syn-eruptive ground subsidence approximately 7 km to the WNW of the volcano. Starting in March 2011, we conducted broad-band magnetotelluric (MT) measurements at a site located 5 km NNW of the volcano, beneath which the Shinmoe-dake magma plumbing system may exist. In addition, temperature monitoring of fumaroles and hot-springs near the MT site was initiated in July 2011. Our MT data record changes in apparent resistivity of approximately ±5%, along with a ±1° phase change in the off-diagonal component of the impedance tensor ( Z xy and Z yx ). Using 1-D inversion, we infer that these slight changes in resistivity took place at relatively shallow depths of only a few hundred meters, at the transition between a near-surface resistive layer and an underlying conductive layer. Resistivity changes observed since March 2012 are correlated with the observed temperature increases around the MT monitoring site. These observations suggest the existence beneath the MT site of pathways which enable volatile escape.

  18. An agronomic field-scale sensor network for monitoring soil water and temperature variation

    Science.gov (United States)

    Brown, D. J.; Gasch, C.; Brooks, E. S.; Huggins, D. R.; Campbell, C. S.; Cobos, D. R.

    2014-12-01

    Environmental sensor networks have been deployed in a variety of contexts to monitor plant, air, water and soil properties. To date, there have been relatively few such networks deployed to monitor dynamic soil properties in cropped fields. Here we report on experience with a distributed soil sensor network that has been deployed for seven years in a research farm with ongoing agronomic field operations. The Washington State University R. J. Cook Agronomy Farm (CAF), Pullman, WA, USA has recently been designated a United States Department of Agriculture (USDA) Long-Term Agro-Ecosystem Research (LTAR) site. In 2007, 12 geo-referenced locations at CAF were instrumented, then in 2009 this network was expended to 42 locations distributed across the 37-ha farm. At each of this locations, Decagon 5TE probes (Decagon Devices Inc., Pullman, WA, USA) were installed at five depths (30, 60, 90, 120, and 150 cm), with temperature and volumetric soil moisture content recorded hourly. Initially, data loggers were wirelessly connected to a data station that could be accessed through a cell connection, but due to the logistics of agronomic field operations, we later buried the dataloggers at each site and now periodically download data via local radio transmission. In this presentation, we share our experience with the installation, maintenance, calibration and data processing associated with an agronomic soil monitoring network. We also present highlights of data derived from this network, including seasonal fluctuations of soil temperature and volumetric water content at each depth, and how these measurements are influenced by crop type, soil properties, landscape position, and precipitation events.

  19. Flat Branch monitoring project: stream water temperature and sediment responses to forest cutting in the riparian zone

    Science.gov (United States)

    Barton D. Clinton; James M. Vose; Dick L. Fowler

    2010-01-01

    Stream water protection during timber-harvesting activities is of primary interest to forest managers. In this study, we examine the potential impacts of riparian zone tree cutting on water temperature and total suspended solids. We monitored stream water temperature and total suspended solids before and after timber harvesting along a second-order tributary of the...

  20. Monitoring colony phenology using within-day variability in continuous weight and temperature of honey bee hives

    Science.gov (United States)

    Continuous weight and temperature data were collected for honey bee hives in two locations in Arizona, and those data were evaluated with respect to separate measurements of hive phenology to develop methods for monitoring hives non-invasively. Both the weight and temperature data were divided into ...

  1. HotSense: a high temperature piezoelectric platform for sensing and monitoring in extreme environments (Conference Presentation)

    Science.gov (United States)

    Stevenson, Tim; Wines, Thomas; Martin, David; Vickers, William; Laws, Michael

    2016-04-01

    Effective monitoring of asset integrity subject to corrosion and erosion while minimizing the exposure of personnel to difficult and hazardous working environments has always been a major problem in many industries. One solution of this problem is permanently installed ultrasonic monitoring equipment which can continuously provide information on the rate of corrosion or cracking, even in the most severe environments and at extreme temperatures to prevent the need for shutdown. Here, a permanently installed 5 MHz ultrasonic monitoring system based on our HotSense® technology is designed and investigated. The system applicability for wall thickness, crack monitoring and weld inspection in high temperature environments is demonstrated through experimental studies on a range of Schedule 40 pipes at temperatures up to 350 °C continuously. The applicability for this technology to be distributed to Aerospace and Nuclear sectors are also explored and preliminary results discussed.

  2. Temperature Rise Optimization Design and Thermal Vacuum Experiment on Coil of Space Manipulator Electromagnetic Brake%空间机械臂电磁制动器温升最优设计及热真空实验

    Institute of Scientific and Technical Information of China (English)

    孙敬颋; 史士财; 陈泓; 刘宏

    2012-01-01

    采用遗传算法几何惩罚函数的方法对空间机械臂制动器电磁线圈温升进行了优化设计.首先针对空间机械臂电磁制动器对电磁力、电流以及磁场强度的限制要求,以温升为目标推导出优化模型.然后针对优化模型约束非线性问题,提出遗传算法结合惩罚函数的优化方法.本方法可在解决全局优化问题的同时保证计算过程中的解总是可行解.优化结果显示,线圈温升大大降低.最后,将制动器置于热真空环境模拟设备中,测出电磁制动器线圈温升曲线.实验结果显示,测得温升值与优化设计得出目标温升值基本吻合,验证了方法及设计的正确性.%Temperature rise optimization design of space manipulator electromagnetic brake coil is done, using a new method which combines genetic algorithm with penalty function. Firstly, optimization model of space manipulator electromagnetic brake coil is obtained with the objective of temperature rise, which considers the restrictions such as electromagnetic force, current and magnetic density. Then, a method combining penalty function with genetic algorithm is proposed to solve the nonlinearity of constraint conditions in optimization model. The method is suitable for global optimization, and guarantees that the solution is always feasible in whole calculation process. The optimization result demonstrates that temperature rise is reduced remarkably. Finally, the brake is put into thermal vacuum environment simulation equipment and temperature rise curve is drawn. The temperature rise measured in the experiment closely meets the objective obtained by the optimization calculation, and this experimental result verifies the correctness of the method and the design.

  3. Fiber Optic Sensors for Temperature Monitoring during Thermal Treatments: An Overview.

    Science.gov (United States)

    Schena, Emiliano; Tosi, Daniele; Saccomandi, Paola; Lewis, Elfed; Kim, Taesung

    2016-07-22

    During recent decades, minimally invasive thermal treatments (i.e., Radiofrequency ablation, Laser ablation, Microwave ablation, High Intensity Focused Ultrasound ablation, and Cryo-ablation) have gained widespread recognition in the field of tumor removal. These techniques induce a localized temperature increase or decrease to remove the tumor while the surrounding healthy tissue remains intact. An accurate measurement of tissue temperature may be particularly beneficial to improve treatment outcomes, because it can be used as a clear end-point to achieve complete tumor ablation and minimize recurrence. Among the several thermometric techniques used in this field, fiber optic sensors (FOSs) have several attractive features: high flexibility and small size of both sensor and cabling, allowing insertion of FOSs within deep-seated tissue; metrological characteristics, such as accuracy (better than 1 °C), sensitivity (e.g., 10 pm·°C(-1) for Fiber Bragg Gratings), and frequency response (hundreds of kHz), are adequate for this application; immunity to electromagnetic interference allows the use of FOSs during Magnetic Resonance- or Computed Tomography-guided thermal procedures. In this review the current status of the most used FOSs for temperature monitoring during thermal procedure (e.g., fiber Bragg Grating sensors; fluoroptic sensors) is presented, with emphasis placed on their working principles and metrological characteristics. The essential physics of the common ablation techniques are included to explain the advantages of using FOSs during these procedures.

  4. Fiber Optic Sensors for Temperature Monitoring during Thermal Treatments: An Overview

    Directory of Open Access Journals (Sweden)

    Emiliano Schena

    2016-07-01

    Full Text Available During recent decades, minimally invasive thermal treatments (i.e., Radiofrequency ablation, Laser ablation, Microwave ablation, High Intensity Focused Ultrasound ablation, and Cryo-ablation have gained widespread recognition in the field of tumor removal. These techniques induce a localized temperature increase or decrease to remove the tumor while the surrounding healthy tissue remains intact. An accurate measurement of tissue temperature may be particularly beneficial to improve treatment outcomes, because it can be used as a clear end-point to achieve complete tumor ablation and minimize recurrence. Among the several thermometric techniques used in this field, fiber optic sensors (FOSs have several attractive features: high flexibility and small size of both sensor and cabling, allowing insertion of FOSs within deep-seated tissue; metrological characteristics, such as accuracy (better than 1 °C, sensitivity (e.g., 10 pm·°C−1 for Fiber Bragg Gratings, and frequency response (hundreds of kHz, are adequate for this application; immunity to electromagnetic interference allows the use of FOSs during Magnetic Resonance- or Computed Tomography-guided thermal procedures. In this review the current status of the most used FOSs for temperature monitoring during thermal procedure (e.g., fiber Bragg Grating sensors; fluoroptic sensors is presented, with emphasis placed on their working principles and metrological characteristics. The essential physics of the common ablation techniques are included to explain the advantages of using FOSs during these procedures.

  5. Development of a Low-Cost ZIGBEE and GSM SMS-Based Conductor Temperature and Sag Monitoring System

    OpenAIRE

    M.V.Vijaya Saradhi; Nagaraju, S.

    2010-01-01

    This paper deals with the design, construction, instrumentation and testing of a GSM and ZIGBEE based monitoring system for the measurement of Overhead High Voltage (HV) Conductor Temperature and Sag. The main advantage of this concept is the real time direct measurement of the parameters (i.e., conductor sag and temperature) needed for the operation of the transmission system without intermediate measurement of conductor tension and ambient weather conditions, by which the temperature contro...

  6. The Global Terrestrial Network for Permafrost Database: metadata statistics and prospective analysis on future permafrost temperature and active layer depth monitoring site distribution

    Science.gov (United States)

    Biskaborn, B. K.; Lanckman, J.-P.; Lantuit, H.; Elger, K.; Streletskiy, D. A.; Cable, W. L.; Romanovsky, V. E.

    2015-03-01

    The Global Terrestrial Network for Permafrost (GTN-P) provides the first dynamic database associated with the Thermal State of Permafrost (TSP) and the Circumpolar Active Layer Monitoring (CALM) programs, which extensively collect permafrost temperature and active layer thickness data from Arctic, Antarctic and Mountain permafrost regions. The purpose of the database is to establish an "early warning system" for the consequences of climate change in permafrost regions and to provide standardized thermal permafrost data to global models. In this paper we perform statistical analysis of the GTN-P metadata aiming to identify the spatial gaps in the GTN-P site distribution in relation to climate-effective environmental parameters. We describe the concept and structure of the Data Management System in regard to user operability, data transfer and data policy. We outline data sources and data processing including quality control strategies. Assessment of the metadata and data quality reveals 63% metadata completeness at active layer sites and 50% metadata completeness for boreholes. Voronoi Tessellation Analysis on the spatial sample distribution of boreholes and active layer measurement sites quantifies the distribution inhomogeneity and provides potential locations of additional permafrost research sites to improve the representativeness of thermal monitoring across areas underlain by permafrost. The depth distribution of the boreholes reveals that 73% are shallower than 25 m and 27% are deeper, reaching a maximum of 1 km depth. Comparison of the GTN-P site distribution with permafrost zones, soil organic carbon contents and vegetation types exhibits different local to regional monitoring situations on maps. Preferential slope orientation at the sites most likely causes a bias in the temperature monitoring and should be taken into account when using the data for global models. The distribution of GTN-P sites within zones of projected temperature change show a high

  7. The Global Terrestrial Network for Permafrost Database: metadata statistics and prospective analysis on future permafrost temperature and active layer depth monitoring site distribution

    Directory of Open Access Journals (Sweden)

    B. K. Biskaborn

    2015-03-01

    Full Text Available The Global Terrestrial Network for Permafrost (GTN-P provides the first dynamic database associated with the Thermal State of Permafrost (TSP and the Circumpolar Active Layer Monitoring (CALM programs, which extensively collect permafrost temperature and active layer thickness data from Arctic, Antarctic and Mountain permafrost regions. The purpose of the database is to establish an "early warning system" for the consequences of climate change in permafrost regions and to provide standardized thermal permafrost data to global models. In this paper we perform statistical analysis of the GTN-P metadata aiming to identify the spatial gaps in the GTN-P site distribution in relation to climate-effective environmental parameters. We describe the concept and structure of the Data Management System in regard to user operability, data transfer and data policy. We outline data sources and data processing including quality control strategies. Assessment of the metadata and data quality reveals 63% metadata completeness at active layer sites and 50% metadata completeness for boreholes. Voronoi Tessellation Analysis on the spatial sample distribution of boreholes and active layer measurement sites quantifies the distribution inhomogeneity and provides potential locations of additional permafrost research sites to improve the representativeness of thermal monitoring across areas underlain by permafrost. The depth distribution of the boreholes reveals that 73% are shallower than 25 m and 27% are deeper, reaching a maximum of 1 km depth. Comparison of the GTN-P site distribution with permafrost zones, soil organic carbon contents and vegetation types exhibits different local to regional monitoring situations on maps. Preferential slope orientation at the sites most likely causes a bias in the temperature monitoring and should be taken into account when using the data for global models. The distribution of GTN-P sites within zones of projected temperature change

  8. Lambda-type sharp rise in the widths of Raman and infra-red line shape near the Widom line in super-critical water above its gas-liquid critical temperature

    CERN Document Server

    Samanta, Tuhin

    2016-01-01

    A lambda-type divergent rise of Raman linewidth of liquid nitrogen near its critical temperature has been a subject of many discussions in the past[1-5]. Here we explore the possibility of such an anomaly in infra-red and Raman spectroscopy of super-critical water (SCW) by varying the density across the Widom line just above its critical temperature. Vibrational phase relaxation is expected to be a sensitive probe of fluid dynamics. We carry out computer simulations of two different model potentials (SPC/E and TIP4P/2005) to obtain the necessary time correlation functions. An additional feature of this work is a quantum chemical calculation of the anharmonicity parameter that largely controls frequency fluctuations. We find a sharp rise in the vibrational relaxation rate (or the line widths) for both the models as we travel across the Widom line. The rise is noticeably less sharp in water than in nitrogen. We attribute this difference to the faster relaxation rate in water. We demonstrate that the anomalous r...

  9. Use of Nuclear Spin Noise Spectroscopy to Monitor Slow Magnetization Buildup at Millikelvin Temperatures

    Science.gov (United States)

    Pöschko, Maria Theresia; Peat, David; Owers‐Bradley, John

    2016-01-01

    Abstract At ultralow temperatures, longitudinal nuclear magnetic relaxation times become exceedingly long and spectral lines are very broad. These facts pose particular challenges for the measurement of NMR spectra and spin relaxation phenomena. Nuclear spin noise spectroscopy is used to monitor proton spin polarization buildup to thermal equilibrium of a mixture of glycerol, water, and copper oxide nanoparticles at 17.5 mK in a static magnetic field of 2.5 T. Relaxation times determined in such a way are essentially free from perturbations caused by excitation radiofrequency pulses, radiation damping, and insufficient excitation bandwidth. The experimental spin‐lattice relaxation times determined on resonance by saturation recovery with spin noise detection are consistently longer than those determined by using pulse excitation. These longer values are in better accordance with the expected field dependence trend than those obtained by on‐resonance experiments with pulsed excitation. PMID:27305629

  10. A novel low-cost sensor prototype for monitoring temperature during wine fermentation in tanks.

    Science.gov (United States)

    Sainz, Beatriz; Antolín, Jonathan; López-Coronado, Miguel; de Castro, Carlos

    2013-02-28

    This paper presents a multipurpose and low cost sensor for temperature control over the wine fermentation process, in order to steadily communicate data through wireless modules in real time to a viticulturist's mobile or fixed device. The advantage of our prototype is due to the fact that it will be used by small winemakers in the "Ribera del Duero" area, and as it is a cheaper sensor and easy to use for the control and monitoring of the grape fermentation process, it will probably be used by other business men with the same necessities in the region. The microcontroller MSP430G2553 is among the components that make up the sensor, that are integrated onto a motherboard. It communicates with the RN-42 Bluetooth module through an UART interface. After verifying that all elements are working correctly, the parts are assembled to form the final prototype. This device has been tested in a winery in the region, fulfilling the initial project specifications.

  11. Monitoring And Recording Data For Solar Radiation Temperature And Charging Current

    Directory of Open Access Journals (Sweden)

    Aung Bhone Myint

    2015-08-01

    Full Text Available A data logger based on 8051 microcontroller has been implemented in this project to measure the solar radiation temperature and charging current. Development of a low-cost data logger can easily be made and easily be used to convert the analog signal of physical parameters of various test or other purposes of engineering. By using a suitable program code it can be used to read the value digitally with a PC. Our aim is to provide with a module and a software package when installed in a computer one can remotely acquire and monitor several numbers of the same or different types of signals sequentially at a time. Signals obtained from various sensors have been effectively conditioned. Now interfacing these signals using ADC with the Bluetooth module port of a computer satisfies the very goal of data acquisition. Proposed system provides better performance and has low cost versatile portable.

  12. Analysis of Temperature Rise and Ventilation System of Air-cooled 20MW Synchronous Motor%空冷20MW同步电动机温升及通风系统分析

    Institute of Scientific and Technical Information of China (English)

    丁大鹏; 安志华; 刘双

    2011-01-01

    The structure of air-cooled 20MW synchronous motor is compact, whether the ventilation system is designed reasonable or not greatly impacts the temperatures of stator, rotor and end part of the electric machines. In this paper, the temperature rise in each part is studied with the method of air paths and temperature distribution. By simulation analyzing to the air paths and heat generation parts, the affect of ventilation and the temperature rise of major part are provided.%空冷20MW同步电动机的结构紧凑,通风系统的设计合理与否对电机定子、转子以及端部件温度有显著的影响.本文采用风路与温度相结合的方法,研究电机各部分温升问题.通过对风路和电机各部分发热元件的仿真分析,得出了电动机的通风效果和主要部分的温升情况.

  13. Microwave imaging for thermal therapy monitoring: temperature accuracy and image reconstruction time improvements

    Science.gov (United States)

    Meaney, Paul M.; Fanning, Margaret W.; Li, Dun; Fang, Qianqian; Pendergrass, Sarah; Paulsen, Keith D.

    2003-06-01

    Microwave imaging has been investigated as a method of non-invasively estimating tissue electrical properties especially the conductivity, which is highly temperature dependent, as a means of monitoring thermal therapy. The technique we have chosen utilizes an iterative Gauss-Newton approach to converge on the correct property distribution. A previous implementation utilizing the complex form (CF) of the electric fields along with a sub-optimal phantom experimental configuration resulted in imaging temperature accuracy of only 1.6°C. Applying the log-magnitude/phase form (LMPF) of the algorithm has resulted in imaging accuracy on the order of 0.3°C which is a significant advance for the area of treatment monitoring. The LMPF algorithm was originally introduced as a way to reconstruct images of large, high-contrast scatterers as is the case in breast imaging. However, recent analysis of the Jacobian matrices for the comparable implementations has shown that the reconstruction problem in the new formulation more closely resembles a linear task as is the case in x-ray computed tomography. The comparisons were performed by examining plots of the Jacobian matrix terms for fixed transmit and receive antennas which demonstrated higher sensitivity in the center of the imaging zone along with narrower paths of senstivity between the atnenna pair for the LMPF algorithm. Animal model experiments have also been performed to validate these capabilities in a more realistic setting. Finally, the overall computational efficiency has been significantly enhanced through the use of the adjoint image reconstruction approach. This enables us to reconstruct images in roughly one minute which is essential if the approach is to be used as a therapy feedback mechanism.

  14. Advanced Signal Processing for High Temperatures Health Monitoring of Condensed Water Height in Steam Pipes

    Science.gov (United States)

    Lih, Shyh-Shiuh; Bar-Cohen, Yoseph; Lee, Hyeong Jae; Takano, Nobuyuki; Bao, Xiaoqi

    2013-01-01

    An advanced signal processing methodology is being developed to monitor the height of condensed water thru the wall of a steel pipe while operating at temperatures as high as 250deg. Using existing techniques, previous study indicated that, when the water height is low or there is disturbance in the environment, the predicted water height may not be accurate. In recent years, the use of the autocorrelation and envelope techniques in the signal processing has been demonstrated to be a very useful tool for practical applications. In this paper, various signal processing techniques including the auto correlation, Hilbert transform, and the Shannon Energy Envelope methods were studied and implemented to determine the water height in the steam pipe. The results have shown that the developed method provides a good capability for monitoring the height in the regular conditions. An alternative solution for shallow water or no water conditions based on a developed hybrid method based on Hilbert transform (HT) with a high pass filter and using the optimized windowing technique is suggested. Further development of the reported methods would provide a powerful tool for the identification of the disturbances of water height inside the pipe.

  15. PROTOTYPE SISTEM MONITORING TEMPERATUR MENGGUNAKAN ARDUINO UNO R3 DENGAN KOMUNIKASI WIRELESS

    Directory of Open Access Journals (Sweden)

    Ritha Sandra Veronika Simbar

    2016-11-01

    Full Text Available Pada saat sekarang ini, pada mesin UST yang berada di pabrik PT.Krakatau Posco  Suhu yang diperbolehkan dilakukan pengujian UST berdasarka SOP adalah 400C. Untuk ini perlu di lakukan pengecekan suhu produk agar tidak terjadi pengulangan line-on karena plate panas (>40. Pengecekan temperatur masih dilakukan secara manual setiap 1 jam sekali. Pengecekan manual ini dirasa memberatkan operator UST jika terjadi load production (produksi banyak. Untuk itu perlu dibuat sebuah sistem monitoring yang bisa mempermudah pekerjaan operator UST. Alat yang dirancang dan dibuat berupa sebuah sistem monitoring suhu plate baja dengan menggunakan sensor MLX90614 yang merupakan sensor inframerah. Data suhu akan di proses oleh Arduino dan di kirimka ke arduino yang lain dengan bantuan modul RF 433Mhz. Data suhu akan ditampilkan di LCD 16x2. Pengujian langsung ke produk telah dilakukan, dan terdapat data yang tidak linier. Untuk memastikan lagi, dilakukan pengujian menggunakan bantuan termogan sebagai pembanding. Hasil yang didapat sudah linier walau masih terdapat selisih pembacaan suhu antara alat dan termogun sekitar 2,58 0C.

  16. Low temperature co-fired ceramic packaging of CMOS capacitive sensor chip towards cell viability monitoring

    Directory of Open Access Journals (Sweden)

    Niina Halonen

    2016-11-01

    Full Text Available Cell viability monitoring is an important part of biosafety evaluation for the detection of toxic effects on cells caused by nanomaterials, preferably by label-free, noninvasive, fast, and cost effective methods. These requirements can be met by monitoring cell viability with a capacitance-sensing integrated circuit (IC microchip. The capacitance provides a measurement of the surface attachment of adherent cells as an indication of their health status. However, the moist, warm, and corrosive biological environment requires reliable packaging of the sensor chip. In this work, a second generation of low temperature co-fired ceramic (LTCC technology was combined with flip-chip bonding to provide a durable package compatible with cell culture. The LTCC-packaged sensor chip was integrated with a printed circuit board, data acquisition device, and measurement-controlling software. The packaged sensor chip functioned well in the presence of cell medium and cells, with output voltages depending on the medium above the capacitors. Moreover, the manufacturing of microfluidic channels in the LTCC package was demonstrated.

  17. Monitoring and modeling water temperature and trophic status of a shallow Mediterranean lake

    Science.gov (United States)

    Giadrossich, Filippo; Bueche, Thomas; Pulina, Silvia; Marrosu, Roberto; Padedda, Bachisio Mario; Mariani, Maria Antonietta; Vetter, Mark; Cohen, Denis; Pirastru, Mario; Niedda, Marcello; Lugliè, Antonella

    2017-04-01

    Lakes are sensitive to changes in climate and human activities. Over the last few decades, Mediterranean lakes have experienced various problems due to the current climate change (drought, flood, warming, salt accumulation, water quality changes, etc.), often amplified by water use, intensification of land use activities, and pollution. The overall impact of these changes on water resources is still an open question. In this study we monitor the trophic status and the dynamics of water temperature of Lake Baratz, the only natural lake in Sardinia, Italy, characterized by high salinity and shallow depth. We extend the research carried out in the past 8 years by integrating new physical, chemical and biological data using a multidisciplinary approach that combines hydrological and biological dynamics. In particular, the lake water balance and the thermal and hydrochemical regime are studied with a lake dynamic model (the General Lake Model or GLM) which combine the energy budget method for estimating lake evaporation, and a physically-based rainfall-runoff simulator for estimating lake inflow, calibrated with measurements at the cross section of the main inlet stream. The trophic state of the lake was evaluated applying the OCDE Probability Distribution Diagrams method, which requires nutrient concentrations in the lake (total phosphorus), phytoplankton chlorophyll a and Secchi disk transparency data. We collected field data from a raft station and a land station, measuring net solar radiation, air temperature and relative humidity, precipitation, wind velocity, atmospheric pressure, and temperature from thermistors submerged in the uppermost three centimeters of water and beneath the lake surface at depths of 1, 2, 3, 4, 5, 6, and 8 m. Samples for nutrients and chlorophyll a analyses were collected at the same above mentioned depths close to the raft station using a Niskin bottle. Temperature, salinity, pH, and dissolved oxygen were measured using a multi

  18. Novel localized heating technique on centrifugal microfluidic disc with wireless temperature monitoring system.

    Science.gov (United States)

    Joseph, Karunan; Ibrahim, Fatimah; Cho, Jongman

    2015-01-01

    Recent advances in the field of centrifugal microfluidic disc suggest the need for electrical interface in the disc to perform active biomedical assays. In this paper, we have demonstrated an active application powered by the energy harvested from the rotation of the centrifugal microfluidic disc. A novel integration of power harvester disc onto centrifugal microfluidic disc to perform localized heating technique is the main idea of our paper. The power harvester disc utilizing electromagnetic induction mechanism generates electrical energy from the rotation of the disc. This contributes to the heat generation by the embedded heater on the localized heating disc. The main characteristic observed in our experiment is the heating pattern in relative to the rotation of the disc. The heating pattern is monitored wirelessly with a digital temperature sensing system also embedded on the disc. Maximum temperature achieved is 82 °C at rotational speed of 2000 RPM. The technique proves to be effective for continuous heating without the need to stop the centrifugal motion of the disc.

  19. Monitoring the microbial populations and temperatures of fresh broccoli from harvest to retail display.

    Science.gov (United States)

    Dallaire, R; LeBlanc, D I; Tranchant, C C; Vasseur, L; Delaquis, P; Beaulieu, C

    2006-05-01

    Microbial populations and the temperature of fresh broccoli were monitored at several steps of a supply chain by sampling 33 distinct lots of locally grown produce over two seasons during harvest, storage, wholesale handling, and retail display. Imported broccoli was also sampled, but only at retail display. Microbiological analyses were conducted on the florets of 201 local and 60 imported broccoli samples to determine populations of total aerobic bacteria (aerobic colony count), fecal coliforms, Escherichia coli, and Listeria monocytogenes. All the samples had mean aerobic colony counts ranging between 4 and 6 log CFU/g, but L. monocytogenes was not detected (limit of detection =100 CFU/g). Fecal coliforms and E. coli (limit of detection =20 most probable number per 100 g) were found in 22 of 126 samples of local broccoli collected at various steps of the production and distribution system during the first season. None was found in 75 samples collected in the second season. Fecal coliforms and E. coli were found in 2 of 60 imported broccoli samples. Broccoli temperatures were relatively well controlled throughout the production and distribution system. No clear change in produce microbial populations was evident between harvest and retail display, during both sampling seasons. However, a large experimental variability was found, possibly associated with the high variability of the initial levels of microbial populations on broccoli at harvest.

  20. Microwave plasma monitoring system for the elemental composition analysis of high temperature process streams

    Energy Technology Data Exchange (ETDEWEB)

    Woskov, Paul P. (Bedford, MA); Cohn, Daniel R. (Chestnuthill, MA); Titus, Charles H. (Newtown Square, PA); Surma, Jeffrey E. (Kennewick, WA)

    1997-01-01

    Microwave-induced plasma for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, high temperature capability refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury. The invention may be incorporated into a high temperature process device and implemented in situ for example, such as with a DC graphite electrode plasma arc furnace. The invention further provides a system for the elemental analysis of process streams by removing particulate and/or droplet samples therefrom and entraining such samples in the gas flow which passes through the plasma flame. Introduction of and entraining samples in the gas flow may be facilitated by a suction pump, regulating gas flow, gravity or combinations thereof.

  1. Polymer Electrolyte-Based Ambient Temperature Oxygen Microsensors for Environmental Monitoring

    Science.gov (United States)

    Hunter, Gary W.; Xu, Jennifer C.; Liu, Chung-Chiun

    2011-01-01

    An ambient temperature oxygen microsensor, based on a Nafion polymer electrolyte, has been developed and was microfabricated using thin-film technologies. A challenge in the operation of Nafion-based sensor systems is that the conductivity of Nafion film depends on the humidity in the film. Nafion film loses conductivity when the moisture content in the film is too low, which can affect sensor operation. The advancement here is the identification of a method to retain the operation of the Nafion films in lower humidity environments. Certain salts can hold water molecules in the Nafion film structure at room temperature. By mixing salts with the Nafion solution, water molecules can be homogeneously distributed in the Nafion film increasing the film s hydration to prevent Nafion film from being dried out in low-humidity environment. The presence of organics provides extra sites in the Nafion film to promote proton (H+) mobility and thus improving Nafion film conductivity and sensor performance. The fabrication of ambient temperature oxygen microsensors includes depositing basic electrodes using noble metals, and metal oxides layer on one of the electrode as a reference electrode. The use of noble metals for electrodes is due to their strong catalytic properties for oxygen reduction. A conducting polymer Nafion, doped with water-retaining components and extra sites facilitating proton movement, was used as the electrolyte material, making the design adequate for low humidity environment applications. The Nafion solution was coated on the electrodes and air-dried. The sensor operates at room temperature in potentiometric mode, which measures voltage differences between working and reference electrodes in different gases. Repeat able responses to 21-percent oxygen in nitrogen were achieved using nitrogen as a baseline gas. Detection of oxygen from 7 to 21 percent has also been demonstrated. The room-temperature oxygen micro sensor developed has extremely low power

  2. Analysis of reliability of hydrogenerator rotor coil temperature rise test plan%水轮发电机转子线圈温升试验方案可靠性分析

    Institute of Scientific and Technical Information of China (English)

    刘育; 余波; 刘彬; 余诗若

    2014-01-01

    利用电阻法和红外热成像仪测温方法对西南某A、B电站水轮发电机转子线圈进行直接带负载温升试验,并对两种方案测试结果进行了对比分析,结果表明:红外热成像仪测温方法应用于水轮发电机转子线圈温升现场测量可行且可靠性较高,从而为该方法应用于工程实践提供了方法和理论基础。%The temperature measurement method of resistance and thermal infrared imager were used on the southwest of A and B hydropower stations generator rotor coil with directing load temperature rise test ,and 2 kinds of tests results were compared and analyzed. The results showed:infrared thermography method was applied to the rotor coil temperature rise field measurement which was feasible and higher reliability ,a method and theoretical basis for the application of the method in engineering practice was provided.

  3. Preferential flows and soil moistures on a Benggang slope: Determined by the water and temperature co-monitoring

    Science.gov (United States)

    Tao, Yu; He, Yangbo; Duan, Xiaoqian; Zou, Ziqiang; Lin, Lirong; Chen, Jiazhou

    2017-10-01

    Soil preferential flow (PF) has important effects on rainfall infiltration, moisture distribution, and hydrological and ecological process; but it is very difficult to monitor and characterize on a slope. In this paper, soil water and soil temperature at 20, 40, 60, 80 cm depths in six positions were simultaneously monitored at high frequency to confirm the occurrence of PF at a typical Benggang slope underlain granite residual deposits, and to determine the interaction of soil moisture distribution and Benggang erosion. In the presence of PF, the soil temperature was first (half to one hour) governed by the rainwater temperature, then (more than one hour) governed by the upper soil temperature; in the absence of PF (only matrix flow, MF), the soil temperature was initially governed by the upper soil temperature, then by the rainwater temperature. The results confirmed the water replacement phenomenon in MF, thus it can be distinguished from PF by additional temperature monitoring. It indicates that high frequency moisture and temperature monitoring can determine the occurrence of PF and reveal the soil water movement. The distribution of soil water content and PF on the different positions of the slope showed that a higher frequency of PF resulted in a higher variation of average of water content. The frequency of PF at the lower position can be three times as that of the upper position, therefore, the variation coefficient of soil water content increased from 4.67% to 12.68% at the upper position to 8.18%-33.12% at the lower position, where the Benggang erosion (soil collapse) was more possible. The results suggest strong relationships between PF, soil water variation, and collapse activation near the Benggang wall.

  4. Investigations on Temperature Fields during Laser Beam Melting by Means of Process Monitoring and Multiscale Process Modelling

    Directory of Open Access Journals (Sweden)

    J. Schilp

    2014-07-01

    Full Text Available Process monitoring and modelling can contribute to fostering the industrial relevance of additive manufacturing. Process related temperature gradients and thermal inhomogeneities cause residual stresses, and distortions and influence the microstructure. Variations in wall thickness can cause heat accumulations. These occur predominantly in filigree part areas and can be detected by utilizing off-axis thermographic monitoring during the manufacturing process. In addition, numerical simulation models on the scale of whole parts can enable an analysis of temperature fields upstream to the build process. In a microscale domain, modelling of several exposed single hatches allows temperature investigations at a high spatial and temporal resolution. Within this paper, FEM-based micro- and macroscale modelling approaches as well as an experimental setup for thermographic monitoring are introduced. By discussing and comparing experimental data with simulation results in terms of temperature distributions both the potential of numerical approaches and the complexity of determining suitable computation time efficient process models are demonstrated. This paper contributes to the vision of adjusting the transient temperature field during manufacturing in order to improve the resulting part's quality by simulation based process design upstream to the build process and the inline process monitoring.

  5. Monitoring rock glacier dynamics and ground temperatures in the semiarid Andes (Chile, 30°S)

    Science.gov (United States)

    Brenning, Alexander; Azócar, Guillermo F.; Bodin, Xavier

    2013-04-01

    Rock glaciers and mountain permafrost are widespread in the high semiarid Andes of Chile, where they concentrate greater amounts of ice than glaciers. Rock glaciers are of particular interest because in some cases the permafrost they contain might be in a degrading in response to climatic warming. This could result in increased dynamics and even to destabilization, which has been observed on some rock glaciers in the studied area. Displacement rates and active-layer temperatures of two rock glaciers as well as ground surface temperatures of the periglacial environment in the upper Elqui valley have been monitored since summer 2009/10 with funding from the Chilean Dirección General de Aguas. Differential GPS measurements of 115 points on the surface of two rock glaciers since April 2010 showed horizontal displacements of up to 1.3 m/a on the Llano de las Liebres rock glacier and up to 1.2 m/a on the Tapado rock glacier. General velocity patterns are consistent with the morphological evidence of activity (e.g., front slopes, looseness of debris) and for the Tapado complex, a clearly distinct activity from the debris-covered glacier was observed. Temperature measurements in four boreholes indicate active-layer depths of about 2.5 m at the highest locations on the Tapado rock glacier (~4400 m a.s.l.) and about 8 m near the front of the Llano rock glacier (3786 m a.s.l.). Spatial patterns of mean ground surface temperature (MGST) were analyzed with regards to influences of elevation, potential incoming solar radiation, location on ice-debris landforms (rock and debris-covered glaciers), and snow cover duration using linear mixed-effects models. While accounting for the other variables, sites with long-lasting snow patches had ~0.4°C lower MGST, and ice-debris landforms had ~0.4-0.6°C lower MGST than general debris surfaces, highlighting important local modifications to the general topographic variation of ground thermal conditions.

  6. On the re-dissolution of subsurface hydrothermal deposits at 9°50'N East Pacific Rise: Implications from geochemical studies of high- and low-temperature fluids

    Science.gov (United States)

    McDermott, J. M.; von Damm, K. L.

    2008-12-01

    Hydrothermal fluids circulated through mid-oceanic ridges provide the necessary chemical energy for biological reactions in the thriving deep biosphere (1). In order to refine hydrothermal flux estimates and determine the implications for macro- and microbiological communities, the processes controlling chemical composition of hydrothermal fluids must first be better understood. Low-temperature hydrothermal fluids, generated when high-temperature fluids mix with seawater during their ascent to the seafloor, have long been considered to be simple dilutions of high-temperature fluids with ambient seawater in the upper oceanic crust (2). However, the degree to which fluids undergo compositional changes due to further reaction in the subsurface prior to their expulsion at the seafloor has not been quantified. Potential processes that alter fluid chemistry may include the re-dissolution of previously precipitated minerals such as anhydrite and metal sulfides. One implication of these and possibly other undocumented mineral reactions is that the hydrothermal flux component of elemental budgets, specifically Ca, Sr, SO4, Fe, Mn, Cu and Zn, must be reinterpreted since these elements transit through the system via temporary sinks. Furthermore, these reactive processes influence trace metal concentrations in low-temperature fluids, thereby affecting the diversity and distribution of macro- and microbiological communities living on or within the seafloor at hydrothermal areas. The Ridge2000 Integrated Study Site at 9°50'N EPR contains an area in which two high-temperature vents (Ty and Io) formed from a low-temperature site (BM82), which remained active, thereby providing a unique opportunity to investigate the simple dilution model. Preliminary time series chemical data for Ty and Io spanning April 1991 through December 2007 support the hypothesis of re-dissolution of metal sulfide deposits. The means of end member Fe and Mn for Ty (4650 μmol/kg in Fe, 1500 μmol/kg in Mn

  7. Changing Ocean, Changing Economics: Impact of Rising Temperatures on the American Lobster Landings and on the US-Canada Lobster Economics in the Emerging Chinese Market

    Science.gov (United States)

    Sun, C. H. J.

    2016-02-01

    Record high temperatures in 2012 pushed the start date of the Maine lobster fishing season three weeks earlier than normal. High landings during a compressed time period more than doubled the volume experienced in June and July. As supply outpaced demand, an average 40% decrease in ex-vessel price significantly reduced fishermen's profitability. This study examined how the timing and location of lobster landings is affected by ocean temperatures, number of trips, distance fished from shore, price, and seasonality. Weekly lobster landings and the number of fishing trips in eastern, central, and western Maine from 2008 to 2014 were combined with NERACOOS buoy temperatures to model the change in productivity. The model shows warming leads to significant increases in landings. We also used monthly landings, prices, and trade of live and processed lobster between the U.S. and Canada from 1990 to 2014 to specify a system of equations that captures how both markets are integrated and how they respond to changing market conditions. The model shows that an increase in landings in both areas leads to an increase in lobster trade and then to an increase in US imports of frozen lobster meat. Furthermore, lobster exports to the emerging Chinese market started to expand after 2012 and grew to account for 21% and 11% of the exports value from U.S. and Canada, respectively. From 2010 to 2014, a sub-system model is specified to address how increasing demand in the Chinese market for hard-shell lobster could create incentives to delay production and increase the supply of hard-shell live lobster. The full model was then used to explore ways in which this coastal social-ecological system can adapt to increasing ocean temperature and how the integrated global market might alter the economic implications of the next ocean heatwave.

  8. Temperature rise after peginterferon alfa-2a injection in patients with chronic hepatitis C is associated with virological response and is modulated by IL28B genotype

    Science.gov (United States)

    Han, Hwalih; Noureddin, Mazen; Witthaus, Michael; Park, Yoon J.; Hoofnagle, Jay H.; Liang, T. Jake; Rotman, Yaron

    2013-01-01

    Background & Aims Interferon treatment for chronic hepatitis C is associated with non-specific symptoms including fever. We aimed to determine the association of temperature changes with interferon antiviral activity. Methods 60 treatment-naïve patients with chronic hepatitis C (67% genotype 1/4/6, 33% genotype 2/3) were admitted to start peginterferon alfa-2a and ribavirin in a clinical trial. Temperature was measured at baseline and 3 times daily for the first 24 h and the maximal increase from baseline during that time (Δ Tmax) was determined. Serum HCV-RNA, interferon-gamma-inducible protein-10 (IP-10) and expression of interferon-stimulated genes (ISGs – CD274, ISG15, RSAD2, IRF7, CXCL10) in peripheral blood mononuclear cells (PBMCs) were measured at very early time points, and response kinetics calculated. The IL28B single nucleotide polymorphism, rs12979860, was genotyped. Results Temperatures rose by 1.2 ± 0.8 °C, peaking after 12.5 h. ΔTmax was strongly associated with 1st phase virological decline (r = 0.59, p Elsevier B.V. on behalf of the European Association for the Study of the Liver. PMID:23850879

  9. 4# blast furnace hearth side wall temperature rise analysis and control%4#高炉炉缸侧壁温度升高浅析及控制

    Institute of Scientific and Technical Information of China (English)

    杨勇; 刘福成; 郎增瑞; 徐洪明

    2016-01-01

    Ling steel 4# blast furnace hearth side wal temperature causes and control measures were analyzed and summarized. Where there is air gap, hearth refractory iron in the shal ow, iron mouth does not work properly, work is not active, hearth zinc and other harmful metals on the hearth lining erosion in side wal temperature increased the main reason. By increasing the cooling intensity and the hearth hearth grouting measures such as hearth wal temperature has been ef ectively control ed, to achieve safe operation.%对凌钢4#高炉炉缸侧壁温度升高原因及控制措施进行了分析、总结。炉缸处耐材存在气隙、铁口浅、铁口工作不正常、炉缸工作不活跃、锌等有害金属对炉缸砖衬侵蚀是导致侧壁温度升高的主要原因。通过采取提高炉缸区域的冷却强度、炉缸灌浆等措施炉缸侧壁温度得到有效控制,实现安全运行。

  10. Fault zone hydrogeologic properties and processes revealed by borehole temperature monitoring

    Science.gov (United States)

    Fulton, P. M.; Brodsky, E. E.

    2015-12-01

    High-resolution borehole temperature monitoring can provide valuable insight into the hydrogeologic structure of fault zones and transient processes that affect fault zone stability. Here we report on results from a subseafloor temperature observatory within the Japan Trench plate boundary fault. In our efforts to interpret this unusual dataset, we have developed several new methods for probing hydrogeologic properties and processes. We illustrate how spatial variations in the thermal recovery of the borehole after drilling and other spectral characteristics provide a measure of the subsurface permeability architecture. More permeable zones allow for greater infiltration of cool drilling fluids, are more greatly thermally disturbed, and take longer to recover. The results from the JFAST (Japan Trench Fast Drilling Project) observatory are consistent with geophysical logs, core data, and other hydrologic observations and suggest a permeable damage zone consisting of steeply dipping faults and fractures overlays a low-permeability clay-rich plate boundary fault. Using high-resolution time series data, we have also developed methods to map out when and where fluid advection occurs in the subsurface over time. In the JFAST data, these techniques reveal dozens of transient earthquake-driven fluid pulses that are spatially correlated and consistently located around inferred permeable areas of the fault damage zone. These observations are suspected to reflect transient fluid flow driven by pore pressure changes in response to dynamic and/or static stresses associated with nearby earthquakes. This newly recognized hydrologic phenomenon has implications for understanding subduction zone heat and chemical transport as well as the redistribution of pore fluid pressure which influences fault stability and can trigger other earthquakes.

  11. A High-Temperature, High-Throughput Method for Monitoring Residual Formaldehyde in Vaccine Formulations.

    Science.gov (United States)

    Stallings, Kendra D; Kitchener, Rebecca L; Hentz, Nathaniel G

    2014-06-01

    Formaldehyde has long been used in the chemical inactivation of viral material during vaccine production. Viral inactivation is required so that the vaccine does not infect the patient. Formaldehyde is diluted during the vaccine manufacturing process, but residual quantities of formaldehyde are still present in some current vaccines. Although formaldehyde is considered safe for use in vaccines by the Food and Drug Administration, excessive exposure to this chemical may lead to cancer or other health-related issues. An assay was developed that is capable of detecting levels of residual formaldehyde in influenza vaccine samples. The assay employs incubation of dosage formulation suspensions with hydralazine hydrochloride under mildly acidic conditions and elevated temperatures, where formaldehyde is derivatized to yield fluorescent s-triazolo-[3,4-a]-phthalazine. The assay has been traditionally run by high-performance liquid chromatography, where runtimes of 15 minutes per sample can be expected. Our laboratory has developed a plate-based version that drastically improved the throughput to a runtime of 96 samples per minute. The assay was characterized and validated with respect to reaction temperature, evaporation, stability, and selectivity to monitor residual formaldehyde in various influenza vaccine samples, including in-process samples. Heat transfer and evaporation will be especially considered in this work. Since the assay is plate based, it is automation friendly. The new assay format has attained detection limits of 0.01 µg/mL residual formaldehyde, which is easily able to detect and quantify formaldehyde at levels used in many current vaccine formulations (<5 µg/0.5-mL dose).

  12. High temperature flexible ultrasonic transducers for structural health monitoring and NDT

    Energy Technology Data Exchange (ETDEWEB)

    Shih, J.L. [McGill Univ., Montreal, PQ (Canada). Dept. of Electrical and Computer Engineering; Kobayashi, M.; Jen, C.K.; Tatibouet, J. [National Research Council of Canada, Boucherville, PQ (Canada). Industrial Materials Inst.; Mrad, N. [Department of National Defence, Ottawa, ON (Canada). Air Vehicles Research Station

    2009-07-01

    Ultrasonic techniques are often used for non-destructive testing (NDT) and structural health monitoring (SHM) of pipes in nuclear and fossil fuel power plants, petrochemical plants and other structures as a method to improve safety and extend the service life of the structure. In such applications, ultrasonic transducers (UTs) must be able to operate at high temperature, and must come in contact with structures that have surfaces with different curvatures. As such, flexible UTs (FUTs) are most suitable because they ensure self-alignment to the object's surface. The purpose of this study was to develop FUTs that have high flexibility similar to commercially available polyvinylidene fluoride PVDF FUTs, but which can operate at up to at least 150 degrees C and have a high ultrasonic performance comparable to commercial broadband UTs. The fabrication of the FUT consisted of a sol-gel based sensor fabrication process. The substrate was a 75 {mu}m thick titanium (Ti) membrane, a piezoelectric composite with a thickness larger than 85 {mu}m and a top electrode. The ultrasonic performance of the FUT in terms of signal strength was found to be at least as good as commercially available broadband ultrasonic transducers at room temperature. Onsite gluing and brazing installation techniques which bond the FUTs onto steel pipes for SHM and NDT purposes up to 100 and 150 degrees C were developed, respectively. The best thickness measurement accuracy of FUT at 150 degrees C was estimated to be 26 {mu}m. 18 refs., 2 tabs., 6 figs.

  13. Preparing for Extreme Heat in India: Using High-Resolution Climate Models to Explore the Impact of Rising Temperatures on Human Health and Labor Productivity

    Science.gov (United States)

    Shaw, C.

    2016-12-01

    Globally, higher daily peak temperatures and longer, more intense heat waves are becoming increasingly frequent due to climate change. India, with relatively low GDP per capita, high population density, and tropical climate, is particularly vulnerable to these trends. In May 2015, one of the worst heat waves in world history hit the country, culminating in at least 2,300 officially-reported deaths as temperatures in some regions reached 48°C. As a result of climate change, heat waves in this region will last longer, be more extreme, and occur with greater frequency in the coming years. Impacts will be felt most acutely by vulnerable populations, which include not only those with frail health, but also populations otherwise considered healthy whose livelihood involves working under exposure to high temperatures. The problem is exacerbated by low levels of economic development, particularly in the under-provision of medical services, a higher proportion of weather-reliant income sources, and the inability to recover quickly from shocks. Responding to these challenges requires collaboration among the disciplines of climate science, public health, economics, and public policy. This project, presented as an online web application using Esri's ArcGIS Story Map, covers 1) the impact of extreme heat on human mortality, 2) the impact of combined heat and humidity (as measured by wet bulb globe temperature) on labor productivity, and 3) emerging best practices in adaptation planning by local municipalities and NGOs. The work is presented in a format that is designed to allow policymakers to take a deeper dive into the literature linking extreme temperature to human health and labor productivity, combined with interactive mapping tools that allow planners to drill down to data at the district level across the country of India. Further, the work presents a case study of heat adaptation planning efforts that have already been implemented in the city of Ahmedabad, allowing

  14. Multipoint Pressure and Temperature Sensing Fiber Optic Cable for Monitoring CO2 Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Challener, William

    2014-12-31

    This report describes the work completed on contract DE-FE0010116. The goal of this two year project was to develop and demonstrate in the laboratory a highly accurate multi-point pressure measurement fiber optic cable based on MEMS pressure sensors suitable for downhole deployment in a CO2 sequestration well. The sensor interrogator was also to be demonstrated in a remote monitoring system and environmental testing was to be completed to indicate its downhole survivability over a lengthy period of time (e.g., 20 years). An interrogator system based on a pulsed laser excitation was shown to be capable of multiple (potentially 100+) simultaneous sensor measurements. Two sensors packages were completed and spliced in a cable onto the same fiber and measured. One sensor package was subsequently measured at high temperatures and pressures in supercritical CO2, while the other package was measured prior and after being subjected to high torque stresses to mimic downhole deployment. The environmental and stress tests indicated areas in which the package design should be further improved.

  15. A Novel Low-Cost Sensor Prototype for Monitoring Temperature during Wine Fermentation in Tanks

    Directory of Open Access Journals (Sweden)

    Carlos de Castro

    2013-02-01

    Full Text Available This paper presents a multipurpose and low cost sensor for temperature control over the wine fermentation process, in order to steadily communicate data through wireless modules in real time to a viticulturist’s mobile or fixed device. The advantage of our prototype is due to the fact that it will be used by small winemakers in the “Ribera del Duero” area, and as it is a cheaper sensor and easy to use for the control and monitoring of the grape fermentation process, it will probably be used by other business men with the same necessities in the region. The microcontroller MSP430G2553 is among the components that make up the sensor, that are integrated onto a motherboard. It communicates with the RN-42 Bluetooth module through an UART interface. After verifying that all elements are working correctly, the parts are assembled to form the final prototype. This device has been tested in a winery in the region, fulfilling the initial project specifications.

  16. Multipoint Pressure and Temperature Sensing Fiber Optic Cable for Monitoring CO2 Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Challener, William [General Electric Company, Niskayuna, NY (United States)

    2015-02-10

    This report describes the work completed on contract DE-FE0010116. The goal of this two year project was to develop and demonstrate in the laboratory a highly accurate multi-point pressure measurement fiber optic cable based on MEMS pressure sensors suitable for downhole deployment in a CO2 sequestration well. The sensor interrogator was also to be demonstrated in a remote monitoring system and environmental testing was to be completed to indicate its downhole survivability over a lengthy period of time (e.g., 20 years). An interrogator system based on a pulsed laser excitation was shown to be capable of multiple (potentially 100+) simultaneous sensor measurements. Two sensors packages were completed and spliced in a cable onto the same fiber and measured. One sensor package was subsequently measured at high temperatures and pressures in supercritical CO2, while the other package was measured prior and after being subjected to high torque stresses to mimic downhole deployment. The environmental and stress tests indicated areas in which the package design should be further improved.

  17. Monitoring the temperature and reverberation delay of the circumnuclear hot dust in NGC 4151

    CERN Document Server

    Schnuelle, K; Rix, H -W; Peterson, B M; De Rosa, G; Shappee, B

    2015-01-01

    A hot, dusty torus located around the outer edge of the broad-line region of AGNs is a fundamental ingredient in unified AGN models. While the existence of circumnuclear dust around AGNs at pc-scale radii is now widely accepted, questions about the origin, evolution and long-term stability of these dust tori remain unsettled.\\\\ We used reverberation mapping of the hot circumnuclear dust in the Seyfert 1 galaxy NGC 4151, to monitor its temperature and reverberation lag as a function of the varying accretion disk brightness. We carried out multiband, multiepoch photometric observations of the nucleus of NGC 4151 in the z,Y,J,H, and K bands for 29 epochs from 2010 January to 2014 June, supported by new near-infrared and optical spectroscopic observations, and archived WISE data.\\\\ We see no signatures of dust destruction due to sublimation in our data, since they show no increase in the hot dust reverberation delay directly correlated with substantial accretion disk flux increases in the observed period. Instead...

  18. A Novel Low-Cost Sensor Prototype for Monitoring Temperature during Wine Fermentation in Tanks

    Science.gov (United States)

    Sainz, Beatriz; Antolín, Jonathan; López-Coronado, Miguel; de Castro, Carlos

    2013-01-01

    This paper presents a multipurpose and low cost sensor for temperature control over the wine fermentation process, in order to steadily communicate data through wireless modules in real time to a viticulturist's mobile or fixed device. The advantage of our prototype is due to the fact that it will be used by small winemakers in the “Ribera del Duero” area, and as it is a cheaper sensor and easy to use for the control and monitoring of the grape fermentation process, it will probably be used by other business men with the same necessities in the region. The microcontroller MSP430G2553 is among the components that make up the sensor, that are integrated onto a motherboard. It communicates with the RN-42 Bluetooth module through an UART interface. After verifying that all elements are working correctly, the parts are assembled to form the final prototype. This device has been tested in a winery in the region, fulfilling the initial project specifications. PMID:23449116

  19. 大体积混凝土承台的温度控制与监测分析%Temperature Control and Monitoring Analysis of Mass Concrete Bearing Platform

    Institute of Scientific and Technical Information of China (English)

    杜亚敏; 金铭; 谢春磊; 袁瑞军

    2012-01-01

    介绍某特大桥主桥承台大体积混凝土温控方案及温度监测结果。通过掺加粉煤灰取代水泥、使用高效缓凝减水剂、设置冷却水管、覆盖草席、洒水养护等措施,有效地控制承台的温升,避免出现温度裂缝。温度监测结果表明。该工程设计的温度控制方案是有效的。%Temperature control scheme and temperature monitoring result analysis on mass concrete of main bridge bearing platform of a grand bridge are introduced. Through the measures like mixing with coal ash instead of cement, using high - efficient retarding water reducer, installing cooling water pipe, covering with straw mat, wate- ring and maintaining and so on, effectively control temperature rise of bearing platform and avoid crack caused by the temperature. The temperature monitoring result shows that the temperature control scheme of the project design is effective.

  20. STUDY AND APPLICATION ABOUT COMPUTED SYSTEM FOR EXTERNAL CARDIAC MASSAGE,MONITOR OF HEART AND BODY TEMPERATURE

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective: To make and study computed system for external cardiac massage, monitor of heart and body temperature and observe its clinical effect. Method: The system was made and applied. Result: The effect of system was obvious. Conclusion: The system was an effective clinical equipment in treatment of patient with cardiac arrest.

  1. A modified golden gate attenuated total reflection (ATR) cell for monitoring phase transitions in multicomponent fluids at high temperatures.

    Science.gov (United States)

    Novitskiy, Alexander A; Ke, Jie; Comak, Gurbuz; Poliakoff, Martyn; George, Michael W

    2011-08-01

    A new continuous flow method using attenuated total reflection infrared (ATR-IR) spectroscopy has been developed for monitoring phase transitions in multicomponent fluids at high pressures and temperatures. Our approach uses Fourier transform infrared (FT-IR) and a modified Golden Gate attenuated total reflection (ATR) cell and exploits the fact that the absorbance of a vapor is much lower than that of the corresponding liquid to monitor the phase transition between vapor and liquid. We demonstrate that this method can provide quantitative measurements on both the dew point and the bubble point. We have validated our approach using three single-component systems (EtOH, MeOH, and H(2)O) and a binary system of EtOH + H(2)O, monitoring phase transitions at temperature up to 300 °C and pressure up to 10 MPa.

  2. ENTRAINMENT AND EXPANSION CONTROLLED FIREBALL RISE

    Science.gov (United States)

    This paper reports on a detailed analysis of the buoyant rise of fireballs in the earth’s atmosphere. Formulae for the rise velocity and height, and...the density, mass, radius and expansion velocity of the fireball are given. The computation of fireball temperature is discussed in detail; no

  3. An optimised multi-baseline approach for on-line MR-temperature monitoring on commodity graphics hardware

    DEFF Research Database (Denmark)

    de Senneville, Baudouin Denis; Noe, Karsten Østergaard; Ries, Mario

    2008-01-01

    Magnetic Resonance Imaging (MRI) can be used for non invasive temperature mapping and is therefore a promising tool to monitor and control interventional therapies based on thermal ablation. The Proton Resonance Frequency shift MRI technique gives an estimate of the temperature by comparing phase....... They have required significant time to compute however, and have not been sufficiently fast for several real-time temperature mapping applications. This paper proposes to use modern graphics cards (GPUs) to assess on-line motion corrected thermal maps. The computation times obtained on the GPU are compared...

  4. Arbuscular Mycorrhizal Fungi May Mitigate the Influence of a Joint Rise of Temperature and Atmospheric CO2 on Soil Respiration in Grasslands

    Directory of Open Access Journals (Sweden)

    S. Vicca

    2009-01-01

    Full Text Available We investigated the effects of mycorrhizal colonization and future climate on roots and soil respiration (Rsoil in model grassland ecosystems. We exposed artificial grassland communities on pasteurized soil (no living arbuscular mycorrhizal fungi (AMF present and on pasteurized soil subsequently inoculated with AMF to ambient conditions and to a combination of elevated CO2 and temperature (future climate scenario. After one growing season, the inoculated soil revealed a positive climate effect on AMF root colonization and this elicited a significant AMF x climate scenario interaction on root biomass. Whereas the future climate scenario tended to increase root biomass in the noninoculated soil, the inoculated soil revealed a 30% reduction of root biomass under warming at elevated CO2 (albeit not significant. This resulted in a diminished response of Rsoil to simulated climatic change, suggesting that AMF may contribute to an attenuated stimulation of Rsoil in a warmer, high CO2 world.

  5. Rising Mean Annual Temperature Increases Carbon Flux and Alters Partitioning, but Does Not Change Ecosystem Carbon Storage in Hawaiian Tropical Montane Wet Forest

    Science.gov (United States)

    Litton, C. M.; Giardina, C. P.; Selmants, P.

    2014-12-01

    Terrestrial ecosystem carbon (C) storage exceeds that in the atmosphere by a factor of four, and represents a dynamic balance among C input, allocation, and loss. This balance is likely being altered by climate change, but the response of terrestrial C cycling to warming remains poorly quantified, particularly in tropical forests which play a disproportionately large role in the global C cycle. Over the past five years, we have quantified above- and belowground C pools and fluxes in nine permanent plots spanning a 5.2°C mean annual temperature (MAT) gradient (13-18.2°C) in Hawaiian tropical montane wet forest. This elevation gradient is unique in that substrate type and age, soil type, soil water balance, canopy vegetation, and disturbance history are constant, allowing us to isolate the impact of long-term, whole ecosystem warming on C input, allocation, loss and storage. Across the gradient, soil respiration, litterfall, litter decomposition, total belowground C flux, aboveground net primary productivity, and estimates of gross primary production (GPP) all increase linearly and positively with MAT. Carbon partitioning is dynamic, shifting from below- to aboveground with warming, likely in response to a warming-induced increase in the cycling and availability of soil nutrients. In contrast to observed patterns in C flux, live biomass C, soil C, and total ecosystem C pools remained remarkably constant with MAT. There was also no difference in soil bacterial taxon richness, phylogenetic diversity, or community composition with MAT. Taken together these results indicate that in tropical montane wet forests, increased temperatures in the absence of water limitation or disturbance will accelerate C cycling, will not alter ecosystem C storage, and will shift the products of photosynthesis from below- to aboveground. These results agree with an increasing number of studies, and collectively provide a unique insight into anticipated warming-induced changes in tropical

  6. Development of hardware system using temperature and vibration maintenance models integration concepts for conventional machines monitoring: a case study

    Science.gov (United States)

    Adeyeri, Michael Kanisuru; Mpofu, Khumbulani; Kareem, Buliaminu

    2016-12-01

    This article describes the integration of temperature and vibration models for maintenance monitoring of conventional machinery parts in which their optimal and best functionalities are affected by abnormal changes in temperature and vibration values thereby resulting in machine failures, machines breakdown, poor quality of products, inability to meeting customers' demand, poor inventory control and just to mention a few. The work entails the use of temperature and vibration sensors as monitoring probes programmed in microcontroller using C language. The developed hardware consists of vibration sensor of ADXL345, temperature sensor of AD594/595 of type K thermocouple, microcontroller, graphic liquid crystal display, real time clock, etc. The hardware is divided into two: one is based at the workstation (majorly meant to monitor machines behaviour) and the other at the base station (meant to receive transmission of machines information sent from the workstation), working cooperatively for effective functionalities. The resulting hardware built was calibrated, tested using model verification and validated through principles pivoted on least square and regression analysis approach using data read from the gear boxes of extruding and cutting machines used for polyethylene bag production. The results got therein confirmed related correlation existing between time, vibration and temperature, which are reflections of effective formulation of the developed concept.

  7. The Improved NRL Tropical Cyclone Monitoring System with a Unified Microwave Brightness Temperature Calibration Scheme

    Directory of Open Access Journals (Sweden)

    Song Yang

    2014-05-01

    Full Text Available The near real-time NRL global tropical cyclone (TC monitoring system based on multiple satellite passive microwave (PMW sensors is improved with a new inter-sensor calibration scheme to correct the biases caused by differences in these sensor’s high frequency channels. Since the PMW sensor 89 GHz channel is used in multiple current and near future operational and research satellites, a unified scheme to calibrate all satellite PMW sensor’s ice scattering channels to a common 89 GHz is created so that their brightness temperatures (TBs will be consistent and permit more accurate manual and automated analyses. In order to develop a physically consistent calibration scheme, cloud resolving model simulations of a squall line system over the west Pacific coast and hurricane Bonnie in the Atlantic Ocean are applied to simulate the views from different PMW sensors. To clarify the complicated TB biases due to the competing nature of scattering and emission effects, a four-cloud based calibration scheme is developed (rain, non-rain, light rain, and cloudy. This new physically consistent inter-sensor calibration scheme is then evaluated with the synthetic TBs of hurricane Bonnie and a squall line as well as observed TCs. Results demonstrate the large TB biases up to 13 K for heavy rain situations before calibration between TMI and AMSR-E are reduced to less than 3 K after calibration. The comparison stats show that the overall bias and RMSE are reduced by 74% and 66% for hurricane Bonnie, and 98% and 85% for squall lines, respectively. For the observed hurricane Igor, the bias and RMSE decrease 41% and 25% respectively. This study demonstrates the importance of TB calibrations between PMW sensors in order to systematically monitor the global TC life cycles in terms of intensity, inner core structure and convective organization. A physics-based calibration scheme on TC’s TB corrections developed in this study is able to significantly reduce the

  8. Analyzing the Effects of Climate Change on Sea Surface Temperature in Monitoring Coral Reef Health in the Florida Keys Using Sea Surface Temperature Data

    Science.gov (United States)

    Jones, Jason; Burbank, Renane; Billiot, Amanda; Schultz, Logan

    2011-01-01

    This presentation discusses use of 4 kilometer satellite-based sea surface temperature (SST) data to monitor and assess coral reef areas of the Florida Keys. There are growing concerns about the impacts of climate change on coral reef systems throughout the world. Satellite remote sensing technology is being used for monitoring coral reef areas with the goal of understanding the climatic and oceanic changes that can lead to coral bleaching events. Elevated SST is a well-documented cause of coral bleaching events. Some coral monitoring studies have used 50 km data from the Advanced Very High Resolution Radiometer (AVHRR) to study the relationships of sea surface temperature anomalies to bleaching events. In partnership with NOAA's Office of National Marine Sanctuaries and the University of South Florida's Institute for Marine Remote Sensing, this project utilized higher resolution SST data from the Terra's Moderate Resolution Imaging Spectroradiometer (MODIS) and AVHRR. SST data for 2000-2010 was employed to compute sea surface temperature anomalies within the study area. The 4 km SST anomaly products enabled visualization of SST levels for known coral bleaching events from 2000-2010.

  9. Monitoring Evaporation/Transpiration in a Vineyard from Two-Source Energy Balance and Radiometric Temperatures

    Science.gov (United States)

    Sánchez, Juan Manuel; Doña, Carolina; Cuxart, Joan; Caselles, Vicente; Niclòs, Raquel

    2014-05-01

    Water management and understanding of irrigation efficiency could be significantly improved if the components of evapotranspiration (ET) in row-crop systems (plants and soil interrows) could be quantified separately. This evaporation/transpiration (E/T) partition, and its daily and seasonal evolution, depends on a variety of biophysical and environmental factors. In this work we present an operational method to provide continuous E/T results avoiding soil or canopy disturbance. This technique is based on the combination of the surface-atmosphere energy exchange modeling together with an accurate remote thermal characterization of the crop elements. An experiment was carried out in a row-crop vineyard in Mallorca, Spain, from June 2012 to May 2013. A set of 6 thermal-infrared radiometers (IRTs) were mounted in a mast placed in the middle of a vineyard N-S row. Two IRTs pointed to the soil between rows and other two pointed to the plants from a frontal view, measuring both east and west sides of the row. A fifth IRT pointed upward to collect the downwelling sky radiance and the remaining IRT was mounted at 4.5-m height over the canopy measuring the composed soil-canopy temperature. Measurements of the four components of the net radiation over the canopy and soil heat fluxes, as well as air temperature, humidity, wind speed, and soil moisture, were collected and stored in 15-min averages. A two-source energy balance approach was applied to the vineyard from its appropriate thermal characterization. Total and separate soil/canopy components of net radiation, soil, sensible and latent heat fluxes were obtained every 15 minutes and averaged at hourly and daily scales. Comparison between observed and modeled values of available surface energy showed relative errors below 15%. An analysis of the partition E/T was conducted along the vineyard growing season and the different phenological stages. In this experiment, interrow soil evaporation reached as much as 1/3 of the

  10. Shear Bond Strength of Intraoral Laser Welding and its Effect on Intrapulpal Temperature Rise in Primary Teeth: An in Vitro Study.

    Science.gov (United States)

    Aglarci, Cahide; Yildiz, Esma; Isman, Eren; Kazak, Mine

    2016-03-01

    This study compared the shear bond strength (SBS) of conventional welding (CW) and intraoral laser welding (LW) on fixed space maintainers (SMs), and investigated the intrapulpal temperature change (ITC) during LW. Lasers have been used for intraoral welding. The SBS test used 26 molar bands divided into two groups, CW and LW. Stainless steel wires were welded to the middle of the buccal and lingual aspects of all the bands, using an Nd:YAG laser for the LW group and silver solder and flux soldering media for the CW group. The samples, fixed to acrylic resin blocks, were subjected to shear testing. In the ITC test, 25 exfoliated primary second molar teeth were used to adapt molar bands. J-type thermocouple wire was positioned in the pulp chamber. ITCs were determined during Nd:YAG laser welding of stainless steel wires to the bands. Mann-Whitney U test was used to determine differences in SBS between the groups. ITCs were analyzed by paired t test. The SBS between groups showed significant differences (LW: 489.47 ± 135.70; CW: 49.71 ± 17.76; p < 0.001). The mean ITC during LW was 3.64 ± 0.79 (min: 2.4; max: 5.10). None of the samples' ITCs exceeded the critical threshold value (5.5 °C). LW obtained a higher-strength joint than CW. ITCs during LW do not present a thermal risk to primary teeth. The intraoral use of LW for SMs in primary teeth is recommended in terms of strength and ITCs.

  11. Brillouin distributed temperature sensing system for monitoring of submarine export cables of off-shore wind farms

    Science.gov (United States)

    Marx, Benjamin; Rath, Alexander; Kolm, Frederick; Schröder, Andreas; Buntebarth, Christian; Dreß, Albrecht; Hill, Wieland

    2016-05-01

    For high-voltage cables, the maximum temperature of the insulation must never be exceeded at any location and at any load condition. The local temperatures depend not only on the cable design and load history, but also on the local thermal environment of the cable. Therefore, distributed temperature monitoring of high-voltage cables is essential to ensure the integrity of the cable at high load. Especially, the load of the export cables of wind farms varies strongly in dependence on weather conditions. In this field study, we demonstrate the measurement performance of a new, robust Brillouin distributed temperature sensing system (Brillouin-DTS). The system is based on spontaneous Brillouin scattering and does not require a fibre loop. This is essential for long submarine high-voltage cables, where normally no loop can be formed in the seabed. It is completely passively cooled and does not contain any moving or wearing parts. The instrument is dedicated for use in industrial and other rough environments. With a measuring time below 10 min, the temperature resolution is better than 1 °C for distances up to 50 km. In the field study, the submarine export cable of an off-shore wind farm has been monitored. The temperature profile of the export cable shows several hot spots, mostly located at cable joints, and also several cold spots.

  12. Monitoring thermal processes in low-permeability fractured media using fibre-optics distributed temperature sensing (FO-DTS)

    Science.gov (United States)

    Brixel, Bernard; Klepikova, Maria; Jalali, Mohammadreza; Loew, Simon; Amann, Florian

    2017-04-01

    Fibre-optics distributed temperature sensing (FO-DTS) systems constitute arguably one of the main significant advances in the development of modern monitoring techniques in field hydrogeology, both for shallow (e.g. quantification of surface water-groundwater interactions) and deeper applications (borehole temperature monitoring). Deployment of FO-DTS monitoring systems in boreholes has notably allowed further promoting the use of temperature as a tracer to improve the characterization of heterogeneous media, with a strong focus on permeable environments such as shallow unconsolidated aquifers and/or highly-fractured rocks, generally found close to ground surface. However, applying this technology to low-permeability media, as in the case of intact rock mass intersected by isolated, discrete fractures still remains a challenge, perhaps explaining the limited number of field results reported in the scientific literature to date. Yet, understanding the transport, storage and exchange of heat in deep, low-permeability crystalline rocks is critical to many scientific and engineering research topics and applications, including for example deep geothermal energy (DGE). In the present contribution, we describe the use and application of FO-DTS monitoring to a broad range of processes, varying from the propagation and persistence of thermal anomalies (both natural and induced) to the monitoring of the curing of epoxy resin and cement grouts along the annular space of boreholes designed for monitoring discrete, packed-off zones. All data provided herein has been collected as part of a multi-disciplinary research program on hydraulic stimulation and deep geothermal energy carried out at the Grimsel Test Site (GTS), an underground rock laboratory located in the Aar massif, in the Swiss Alps. Through these examples, we illustrate the importance of understanding the spatial and temporal variations of local thermal regimes when planning to monitoring boreholes temperatures

  13. DESIGNING TEMPERATURE MONITORING SYSTEM FOR SUPERMARKET FREEZERS%超市冷柜温度监测系统设计

    Institute of Scientific and Technical Information of China (English)

    姚仲敏; 李强

    2014-01-01

    针对大中型超市冷柜中的食品温度需要进行实时监测,进而保证食品质量的问题,提出基于 Lab VIEW 的超市冷柜温度监测系统。采用 ZigBee 无线通信技术,通过星形网络实现主从节点之间数据采集与传输。子节点温度传感器将所采集到的信息传送给协调器,协调器负责接收子节点传来的温度信息。在监控机房,协调器与 PC 机利用串口连接,通过监测界面实时监测各冷柜的温度,同时完成对采集数据的保存。既实现了采集监测和超值报警的功能,又可以实现本机历史查询和远程登录数据库查询,节省人力和资源的同时,方便上级对各连锁超市的考核工作。%We propose a Lab VIEW-based supermarket freezer temperature monitoring system in light of the problem that the food temperatures in freezers at the large and medium-sized supermarkets need to be monitored and thus to ensure the qualities of the foods.ZigBee wireless communication technology is used,and the data collection and transmission between the master and slave nodes are realised through the star networks.The temperature sensor of the child node transmits the collected information to coordinator,and the coordinator is responsible for receiving the temperature information from the child node.In monitor room,the coordinator and the PC monitor the temperatures of each freezer timely using the serial port connection and through the monitoring interface,and complete the preservation of the collected data at the same time.This system realises the functions of collection and monitoring as well as over-temperature alarming,besides,it also realises the local machine history query and the telnet logon database query.While saving the manpower and resources,the system is also convenient for the higher-ups to examine the works of every chained supermarket.

  14. Real-time Process Monitoring and Temperature Mapping of the 3D Polymer Printing Process

    Energy Technology Data Exchange (ETDEWEB)

    Dinwiddie, Ralph Barton [ORNL; Love, Lonnie J [ORNL; Rowe, John C [ORNL

    2013-01-01

    An extended range IR camera was used to make temperature measurements of samples as they are being manufactured. The objective is to quantify the temperature variation inside the system as parts are being fabricated, as well as quantify the temperature of a part during fabrication. The IR camera was used to map the temperature within the build volume of the oven and surface temperature measurement of a part as it was being manufactured. The development of the temperature map of the oven provides insight into the global temperature variation within the oven that may lead to understanding variations in the properties of parts as a function of location. The observation of the temperature variation of a part that fails during construction provides insight into how the deposition process itself impacts temperature distribution within a single part leading to failure.

  15. Metal temperature monitoring in corrosive gases at high temperature and high thermal flows; Monitoreo de temperaturas de metal en gases corrosivos a alta temperatura y altos flujos termicos

    Energy Technology Data Exchange (ETDEWEB)

    Huerta Espino, Mario; Martinez Flores, Marco Antonio; Martinez Villafane, Alberto; Porcayo Calderon, Jesus; Gomez Guzman, Roberto; Reyes Cervantes, Fernando [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1990-12-31

    The direct measurement of metal temperatures during operation in superheater, reheater, and water wall tubes in zones exposed to high thermal flows is of great interest for the operation and analysis of the correct functioning of a steam generator. The operation temperature measurement of these zones differs very much of the monitored temperature in headers in the dead chamber, since the temperature measured in this zone is the steam temperature that does not reflect the one detected in the gas zone. For this reason, the thermocouples implant in gas zones will detect the real metal temperature and the incidence that some operation variables might have on it (Martinez et al., (1990). [Espanol] La medicion directa de temperaturas de metal durante operacion en tubos de sobrecalentador, recalentador y pared de agua en zonas expuestas a altos flujos termicos es de gran interes para la operacion y analisis del buen funcionamiento de un generador de vapor. La medicion de la temperatura de operacion de estas zonas, difiere mucho de la temperatura monitoreada en cabezales en zona de camara muerta, ya que la temperatura registrada en esta zona es la de vapor que no es un reflejo de la detectada en zona de gases. Por esta razon, la implantacion de termopares en zona de gases detectara la temperatura de metal real y la incidencia que algunas variables de operacion tengan sobre esta (Martinez et al., 1990).

  16. A simple protocol using underwater epoxy to install annual temperature monitoring sites in rivers and streams

    Science.gov (United States)

    Daniel J. Isaak; Dona L. Horan; Sherry P. Wollrab

    2013-01-01

    Thermal regimes in rivers and streams are fundamental determinants of biological processes and are often monitored for regulatory compliance. Here, we describe a simple technique for establishing annual monitoring sites that uses underwater epoxy to attach miniature sensors to large rocks and cement bridge supports, which then serve as protective anchors. More than 500...

  17. Implementation monitoring temperature, humidity and mositure soil based on wireless sensor network for e-agriculture technology

    Science.gov (United States)

    Sumarudin, A.; Ghozali, A. L.; Hasyim, A.; Effendi, A.

    2016-04-01

    Indonesian agriculture has great potensial for development. Agriculture a lot yet based on data collection for soil or plant, data soil can use for analys soil fertility. We propose e-agriculture system for monitoring soil. This system can monitoring soil status. Monitoring system based on wireless sensor mote that sensing soil status. Sensor monitoring utilize soil moisture, humidity and temperature. System monitoring design with mote based on microcontroler and xbee connection. Data sensing send to gateway with star topology with one gateway. Gateway utilize with mini personal computer and connect to xbee cordinator mode. On gateway, gateway include apache server for store data based on My-SQL. System web base with YII framework. System done implementation and can show soil status real time. Result the system can connection other mote 40 meters and mote lifetime 7 hours and minimum voltage 7 volt. The system can help famer for monitoring soil and farmer can making decision for treatment soil based on data. It can improve the quality in agricultural production and would decrease the management and farming costs.

  18. Study on influence of intake open channel arrangement form on temperature rise of cooling water%电厂取水明渠布置形式对取水温升的影响研究

    Institute of Scientific and Technical Information of China (English)

    刘海成; 陈汉宝

    2011-01-01

    文章以印尼某燃煤电厂工程为背景,研究了取排水明渠的不同布置形式对温排水扩散趋势和取水口温升的影响.并对原设计方案进行优化,在取水温升满足设计要求的条件下使工程更为经济合理.可为类似工程提供参考.%Based on the background of a coal-fired power plant project in Indonesia, the influence of intake open channel arrangement form on the temperature rise of cooling water was studied.Then the original design scheme was optimized in a more economical and rational way .That provides a reference for similar projects.

  19. Research of the Influence of Sleeve on Rotor Loss and Temperature Rise of Brushless DC Motors%紧圈对无刷直流电动机转子损耗及温升的影响分析

    Institute of Scientific and Technical Information of China (English)

    赵南南; 刘卫国; 诸自强

    2012-01-01

    表贴式无刷直流电动机的永磁体和紧圈如果采用电导率较高的材料,在时间和空间谐波的影响下可能会产生明显的涡流损耗.利用有限元法计算了紧圈分别采用不锈钢和碳纤维两种电导率不同材料表贴式无刷直流电动机的转子涡流损耗,基于计算得到的涡流损耗利用解析集总参数热网络法对两台电机进行了热场分析,并通过实验验证了仿真结果.通过研究发现,采用碳纤维紧圈的电机转子涡流损耗明显减小,转子发热有效改善.%Due to relatively high electrical conductivity of permanent magnets and retaining sleeve of surface-ounted brushless DC machines, significant eddy current loss may be induced by both time and space magneto-motive force harmonics. In this paper, rotor eddy current losses of surface-mounted brushless DC machines with different sleeve materials, which were stainless steel and carbon fiber respectively, were calculated using finite element analysis. Thermal fields of the two machines were analyzed using analytical lumped-circuit method based on the obtained eddy current losses and the predicted temperature rises of machines were verified by experiment results. The research reveals that the rotor eddy current losses of the motor with carbon fiber sleeve were significantly reduced the rotor temperature rise is improved effectively.

  20. FREQUENT MONITORING OF WATER TEMPERATURE IN PEGAMETAN BAY, BALI: A PRELIMINARY ASSESSMENT TOWARDS MANAGEMENT OF MARINE AQUACULTURE DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    I Nyoman Radiarta

    2014-12-01

    Full Text Available Aquaculture currently share for nearly half of the world’s food fish consumption, and continue to be the fastest-growing animal food producing sector. The viability of aquaculture operation has greatly been affected by the characteristic of marine environment. Inventory and monitoring of marine environment are necessary and can be done through information technology implementation. Frequent monitoring of water temperature, for almost one year observation, at four aquaculture sites in Pegametan Bay and Research and Development Institute for Mariculture was investigated. Water temperature data were obtained by using logger and buoy systems. These data were contrasted against marine fish mortality. On the other hand, the suitability of species requirements with the thermal conditions was evaluated by comparing temperature range to the optimum and lethal temperature information available on marine fish species of aquaculture interest. This research could be beneficial for enhancing productivity of marine aquaculture operation in terms of possible impact of climate change. It was also possible to find the ideal temperature range for culturing fish species, taking into account the variability associated with large-scale phenomena.

  1. Studies on Optical-fiber Sensor to Monitor Temperature using Reversible Thermochromic Gel Type Cobalt (II) Chloride/Polyvinyl Butyral

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, KiSeob; Lee, JunYoung [Korea Institute of Industrial Technology, Cheonan (Korea, Republic of); Park, JeaHeel; Ha, KiRyong [Keimyung University, Seoul (Korea, Republic of)

    2014-08-15

    In this study, we developed an optical-fiber sensor using cobalt chloride solution to monitor temperature in real-time between long distance points unaffected by the electro-magnetic wave and the vibration. Cobalt chloride solutions were made using 10% water and 90% ethanol (v/v) solution. The transmittance of these solutions was analyzed on 655 nm using UV-Visible spectrometer regarding temperature change. Also 30.8 mM cobalt chloride solution was gelled by dissolving polyvinyl butyral and the transmittance of this was analyzed on 655 nm regarding temperature change. The results of transmittance and optical power measurement showed decrease of both transmittance and optical power with increase of temperature from 66.8% and 149.5 nW at 25 .deg. C to 7.1% and 48 nW at 70 .deg. C, respectively. These results support the possibility of gelled cobalt chloride/polyvinyl butyral as an optical-fiber sensor to monitor temperature change.

  2. 多领域协同仿真的高密度永磁电机温升计算%Temperature Rise Calculations of High Density Permanent Magnet Motors Based on Multi-domain Co-simulation

    Institute of Scientific and Technical Information of China (English)

    张琪; 鲁茜睿; 黄苏融; 张俊

    2014-01-01

    为了有效解决电机温升不易准确计算的难题,该文首先提出基于多领域协同仿真的高密度永磁电机温升计算理念,详细论述温升计算的流程。基于热传导理论,论文导出槽内绕组等效导热系数的计算方法,有效地考虑了漆包线绝缘层、浸渍漆和微孔对电机温升的影响。以一台48槽/8极高密度永磁电机样机为例,基于多领域协同仿真的计算方法,精确计算样机的铁耗、计及集肤效应的交流绕组铜耗,以及永磁体的涡流损耗和电机内的温度场。最后,进行样机的温升试验,温度场计算值与试验结果基本吻合,验证了基于多领域协同仿真的高密度永磁电机温升计算方法的准确性和有效性。%In order to accurately analyze the temperature rise of high density permanent magnet motors (HDPMM), a new temperature calculation conception of the HDPMM based on multi-domain co-simulation was proposed and its calculation process was elaborated.According to the theory of heat transfer, the calculation method of equivalent heat transfer coefficient for the stator winding was deduced, which effectively consider the influence of the wire insulation, impregnating varnish and fine air gap in slots on the temperature rise of the motor. Based on multi-domain co-simulation, a prototype of 48-slot 8-pole HDPMM was simulated for its iron losses, AC winding copper losses taking the skin effect into account, permanent magnet eddy losses,and thermal fields. The temperature of the prototype machine was tested. The good agreement between the tested data and the simulated data verifies the validity and precision of the simulation approach.

  3. Monitoring of the temperature - moisture regime of critical parts in the tower of the St. Martin Cathedral in Bratislava.

    Science.gov (United States)

    Kubicar, L.; Fidríková, D.; Štofanik, V.; Vretenár, V.

    2012-04-01

    Historic monuments are subject to degradation due to exposition to surrounding meteorological conditions and groundwater. Degradation is most often manifested by deterioration of plaster, walls structure and building elements like stones. A significant attention measures are undertaken to prevent degradation of the cultural heritage throughout the world. Our contribution is to monitor the objects for recognition of the critical state when it is necessary to make adjustments to avoid destruction. Buildings consisting from the listed elements belong to porous materials. Moisture diffusion, condensation, etc. attack structure stability of the buildings. Then the moisture diffusion and effects like drying, freezing / thawing belong to the control mechanisms of the degradation. In addition to laboratory experiments concerning the mentioned effects, we simultaneously studied processes by monitoring of the cultural monuments. During monitoring we have identified diffusion of moisture associated with cycle day / night and cycle moisture /drying caused by meteorological precipitation. Long term monitoring is performed in the tower of St. Martin Cathedral in Bratislava under the window sill of the belfry in exterior at three orientations, the north, south and the west. Monitoring is carried out in plaster and in masonry about 10 cm from the wall surface. The thermal conductivity sensors are used for monitoring that operate on the principle of the hot ball method. Then thermal conductivity of porous material is a function of pore content. The sensor has shape of a ball in diameter up to 2 mm in which a heat source as well as a thermometer is integrated into one component. A small heat output is delivered into the surrounding material. The temperature response of the sensor gives information on the thermal conductivity. For use in the preservation of cultural heritage a number of measuring devices have been developed for automatic registration of temperature and moisture in

  4. Real-Time Electrical Impedimetric Monitoring of Blood Coagulation Process under Temperature and Hematocrit Variations Conducted in a Microfluidic Chip

    OpenAIRE

    Lei, Kin Fong; Chen, Kuan-Hao; Tsui, Po-Hsiang; Tsang, Ngan-Ming

    2013-01-01

    Blood coagulation is an extremely complicated and dynamic physiological process. Monitoring of blood coagulation is essential to predict the risk of hemorrhage and thrombosis during cardiac surgical procedures. In this study, a high throughput microfluidic chip has been developed for the investigation of the blood coagulation process under temperature and hematocrit variations. Electrical impedance of the whole blood was continuously recorded by on-chip electrodes in contact with the blood sa...

  5. A Dangerous New Rise

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The soaring price of coal used for power generation threatens to push electricity price higher,flaging further fears over inflation China is attempting to dig its way out of the trap of inflation.Standing in its way is the rising price of power- generating coal. In mid-December 2007,coal producers and power plants came to an agreement that the price of power-generating coal would rise 10 percent in 2008,adding 42 billion

  6. Infrared fiber optic temperature monitoring of biological tissues heated in a microwave oven

    Science.gov (United States)

    Belotserkovsky, Edward; Ashkenasy, Y.; Shenfeld, Ofer; Drizlikh, S.; Zur, Albert; Katzir, Abraham

    1993-05-01

    The heating of tissue by microwave radiation has attained a place of importance in various medical fields such as the treatment of malignancies, urinary retention and hypothermia. Accurate temperature measurements in these treated tissues is important for treatment planning and for the control of the heating process. It is also important to be able to measure spacial temperature distribution in the tissues because they are heated in a non uniform way by the microwave radiation. Fiber optic radiometry makes possible accurate temperature measurement in the presence of microwave radiation and does not require contact with the tissue. Using a IR silver halide fiber optic radiometric temperature sensor we obtained accurate temperature measurements of tissues heated by microwave, enabling us to control the heating process in all regions of the tissue. We also performed temperature mapping of the heated tissues and demonstrated the non-uniform temperature distributions in them.

  7. Liquid crystal thermography. A method for monitoring temperature gradients in microtitration plates.

    Science.gov (United States)

    Oliver, D G; Sanders, A H; Jang, L; Poy, D; Van Heuvelen, A

    1983-03-11

    Precise quantitative heat transfer information in microtitration plates can be obtained by filling the wells of a microtitration plate with cholesteric liquid crystals and incubating the plates at the desired temperature in different incubators. The liquid crystals indicate temperature by changes in discrete reproducible colors over various temperature ranges. With these instrumented plates, interwell thermal gradients may be documented visually and are in close agreement with results obtained by using wire thermocouple measuring techniques.

  8. Sixteen years of X-ray monitoring of Sagittarius A*: Evidence for a decay of the faint flaring rate from 2013 August, 13 months before a rise in the bright flaring rate

    Science.gov (United States)

    Mossoux, Enmanuelle; Grosso, Nicolas

    2017-08-01

    Context. X-ray flaring activity from the closest supermassive black hole Sagittarius A* (Sgr A*) located at the center of our Galaxy has been observed since 2000 October 26 thanks to the current generation of X-ray facilities. In a study of X-ray flaring activity from Sgr A* using Chandra and XMM-Newton public observations from 1999 to 2014 and Swift monitoring in 2014, it was argued that the "bright and very bright" flaring rate has increased from 2014 August 31. Aims: As a result of additional observations performed in 2015 with Chandra, XMM-Newton, and Swift (total exposure of 482 ks), we seek to test the significance and persistence of this increase of flaring rate and to determine the threshold of unabsorbed flare flux or fluence leading to any change of flaring rate. Methods: We reprocessed the Chandra, XMM-Newton, and Swift data from 1999 to 2015 November 2. From these data, we detected the X-ray flares via our two-step Bayesian blocks algorithm with a prior on the number of change points properly calibrated for each observation. We improved the Swift data analysis by correcting the effects of the target variable position on the detector and we detected the X-ray flares with a 3σ threshold on the binned light curves. The mean unabsorbed fluxes of the 107 detected flares were consistently computed from the extracted spectra and the corresponding calibration files, assuming the same spectral parameters. We constructed the observed distribution of flare fluxes and durations from the XMM-Newton and Chandra detections. We corrected this observed distribution from the detection biases to estimate the intrinsic distribution of flare fluxes and durations. From this intrinsic distribution, we determined the average flare detection efficiency for each XMM-Newton, Chandra, and Swift observation. We finally applied the Bayesian blocks algorithm on the arrival times of the flares corrected from the corresponding efficiency. Results: We confirm a constant overall flaring

  9. Corrosion Resistant FBG-Based Quasi-Distributed Sensor for Crude Oil Tank Dynamic Temperature Profile Monitoring

    Directory of Open Access Journals (Sweden)

    Rogério da Silva Marques

    2015-12-01

    Full Text Available This article presents a corrosion resistant, maneuverable, and intrinsically safe fiber Bragg grating (FBG-based temperature optical sensor. Temperature monitoring is a critical activity for the oil and gas industry. It typically involves acquiring the desired parameters in a hazardous and corrosive environment. The use of polytetrafluoroethylene (PTFE was proposed as a means of simultaneously isolating the optical fiber from the corrosive environment and avoiding undesirable mechanical tensions on the FBGs. The presented sensor head is based on multiple FBGs inscribed in a lengthy single mode fiber. The sensor presents an average thermal sensitivity of 8.82 ± 0.09 pm/°C, resulting in a typical temperature resolution of ~0.1 °C and an average time constant value of 6.25 ± 0.08 s. Corrosion and degradation resistance were verified by infrared spectroscopy and scanning electron microscopy during 90 days exposure to high salinity crude oil samples. The developed sensor was tested in a field pilot test, mimicking the operation of an inland crude tank, demonstrating its abilities to dynamically monitor temperature profile.

  10. Temperature rise and microplastics interact with the toxicity of the antibiotic cefalexin to juveniles of the common goby (Pomatoschistus microps): Post-exposure predatory behaviour, acetylcholinesterase activity and lipid peroxidation.

    Science.gov (United States)

    Fonte, Elsa; Ferreira, Pedro; Guilhermino, Lúcia

    2016-11-01

    The goal of this study was to investigate the toxicity of cefalexin to Pomatoschistus microps juveniles in relation to the presence of microplastics in the water and temperature rise. After acclimatization, groups of wild juveniles were exposed for 96h to artificial salt water (control), microplastics alone (0.184mg/l), cefalexin alone (1.3-10mg/l) and in mixture with microplastics (cefalexin: 1.3-10mg/l; microplastics: 0.184mg/l) at 20 and 25°C. Effect criteria were mortality, post-exposure predatory performance (PEPP), acetylcholinesterase activity (AChE) and lipid peroxidation levels (LPO). At 20°C, concentrations of cefalexin alone≥5mg/l significantly reduced PEPP (up to 56%; 96h-EC50=8.4mg/l), indicating toxicity of the antibiotic to juveniles after short-term exposure to water concentrations in the low ppm range. At 20°C, fish exposed to microplastics alone did not have significant differences in any of the parameters tested relative to the control group but tended to have an inhibition of the PEPP (23%) and AChE (21%); at 25°C, microplastics alone caused mortality (33%) and PEPP inhibition (28%). Thus, microplastics are toxic to P. microps juveniles. At 20°C, under simultaneous exposure to cefalexin and microplastics, the PEPP was significantly reduced (at cefalexin concentrations≥1.25mg/l). Moreover, at 25°C, the toxicity curves of cefalexin (PEPP based), alone and in mixture with microplastics, were significantly different (pmicroplastics in the water influenced the toxicity of cefalexin. The rise of water temperature (from 20°C to 25°C), increased the microplastics-induced mortality (from 8 to 33%), and the inhibitory effects of cefalexin on the PEPP (up to 70%). Significant differences (pmicroplastics and of cefalexin, alone and in mixture with microplastics, to P. microps juveniles. These findings raise concern on the long-term exposure of wild populations to complex mixtures of pollutants, likely decreasing their fitness, and highlight the

  11. An experimental study on the effect of temperature on piezoelectric sensors for impedance-based structural health monitoring.

    Science.gov (United States)

    Baptista, Fabricio G; Budoya, Danilo E; de Almeida, Vinicius A D; Ulson, Jose Alfredo C

    2014-01-10

    The electromechanical impedance (EMI) technique is considered to be one of the most promising methods for developing structural health monitoring (SHM) systems. This technique is simple to implement and uses small and inexpensive piezoelectric sensors. However, practical problems have hindered its application to real-world structures, and temperature effects have been cited in the literature as critical problems. In this paper, we present an experimental study of the effect of temperature on the electrical impedance of the piezoelectric sensors used in the EMI technique. We used 5H PZT (lead zirconate titanate) ceramic sensors, which are commonly used in the EMI technique. The experimental results showed that the temperature effects were strongly frequency-dependent, which may motivate future research in the SHM field.

  12. Embedded fiber Bragg grating sensors for true temperature monitoring in Nb$_3$Sn superconducting magnets for high energy physics

    CERN Document Server

    Chiuchiolo, A; Bajko, M; Consales, M; Giordano, M; Perez, J C; Cusano, A

    2016-01-01

    The luminosity upgrade of the Large Hadron Collider (HL-LHC) planned at the European Organization for Nuclear Research (CERN) requires the development of a new generation of superconducting magnets based on Nb3Sn technology. The instrumentation required for the racetrack coils needs the development of reliable sensing systems able to monitor the magnet thermo-mechanical behavior during its service life, from the coil fabrication to the magnet operation. With this purpose, Fiber Bragg Grating (FBG) sensors have been embedded in the coils of the Short Model Coil (SMC) magnet fabricated at CERN. The FBG sensitivity to both temperature and strain required the development of a solution able to separate mechanical and temperature effects. This work presents for the first time a feasibility study devoted to the implementation of an embedded FBG sensor for the measurement of the "true" temperature in the impregnated Nb3Sn coil during the fabrication process. © (2016) COPYRIGHT Society of Photo-Optical Instrumentatio...

  13. Optimizing Mouse Surgery with Online Rectal Temperature Monitoring and Preoperative Heat Supply. Effects on Post-Ischemic Acute Kidney Injury.

    Science.gov (United States)

    Marschner, Julian A; Schäfer, Hannah; Holderied, Alexander; Anders, Hans-Joachim

    2016-01-01

    Body temperature affects outcomes of tissue injury. We hypothesized that online body core temperature recording and selective interventions help to standardize peri-interventional temperature control and the reliability of outcomes in experimental renal ischemia reperfusion injury (IRI). We recorded core temperature in up to seven mice in parallel using a Thermes USB recorder and ret-3-iso rectal probes with three different protocols. Setup A: Heating pad during ischemia time; Setup B: Heating pad from incision to wound closure; Setup C: A ventilated heating chamber before surgery and during ischemia time with surgeries performed on a heating pad. Temperature profile recording displayed significant declines upon installing anesthesia. The profile of the baseline experimental setup A revealed that temperature readings were within the target range of 36.5 to 38.5°C. Setup B and C increased the target range readings to 34.6 ± 28.0% and 99.3 ± 1.5%, respectively. Setup C significantly increased S3 tubular necrosis, neutrophil influx, and mRNA expression of kidney injury markers. In addition, using setup C different ischemia times generated a linear correlation with acute tubular necrosis parameters at a low variability, which further correlated with the degree of kidney atrophy 5 weeks after surgery. Changing temperature control setup A to C was equivalent to 10 minutes more ischemia time. We conclude that body temperature drops quickly in mice upon initiating anesthesia. Immediate heat supply, e.g. in a ventilated heating chamber, and online core temperature monitoring can help to standardize and optimize experimental outcomes.

  14. Temperature and Water Depth Monitoring Within Chum Salmon Spawning Habitat Below Bonneville Dam : Annual Report October 2007-September 2008

    Energy Technology Data Exchange (ETDEWEB)

    Arntzen, E.V. [Pacific Northwest National Laboratory

    2009-07-14

    The overall goal of the project described in this report is to provide a sound scientific basis for operation of the Federal Columbia River Power System (FCRPS) in ways that will effectively protect and enhance chum salmon populations - a species listed in March 1999 as threatened under the Endangered Species Act of 1973 (ESA). The study objective during fiscal year 2008 was to provide real-time data on Ives Island area water temperature and water surface elevations from the onset of chum salmon spawning through the end of chum salmon emergence. Sampling locations included areas where riverbed temperatures were elevated, potentially influencing alevin development and emergence timing. In these locations, hydrosystem operation caused large, frequent changes in river discharge that affected salmon habitat by dewatering redds and altering egg pocket temperatures. The 2008 objective was accomplished using temperature and water-level sensors deployed inside piezometers. Sensors were integrated with a radio telemetry system such that real-time data could be downloaded remotely and posted hourly on the Internet. During our overall monitoring period (October 2007 through June 2008), mean temperature in chum spawning areas was nearly 2 C warmer within the riverbed than in the overlying river. During chum salmon spawning (mid-November 2007 through December2007), mean riverbed temperature in the Ives Island area was 14.5 C, more than 5 C higher than in the river, where mean temperature was 9.4 C. During the incubation period (January 2008 through mid-May 2008), riverbed temperature was approximately 3 C greater than in the overlying river (10.5 C and 7.2 C, respectively). Chum salmon preferentially select spawning locations where riverbed temperatures are elevated; consequently the incubation time of alevin is shortened before they emerge in the spring.

  15. More than Rising Grain Prices

    Institute of Scientific and Technical Information of China (English)

    Hu Junhua

    2010-01-01

    @@ According to the bulletin of the National Bureau of Statistics,the summer harvest nationwide this year was 246.2billion jin,a decline of 0.3% compared to last year.The cold spell in late spring and high temperatures afterwards are considered as the main causes for this round of rising grain prices.However,"natural disasters"are dwarfed by another worrisome picture: young and strong farming hands flooding out of the rural areas and the elderly,the weak,females and children are made the mainstay of the tilling army.

  16. Reducing the loss of vaccines from accidental freezing in the cold chain: the experience of continuous temperature monitoring in Tunisia.

    Science.gov (United States)

    Lloyd, John; Lydon, Patrick; Ouhichi, Ramzi; Zaffran, Michel

    2015-02-11

    Accidental freezing of vaccines is a growing threat and a real risk for national immunization programs when the potency of many vaccines can be compromised if these are exposed to sub-zero temperatures in the cold chain. In Tunisia, this issue is compounded by using sub-standard domestic cold chain equipment instead of equipping the program with medical refrigerators designed specifically for storing vaccines and temperature sensitive pharmaceuticals. Against this backdrop, this paper presents the findings of a demonstration project conducted in Tunisia in 2012 that tested the impact of introducing several freeze prevention solutions to mitigate the risk of accidental freezing of vaccines. The main finding is that, despite the continued use of underperforming domestic refrigerators, continuous temperature monitoring using new technologies combined with other technological interventions significantly reduced the prevalence of accidental exposure to freezing temperatures. These improvements were noticed for cold chain storage at regional, district and health center levels, and during the transport legs that were part of the demonstration conducted in the regions of Kasserine in the South-Eastern part of Tunisia. Subsequent to introducing these freeze prevention solutions, the incidence of freeze alarms was reduced and the percent of time the temperatures dropped below the 2 °C recommended threshold. The incidence of freeze alarms at health center level was reduced by 40%. Lastly, the solutions implemented reduced risk of freezing during transport from 13.8% to 1.7%. Although the solution implemented is not optimal in the longer term because domestic refrigerators are used extensively in district stores and health centers, the risk of accidental freezing is significantly reduced by introducing the practice of continuous temperature monitoring as a standard. The management of the cold chain equipment was strengthened as a result which helps protect the potency of

  17. Real Time Monitoring of Temperature of a Micro Proton Exchange Membrane Fuel Cell

    Directory of Open Access Journals (Sweden)

    Chih-Wei Chuang

    2009-03-01

    Full Text Available Silicon micro-hole arrays (Si-MHA were fabricated as a gas diffusion layer (GDL in a micro fuel cell using the micro-electro-mechanical-systems (MEMS fabrication technique. The resistance temperature detector (RTD sensor was integrated with the GDL on a bipolar plate to measure the temperature inside the fuel cell. Experimental results demonstrate that temperature was generally linearly related to resistance and that accuracy and sensitivity were within 0.5 °C and 1.68×10-3/°C, respectively. The best experimental performance was 9.37 mW/cm2 at an H2/O2 dry gas flow rate of 30/30 SCCM. Fuel cell temperature during operation was 27 °C, as measured using thermocouples in contact with the backside of the electrode. Fuel cell operating temperature measured in situ was 30.5 °C.

  18. Applicability of a microbial Time Temperature Indicator (TTI) for monitoring spoilage of modified atmosphere packed minced meat.

    Science.gov (United States)

    Vaikousi, Hariklia; Biliaderis, Costas G; Koutsoumanis, Konstantinos P

    2009-08-15

    The applicability of a microbial Time Temperature Indicator (TTI) prototype, based on the growth and metabolic activity of a Lactobacillus sakei strain developed in a previous study, in monitoring quality of modified atmosphere packed (MAP) minced beef was evaluated at conditions simulating the chill chain. At all storage temperatures examined (0, 5, 10, 15 degrees C), the results showed that lactic acid bacteria (LAB) were the dominant bacteria and can be used as a good spoilage index of MAP minced beef. The end of product's shelf life as revealed by the sensory evaluation coincided with a LAB population level of 7 log(10) CFU/g. For all temperatures tested, the growth of L. sakei in the TTI resembled closely the growth of LAB in the meat product, with similar temperature dependence of the micro(max) and thus similar activation energy values calculated as 111.90 and 106.90 kJ/mol, for the two systems, respectively. In addition, the end point of TTI colour change coincided with the time of sensory rejection point of the beef product during its storage under isothermal chilled temperature conditions. The estimated activation energy, E(alpha), values obtained for parameters related to the response of DeltaE (total colour change of the TTI) describing the kinetics of colour change of the TTI during isothermal storage (i.e. the maximum specific rate of DeltaEpsilon evolution curve, micro(DeltaEpsilon), and also the reciprocal of t(i), time at which half of the maximum DeltaEpsilon is reached), were 112.77 and 127.28 kJ/mol, respectively. Finally, the application of the microbial TTI in monitoring the quality deterioration of MAP minced beef due to spoilage was further evaluated under dynamic conditions of storage, using two separate low temperature periodic changing scenarios, resembling the actual conditions occurring in the distribution chill chain. The results showed that the end point of TTI, after storage at those fluctuating temperature conditions, was noted very

  19. Developing an ecosystem perspective from experimental monitoring programs: I. Demographic responses of a rare geothermal grass to soil temperature.

    Science.gov (United States)

    Pavlik, B M; Enberg, A

    2001-08-01

    The geysers panic grass [Dichanthelium lanuginosum Spellenberg var. thermale (Bol.) Spellenberg or DILA] is exclusively associated with surface geothermal manifestations in Sonoma County, California, USA (38 degrees 46'N, 122 degrees 38'W). Steam extraction by power plants could alter the subsurface distribution of heat and water to the site, potentially impacting subpopulations of this rare plant. The purpose of this study was to use demographic monitoring to determine: (1) temporal and spatial patterns of soil temperature in relation to the distribution of established DILA individuals at Little Geysers, (2) in situ response of experimental populations of DILA to spatial variations in soil temperature, and (3) habitat requirements of DILA as an indicator of its tolerance to variations in surficial geothermal features. Thermocouple transects and a datalogger provided data for characterizing the spatial and temporal patterns of soil temperature in four microhabitats (fumarole, DILA stand, Andropogon stand, and cleared). Experimental populations were established by precisely sowing and monitoring DILA seeds in these microhabitats. The results indicated that spatial and temporal variations in soil temperature had significant effects on the processes of germination, growth, survivorship, and reproduction, thus producing a readily observed metapopulation patch dynamic in relation to geothermal activity. Seasonal depressions of soil temperature near the fumaroles by cold air and prolonged rainfall events also promoted the emergence and survival of DILA seedlings in a microhabitat that was previously too hot to occupy. Over longer periods of time, DILA metapopulation dynamism reflected climatic and geothermal variation. Drought years inhibited germination for lack of water, but more importantly for the lack of requisite soil temperature depressions in the fumarole microhabitat. Wet years promoted subpopulation expansion into transition areas that were once too hot and dry

  20. The Rise of China

    Institute of Scientific and Technical Information of China (English)

    Yang Shouming; Cheng Youzhong

    2007-01-01

    Shared ideas wield a decisive influence on a country's external behavior. How China's rise will impact the world is determined by ideas shared by the international community. The identity and role of an emerging China is shaped not merely by its own material factors and subjective efforts. It is also constructed through China's interaction with other countries. The idea of a harmonious culture may eliminate international concerns about China's rise at the root, but this culture needs to be constructed by all the countries in the world.

  1. On-chip temperature monitoring of a SiC current limiter

    Energy Technology Data Exchange (ETDEWEB)

    Tournier, D.; Godignon, P.; Millan, J. [Centro Nacional de Microelectronica (CNM), Univ. Autonoma de Barcelona, Bellaterra (Spain); Planson, D.; Chante, J.P. [Centre de Genie Electrique de Lyon (CEGELY) INSA-LYON, UMR 5005 CNRS, Villeurbanne (France); Sarrus, F.; Palma, J.F. de [Ferraz Shawmut, Bonnet de Mure (France)

    2004-07-01

    High voltage and high current potentiality of SiC based devices has been proved, and various devices able to work at high temperature have been reported as well. Nevertheless, packaging is one of the main constrains for high temperature operation of these devices. Up to date, no specific power package has been reported for high temperature operation. Moreover, it is desirable to predict the SiC die temperature to avoid any related failure in order to improve the efficiency of the packaged SiC device. This paper deals with an integrated temperature sensor for SiC current limiting devices. The current limiter is based on a VJFET structure, which capability for dissipating high power density (140 kW/cm{sup 2}), in the limiting state, has been previously demonstrated. Carrier mobility dependence with temperature was extracted from cryogenic measurements. The temperature estimation is based on the measurement of the variation of the electrical resistance (caused by mobility variation) of the sensing device integrated with the current limiter. In this paper we first describe the temperature estimation methodology using various technological solution (from metallic resistor solution to the SiC integrated sensor). Then experimental temperature measurements using an integrated SiC sensor within a packaged current limiting devices will be presented. Electro-thermal measurements on the fabricated devices show that the current limiter is able to work at 205 C under steady state conditions (320 V), without degrading their electrical performances. Finally, perspectives in terms of integration and reliability will be proposed. (orig.)

  2. Nonlinearity characterization of temperature sensing systems for integrated circuit testing by intermodulation products monitoring.

    Science.gov (United States)

    Altet, J; Mateo, D; Perpiñà, X; Grauby, S; Dilhaire, S; Jordà, X

    2011-09-01

    This work presents an alternative characterization strategy to quantify the nonlinear behavior of temperature sensing systems. The proposed approach relies on measuring the temperature under thermal sinusoidal steady state and observing the intermodulation products that are generated within the sensing system itself due to its nonlinear temperature-output voltage characteristics. From such intermodulation products, second-order interception points can be calculated as a figure of merit of the measuring system nonlinear behavior. In this scenario, the present work first shows a theoretical analysis. Second, it reports the experimental results obtained with three thermal sensing techniques used in integrated circuits.

  3. Temperature monitoring using fibre optic sensors in a lead-bismuth eutectic cooled nuclear fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    De Pauw, B., E-mail: bdepauw@vub.ac.be [Vrije Universiteit Brussel (VUB), Brussels Photonics Team (B-Phot), Brussels (Belgium); Vrije Universiteit Brussel (VUB), Acoustics and Vibration Research Group (AVRG), Brussels (Belgium); Belgian Nuclear Research Centre, (SCK-CEN), Boeretang 200, Mol (Belgium); Lamberti, A.; Ertveldt, J.; Rezayat, A.; Vanlanduit, S. [Vrije Universiteit Brussel (VUB), Acoustics and Vibration Research Group (AVRG), Brussels (Belgium); Van Tichelen, K. [Belgian Nuclear Research Centre, (SCK-CEN), Boeretang 200, Mol (Belgium); Berghmans, F. [Vrije Universiteit Brussel (VUB), Brussels Photonics Team (B-Phot), Brussels (Belgium)

    2016-02-15

    Highlights: • We demonstrate the use of optical fibre sensors in lead-bismuth cooled installations. • In this first of a kind experiment, we focus on temperature measurements of fuel rods • We acquire the surface temperature with a resolution of 30 mK. • We asses the condition of the installation during different steps of the operation. - Abstract: In-core temperature measurements are crucial to assess the condition of nuclear reactor components. The sensors that measure temperature must respond adequately in order, for example, to actuate safety systems that will mitigate the consequences of an undesired temperature excursion and to prevent component failure. This issue is exacerbated in new reactor designs that use liquid metals, such as for example a molten lead-bismuth eutectic, as coolant. Unlike water cooled reactors that need to operate at high pressure to raise the boiling point of water, liquid metal cooled reactors can operate at high temperatures whilst keeping the pressure at lower levels. In this paper we demonstrate the use of optical fibre sensors to measure the temperature distribution in a lead-bismuth eutectic cooled installation and we derive functional input e.g. the temperature control system or other systems that rely on accurate temperature actuation. This first-of-a-kind experiment demonstrates the potential of optical fibre based instrumentation in these environments. We focus on measuring the surface temperature of the individual fuel rods in the fuel assembly, but the technique can also be applied to other components or sections of the installation. We show that these surface temperatures can be experimentally measured with limited intervention on the fuel pin owing to the small geometry and fundamental properties of the optical fibres. The unique properties of the fibre sensors allowed acquiring the surface temperatures with a resolution of 30 mK. With these sensors, we assess the condition of the test section containing the fuel

  4. Tree-Temperature Monitoring for Frost Protection of Orchards in Semi-Arid Regions Using Sprinkler Irrigation

    Institute of Scientific and Technical Information of China (English)

    Ali Asghar Ghaemi; Mohammad Rafie Rafiee; Ali Reza Sepaskhah

    2009-01-01

    Automated over-tree sprinkler irrigation systems were developed and tested in two orchards located in two separate locations in southern Iran (a 0.17 ha peach orchard and a 0.24 ha orange orchard) to protect peach blossoms and orange trees leaves and fruits from low temperature damage. The experiment used a system that monitored the trees and air temperatures using two thermistors. The water application rate by the irrigation system was determined by an energy balance as implemented by the software FROSTPRO. In the peach orchard, the system was tested during three frost events during the spring of 2003 and three other events during the spring of 2004. The system successfully kept peach flowers above the critical temperature, i.e., -4.0℃ in spring 2004 (control block -4.12℃, and sprinkled block+0.5℃) during all events. Similar results were obtained in the orange orchard during three frost events in the winter of 2004, during which the tree temperatures were at least 2.5℃ above the critical temperature. Results from field tests show that the system can effectively protect the peach blossoms from damage. Determination done after the frost events showed a 12% blossom kill in the sprinkled blocks while in the unsprinkled control block a 41.5% blossom kill. Calculations indicated that when using variable application rates, the amount of water used can be reduced by 54.3%. Spatial distribution of minimum temperatures during the three frosts was also studied in Jahrom, Iran. Results showed a significant temperature control in the experimental block, especially in the central part of the orchard, but the block margins (about 3.6% of the total area) were at the risk of low temperature due to the wind drift effects.

  5. Development and Improvement of an Intelligent Cable Monitoring System for Underground Distribution Networks Using Distributed Temperature Sensing

    Directory of Open Access Journals (Sweden)

    Jintae Cho

    2014-02-01

    Full Text Available With power systems switching to smart grids, real-time and on-line monitoring technologies for underground distribution power cables have become a priority. Most distribution components have been developed with self-diagnostic sensors to realize self-healing, one of the smart grid functions in a distribution network. Nonetheless, implementing a real-time and on-line monitoring system for underground distribution cables has been difficult because of high cost and low sensitivity. Nowadays, optical fiber composite power cables (OFCPCs are being considered for communication and power delivery to cope with the increasing communication load in a distribution network. Therefore, the application of distributed temperature sensing (DTS technology on OFCPCs used as underground distribution lines is studied for the real-time and on-line monitoring of the underground distribution power cables. Faults can be reduced and operating ampacity of the underground distribution system can be increased. This paper presents the development and improvement of an intelligent cable monitoring system for the underground distribution power system, using DTS technology and OFCPCs as the underground distribution lines in the field.

  6. Monitoring cerebral oxygen saturation during cardiopulmonary bypass using near-infrared spectroscopy: the relationships with body temperature and perfusion rate

    Science.gov (United States)

    Teng, Yichao; Ding, HaiShu; Gong, Qingcheng; Jia, Zaishen; Huang, Lan

    2006-03-01

    During cardiopulmonary bypass (CPB) because of weak arterial pulsation, near-IR spectroscopy (NIRS) is almost the only available method to monitor cerebral oxygenation noninvasively. Our group develops a NIRS oximeter to monitor regional cerebral oxygenation especially its oxygen saturation (rScO2). To achieve optimal coupling between the sensor and human brain, the distances between the light source and the detectors on it are properly chosen. The oximeter is calibrated by blood gas analysis, and the results indicate that its algorithm is little influenced by either background absorption or overlying tissue. We used it to measure the rScO2 of 15 patients during CPB. It is shown that rScO2 is negatively correlated with body temperature and positively with perfusion rate. There are two critical stages during CPB when rScO2 might be relatively low: one is the low-perfusion-rate stage, the other is the early rewarming stage. During cooling, the changes of total hemoglobin concentration (CtHb) compared with its original value is also monitored. It is shown that CtHb decreases to a small extent, which may mainly reflect cerebral vasoconstriction induced by cooling. All these results indicate that NIRS can be used to monitor cerebral oxygenation to protect cerebral tissue during CPB.

  7. Raspberry Pi in-situ network monitoring system of groundwater flow and temperature integrated with OpenGeoSys

    Science.gov (United States)

    Park, Chan-Hee; Lee, Cholwoo

    2016-04-01

    Raspberry Pi series is a low cost, smaller than credit-card sized computers that various operating systems such as linux and recently even Windows 10 are ported to run on. Thanks to massive production and rapid technology development, the price of various sensors that can be attached to Raspberry Pi has been dropping at an increasing speed. Therefore, the device can be an economic choice as a small portable computer to monitor temporal hydrogeological data in fields. In this study, we present a Raspberry Pi system that measures a flow rate, and temperature of groundwater at sites, stores them into mysql database, and produces interactive figures and tables such as google charts online or bokeh offline for further monitoring and analysis. Since all the data are to be monitored on internet, any computers or mobile devices can be good monitoring tools at convenience. The measured data are further integrated with OpenGeoSys, one of the hydrogeological models that is also ported to the Raspberry Pi series. This leads onsite hydrogeological modeling fed by temporal sensor data to meet various needs.

  8. Bahamas Sea Water Temperature Data 1988-2003, PIMS Environmental Monitoring Program

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This metadata record references seawater temperature data collected at various sites and depths in the vicinity of PIMS research station on Lee Stocking Island,...

  9. Plasma flow reactor for steady state monitoring of physical and chemical processes at high temperatures

    Science.gov (United States)

    Koroglu, Batikan; Mehl, Marco; Armstrong, Michael R.; Crowhurst, Jonathan C.; Weisz, David G.; Zaug, Joseph M.; Dai, Zurong; Radousky, Harry B.; Chernov, Alex; Ramon, Erick; Stavrou, Elissaios; Knight, Kim; Fabris, Andrea L.; Cappelli, Mark A.; Rose, Timothy P.

    2017-09-01

    We present the development of a steady state plasma flow reactor to investigate gas phase physical and chemical processes that occur at high temperature (1000 reactor consists of a glass tube that is attached to an inductively coupled argon plasma generator via an adaptor (ring flow injector). We have modeled the system using computational fluid dynamics simulations that are bounded by measured temperatures. In situ line-of-sight optical emission and absorption spectroscopy have been used to determine the structures and concentrations of molecules formed during rapid cooling of reactants after they pass through the plasma. Emission spectroscopy also enables us to determine the temperatures at which these dynamic processes occur. A sample collection probe inserted from the open end of the reactor is used to collect condensed materials and analyze them ex situ using electron microscopy. The preliminary results of two separate investigations involving the condensation of metal oxides and chemical kinetics of high-temperature gas reactions are discussed.

  10. Three-dimensional temperature monitoring in solids. Dreidimensionale Temperaturueberwachung in festen Medien

    Energy Technology Data Exchange (ETDEWEB)

    Bittner, G.; Helwig, C.R. (Huppertz und Schneider GmbH, Dortmund (Germany, F.R.) Institut fuer Anwendungsnahe Technologieentwicklung Wedel GmbH (Germany, F.R.))

    1990-01-01

    The article describes a method of automatic temperature measurement in large coal piles for evaluation and processing in a central computer. This method would also help to detect smoldering fires at an early stage and prevent them. Temperature sensors installed in hollow lances linked by a chain transfer data to a local data acquisition station at the top section of the lance, from where they are transmitted to a central evaluation system and evaluated by PC. (MOS).

  11. CdCl{sub 2} activation treatment: A comprehensive study by monitoring the annealing temperature

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bing Lei; Rimmaudo, Ivan; Salavei, Andrei [LAPS-Laboratory for Applied Physics, Department of Computer Science, University of Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134 Verona (Italy); Piccinelli, Fabio [Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona (Italy); Di Mare, Simone [LAPS-Laboratory for Applied Physics, Department of Computer Science, University of Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134 Verona (Italy); Menossi, Daniele; Bosio, Alessio; Romeo, Nicola [Physics and Earth Science Department, University of Parma, V.le G.P. Usberti 7A, 43124 (Italy); Romeo, Alessandro, E-mail: alessandro.romeo@univr.it [LAPS-Laboratory for Applied Physics, Department of Computer Science, University of Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134 Verona (Italy)

    2015-05-01

    CdTe thin film solar cells have demonstrated high scalability, high efficiency and low cost fabrication process. One of the key factors for the achievements of this technology is the transformation of the absorber layer by an activation treatment where chlorine reacts with CdTe in a controlled atmosphere or in air, improving the electrical properties of the absorber and enhancing the intermixing of the CdS/CdTe layers. With this work we study the activation process by analyzing the CdCl{sub 2} treatment made by wet deposition with different annealing temperatures from 310 °C up to 410 °C in air keeping the same CdCl{sub 2} concentration in methanol solution. In this way the whole dynamic of the chemical reaction from the minimum activation energy is analyzed. Activated CdTe layers have been analyzed by means of X-ray diffraction and atomic force microscopy. Finished devices with efficiencies from 8% for the low temperature annealing up to more than 14% for the high temperature ones have been thoroughly analyzed by current-voltage, capacitance-voltage and drive-level capacitance profiling techniques. The best performance has been achieved with an annealing temperature of 395 °C. - Highlights: • CdCl{sub 2} treatment with 6 different annealing temperatures has been studied. • The amount and the nature of defects change drastically with temperature. • Jsc is proportional to annealing temperature and to grain size. • Efficiency increases with annealing temperature until a threshold is reached.

  12. Continuous Glucose Monitoring in Female NOD Mice Reveals Daily Rhythms and a Negative Correlation With Body Temperature.

    Science.gov (United States)

    Korstanje, Ron; Ryan, Jennifer L; Savage, Holly S; Lyons, Bonnie L; Kane, Kevin G; Sukoff Rizzo, Stacey J

    2017-09-01

    Previous studies with continuous glucose monitoring in mice have been limited to several days or weeks, with the mouse's physical attachment to the equipment affecting behavior and measurements. In the current study, we measured blood glucose and body temperature at 10-second intervals for 12 weeks in a cohort of NOD/ShiLtJ female mice using wireless telemetry. This allowed us to obtain a high-resolution profile of the circadian rhythm of these two parameters and the onset of hyperglycemic development in real time. The most striking observations were the elevated nocturnal concentrations of glucose into the diabetic range days before elevations in diurnal glucose (when glucose concentrations are historically measured) and the strong, negative correlation between elevated blood glucose concentrations and body temperature with a steady decline of the body temperature with diabetes development. Taken together, this technological advancement provides improved resolution in the study of the disease trajectory of diabetes in mouse models, including relevant translatability to the current technologies of continuous glucose monitoring now regularly used in patients. Copyright © 2017 Endocrine Society.

  13. Radiofrequency ablation of small liver malignancies under magnetic resonance guidance: progress in targeting and preliminary observations with temperature monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Terraz, Sylvain; Cernicanu, Alexandru; Lepetit-Coiffe, Matthieu; Viallon, Magalie; Salomir, Rares; Becker, Christoph D. [University Hospitals of Geneva, Department of Radiology, Geneva 14 (Switzerland); Mentha, Gilles [University Hospitals of Geneva, Department of Visceral Surgery and Transplantation, Geneva (Switzerland)

    2010-04-15

    To evaluate the feasibility and effectiveness of magnetic resonance (MR)-guided radiofrequency (RF) ablation for small liver tumours with poor conspicuity on both contrast-enhanced ultrasonography (US) and computed tomography (CT), using fast navigation and temperature monitoring. Sixteen malignant liver nodules (long-axis diameter, 0.6-2.4 cm) were treated with multipolar RF ablation on a 1.5-T wide-bore MR system in ten patients. Targeting was performed interactively, using a fast steady-state free precession sequence. Real-time MR-based temperature mapping was performed, using gradient echo-echo planar imaging (GRE-EPI) and hardware filtering. MR-specific treatment data were recorded. The mean follow-up time was 19 {+-} 7 months. Correct placement of RF electrodes was obtained in all procedures (image update, <500 ms; mean targeting time, 21 {+-} 11 min). MR thermometry was available for 14 of 16 nodules (88%) with an accuracy of 1.6 C in a non-heated region. No correlation was found between the size of the lethal thermal dose and the ablation zone at follow-up imaging. The primary and secondary effectiveness rates were 100% and 91%, respectively. RF ablation of small liver tumours can be planned, targeted, monitored and controlled with MR imaging within acceptable procedure times. Temperature mapping is technically feasible, but the clinical benefit remains to be proven. (orig.)

  14. Analysis of multi-temporal landsat satellite images for monitoring land surface temperature of municipal solid waste disposal sites.

    Science.gov (United States)

    Yan, Wai Yeung; Mahendrarajah, Prathees; Shaker, Ahmed; Faisal, Kamil; Luong, Robin; Al-Ahmad, Mohamed

    2014-12-01

    This studypresents a remote sensing application of using time series Landsat satellite images for monitoring the Trail Road and Nepean municipal solid waste (MSW) disposal sites in Ottawa, Ontario, Canada. Currently, the Trail Road landfill is in operation; however, during the 1960s and 1980s, the city relied heavily on the Nepean landfill. More than 400 Landsat satellite images were acquired from the US Geological Survey (USGS) data archive between 1984 and 2011. Atmospheric correction was conducted on the Landsat images in order to derive the landfill sites' land surface temperature (LST). The findings unveil that the average LST of the landfill was always higher than the immediate surrounding vegetation and air temperature by 4 to 10 °C and 5 to 11.5 °C, respectively. During the summer, higher differences of LST between the landfill and its immediate surrounding vegetation were apparent, while minima were mostly found in fall. Furthermore, there was no significant temperature difference between the Nepean landfill (closed) and the Trail Road landfill (active) from 1984 to 2007. Nevertheless, the LST of the Trail Road landfill was much higher than the Nepean by 15 to 20 °C after 2007. This is mainly due to the construction and dumping activities (which were found to be active within the past few years) associated with the expansion of the Trail Road landfill. The study demonstrates that the use of the Landsat data archive can provide additional and viable information for the aid of MSW disposal site monitoring.

  15. Dynamics of hydrothermal seeps from the Salton Sea geothermal system (California, USA) constrained by temperature monitoring and time series analysis

    Science.gov (United States)

    Svensen, Henrik; Hammer, Ã.˜Yvind; Mazzini, Adriano; Onderdonk, Nathan; Polteau, Stephane; Planke, Sverre; Podladchikov, Yuri Y.

    2009-09-01

    Water-, mud-, gas-, and petroleum-bearing seeps are part of the Salton Sea geothermal system (SSGS) in southern California. Carbon dioxide is the main component behind the seeps in the Davis-Schrimpf seep field (˜20,000 m2). In order to understand the mechanisms driving the system, we have investigated the seep dynamics of the field by monitoring the temperature of two pools and two gryphons for 2180 h (90.8 days) in the period from December 2006 to March 2007, with a total of 32,700 measurements per station. The time series have been analyzed by statistical methods using cross correlation, autocorrelation and spectral analysis, and autoregressive modeling. The water-rich pools never exceed 34.0°C and are characterized by low-amplitude temperature variations controlled by the diurnal cycles in air temperature. The long-term validity of these results is evident from a second period of temperature monitoring of one of the pools from December 2007 to April 2008 (120 days). In contrast to the pools, the mud-rich gryphons have a strikingly different behavior. The gryphons are hotter (maximum 69.7°C) and have large amplitude variations (standard deviation of 6.4) that overprint any signal from external diurnal forcing. Autoregressive modeling shows the presence of distinct hot and cold pulses in the gryphon temperature time series, with amplitudes up to 3°C. These pulses likely reflect a combination of hydrothermal flux variations from the SSGS and the local temporal changes in bubbling activity within the gryphons.

  16. The East Pacific Rise

    NARCIS (Netherlands)

    NN,

    1961-01-01

    Evidence gathered by expeditions of the University of California’s Scripps Institution of Oceanography during the International Geophysical Year suggests that the East Pacific Rise is one of the largest physical structures on earth. It runs in a sickle-shaped curve from near New Zealand 8,000 miles

  17. Natural Gas Price Rises

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ As was projected in the third-quarter monetary policy implementation report published by the People's Bank of China on November 15th, 2006, the residents' consumption price index in China would reach 1.5% in 2006. Prices of consumer commodities such as water, power and natural gas would rise and the pressure of inflation would persist in the future.

  18. The East Pacific Rise

    NARCIS (Netherlands)

    NN,

    1961-01-01

    Evidence gathered by expeditions of the University of California’s Scripps Institution of Oceanography during the International Geophysical Year suggests that the East Pacific Rise is one of the largest physical structures on earth. It runs in a sickle-shaped curve from near New Zealand 8,000 miles

  19. Printed strain sensor with temperature compensation and its evaluation with an example of applications in structural health monitoring

    Science.gov (United States)

    Zymelka, Daniel; Yamashita, Takahiro; Takamatsu, Seiichi; Itoh, Toshihiro; Kobayashi, Takeshi

    2017-05-01

    In this paper, we describe the development of a flexible printed strain sensor and its evaluation with an example of its applications to structural health monitoring. The sensor was fabricated on a thin poly(ethylene naphthalate) (PEN) substrate using the screen printing method. In order to ensure compensation for temperature variations, a full-Wheatstone-bridge circuit was integrated into the sensor’s structure. For this reason, the sensor’s shape was specially designed in such a way that only one symmetrical structure was enough to build the full-Wheatstone-bridge. The developed device was evaluated by various laboratory tests as well as by measurements carried out on a highway bridge. The collected results demonstrate its potential suitability for application to dynamic load tests within the framework of structural health monitoring.

  20. Assessing Static Performance of the Dashengguan Yangtze Bridge by Monitoring the Correlation between Temperature Field and Its Static Strains

    Directory of Open Access Journals (Sweden)

    Gao-Xin Wang

    2015-01-01

    Full Text Available Taking advantage of the structural health monitoring system installed on the steel truss arch girder of Dashengguan Yangtze Bridge, the temperature field data and static strain data are collected and analyzed for the static performance assessment of the bridge. Through analysis, it is found that the static strain changes are mainly caused by temperature field (temperature and temperature difference and train. After the train-induced static strains are removed, the correlation between the remaining static strains and the temperature field shows apparent linear characteristics, which can be mathematically modeled for the description of static performance. Therefore, multivariate linear regression function combined with principal component analysis is introduced to mathematically model the correlation. Furthermore, the residual static strains of mathematical model are adopted as assessment indicator and three kinds of degradation regulations of static performance are obtained after simulation of the residual static strains. Finally, it is concluded that the static performance of Dashengguan Yangtze Bridge was in a good condition during that period.

  1. Development of an improved wearable device for core body temperature monitoring based on the dual heat flux principle.

    Science.gov (United States)

    Feng, Jingjie; Zhou, Congcong; He, Cheng; Li, Yuan; Ye, Xuesong

    2017-04-01

    In this paper, a miniaturized wearable core body temperature (CBT) monitoring system based on the dual heat flux (DHF) principle was developed. By interspersing calcium carbonate powder in PolyDimethylsiloxane (PDMS), a reformative heat transfer medium was produced to reduce the thermal equilibrium time. Besides, a least mean square (LMS) algorithm based active noise cancellation (ANC) method was adopted to diminish the impact of ambient temperature fluctuations. Theoretical analyses, finite element simulation, experiments on a hot plate and human volunteers were performed. The results showed that the proposed system had the advantages of small size, reduced initial time (~23.5 min), and good immunity to fluctuations of the air temperature. For the range of 37-41 °C on the hot plate, the error compared with a Fluke high accuracy thermometer was 0.08  ±  0.20 °C. In the human experiments, the measured temperature in the rest trial (34 subjects) had a difference of 0.13  ±  0.22 °C compared with sublingual temperature, while a significant increase of 1.36  ±  0.44 °C from rest to jogging was found in the exercise trial (30 subjects). This system has the potential for reliable continuous CBT measurement in rest and can reflect CBT variations during exercise.

  2. Subsurface monitoring of reservoir pressure, temperature, relative humidity, and water content at the CAES Field Experiment, Pittsfield, Illinois: system design

    Energy Technology Data Exchange (ETDEWEB)

    Hostetler, D.D.; Childs, S.W.; Phillips, S.J.

    1983-03-01

    This subsurface-instrumentation design has been developed for the first Compressed Air Energy Storage (CAES) field experiment to be performed in porous media. Energy storage will be accomplished by alternating the injection and withdrawal of compressed air in a confined sandstone aquifer near Pittsfield, Illinois. The overall experiment objective is to characterize the reservoir's geochemical and thermohydraulic response to imposed CAES conditions. Specific experiment objectives require monitoring: air-bubble development; thermal development; cyclic pressure response; reservoir dehydration; and water coning. Supporting these objectives, four parameters will be continuously monitored at depth in the reservoir. They are: temperature; pressure; pore-air relative humidity; and pore-water content. Reservoir temperatures and pressures will range to maximum values approaching 200/sup 0/C and 300 psi, respectively. Both pore-air relative humidity and pore-water content will range from approx. 0 to 100%. This report discusses: instrumentation design; sensor and sensor system calibration; field installation and testing; and instrument-system operation. No comprehensive off-the-shelf instrument package exists to adequately monitor CAES reservoir parameters at depth. The best available sensors were selected and adapted for use under expected ranges of reservoir conditions. The instrumentation design criteria required: suitable sensor accuracy; continuous monitoring capability; redundancy; maximum sensor integrity; contingency planning; and minimum cost-information ratio. Three wells will be instrumented: the injection/withdrawal (I/W) well and the two instrument wells. Sensors will be deployed by wireline suspension in both open and backfilled (with sand) wellbores. The sensors deployed in the I/W well will be retrievable; the instrument-well sensors will not.

  3. The Benefits of Using Dense Temperature Sensor Networks to Monitor Urban Warming

    Science.gov (United States)

    Twine, T. E.; Snyder, P. K.; Kucharik, C. J.; Schatz, J.

    2015-12-01

    Urban heat islands (UHIs) occur when urban and suburban areas experience temperatures that are elevated relative to their rural surroundings because of differences in the fraction of gray and green infrastructure. Studies have shown that communities most at risk for impacts from climate-related disasters (i.e., lower median incomes, higher poverty, lower education, and minorities) tend to live in the hottest areas of cities. Development of adequate climate adaptation tools for cities relies on knowledge of how temperature varies across space and time. Traditionally, a city's urban heat island has been quantified using near-surface air temperature measurements from a few sites. This methodology assumes (1) that the UHI can be characterized by the difference in air temperature from a small number of points, and (2) that these few points represent the urban and rural signatures of the region. This methodology ignores the rich information that could be gained from measurements across the urban to rural transect. This transect could traverse elevations, water bodies, vegetation fraction, and other land surface properties. Two temperature sensor networks were designed and implemented in the Minneapolis-Saint Paul, MN and Madison, WI metropolitan areas beginning in 2011 and 2012, respectively. Both networks use the same model sensor and record temperature every 15 minutes from ~150 sensors. Data from each network has produced new knowledge of how temperature varies diurnally and seasonally across the cities and how the UHI magnitude is influenced by weather phenomena (e.g., wind, snow cover, heat waves) and land surface characteristics such as proximity to inland lakes. However, the two metropolitan areas differ in size, population, structure, and orientation to water bodies. In addition, the sensor networks were established in very different manners. We describe these differences and present lessons learned from the design and ongoing efforts of these two dense networks

  4. Switchgear condition monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Budyn, M. [ABB Corporate Research, Krakow (Poland); Karandikar, H.M.; Urmson, M.G. [ABB Inc., Lake Mary, FL (United States)

    2010-07-01

    Electric utilities strive to keep switchgear in proper condition over their long life. Medium voltage switchgear are one of the key components in electrical power systems used to distribute electrical power, selectively isolate electrical loads and protect loads from cascading failure. They generally include a combination of electrical elements such as disconnectors, fuses, circuit breakers and distribution bus bars arranged in a lineup of frames. Since switchgear distributes electrical current, heat buildup becomes an important characteristic to monitor. The most significant amount of heat dissipation is on distribution elements like bus bars. Unexpected temperature rise at a particular location may indicate corrosion or a defect. If left uncorrected, this defect could result in catastrophic failure resulting in deactivated loads and potentially hazardous conditions to personnel. Currently, switchgear bus temperature monitoring is done periodically by manual inspections using IR cameras or by fibre-optic systems. Both methods have limitations, such as inaccurate and infrequent readouts, high implementation cost and limited monitoring area. This paper presented a modern approach for condition monitoring based on passive, SAW-based, wireless sensors, reducing installation costs and enhancing monitoring by allowing measurements in previously unreachable locations. A practical implementation of the wireless condition monitoring system was illustrated as a part of a general, built-in, switchgear diagnostics and maintenance system. The use of miniature SAW sensors proved effective in monitoring breaker connectors and non-invasive installation inside the switchgear. 8 refs., 5 figs.

  5. Distributed temperature monitoring for liquid sodium leakage detection using OFDR-based Rayleigh backscattering

    Science.gov (United States)

    Boldyreva, E.; Cotillard, R.; Laffont, G.; Ferdinand, P.; Cambet, D.; Jeannot, J.-P.; Charvet, P.; Albaladéjo, S.; Rodriguez, G.

    2014-05-01

    For the first time, a gold coated single mode optical fiber has been used to detect a liquid sodium leakage on a pipe of secondary circuit pipe mock-up of nuclear fast reactor (Gen IV) by means of Optical Frequency Domain Reflectometry-based on Rayleigh backscattering. During 150 min of the experiment we were able to detect and monitor the evolution of a liquid sodium leakage on the surface of the pipe.

  6. Monitoring snow melt characteristics on the Greenland ice sheet using a new MODIS land surface temperature and emissivity product (MOD21)

    Science.gov (United States)

    Hulley, G. C.; Hall, D. K.; Hook, S. J.

    2013-12-01

    Land Surface Temperature (LST) and emissivity are sensitive energy-balance parameters that control melt and energy exchange between the surface and the atmosphere. MODIS LST is currently used to monitor melt zones on glaciers and can be used for glacier or ice sheet mass balance calculations. Much attention has been paid recently to the warming of the Arctic in the context of global warming, with a focus on the Greenland ice sheet because of its importance with sea-level rise. Various researchers have shown a steady decline in the extent of the Northern Hemisphere sea ice, both the total extent and the extent of the perennial or multiyear ice. Surface melt characteristics over the Greenland ice sheet have been traditionally monitored using the MODIS LST and albedo products (e.g. MOD11 and MOD10A1). Far fewer studies have used thermal emissivity data to monitor surface melt characteristics due to the lack of suitable data. In theory, longwave emissivity combined with LST information should give a more direct measure of snow melt characteristics since the emissivity is an intrinsic property of the surface, whereas the albedo is dependent on other factors such as solar zenith angle, and shadowing effects. Currently no standard emissivity product exists that can dynamically retrieve changes in longwave emissivity consistently over long time periods. This problem has been addressed with the new MOD21 product, which uses the ASTER TES algorithm to dynamically retrieve LST and spectral emissivity (bands 29, 31, 32) at 1-km resolution. In this study we show that using a new proposed index termed the snow emissivity difference index (SEDI) derived from the MOD21 longwave emissivity product, combined with the LST, will improve our understanding of snow melt and freezeup dynamics on ice sheets such as Greenland. The results also suggest that synergistic use of both thermal-based and albedo data will help to improve our understanding of snow melt dynamics on glaciers and ice

  7. SOI built-in heat spreader with temperature and pressure integrated sensors for cooling optimization and in situ monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bercu, Bogdan, E-mail: bogdan_bercu@yahoo.com [Institute of Microelectronics, Electromagnetism and Photonics (IMEP-LAHC) 3, parvis Louis Neel - BP 257, 38016 Grenoble Cedex 01 (France); Montes, Laurent; Morfouli, Panagiota [Institute of Microelectronics, Electromagnetism and Photonics (IMEP-LAHC) 3, parvis Louis Neel - BP 257, 38016 Grenoble Cedex 01 (France)

    2011-03-15

    This contribution presents an original solution for sensor integration into a heat spreader which is directly micromachined into the silicon substrate of the device to be cooled. Having both a high thermal conductivity coefficient and a high level of miniaturization, the vapor chamber heat spreader provides a high robustness due to the absence of any moving pumping parts. Simulation results as well as experimental results obtained with a prototype of the heat spreader with integrated temperature and pressure microsensors are presented. The results concerning device cooling optimization using the integrated sensors are highlighting the interest of this approach for accurate in situ monitoring and cooling optimization of silicon-integrated heat spreaders.

  8. The monitoring and fatigue behavior of CFCCs at ambient temperature and 1000{degrees}C

    Energy Technology Data Exchange (ETDEWEB)

    Miriyala, N.; Liaw, P.K.; McHargue, C.J. [Univ. of Tennessee, Knoxville, TN (United States)] [and others

    1997-04-01

    Metallographically polished flexure bars of Nicalon/SiC and Nicalon/alumina composites were subjected to monotonic and cycle-fatigue loadings, with loading either parallel or normal to the fabric plies. The fabric orientation did not significantly affect the mechanical behavior of the Nicalon/SiC composite at ambient temperature. However, the mechanical behavior of the Nicalon/alumina composite was significantly affected by the fabric orientation at ambient temperature in air and at 1000{degrees}C in argon atmosphere. In addition, there was a significant degradation in the fatigue performance of the alumina matrix composite at the elevated temperature, owing to creep in the material and degradation in the fiber strength.

  9. Airborne monitoring of crop canopy temperatures for irrigation scheduling and yield prediction

    Science.gov (United States)

    Millard, J. P.; Jackson, R. D.; Reginato, R. J.; Idso, S. B.; Goettelman, R. C.; Lapado, R. L.

    1977-01-01

    The aim of the program discussed was to develop techniques for remotely measuring crop irrigation needs and predicting crop yields, with emphasis on wheat. Airborne measurements, using an IR line scanner and color IR photography, were made to evaluate the feasibility of measuring minimum and maximum (dawn and afternoon) crop temperatures to compute a parameter, termed 'stress degree day' (SDD) - a valuable indicator of crop water needs, which can be related to irrigation scheduling and yield. Crop canopy temperature measurements by airborne IR techniques revealed the superiority of thermal IR data over color IR photography. Water stress undetected in the latter technique was clearly detected in thermal imagery. Color IR photography, however, is valuable in discerning vegetation. The pseudo-colored temperature-difference images (and pseudo-colored images, reading directly in daily SDD increments) are shown to be well suited for assessing plant water status and, thus, for determining the irrigation needs and crop yield potentials.

  10. Fiber optic sensor for hydrostatic pressure and temperature measurement in riverbanks monitoring

    Science.gov (United States)

    Schenato, Luca; Aneesh, Rajendran; Palmieri, Luca; Galtarossa, Andrea; Pasuto, Alessandro

    2016-08-01

    An optical fiber sensor for the simultaneous measurement of hydrostatic pressure and temperature in soil embankments is presented. It exploits the differential strain induced on a fiber in a dual-chamber case, constituting the sensor body. The strain, either induced by the pressure or by the temperature, is optically measured by means of coherent frequency domain reflectometry and variations induced by the two physical phenomena are discriminated because of the different behavior of the two chambers. Characterization of the sensor is presented and discussed. The prototype shows promising performance: temperature and pressure sensitivities are approximately -7 GHz/°C and -3.2 GHz/kPa, respectively, with accuracies of 0.5 °C and 0.3 kPa.

  11. In vivo cryoablation of prostate tissue with temperature monitoring by optoacoustic imaging

    Science.gov (United States)

    Petrova, Elena V.; Motamedi, Massoud; Oraevsky, Alexander A.; Ermilov, Sergey A.

    2016-03-01

    Cryoablation of prostate cancer is an FDA approved clinical procedure, which involves repetitive rapid cooling of a lesion to lethal temperatures of -40°C and below. The major drawback of the technique is the insufficient control over the fast thermal processes that may result in severe complications (impotence, incontinence, perforation of the rectal wall) and morbidity. The developed optoacoustic imaging technique provides non-invasive real-time temperature mapping of tissue adjacent to prostate and enables more efficient control over the procedure, which is necessary to reduce side effects and accelerate the physician's learning curve. In these studies we successfully demonstrated real-time transrectal optoacoustic imaging during prostate cryoablation in live canine model focused on optoacoustic thermography of the rectal wall within the depth of 1cm. Our method utilized previously discovered universal thermal dependence of the normalized optoacoustic response of blood. Nanosecond-pulse radiation of Ti-Sapphire laser tuned to the isosbestic point of hemoglobin (802+/-3 nm) was delivered via fiberoptic illuminators assembled on both sides of the linear array of the 128-channel transrectal ultrasound probe. Temperature readouts at discrete locations inside and nearby prostate were also performed using standard transperineal needle sensors. The effect of homeostasis on optoacoustic imaging in live tissue was examined during cooling and shown to be significant only within the range of +/-1.5°C in respect to the body temperature. Accuracy of in vivo optoacoustic temperature measurements was determined as +/-2°C for the range of temperature from +35 to -15°C, which is more than sufficient for tracking the essential isotherms in the course of clinical procedures.

  12. TREATMENT OF ABNORMAL TEMPERATURE RISE OF 1 800 m3 BF HEARTH%宣钢1800 m3高炉炉缸温度异常升高的处理

    Institute of Scientific and Technical Information of China (English)

    武建新; 匡祎

    2014-01-01

    This paper is aimed at the abnormal temperature rise of the 1800m3 BF hearth carbon bricks . Through correct diagnosis of furnace body corrosion condition , such measures are taken as increasing tita-nium load into the furnace , enhancing cooling intensity , enhancing tap -hole maintenance to guarantee tap-hole depth , changing field on time while tapping and so on , many hidden safety troubles are elimi-nated , and long-time and smooth operation of the 1 800 m3 BF is guaranteed .%针对2013年1月16日宣钢1800 m3高炉炉缸碳砖温度大幅度异常升高。通过正确诊断炉体侵蚀状况,采取提高入炉钛负荷、提高冷却强度、加强铁口维护保证铁口深度、出铁及时倒场等多项护炉措施,消除了安全隐患,保证了1800 m3高炉炉况长期稳定顺行。

  13. Satellite air temperature estimation for monitoring the canopy layer heat island of Milan

    DEFF Research Database (Denmark)

    Pichierri, Manuele; Bonafoni, Stefania; Biondi, Riccardo

    2012-01-01

    2007 and 2010 were processed. Analysis of the canopy layer heat island (CLHI) maps during summer months reveals an average heat island effect of 3–4K during nighttime (with some peaks around 5K) and a weak CLHI intensity during daytime. In addition, the satellite maps reveal a well defined island shape......In this work, satellite maps of the urban heat island of Milan are produced using satellite-based infrared sensor data. For this aim, we developed suitable algorithms employing satellite brightness temperatures for the direct air temperature estimation 2 m above the surface (canopy layer), showing...

  14. Recovery Act: High-Temperature Circuit Boards for use in Geothermal Well Monitoring Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hooker, Matthew [Composite Tehcnology Development, Inc., Lafayette, CO (United States); Fabian, Paul [Composite Tehcnology Development, Inc., Lafayette, CO (United States)

    2013-05-01

    The U.S. Department of Energy is leading the development of alternative energy sources that will ensure the long-term energy independence of our nation. One of the key renewable resources currently being advanced is geothermal energy. To tap into the large potential offered by generating power from the heat of the earth, and for geothermal energy to be more widely used, it will be necessary to drill deeper wells to reach the hot, dry rock located up to 10 km beneath the earth’s surface. In this instance, water will be introduced into the well to create a geothermal reservoir. A geothermal well produced in this manner is referred to as an enhanced geothermal system (EGS). EGS reservoirs are typically at depths of 3 to 10 km, and the temperatures at these depths have become a limiting factor in the application of existing downhole technologies. These high temperatures are especially problematic for electronic systems such as downhole data-logging tools, which are used to map and characterize the fractures and high-permeability regions in underground formations. Information provided by these tools is assessed so that underground formations capable of providing geothermal energy can be identified, and the subsequent drilling operations can be accurately directed to those locations. The mapping of geothermal resources involves the design and fabrication of sensor packages, including the electronic control modules, to quantify downhole conditions (300°C temperature, high pressure, seismic activity, etc.). Because of the extreme depths at which these measurements are performed, it is most desirable to perform the sensor signal processing downhole and then transmit the information to the surface. This approach necessitates the use of high-temperature electronics that can operate in the downhole environment. Downhole signal processing in EGS wells will require the development and demonstration of circuit boards that can withstand the elevated temperatures found at these

  15. Infrared skin temperature measurements for monitoring health in pigs: a review

    DEFF Research Database (Denmark)

    Sørensen, Dennis Dam; Pedersen, Lene Juul

    2015-01-01

    Infrared temperature measurement equipment (IRTME) is gaining popularity as a diagnostic tool for evaluating human and animal health. It has the prospect of reducing subject stress and disease spread by being implemented as an automatic surveillance system and by a quick assessment of skin temper...

  16. Utilizing Humidity and Temperature Data to Advance Monitoring and Prediction of Meteorological Drought

    Directory of Open Access Journals (Sweden)

    Ali Behrangi

    2015-11-01

    Full Text Available The fraction of land area over the Continental United States experiencing extreme hot and dry conditions has been increasing over the past several decades, consistent with expectation from anthropogenic climate change. A clear concurrent change in precipitation, however, has not been confirmed. Vapor pressure deficit (VPD, combining temperature and humidity, is utilized here as an indicator of the background atmospheric conditions associated with meteorological drought. Furthermore, atmospheric conditions associated with warm season drought events are assessed by partitioning associated VPD anomalies into the temperature and humidity components. This approach suggests that the concurrence of anomalously high temperature and low humidity was an important driver of the rapid development and evolution of the exceptionally severe 2011 Texas and the 2012 Great Plains droughts. By classification of a decade of extreme drought events and tracking them back in time, it was found that near surface atmospheric temperature and humidity add essential information to the commonly used precipitation-based drought indicators and can advance efforts to determine the timing of drought onset and its severity.

  17. Monitoring Hot Mix Asphalt Temperature to Improve Homogeneity and Pavement Quality

    NARCIS (Netherlands)

    Huerne, ter H.L.; Doree, A.G.; Miller, S.R.; Santagata, E.

    2009-01-01

    This paper describes how controlled compaction practices lead to better quality asphalt. Therefore, it is important that during compaction operations the mixture is at a suitable temperature in order to achieve the specified degree of compaction. The University of Twente’s Asphalt Paving Research an

  18. Monitoring operating temperature and supply voltage in achieving high system dependability

    NARCIS (Netherlands)

    Khan, M.A.; Kerkhoff, Hans G.

    2013-01-01

    System dependability being a set of number of attributes, of which the important reliability, heavily depends on operating temperature and supply voltage. Any change beyond the designed specifications may change the system performance and could result in system reliability and hence dependability

  19. Monitoring operating temperature and supply voltage in achieving high system dependability

    NARCIS (Netherlands)

    Khan, M.A.; Kerkhoff, Hans G.

    2013-01-01

    System dependability being a set of number of attributes, of which the important reliability, heavily depends on operating temperature and supply voltage. Any change beyond the designed specifications may change the system performance and could result in system reliability and hence dependability pr

  20. Monitoring sea level and sea surface temperature trends from ERS satellites

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Knudsen, Per; Beckley, B.

    2002-01-01

    over this period. In the Indian Ocean and particularly the Pacific Ocean the trends in both sea level and temperature are still dominated by the large changes associated with the El Nino Southern Oscillation. In terms of contribution to the total global sea level change, the contribution of the central...

  1. Monitoring of Refractory Wall recession using high temperature impact echo instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    University of Dayton

    2004-04-30

    Regression of refractory linings of furnaces occurs due to a variety of mechanisms. The specific mechanism selected for investigation during this program is the regression of refractories which are in direct contact with a liquid corrodant. Examples include the melting of glass, the production of pig iron and steel, and the melting of aluminum. The rates of regression to a wall thickness which requires reline or extensive reconstruction vary widely, from less than a year to over ten years depending on the specific service environment. This program investigated the feasibility of measuring refractory wall thickness with an impact-echo method while at operating temperature (wall temperatures exceeding 500 C). The impact-echo method uses the impact of a small sphere with the surface of the test object to send a stress wave into the object. In a plate-like structure, the stress wave reflects back to the front surface, reverberating in the structure and causing a periodic surface displacement whose frequency is inversely proportional to the thickness of the test object. Impact-echo testing was chosen because it requires access to only one side of the test object and could be performed during the operation of a refractory structure. Commercially-available impact-echo instrumentation is available for room temperature use for a variety of tests on concrete. The enabling technology for this work was to use a high-temperature piezoelectric material, aluminum nitride, as the receiving sensor for the stress waves, allowing its use on refractories during furnace operation.

  2. Monitoring operating temperature and supply voltage in achieving high system dependability

    NARCIS (Netherlands)

    Khan, Muhammad Aamir; Kerkhoff, Hans G.

    2013-01-01

    System dependability being a set of number of attributes, of which the important reliability, heavily depends on operating temperature and supply voltage. Any change beyond the designed specifications may change the system performance and could result in system reliability and hence dependability pr

  3. A low-cost microcontroller-based system to monitor crop temperature and water status

    Science.gov (United States)

    A prototype microcontroller-based system was developed to automate the measurement and recording of soil-moisture status and canopy-, air-, and soil-temperature levels in cropped fields. Measurements of these conditions within the cropping system are often used to assess plant stress, and can assis...

  4. The Rise of Iran

    DEFF Research Database (Denmark)

    Rahigh-Aghsan, Ali

    Iran is viewed as a rising power that poses an increasing threat to regional and even global security. This view is wrong for three reasons. Iran's hard and soft power is exaggerated by most accounts; it is too limited to allow the Iranians to dominate the Persian Gulf let alone the Middle East......, and its brand of Shi‘ism  has very limited appeal outside of Iran. Second, growing internal political and economic instability will seriously limit Iran's bid for regional dominance. Third, the failure to stop the Iranian nuclear program has led analysts to underestimate the ability of the other regional...... powers and the West to balance Iran and contain its influence, even if it acquires nuclear weapons. If these limitations on Iranian power are taken into account the rise seems destined to be a short one....

  5. The Rise of Iran

    DEFF Research Database (Denmark)

    Jakobsen, Peter Viggo; Rahigh-Aghsan, Ali

    2010-01-01

    Iran is viewed by many as a rising power that poses an increasing threat to regional and even global security. This view is wrong for three reasons. Iran's hard and soft power is exaggerated by most accounts; it is too limited to allow the Iranians to dominate the Persian Gulf let alone the Middle...... East, and its brand of Shi‘ism has very limited appeal outside of Iran. Second, growing internal political and economic instability will seriously limit Iran's bid for regional dominance. Third, the failure to stop the Iranian nuclear program has led analysts to underestimate the ability of the other...... regional powers and the West to balance Iran and contain its influence, even if it acquires nuclear weapons. If these limitations on Iranian power are taken into account the rise seems destined to be a short one....

  6. The Rise of Iran

    DEFF Research Database (Denmark)

    Rahigh-Aghsan, Ali; Jakobsen, Peter Viggo

    2010-01-01

    Iran is viewed as a rising power that poses an increasing threat to regional and even global security. This view is wrong for three reasons. Iran's hard and soft power is exaggerated by most accounts; it is too limited to allow the Iranians to dominate the Persian Gulf let alone the Middle East......, and its brand of Shi‘ism has very limited appeal outside of Iran. Second, growing internal political and economic instability will seriously limit Iran's bid for regional dominance. Third, the failure to stop the Iranian nuclear program has led analysts to underestimate the ability of the other regional...... powers and the West to balance Iran and contain its influence, even if it acquires nuclear weapons. If these limitations on Iranian power are taken into account the rise seems destined to be a short one....

  7. T2-based temperature monitoring in abdominal fat during HIFU treatment of patients with uterine fibroids

    Science.gov (United States)

    Ozhinsky, Eugene; Kohi, Maureen; Ghanouni, Pejman; Rieke, Viola

    2017-03-01

    In this study, we have implemented T2-based monitoring of near-field heating in patients undergoing HIFU ablation of uterine fibroids using Insightec ExAblate system. In certain areas, near-field heating can reach 18°C and the tissue may experience sustained heating of more than 10°C for the period of 2 hours or more. This indicates a cumulative thermal dose that may cause necrosis. Our results show the feasibility and importance of measuring near-field heating in subcutaneous fat.

  8. A Rising Consumer Class

    OpenAIRE

    Manish Sonthalia

    2010-01-01

    India has had two stages of growth, both related to consumption since 1947. The first was based on developing economic self sufficiency; the second on rising disposable income. It is now entering its third period of consumption growth which sees it entering the world stage as one of the largest consumers in the world. This paper explains the factors that are driving this dramatic shift from the emerging middle classes to the patterns of consumption and investment in India today.

  9. Temperature performance of portable radiation survey instruments used for environmental monitoring and clean-up activities in Fukushima

    Science.gov (United States)

    Saegusa, Jun; Yanagisawa, Kayo; Hasumi, Atsushi; Shimizu, Takenori; Uchita, Yoshiaki

    2017-08-01

    Following the Fukushima Dai-ichi Nuclear Power Plant accident in March 2011, extensive radiation monitoring and environmental clean-up activities have been conducted throughout the Fukushima region. Outside air temperatures there reach 40 °C in summer and -20 °C in winter, which are beyond the quoted operational range of many radiation survey instruments. Herein, temperature performance of four types of portable Japanese radiation survey instruments widely used in Fukushima was experimentally investigated using a temperature-controlled chamber. They included two ionization chamber type instruments, Fuji NHA1 and Aloka ICS-323C, and two NaI(Tl) scintillation type ones, Fuji NHC7 and Aloka TCS-172B. Experimental results showed significantly diverse characteristics on the temperature dependences from one type of instrument to another. For example, NHA1 overestimated the ambient dose-equivalent rate by as much as 17% at -30 °C and 10% at 40 °C, whereas the TCS-172B readings underestimated the rate by 30% at -30 °C and 7% at 40 °C.

  10. Use of chemical etching of CR-39 foils at elevated temperature for fast neutron personnel monitoring in India

    Science.gov (United States)

    Sathian, Deepa; Rohatgi, Rupali; Jayalakshmi, V.; Marathe, P. K.; Nair, Sarala; Kolekar, R. V.; Chourasiya, G.; Kannan, S.

    2009-06-01

    CR-39 Solid State Nuclear Track Detecting foils (SSNTD), along with 1 mm thick polyethylene radiator, sealed in triple laminated pouches, are used for country wide Fast Neutron Personnel Monitoring in India. With the present system of processing by elevated temperature electrochemical etching (ETECE) and evaluation using automatic image analysis, only 16 foils are processed at a time and it is useful over the dose equivalent range 0.2 mSv to 10 mSv. It has been reported that, by processing CR-39 of good detection efficiency by chemical etching at elevated temperature, more numbers of foils can be processed simultaneously. In the present study, CR-39 foils from Pershore Moulding (UK) have been chemically etched using 7 N KOH under various conditions of temperature and etching durations and evaluated using high magnification microscope. The duration of chemical etching, has been optimized at a constant temperature of 60°C for chemical etching process. The characteristics of the chemically etched CR-39 foils are compared with the characteristics of the CR-39 foils processed by the existing system of ETECE and the detailed results are presented in the full text of the paper. It has been observed that by chemical etching process, the dose equivalent range of CR-39 foils can be extended above 60 mSv.

  11. Contemporary sea level rise.

    Science.gov (United States)

    Cazenave, Anny; Llovel, William