WorldWideScience

Sample records for monitoring surface symmetry

  1. Anomalous Symmetry Fractionalization and Surface Topological Order

    Directory of Open Access Journals (Sweden)

    Xie Chen

    2015-10-01

    Full Text Available In addition to possessing fractional statistics, anyon excitations of a 2D topologically ordered state can realize symmetry in distinct ways, leading to a variety of symmetry-enriched topological (SET phases. While the symmetry fractionalization must be consistent with the fusion and braiding rules of the anyons, not all ostensibly consistent symmetry fractionalizations can be realized in 2D systems. Instead, certain “anomalous” SETs can only occur on the surface of a 3D symmetry-protected topological (SPT phase. In this paper, we describe a procedure for determining whether a SET of a discrete, on-site, unitary symmetry group G is anomalous or not. The basic idea is to gauge the symmetry and expose the anomaly as an obstruction to a consistent topological theory combining both the original anyons and the gauge fluxes. Utilizing a result of Etingof, Nikshych, and Ostrik, we point out that a class of obstructions is captured by the fourth cohomology group H^{4}(G,U(1, which also precisely labels the set of 3D SPT phases, with symmetry group G. An explicit procedure for calculating the cohomology data from a SET is given, with the corresponding physical intuition explained. We thus establish a general bulk-boundary correspondence between the anomalous SET and the 3D bulk SPT whose surface termination realizes it. We illustrate this idea using the chiral spin liquid [U(1_{2}] topological order with a reduced symmetry Z_{2}×Z_{2}⊂SO(3, which can act on the semion quasiparticle in an anomalous way. We construct exactly solved 3D SPT models realizing the anomalous surface terminations and demonstrate that they are nontrivial by computing three-loop braiding statistics. Possible extensions to antiunitary symmetries are also discussed.

  2. Symmetries of sub-Riemannian surfaces

    CERN Document Server

    Malakhaltsev, Mikhail Armenovich

    2009-01-01

    Given a contact distribution $(\\Delta, )$ in $\\mathbf{R}^{3}$ the problem to determinate all symmetries of this sub-Riemannian surface with metric $$ was solved by Hughen \\cite{Hughen}, and completely by Montgomery \\cite{Montgomery}. Our goal is to obtain explicit formulae for this solution. We obtain explicit formulae for the functions which define symmetries in terms of a local coordinate system and explicit formulae for the invariants in terms of the dual frame and the structure functions.

  3. Symmetry breaking at magnetic surfaces and interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Z. Q.

    1998-11-20

    Examples represented of how symmetry breaking enters into consideration of the physical properties of magnetic surfaces and ultrathin films. The role of magnetic anisotropy is discussed to understand: (i) the existence of two-dimensional (2D) magnetic long-ranged order at finite temperature, (ii) magnetization scaling behavior at the Curie transition, (iii) the 2D spin reorientation transition, and (iv) step-induced magnetic behavior. Experimental examples cited include ultrathin magnetic Fe and Co overlayer and wedge structures grown onto single crystal substrates that are either flat or curved to produce vicinal surfaces with a continuous gradient in the step density. Also included is an example of an atomically flat manganite intergrowth that appears as a stacking fault in a bulk single crystal of a naturally layered structure.

  4. Translational Symmetry and Microscopic Constraints on Symmetry-Enriched Topological Phases: A View from the Surface

    Science.gov (United States)

    Cheng, Meng; Zaletel, Michael; Barkeshli, Maissam; Vishwanath, Ashvin; Bonderson, Parsa

    2016-10-01

    The Lieb-Schultz-Mattis theorem and its higher-dimensional generalizations by Oshikawa and Hastings require that translationally invariant 2D spin systems with a half-integer spin per unit cell must either have a continuum of low energy excitations, spontaneously break some symmetries, or exhibit topological order with anyonic excitations. We establish a connection between these constraints and a remarkably similar set of constraints at the surface of a 3D interacting topological insulator. This, combined with recent work on symmetry-enriched topological phases with on-site unitary symmetries, enables us to develop a framework for understanding the structure of symmetry-enriched topological phases with both translational and on-site unitary symmetries, including the effective theory of symmetry defects. This framework places stringent constraints on the possible types of symmetry fractionalization that can occur in 2D systems whose unit cell contains fractional spin, fractional charge, or a projective representation of the symmetry group. As a concrete application, we determine when a topological phase must possess a "spinon" excitation, even in cases when spin rotational invariance is broken down to a discrete subgroup by the crystal structure. We also describe the phenomena of "anyonic spin-orbit coupling," which may arise from the interplay of translational and on-site symmetries. These include the possibility of on-site symmetry defect branch lines carrying topological charge per unit length and lattice dislocations inducing degeneracies protected by on-site symmetry.

  5. Geodesics on Surfaces with Helical Symmetry: Cavatappi Geometry

    CERN Document Server

    Jantzen, Robert T

    2013-01-01

    A 3-parameter family of helical tubular surfaces obtained by screw revolving a circle provides a useful pedagogical example of how to study geodesics on a surface that admits a 1-parameter symmetry group, but is not as simple as a surface of revolution like the torus which it contains as a special case. It serves as a simple example of helically symmetric surfaces which are the generalizations of surfaces of revolution in which an initial plane curve is screw-revolved around an axis in its plane. The physics description of geodesic motion on these surfaces requires a slightly more involved effective potential approach than the torus case due to the nonorthogonal coordinate grid necessary to describe this problem. Amazingly this discussion allows one to very nicely describe the geodesics of the surface of the more complicated ridged cavatappi pasta.

  6. 3D Surface Configuration Modulated 2D Symmetry Detection

    Directory of Open Access Journals (Sweden)

    Lok-Teng Sio

    2011-05-01

    Full Text Available To perceive a symmetric pattern, an observer needs to find correspondence between two image elements across the symmetric axis, implying an excitatory relationship between perceptual mechanisms responding to these elements. To perceive a 3D structure in a random dot stereogram (RDS, the perceptual mechanisms tuned to different disparities would inhibit each other. We investigated whether putting corresponding elements of a symmetric pattern in different depths would affect symmetry detection. The symmetry patterns consisted of dots (0.19degx0.19deg occupying .5% of the display. We measured the coherence threshold for detecting symmetric patterns rendered on 14 possible 3D structures that were produced by an RDS. The coherence threshold for symmetric patterns on a slant surface was similar to that on a frontoparallel plane even though in the former the depths of the two sides of the symmetric axis were different. The threshold increased dramatically when one side of the axis inclined toward the observer while the other side inclined away though the depth difference between the two sides was the same as that in the slant condition. The threshold reduced on a hinge configuration whose joint coincide with the symmetry axis. Our result suggests that co-planarity is a decisive factor for symmetry detection.

  7. Beyond the surface atlas: A roadmap and gazetteer for surface symmetry and structure

    Science.gov (United States)

    Jenkins, Stephen J.; Pratt, Stephanie J.

    2007-10-01

    Throughout the development of single-crystal surface science, interest has predominantly focussed on the high-symmetry planes of crystalline materials, which typically present simple stable structures with small primitive unit cells. This concentration of effort has rapidly and substantially advanced our understanding of fundamental surface phenomena, and provides a sound basis for detailed study of more complex planes. The intense current interest in these is partly motivated by their regular arrays of steps, kinks or other low-coordination structural features, whose properties are little understood and may mimic specific highly-reactive sites on dispersed nanoparticles. Furthermore, the lower symmetry of these planes may give rise to other equally interesting properties such as intrinsic chirality, with exciting potential applications in enantioselective heterogeneous catalysis, biosensors and surface magnetism. To aid exploration of this new territory for surface science requires a depth of understanding that goes beyond the character of individual surfaces to encompass the global relationships between all possible surfaces of a given material, both in their structure and in their symmetry. In this report we present a rigorous conceptual framework for ideal crystalline surfaces within which the symmetry and structure of all possible surface orientations are described. We illustrate the versatility of our generally-applicable approach by comparing fcc, bcc and hcp materials. The entire scheme naturally derives from the very simple basis that the fundamental distinction between symmetry and structure is paramount. Where symmetry is concerned, our approach recognises that the surface is not a two-dimensional (2D) object but actually a truncated three-dimensional (3D) one. We therefore derive a symmetry scheme specifically formulated for surfaces and naturally encompassing their chirality where necessary. Our treatment of surface structure, on the other hand

  8. Curvature-induced symmetry breaking determines elastic surface patterns.

    Science.gov (United States)

    Stoop, Norbert; Lagrange, Romain; Terwagne, Denis; Reis, Pedro M; Dunkel, Jörn

    2015-03-01

    Symmetry-breaking transitions associated with the buckling and folding of curved multilayered surfaces-which are common to a wide range of systems and processes such as embryogenesis, tissue differentiation and structure formation in heterogeneous thin films or on planetary surfaces-have been characterized experimentally. Yet owing to the nonlinearity of the underlying stretching and bending forces, the transitions cannot be reliably predicted by current theoretical models. Here, we report a generalized Swift-Hohenberg theory that describes wrinkling morphology and pattern selection in curved elastic bilayer materials. By testing the theory against experiments on spherically shaped surfaces, we find quantitative agreement with analytical predictions for the critical curves separating labyrinth, hybrid and hexagonal phases. Furthermore, a comparison to earlier experiments suggests that the theory is universally applicable to macroscopic and microscopic systems. Our approach builds on general differential-geometry principles and can thus be extended to arbitrarily shaped surfaces.

  9. SURFACE SYMMETRY ENERGY OF NUCLEAR ENERGY DENSITY FUNCTIONALS

    Energy Technology Data Exchange (ETDEWEB)

    Nikolov, N; Schunck, N; Nazarewicz, W; Bender, M; Pei, J

    2010-12-20

    We study the bulk deformation properties of the Skyrme nuclear energy density functionals. Following simple arguments based on the leptodermous expansion and liquid drop model, we apply the nuclear density functional theory to assess the role of the surface symmetry energy in nuclei. To this end, we validate the commonly used functional parametrizations against the data on excitation energies of superdeformed band-heads in Hg and Pb isotopes, and fission isomers in actinide nuclei. After subtracting shell effects, the results of our self-consistent calculations are consistent with macroscopic arguments and indicate that experimental data on strongly deformed configurations in neutron-rich nuclei are essential for optimizing future nuclear energy density functionals. The resulting survey provides a useful benchmark for further theoretical improvements. Unlike in nuclei close to the stability valley, whose macroscopic deformability hangs on the balance of surface and Coulomb terms, the deformability of neutron-rich nuclei strongly depends on the surface-symmetry energy; hence, its proper determination is crucial for the stability of deformed phases of the neutron-rich matter and description of fission rates for r-process nucleosynthesis.

  10. Symmetry-breaking in drop bouncing on curved surfaces

    CERN Document Server

    Liu, Yahua; Li, Jing; Yeomans, Julia M; Wang, Zuankai

    2015-01-01

    The impact of liquid drops on solid surfaces is ubiquitous in nature, and of practical importance in many industrial processes. A drop hitting a flat surface retains a circular symmetry throughout the impact process. Here we show that a drop impinging on Echevaria leaves exhibits asymmetric bouncing dynamics with distinct spreading and retraction along two perpendicular directions. This is a direct consequence of the cylindrical leaves which have a convex/concave architecture of size comparable to the drop. Systematic experimental investigations on mimetic surfaces and lattice Boltzmann simulations reveal that this novel phenomenon results from an asymmetric momentum and mass distribution that allows for preferential fluid pumping around the drop rim. The asymmetry of the bouncing leads to ~40% reduction in contact time.

  11. Curvature-induced symmetry breaking determines elastic surface patterns

    Science.gov (United States)

    Stoop, Norbert; Lagrange, Romain; Terwagne, Denis; Reis, Pedro M.; Dunkel, Jörn

    2015-03-01

    Symmetry-breaking transitions associated with the buckling and folding of curved multilayered surfaces—which are common to a wide range of systems and processes such as embryogenesis, tissue differentiation and structure formation in heterogeneous thin films or on planetary surfaces—have been characterized experimentally. Yet owing to the nonlinearity of the underlying stretching and bending forces, the transitions cannot be reliably predicted by current theoretical models. Here, we report a generalized Swift-Hohenberg theory that describes wrinkling morphology and pattern selection in curved elastic bilayer materials. By testing the theory against experiments on spherically shaped surfaces, we find quantitative agreement with analytical predictions for the critical curves separating labyrinth, hybrid and hexagonal phases. Furthermore, a comparison to earlier experiments suggests that the theory is universally applicable to macroscopic and microscopic systems. Our approach builds on general differential-geometry principles and can thus be extended to arbitrarily shaped surfaces.

  12. Nonlocal Symmetries, Spectral Parameter and Minimal Surfaces in AdS/CFT

    CERN Document Server

    Klose, Thomas; Münkler, Hagen

    2016-01-01

    We give a general account of nonlocal symmetries in symmetric space models and their relation to the AdS/CFT correspondence. In particular, we study a master symmetry which generates the spectral parameter and acts as a level-raising operator on the classical Yangian generators. The master symmetry extends to an infinite tower of symmetries with nonlocal Casimir elements as associated conserved charges. We discuss the algebraic properties of these symmetries and establish their role in explaining the recently observed one-parameter deformation of holographic Wilson loops. Finally, we provide a numerical framework, in which discretized minimal surfaces and their master symmetry deformation can be calculated.

  13. A symmetry-respecting topologically-ordered surface phase of 3d electron topological insulators

    OpenAIRE

    Metlitski, Max A.; Kane, C. L.; Fisher, Matthew P. A.

    2013-01-01

    A 3d electron topological insulator (ETI) is a phase of matter protected by particle-number conservation and time-reversal symmetry. It was previously believed that the surface of an ETI must be gapless unless one of these symmetries is broken. A well-known symmetry-preserving, gapless surface termination of an ETI supports an odd number of Dirac cones. In this paper we deduce a symmetry-respecting, gapped surface termination of an ETI, which carries an intrinsic 2d topological order, Moore-R...

  14. Behavioral measures and EEG monitoring using the Brain Symmetry Index during the Wada test in children

    NARCIS (Netherlands)

    Peters, Jurriaan M.; Tomas-Fernandez, Meritxell; Putten, van Michel J.A.M.; Loddenkemper, Tobias

    2012-01-01

    EEG monitoring is used routinely during the Wada test in children. We quantified EEG asymmetry using the Brain Symmetry Index (BSI) to reduce subjectivity of EEG interpretation. Clinical and procedural variables were obtained and EEG data were retrieved from 46 patients with a total of 89 injections

  15. Chiral and herringbone symmetry breaking in water-surface monolayers

    DEFF Research Database (Denmark)

    Peterson, I.R.; Kenn, R.M.; Goudot, A.

    1996-01-01

    We report the observation from monolayers of eicosanoic acid in the L(2)' phase of three distinct out-of-plane first-order diffraction peaks, indicating molecular tilt in a nonsymmetry direction and hence the absence of mirror symmetry. At lower pressures the molecules tilt in the direction of th...

  16. Deformations of constant mean curvature surfaces preserving symmetries and the Hopf differential

    DEFF Research Database (Denmark)

    Brander, David; Dorfmeister, Josef

    2015-01-01

    We define certain deformations between minimal and non-minimal constant mean curvature (CMC) surfaces in Euclidean space E3 which preserve the Hopf differential. We prove that, given a CMC H surface f, either minimal or not, and a fixed basepoint z0 on this surface, there is a naturally defined....... As an application, we use this to give a well-defined dressing action on the class of minimal surfaces. In addition, we show that symmetries of certain types associated with the basepoint are preserved under the deformation, and this gives a canonical choice of basepoint for surfaces with symmetries. We use...... this to define new examples of non-minimal CMC surfaces naturally associated to known minimal surfaces with symmetries....

  17. Fermat Surface and Group Theory in Symmetry of Rapidity Family in Chiral Potts Model

    CERN Document Server

    Roan, Shi-shyr

    2013-01-01

    The present paper discusses various mathematical aspects about the rapidity symmetry in chiral Potts model (CPM) in the context of algebraic geometry and group theory . We re-analyze the symmetry group of a rapidity curve in $N$-state CPM, explore the universal group structure for all $N$, and further enlarge it to modular symmetries of the complete rapidity family in CPM. As will be shown in the article that all rapidity curves in $N$-state CPM constitute a Fermat hypersurface in $\\PZ^3$ of degree 2N as the natural generalization of the Fermat K3 elliptic surface $(N=2)$, we conduct a thorough algebraic geometry study about the rapidity fibration of Fermat surface and its reduced hyperelliptic fibration via techniques in algebraic surface theory. Symmetries of rapidity family in CPM and hyperelliptic family in $\\tau^{(2)}$-model are exhibited through the geometrical representation of the universal structural group in mathematics.

  18. Translational symmetry of high order tokamak flux surface shaping in gyrokinetics

    CERN Document Server

    Ball, Justin; Barnes, Michael

    2015-01-01

    A particular translational symmetry of the local nonlinear $\\delta f$ gyrokinetic model is demonstrated analytically and verified numerically. This symmetry shows that poloidally translating all the flux surface shaping effects with large poloidal mode number by a single tilt angle has an exponentially small effect on the transport properties of a tokamak. This is shown using a generalization of the Miller local equilibrium model to specify an arbitrary flux surface geometry. With this geometry specification we find that, when performing an expansion in large flux surface shaping mode number, the governing equations of gyrokinetics are symmetric in the poloidal translation of the high order shaping effects. This allows us to take the fluxes from a single configuration and calculate the fluxes in any configuration that can be produced by translating the large mode number shaping effects. This creates a distinction between tokamaks with mirror symmetric flux surfaces and tokamaks without mirror symmetry, which ...

  19. Symmetry plays a key role in the erasing of patterned surface features

    Energy Technology Data Exchange (ETDEWEB)

    Benzaquen, Michael; Salez, Thomas; Raphaël, Elie [Laboratoire de Physico-Chimie Théorique, UMR CNRS Gulliver 7083, ESPCI ParisTech, PSL Research University, 75005 Paris (France); Ilton, Mark; Massa, Michael V.; Fowler, Paul [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Dalnoki-Veress, Kari, E-mail: dalnoki@mcmaster.ca [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Laboratoire de Physico-Chimie Théorique, UMR CNRS Gulliver 7083, ESPCI ParisTech, PSL Research University, 75005 Paris (France)

    2015-08-03

    We report on how the relaxation of patterns prepared on a thin film can be controlled by manipulating the symmetry of the initial shape. The validity of a lubrication theory for the capillary-driven relaxation of surface profiles is verified by atomic force microscopy measurements, performed on films that were patterned using focused laser spike annealing. In particular, we observe that the shape of the surface profile at late times is entirely determined by the initial symmetry of the perturbation, in agreement with the theory. The results have relevance in the dynamical control of topographic perturbations for nanolithography and high density memory storage.

  20. Surface Broken Symmetry on Orthorhombic Double-layer Sr3(Ru1-xMnx)2 O7

    Science.gov (United States)

    Chen, Chen; Nascimento, V. B.; Diao, Zhenyu; Zhang, Jiandi; Jin, Rongying; Plummer, E. W.

    The surface of double-layered ruthenate Sr3Ru2O7 exhibits octahedra tilt distortion and an enhanced rotational distortion caused by the broken symmetry. Previous LEED IV calculation reveals that the tilt angle is (2.5+/-1.7)°at 80 K (B. Hu et. al., Physical Review B 81, 184104 (2010). A glideline symmetry and a mirror symmetry along this direction are both broken. Results from LEED IV simulations show that both broken symmetries originate from the emergence of surface tilt. The degree of broken symmetry is more sensitive to the tilt angle, thus producing a smaller error than from conventional LEED IV calculation. When Mn doping is induced into the compound, the tilt is removed and the symmetry of the LEED pattern returns to what is expected for rotation, two glide planes and four-fold symmetry. Supported by NSF DMR-1002622.

  1. K3 surfaces, lorentzian Kac-Moody algebras and mirror symmetry

    CERN Document Server

    Gritsenko, V A; Gritsenko, Valeri A; Nikulin, Viacheslav V

    1995-01-01

    We consider the variant of Mirror Symmetry Conjecture for K3 surfaces which relates "geometry" of curves of a general member of a family of K3 with "algebraic functions" on the moduli of the mirror family. Lorentzian Kac--Moody algebras are involved in this construction. We give several examples when this conjecture is valid.

  2. Symmetry Control of Polymer Colloidal Monolayers and Crystals by Electrophoretic Deposition on Patterned Surfaces

    NARCIS (Netherlands)

    Dziomkina, Nina V.; Hempenius, Mark A.; Vancso, G. Julius

    2005-01-01

    Colloidal crystals with body-centered cubic packing (see Figure) can be fabricated by electrophoretic deposition of charged latex particles onto patterned surfaces. Laser-interference lithography produces SiO2 layers patterned with controlled symmetry that can then be used to control the orientation

  3. Symmetry Analysis of ZnSe(100) Surface in Air By Second Harmonic Generation

    CERN Document Server

    Song, X; Maripuu, R; Siegbahn, Kai; Song, Xiangyang; Neumann, Arnold; Maripuu, Rein; Siegbahn, Kai

    2002-01-01

    Polarized and azimuthal dependencies of optical second harmonics generation (SHG) at the surface of noncentrosymmetric semiconductor crystals have been measured on polished surfaces of ZnSe(100), using a fundamental wavelength of 1.06$\\mu m$. The SHG intensity patterns were analyzed for all four combination of p- and s-polarized incidence and output, considering both the bulk and surface optical nonlinearities in the electric dipole approximation. We found that the measurement using $S_{in}-S_{out}$ is particularly useful in determining the symmetry of the oxdized layer interface, which would lower the effective symmetry of the surface from $C_{4v}$ to $C_{2v}.$ We also have shown that the [011] and [0$\\bar{1}$1] directions can be distinguished through the analysis of p-incident and p-output confugration.

  4. Symmetry based frequency domain processing to remove harmonic noise from surface nuclear magnetic resonance measurements

    Science.gov (United States)

    Hein, Annette; Larsen, Jakob Juul; Parsekian, Andrew D.

    2017-02-01

    Surface nuclear magnetic resonance (NMR) is a unique geophysical method due to its direct sensitivity to water. A key limitation to overcome is the difficulty of making surface NMR measurements in environments with anthropogenic electromagnetic noise, particularly constant frequency sources such as powerlines. Here we present a method of removing harmonic noise by utilizing frequency domain symmetry of surface NMR signals to reconstruct portions of the spectrum corrupted by frequency-domain noise peaks. This method supplements the existing NMR processing workflow and is applicable after despiking, coherent noise cancellation, and stacking. The symmetry based correction is simple, grounded in mathematical theory describing NMR signals, does not introduce errors into the data set, and requires no prior knowledge about the harmonics. Modelling and field examples show that symmetry based noise removal reduces the effects of harmonics. In one modelling example, symmetry based noise removal improved signal-to-noise ratio in the data by 10 per cent. This improvement had noticeable effects on inversion parameters including water content and the decay constant T2*. Within water content profiles, aquifer boundaries and water content are more accurate after harmonics are removed. Fewer spurious water content spikes appear within aquifers, which is especially useful for resolving multilayered structures. Within T2* profiles, estimates are more accurate after harmonics are removed, especially in the lower half of profiles.

  5. Coupling between magnetic field and curvature in Heisenberg spins on surfaces with rotational symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho-Santos, Vagson L., E-mail: vagson.santos@ufv.br [Instituto Federal de Educação, Ciência e Tecnologia Baiano, Campus Senhor do Bonfim, 48970-000 Senhor do Bonfim, Bahia (Brazil); Dandoloff, Rossen [Laboratoire de Physique Théorique et Modélisation, Université de Cergy-Pontoise, 95302 Cergy-Pontoise (France)

    2012-10-15

    We study the nonlinear σ-model in an external magnetic field applied on curved surfaces with rotational symmetry. The Euler–Lagrange equations derived from the Hamiltonian yield the double sine-Gordon equation (DSG) provided the magnetic field is tuned with the curvature of the surface. A 2π skyrmion appears like a solution for this model and surface deformations are predicted at the sector where the spins point in the opposite direction to the magnetic field. We also study some specific examples by applying the model on three rotationally symmetric surfaces: the cylinder, the catenoid and the hyperboloid.

  6. Monitoring of surface and airborne contamination

    Energy Technology Data Exchange (ETDEWEB)

    Pradeep Kumar, K.S. [Bhabha Atomic Research Centre, Bombay (India)

    1997-06-01

    Indian nuclear energy programme aims at total safety in all activities involved in the entire fuel cycle for the occupational workers, members of the public and the environment as a whole. Routine radiation monitoring with clearly laid out procedures are followed for ensuring the safety of workers and public. Radiation monitoring carried out for the nuclear installations comprises of process monitoring, monitoring of effluent releases and also of the radiation protection monitoring of the individuals, work place and environment. Regulations like banning of smoking and consumption of food and drink etc. reduces the risk of direct ingestion even if inadvertent spread of contamination takes place. Though limit of transportable surface contamination is prescribed, the health physicists always follow a ``clean on swipe`` philosophy which compensates any error in the measurement of surface contamination. In this paper, the following items are contained: Necessity of contamination monitoring, accuracy required in the calibration of surface contamination monitors, methodology for contamination monitoring, air monitoring, guidelines for unrestricted release of scrap materials, and problems in contamination monitoring. (G.K.)

  7. Three-dimensional quantification of facial symmetry in adolescents using laser surface scanning

    Science.gov (United States)

    Toma, Arshed M.; Zhurov, Alexei I.; Richmond, Stephen

    2014-01-01

    Laser scanning is a non-invasive method for three-dimensional assessment of facial morphology and symmetry. The aim of this study was to quantify facial symmetry in healthy adolescents and explore if there is any gender difference. Facial scans of 270 subjects, 123 males and 147 females (aged 15.3 ± 0.1 years, range 14.6–15.6), were randomly selected from the Avon Longitudinal Study of Parents and Children. Facial scans were processed and analysed using in-house developed subroutines for commercial software. The surface matching between the original face and its mirror image was measured for the whole face, upper, middle, and lower facial thirds. In addition, 3 angular and 14 linear parameters were measured. The percentage of symmetry of the whole face was significantly lower in males (53.49 ± 10.73 per cent) than in females (58.50 ± 10.27 per cent; P 0.05). Average values of linear parameters were less than 1 mm and did not differ significantly between genders (P > 0.05). One angular parameter showed slight lip line asymmetry in both genders. Faces of male 15-year-old adolescents were less symmetric than those of females, but the difference in the amount of symmetry, albeit statistically significant, may not be clinically relevant. Upper, middle, and lower thirds of the face did not differ in the amount of three-dimensional symmetry. Angular and linear parameters of facial symmetry did not show any gender difference. PMID:21795753

  8. Quantitative facial asymmetry: using three-dimensional photogrammetry to measure baseline facial surface symmetry.

    Science.gov (United States)

    Taylor, Helena O; Morrison, Clinton S; Linden, Olivia; Phillips, Benjamin; Chang, Johnny; Byrne, Margaret E; Sullivan, Stephen R; Forrest, Christopher R

    2014-01-01

    Although symmetry is hailed as a fundamental goal of aesthetic and reconstructive surgery, our tools for measuring this outcome have been limited and subjective. With the advent of three-dimensional photogrammetry, surface geometry can be captured, manipulated, and measured quantitatively. Until now, few normative data existed with regard to facial surface symmetry. Here, we present a method for reproducibly calculating overall facial symmetry and present normative data on 100 subjects. We enrolled 100 volunteers who underwent three-dimensional photogrammetry of their faces in repose. We collected demographic data on age, sex, and race and subjectively scored facial symmetry. We calculated the root mean square deviation (RMSD) between the native and reflected faces, reflecting about a plane of maximum symmetry. We analyzed the interobserver reliability of the subjective assessment of facial asymmetry and the quantitative measurements and compared the subjective and objective values. We also classified areas of greatest asymmetry as localized to the upper, middle, or lower facial thirds. This cluster of normative data was compared with a group of patients with subtle but increasing amounts of facial asymmetry. We imaged 100 subjects by three-dimensional photogrammetry. There was a poor interobserver correlation between subjective assessments of asymmetry (r = 0.56). There was a high interobserver reliability for quantitative measurements of facial symmetry RMSD calculations (r = 0.91-0.95). The mean RMSD for this normative population was found to be 0.80 ± 0.24 mm. Areas of greatest asymmetry were distributed as follows: 10% upper facial third, 49% central facial third, and 41% lower facial third. Precise measurement permitted discrimination of subtle facial asymmetry within this normative group and distinguished norms from patients with subtle facial asymmetry, with placement of RMSDs along an asymmetry ruler. Facial surface symmetry, which is poorly assessed

  9. On exceptional collections of line bundles and mirror symmetry for toric Del-Pezzo surfaces

    Science.gov (United States)

    Jerby, Yochay

    2017-03-01

    Let X be a toric Del-Pezzo surface and let C r i t (W ) ⊂(ℂ*)n be the solution scheme of the Landau-Ginzburg system of equations. Denote by X° the polar variety of X. Our aim in this work is to describe a map L :C r i t (W ) →F u kt r o p(X°) whose image under homological mirror symmetry corresponds to a full strongly exceptional collection of line bundles.

  10. Electronic structure of reconstructed InAs(001) surfaces - identification of bulk and surface bands based on their symmetries

    Science.gov (United States)

    Olszowska, Natalia; Kolodziej, Jacek J.

    2016-02-01

    Using angle-resolved photoelectron spectroscopy (ARPES) band structures of indium- and arsenic-terminated InAs(001) surfaces are investigated. These surfaces are highly reconstructed, elementary cells of their lattices contain many atoms in different chemical configurations, and moreover, they are composed of domains having related but different reconstructions. These domain-type surface reconstructions result in the reciprocal spaces containing regions with well-defined k→∥-vector and regions with not-well-defined one. In the ARPES spectra most of the surface related features appear as straight lines in the indeterminate k→∥-vector space. It is shown that, thanks to differences in crystal and surface symmetries, the single photon energy ARPES may be successfully used for classification of surface and bulk bands of electronic states on complex, highly reconstructed surfaces instead of the most often used variable photon energy studies.

  11. Bogoliubov Fermi Surfaces in Superconductors with Broken Time-Reversal Symmetry

    Science.gov (United States)

    Agterberg, D. F.; Brydon, P. M. R.; Timm, C.

    2017-03-01

    It is commonly believed that, in the absence of disorder or an external magnetic field, there are three possible types of superconducting excitation gaps: The gap is nodeless, it has point nodes, or it has line nodes. Here, we show that, for an even-parity nodal superconducting state which spontaneously breaks time-reversal symmetry, the low-energy excitation spectrum generally does not belong to any of these categories; instead, it has extended Bogoliubov Fermi surfaces. These Fermi surfaces can be visualized as two-dimensional surfaces generated by "inflating" point or line nodes into spheroids or tori, respectively. These inflated nodes are topologically protected from being gapped by a Z2 invariant, which we give in terms of a Pfaffian. We also show that superconducting states possessing these Fermi surfaces can be energetically stable. A crucial ingredient in our theory is that more than one band is involved in the pairing; since all candidate materials for even-parity superconductivity with broken time-reversal symmetry are multiband systems, we expect these Z2-protected Fermi surfaces to be ubiquitous.

  12. Monitoring System for ALICE Surface Areas

    CERN Document Server

    Demirbasci, Oguz

    2016-01-01

    I have been at CERN for 12 weeks within the scope of Summer Student Programme working on a monitoring system project for surface areas of the ALICE experiment during this period of time. The development and implementation of a monitoring system for environmental parameters in the accessible areas where a cheap hardware setup can be deployed were aim of this project. This report explains how it was developed by using Arduino, Raspberry PI, WinCC OA and DIM protocol.

  13. Symmetries, Symmetry Breaking, Gauge Symmetries

    CERN Document Server

    Strocchi, Franco

    2015-01-01

    The concepts of symmetry, symmetry breaking and gauge symmetries are discussed, their operational meaning being displayed by the observables {\\em and} the (physical) states. For infinitely extended systems the states fall into physically disjoint {\\em phases} characterized by their behavior at infinity or boundary conditions, encoded in the ground state, which provide the cause of symmetry breaking without contradicting Curie Principle. Global gauge symmetries, not seen by the observables, are nevertheless displayed by detectable properties of the states (superselected quantum numbers and parastatistics). Local gauge symmetries are not seen also by the physical states; they appear only in non-positive representations of field algebras. Their role at the Lagrangian level is merely to ensure the validity on the physical states of local Gauss laws, obeyed by the currents which generate the corresponding global gauge symmetries; they are responsible for most distinctive physical properties of gauge quantum field ...

  14. Volume and surface contributions to the nuclear symmetry energy within the coherent density fluctuation model

    CERN Document Server

    Antonov, A N; Sarriguren, P; de Guerra, E Moya

    2016-01-01

    The volume and surface components of the nuclear symmetry energy (NSE) and their ratio are calculated within the coherent density fluctuation model (CDFM). The estimations use the results of the model for the NSE in finite nuclei based on the Brueckner energy-density functional for nuclear matter. In addition, we present results for the NSE and its volume and surface contributions obtained by using the Skyrme energy-density functional. The CDFM weight function is obtained using the proton and neutron densities from the self-consistent HF+BCS method with Skyrme interactions. We present and discuss the values of the volume and surface contributions to the NSE and their ratio obtained for the Ni, Sn, and Pb isotopic chains studying their isotopic sensitivity. The results are compared with estimations of other approaches which have used available experimental data on binding energies, neutron-skin thicknesses, excitation energies to isobaric analog states (IAS) and also with results of other theoretical methods.

  15. Surface second-harmonic generation from coupled spherical plasmonic nanoparticles: Eigenmode analysis and symmetry properties

    Science.gov (United States)

    Butet, Jérémy; Dutta-Gupta, Shourya; Martin, Olivier J. F.

    2014-06-01

    The surface second-harmonic generation from interacting spherical plasmonic nanoparticles building different clusters (symmetric and asymmetric dimers, trimers) is theoretically investigated. The plasmonic eigenmodes of the nanoparticle clusters are first determined using an ab initio approach based on the Green's functions method. This method provides the properties, such as the resonant wavelengths, of the modes sustained by a given cluster. The fundamental and second-harmonic responses of the corresponding clusters are then calculated using a surface integral method. The symmetry of both the linear and nonlinear responses is investigated, as well as their relationship. It is shown that the second-harmonic generation can be significantly enhanced when the fundamental field is such that its second harmonic matches modes with suitable symmetry. The role played by the nanogaps in second-harmonic generation is also underlined. The results presented in this article demonstrate that the properties of the second-harmonic generation from coupled metallic nanoparticles cannot be fully predicted from their linear response only, while, on the other hand, a detailed knowledge of the underlying modal structure can be used to optimize the generation of the second harmonic.

  16. On a family of K3 surfaces with $\\mathcal{S}_4$ symmetry

    CERN Document Server

    Karp, Dagan; Moore, Daniel; Skjorshammer, Dmitri; Whitcher, Ursula

    2011-01-01

    The largest group which occurs as the rotational symmetries of a three-dimensional reflexive polytope is the symmetric group on four elements. There are three pairs of three-dimensional reflexive polytopes with this symmetry group, up to isomorphism. We identify a natural one-parameter family of K3 surfaces corresponding to each of these pairs, show that the symmetric group on four elements acts symplectically on members of these families, and show that a general K3 surface in each family has Picard rank 19. The properties of two of these families have been analyzed in the literature using other methods. We compute the Picard-Fuchs equation for the third Picard rank 19 family by extending the Griffiths-Dwork technique for computing Picard-Fuchs equations to the case of semi-ample hypersurfaces in toric varieties. The holomorphic solutions to our Picard-Fuchs equation exhibit modularity properties known as "Mirror Moonshine"; we relate these properties to the geometric structure of our family.

  17. Controlling Nanocrystal Superlattice Symmetry and Shape-Anisotropic Interactions through Variable Ligand Surface Coverage

    KAUST Repository

    Choi, Joshua J.

    2011-03-09

    The assembly of colloidal nanocrystals (NCs) into superstructures with long-range translational and orientational order is sensitive to the molecular interactions between ligands bound to the NC surface. We illustrate how ligand coverage on colloidal PbS NCs can be exploited as a tunable parameter to direct the self-assembly of superlattices with predefined symmetry. We show that PbS NCs with dense ligand coverage assemble into face-centered cubic (fcc) superlattices whereas NCs with sparse ligand coverage assemble into body-centered cubic (bcc) superlattices which also exhibit orientational ordering of NCs in their lattice sites. Surface chemistry characterization combined with density functional theory calculations suggest that the loss of ligands occurs preferentially on {100} than on reconstructed {111} NC facets. The resulting anisotropic ligand distribution amplifies the role of NC shape in the assembly and leads to the formation of superlattices with translational and orientational order. © 2011 American Chemical Society.

  18. Trapped surfaces in spacetimes with symmetries and applications to uniqueness theorems

    CERN Document Server

    Ferreira, Alberto Carrasco

    2012-01-01

    The main aim of this thesis is to study the properties of trapped surfaces in spacetimes with symmetries and their possible relation with the theory of black holes. We will concetrate specially on one aspect of this possible equivalence, namely whether the static black hole uniqueness theorems extend to static spacetimes containing marginally outer trapped surfaces. The principal result of this thesis states that this question has an affirmative answer, under suitable not global-in-time conditions on the spacetime. Furthermore, in order to solve this question, we will obtain several results which generalize known properties of static spacetimes to the initial data setting and can be of independent interest. Finally, we will study the Penrose inequality in static initial data which are not time-symmetric. Our main result in this last part of the thesis is the discovery of a counter-example of a recent version of the Penrose inequality proposed by Bray and Khuri in 2009.

  19. Axial buckling and transverse vibration of ultrathin nanowires: low symmetry and surface elastic effect

    Science.gov (United States)

    Lei, Xiao; Narsu, B.; Yun, Guohong; Li, Jiangang; Yao, Haiyan

    2016-05-01

    Surface effects play a deterministic role in the physical and mechanical properties of nanosized materials and structures. In this paper, we present a self-consistent theoretical scheme for describing the elasticity of nanowires. The natural frequency and the critical compression force of axial buckling are obtained analytically, taking into consideration the influences of lower symmetry, additional elastic parameters, surface reconstruction, surface elasticity, and residual surface stress. Applications of the present theory to elastic systems for the    axially oriented Si and Cu nanowires and Ag    axially oriented nanowires yield good agreement with experimental data and calculated results. The larger positive value of the new elastic parameter c12α taken into account for Si    oriented nanowires drives the curves of natural frequency and critical compression force versus thickness towards the results obtained from density functional theory simulation. Negative surface stress decreases the critical load for axial buckling, thus making the nanowires very easy to bend into various structures. The present study is envisaged to provide useful insights for the design and application of nanowire-based devices.

  20. Symmetry Breaking by Surface Blocking: Synthesis of Bimorphic Silver Nanoparticles, Nanoscale Fishes and Apples

    Science.gov (United States)

    Cathcart, Nicole; Kitaev, Vladimir

    2016-01-01

    A powerful approach to augment the diversity of well-defined metal nanoparticle (MNP) morphologies, essential for MNP advanced applications, is symmetry breaking combined with seeded growth. Utilizing this approach enabled the formation of bimorphic silver nanoparticles (bi-AgNPs) consisting of two shapes linked by one regrowth point. Bi-AgNPs were formed by using an adsorbing polymer, poly(acrylic acid), PAA, to block the surface of a decahedral AgNP seed and restricting growth of new silver to a single nucleation point. First, we have realized 2-D growth of platelets attached to decahedra producing nanoscale shapes reminiscent of apples, fishes, mushrooms and kites. 1-D bimorphic growth of rods (with chloride) and 3-D bimorphic growth of cubes and bipyramids (with bromide) were achieved by using halides to induce preferential (100) stabilization over (111) of platelets. Furthermore, the universality of the formation of bimorphic nanoparticles was demonstrated by using different seeds. Bi-AgNPs exhibit strong SERS enhancement due to regular cavities at the necks. Overall, the reported approach to symmetry breaking and bimorphic nanoparticle growth offers a powerful methodology for nanoscale shape design. PMID:27605125

  1. Symmetry Breaking by Surface Blocking: Synthesis of Bimorphic Silver Nanoparticles, Nanoscale Fishes and Apples

    Science.gov (United States)

    Cathcart, Nicole; Kitaev, Vladimir

    2016-09-01

    A powerful approach to augment the diversity of well-defined metal nanoparticle (MNP) morphologies, essential for MNP advanced applications, is symmetry breaking combined with seeded growth. Utilizing this approach enabled the formation of bimorphic silver nanoparticles (bi-AgNPs) consisting of two shapes linked by one regrowth point. Bi-AgNPs were formed by using an adsorbing polymer, poly(acrylic acid), PAA, to block the surface of a decahedral AgNP seed and restricting growth of new silver to a single nucleation point. First, we have realized 2-D growth of platelets attached to decahedra producing nanoscale shapes reminiscent of apples, fishes, mushrooms and kites. 1-D bimorphic growth of rods (with chloride) and 3-D bimorphic growth of cubes and bipyramids (with bromide) were achieved by using halides to induce preferential (100) stabilization over (111) of platelets. Furthermore, the universality of the formation of bimorphic nanoparticles was demonstrated by using different seeds. Bi-AgNPs exhibit strong SERS enhancement due to regular cavities at the necks. Overall, the reported approach to symmetry breaking and bimorphic nanoparticle growth offers a powerful methodology for nanoscale shape design.

  2. An OSEE Based Portable Surface Contamination Monitor

    Science.gov (United States)

    Perey, Daniel F.

    1997-01-01

    Many industrial and aerospace processes involving the joining of materials, require sufficient surface cleanliness to insure proper bonding. Processes as diverse as painting, welding, or the soldering of electronic circuits will be compromised if prior inspection and removal of surface contaminants is inadequate. As process requirements become more stringent and the number of different materials and identified contaminants increases, various instruments and techniques have been developed for improved inspection. One such technique based on the principle of Optically Stimulated Electron Emission (OSEE) has been explored for a number of years as a tool for surface contamination monitoring. Some of the benefits of OSEE are: it's non-contacting; requires little operator training; and has very high contamination sensitivity. This paper describes the development of a portable OSEE based surface contamination monitor. The instrument is suitable for both hand-held and robotic inspections with either manual or automated control of instrument operation. In addition, instrument output data is visually displayed to the operator and may be output to an external computer for archiving or analysis.

  3. Mirror-symmetry protected non-TRIM surface state in the weak topological insulator Bi2TeI

    Science.gov (United States)

    Rusinov, I. P.; Menshchikova, T. V.; Isaeva, A.; Eremeev, S. V.; Koroteev, Yu. M.; Vergniory, M. G.; Echenique, P. M.; Chulkov, E. V.

    2016-01-01

    Strong topological insulators (TIs) support topological surfaces states on any crystal surface. In contrast, a weak, time-reversal-symmetry-driven TI with at least one non-zero v1, v2, v3 ℤ2 index should host spin-locked topological surface states on the surfaces that are not parallel to the crystal plane with Miller indices (v1 v2 v3). On the other hand, mirror symmetry can protect an even number of topological states on the surfaces that are perpendicular to a mirror plane. Various symmetries in a bulk material with a band inversion can independently preordain distinct crystal planes for realization of topological states. Here we demonstrate the first instance of coexistence of both phenomena in the weak 3D TI Bi2TeI which (v1 v2 v3) surface hosts a gapless spin-split surface state protected by the crystal mirror-symmetry. The observed topological state has an even number of crossing points in the directions of the 2D Brillouin zone due to a non-TRIM bulk-band inversion. Our findings shed light on hitherto uncharted features of the electronic structure of weak topological insulators and open up new vistas for applications of these materials in spintronics. PMID:26864814

  4. Mirror-symmetry protected non-TRIM surface state in the weak topological insulator Bi2TeI

    Science.gov (United States)

    Rusinov, I. P.; Menshchikova, T. V.; Isaeva, A.; Eremeev, S. V.; Koroteev, Yu. M.; Vergniory, M. G.; Echenique, P. M.; Chulkov, E. V.

    2016-02-01

    Strong topological insulators (TIs) support topological surfaces states on any crystal surface. In contrast, a weak, time-reversal-symmetry-driven TI with at least one non-zero v1, v2, v3 ℤ2 index should host spin-locked topological surface states on the surfaces that are not parallel to the crystal plane with Miller indices (v1 v2 v3). On the other hand, mirror symmetry can protect an even number of topological states on the surfaces that are perpendicular to a mirror plane. Various symmetries in a bulk material with a band inversion can independently preordain distinct crystal planes for realization of topological states. Here we demonstrate the first instance of coexistence of both phenomena in the weak 3D TI Bi2TeI which (v1 v2 v3) surface hosts a gapless spin-split surface state protected by the crystal mirror-symmetry. The observed topological state has an even number of crossing points in the directions of the 2D Brillouin zone due to a non-TRIM bulk-band inversion. Our findings shed light on hitherto uncharted features of the electronic structure of weak topological insulators and open up new vistas for applications of these materials in spintronics.

  5. Fifth-order field aberration coefficients for an optical surface of rotational symmetry.

    Science.gov (United States)

    Gaj, M

    1971-07-01

    The approximate formulas for the principal ray parameters, such as directional cosines and heights of incidence, as well as for the paraxial sagittal quantities h(s) and H (s) have been expressed by paraxial quantities and Seidel aberrations to fifth-order accuracy. On the basis of these relations an expression for the sagittal radius of curvature r(s), (for a given y ) has been obtained. These quantities are used to derive fifth-order field aberration coefficients for arbitrary surfaces of rotational symmetry by using the wave aberration formula for sagittal focus {M. Gaj, Opt. Spectrosk. 21, 373 (1966) [Opt. Spectrosc. 21, 209 (1966)]}. The resulting expression has four terms. The first one depends only on asphericity and tends to equal zero when the surface becomes spherical. The second is a disturbance term and disappears in the Seidel region. The third and fourth terms may be treated as a generalization of the Petzval curvature and of the Seidel astigmatism, respectively. The limits of the terms, when h tends to zero, has been examined.

  6. Moisture monitoring in waste disposal surface barriers.

    Science.gov (United States)

    Brandelik, Alex; Huebner, Christof

    2003-05-01

    Surface barriers for waste disposal sites should prevent waste water and gas emission into the environment. It is necessary to assess their proper operation by monitoring the water regime of the containment. A set of three new water content measuring devices has been developed that provide an economical solution for monitoring the moisture distribution and water dynamic. They will give an early warning service if the barrier system is at risk of being damaged. The cryo soil moisture sensor 'LUMBRICUS' is an in situ self-calibrating absolute water content measuring device. It measures moisture profiles at spot locations down to 2.5 m depth with an accuracy of better than 1.5% and a depth resolution of 0.03 m. The sensor inherently measures density changes and initial cracks of shrinking materials like clay minerals. The large area soil moisture sensor 'TAUPE' is a moisture sensitive electric cable network to be buried in the mineral barrier material of the cover. A report will be given with results and experiences on an exemplary installation at the Waste Disposal Facility Karlsruhe-West. 800 m2 of the barrier construction have been continuously monitored since December 1997. Volumetric water content differences of 1.5% have been detected and localised within 4 m. This device is already installed in two other waste disposal sites. A modified 'TAUPE' was constructed for the control of tunnels and river dams as well. Thin sheet moisture sensor 'FORMI' is specifically designed for moisture measurements in liners like bentonite, textile and plastic. Due to its flexibility it follows the curvature of the liner. The sensor measures independently from neighbouring materials and can be matched to a wide range of different thickness of the material. The sensors are patented in several countries.

  7. Parametrically Excited Surface Waves Two-Frequency Forcing, Normal Form Symmetries, and Pattern Selection

    CERN Document Server

    Silber, M; Silber, Mary; Skeldon, Anne C.

    1999-01-01

    Motivated by experimental observations of exotic standing wave patterns in the two-frequency Faraday experiment, we investigate the role of normal form symmetries in the pattern selection problem. With forcing frequency components in ratio m/n, where m and n are co-prime integers, there is the possibility that both harmonic and subharmonic waves may lose stability simultaneously, each with a different wavenumber. We focus on this situation and compare the case where the harmonic waves have a longer wavelength than the subharmonic waves with the case where the harmonic waves have a shorter wavelength. We show that in the former case a normal form transformation can be used to remove all quadratic terms from the amplitude equations governing the relevant resonant triad interactions. Thus the role of resonant triads in the pattern selection problem is greatly diminished in this situation. We verify our general results within the example of one-dimensional surface wave solutions of the Zhang-Vinals model of the t...

  8. Monitoring surface conditions of a Thoroughbred racetrack.

    Science.gov (United States)

    Clanton, C; Kobluk, C; Robinson, R A; Gordon, B

    1991-02-15

    During a pilot study at a Thoroughbred racetrack, information was collected to include weather conditions and track surface properties (moisture content, composition, strength, and coefficient of friction between surface and hoof). Measured weather variables did not correlate to any pattern of horse injuries of breakdowns. Surface moisture content was variable, whereas the moisture content of the compacted cushion was constant. Track surfaces around the starting chutes were more compacted than were other areas of the track. Next to the rail, track surface was softer than the surface toward the middle of the track. The coefficient of friction between a hoof and the surface was not affected by location or surface moisture content.

  9. Probing the symmetry and phase of localised surface plasmon resonances with modified electron probes

    CERN Document Server

    Guzzinati, Giulio; Lourenço--Martins, Hugo; Martin, Jerôme; Kociak, Mathieu; Verbeeck, Jo

    2016-01-01

    Plasmonics, the science and technology of the interaction of light with metallic objects, is fundamentally changing the way we can detect, generate and manipulate light at the nanoscale. While the field is progressing swiftly thanks to the availability of nanoscale manufacturing and analysis methods, fundamental properties such as the symmetries of the plasmonic excitations cannot be accessed by direct measurements, leading to a partial and sometimes incorrect understanding of their properties. Here we overcome this limitation by deliberately shaping the wave--function of a free electron beam to match the symmetry of the plasmonic excitations in a modified transmission electron microscope. We show experimentally and theoretically that this offers selective detection of specific plasmon modes within metallic nanoparticles while filtering out modes with other symmetries. This method shows some resemblance to the widespread use of polarised light for the selective excitation of plasmon modes but adds the advanta...

  10. Symmetry energy and surface properties of neutron-rich exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Gaidarov, M. K.; Antonov, A. N. [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia 1784 (Bulgaria); Sarriguren, P. [Instituto de Estructura de la Materia, IEM-CSIC, Serrano 123, E-28006 Madrid (Spain); Moya de Guerra, E. [Departamento de Fisica Atomica, Molecular y Nuclear, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain)

    2014-07-23

    The symmetry energy, the neutron pressure and the asymmetric compressibility of spherical Ni, Sn, and Pb and deformed Kr and Sm neutron-rich even-even nuclei are calculated within the coherent density fluctuation model using the symmetry energy as a function of density within the Brueckner energy-density functional. The correlation between the thickness of the neutron skin and the characteristics related with the density dependence of the nuclear symmetry energy is investigated for isotopic chains of these nuclei in the framework of the deformed self-consistent mean-field Skyrme HF+BCS method. The mass dependence of the nuclear symmetry energy and the neutron skin thickness are also studied together with the role of the neutron-proton asymmetry. The studied correlations reveal a smoother behavior in the case of spherical nuclei than for deformed ones. We also notice that the neutron skin thickness obtained for {sup 208}Pb with SLy4 force is found to be in a good agreement with the recent data. In addition to the interest that this study may have by itself, we give some numerical arguments in proof of the existence of peculiarities of the studied quantities in Ni and Sn isotopic chains that are not present in the Pb chain.

  11. Construction of initial vortex-surface fields and Clebsch potentials for flows with high-symmetry using first integrals

    Science.gov (United States)

    He, Pengyu; Yang, Yue

    2016-03-01

    We report a systematic study on the construction of the explicit, general form of vortex-surface fields (VSFs) and Clebsch potentials in the initial fields with the zero helicity density and high symmetry. The construction methodology is based on finding independent first integrals of the characteristic equation of a given three-dimensional velocity-vorticity field. In particular, we derive the analytical VSFs and Clebsch potentials for the initial field with the Kida-Pelz symmetry. These analytical results can be useful for the evolution of VSFs to study vortical structures in transitional flows. Moreover, the generality of the construction method is discussed with the synthetic initial fields and the initial Taylor-Green field with multiple wavenumbers.

  12. STEM-EELS analysis of multipole surface plasmon modes in symmetry-broken AuAg nanowire dimers

    Science.gov (United States)

    Schubert, Ina; Sigle, Wilfried; van Aken, Peter A.; Trautmann, Christina; Toimil-Molares, Maria Eugenia

    2015-03-01

    Surface plasmon coupling in nanowires separated by small gaps generates high field enhancements at the position of the gap and is thus of great interest for sensing applications. It is known that the nanowire dimensions and in particular the symmetry of the structures has strong influence on the plasmonic properties of the dimer structure. Here, we report on multipole surface plasmon coupling in symmetry-broken AuAg nanowire dimers. Our dimers, consisting of two nanowires with different lengths and separated by gaps of only 10 to 30 nm, were synthesized by pulsed electrochemical deposition in ion track-etched polymer templates. Electron energy-loss spectroscopy in scanning transmission electron microscopy allows us to resolve up to nine multipole order surface plasmon modes of these dimers spectrally separated from each other. The spectra evidence plasmon coupling between resonances of different multipole order, resulting in the generation of additional plasmonic modes. Since such complex structures require elaborated synthesis techniques, dimer structures with complex composition, morphology and shape are created. We demonstrate that finite element simulations on pure Au dimers can predict the generated resonances in the fabricated structures. The excellent agreement of our experiment on AuAg dimers with finite integration simulations using CST microwave studio manifests great potential to design complex structures for sensing applications.

  13. Monitoring temperature and pressure over surfaces using sensitive paints

    Science.gov (United States)

    Guerrero-Viramontes, J. Ascención; Moreno Hernández, David; Mendoza Santoyo, Fernando; Morán Loza, José Miguel; García Arreola, Alicia

    2007-03-01

    Two techniques for monitoring temperature and pressure variations over surfaces using sensitive paints are presented. The analysis is done by the acquisition of a set of images of the surface under analysis. The surface is painted by a paint called Pressure Sensitive Paint (PSP) for pressure measurements and Temperature Sensitive Paints (TSP) for temperature measurements. These kinds of paints are deposited over the surface under analysis. The recent experimental advances in calibration process are presented in this paper.

  14. Satellite monitoring of sea surface pollution

    Science.gov (United States)

    Fielder, G.; Telfer, D. J. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. Image processing techniques developed are well adapted to the exploration and isolation of local areas which exhibit small temperature differences between themselves and their surroundings. In the worst case of imagery of small areal extent of sea surface having no coastal boundary in the area, there is yet no method of distinguishing unambiguously an oil spill from fog, cloud, the effect produced by shallow sediments, or the effects of naturally occuring thermal fronts. In the case of uniform slicks of liquid North Sea oil in still air, laboratory simulation experiments show that, for oil thicknesses in excess of 1 or 2 mm, there is, under equilibrium conditions, little dependence of oil surface temperature on the thickness of the oil layer. The surface temperature of oil is consistently higher than that of water, the difference being about 1 K at low values of relative humidity, but tending to increase as the relative humidity increases.

  15. Monitoring Surface Climate With its Emissivity Derived From Satellite Measurements

    Science.gov (United States)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu

    2012-01-01

    Satellite thermal infrared (IR) spectral emissivity data have been shown to be significant for atmospheric research and monitoring the Earth fs environment. Long-term and large-scale observations needed for global monitoring and research can be supplied by satellite-based remote sensing. Presented here is the global surface IR emissivity data retrieved from the last 5 years of Infrared Atmospheric Sounding Interferometer (IASI) measurements observed from the MetOp-A satellite. Monthly mean surface properties (i.e., skin temperature T(sub s) and emissivity spectra epsilon(sub v) with a spatial resolution of 0.5x0.5-degrees latitude-longitude are produced to monitor seasonal and inter-annual variations. We demonstrate that surface epsilon(sub v) and T(sub s) retrieved with IASI measurements can be used to assist in monitoring surface weather and surface climate change. Surface epsilon(sub v) together with T(sub s) from current and future operational satellites can be utilized as a means of long-term and large-scale monitoring of Earth 's surface weather environment and associated changes.

  16. Orbital monitoring of martian surface changes

    Science.gov (United States)

    Geissler, Paul E.; Fenton, Lori K.; Enga, Marie-therese; Mukherjee, Priyanjoli

    2016-11-01

    A history of martian surface changes is documented by a sequence of global mosaics made up of Mars Global Surveyor Mars Orbiter Camera daily color images from 1999 to 2006, together with a single mosaic from the Mars Reconnaissance Orbiter Mars Color Imager in 2009. These observations show that changes in the global albedo patterns of Mars take place by a combination of dust storms and strong winds. Many of the observed surface changes took place along the tracks of seasonally repeating winter dust storms cataloged by Wang and Richardson (2015). These storms tend to sweep dust towards the equator, progressively shifting albedo boundaries and continuing surface changes that began before the arrival of MGS. The largest and most conspicuous changes took place during the global dust storm of 2001 (MY 25), which blanketed Syrtis Major, stripped dust from the Tharsis region, and injected dust into Solis Planum. High wind speeds but low wind stresses are predicted in Syrtis, Tharsis and Solis by the NASA Ames GCM. Frequent changes in these regions show that dust accumulations are quickly removed by stronger winds that are not predicted by the GCM, but may result from smaller-scale influences such as unresolved topography.

  17. Monitoring device for attachment to a surface of a subject

    DEFF Research Database (Denmark)

    2012-01-01

    The invention provides a monitoring device (1) for attachment to a surface of a subject. The device comprises a data collector (2) and a processor (3) as two separate parts which can be detachably joined such that physiological signals which are detected by the data collector can be transferred...... surface, and may comprise an adapter (6) for the detachable attachment of the processor....

  18. Coexistence of epitaxial lattice rotation and twinning tilt induced by surface symmetry mismatch

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, L., E-mail: qiaol@ornl.gov, E-mail: biegalskim@ornl.gov; Biegalski, M. D., E-mail: qiaol@ornl.gov, E-mail: biegalskim@ornl.gov [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Xiao, H. Y. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Weber, W. J. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States)

    2014-06-02

    Combined x-ray diffraction and first-principles studies of various epitaxial rutile-type metal dioxide films on Al{sub 2}O{sub 3}(0001) substrates reveal an unexpected rectangle-on-parallelogram heteroepitaxy. Unique matching of particular lattice spacings and crystal angles between the oxygen sublattices of Al{sub 2}O{sub 3}(0001) and the film(100) result in coexisted crystal rotation and lattice twinning inside the film. We demonstrate that, besides symmetry and lattice mismatch, angular mismatch along a specific crystal direction is also an important factor determining epitaxy. A generalized theorem has been proposed to explain epitaxial behaviors for tetragonal metal dioxides on Al{sub 2}O{sub 3}(0001).

  19. Surface symmetry of monolayer titanium oxide on Mo(1 1 2) studied via fast atom diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, J., E-mail: jan.seifert@physik.hu-berlin.de; Winter, H.

    2013-11-15

    In studies on titanium oxide thin films we demonstrate the potential of Fast Atom Diffraction (FAD) and triangulation methods to derive the surface unit cell with enhanced surface sensitivity. Helium atoms with energies of 1–2 keV are scattered from the surface along low indexed surface directions under grazing angles of incidence. From the observed diffraction patterns, the lateral periodicity of the surface structures is derived. For low TiO{sub x} coverages a well-ordered c(2 × 4) superstructure and for higher coverage a p(8 × 2) film is observed. Based on FAD and triangulation methods for azimuthal rotation of the target the arrangement of topmost atoms in smaller sub-unit cells is revealed.

  20. Symmetry breaking of the surface mediated quantum Hall Effect in Bi2Se3 nanoplates using Fe3O4 substrates

    Science.gov (United States)

    Buchenau, Sören; Sergelius, Philip; Wiegand, Christoph; Bäß ler, Svenja; Zierold, Robert; Shin, Ho Sun; Rübhausen, Michael; Gooth, Johannes; Nielsch, Kornelius

    2017-03-01

    Bi2Se3 nanoplate devices are synthesized on SiO2 and ferrimagnetic insulator substrates. We experimentally demonstrate that ferromagnetism is induced into the bottom surface. The symmetry broken bottom states give rise to an additional Shubnikov-de Haas frequency and leads to a decoupling of the top and bottom quantum Hall effects. We present a three-channel model that separates the bulk, top and bottom surface contributions to the Hall resistance, indicating the presence of two symmetry shifted half-integer QHEs.

  1. Surface roughness monitoring by singular spectrum analysis of vibration signals

    Science.gov (United States)

    García Plaza, E.; Núñez López, P. J.

    2017-02-01

    This study assessed two methods for enhanced surface roughness (Ra) monitoring based on the application of singular spectrum analysis (SSA) to vibrations signals generated in workpiece-cutting tool interaction in CNC finish turning operations i.e., the individual analysis of principal components (I-SSA), and the grouping analysis of correlated principal components (G-SSA). Singular spectrum analysis is a non-parametric technique of time series analysis that decomposes a signal into a set of independent additive time series referred to as principal components. A number of experiments with different cutting conditions were performed to assess surface roughness monitoring using both of these methods. The results show that singular spectrum analysis of vibration signal processing discriminated the frequency ranges effective for predicting surface roughness. Grouping analysis of correlated principal components (G-SSA) proved to be the most efficient method for monitoring surface roughness, with optimum prediction and reliability results at a lower analytical-computational cost. Finally, the results show that singular spectrum analysis is an ideal method for analyzing vibration signals applied to the on-line monitoring of surface roughness.

  2. Flatness, Cylindricity and Sphericity Assessment Based on the Seven Classes of Symmetry of the Surfaces

    Directory of Open Access Journals (Sweden)

    U. Prisco

    2010-01-01

    Full Text Available Dimensional inspection of a manufactured surface by means of a coordinate measuring machine (CMM produces a set of Cartesian coordinates. The coordinates are processed to yield the geometric tolerance of the surface. This paper presents a new approach to the evaluation of flatness, cylindricity and sphericity tolerance based on surface invariance with regard to the rigid motions. The proposed algorithm transforms, through homogeneous transformation matrices, the coordinates measured to best fit the reference element of the surface class from which the actual measurements were sampled. The transformation matrix is simplified taking into account the invariance of the sum of the squared normal distances of the measured points from the nominal surface as regards some rigid motions. This invariance is a consequence of the invariance as regards some displacements of the nominal surface from which the data points were sampled. In this way, the number of parameters to be optimised is reduced in comparison with the six parameters characterizing the general homogeneous transform matrix. The methodology was computer implemented and numerical simulations were performed for planes, cylinders, and spheres in order to validate the effectiveness of the approach. The results indicate that the proposed algorithm provides accurate and quick assessments.

  3. Monitoring tablet surface roughness during the film coating process

    DEFF Research Database (Denmark)

    Seitavuopio, Paulus; Heinämäki, Jyrki; Rantanen, Jukka

    2006-01-01

    the process of film coating tablets were studied by noncontact laser profilometry and scanning electron microscopy (SEM). An EDX analysis was used to monitor the magnesium stearate and titanium dioxide of the tablets. The tablet cores were film coated with aqueous hydroxypropyl methylcellulose, and the film...... coating was performed using an instrumented pilot-scale side-vented drum coater. The SEM images of the film-coated tablets showed that within the first 30 minutes, the surface of the tablet cores was completely covered with a thin film. The magnesium signal that was monitored by SEM-EDX disappeared after...... ~15 to 30 minutes, indicating that the tablet surface was homogeneously covered with film coating. The surface roughness started to increase from the beginning of the coating process, and the increase in the roughness broke off after 30 minutes of spraying. The results clearly showed that the surface...

  4. Emergent Conformal Symmetry and Geometric Transport Properties of Quantum Hall States on Singular Surfaces

    Science.gov (United States)

    Can, T.; Chiu, Y. H.; Laskin, M.; Wiegmann, P.

    2016-12-01

    We study quantum Hall states on surfaces with conical singularities. We show that the electronic fluid at the cone tip possesses an intrinsic angular momentum, which is due solely to the gravitational anomaly. We also show that quantum Hall states behave as conformal primaries near singular points, with a conformal dimension equal to the angular momentum. Finally, we argue that the gravitational anomaly and conformal dimension determine the fine structure of the electronic density at the conical point. The singularities emerge as quasiparticles with spin and exchange statistics arising from adiabatically braiding conical singularities. Thus, the gravitational anomaly, which appears as a finite size correction on smooth surfaces, dominates geometric transport on singular surfaces.

  5. Preliminary monitoring of faecal indicator organisms of surface water ...

    African Journals Online (AJOL)

    Preliminary monitoring of faecal indicator organisms of surface water: A case study ... in Mvudi River used as a source of domestic water for people who live around it. ... of Water Affairs and Forestry of South Africa (DWAF) and the World Health ...

  6. Surface conductivity of Mercury provides current closure and may affect magnetospheric symmetry

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    2004-04-01

    Full Text Available We study what effect a possible surface conductivity of Mercury has on the closure of magnetospheric currents by making six runs with a quasi-neutral hybrid simulation. The runs are otherwise identical but use different synthetic conductivity models: run 1 has a fully conducting planet, run 2 has a poorly conducting planet ( $sigma{=}10^{-8} Omega^{-1}$ m$^{-1}$ and runs 3-6 have one of the hemispheres either in the dawn-dusk or day-night directions, conducting well, the other one being conducting poorly. Although the surface conductivity is not known from observations, educated guesses easily give such conductivity values that magnetospheric currents may close partly within the planet, and as the conductivity depends heavily on the mineral composition of the surface, the possibility of significant horizontal variations cannot be easily excluded. The simulation results show that strong horizontal variations may produce modest magnetospheric asymmetries. Beyond the hybrid simulation, we also briefly discuss the possibility that in the nightside there may be a lack of surface electrons to carry downward current, which may act as a further source of surface-related magnetospheric asymmetry.

    Key words. Magnetospheric physics (planetary magnetospheres; current systems; solar wind-magnetosphere interactions.6

  7. Tuning surface reactivity by finite size effects: role of orbital symmetry in the d - band model

    Science.gov (United States)

    Snijders, Paul; Yin, Xiangshi; Cooper, Valentino; Weitering, Hanno

    Catalytic activity depends sensitively on the strength of the interactions between reactant molecules and catalyst surface: too weak and the catalyst cannot capture enough molecules to react; too strong and the reaction products do not desorb, blocking further reactions. The ability to control the binding strength of molecules to metal surfaces is thus fundamental to the design of efficient and selective catalysts. Catalyst design often relies on increasing the interaction strength on relatively non-reactive materials by introducing active sites. Here, we present a complementary approach: we exploit finite size effects in the electronic structure of ultrathin Pd(111) films grown on Ru(0001) to tune their reactivity by changing the film thickness one atom layer at a time. While bulk Pd(111) is reactive toward oxygen, we find that Pd films thinner than 6 atom layers are surprisingly inert to oxidation. This observation can be explained with the d-band model only when it is applied to the orbitals directly involved in the bonding. The insight into orbital specific contributions to surface reactivity could be useful in the design of catalysts. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  8. Ubiquitous symmetries

    Science.gov (United States)

    Nucci, M. C.

    2016-09-01

    We review some of our recent work devoted to the problem of quantization with preservation of Noether symmetries, finding hidden linearity in superintegrable systems, and showing that nonlocal symmetries are in fact local. In particular, we derive the Schrödinger equation for the isochronous Calogero goldfish model using its relation to Darwin equation. We prove the linearity of a classical superintegrable system on a plane of nonconstant curvature. We find the Lie point symmetries that correspond to the nonlocal symmetries (also reinterpreted as λ-symmetries) of the Riccati chain.

  9. Surface Monitoring of CFRP Structures for Adhesive Bonding

    Science.gov (United States)

    Ledesma, Rodolfo; Palmieri, Frank L.; Yost, William T.; Connell, John W.; Fitz-Gerald, James M.

    2017-01-01

    Adhesive bonding of composite materials requires reliable monitoring and detection of surface contaminants to assure robust and durable bonded structures. Surface treatment and effective monitoring prior to bonding is essential in order to obtain a surface free from contaminants that may degrade structural performance. Two techniques which monitor the effectiveness of the laser surface treatment of carbon fiber reinforced polymer (CFRP) materials are being investigated: laser induced breakdown spectroscopy (LIBS) and optically stimulated electron emission (OSEE). The applicability of LIBS to detect silicone contaminants on CFRP composites is studied using 35 ns Nd:YAG laser pulses at 355 nm with a pulse energy of 45 mJ. The LIBS regime in which pulse energies are < 100 mJ is referred to as mLIBS. CFRP surfaces were contaminated with polydimethylsiloxane (PDMS), a major component of silicone based mold release agents. The presence of PDMS is found by inspecting the Si I emission line at 288.2 nm. Untreated CFRP samples and CFRP contaminated with PDMS were tested. The PDMS areal density ranged from 0.36 Â+/- 0.04 to 0.51 Â+/- 0.16 mg/cm2. The results demonstrate the successful detection of PDMS on CFRP using mLIBS. In addition, OSEE was used to measure CFRP surface cleanliness pre- and post-treatment by laser ablation on specimens contaminated with PDMS coatings from 8 nm to 1311 nm in thickness. The results showed a significant increase in the OSEE photocurrent after laser surface treatment.

  10. An Integrated Health Monitoring System for Fission Surface Power

    Science.gov (United States)

    Hashemian, H. M.; Shumaker, B. D.; McCulley, J. R.; Morton, G. W.

    Based on such criteria as safety and mission success, programmatic risk, affordability, and extensibility/flexibility, the National Aeronautics and Space Administration (NASA) has chosen fission surface power (FSP) as the primary energy source for building a sustained human presence on the Moon, exploring Mars, and extremely long-duration space missions. The current benchmark FSP system has a mission life of at least 8 years during which time there is no opportunity for repair, sensor calibrations, or periodic maintenance tasks that are normally performed on terrestrial-based nuclear power plants during scheduled outages. Current technology relies heavily on real-time human interaction, monitoring and control. However; due to the long communication times between the Earth and Moon, or Mars, real-time human control is not possible, resulting in a critical need to develop autonomous health monitoring technology for FSP systems.This paper describes the design and development of an autonomous health monitoring system that will (1) provide on-line calibration monitoring, (2) reduce uncertainties in sensor measurements, and (3) provide sensor validation and fault detection capabilities for the control systems of various FSP subsystems. The health monitoring system design integrates a number of signal processing algorithms and techniques such as cross-calibration, empirical modeling using neural networks, and physical modeling under a modular signal processing platform that will enable robust sensor and system monitoring without the need for human interaction. Prototypes of the health monitoring system have been tested and validated on data acquired from preliminary subsystem testing of NASA's FSP Technology Demonstration Unit (TDU) as well as simulated laboratory data. Results from this testing have demonstrated the utility and benefits that such autonomous health monitoring systems can provide to FSP subsystems and other potential applications within NASA such as launch

  11. A Runway Surface Monitor using Internet of Things

    Science.gov (United States)

    Troiano, Amedeo; Pasero, Eros

    2014-05-01

    The monitoring of runway surfaces, for the detection of ice formation or presence of water, is an important issue for reducing maintenance costs and improving traffic safety. An innovative sensor was developed to detect the presence of ice or water on its surface, and its repeatability, stability and reliability were assessed in different simulations and experiments, performed both in laboratory and in the field. Three sensors were embedded in the runway of the Turin-Caselle airport, in the north-west of Italy, to check the state of its surface. Each sensor was connected to a GPRS modem to send the collected data to a common database. The entire system was installed about three years ago, and up to now it shows correct work and automatic reactivation after malfunctions without any external help. The state of the runway surface is virtual represented in an internet website, using the Internet of Things features and opening new scenarios.

  12. Operational Surface Water Detection and Monitoring Using Radarsat 2

    Directory of Open Access Journals (Sweden)

    Sandra Bolanos

    2016-03-01

    Full Text Available Traditional on-site methods for mapping and monitoring surface water extent are prohibitively expensive at a national scale within Canada. Despite successful cost-sharing programs between the provinces and the federal government, an extensive number of water features within the country remain unmonitored. Particularly difficult to monitor are the potholes in the Canadian Prairie region, most of which are ephemeral in nature and represent a discontinuous flow that influences water pathways, runoff response, flooding and local weather. Radarsat-2 and the Radarsat Constellation Mission (RCM offer unique capabilities to map the extent of water bodies at a national scale, including unmonitored sites, and leverage the current infrastructure of the Meteorological Service of Canada to monitor water information in remote regions. An analysis of the technical requirements of the Radarsat-2 beam mode, polarization and resolution is presented. A threshold-based procedure to map locations of non-vegetated water bodies after the ice break-up is used and complemented with a texture-based indicator to capture the most homogeneous water areas and automatically delineate their extents. Some strategies to cope with the radiometric artifacts of noise inherent to Synthetic Aperture Radar (SAR images are also discussed. Our results show that Radarsat-2 Fine mode can capture 88% of the total water area in a fully automated way. This will greatly improve current operational procedures for surface water monitoring information and impact a number of applications including weather forecasting, hydrological modeling, and drought/flood predictions.

  13. Body surface mounted biomedical monitoring system using Bluetooth.

    Science.gov (United States)

    Nambu, Masayuki

    2007-01-01

    Continuous monitoring in daily life is important for the health condition control of the elderly. However, portable or wearable devices need to carry by user on their own will. On the other hand, implantation sensors are not adoptable, because of generic users dislike to insert the any object in the body for monitoring. Therefore, another monitoring system of the health condition to carry it easily is necessary. In addition, ID system is necessary even if the subject live with few families. Furthermore, every measurement system should be wireless system, because not to obstruct the daily life of the user. In this paper, we propose the monitoring system, which is mounted on the body surface. This system will not obstruct the action or behavior of user in daily life, because this system attached the body surface on the back of the user. In addition, this system has wireless communication system, using Bluetooth, and acquired data transfer to the outside of the house via the Internet.

  14. Surface Acoustic Wave (SAW Resonators for Monitoring Conditioning Film Formation

    Directory of Open Access Journals (Sweden)

    Siegfried Hohmann

    2015-05-01

    Full Text Available We propose surface acoustic wave (SAW resonators as a complementary tool for conditioning film monitoring. Conditioning films are formed by adsorption of inorganic and organic substances on a substrate the moment this substrate comes into contact with a liquid phase. In the case of implant insertion, for instance, initial protein adsorption is required to start wound healing, but it will also trigger immune reactions leading to inflammatory responses. The control of the initial protein adsorption would allow to promote the healing process and to suppress adverse immune reactions. Methods to investigate these adsorption processes are available, but it remains difficult to translate measurement results into actual protein binding events. Biosensor transducers allow user-friendly investigation of protein adsorption on different surfaces. The combination of several transduction principles leads to complementary results, allowing a more comprehensive characterization of the adsorbing layer. We introduce SAW resonators as a novel complementary tool for time-resolved conditioning film monitoring. SAW resonators were coated with polymers. The adsorption of the plasma proteins human serum albumin (HSA and fibrinogen onto the polymer-coated surfaces were monitored. Frequency results were compared with quartz crystal microbalance (QCM sensor measurements, which confirmed the suitability of the SAW resonators for this application.

  15. Surface Acoustic Wave (SAW) Resonators for Monitoring Conditioning Film Formation.

    Science.gov (United States)

    Hohmann, Siegfried; Kögel, Svea; Brunner, Yvonne; Schmieg, Barbara; Ewald, Christina; Kirschhöfer, Frank; Brenner-Weiß, Gerald; Länge, Kerstin

    2015-05-21

    We propose surface acoustic wave (SAW) resonators as a complementary tool for conditioning film monitoring. Conditioning films are formed by adsorption of inorganic and organic substances on a substrate the moment this substrate comes into contact with a liquid phase. In the case of implant insertion, for instance, initial protein adsorption is required to start wound healing, but it will also trigger immune reactions leading to inflammatory responses. The control of the initial protein adsorption would allow to promote the healing process and to suppress adverse immune reactions. Methods to investigate these adsorption processes are available, but it remains difficult to translate measurement results into actual protein binding events. Biosensor transducers allow user-friendly investigation of protein adsorption on different surfaces. The combination of several transduction principles leads to complementary results, allowing a more comprehensive characterization of the adsorbing layer. We introduce SAW resonators as a novel complementary tool for time-resolved conditioning film monitoring. SAW resonators were coated with polymers. The adsorption of the plasma proteins human serum albumin (HSA) and fibrinogen onto the polymer-coated surfaces were monitored. Frequency results were compared with quartz crystal microbalance (QCM) sensor measurements, which confirmed the suitability of the SAW resonators for this application.

  16. Novel Measurement and Monitoring Approaches for Surface and Near-Surface Soil Moisture

    Science.gov (United States)

    Jones, S. B.; Sheng, W.; Zhou, R.; Sadeghi, M.; Tuller, M.

    2015-12-01

    The top inch of the earth's soil surface is a very dynamic and important layer where physical and biogeochemical processes take place under extreme diurnal and seasonal moisture and temperature variations. Some of these critical surfaces include biocrusts, desert pavements, agricultural lands, mine tailings, hydrophobic forest soils, all of which can significantly impact environmental conditions at large-scales. Natural hazards associated with surface conditions include dust storms, post-fire erosion and flooding in addition to crop failure. Less obvious, though continually occurring, are microbial-induced gas emissions that are also significantly impacted by surface conditions. With so much at stake, it is surprising that in today's technological world there are few if any sensors designed for monitoring the top few mm or cm of the soil surface. In particular, remotely sensed data is expected to provide near-real time surface conditions of our Earth, but we lack effective tools to measure and calibrate surface soil moisture. We are developing multiple methods for measurement and monitoring of surface and near-surface soil water content which include gravimetric as well as electromagnetic approaches. These novel measurement solutions and their prospects to improve soil surface water content determination will be presented.

  17. Sensors and OBIA synergy for operational monitoring of surface water

    Science.gov (United States)

    Masson, Eric; Thenard, Lucas

    2010-05-01

    This contribution will focus on combining Object Based Image Analysis (i.e. OBIA with e-Cognition 8) and recent sensors (i.e. Spot 5 XS, Pan and ALOS Prism, Avnir2, Palsar) to address the technical feasibility for an operational monitoring of surface water. Three cases of river meandering (India), flood mapping (Nepal) and dam's seasonal water level monitoring (Morocco) using recent sensors will present various application of surface water monitoring. The operational aspect will be demonstrated either by sensor properties (i.e. spatial resolution and bandwidth), data acquisition properties (i.e. multi sensor, return period and near real-time acquisition) but also with OBIA algorithms (i.e. fusion of multi sensors / multi resolution data and batch processes). In the first case of river meandering (India) we will address multi sensor and multi date satellite acquisition to monitor the river bed mobility within a floodplain using an ALOS dataset. It will demonstrate the possibility of an operational monitoring system that helps the geomorphologist in the analysis of fluvial dynamic and sediment budget for high energy rivers. In the second case of flood mapping (Nepal) we will address near real time Palsar data acquisition at high spatial resolution to monitor and to map a flood extension. This ALOS sensor takes benefit both from SAR and L band properties (i.e. atmospheric transparency, day/night acquisition, low sensibility to surface wind). It's a real achievement compared to optical imagery or even other high resolution SAR properties (i.e. acquisition swath, bandwidth and data price). These advantages meet the operational needs set by crisis management of hydrological disasters but also for the implementation of flood risk management plans. The last case of dam surface water monitoring (Morocco) will address an important issue of water resource management in countries affected by water scarcity. In such countries water users have to cope with over exploitation

  18. Symmetry and Condensed Matter Physics

    Science.gov (United States)

    El-Batanouny, M.; Wooten, F.

    2008-03-01

    Preface; 1. Symmetry and physics; 2. Symmetry and group theory; 3. Group representations: concepts; 4. Group representations: formalism and methodology; 5. Dixon's method for computing group characters; 6. Group action and symmetry projection operators; 7. Construction of the irreducible representations; 8. Product groups and product representations; 9. Induced representations; 10. Crystallographic symmetry and space-groups; 11. Space groups: Irreps; 12. Time-reversal symmetry: color groups and the Onsager relations; 13. Tensors and tensor fields; 14. Electronic properties of solids; 15. Dynamical properties of molecules, solids and surfaces; 16. Experimental measurements and selection rules; 17. Landau's theory of phase transitions; 18. Incommensurate systems and quasi-crystals; References; Bibliography; Index.

  19. Gallium arsenide based surface plasmon resonance for glucose monitoring

    Science.gov (United States)

    Patil, Harshada; Sane, Vani; Sriram, G.; Indumathi, T. S; Sharan, Preeta

    2015-07-01

    The recent trends in the semiconductor and microwave industries has enabled the development of scalable microfabrication technology which produces a superior set of performance as against its counterparts. Surface Plasmon Resonance (SPR) based biosensors are a special class of optical sensors that become affected by electromagnetic waves. It is found that bio-molecular recognition element immobilized on the SPR sensor surface layer reveals a characteristic interaction with various sample solutions during the passage of light. The present work revolves around developing painless glucose monitoring systems using fluids containing glucose like saliva, urine, sweat or tears instead of blood samples. Non-invasive glucose monitoring has long been simulated using label free detection mechanisms and the same concept is adapted. In label-free detection, target molecules are not labeled or altered, and are detected in their natural forms. Label-free detection mechanisms involves the measurement of refractive index (RI) change induced by molecular interactions. These interactions relates the sample concentration or surface density, instead of total sample mass. After simulation it has been observed that the result obtained is highly accurate and sensitive. The structure used here is SPR sensor based on channel waveguide. The tools used for simulation are RSOFT FULLWAVE, MEEP and MATLAB etc.

  20. Pesticide monitoring in surface water and groundwater using passive samplers

    Science.gov (United States)

    Kodes, V.; Grabic, R.

    2009-04-01

    Passive samplers as screening devices have been used within a czech national water quality monitoring network since 2002 (SPMD and DGT samplers for non polar substances and metals). The passive sampler monitoring of surface water was extended to polar substances, in 2005. Pesticide and pharmaceutical POCIS samplers have been exposed in surface water at 21 locations and analysed for polar pesticides, perfluorinated compounds, personal care products and pharmaceuticals. Pesticide POCIS samplers in groundwater were exposed at 5 locations and analysed for polar pesticides. The following active substances of plant protection products were analyzed in surface water and groundwater using LC/MS/MS: 2,4,5-T, 2,4-D, Acetochlor, Alachlor, Atrazine, Atrazine_desethyl, Azoxystrobin, Bentazone, Bromacil, Bromoxynil, Carbofuran, Clopyralid, Cyanazin, Desmetryn, Diazinon, Dicamba, Dichlobenil, Dichlorprop, Dimethoat, Diuron, Ethofumesate, Fenarimol, Fenhexamid, Fipronil, Fluazifop-p-butyl, Hexazinone, Chlorbromuron, Chlorotoluron, Imazethapyr, Isoproturon, Kresoxim-methyl, Linuron, MCPA, MCPP, Metalaxyl, Metamitron, Methabenzthiazuron, Methamidophos, Methidathion, Metobromuron, Metolachlor, Metoxuron, Metribuzin, Monolinuron, Nicosulfuron, Phorate, Phosalone, Phosphamidon, Prometryn, Propiconazole, Propyzamide, Pyridate, Rimsulfuron, Simazine, Tebuconazole, Terbuthylazine, Terbutryn, Thifensulfuron-methyl, Thiophanate-methyl and Tri-allate. The POCIS samplers performed very well being able to provide better picture than grab samples. The results show that polar pesticides and also perfluorinated compounds, personal care products and pharmaceuticals as well occur in hydrosphere of the Czech republic. Acknowledgment: Authors acknowledge the financial support of grant No. 2B06095 by the Ministry of Education, Youth and Sports.

  1. Latin American and Caribbean intercomparison of surface contamination monitoring equipment.

    Science.gov (United States)

    Cabral, T S; Ramos, M M O; Laranjeira, A S; Santos, D S; Suarez, R C

    2011-03-01

    In October 2009, the International Atomic Energy Agency (IAEA) sponsored an intercomparison exercise of surface contamination monitoring equipment, which was held at the Laboratório Nacional de Metrologia das Radiações Ionizantes, from the Instituto de Radioproteção e Dosimetria, IRD/CNEN, Rio de Janeiro. This intercomparison was performed to evaluate the calibration accessibility in Latin America and the Caribbean. Thirteen countries within the region and IAEA have sent instruments to be compared, but only five countries and IAEA were considered apt to participate. Analysis of instruments, results and discussions are presented and recommendations are drawn.

  2. Daily monitoring of the land surface of the Earth

    Science.gov (United States)

    Mascaro, J.

    2016-12-01

    Planet is an integrated aerospace and data analytics company that operates the largest fleet of Earth-imaging satellites. With more than 140 cube-sats successfully launched to date, Planet is now collecting approximately 10 million square kilometers of imagery per day (3-5m per pixel, in red, green, blue and near infrared spectral bands). By early 2017, Planet's constellation will image the entire land surface of the Earth on a daily basis. Due to investments in cloud storage and computing, approximately 75% of imagery collected is available to Planet's partners within 24 hours of capture through an Application Program Interface. This unique dataset has enormous applications for monitoring the status of Earth's natural ecosystems, as well as human settlements and agricultural welfare. Through our Ambassadors Program, Planet has made data available for researchers in areas as disparate as human rights monitoring in refugee camps, to assessments of the impact of hydroelectric installations, to tracking illegal gold mining in Amazon forests, to assessing the status of the cryosphere. Here, we share early results from Planet's research partner network, including enhanced spatial and temporal resolution of NDVI data for agricultural health in Saudi Arabia, computation of rates of illegal deforestation in Southern Peru, estimates of tropical forest carbon stocks based on data integration with active sensors, and estimates of glacial flow rates. We synthesize the potentially enormous research and scientific value of Planet's persistent monitoring capability, and discuss methods by which the data will be disseminated into the scientific community.

  3. Mirror symmetry

    CERN Document Server

    Voisin, Claire

    1999-01-01

    This is the English translation of Professor Voisin's book reflecting the discovery of the mirror symmetry phenomenon. The first chapter is devoted to the geometry of Calabi-Yau manifolds, and the second describes, as motivation, the ideas from quantum field theory that led to the discovery of mirror symmetry. The other chapters deal with more specialized aspects of the subject: the work of Candelas, de la Ossa, Greene, and Parkes, based on the fact that under the mirror symmetry hypothesis, the variation of Hodge structure of a Calabi-Yau threefold determines the Gromov-Witten invariants of its mirror; Batyrev's construction, which exhibits the mirror symmetry phenomenon between hypersurfaces of toric Fano varieties, after a combinatorial classification of the latter; the mathematical construction of the Gromov-Witten potential, and the proof of its crucial property (that it satisfies the WDVV equation), which makes it possible to construct a flat connection underlying a variation of Hodge structure in the ...

  4. Quantum Symmetry

    CERN Document Server

    Häring, Reto Andreas

    1993-01-01

    The representations of the observable algebra of a low dimensional quantum field theory form the objects of a braided tensor category. The search for gauge symmetry in the theory amounts to finding an algebra which has the same representation category. In this paper we try to establish that every quantum field theory satisfying some basic axioms posseses a weak quasi Hopf algebra as gauge symmetry. The first step is to construct a functor from the representation category to the category of finite dimensional vector spaces. Given such a functor we can use a generalized reconstruction theorem to find the symmetry algebra. It is shown how this symmetry algebra is used to build a gauge covariant field algebra and we investigate the question why this generality is necessary.

  5. Monitoring polymer properties using shear horizontal surface acoustic waves.

    Science.gov (United States)

    Gallimore, Dana Y; Millard, Paul J; Pereira da Cunha, Mauricio

    2009-10-01

    Real-time, nondestructive methods for monitoring polymer film properties are increasingly important in the development and fabrication of modern polymer-containing products. Online testing of industrial polymer films during preparation and conditioning is required to minimize material and energy consumption, improve the product quality, increase the production rate, and reduce the number of product rejects. It is well-known that shear horizontal surface acoustic wave (SH-SAW) propagation is sensitive to mass changes as well as to the mechanical properties of attached materials. In this work, the SH-SAW was used to monitor polymer property changes primarily dictated by variations in the viscoelasticity. The viscoelastic properties of a negative photoresist film were monitored throughout the ultraviolet (UV) light-induced polymer cross-linking process using SH-SAW delay line devices. Changes in the polymer film mass and viscoelasticity caused by UV exposure produced variations in the phase velocity and attenuation of the SH-SAW propagating in the structure. Based on measured polymer-coated delay line scattering transmission responses (S(21)) and the measured polymer layer thickness and density, the viscoelastic constants c(44) and eta(44) were extracted. The polymer thickness was found to decrease 0.6% during UV curing, while variations in the polymer density were determined to be insignificant. Changes of 6% in c(44) and 22% in eta(44) during the cross-linking process were observed, showing the sensitivity of the SH-SAW phase velocity and attenuation to changes in the polymer film viscoelasticity. These results indicate the potential for SH-SAW devices as online monitoring sensors for polymer film processing.

  6. A Copernicus downstream service for surface displacement monitoring in Germany

    Science.gov (United States)

    Cahyadi Kalia, Andre; Frei, Michaela; Lege, Thomas

    2016-04-01

    SAR Interferometry is a powerful technique able to detect and monitor various surface displacements caused by e.g. gravitative mass movement, subrosion, groundwater extraction, fluid injection, natural gas extraction. These processes can e.g. cause damage to buildings, infrastructure, affect ecosystems, agriculture and the economic use of the geological underground by influencing the hydro(geo)logical setting. Advanced techniques of interferometric processing (Persistent Scatterer Interferometry, PSI) allow highly precise displacement measurements (mm precision) by analyzing stacks of SAR imagery. The PSI mapping coverage can be increased to entire nations by using several adjacent satellite tracks. In order to assist the operational use of this technique a German-wide, officially approved, PSI dataset is under development. The intention of this presentation is to show i) the concept of the Copernicus downstream service for surface displacement monitoring in Germany and ii) a pilot study to exemplarily demonstrate the workflow and potential products from the Copernicus downstream service. The pilot study is focusing on the built up of an officially approved wide-area PSI dataset. The study area covers an area of more than 30.000 km² and is located in the Northwest German Basin. Several natural processes (e.g. compaction of marine sediments, peat loss) and anthropogenic activities (e.g. natural gas extraction, rock salt mining) are causing surface displacements in the study area. The PSI analysis is based on six ERS-1/-2 data stacks covering the timespan from 1992 until 2001. Each data stack consists of 49 to 73 ERS-1/-2 SAR images. A comparison of the PSI results with thematic data (e.g. volume and location of extracted natural gas) strongly indicates that a part of the detected land subsidence is caused by natural gas extraction. Furthermore, land subsidence caused by e.g. fluid injection and rock salt mining were successfully detected by the PSI analysis.

  7. Position-sensitive radiation monitoring (surface contamination monitor). Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    1999-06-01

    The Shonka Research Associates, Inc. Position-Sensitive Radiation Monitor both detects surface radiation and prepares electronic survey map/survey report of surveyed area automatically. The electronically recorded map can be downloaded to a personal computer for review and a map/report can be generated for inclusion in work packages. Switching from beta-gamma detection to alpha detection is relatively simple and entails moving a switch position to alpha and adjusting the voltage level to an alpha detection level. No field calibration is required when switching from beta-gamma to alpha detection. The system can be used for free-release surveys because it meets the federal detection level sensitivity limits requires for surface survey instrumentation. This technology is superior to traditionally-used floor contamination monitor (FCM) and hand-held survey instrumentation because it can precisely register locations of radioactivity and accurately correlate contamination levels to specific locations. Additionally, it can collect and store continuous radiological data in database format, which can be used to produce real-time imagery as well as automated graphics of survey data. Its flexible design can accommodate a variety of detectors. The cost of the innovative technology is 13% to 57% lower than traditional methods. This technology is suited for radiological surveys of flat surfaces at US Department of Energy (DOE) nuclear facility decontamination and decommissioning (D and D) sites or similar public or commercial sites.

  8. Correlation analysis of symmetry breaking in the surface nanostructure ordering: case study of the ventral scale of the snake Morelia viridis

    Science.gov (United States)

    Kovalev, A.; Filippov, A.; Gorb, S. N.

    2016-03-01

    In contrast to the majority of inorganic or artificial materials, there is no ideal long-range ordering of structures on the surface in biological systems. Local symmetry of the ordering on biological surfaces is also often broken. In the present paper, the particular symmetry violation was analyzed for dimple-like nano-pattern on the belly scales of the skin of the pythonid snake Morelia viridis using correlation analysis and statistics of the distances between individual nanostructures. The results of the analysis performed on M. viridis were compared with a well-studied nano-nipple pattern on the eye of the sphingid moth Manduca sexta, used as a reference. The analysis revealed non-random, but very specific symmetry violation. In the case of the moth eye, the nano-nipple arrangement forms a set of domains, while in the case of the snake skin, the nano-dimples arrangement resembles an ordering of particles (molecules) in amorphous (glass) state. The function of the nano-dimples arrangement may be to provide both friction and strength isotropy of the skin. A simple model is suggested, which provides the results almost perfectly coinciding with the experimental ones. Possible mechanisms of the appearance of the above nano-formations are discussed.

  9. Evaluation and Monitoring of Jpss Land Surface Temperature Data

    Science.gov (United States)

    Yu, Y.; Yu, P.; Liu, Y.; Csiszar, I. A.

    2016-12-01

    Land Surface Temperature (LST) is one of environmental data records (EDRs) produced operationally through the U.S. Joint Polar Satellite System (JPSS) mission. LST is an important parameter for understanding climate change, modeling the hydrological and biogeochemical cycles, and is a prime candidate for Numerical Weather Prediction (NWP) assimilation models. Recently, the international LST and Emissivity Working Ggroup (ILSTE-WG) is promoting to the inclusion of the LST as essential climate variable (ECV) in the Global Climate Observation System (GCOS) of the Word Meteorological Organization (WMO). At the Center for Satellite Applications and Research (STAR) of National Atmospheric and Oceanic Administration (NOAA), we, are as a science team, are responsible to for the science of JPSS LST production. In this work, we present our activities and accomplishments on the JPSS LST evaluation and monitoring since the launch of the first JPSS satellite, i.e. S-NPP, satellite. Beta version, provisional version, and validated stage 1 version of the S-NPP LST products which were announced in May 2013, July 2014, and March 2015, respectively. Evaluation of the LST products have been performed versus ground measurements and other polar-orbiting satellite LST data (e,g. MODIS LSTs); some results will be illustrated. A daily monitoring system of the JPSS LST production has been developed, which presents daily, weekly and monthly global LST maps and inter-comparison results on the STAR JPSS program website. Further, evaluation of the enterprise LST algorithm for JPSS mission which is in development at STAR currently are presented in this work. Finally, evaluation and monitoring plan of the LST production for the JPSS-1 satellite are also presented.

  10. Atomic clocks as a tool to monitor vertical surface motion

    CERN Document Server

    Bondarescu, Ruxandra; Lundgren, Andrew; Hetényi, György; Houlié, Nicolas; Jetzer, Philippe; Bondarescu, Mihai

    2015-01-01

    Atomic clock technology is advancing rapidly, now reaching stabilities of $\\Delta f/f \\sim 10^{-18}$, which corresponds to resolving $1$ cm in equivalent geoid height over an integration timescale of about 7 hours. At this level of performance, ground-based atomic clock networks emerge as a tool for monitoring a variety of geophysical processes by directly measuring changes in the gravitational potential. Vertical changes of the clock's position due to magmatic, volcanic, post-seismic or tidal deformations can result in measurable variations in the clock tick rate. As an example, we discuss the geopotential change arising due to an inflating point source (Mogi model), and apply it to the Etna volcano. Its effect on an observer on the Earth's surface can be divided into two different terms: one purely due to uplift and one due to the redistribution of matter. Thus, with the centimetre-level precision of current clocks it is already possible to monitor volcanoes. The matter redistribution term is estimated to b...

  11. Combining surface reanalysis and remote sensing data for monitoring evapotranspiration

    Science.gov (United States)

    Marshall, M.; Tu, K.; Funk, C.; Michaelsen, J.; Williams, Pat; Williams, C.; Ardö, J.; Marie, B.; Cappelaere, B.; Grandcourt, A.; Nickless, A.; Noubellon, Y.; Scholes, R.; Kutsch, W.

    2012-01-01

    Climate change is expected to have the greatest impact on the world's poor. In the Sahel, a climatically sensitive region where rain-fed agriculture is the primary livelihood, expected decreases in water supply will increase food insecurity. Studies on climate change and the intensification of the water cycle in sub-Saharan Africa are few. This is due in part to poor calibration of modeled actual evapotranspiration (AET), a key input in continental-scale hydrologic models. In this study, a model driven by dynamic canopy AET was combined with the Global Land Data Assimilation System realization of the NOAH Land Surface Model (GNOAH) wet canopy and soil AET for monitoring purposes in sub-Saharan Africa. The performance of the hybrid model was compared against AET from the GNOAH model and dynamic model using eight eddy flux towers representing major biomes of sub-Saharan Africa. The greatest improvements in model performance are at humid sites with dense vegetation, while performance at semi-arid sites is poor, but better than individual models. The reduction in errors using the hybrid model can be attributed to the integration of a dynamic vegetation component with land surface model estimates, improved model parameterization, and reduction of multiplicative effects of uncertain data.

  12. Combining surface reanalysis and remote sensing data for monitoring evapotranspiration

    Science.gov (United States)

    Marshall, M.; Tu, K.; Funk, C.; Michaelsen, J.; Williams, P.; Williams, C.; Ardö, J.; Marie, B.; Cappelaere, B.; Grandcourt, A.; Nickless, A.; Nouvellon, Y.; Scholes, R.; Kutsch, W.

    2012-02-01

    Climate change is expected to have the greatest impact on the world's poor. In the Sahel, a climatically sensitive region where rain-fed agriculture is the primary livelihood, expected decreases in water supply will increase food insecurity. Studies on climate change and the intensification of the water cycle in sub-Saharan Africa are few. This is due in part to poor calibration of modeled actual evapotranspiration (AET), a key input in continental-scale hydrologic models. In this study, a model driven by dynamic canopy AET was combined with the Global Land Data Assimilation System realization of the NOAH Land Surface Model (GNOAH) wet canopy and soil AET for monitoring purposes in sub-Saharan Africa. The performance of the hybrid model was compared against AET from the GNOAH model and dynamic model using eight eddy flux towers representing major biomes of sub-Saharan Africa. The greatest improvements in model performance are at humid sites with dense vegetation, while performance at semi-arid sites is poor, but better than individual models. The reduction in errors using the hybrid model can be attributed to the integration of a dynamic vegetation component with land surface model estimates, improved model parameterization, and reduction of multiplicative effects of uncertain data.

  13. Surface Contamination Monitor and Survey Information Management System

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    Shonka Research Associates, Inc.`s (SRA) Surface Contamination Monitor and Survey Information management System (SCM/SIMS) is designed to perform alpha and beta radiation surveys of floors and surfaces and document the measured data. The SRA-SCM/SIMS technology can be applied to routine operational surveys, characterization surveys, and free release and site closure surveys. Any large nuclear site can make use of this technology. This report describes a demonstration of the SRA-SCM/SIMS technology. This demonstration is part of the chicago Pile-5 (CP-5) Large-Scale Demonstration Project (LSDP) sponsored by the US Department of Energy (DOE), Office of Science and Technology (ST), Deactivation and Decommissioning Focus Area (DDFA). The objective of the LSDP is to select and demonstrate potentially beneficial technologies at the Argonne National Laboratory-East`s (ANL) CP-5 Research Reactor Facility. The purpose of the LSDP is to demonstrate that by using innovative and improved deactivation and decommissioning (D and D) technologies from various sources, significant benefits can be achieved when compared to baseline D and D technologies.

  14. Combining surface reanalysis and remote sensing data for monitoring evapotranspiration

    Directory of Open Access Journals (Sweden)

    M. Marshall

    2012-02-01

    Full Text Available Climate change is expected to have the greatest impact on the world's poor. In the Sahel, a climatically sensitive region where rain-fed agriculture is the primary livelihood, expected decreases in water supply will increase food insecurity. Studies on climate change and the intensification of the water cycle in sub-Saharan Africa are few. This is due in part to poor calibration of modeled actual evapotranspiration (AET, a key input in continental-scale hydrologic models. In this study, a model driven by dynamic canopy AET was combined with the Global Land Data Assimilation System realization of the NOAH Land Surface Model (GNOAH wet canopy and soil AET for monitoring purposes in sub-Saharan Africa. The performance of the hybrid model was compared against AET from the GNOAH model and dynamic model using eight eddy flux towers representing major biomes of sub-Saharan Africa. The greatest improvements in model performance are at humid sites with dense vegetation, while performance at semi-arid sites is poor, but better than individual models. The reduction in errors using the hybrid model can be attributed to the integration of a dynamic vegetation component with land surface model estimates, improved model parameterization, and reduction of multiplicative effects of uncertain data.

  15. Global Monitoring of Martian Surface Albedo Changes from Orbital Observations

    Science.gov (United States)

    Geissler, P.; Enga, M.; Mukherjee, P.

    2013-12-01

    Martian surface changes were first observed from orbit during the Mariner 9 and Viking Orbiter missions. They were found to be caused by eolian processes, produced by deposition of dust during regional and global dust storms and subsequent darkening of the surface through erosion and transportation of dust and sand. The albedo changes accumulated in the 20 years between Viking and Mars Global Surveyor were sufficient to alter the global circulation of winds and the climate of Mars according to model calculations (Fenton et al., Nature 2007), but little was known about the timing or frequency of the changes. Since 1999, we have had the benefit of continuous monitoring by a series of orbiting spacecraft that continues today with Mars Reconnaissance Orbiter, Mars Odyssey, and Mars Express. Daily synoptic observations enable us to determine whether the surface albedo changes are gradual or episodic in nature and to record the seasons that the changes take place. High resolution images of surface morphology and atmospheric phenomena help identify the physical mechanisms responsible for the changes. From these data, we hope to learn the combinations of atmospheric conditions and sediment properties that produce surface changes on Mars and possibly predict when they will take place in the future. Martian surface changes are particularly conspicuous in low albedo terrain, where even a thin layer of bright dust brightens the surface drastically. Equatorial dark areas are repeatedly coated and recoated by dust, which is later shed from the surface by a variety of mechanisms. An example is Syrtis Major, suddenly buried in bright dust by the global dust storm of 2001. Persistent easterly winds blew much of the dust cover away over the course of the next Martian year, but episodic changes continue today, particularly during southern summer when regional dust storms are rife. Another such region is Solis Planum, south of the Valles Marineris, where changes take place

  16. Using Satellite Aerosol Retrievals to Monitor Surface Particulate Air Quality

    Science.gov (United States)

    Levy, Robert C.; Remer, Lorraine A.; Kahn, Ralph A.; Chu, D. Allen; Mattoo, Shana; Holben, Brent N.; Schafer, Joel S.

    2011-01-01

    The MODIS and MISR aerosol products were designed nearly two decades ago for the purpose of climate applications. Since launch of Terra in 1999, these two sensors have provided global, quantitative information about column-integrated aerosol properties, including aerosol optical depth (AOD) and relative aerosol type parameters (such as Angstrom exponent). Although primarily designed for climate, the air quality (AQ) community quickly recognized that passive satellite products could be used for particulate air quality monitoring and forecasting. However, AOD and particulate matter (PM) concentrations have different units, and represent aerosol conditions in different layers of the atmosphere. Also, due to low visible contrast over brighter surface conditions, satellite-derived aerosol retrievals tend to have larger uncertainty in urban or populated regions. Nonetheless, the AQ community has made significant progress in relating column-integrated AOD at ambient relative humidity (RH) to surface PM concentrations at dried RH. Knowledge of aerosol optical and microphysical properties, ambient meteorological conditions, and especially vertical profile, are critical for physically relating AOD and PM. To make urban-scale maps of PM, we also must account for spatial variability. Since surface PM may vary on a finer spatial scale than the resolution of standard MODIS (10 km) and MISR (17km) products, we test higher-resolution versions of MODIS (3km) and MISR (1km research mode) retrievals. The recent (July 2011) DISCOVER-AQ campaign in the mid-Atlantic offers a comprehensive network of sun photometers (DRAGON) and other data that we use for validating the higher resolution satellite data. In the future, we expect that the wealth of aircraft and ground-based measurements, collected during DISCOVER-AQ, will help us quantitatively link remote sensed and ground-based measurements in the urban region.

  17. Simultaneous surface acoustic wave and surface plasmon resonance measurements: Electrodeposition and biological interactions monitoring

    Science.gov (United States)

    Friedt, J.-M.; Francis, L.; Reekmans, G.; De Palma, R.; Campitelli, A.; Sleytr, U. B.

    2004-02-01

    We present results from an instrument combining surface acoustic wave propagation and surface plasmon resonance measurements. The objective is to use two independent methods, the former based on adsorbed mass change measurements and the latter on surface dielectric properties variations, to identify physical properties of protein layers, and more specifically their water content. We display mass sensitivity calibration curves using electrodeposition of copper leading to a sensitivity in liquid of 150±15 cm2/g for the Love mode device used here, and the application to monitoring biological processes. The extraction of protein layer thickness and protein to water content ratio is also presented for S-layer proteins under investigation. We obtain, respectively, 4.7±0.7 nm and 75±15%.

  18. Quantification of topographic changes in the surface of back of young patients monitored for idiopathic scoliosis: correlation with radiographic variables

    Science.gov (United States)

    Pino-Almero, Laura; Mínguez-Rey, María Fe; Sentamans-Segarra, Salvador; Salvador-Palmer, María Rosario; Anda, Rosa María Cibrián-Ortiz de; La O, Javier López-de

    2016-11-01

    Idiopathic scoliosis requires a close follow-up while the patient is skeletally immature to detect early progression. Patients who are monitored by radiographs are exposed to high doses of ionizing radiation. The purpose of this study is to evaluate if an optic noninvasive method of back surface topography based on structured light would be clinically useful in the follow-up of young patients with idiopathic scoliosis. This could reduce the number of radiographs made on these children. Thirty-one patients with idiopathic scoliosis were submitted twice to radiograph and our topographic method at intervals of 6 months to 1 year. Three topographical variables were applied horizontal plane deformity index (DHOPI), posterior trunk symmetry index (POTSI), and columnar profile (PC). A statistically significant correlation was found between variations of Cobb angle with DHOPI (r=0.720, pscoliosis.

  19. Inherited Symmetry

    Science.gov (United States)

    Attanucci, Frank J.; Losse, John

    2008-01-01

    In a first calculus course, it is not unusual for students to encounter the theorems which state: If f is an even (odd) differentiable function, then its derivative is odd (even). In our paper, we prove some theorems which show how the symmetry of a continuous function f with respect to (i) the vertical line: x = a or (ii) with respect to the…

  20. Integrated landslide monitoring: rainfalls, pore water pressures and surface movements

    Science.gov (United States)

    Berti, M.; Casula, G.; Elmi, C.; Fabris, M.; Ghirotti, M.; Loddo, F.; Mora, P.; Pesci, A.; Simoni, A.

    2003-04-01

    Rainfall-induced landslides involving clay-rich soils are widely represented in the Apennines. They cover up to 30% of the slopes forming the relief constituted by chaotic clayey units and are typically subject to repeated reactivations of the movement which are often triggered by a series of discrete failures located in the upper part (headscarp). Failures and movement can then propagate downslope and reactivate the whole landslide deposit which displays a typical elongated body, limited depth and a fan-shaped toe as a result of successive slow earth-flow like movements. An experimental monitoring programme was designed and is currently operating on the Rocca Pitigliana landslide whose characteristics well represent the above described type of movements. Its last parossistic movement date back to 1999 and, since then, remedial works were realized on behalf of local authorities. They basically consist of surficial and deep drainage works located on the landslide body. Experimental activities focus on the main headscarp whose morphology and sub-surface water circulation scheme were unaffected by the interventions. The monitoring approach includes measuring rainfalls and pore-pressure responses in both saturated and unsaturated soils. Surficial movements are continuously measured by means of GPS permanent stations and by wire extensometers which allow real time control of headscarp activity. Main aim of the monitoring activities is to provide experimental data, which can be used to test various existing hydrologic models and to identify triggering conditions. Since the ‘70s, many hydrologic models have been proposed to describe the pore water pressure distribution within the soil and its response to precipitation. The topic has recently drawn growing attention because of the recognized importance in landslide triggering but still experimental data are very much needed in order to obtain and validate capable predicting tools. This is mostly due to the multiple and

  1. Global monitoring of Sea Surface Salinity with Aquarius

    Science.gov (United States)

    Lagerloef, G. S. E.; LeVine, D. M.; Chao, Yi; Colomb, R.; Nollmann, I.

    2005-01-01

    Aquarius is a microwave remote sensing system designed to obtain global maps of the surface salinity field of the oceans from space. It will be flown on the Aquarius/SAC-D mission, a partnership between the USA (NASA) and Argentina (CONAE) with launch scheduled for late in 2008. The objective of Aquarius is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean. This will provide data to address scientific questions associated with ocean circulation and its impact on climate. For example, salinity is needed to understand the large scale thermohaline circulation, driven by buoyancy, which moves large masses of water and heat around the globe. Of the two variables that determine buoyancy (salinity and temperature), temperature is already being monitored. Salinity is the missing variable needed to understand this circulation. Salinity also has an important role in energy exchange between the ocean and atmosphere, for example in the development of fresh water lenses (buoyant water that forms stable layers and insulates water below from the atmosphere) which alter the air-sea coupling. Aquarius is a combination radiometer and scatterometer (radar) operating at L-band (1.413 GHz for the radiometer and 1.26 GHz for the scatterometer). The primary instrument,for measuring salinity is the radiometer which is able to detect salinity because of the modulation salinity produces on the thermal emission from sea water. This change is detectable at the long wavelength end of the microwave spectrum. The scatterometer will provide a correction for surface roughness (waves) which is one of the greatest unknowns in the retrieval. The sensor will be in a sun-synchronous orbit at about 650 km with equatorial crossings of 6am/6pm. The antenna for these two instruments is a 3 meter offset fed reflector with three feeds arranged in pushbroom fashion looking away from the sun toward the shadow side of the orbit to

  2. Symmetry, Symmetry Breaking and Topology

    Directory of Open Access Journals (Sweden)

    Siddhartha Sen

    2010-07-01

    Full Text Available The ground state of a system with symmetry can be described by a group G. This symmetry group G can be discrete or continuous. Thus for a crystal G is a finite group while for the vacuum state of a grand unified theory G is a continuous Lie group. The ground state symmetry described by G can change spontaneously from G to one of its subgroups H as the external parameters of the system are modified. Such a macroscopic change of the ground state symmetry of a system from G to H correspond to a “phase transition”. Such phase transitions have been extensively studied within a framework due to Landau. A vast range of systems can be described using Landau’s approach, however there are also systems where the framework does not work. Recently there has been growing interest in looking at such non-Landau type of phase transitions. For instance there are several “quantum phase transitions” that are not of the Landau type. In this short review we first describe a refined version of Landau’s approach in which topological ideas are used together with group theory. The combined use of group theory and topological arguments allows us to determine selection rule which forbid transitions from G to certain of its subgroups. We end by making a few brief remarks about non-Landau type of phase transition.

  3. Monitorizing nitinol alloy surface reactions for biofouling studies

    Energy Technology Data Exchange (ETDEWEB)

    Dinu, C.Z. [Max Planck Institute of Molecular Cell Biology and Genetics, Photenhauerstrasse 108, Dresden (Germany); Dinca, V.C. [National Institute for Laser, Plasma and Radiation Physics, PO Box MG-16, RO 77125 Bucharest (Romania)]. E-mail: valentina.dinca@inflpr.ro; Soare, S. [UNIBUC-MICROGEN, University of Bucharest, Centre for Research, Education and Consulting in Microbiology, Genetics and Biotechnology (MICROGEN), Splaiul Independentei, 91-95, RO 76201 Bucharest (Romania); Moldovan, A. [Max Planck Institute of Molecular Cell Biology and Genetics, Photenhauerstrasse 108, Dresden (Germany); Smarandache, D. [UNIBUC-MICROGEN, University of Bucharest, Centre for Research, Education and Consulting in Microbiology, Genetics and Biotechnology (MICROGEN), Splaiul Independentei, 91-95, RO 76201 Bucharest (Romania); Scarisoareanu, N. [National Institute for Laser, Plasma and Radiation Physics, PO Box MG-16, RO 77125 Bucharest (Romania); Barbalat, A. [National Institute for Laser, Plasma and Radiation Physics, PO Box MG-16, RO 77125 Bucharest (Romania); Birjega, R. [National Institute for Laser, Plasma and Radiation Physics, PO Box MG-16, RO 77125 Bucharest (Romania); Dinescu, M. [National Institute for Laser, Plasma and Radiation Physics, PO Box MG-16, RO 77125 Bucharest (Romania); DiStefano, V. Ferrari [University of Rome La Sapienza, Department of Electronics, Rome (Italy)

    2007-07-31

    Growth and deposition of unwanted bacteria on implant metal alloys affect their use as biomedical samples. Monitoring any bacterial biofilm accumulation will provide early countermeasures. For a reliable antifouling strategy we prepared nitinol (NiTi) thin films on Ti-derived substrates by using a pulsed laser deposition (PLD) method. As the microstructure of Ti-alloy is dictated by the tensile strength, fatigue and the fracture toughness we tested the use of hydrogen as an alloying element. X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM) investigated the crystalline structure, chemical composition and respectively the surface morphology of the nitinol hydrogen and hydrogen-free samples. Moreover, the alloys were integrated and tested using a cellular metric and their responses were systematic evaluated and quantified. Our attractive approach is meant to select the suitable components for an effective and trustworthy anti-fouling strategy. A greater understanding of such processes should lead to novel and effective control methods that would improve in the future implant stability and capabilities.

  4. Monitorizing nitinol alloy surface reactions for biofouling studies

    Science.gov (United States)

    Dinu, C. Z.; Dinca, V. C.; Soare, S.; Moldovan, A.; Smarandache, D.; Scarisoareanu, N.; Barbalat, A.; Birjega, R.; Dinescu, M.; DiStefano, V. Ferrari

    2007-07-01

    Growth and deposition of unwanted bacteria on implant metal alloys affect their use as biomedical samples. Monitoring any bacterial biofilm accumulation will provide early countermeasures. For a reliable antifouling strategy we prepared nitinol (NiTi) thin films on Ti-derived substrates by using a pulsed laser deposition (PLD) method. As the microstructure of Ti-alloy is dictated by the tensile strength, fatigue and the fracture toughness we tested the use of hydrogen as an alloying element. X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM) investigated the crystalline structure, chemical composition and respectively the surface morphology of the nitinol hydrogen and hydrogen-free samples. Moreover, the alloys were integrated and tested using a cellular metric and their responses were systematic evaluated and quantified. Our attractive approach is meant to select the suitable components for an effective and trustworthy anti-fouling strategy. A greater understanding of such processes should lead to novel and effective control methods that would improve in the future implant stability and capabilities.

  5. Velocity model optimization for surface microseismic monitoring via amplitude stacking

    Science.gov (United States)

    Jiang, Haiyu; Wang, Zhongren; Zeng, Xiaoxian; Lü, Hao; Zhou, Xiaohua; Chen, Zubin

    2016-12-01

    A usable velocity model in microseismic projects plays a crucial role in achieving statistically reliable microseismic event locations. Existing methods for velocity model optimization rely mainly on picking arrival times at individual receivers. However, for microseismic monitoring with surface stations, seismograms of perforation shots have such low signal-to-noise ratios (S/N) that they do not yield sufficiently reliable picks. In this study, we develop a framework for constructing a 1-D flat-layered a priori velocity model using a non-linear optimization technique based on amplitude stacking. The energy focusing of the perforation shot is improved thanks to very fast simulated annealing (VFSA), and the accuracies of shot relocations are used to evaluate whether the resultant velocity model can be used for microseismic event location. Our method also includes a conventional migration-based location technique that utilizes successive grid subdivisions to improve computational efficiency and source location accuracy. Because unreasonable a priori velocity model information and interference due to additive noise are the major contributors to inaccuracies in perforation shot locations, we use velocity model optimization as a compensation scheme. Using synthetic tests, we show that accurate locations of perforation shots can be recovered to within 2 m, even with pre-stack S/N ratios as low as 0.1 at individual receivers. By applying the technique to a coal-bed gas reservoir in Western China, we demonstrate that perforation shot location can be recovered to within the tolerance of the well tip location.

  6. Breaking Symmetries

    Directory of Open Access Journals (Sweden)

    Kirstin Peters

    2010-11-01

    Full Text Available A well-known result by Palamidessi tells us that πmix (the π-calculus with mixed choice is more expressive than πsep (its subset with only separate choice. The proof of this result argues with their different expressive power concerning leader election in symmetric networks. Later on, Gorla offered an arguably simpler proof that, instead of leader election in symmetric networks, employed the reducibility of incestual processes (mixed choices that include both enabled senders and receivers for the same channel when running two copies in parallel. In both proofs, the role of breaking (initial symmetries is more or less apparent. In this paper, we shed more light on this role by re-proving the above result - based on a proper formalization of what it means to break symmetries without referring to another layer of the distinguishing problem domain of leader election. Both Palamidessi and Gorla rephrased their results by stating that there is no uniform and reasonable encoding from πmix into πsep. We indicate how the respective proofs can be adapted and exhibit the consequences of varying notions of uniformity and reasonableness. In each case, the ability to break initial symmetries turns out to be essential.

  7. Shape analysis with subspace symmetries

    KAUST Repository

    Berner, Alexander

    2011-04-01

    We address the problem of partial symmetry detection, i.e., the identification of building blocks a complex shape is composed of. Previous techniques identify parts that relate to each other by simple rigid mappings, similarity transforms, or, more recently, intrinsic isometries. Our approach generalizes the notion of partial symmetries to more general deformations. We introduce subspace symmetries whereby we characterize similarity by requiring the set of symmetric parts to form a low dimensional shape space. We present an algorithm to discover subspace symmetries based on detecting linearly correlated correspondences among graphs of invariant features. We evaluate our technique on various data sets. We show that for models with pronounced surface features, subspace symmetries can be found fully automatically. For complicated cases, a small amount of user input is used to resolve ambiguities. Our technique computes dense correspondences that can subsequently be used in various applications, such as model repair and denoising. © 2010 The Author(s).

  8. Correlation of centroid-based breast size, surface-based breast volume, and asymmetry-score-based breast symmetry in three-dimensional breast shape analysis

    Directory of Open Access Journals (Sweden)

    Henseler, Helga

    2016-06-01

    Full Text Available Objective: The aim of this study was to investigate correlations among the size, volume, and symmetry of the female breast after reconstruction based on previously published data. Methods: The centroid, namely the geometric center of a three-dimensional (3D breast-landmark-based configuration, was used to calculate the size of the breast. The surface data of the 3D breast images were used to measure the volume. Breast symmetry was assessed by the Procrustes analysis method, which is based on the 3D coordinates of the breast landmarks to produce an asymmetry score. The relationship among the three measurements was investigated. For this purpose, the data of 44 patients who underwent unilateral breast reconstruction with an extended latissimus dorsi flap were analyzed. The breast was captured by a validated 3D imaging system using multiple cameras. Four landmarks on each breast and two landmarks marking the midline were used.Results: There was a significant positive correlation between the centroid-based breast size of the unreconstructed breast and the measured asymmetry (p=0.024; correlation coefficient, 0.34. There was also a significant relationship between the surface-based breast volume of the unaffected side and the overall asymmetry score (p<0.001; correlation coefficient, 0.556. An increase in size and especially in volume of the unreconstructed breast correlated positively with an increase in breast asymmetry in a linear relationship.Conclusions: In breast shape analysis, the use of more detailed surface-based data should be preferred to centroid-based size data. As the breast size increases, the latissimus dorsi flap for unilateral breast reconstruction increasingly falls short in terms of matching the healthy breast in a linear relationship. Other reconstructive options should be considered for larger breasts. Generally plastic surgeons should view the two breasts as a single unit when assessing breast aesthetics and not view each

  9. Single-conductor co-planar quasi-symmetry unequal power divider based on spoof surface plasmon polaritons of bow-tie cells

    Directory of Open Access Journals (Sweden)

    Yongle Wu

    2016-10-01

    Full Text Available In this paper, the spoof surface plasmon polaritons (SSPPs transmission line (TL of periodical grooved bow-tie cells is proposed. The complex propagation constant and characteristic impedance of the SSPPs TLs and microstrip lines (MLs are extracted using the analytical method of generalized lossy TL theory. The properties of the SSPPs TLs with different substrates and the same geometrical configuration are experimented. Then, for comparison, two ML counterparts are also experimented, which shows that the SSPPs TL is less sensitive to the thickness, dielectric constant and loss tangent of the chosen substrate below the cutoff frequency, compared with the ML ones. The single-conductor co-planar quasi-symmetry unequal power divider based on this SSPPs TL is presented in microwave frequencies. For experimental validation, the 0-dB, 2-dB, and 5-dB power dividers are designed, fabricated, and measured. Both simulated and measured results verify that the unequal power divider is a flexible option, which offers massive advantages including single-conductor co-planar quasi-symmetry structures, wide-band operation, and convenient implementations of different power-dividing ratios. Hence, it can be expected that the proposed unequal power dividers will inspire further researches on SSPPs for future design of novel planar passive and active microwave components, circuits and systems.

  10. Single-conductor co-planar quasi-symmetry unequal power divider based on spoof surface plasmon polaritons of bow-tie cells

    Science.gov (United States)

    Wu, Yongle; Li, Mingxing; Yan, Guangyou; Deng, Li; Liu, Yuanan; Ghassemlooy, Zabih

    2016-10-01

    In this paper, the spoof surface plasmon polaritons (SSPPs) transmission line (TL) of periodical grooved bow-tie cells is proposed. The complex propagation constant and characteristic impedance of the SSPPs TLs and microstrip lines (MLs) are extracted using the analytical method of generalized lossy TL theory. The properties of the SSPPs TLs with different substrates and the same geometrical configuration are experimented. Then, for comparison, two ML counterparts are also experimented, which shows that the SSPPs TL is less sensitive to the thickness, dielectric constant and loss tangent of the chosen substrate below the cutoff frequency, compared with the ML ones. The single-conductor co-planar quasi-symmetry unequal power divider based on this SSPPs TL is presented in microwave frequencies. For experimental validation, the 0-dB, 2-dB, and 5-dB power dividers are designed, fabricated, and measured. Both simulated and measured results verify that the unequal power divider is a flexible option, which offers massive advantages including single-conductor co-planar quasi-symmetry structures, wide-band operation, and convenient implementations of different power-dividing ratios. Hence, it can be expected that the proposed unequal power dividers will inspire further researches on SSPPs for future design of novel planar passive and active microwave components, circuits and systems.

  11. Research on the surface subsidence monitoring technology based on fiber Bragg grating sensing

    Science.gov (United States)

    Wang, Jinyu; Jiang, Long; Sun, Zengrong; Hu, Binxin; Zhang, Faxiang; Song, Guangdong; Liu, Tongyu; Qi, Junfeng; Zhang, Longping

    2017-03-01

    In order to monitor the process of surface subsidence caused by mining in real time, we reported two types of fiber Bragg grating (FBG) based sensors. The principles of the FBG-based displacement sensor and the FBG-based micro-seismic sensor were described. The surface subsidence monitoring system based on the FBG sensing technology was designed. Some factual application of using these FBG-based sensors for subsidence monitoring in iron mines was presented.

  12. Breaking Symmetries

    CERN Document Server

    Peters, Kirstin

    2010-01-01

    A well-known result by Palamidessi tells us that {\\pi}mix (the {\\pi}-calculus with mixed choice) is more expressive than {\\pi}sep (its subset with only separate choice). The proof of this result argues with their different expressive power concerning leader election in symmetric networks. Later on, Gorla of- fered an arguably simpler proof that, instead of leader election in symmetric networks, employed the reducibility of "incestual" processes (mixed choices that include both enabled senders and receivers for the same channel) when running two copies in parallel. In both proofs, the role of breaking (ini- tial) symmetries is more or less apparent. In this paper, we shed more light on this role by re-proving the above result-based on a proper formalization of what it means to break symmetries-without referring to another layer of the distinguishing problem domain of leader election. Both Palamidessi and Gorla rephrased their results by stating that there is no uniform and reason- able encoding from {\\pi}mix i...

  13. Breaking Symmetries

    CERN Document Server

    Peters, Kirstin; 10.4204/EPTCS.41.10

    2010-01-01

    A well-known result by Palamidessi tells us that \\pimix (the \\pi-calculus with mixed choice) is more expressive than \\pisep (its subset with only separate choice). The proof of this result argues with their different expressive power concerning leader election in symmetric networks. Later on, Gorla offered an arguably simpler proof that, instead of leader election in symmetric networks, employed the reducibility of incestual processes (mixed choices that include both enabled senders and receivers for the same channel) when running two copies in parallel. In both proofs, the role of breaking (initial) symmetries is more or less apparent. In this paper, we shed more light on this role by re-proving the above result - based on a proper formalization of what it means to break symmetries without referring to another layer of the distinguishing problem domain of leader election. Both Palamidessi and Gorla rephrased their results by stating that there is no uniform and reasonable encoding from \\pimix into \\pisep. We...

  14. Noncontact Monitoring of Surface Temperature Distribution by Laser Ultrasound Scanning

    Science.gov (United States)

    Yamada, Hiroyuki; Kosugi, Akira; Ihara, Ikuo

    2011-07-01

    A laser ultrasound scanning method for measuring a surface temperature distribution of a heated material is presented. An experiment using an aluminum plate heated up to 120 °C is carried out to verify the feasibility of the proposed method. A series of one-dimensional surface acoustic wave (SAW) measurements within an area of a square on the aluminum surface are performed by scanning a pulsed laser for generating SAW using a galvanometer system, where the SAWs are detected at a fixed location on the surface. An inverse analysis is then applied to SAW data to determine the surface temperature distribution in a certain direction. The two-dimensional distribution of the surface temperature in the square is constructed by combining the one-dimensional surface temperature distributions obtained within the square. The surface temperature distributions obtained by the proposed method almost agrees with those obtained using an infrared radiation camera.

  15. Surface Monitoring Data for PM2.5 and Ozone

    Data.gov (United States)

    Washington University St Louis — AIRNOW is an EPA program in collaboration with the States to gather and distribute hourly near-realtime data from several hundred continuous PM2.5 and ozone monitors.

  16. Monitoring and improving the effectiveness of surface cleaning and disinfection.

    Science.gov (United States)

    Rutala, William A; Weber, David J

    2016-05-02

    Disinfection of noncritical environmental surfaces and equipment is an essential component of an infection prevention program. Noncritical environmental surfaces and noncritical medical equipment surfaces may become contaminated with infectious agents and may contribute to cross-transmission by acquisition of transient hand carriage by health care personnel. Disinfection should render surfaces and equipment free of pathogens in sufficient numbers to prevent human disease (ie, hygienically clean).

  17. Influence of Installing Error on the Surface Shape Precision of the Axial Symmetry Aspheric Workpiece in Lapping

    Institute of Scientific and Technical Information of China (English)

    SHANG Chun-min; ZHANG Dong-mei; YANG Jian-dong; ZHANG Xin-ming

    2006-01-01

    A method to calculate the surface shape error, which is caused by the installing error between the workpiece and the lapping tool in the process of form lapping, is proposed. The mathematical model which the installing translation error influences on the workpiece surface shape error is established. The changing rule of the error is simulated through the calculating example of the paraboloid workpiece. The results indicate that the surface shape error of the workpiece is increasing with the increase of the installing translation error, it is also increasing gradually along the center point of the curve surface to the edge, and the influence is severer to the curve surface with great curvature than that of the small curvature when the translation error is the same.

  18. Isospin asymmetry in nuclei and nuclear symmetry energy

    OpenAIRE

    Mukhopadhyay, Tapan; Basu, D. N.

    2006-01-01

    The volume and surface symmetry parts of the nuclear symmetry energy and other coefficients of the liquid droplet model are determined from the measured atomic masses by the maximum likelihood estimator. The volume symmetry energy coefficient extracted from finite nuclei provides a constraint on the nuclear symmetry energy. This approach also yields the neutron skin of a finite nucleus through its relationship with the volume and surface symmetry terms and the Coulomb energy coefficient. The ...

  19. Acoustic emission-based in-process monitoring of surface generation in robot-assisted polishing

    DEFF Research Database (Denmark)

    Pilny, Lukas; Bissacco, Giuliano; De Chiffre, Leonardo

    2016-01-01

    The applicability of acoustic emission (AE) measurements for in-process monitoring of surface generation in the robot-assisted polishing (RAP) was investigated. Surface roughness measurements require interruption of the process, proper surface cleaning and measurements that sometimes necessitate...... removal of the part from the machine tool. In this study, stabilisation of surface roughness during polishing rotational symmetric surfaces by the RAP process was monitored by AE measurements. An AE sensor was placed on a polishing arm in direct contact with a bonded abrasive polishing tool...

  20. Surface Acoustic Wave Monitor for Deposition and Analysis of Ultra-Thin Films

    Science.gov (United States)

    Hines, Jacqueline H. (Inventor)

    2015-01-01

    A surface acoustic wave (SAW) based thin film deposition monitor device and system for monitoring the deposition of ultra-thin films and nanomaterials and the analysis thereof is characterized by acoustic wave device embodiments that include differential delay line device designs, and which can optionally have integral reference devices fabricated on the same substrate as the sensing device, or on a separate device in thermal contact with the film monitoring/analysis device, in order to provide inherently temperature compensated measurements. These deposition monitor and analysis devices can include inherent temperature compensation, higher sensitivity to surface interactions than quartz crystal microbalance (QCM) devices, and the ability to operate at extreme temperatures.

  1. Evaluation of broadband surface solar irradiance derived from the Ozone Monitoring Instrument

    NARCIS (Netherlands)

    Wang, P.; Sneep, M.; Veefkind, J.P.; Stammes, P.; Levelt, P.F.

    2014-01-01

    Surface solar irradiance (SSI) data are important for planning and estimating the production of solar power plants. Long-term high quality surface solar radiation data are needed for monitoring climate change. This paper presents a new surface solar irradiance dataset, the broadband (0.2–4 μm) surfa

  2. Evaluation of broadband surface solar irradiance derived from the Ozone Monitoring Instrument

    NARCIS (Netherlands)

    Wang, P.; Sneep, M.; Veefkind, J.P.; Stammes, P.; Levelt, P.F.

    2014-01-01

    Surface solar irradiance (SSI) data are important for planning and estimating the production of solar power plants. Long-term high quality surface solar radiation data are needed for monitoring climate change. This paper presents a new surface solar irradiance dataset, the broadband (0.2–4 μm)

  3. Glass fibres reinforced polyester composites degradation monitoring by surface analysis

    Energy Technology Data Exchange (ETDEWEB)

    Croitoru, Catalin [“Transilvania” University of Brasov, Materials Engineering and Welding Department, Eroilor 29 Str., 500036 Brasov (Romania); Patachia, Silvia, E-mail: st.patachia@unitbv.ro [“Transilvania” University of Brasov, Product Design Environment and Mechatronics Department, Eroilor 29 Str., 500036 Brasov (Romania); Papancea, Adina [“Transilvania” University of Brasov, Product Design Environment and Mechatronics Department, Eroilor 29 Str., 500036 Brasov (Romania); Baltes, Liana; Tierean, Mircea [“Transilvania” University of Brasov, Materials Engineering and Welding Department, Eroilor 29 Str., 500036 Brasov (Romania)

    2015-12-15

    Highlights: • Glass fibre-reinforced polyester composites surface analysis by photographic method. • The composites are submitted to accelerated ageing by UV irradiation at 254 nm. • The UV irradiation promotes differences in the surface chemistry of the composites. • MB dye is differently adsorbed on surfaces with different degradation degrees. • Good correlation between the colouring degree and surface chemistry. - Abstract: The paper presents a novel method for quantification of the modifications that occur on the surface of different types of gel-coated glass fibre-reinforced polyester composites under artificial UV-ageing at 254 nm. The method implies the adsorption of an ionic dye, namely methylene blue, on the UV-aged composite, and computing the CIELab colour space parameters from the photographic image of the coloured composite's surface. The method significantly enhances the colour differences between the irradiated composites and the reference, in contrast with the non-coloured ones. The colour modifications that occur represent a good indicative of the surface degradation, alteration of surface hydrophily and roughness of the composite and are in good correlation with the ATR-FTIR spectroscopy and optical microscopy results. The proposed method is easier, faster and cheaper than the traditional ones.

  4. Mid-sagittal plane and mid-sagittal surface optimization in brain MRI using a local symmetry measure

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille; Skoglund, Karl; Ryberg, Charlotte

    2005-01-01

    This paper describes methods for automatic localization of the mid-sagittal plane (MSP) and mid-sagittal surface (MSS). The data used is a subset of the Leukoaraiosis And DISability (LADIS) study consisting of three-dimensional magnetic resonance brain data from 62 elderly subjects (age 66 to 84 ...

  5. Glass fibres reinforced polyester composites degradation monitoring by surface analysis

    Science.gov (United States)

    Croitoru, Catalin; Patachia, Silvia; Papancea, Adina; Baltes, Liana; Tierean, Mircea

    2015-12-01

    The paper presents a novel method for quantification of the modifications that occur on the surface of different types of gel-coated glass fibre-reinforced polyester composites under artificial UV-ageing at 254 nm. The method implies the adsorption of an ionic dye, namely methylene blue, on the UV-aged composite, and computing the CIELab colour space parameters from the photographic image of the coloured composite's surface. The method significantly enhances the colour differences between the irradiated composites and the reference, in contrast with the non-coloured ones. The colour modifications that occur represent a good indicative of the surface degradation, alteration of surface hydrophily and roughness of the composite and are in good correlation with the ATR-FTIR spectroscopy and optical microscopy results. The proposed method is easier, faster and cheaper than the traditional ones.

  6. Sub-Surface Oil Monitoring Cruise (GU1002, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Objectives were to evaluate ability of acoustic echosounder measurements to detect and localize a sub-surface plume of oil or related hydrocarbons released from the...

  7. CP and other Symmetries of Symmetries

    CERN Document Server

    Trautner, Andreas

    2016-01-01

    Outer automorphisms of symmetries ("symmetries of symmetries") in relativistic quantum field theories are studied, including charge conjugation (C), space-reflection (P) , and time-reversal (T) transformations. The group theory of outer automorphisms is pedagogically introduced and it is shown that CP transformations are special outer automorphisms of the global, local, and space-time symmetries of a theory. It is shown that certain discrete groups allow for a group theoretical prediction of parameter independent CP violating complex phases with fixed geometrical values. The remainder of this thesis pioneers the study of outer automorphisms which are not related to C, P, or T. It is shown how outer automorphisms, in general, relate symmetry invariants and, in theories with spontaneous symmetry breaking, imply relations between different vacuum expectation values. Thereby, outer automorphisms can give rise to emergent symmetries. An example model with a discrete symmetry and three copies of the Standard Model ...

  8. Monitoring of endocrine disrupting chemicals in surface water

    CSIR Research Space (South Africa)

    Govender, S

    2008-06-01

    Full Text Available the surface. The chelated Pluronic-DMDDO ligand can be used for affinity purification of histidine tagged proteins. A regeneration formulation based on anionic SDS detergent desorbed pluronic modified polymeric membranes and the possibility of re... ingredients, household products and industrial chemicals. Surface waters are the main sink of said EDCs. Accurate EDC detection is usually via time consuming and costly ex situ LC-MS and GC-MS analysis. An important class of biosensors include those...

  9. Some symmetries in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Henley, E.M.

    1981-09-01

    Internal and space-time symmetries are discussed in this group of lectures. The first of the lectures deals with an internal symmetry, or rather two related symmetries called charge independence and charge symmetry. The next two discuss space-time symmetries which also hold approximately, but are broken only by the weak forces; that is, these symmetries hold for both the hadronic and electromagnetic forces. (GHT)

  10. Symmetry and symmetry breaking in particle physics

    OpenAIRE

    Tsou, ST

    1998-01-01

    Symmetry, in particular gauge symmetry, is a fundamental principle in theoretical physics. It is intimately connected to the geometry of fibre bundles. A refinement to the gauge principle, known as ``spontaneous symmetry breaking'', leads to one of the most successful theories in modern particle physics. In this short talk, I shall try to give a taste of this beautiful and exciting concept.

  11. Georgia's Surface-Water Resources and Streamflow Monitoring Network, 2008

    Science.gov (United States)

    ,

    2008-01-01

    Surface water provides 5 billion gallons per day, or 78 percent, of the total freshwater used (including thermoelectric) in Georgia (Fanning, 2003). Climate, geology, and landforms control the natural distribution of Georgia's water resources. Georgia is a 'headwaters' State, with most of the rivers beginning in northern Georgia and increasing in size downstream (see map at right for major watersheds). Surface water is the primary source of water in the northern one-half of the State, including the Atlanta metropolitan area, where limited ground-water resources are difficult to obtain. In Georgia, periodic droughts exacerbate competition for surface-water supplies. Many areas of Georgia also face a threat of flooding because of spring frontal thunderstorms and the potential for hurricanes from both the Atlantic Ocean and Gulf of Mexico. As the population of Georgia increases, these flood risks will increase with development in flood-risk zones, particularly in the coastal region.

  12. Non-Higgsable abelian gauge symmetry and F-theory on fiber products of rational elliptic surfaces

    CERN Document Server

    Morrison, David R; Taylor, Washington

    2016-01-01

    We construct a general class of Calabi--Yau threefolds from fiber products of rational elliptic surfaces with section, generalizing a construction of Schoen to include all Kodaira fiber types. The resulting threefolds each have two elliptic fibrations with section over rational elliptic surfaces and blowups thereof. These elliptic fibrations generally have nonzero Mordell--Weil rank. Each of the elliptic fibrations has a physical interpretation in terms of a six-dimensional F-theory model with one or more non-Higgsable abelian gauge fields. Many of the models in this class have mild singularities that do not admit a Calabi--Yau resolution; this does not seem to compromise the physical integrity of the theory and can be associated in some cases with massless hypermultiplets localized at the singular loci. In some of these constructions, however, we find examples of abelian gauge fields that cannot be "unHiggsed" to a nonabelian gauge field without producing unphysical singularities that cannot be resolved. The...

  13. Assessment of disinfection of hospital surfaces using different monitoring methods.

    Science.gov (United States)

    Ferreira, Adriano Menis; de Andrade, Denise; Rigotti, Marcelo Alessandro; de Almeida, Margarete Teresa Gottardo; Guerra, Odanir Garcia; dos Santos Junior, Aires Garcia

    2015-01-01

    to assess the efficiency of cleaning/disinfection of surfaces of an Intensive Care Unit. descriptive-exploratory study with quantitative approach conducted over the course of four weeks. Visual inspection, bioluminescence adenosine triphosphate and microbiological indicators were used to indicate cleanliness/disinfection. Five surfaces (bed rails, bedside tables, infusion pumps, nurses' counter, and medical prescription table) were assessed before and after the use of rubbing alcohol at 70% (w/v), totaling 160 samples for each method. Non-parametric tests were used considering statistically significant differences at pdisinfection process, 87.5, 79.4 and 87.5% of the surfaces were considered clean using the visual inspection, bioluminescence adenosine triphosphate and microbiological analyses, respectively. A statistically significant decrease was observed in the disapproval rates after the cleaning process considering the three assessment methods; the visual inspection was the least reliable. the cleaning/disinfection method was efficient in reducing microbial load and organic matter of surfaces, however, these findings require further study to clarify aspects related to the efficiency of friction, its frequency, and whether or not there is association with other inputs to achieve improved results of the cleaning/disinfection process.

  14. Assessment of disinfection of hospital surfaces using different monitoring methods

    Directory of Open Access Journals (Sweden)

    Adriano Menis Ferreira

    2015-06-01

    Full Text Available OBJECTIVE: to assess the efficiency of cleaning/disinfection of surfaces of an Intensive Care Unit.METHOD: descriptive-exploratory study with quantitative approach conducted over the course of four weeks. Visual inspection, bioluminescence adenosine triphosphate and microbiological indicators were used to indicate cleanliness/disinfection. Five surfaces (bed rails, bedside tables, infusion pumps, nurses' counter, and medical prescription table were assessed before and after the use of rubbing alcohol at 70% (w/v, totaling 160 samples for each method. Non-parametric tests were used considering statistically significant differences at p<0.05.RESULTS: after the cleaning/disinfection process, 87.5, 79.4 and 87.5% of the surfaces were considered clean using the visual inspection, bioluminescence adenosine triphosphate and microbiological analyses, respectively. A statistically significant decrease was observed in the disapproval rates after the cleaning process considering the three assessment methods; the visual inspection was the least reliable.CONCLUSION: the cleaning/disinfection method was efficient in reducing microbial load and organic matter of surfaces, however, these findings require further study to clarify aspects related to the efficiency of friction, its frequency, and whether or not there is association with other inputs to achieve improved results of the cleaning/disinfection process.

  15. Hemispheric Symmetries of Plio-Pleistocene Surface Ocean Conditions: Insights from Southern Hemisphere ODP Sites 1125 and 1088

    Science.gov (United States)

    Lawrence, K. T.; Peterson, L.; Kelly, C.; Miller, H.; Seidenstein, J.

    2013-12-01

    For decades, most studies of Plio-Pleistocene climate and of the transition from the warmth of the Pliocene to the colder and more variable conditions of the Pleistocene have focused solely on northern hemisphere climate processes and responses. Here, we explore the southern hemisphere response to this major climate transition by documenting ocean surface conditions at Ocean Drilling Program Sites 1125 (42οS, 178οW, 1360m) and 1088 (40οS, 15οE, 2082m) through the Plio-Pleistocene. Secular trends in alkenone-derived sea surface temperature (SST) records indicate that these mid-latitude southern hemisphere sites cooled ~3-4οC over the past 3 Myrs, a magnitude comparable to sites located at similar latitudes in both the North Atlantic and North Pacific. This observation suggests that contraction of the low latitude warm pool was hemispherically symmetric. Our highly resolved (3 kyr resolution) Site 1125 SST record bears considerable structural similarity to SST records from nearby site 1123 (42οS,171οW) as well as sites 846 (3οS, 91οW) in the eastern equatorial Pacific and U1313 (41οN, 33οW) in the North Atlantic. Most of these SST records are dominated by 100k power and contain strong secondary 41k peaks throughout the past 3 million years. North Atlantic site U1313 is the exception, mirroring the shift in dominant periodicity from 41k to 100k associated with the mid-Pleistocene transition, that has long been observed in benthic oxygen isotope records. Finally, in southern hemisphere SST records as well as at site U1313 from the north Atlantic we observe weak precessional power that is not evident in benthic oxygen isotope record. These results suggest a fairly hemispherically-coordinated response of ocean surface temperature to changing global climate conditions during the Plio-Pleistocene in terms of both secular trends and dominant orbital frequencies.

  16. Soil Moisture Monitoring using Surface Electrical Resistivity measurements

    Science.gov (United States)

    Calamita, Giuseppe; Perrone, Angela; Brocca, Luca; Straface, Salvatore

    2017-04-01

    The relevant role played by the soil moisture (SM) for global and local natural processes results in an explicit interest for its spatial and temporal estimation in the vadose zone coming from different scientific areas - i.e. eco-hydrology, hydrogeology, atmospheric research, soil and plant sciences, etc... A deeper understanding of natural processes requires the collection of data on a higher number of points at increasingly higher spatial scales in order to validate hydrological numerical simulations. In order to take the best advantage of the Electrical Resistivity (ER) data with their non-invasive and cost-effective properties, sequential Gaussian geostatistical simulations (sGs) can be applied to monitor the SM distribution into the soil by means of a few SM measurements and a densely regular ER grid of monitoring. With this aim, co-located SM measurements using mobile TDR probes (MiniTrase), and ER measurements, obtained by using a four-electrode device coupled with a geo-resistivimeter (Syscal Junior), were collected during two surveys carried out on a 200 × 60 m2 area. Two time surveys were carried out during which Data were collected at a depth of around 20 cm for more than 800 points adopting a regular grid sampling scheme with steps (5 m) varying according to logistic and soil compaction constrains. The results of this study are robust due to the high number of measurements available for either variables which strengthen the confidence in the covariance function estimated. Moreover, the findings obtained using sGs show that it is possible to estimate soil moisture variations in the pedological zone by means of time-lapse electrical resistivity and a few SM measurements.

  17. A Wireless Monitoring System for Cracks on the Surface of Reactor Containment Buildings.

    Science.gov (United States)

    Zhou, Jianguo; Xu, Yaming; Zhang, Tao

    2016-06-14

    Structural health monitoring with wireless sensor networks has been increasingly popular in recent years because of the convenience. In this paper, a real-time monitoring system for cracks on the surface of reactor containment buildings is presented. Customized wireless sensor networks platforms are designed and implemented with sensors especially for crack monitoring, which include crackmeters and temperature detectors. Software protocols like route discovery, time synchronization and data transfer are developed to satisfy the requirements of the monitoring system and stay simple at the same time. Simulation tests have been made to evaluate the performance of the system before full scale deployment. The real-life deployment of the crack monitoring system is carried out on the surface of reactor containment building in Daya Bay Nuclear Power Station during the in-service pressure test with 30 wireless sensor nodes.

  18. Symmetry in chemistry

    CERN Document Server

    Jaffé, Hans H

    1977-01-01

    This book, devoted exclusively to symmetry in chemistry and developed in an essentially nonmathematical way, is a must for students and researchers. Topics include symmetry elements and operations, multiple symmetry operations, multiplication tables and point groups, group theory applications, and crystal symmetry. Extensive appendices provide useful tables.

  19. Lattice Regularization and Symmetries

    CERN Document Server

    Hasenfratz, Peter; Von Allmen, R; Allmen, Reto von; Hasenfratz, Peter; Niedermayer, Ferenc

    2006-01-01

    Finding the relation between the symmetry transformations in the continuum and on the lattice might be a nontrivial task as illustrated by the history of chiral symmetry. Lattice actions induced by a renormalization group procedure inherit all symmetries of the continuum theory. We give a general procedure which gives the corresponding symmetry transformations on the lattice.

  20. Deriving diffeomorphism symmetry

    CERN Document Server

    Kleppe, Astri

    2014-01-01

    In an earlier article, we have "derived" space, as a part of the Random Dynamics project. In order to get locality we need to obtain reparametrization symmetry, or equivalently, diffeomorphism symmetry. There we sketched a procedure for how to get locality by first obtaining reparametrization symmetry, or equivalently, diffeomorphism symmetry. This is the object of the present article.

  1. On-line monitoring of poly dimethylsiloxane surface modification using the photothermal deflection technique

    Energy Technology Data Exchange (ETDEWEB)

    Najmoddin, Najmeh, E-mail: najmoddin@iust.ac.ir; Khosroshahi, Mohammad E.

    2015-02-21

    Over the last decade, there has been particular interest in surface modification of biomaterials with regard to understanding the importance of surface characterization. This paper reports the use of photothermal deflection (PTD) technique to monitor modifications in poly dimethylsiloxane (PDMS) surface induced following laser treatments. The FTIR results are in agreement with PTD results, indicating that no structural changes occurred using Argon laser up to 180 s and 200 mW at 454, 488 and 514 nm wavelengths. However, with CO{sub 2} laser some physical and chemical changes occurred which are monitored by PTD technique and proved by SEM images.

  2. Monitoring the Surface Heat Island (shi) Effects of Industrial Enterprises

    Science.gov (United States)

    Şekertekin, A.; Kutoglu, Ş. H.; Kaya, S.; Marangoz, A. M.

    2016-06-01

    The aim of this study is to present the effects of industrial enterprises on Land Surface Temperature (LST) and to retrieve Surface Heat Island (SHI) maps of these regions. SHI is one of the types of Urban Heat Island (UHI) and as the urban areas grow in a city, UHI effect becomes bigger. The city centre of Zonguldak was chosen as study area and Landsat 5 satellite data were used as materials. Zonguldak has important industrial enterprises like thermal power plants and iron and steel plant. ERDEMIR is the biggest iron and steel plant in Turkey and it is one of the biggest ones in Europe, as well. There are three operating thermal power plants in the region namely CATES, ZETES1 and ZETES2. In order to investigate these industrial regions, Landsat 5 satellite data were processed using mono-window algorithm to retrieve LST and they were acquired on 11.09.1987, 18.09.2007 and 29.09.2011, respectively. The obtained results revealed that from 1987 to 2011, spatial and temporal variability in LST in industrial enterprises became higher than the surroundings. Besides, the sizes of SHIs in 2011 are bigger than the ones in 1987. For the countries and governments, having industrial enterprises is crucial for the development and it is also important to present the community better conditions in life. Thus, decision makers should consider mitigating the effects of these regions on LST.

  3. MONITORING THE SURFACE HEAT ISLAND (SHI EFFECTS OF INDUSTRIAL ENTERPRISES

    Directory of Open Access Journals (Sweden)

    A. Şekertekin

    2016-06-01

    Full Text Available The aim of this study is to present the effects of industrial enterprises on Land Surface Temperature (LST and to retrieve Surface Heat Island (SHI maps of these regions. SHI is one of the types of Urban Heat Island (UHI and as the urban areas grow in a city, UHI effect becomes bigger. The city centre of Zonguldak was chosen as study area and Landsat 5 satellite data were used as materials. Zonguldak has important industrial enterprises like thermal power plants and iron and steel plant. ERDEMIR is the biggest iron and steel plant in Turkey and it is one of the biggest ones in Europe, as well. There are three operating thermal power plants in the region namely CATES, ZETES1 and ZETES2. In order to investigate these industrial regions, Landsat 5 satellite data were processed using mono-window algorithm to retrieve LST and they were acquired on 11.09.1987, 18.09.2007 and 29.09.2011, respectively. The obtained results revealed that from 1987 to 2011, spatial and temporal variability in LST in industrial enterprises became higher than the surroundings. Besides, the sizes of SHIs in 2011 are bigger than the ones in 1987. For the countries and governments, having industrial enterprises is crucial for the development and it is also important to present the community better conditions in life. Thus, decision makers should consider mitigating the effects of these regions on LST.

  4. On-Line Life Monitoring Technique for Tube Bundles of Boiler High-Temperature Heating Surface

    Institute of Scientific and Technical Information of China (English)

    Yang Dong; Wang Zhongyuan

    2005-01-01

    High-temperature heating surface such as superheater and reheater of large-sized utility boiler all experiences a relatively severe working conditions. The failure of boiler tubes will directly impact the safe and economic operation of boiler. An on-line life monitoring model of high-temperature heating surface was set up according to the well-known L-M formula of the creep damages. The tube wall metal temperature and working stress was measured by on-line monitoring, and with this model, the real-time calculation of the life expenditure of the heating surface tube bundles were realized. Based on the technique the on-line life monitoring and management system of high-temperature heating surface was developed for a 300 MW utility boiler. An effective device was thus suggested for the implementation of the safe operation and the condition-based maintenance of utility boilers.

  5. Anomalous Mirror Symmetry Generated by Optical Illusion

    Directory of Open Access Journals (Sweden)

    Kokichi Sugihara

    2016-04-01

    Full Text Available This paper introduces a new concept of mirror symmetry, called “anomalous mirror symmetry”, which is physically impossible but can be perceived by human vision systems because of optical illusion. This symmetry is characterized geometrically and a method for creating cylindrical surfaces that create this symmetry is constructed. Examples of solid objects constructed by a 3D printer are also shown.

  6. Master Symmetry for Holographic Wilson Loops

    CERN Document Server

    Klose, Thomas; Munkler, Hagen

    2016-01-01

    We identify the symmetry underlying the recently observed spectral-parameter transformations of holographic Wilson loops alias minimal surfaces in AdS/CFT. The generator of this nonlocal symmetry is shown to furnish a raising operator on the classical Yangian-type charges of symmetric coset models. We explicitly demonstrate how this master symmetry acts on strong-coupling Wilson loops and indicate a possible extension to arbitrary coupling.

  7. Surface Investigation of Photo-Degraded Wood by Colour Monitoring, Infrared Spectroscopy, and Hyperspectral Imaging

    OpenAIRE

    Giorgia Agresti; Giuseppe Bonifazi; Luca Calienno; Giuseppe Capobianco; Angela Lo Monaco; Claudia Pelosi; Rodolfo Picchio; Silvia Serranti

    2013-01-01

    The aim of this investigation is to study the changes occurring on the surface of poplar wood exposed to artificial irradiation in a Solar Box. Colour changes were monitored with a reflectance spectrophotometer. Surface chemical modifications were evaluated by measuring the infrared spectra. Hyperspectral imaging was also applied to study the surface wood changes in the visible-near infrared and the short wave infrared wavelength ranges. The data obtained from the different techniques were co...

  8. Symmetries in Nuclei

    CERN Document Server

    Van Isacker, P

    2010-01-01

    The use of dynamical symmetries or spectrum generating algebras for the solution of the nuclear many-body problem is reviewed. General notions of symmetry and dynamical symmetry in quantum mechanics are introduced and illustrated with simple examples such as the SO(4) symmetry of the hydrogen atom and the isospin symmetry in nuclei. Two nuclear models, the shell model and the interacting boson model, are reviewed with particular emphasis on their use of group-theoretical techniques.

  9. SASS: a symmetry adapted stochastic search algorithm exploiting site symmetry.

    Science.gov (United States)

    Wheeler, Steven E; Schleyer, Paul V R; Schaefer, Henry F

    2007-03-14

    A simple symmetry adapted search algorithm (SASS) exploiting point group symmetry increases the efficiency of systematic explorations of complex quantum mechanical potential energy surfaces. In contrast to previously described stochastic approaches, which do not employ symmetry, candidate structures are generated within simple point groups, such as C2, Cs, and C2v. This facilitates efficient sampling of the 3N-6 Pople's dimensional configuration space and increases the speed and effectiveness of quantum chemical geometry optimizations. Pople's concept of framework groups [J. Am. Chem. Soc. 102, 4615 (1980)] is used to partition the configuration space into structures spanning all possible distributions of sets of symmetry equivalent atoms. This provides an efficient means of computing all structures of a given symmetry with minimum redundancy. This approach also is advantageous for generating initial structures for global optimizations via genetic algorithm and other stochastic global search techniques. Application of the SASS method is illustrated by locating 14 low-lying stationary points on the cc-pwCVDZ ROCCSD(T) potential energy surface of Li5H2. The global minimum structure is identified, along with many unique, nonintuitive, energetically favorable isomers.

  10. The symmetry of man.

    Science.gov (United States)

    Ermolenko, Alexander E; Perepada, Elena A

    2007-01-01

    The paper contains a description of basic regularities in the manifestation of symmetry of human structural organization and its ontogenetic and phylogenetic development. A concept of macrobiocrystalloid with inherent complex symmetry is proposed for the description of the human organism in its integrity. The symmetry can be characterized as two-plane radial (quadrilateral), where the planar symmetry is predominant while the layout of organs of radial symmetry is subordinated to it. Out of the two planes of symmetry (sagittal and horizontal), the sagittal plane is predominant. The symmetry of the chromosome, of the embrio at the early stages of cell cleavage as well as of some organs and systems in their phylogenetic development is described. An hypothesis is postulated that the two-plane symmetry is formed by two mechanisms: a) the impact of morphogenetic fields of the whole crystalloid organism during embriogenesis and, b) genetic mechanisms of the development of chromosomes having two-plane symmetry.

  11. Bioluminescence ATP Monitoring for the Routine Assessment of Food Contact Surface Cleanliness in a University Canteen

    OpenAIRE

    Andrea Osimani; Cristiana Garofalo; Francesca Clementi; Stefano Tavoletti; Lucia Aquilanti

    2014-01-01

    ATP bioluminescence monitoring and traditional microbiological analyses (viable counting of total mesophilic aerobes, coliforms and Escherichia coli) were used to evaluate the effectiveness of Sanitation Standard Operating Procedures (SSOP) at a university canteen which uses a HACCP-based approach. To that end, 10 cleaning control points (CPs), including food contact surfaces at risk of contamination from product residues or microbial growth, were analysed during an 8-month monitoring period....

  12. AirSWOT: An Airborne Platform for Surface Water Monitoring

    Science.gov (United States)

    Rodriguez, E.; Moller, D.; Smith, L. C.; Pavelsky, T. M.; Alsdorf, D. E.

    2010-12-01

    The SWOT mission, expected to launch in 2020, will provide global measurements of surface water extent and elevation from which storage change and discharge can be derived. SWOT-like measurements are not routinely used by the hydrology community, and their optimal use and associated errors are areas of active research. The purpose of AirSWOT, a system that has been proposed to NASA’s Instrument Incubator Program, is to provide SWOT-like measurements to the hydrology and ocean community to be used to advance the understanding and use of SWOT data in the pre-launch phase. In the post-launch phase, AirSWOT will be used as the SWOT calibration/validation platform. The AirSWOT payload will consist of Kaspar, a multi-beam Ka-band radar interferometer able to produce elevations over a 5 km swath with centimetric precision. The absolute elevation accuracy of the AirSWOT system will be achieved with a combination of high precision Inertial Motion Units (IMUs), ground calibration points, and advanced calibration techniques utilizing a priori knowledge. It is expected that the accuracy of AirSWOT will exceed or match SWOT’s accuracy requirements. In addition to elevation measurements, the AirSWOT payload will include a near-infrared camera able to provide coincident high-resolution optical imagery of the water bodies imaged by the radar. In its initial hydrology deployments, AirSWOT will investigate four field sites: the Ohio-Mississippi confluence, the lower Atchafalaya River on the Mississippi River Delta, the Yukon River basin near Fairbanks, and the Sacramento River, California. The Ohio-Mississippi confluence is targeted for its large discharge, modest slope, and control structures that modulate Ohio but not Mississippi River slopes and elevations. The lower Atchafalaya River includes low slopes, wetlands with differing vegetation types, and some open lakes. Vegetation includes Cyprus forests, floating macrophytes, and grass marshes, all of which impact radar returns

  13. Substance-related environmental monitoring strategies regarding soil, groundwater and surface water - an overview.

    Science.gov (United States)

    Kördel, Werner; Garelick, Hemda; Gawlik, Bernd M; Kandile, Nadia G; Peijnenburg, Willie J G M; Rüdel, Heinz

    2013-05-01

    Substance-related monitoring is an essential tool within environmental risk assessment processes. The soundness of policy decisions including risk management measures is often directly related to the reliability of the environmental monitoring programs. In addition, monitoring programs are required for identifying new and less-investigated pollutants of concern in different environmental media. Scientifically sound and feasible monitoring concepts strongly depend on the aim of the study. The proper definition of questions to be answered is thus of pivotal importance. Decisions on sample handling, storage and the analysis of the samples are important steps for the elaboration of problem-oriented monitoring strategies. The same applies to the selection of the sampling sites as being representative for scenarios to be investigated. These steps may become critical to handle for larger international monitoring programs and thus trigger the quality of their results. This study based on the work of an IUPAC (International Union of Pure and Applied Chemistry) task group addresses different kinds and approaches of substance-related monitoring of different compartments of soil, groundwater and surface water, and discusses their advantages and limitations. Further important aspects are the monitoring across policies and the monitoring data management using information systems.

  14. Surface Emissivity Retrieved with Satellite Ultraspectral IR Measurements for Monitoring Global Change

    Science.gov (United States)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Schluessel, Peter

    2009-01-01

    Surface and atmospheric thermodynamic parameters retrieved with advanced ultraspectral remote sensors aboard Earth observing satellites are critical to general atmospheric and Earth science research, climate monitoring, and weather prediction. Ultraspectral resolution infrared radiance obtained from nadir observations provide atmospheric, surface, and cloud information. Presented here is the global surface IR emissivity retrieved from Infrared Atmospheric Sounding Interferometer (IASI) measurements under "clear-sky" conditions. Fast radiative transfer models, applied to the cloud-free (or clouded) atmosphere, are used for atmospheric profile and surface parameter (or cloud parameter) retrieval. The inversion scheme, dealing with cloudy as well as cloud-free radiances observed with ultraspectral infrared sounders, has been developed to simultaneously retrieve atmospheric thermodynamic and surface (or cloud microphysical) parameters. Rapidly produced surface emissivity is initially evaluated through quality control checks on the retrievals of other impacted atmospheric and surface parameters. Surface emissivity and surface skin temperature from the current and future operational satellites can and will reveal critical information on the Earth s ecosystem and land surface type properties, which can be utilized as part of long-term monitoring for the Earth s environment and global climate change.

  15. Click chemistry based biomolecular conjugation monitoring using surface-enhanced Raman spectroscopy mapping

    DEFF Research Database (Denmark)

    Palla, Mirko; Kumar, Shiv; Li, Zengmin

    2016-01-01

    We describe here a novel surface-enhanced Raman spectroscopy (SERS) based technique for monitoring the conjugation of small molecules by the well-known click reaction between an alkyne and azido moiety on the partner molecules. The monitoring principle is based on the loss of the characteristic...... alkyne/azide Raman signal with triazole formation in the reaction as a function of time. Since these universal Raman reporter groups are specific for click reactions, this method may facilitate a broad range of applications for monitoring the conjugation efficiency of molecules in diverse areas...

  16. Second IRMF comparison of surface contamination monitor calibrations 2001-2002

    CERN Document Server

    Scott, C J

    2002-01-01

    The Ionising Radiations Metrology Forum (IRMF) organised a second comparison of surface contamination monitor calibrations in which twenty establishments in the UK participated. The exercise involved the circulation of three surface contamination monitors for calibration using large area reference sources available in the participants' laboratories. The instruments used were a Mini Instruments EP15, a Berthold LB122 and an Electra ratemeter with DP6AD probe. The instrument responses were calculated by the individual participants and submitted to the for analysis along with details of the reference sources used. Details of the estimated uncertainties were also reported. The results are compared and demonstrate generally satisfactory agreement between the participating establishments.

  17. Surface Water and Flood Extent Mapping, Monitoring, and Modeling Products and Services for the SERVIR Regions

    Science.gov (United States)

    Anderson, Eric

    2016-01-01

    SERVIR is a joint NASA - US Agency for International Development (USAID) project to improve environmental decision-making using Earth observations and geospatial technologies. A common need identified among SERVIR regions has been improved information for disaster risk reduction and in specific surface water and flood extent mapping, monitoring and forecasting. Of the 70 SERVIR products (active, complete, and in development), 4 are related to surface water and flood extent mapping, monitoring or forecasting. Visit http://www.servircatalog.net for more product details.

  18. Symmetries in Physics

    Science.gov (United States)

    Brading, Katherine; Castellani, Elena

    2010-01-01

    Preface; Copyright acknowledgements; List of contributors; 1. Introduction; Part I. Continuous Symmetries: 2. Classic texts: extracts from Weyl and Wigner; 3. Review paper: On the significance of continuous symmetry to the foundations of physics C. Martin; 4. The philosophical roots of the gauge principle: Weyl and transcendental phenomenological idealism T. Ryckman; 5. Symmetries and Noether's theorems K. A. Brading and H. R. Brown; 6. General covariance, gauge theories, and the Kretschmann objection J. Norton; 7. The interpretation of gauge symmetry M. Redhead; 8. Tracking down gauge: an ode to the constrained Hamiltonian formalism J. Earman; 9. Time-dependent symmetries: the link between gauge symmetries and indeterminism D. Wallace; 10. A fourth way to the Aharanov-Bohm effect A. Nounou; Part II. Discrete Symmetries: 11. Classic texts: extracts from Lebniz, Kant and Black; 12. Review paper: Understanding permutation symmetry S. French and D. Rickles; 13. Quarticles and the identity of discernibles N. Hugget; 14. Review paper: Handedness, parity violation, and the reality of space O. Pooley; 15. Mirror symmetry: what is it for a relational space to be orientable? N. Huggett; 16. Physics and Leibniz's principles S. Saunders; Part III. Symmetry Breaking: 17: Classic texts: extracts from Curie and Weyl; 18. Extract from G. Jona-Lasinio: Cross-fertilization in theoretical physics: the case of condensed matter and particle physics G. Jona-Lasinio; 19. Review paper: On the meaning of symmetry breaking E. Castellani; 20. Rough guide to spontaneous symmetry breaking J. Earman; 21. Spontaneous symmetry breaking: theoretical arguments and philosophical problems M. Morrison; Part IV. General Interpretative Issues: 22. Classic texts: extracts from Wigner; 23. Symmetry as a guide to superfluous theoretical structure J. Ismael and B. van Fraassen; 24. Notes on symmetries G. Belot; 25. Symmetry, objectivity, and design P. Kosso; 26. Symmetry and equivalence E. Castellani.

  19. Approximate flavor symmetries

    OpenAIRE

    Rašin, Andrija

    1994-01-01

    We discuss the idea of approximate flavor symmetries. Relations between approximate flavor symmetries and natural flavor conservation and democracy models is explored. Implications for neutrino physics are also discussed.

  20. The Symmetry Principle

    Directory of Open Access Journals (Sweden)

    Joe Rosen

    2005-12-01

    Full Text Available Abstract: The symmetry principle is described in this paper. The full details are given in the book: J. Rosen, Symmetry in Science: An Introduction to the General Theory (Springer-Verlag, New York, 1995.

  1. New and Emerging Technologies for Real-Time Air and Surface Beryllium Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Phifer, B.E. Jr.; Churnetski, E.L.; Cooke, L.E.; Reed, J.J.; Howell, M.L.; Smith, V.D.

    2001-09-01

    In this study, five emerging technologies were identified for real-time monitoring of airborne beryllium: Microwave-Induced Plasma Spectroscopy (MIPS), Aerosol Beam-Focused Laser-Induced Plasma Spectroscopy (ABFLIPS), Laser-Induced Breakdown Spectroscopy (LIBS), Surfaced-Enhanced Raman Scattering (SERS) Spectroscopy, and Micro-Calorimetric Spectroscopy (CalSpec). Desired features of real-time air beryllium monitoring instrumentation were developed from the Y-12 CBDPP. These features were used as guidelines for the identification of potential technologies as well as their unique demonstrated capability to provide real-time monitoring of similar materials. However, best available technologies were considered, regardless of their ability to comply with the desired features. None of the five technologies have the capability to measure the particle size of airborne beryllium. Although reducing the total concentration of airborne beryllium is important, current literature suggests that reducing or eliminating the concentration of respirable beryllium is critical for worker health protection. Eight emerging technologies were identified for surface monitoring of beryllium. CalSpec, MIPS, SERS, LIBS, Laser Ablation, Absorptive Stripping Voltametry (ASV), Modified Inductively Coupled Plasma (ICP) Spectroscopy, and Gamma BeAST. Desired features of real-time surface beryllium monitoring were developed from the Y-12 CBDPP. These features were used as guidelines for the identification of potential technologies. However, the best available technologies were considered regardless of their ability to comply with the desired features.

  2. Origin of family symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Nilles, Hans Peter [Bonn Univ. (Germany). Bethe Center for Theoretical Physics; Bonn Univ. (Germany). Physikalisches Inst.; Ratz, Michael [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-04-15

    Discrete (family) symmetries might play an important role in models of elementary particle physics. We discuss the origin of such symmetries in the framework of consistent ultraviolet completions of the standard model in field and string theory. The symmetries can arise due to special geometrical properties of extra compact dimensions and the localization of fields in this geometrical landscape. We also comment on anomaly constraints for discrete symmetries.

  3. Neutrinos and flavor symmetries

    Science.gov (United States)

    Tanimoto, Morimitsu

    2015-07-01

    We discuss the recent progress of flavor models with the non-Abelian discrete symmetry in the lepton sector focusing on the θ13 and CP violating phase. In both direct approach and indirect approach of the flavor symmetry, the non-vanishing θ13 is predictable. The flavor symmetry with the generalised CP symmetry can also predicts the CP violating phase. We show the phenomenological analyses of neutrino mixing for the typical flavor models.

  4. Neutrinos and flavor symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Tanimoto, Morimitsu

    2015-07-15

    We discuss the recent progress of flavor models with the non-Abelian discrete symmetry in the lepton sector focusing on the θ{sub 13} and CP violating phase. In both direct approach and indirect approach of the flavor symmetry, the non-vanishing θ{sub 13} is predictable. The flavor symmetry with the generalised CP symmetry can also predicts the CP violating phase. We show the phenomenological analyses of neutrino mixing for the typical flavor models.

  5. IMPROVING CYANOBACTERIA AND CYANOTOXIN MONITORING IN SURFACE WATERS FOR DRINKING WATER SUPPLY

    Directory of Open Access Journals (Sweden)

    Jing Li

    2017-06-01

    Full Text Available Cyanobacteria in fresh water can cause serious threats to drinking water supplies. Managing cyanobacterial blooms particularly at small drinking water treatment plants is challenging. Because large amount of cyanobacteria may cause clogging in the treatment process and various cyanotoxins are hard to remove, while they may cause severe health problems. There is lack of instructions of what cyanobacteria/toxin amount should trigger what kind of actions for drinking water management except for Microcystins. This demands a Cyanobacteria Management Tool (CMT to help regulators/operators to improve cyanobacteria/cyanotoxin monitoring in surface waters for drinking water supply. This project proposes a CMT tool, including selecting proper indicators for quick cyanobacteria monitoring and verifying quick analysis methods for cyanobacteria and cyanotoxin. This tool is suggested for raw water management regarding cyanobacteria monitoring in lakes, especially in boreal forest climate. In addition, it applies to regions that apply international WHO standards for water management. In Swedish context, drinking water producers which use raw water from lakes that experience cyanobacterial blooms, need to create a monitoring routine for cyanobacteria/cyanotoxin and to monitor beyond such as Anatoxins, Cylindrospermopsins and Saxitoxins. Using the proposed CMT tool will increase water safety at surface water treatment plants substantially by introducing three alerting points for actions. CMT design for each local condition should integrate adaptive monitoring program.

  6. Immobilization and surface functionalization of gold nanoparticles monitored via streaming current/potential measurements.

    Science.gov (United States)

    Greben, Kyrylo; Li, Pinggui; Mayer, Dirk; Offenhäusser, Andreas; Wördenweber, Roger

    2015-05-14

    A streaming current/potential method is optimized and used for the analysis of the variation of the surface potential upon chemical modifications of a complex interface consisting of different organic molecules and gold nanoparticles (AuNPs). The surfaces of Si/SiO2 substrates modified with 3-aminopropyltriethoxysilane (APTES), AuNPs, and 11-amino-1-undecanethiol (aminothiols) are analyzed via pH and time dependent ζ potential measurements that reveal the stability and modification of the surface and identify crucial parameters for each individual preparation step. For instance, surface activation and especially molecular adsorbate layers tend not to be stable in time, whereas the substrate and the AuNPs provide a stable surface potential as long as impurities are avoided. It is shown that the streaming potential/current technique represents an ideal tool to analyze and monitor the complex surfaces and their modification.

  7. Polynomial Graphs and Symmetry

    Science.gov (United States)

    Goehle, Geoff; Kobayashi, Mitsuo

    2013-01-01

    Most quadratic functions are not even, but every parabola has symmetry with respect to some vertical line. Similarly, every cubic has rotational symmetry with respect to some point, though most cubics are not odd. We show that every polynomial has at most one point of symmetry and give conditions under which the polynomial has rotational or…

  8. Polynomial Graphs and Symmetry

    Science.gov (United States)

    Goehle, Geoff; Kobayashi, Mitsuo

    2013-01-01

    Most quadratic functions are not even, but every parabola has symmetry with respect to some vertical line. Similarly, every cubic has rotational symmetry with respect to some point, though most cubics are not odd. We show that every polynomial has at most one point of symmetry and give conditions under which the polynomial has rotational or…

  9. Integrated optoelectronic probe including a vertical cavity surface emitting laser for laser Doppler perfusion monitoring

    NARCIS (Netherlands)

    Serov, Alexander N.; Nieland, Janharm; Oosterbaan, Sjoerd; Mul, de Frits F.M.; Kranenburg, van Herma; Bekman, Herman H.P.Th.; Steenbergen, Wiendelt

    2006-01-01

    An integrated optoelectronic probe with small dimensions, for direct-contact laser Doppler blood flow monitoring has been realized. A vertical cavity surface emitting laser (VCSEL), and a chip with photodetectors and all necessary electronics are integrated in a miniature probe head connected to a l

  10. Integrated Optoelectronic Probe Including a Vertical Cavity Surface Emitting Laser for Laser Doppler Perfusion Monitoring

    NARCIS (Netherlands)

    Serov, A.N.; Nieland, J.; Oosterbaan, S.; Steenbergen, W.; Bekman, H.H.P.T.; Mul, F.F.M. de; Kranenburg, H. van

    2006-01-01

    An integrated optoelectronic probe with small dimensions, for direct-contact laser Doppler blood flow monitoring has been realized. A vertical cavity surface emitting laser (VCSEL), and a chip with photodetectors and all necessary electronics are integrated in a miniature probe head connected to a l

  11. Monitoring surface water quality using social media in the context of citizen science

    Science.gov (United States)

    Zheng, Hang; Hong, Yang; Long, Di; Jing, Hua

    2017-02-01

    Surface water quality monitoring (SWQM) provides essential information for water environmental protection. However, SWQM is costly and limited in terms of equipment and sites. The global popularity of social media and intelligent mobile devices with GPS and photography functions allows citizens to monitor surface water quality. This study aims to propose a method for SWQM using social media platforms. Specifically, a WeChat-based application platform is built to collect water quality reports from volunteers, which have been proven valuable for water quality monitoring. The methods for data screening and volunteer recruitment are discussed based on the collected reports. The proposed methods provide a framework for collecting water quality data from citizens and offer a primary foundation for big data analysis in future research.

  12. Chiral symmetry and chiral-symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E.

    1982-12-01

    These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed. (WHK)

  13. In situ monitoring of internal surface temperature of the historic building envelope

    Science.gov (United States)

    Labovská, Veronika; Katunský, Dušan

    2016-06-01

    Historical building envelope is characterized by a large accumulation that impact is mainly by changing the inner surface temperature over time. The minimum value of the inner surface temperature is set Code requirements. In the case of thermal technology assessment of building envelope contemplates a steady state external temperature and internal environment, thereby neglecting the heat accumulation capacity of building envelopes. Monitoring surface temperature in real terms in situ shows the real behavior of the building envelope close to reality. The recorded data can be used to create a numerical model for the simulation.

  14. W-symmetry

    CERN Document Server

    Bouwknegt, P G

    1995-01-01

    W-symmetry is an extension of conformal symmetry in two dimensions. Since its introduction in 1985, W-symmetry has become one of the central notions in the study of two-dimensional conformal field theory. The mathematical structures that underlie W-symmetry are so-called W-algebras, which are higher-spin extensions of the Virasoro algebra. This book contains a collection of papers on W-symmetry, covering the period from 1985 through 1993. Its main focus is the construction of W-algebras and their representation theory. A recurrent theme is the intimate connection between W-algebras and affine

  15. Atmospheric tracer monitoring and surface plume development at the ZERT pilot test in Bozeman, Montana, USA

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Arthur [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Strazisar, Brian [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Rodney Diehl, J. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Veloski, Garret [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2010-03-01

    A controlled release of CO2 was conducted at a field site in Bozeman, Montana, USA in July of 2008 in a multi-laboratory study of near surface transport and detection technologies. The development of a subsurface CO2 plume near the middle packer section of the horizontal release was studied using soil-gas and surface flux measurements of CO2. A perfluorocarbon tracer was added to the CO2 released from this section of the horizontal well, and the development of atmospheric plumes of the tracer was studied under various meteorological conditions using horizontal and vertical grids of monitors containing sorbent material to collect the tracer. This study demonstrated the feasibility of using remote sensing for the ultra low level detection of atmospheric plumes of tracers as means to monitor the near surface leakage of sequestered CO2.

  16. Noncontact monitoring of surface-wave nonlinearity for predicting the remaining life of fatigued steels

    Science.gov (United States)

    Ogi, Hirotsugu; Hirao, Masahiko; Aoki, Shinji

    2001-07-01

    A nonlinear acoustic measurement is studied for fatigue damage monitoring. An electromagnetic acoustic transducer (EMAT) magnetostrictively couples to a surface-shear-wave resonance along the circumference of a rod specimen during rotating bending fatigue of carbon steels. Excitation of the EMAT at half of the resonance frequency caused the standing wave to contain only the second-harmonic component, which was received by the same EMAT to determine the second-harmonic amplitude. Thus measured surface-wave nonlinearity always showed two distinct peaks at 60% and 85% of the total life. We attribute the earlier peak to crack nucleation and growth, and the later peak to an increase of free dislocations associated with crack extension in the final stage. This noncontact resonance-EMAT measurement can monitor the evolution of the surface-shear-wave nonlinearity throughout the metal's fatigue life and detect the pertinent precursors of the eventual failure.

  17. Optical monitoring of surface processes relevant to thin film growth by chemical vapour deposition Oxidation; Surface degradation

    CERN Document Server

    Simcock, M N

    2002-01-01

    This thesis reports on the investigation of the use of reflectance anisotropy spectroscopy (RAS) as an in-situ monitor for the preparation and oxidation of GaAs(100) c(4x4) surfaces using a CVD 2000 MOCVD reactor. These surfaces were oxidised using air. It was found that it was possible to follow surface degradation using RA transients at 2.6eV and 4eV. From this data it was possible to speculate on the nature of the surface oxidation process. A study was performed into the rate of surface degradation under different concentrations of air, it was found that the relation between the air concentration and the surface degradation was complicated but that the behaviour of the first third of the degradation approximated a first order behaviour. An estimation of the activation energy of the process was then made, and an assessment of the potential use of the glove-box for STM studies which is an integral part of the MOCVD equipment was also made. Following this, a description is given of the construction of an inte...

  18. Probing the density content of the nuclear symmetry energy

    Indian Academy of Sciences (India)

    B K Agrawal; J N De; S K Samaddar

    2014-05-01

    The nature of equation of state for the neutron star matter is crucially governed by the density dependence of the nuclear symmetry energy. We attempt to probe the behaviour of the nuclear symmetry energy around the saturation density by exploiting the empirical values for volume and surface symmetry energy coefficients extracted from the precise data on the nuclear masses.

  19. T-TY Tank Farm Interim Surface Barrier Demonstration - Vadose Zone Monitoring FY10 Report

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Strickland, Christopher E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Field, Jim G. [Washington River Protection Solutions, Inc., Richland, WA (United States); Parker, Danny L. [Washington River Protection Solutions, Inc., Richland, WA (United States)

    2011-01-01

    The U.S. Department of Energy’s Office of River Protection has constructed interim surface barriers over a portion of the T and TY tank farms as part of the Interim Surface Barrier Demonstration Project. The interim surface barriers (hereafter referred to as the surface barriers or barriers) are designed to minimize the infiltration of precipitation into the soil zones containing radioactive contaminants and minimize the movement of the contaminants. As part of the demonstration effort, vadose zone moisture is being monitored to assess the effectiveness of the barriers at reducing soil moisture. Solar-powered systems were installed to continuously monitor soil water conditions at four locations in the T (i.e., instrument Nests TA, TB, TC, and TD) and the TY (i.e., instrument Nests TYA and TYB) Farms beneath the barriers and outside the barrier footprint as well as site meteorological conditions. Nests TA and TYA are placed in the area outside the barrier footprint and serve as controls, providing subsurface conditions outside the influence of the surface barriers. Nest TB provides subsurface measurements to assess surface-barrier edge effects. Nests TC, TD, and TYB are used to assess changes in soil-moisture conditions beneath the interim surface barriers.

  20. Reactivity mapping with electrochemical gradients for monitoring reactivity at surfaces in space and time.

    Science.gov (United States)

    Krabbenborg, Sven O; Nicosia, Carlo; Chen, Pengkun; Huskens, Jurriaan

    2013-01-01

    Studying and controlling reactions at surfaces is of great fundamental and applied interest in, among others, biology, electronics and catalysis. Because reaction kinetics is different at surfaces compared with solution, frequently, solution-characterization techniques cannot be used. Here we report solution gradients, prepared by electrochemical means, for controlling and monitoring reactivity at surfaces in space and time. As a proof of principle, electrochemically derived gradients of a reaction parameter (pH) and of a catalyst (Cu(I)) have been employed to make surface gradients on the micron scale and to study the kinetics of the (surface-confined) imine hydrolysis and the copper(I)-catalysed azide-alkyne 1,3-dipolar cycloaddition, respectively. For both systems, the kinetic data were spatially visualized in a two-dimensional reactivity map. In the case of the copper(I)-catalysed azide-alkyne 1,3-dipolar cycloaddition, the reaction order (2) was deduced from it.

  1. Africa-Wide Monitoring of Small Surface Water Bodies Using Multisource Satellite Data: A Monitoring System for FEWS NET

    Science.gov (United States)

    Velpuri, N. M.; Senay, G. B.; Rowland, J.; Budde, M. E.; Verdin, J. P.

    2015-12-01

    Continental Africa has the largest volume of water stored in wetlands, large lakes, reservoirs and rivers, yet it suffers with problems such as water availability and access. Furthermore, African countries are amongst the most vulnerable to the impact of natural hazards such as droughts and floods. With climate change intensifying the hydrologic cycle and altering the distribution and frequency of rainfall, the problem of water availability and access is bound to increase. The U.S Geological Survey Famine Early Warning Systems Network (FEWS NET), funded by the U.S. Agency for International Development, has initiated a large-scale project to monitor small to medium surface water bodies in Africa. Under this project, multi-source satellite data and hydrologic modeling techniques are integrated to monitor these water bodies in Africa. First, small water bodies are mapped using satellite data such as Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Landsat, and high resolution Google Earth imagery. Stream networks and watersheds for each water body are identified using Shuttle Radar Topography Mission (SRTM) digital elevation data. Finally, a hydrologic modeling approach that uses satellite-derived precipitation estimates and evapotranspiration data calculated from global data assimilation system climate parameters is applied to model water levels. This approach has been implemented to monitor nearly 300 small water bodies located in 10 countries in sub-Saharan Africa. Validation of modeled scaled depths with field-installed gauge data in East Africa demonstrated the ability of the model to capture both the spatial patterns and seasonal variations. Modeled scaled estimates captured up to 60% of the observed gauge variability with an average RMSE of 22%. Current and historic data (since 2001) on relative water level, precipitation, and evapotranspiration for each water body is made available in near real time. The water point monitoring network

  2. Comparison of surface contamination monitors for in vivo measurement of 131I in the thyroid

    Science.gov (United States)

    Oliveira, S. M.; Dantas, A. L. A.; Dantas, B. M.

    2016-07-01

    The routine handling of radiopharmaceuticals in nuclear medicine represents a significant risk of internal exposure to the staff. The IAEA recommends the implementation of monitoring plans for all workers subject to a risk of exposures above 1 mSv per year. However, in Brazil, such recommendation is practically unfeasible due to the lack of a sufficient number of qualified internal dosimetry services over the country. This work presents an alternative based on a simple and inexpensive methodology aimed to perform in vivo monitoring of 131I in the thyroid using portable surface contamination probes. Results show that all models evaluated in this work present enough sensitivity for the evaluation of accidental intakes.

  3. Raman and surface-enhanced Raman spectroscopy for renal condition monitoring

    Science.gov (United States)

    Li, Jingting; Li, Ming; Du, Yong; Santos, Greggy M.; Mohan, Chandra; Shih, Wei-Chuan

    2016-03-01

    Non- and minimally-invasive techniques can provide advantages in the monitoring and clinical diagnostics in renal diseases. Although renal biopsy may be useful in establishing diagnosis in several diseases, it is an invasive approach and impractical for longitudinal disease monitoring. To address this unmet need, we have developed two techniques based on Raman spectroscopy. First, we have investigated the potential of diagnosing and staging nephritis by analyzing kidney tissue Raman spectra using multivariate techniques. Secondly, we have developed a urine creatinine sensor based on surface-enhanced Raman spectroscopy with performance near commercial assays which require relatively laborious sample preparation and longer time.

  4. Comparison of surface contamination monitors for in vivo measurement of {sup 131}I in thyroid

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, S.M.; Dantas, A.L.A.; Dantas, B.M., E-mail: salomao.marques@ymail.com [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    The routine handling of radiopharmaceuticals in nuclear medicine represents a significant risk of internal exposure to the staff. The IAEA recommends the implementation of monitoring plans for all workers subject to a risk of exposures above 1 mSv per year. However, in Brazil, such recommendation is practically unfeasible due to the lack of a sufficient number of qualified internal dosimetry services over the country. This work presents an alternative based on a simple and inexpensive methodology aimed to perform in-vivo monitoring of {sup 131}I in thyroid using portable surface contamination probes. All models evaluated showed suitable sensitivity for such application. (author)

  5. Optical surface scanning for respiratory motion monitoring in radiotherapy: a feasibility study

    DEFF Research Database (Denmark)

    Bekke, Susanne Lise; Mahmood, Faisal; Helt-Hansen, Jakob

    2014-01-01

    Purpose. We evaluated the feasibility of a surface scanning system (Catalyst) for respiratory motion monitoring of breast cancer patients treated with radiotherapy in deep inspiration breath-hold (DIBH). DIBH is used to reduce the radiation dose to the heart and lung. In contrast to RPM, a compet......Purpose. We evaluated the feasibility of a surface scanning system (Catalyst) for respiratory motion monitoring of breast cancer patients treated with radiotherapy in deep inspiration breath-hold (DIBH). DIBH is used to reduce the radiation dose to the heart and lung. In contrast to RPM...... and 3: the Quasar phantom was used to study if the angle of the monitored surface affects the amplitude of the recorded signal. Results. Experiment 1: we observed comparable period estimates for both systems. The amplitudes were 8 ± 0.1 mm (Catalyst) and 4.9 ± 0.1 mm (RPM). Independent check with in...... 1. Experiment 3: an increased (fixed) surface angle during breathing motion resulted in an overestimated amplitude with RPM, while the amplitude estimated by Catalyst was unaffected. Conclusion. Our study showed that Catalyst can be used as a better alternative to the RPM. With Catalyst...

  6. Bioluminescence ATP Monitoring for the Routine Assessment of Food Contact Surface Cleanliness in a University Canteen

    Directory of Open Access Journals (Sweden)

    Andrea Osimani

    2014-10-01

    Full Text Available ATP bioluminescence monitoring and traditional microbiological analyses (viable counting of total mesophilic aerobes, coliforms and Escherichia coli were used to evaluate the effectiveness of Sanitation Standard Operating Procedures (SSOP at a university canteen which uses a HACCP-based approach. To that end, 10 cleaning control points (CPs, including food contact surfaces at risk of contamination from product residues or microbial growth, were analysed during an 8-month monitoring period. Arbitrary acceptability limits were set for both microbial loads and ATP bioluminescence readings. A highly significant correlation (r = 0.99 between the means of ATP bioluminescence readings and the viable counts of total mesophilic aerobes was seen, thus revealing a strong association of these parameters with the level of surface contamination. Among CPs, the raw meat and multi-purpose chopping boards showed the highest criticalities. Although ATP bioluminescence technology cannot substitute traditional microbiological analyses for the determination of microbial load on food contact surfaces, it has proved to be a powerful tool for the real time monitoring of surface cleanliness at mass catering plants, for verify the correct application of SSOP, and hence for their implementation/revision in the case of poor hygiene.

  7. Bioluminescence ATP monitoring for the routine assessment of food contact surface cleanliness in a university canteen.

    Science.gov (United States)

    Osimani, Andrea; Garofalo, Cristiana; Clementi, Francesca; Tavoletti, Stefano; Aquilanti, Lucia

    2014-10-17

    ATP bioluminescence monitoring and traditional microbiological analyses (viable counting of total mesophilic aerobes, coliforms and Escherichia coli) were used to evaluate the effectiveness of Sanitation Standard Operating Procedures (SSOP) at a university canteen which uses a HACCP-based approach. To that end, 10 cleaning control points (CPs), including food contact surfaces at risk of contamination from product residues or microbial growth, were analysed during an 8-month monitoring period. Arbitrary acceptability limits were set for both microbial loads and ATP bioluminescence readings. A highly significant correlation (r = 0.99) between the means of ATP bioluminescence readings and the viable counts of total mesophilic aerobes was seen, thus revealing a strong association of these parameters with the level of surface contamination. Among CPs, the raw meat and multi-purpose chopping boards showed the highest criticalities. Although ATP bioluminescence technology cannot substitute traditional microbiological analyses for the determination of microbial load on food contact surfaces, it has proved to be a powerful tool for the real time monitoring of surface cleanliness at mass catering plants, for verify the correct application of SSOP, and hence for their implementation/revision in the case of poor hygiene.

  8. InSAR Monitoring of Surface Deformation in Alberta's Oil Sands

    Science.gov (United States)

    Pearse, J.; Singhroy, V.; Li, J.; Samsonov, S. V.; Shipman, T.; Froese, C. R.

    2013-05-01

    Alberta's oil sands are among the world's largest deposits of crude oil, and more than 80% of it is too deep to mine, so unconventional in-situ methods are used for extraction. Most in situ extraction techniques, such as Steam-Assisted Gravity Drainage (SAGD), use steam injection to reduce the viscosity of the bitumen, allowing it to flow into wells to be pumped to the surface. As part of the oil sands safety and environmental monitoring program, the energy regulator uses satellite radar to monitor surface deformation associated with in-situ oil extraction. The dense vegetation and sparse infrastructure in the boreal forest of northern Alberta make InSAR monitoring a challenge; however, we have found that surface heave associated with steam injection can be detected using traditional differential InSAR. Infrastructure and installed corner reflectors also allow us to use persistent scatterer methods to obtain time histories of deformation at individual sites. We have collected and processed several tracks of RADARSAT-2 data over a broad area of the oil sands, and have detected surface deformation signals of approximately 2-3 cm per year, with time series that correlate strongly with monthly SAGD steam injection volumes.

  9. Symmetry in Image Registration and Deformation Modeling

    DEFF Research Database (Denmark)

    Sommer, Stefan; Jacobs, Henry O.

    We survey the role of symmetry in diffeomorphic registration of landmarks, curves, surfaces, images and higher-order data. The infinite dimensional problem of finding correspondences between objects can for a range of concrete data types be reduced resulting in compact representations of shape...... and spatial structure. This reduction is possible because the available data is incomplete in encoding the full deformation model. Using reduction by symmetry, we describe the reduced models in a common theoretical framework that draws on links between the registration problem and geometric mechanics....... Symmetry also arises in reduction to the Lie algebra using particle relabeling symmetry allowing the equations of motion to be written purely in terms of Eulerian velocity field. Reduction by symmetry has recently been applied for jet-matching and higher-order discrete approximations of the image matching...

  10. Near-surface monitoring for the ZERT shallow CO2 injection project

    Energy Technology Data Exchange (ETDEWEB)

    Strazisar, Brian R. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Wells, Arthur W. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Diehl, J. Rodney [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Hammack, Richard W. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Veloski, Garret A. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2009-12-01

    As part of a collaborative effort operated by the Zero Emission Research and Technology Center (ZERT), a series of two shallow releases of CO2 Was performed at a test site in Bozeman, MT. The purpose of the experiment was to simulate possible leakage scenarios from a carbon capture and storage operation in order to further develop and verify monitoring technologies used to characterize and quantify the release of CO2. The project included collaboration with several research groups and organizations. Presented here are the results of soil-gas monitoring conducted by researchers from the National Energy Technology Laboratory, including CO2 flux measurement, soil-gas analysis, perfluorocarbon tracer monitoring, and soil resistivity measurements. Together, these methods proved to be effective in detecting and characterizing leakage in the near-surface.

  11. Monitoring of temperature profiles and surface morphologies during laser sintering of alumina ceramics

    Directory of Open Access Journals (Sweden)

    Bin Qian

    2014-06-01

    Full Text Available Additive manufacturing of alumina by laser is a delicate process and small changes of processing parameters might cause less controlled and understood consequences. The real-time monitoring of temperature profiles, spectrum profiles and surface morphologies were evaluated in off-axial set-up for controlling the laser sintering of alumina ceramics. The real-time spectrometer and pyrometer were used for rapid monitoring of the thermal stability during the laser sintering process. An active illumination imaging system successfully recorded the high temperature melt pool and surrounding area simultaneously. The captured images also showed how the defects form and progress during the laser sintering process. All of these real-time monitoring methods have shown a great potential for on-line quality control during laser sintering of ceramics.

  12. ON THE NOETHER SYMMETRY AND LIE SYMMETRY OF MECHANICAL SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    梅凤翔; 郑改华

    2002-01-01

    The Noether symmetry is an invariance of Hamilton action under infinitesimal transformations of time and the coordinates. The Lie symmetry is an invariance of the differential equations of motion under the transformations. In this paper, the relation between these two symmetries is proved definitely and firstly for mechanical systems. The results indicate that all the Noether symmetries are Lie symmetries for Lagrangian systems meanwhile a Noether symmetry is a Lie symmetry for the general holonomic or nonholonomic systems provided that some conditions hold.

  13. A method for monitoring enamel erosion using laser irradiated surfaces and optical coherence tomography.

    Science.gov (United States)

    Chan, Kenneth H; Tom, Henry; Darling, Cynthia L; Fried, Daniel

    2014-11-01

    Since optical coherence tomography (OCT) is well suited for measuring small dimensional changes on tooth surfaces, OCT has great potential for monitoring tooth erosion. Previous studies have shown that enamel areas ablated by a carbon dioxide laser manifested lower rates of erosion compared to the non-ablated areas. The purpose of this study was to develop a model to monitor erosion in vitro that could potentially be used in vivo. Thirteen bovine enamel blocks were used in this in vitro study. Each 10 mm × 2 mm block was partitioned into five regions, the central region was unprotected, the adjacent windows were irradiated by a CO2 laser operating at 9.3 µm with a fluence of 2.4 J/cm(2) , and the outermost windows were coated with acid resistant varnish. The samples were exposed to a pH cycling regimen that caused both erosion and subsurface demineralization for 2, 4 and 6 days. The surfaces were scanned using a time-domain polarization sensitive optical coherence tomography (PS-OCT) system and the degree of surface loss (erosion) and the integrated reflectivity with lesion depth was calculated for each window. There was a large and significant reduction in the depth of surface loss (erosion) and the severity of demineralization in the areas irradiated by the laser. Irradiation of the enamel surface with a pulsed carbon dioxide laser at sub-ablative intensities results in significant inhibition of erosion and demineralization under the acid challenge employed in this study. In addition, these results suggest that it may be feasible to modify regions of the enamel surface using the laser to serve as reference marks to monitor the rate of erosion in vivo. © 2014 Wiley Periodicals, Inc.

  14. Evaluation of various observing systems for the global monitoring of CO2 surface fluxes

    Directory of Open Access Journals (Sweden)

    A. Klonecki

    2010-08-01

    Full Text Available In the context of raising greenhouse gas concentrations, and the potential feedbacks between climate and the carbon cycle, there is an urgent need to monitor the exchanges of carbon between the atmosphere and both the ocean and the land surfaces. In the so-called top-down approach, the surface fluxes of CO2 are inverted from the observed spatial and temporal concentration gradients. The concentrations of CO2 are measured in-situ at a number of surface stations unevenly distributed over the Earth while several satellite missions may be used to provide a dense and better-distributed set of observations to complement this network. In this paper, we compare the ability of different CO2 concentration observing systems to constrain surface fluxes. The various systems are based on realistic scenarios of sampling and precision for satellite and in-situ measurements. It is shown that satellite measurements based on the differential absorption technique (such as those of SCIAMACHY, GOSAT or OCO provide more information than the thermal infrared observations (such as those of AIRS or IASI. The OCO observations will provide significantly better information than those of GOSAT. A CO2 monitoring mission based on an active (lidar technique could potentially provide an even better constraint. This constraint can also be realized with the very dense surface network that could be built with the same funding as that of the active satellite mission. Despite the large uncertainty reductions on the surface fluxes that may be expected from these various observing systems, these reductions are still insufficient to reach the highly demanding requirements for the monitoring of anthropogenic emissions of CO2 or the oceanic fluxes at a spatial scale smaller than that of oceanic basins. The scientific objective of these observing system should therefore focus on the fluxes linked to vegetation and land ecosystem dynamics.

  15. Monitoring of chemical and physical characteristics of stone surfaces by a portable spectroradiometer

    Science.gov (United States)

    Camaiti, Mara; Benvenuti, Marco; Costagliola, Pilar; Di Benedetto, Francesco; Del Ventisette, Chiara; Garfagnoli, Francesca; Lombardi, Luca; Moretti, Sandro; Pecchioni, Elena; Vettori, Silvia

    2013-04-01

    A portable radiometer (ASD-FieldSpec FP Pro spectroradiometer), which continuously and rapidly acquires punctual reflectance spectra in the 350-2500 nm spectral range, has been recently proposed as non-destructive and non-invasive technology for detecting gypsum and other materials (inorganic as well as organic) on surfaces of historical buildings [1,2,3]. The instrument, which is also capable to quantitatively assess physical changes of the surfaces (i. e. color changes), has the potentialities to be used for monitoring the state of conservation of stone surfaces through the monitoring of the relative abundance of some components considered precursor symptoms of decay. The increase of gypsum or the decrease of the relative abundance of organic materials used as protective materials allows, in fact, to control and detect the chemical attack of carbonate surfaces, as well as the efficacy and durability of protective treatments. Although the relative abundance of any compound is theoretically related to the signal intensities of its spectral signature, a quantitative analysis is often compromised by some factors such as the grain dimension of crystals [2 4]. However the monitoring of critical areas may give useful information on the progression of decay provided that the same areas are investigated. The spectroradiometer can operate both in natural light conditions and by a contact probe with fixed illumination and geometry of shot; in this study the second condition was preferred since the same operative conditions can be maintained for all the measurements during the monitoring. Aim of this work was to find an easy to use and accurate system for repositioning the spectroradiometer probe in the same small areas of interest during the long-term monitoring. Two systems (theodolite and distance measuring laser) have been tested and their accuracy has been evaluated on some Florentine historical buildings (Cathedral of Santa Maria del Fiore and Basilica of San Miniato

  16. Development of a molecularly imprinted polymer based surface plasmon resonance sensor for theophylline monitoring

    Science.gov (United States)

    Zheng, Rui; Cameron, Brent D.

    2011-03-01

    Molecularly imprinted polymer (MIP) thin films and surface plasmon resonance (SPR) sensing technologies were combined to develop a novel sensing platform for monitoring real-time theophylline concentration, which is a compound of interest in environmental monitoring and a molecular probe for phenotyping certain cytochrome P450 enzymes. The MIPs hydrogel is easy to synthesize and provides shape-selective recognition with high affinity to specific target molecules. Different polymerization formulas were tested and optimized. The influence of the monomer sensitive factors were addressed by SPR. SPR is an evanescent wave optics based sensing technique that is suitable for real-time and label free sensing purposes. Gold nanorods (Au NRs) were uniformly immobilized onto a SPR sensing surface for the construction of a fiber optics based prism-free localized SPR (LSPR) measurement. This technique can be also applied to assess the activities of other small organic molecules by adjusting the polymerization formula, thus, this approach also has many other potential applications.

  17. Detection of biomolecules and bioconjugates by monitoring rotated grating-coupled surface plasmon resonance

    CERN Document Server

    Szalai, Aniko; Somogyi, Aniko; Szenes, Andras; Banhelyi, Balazs; Csapo, Edit; Dekany, Imre; Csendes, Tibor; Csete, Maria

    2016-01-01

    Plasmonic biosensing chips were prepared by fabricating wavelength-scaled dielectric-metal interfacial gratings on thin polycarbonate films covered bimetal layers via two-beam interference laser lithography. Lysozyme (LYZ) biomolecules and gold nanoparticle (AuNP-LYZ) bioconjugates with 1:5 mass ratio were seeded onto the biochip surfaces. Surface plasmon resonance spectroscopy was performed before and after biomolecule seeding in a modified Kretschmann-arrangement by varying the azimuthal and polar angles to optimize the conditions for rotated grating-coupling. The shift of secondary and primary resonance peaks originating from rotated grating-coupling phenomenon was monitored to detect the biomolecule and bioconjugate adherence. Numerical calculations were performed to reproduce the measured reflectance spectra and the resonance peak shifts caused by different biocoverings. Comparison of measurements and calculations proved that monitoring the narrower secondary peaks under optimal rotated-grating coupling ...

  18. Accuracy evaluation of the optical surface monitoring system on EDGE linear accelerator in a phantom study.

    Science.gov (United States)

    Mancosu, Pietro; Fogliata, Antonella; Stravato, Antonella; Tomatis, Stefano; Cozzi, Luca; Scorsetti, Marta

    2016-01-01

    Frameless stereotactic radiosurgery (SRS) requires dedicated systems to monitor the patient position during the treatment to avoid target underdosage due to involuntary shift. The optical surface monitoring system (OSMS) is here evaluated in a phantom-based study. The new EDGE linear accelerator from Varian (Varian, Palo Alto, CA) integrates, for cranial lesions, the common cone beam computed tomography (CBCT) and kV-MV portal images to the optical surface monitoring system (OSMS), a device able to detect real-time patient׳s face movements in all 6 couch axes (vertical, longitudinal, lateral, rotation along the vertical axis, pitch, and roll). We have evaluated the OSMS imaging capability in checking the phantoms׳ position and monitoring its motion. With this aim, a home-made cranial phantom was developed to evaluate the OSMS accuracy in 4 different experiments: (1) comparison with CBCT in isocenter location, (2) capability to recognize predefined shifts up to 2° or 3cm, (3) evaluation at different couch angles, (4) ability to properly reconstruct the surface when the linac gantry visually block one of the cameras. The OSMS system showed, with a phantom, to be accurate for positioning in respect to the CBCT imaging system with differences of 0.6 ± 0.3mm for linear vector displacement, with a maximum rotational inaccuracy of 0.3°. OSMS presented an accuracy of 0.3mm for displacement up to 1cm and 1°, and 0.5mm for larger displacements. Different couch angles (45° and 90°) induced a mean vector uncertainty < 0.4mm. Coverage of 1 camera produced an uncertainty < 0.5mm. Translations and rotations of a phantom can be accurately detect with the optical surface detector system.

  19. Accuracy evaluation of the optical surface monitoring system on EDGE linear accelerator in a phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Mancosu, Pietro; Fogliata, Antonella, E-mail: Antonella.Fogliata@humanitas.it; Stravato, Antonella; Tomatis, Stefano; Cozzi, Luca; Scorsetti, Marta

    2016-07-01

    Frameless stereotactic radiosurgery (SRS) requires dedicated systems to monitor the patient position during the treatment to avoid target underdosage due to involuntary shift. The optical surface monitoring system (OSMS) is here evaluated in a phantom-based study. The new EDGE linear accelerator from Varian (Varian, Palo Alto, CA) integrates, for cranial lesions, the common cone beam computed tomography (CBCT) and kV-MV portal images to the optical surface monitoring system (OSMS), a device able to detect real-time patient's face movements in all 6 couch axes (vertical, longitudinal, lateral, rotation along the vertical axis, pitch, and roll). We have evaluated the OSMS imaging capability in checking the phantoms' position and monitoring its motion. With this aim, a home-made cranial phantom was developed to evaluate the OSMS accuracy in 4 different experiments: (1) comparison with CBCT in isocenter location, (2) capability to recognize predefined shifts up to 2° or 3 cm, (3) evaluation at different couch angles, (4) ability to properly reconstruct the surface when the linac gantry visually block one of the cameras. The OSMS system showed, with a phantom, to be accurate for positioning in respect to the CBCT imaging system with differences of 0.6 ± 0.3 mm for linear vector displacement, with a maximum rotational inaccuracy of 0.3°. OSMS presented an accuracy of 0.3 mm for displacement up to 1 cm and 1°, and 0.5 mm for larger displacements. Different couch angles (45° and 90°) induced a mean vector uncertainty < 0.4 mm. Coverage of 1 camera produced an uncertainty < 0.5 mm. Translations and rotations of a phantom can be accurately detect with the optical surface detector system.

  20. From physical symmetries to emergent gauge symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Barceló, Carlos [Instituto de Astrofísica de Andalucía (IAA-CSIC),Glorieta de la Astronomía, 18008 Granada (Spain); Carballo-Rubio, Raúl [Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía, 18008 Granada (Spain); Laboratory for Quantum Gravity & Strings,Department of Mathematics & Applied Mathematics, University of Cape Town,Private Bag, Rondebosch 7701 (South Africa); Di Filippo, Francesco [Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía, 18008 Granada (Spain); Dipartamento di Scienze Fisiche “E.R. Caianiello”, Università di Salerno,I-84081 Fisciano (Italy); Garay, Luis J. [Departamento de Física Teórica II, Universidad Complutense de Madrid, 28040 Madrid (Spain); Instituto de Estructura de la Materia (IEM-CSIC), Serrano 121, 28006 Madrid (Spain)

    2016-10-17

    Gauge symmetries indicate redundancies in the description of the relevant degrees of freedom of a given field theory and restrict the nature of observable quantities. One of the problems faced by emergent theories of relativistic fields is to understand how gauge symmetries can show up in systems that contain no trace of these symmetries at a more fundamental level. In this paper we start a systematic study aimed to establish a satisfactory mathematical and physical picture of this issue, dealing first with abelian field theories. We discuss how the trivialization, due to the decoupling and lack of excitation of some degrees of freedom, of the Noether currents associated with physical symmetries leads to emergent gauge symmetries in specific situations. An example of a relativistic field theory of a vector field is worked out in detail in order to make explicit how this mechanism works and to clarify the physics behind it. The interplay of these ideas with well-known results of importance to the emergent gravity program, such as the Weinberg-Witten theorem, are discussed.

  1. From physical symmetries to emergent gauge symmetries

    Science.gov (United States)

    Barceló, Carlos; Carballo-Rubio, Raúl; Di Filippo, Francesco; Garay, Luis J.

    2016-10-01

    Gauge symmetries indicate redundancies in the description of the relevant degrees of freedom of a given field theory and restrict the nature of observable quantities. One of the problems faced by emergent theories of relativistic fields is to understand how gauge symmetries can show up in systems that contain no trace of these symmetries at a more fundamental level. In this paper we start a systematic study aimed to establish a satisfactory mathematical and physical picture of this issue, dealing first with abelian field theories. We discuss how the trivialization, due to the decoupling and lack of excitation of some degrees of freedom, of the Noether currents associated with physical symmetries leads to emergent gauge symmetries in specific situations. An example of a relativistic field theory of a vector field is worked out in detail in order to make explicit how this mechanism works and to clarify the physics behind it. The interplay of these ideas with well-known results of importance to the emergent gravity program, such as the Weinberg-Witten theorem, are discussed.

  2. From physical symmetries to emergent gauge symmetries

    CERN Document Server

    Barceló, Carlos; Di Filippo, Francesco; Garay, Luis J

    2016-01-01

    Gauge symmetries indicate redundancies in the description of the relevant degrees of freedom of a given field theory and restrict the nature of observable quantities. One of the problems faced by emergent theories of relativistic fields is to understand how gauge symmetries can show up in systems that contain no trace of these symmetries at a more fundamental level. In this paper we start a systematic study aimed to establish a satisfactory mathematical and physical picture of this issue, dealing first with abelian field theories. We discuss how the trivialization, due to the decoupling and lack of excitation of some degrees of freedom, of the Noether currents associated with physical symmetries leads to emergent gauge symmetries in specific situations. An example of a relativistic field theory of a vector field is worked out in detail in order to make explicit how this mechanism works and to clarify the physics behind it. The interplay of these ideas with well-known results of importance to the emergent grav...

  3. Quantitative Analysis of Face Symmetry.

    Science.gov (United States)

    Tamir, Abraham

    2015-06-01

    The major objective of this article was to report quantitatively the degree of human face symmetry for reported images taken from the Internet. From the original image of a certain person that appears in the center of each triplet, 2 symmetric combinations were constructed that are based on the left part of the image and its mirror image (left-left) and on the right part of the image and its mirror image (right-right). By applying a computer software that enables to determine length, surface area, and perimeter of any geometric shape, the following measurements were obtained for each triplet: face perimeter and area; distance between the pupils; mouth length; its perimeter and area; nose length and face length, usually below the ears; as well as the area and perimeter of the pupils. Then, for each of the above measurements, the value C, which characterizes the degree of symmetry of the real image with respect to the combinations right-right and left-left, was calculated. C appears on the right-hand side below each image. A high value of C indicates a low symmetry, and as the value is decreasing, the symmetry is increasing. The magnitude on the left relates to the pupils and compares the difference between the area and perimeter of the 2 pupils. The major conclusion arrived at here is that the human face is asymmetric to some degree; the degree of asymmetry is reported quantitatively under each portrait.

  4. Evaluating Dense 3d Reconstruction Software Packages for Oblique Monitoring of Crop Canopy Surface

    Science.gov (United States)

    Brocks, S.; Bareth, G.

    2016-06-01

    Crop Surface Models (CSMs) are 2.5D raster surfaces representing absolute plant canopy height. Using multiple CMSs generated from data acquired at multiple time steps, a crop surface monitoring is enabled. This makes it possible to monitor crop growth over time and can be used for monitoring in-field crop growth variability which is useful in the context of high-throughput phenotyping. This study aims to evaluate several software packages for dense 3D reconstruction from multiple overlapping RGB images on field and plot-scale. A summer barley field experiment located at the Campus Klein-Altendorf of University of Bonn was observed by acquiring stereo images from an oblique angle using consumer-grade smart cameras. Two such cameras were mounted at an elevation of 10 m and acquired images for a period of two months during the growing period of 2014. The field experiment consisted of nine barley cultivars that were cultivated in multiple repetitions and nitrogen treatments. Manual plant height measurements were carried out at four dates during the observation period. The software packages Agisoft PhotoScan, VisualSfM with CMVS/PMVS2 and SURE are investigated. The point clouds are georeferenced through a set of ground control points. Where adequate results are reached, a statistical analysis is performed.

  5. Optimization leads to symmetry

    Institute of Scientific and Technical Information of China (English)

    Chenghong WANG; Yuqian GUO; Daizhan CHENG

    2004-01-01

    The science of complexity studies the behavior and properties of complex systems in nature and human society.Particular interest has been put on their certain simple common properties.Symmetry is one of such properties.Symmetric phenomena can be found in many complex systems.The purpose of this paper is to reveal the internal reason of the symmetry.Using some physical systems and geometric objects,the paper shows that many symmetries are caused by optimization under certain criteria.It has also been revealed that an evolutional process may lead to symmetry.

  6. Approximate and renormgroup symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Ibragimov, Nail H. [Blekinge Institute of Technology, Karlskrona (Sweden). Dept. of Mathematics Science; Kovalev, Vladimir F. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Mathematical Modeling

    2009-07-01

    ''Approximate and Renormgroup Symmetries'' deals with approximate transformation groups, symmetries of integro-differential equations and renormgroup symmetries. It includes a concise and self-contained introduction to basic concepts and methods of Lie group analysis, and provides an easy-to-follow introduction to the theory of approximate transformation groups and symmetries of integro-differential equations. The book is designed for specialists in nonlinear physics - mathematicians and non-mathematicians - interested in methods of applied group analysis for investigating nonlinear problems in physical science and engineering. (orig.)

  7. Symmetries in atmospheric sciences

    CERN Document Server

    Bihlo, Alexander

    2009-01-01

    Selected applications of symmetry methods in the atmospheric sciences are reviewed briefly. In particular, focus is put on the utilisation of the classical Lie symmetry approach to derive classes of exact solutions from atmospheric models. This is illustrated with the barotropic vorticity equation. Moreover, the possibility for construction of partially-invariant solutions is discussed for this model. A further point is a discussion of using symmetries for relating different classes of differential equations. This is illustrated with the spherical and the potential vorticity equation. Finally, discrete symmetries are used to derive the minimal finite-mode version of the vorticity equation first discussed by E. Lorenz (1960) in a sound mathematical fashion.

  8. Geomechanics for interpreting SAGD monitoring using micro-seismicity and surface tiltmeters

    Energy Technology Data Exchange (ETDEWEB)

    De Pater, H.; De Koning, J.; Maxwell, S. [Pinnacle Technologies, Calgary, AB (Canada); Walters, D. [Taurus Reservoir Solutions Ltd., Calgary, AB (Canada)

    2008-10-15

    This paper described a procedures for history matching surface movements resulting from the warm-up phases of a steam assisted gravity drainage (SAGD) project in Saskatchewan. Surface movements were measured using tilt meters that covered the area influenced by the steam injection processes. A thermal reservoir model was then coupled to a geo-mechanical model in order to calculate the surface movements. Surface heave was computed by matching a minimum curvature surface to the tilt vectors. Surface heave data were extracted in order to facilitate comparisons between observed and simulated heave. Injection constraints were defined from measured injection rates in order to match pressure histories. The study showed that the coupled model accurately interpreted monitoring data. Seismic signatures indicated strike slip and potential overthrust fault slippage or casing failures. Uplift was largest at the heel of the well. Results were explained by reservoir heterogeneities. Surface heave was accurately measured using the tiltmeters. Micro-seismic data were used to constrain failure mechanisms and provide information needed to identify conformance and potential cap rock breaches. It was concluded that the model can be used effectively to optimize injection conformance and recovery. 10 refs., 4 tabs., 28 figs.

  9. Nuclear symmetry energy and neutron skin thickness

    CERN Document Server

    Warda, M; Viñas, X; Roca-Maza, X

    2012-01-01

    The relation between the slope of the nuclear symmetry energy at saturation density and the neutron skin thickness is investigated. Constraints on the slope of the symmetry energy are deduced from the neutron skin data obtained in experiments with antiprotonic atoms. Two types of neutron skin are distinguished: the "surface" and the "bulk". A combination of both types forms neutron skin in most of nuclei. A prescription to calculate neutron skin thickness and the slope of symmetry energy parameter $L$ from the parity violating asymmetry measured in the PREX experiment is proposed.

  10. A Portable Surface Contamination Monitor Based on the Principle of Optically Stimulated Electron Emission (OSEE)

    Science.gov (United States)

    Perey, D. F.

    1996-01-01

    Many industrial and aerospace processes involving the joining of materials, require sufficient surface cleanliness to insure proper bonding. Processes as diverse as painting, welding, or the soldering of electronic circuits will be compromised if prior inspection and removal of surface contaminants is inadequate. As process requirements become more stringent and the number of different materials and identified contaminants increases, various instruments and techniques have been developed for improved inspection. One such technique, based on the principle of Optically Stimulated Electron Emission (OSEE), has been explored for a number of years as a tool for surface contamination monitoring. Some of the benefits of OSEE are: it is non-contacting; requires little operator training; and has very high contamination sensitivity. This paper describes the development of a portable OSEE based surface contamination monitor. The instrument is suitable for both hand-held and robotic inspections with either manual or automated control of instrument operation. In addition, instrument output data is visually displayed to the operator and may be sent to an external computer for archiving or analysis.

  11. Symmetry and Interculturality

    Science.gov (United States)

    Marchis, Iuliana

    2009-01-01

    Symmetry is one of the fundamental concepts in Geometry. It is a Mathematical concept, which can be very well connected with Art and Ethnography. The aim of the article is to show how to link the geometrical concept symmetry with interculturality. For this mosaics from different countries are used.

  12. Symmetry Festival 2016

    CERN Document Server

    2016-01-01

    The Symmetry Festival is a science and art program series, the most important periodic event (see its history) to bring together scientists, artists, educators and practitioners interested in symmetry (its roots, what is behind, applications, etc.), or in the consequences of its absence.

  13. Symmetries in Optimal Control

    NARCIS (Netherlands)

    Schaft, A.J. van der

    1987-01-01

    It is argued that the existence of symmetries may simplify, as in classical mechanics, the solution of optimal control problems. A procedure for obtaining symmetries for the optimal Hamiltonian resulting from the Maximum Principle is given; this avoids the actual calculation of the optimal

  14. Surface Water Quality Monitoring Site Optimization for Poyang Lake, the Largest Freshwater Lake in China

    Directory of Open Access Journals (Sweden)

    Hua Wang

    2014-11-01

    Full Text Available In this paper, we propose a coupled method to optimize the surface water quality monitoring sites for a huge freshwater lake based on field investigations, mathematical analysis, and numerical simulation tests. Poyang Lake, the largest freshwater lake in China, was selected as the research area. Based on the field investigated water quality data in the 5 years from 2008 to 2012, the water quality inter-annual variation coefficients at all the present sites and the water quality correlation coefficients between adjacent sites were calculated and analyzed to present an optimization scheme. A 2-D unsteady water quality model was established to get the corresponding water quality data at the optimized monitoring sites, which were needed for the rationality test on the optimized monitoring network. We found that: (1 the water quality of Piaoshan (No. 10 fluctuated most distinguishably and the inter-annual variation coefficient of NH3-N and TP could reach 99.77% and 73.92%, respectively. The four studied indexes were all closely related at Piaoshan (No. 10 and Tangyin (No. 11, and the correlation coefficients of COD and NH3-N could reach 0.91 and 0.94 separately. (2 It was suggested that the present site No. 10 be removed to avoid repeatability, and it was suggested that the three sites of Changling, Huzhong, and Nanjiang be added to improve the representativeness of the monitoring sites. (3 According to the rationality analysis, the 21 optimized water quality monitoring sites could scientifically replace the primary network, and the new monitoring network could better reflect the water quality of the whole lake.

  15. Rational design of surface/interface chemistry for quantitative in vivo monitoring of brain chemistry.

    Science.gov (United States)

    Zhang, Meining; Yu, Ping; Mao, Lanqun

    2012-04-17

    To understand the molecular basis of brain functions, researchers would like to be able to quantitatively monitor the levels of neurochemicals in the extracellular fluid in vivo. However, the chemical and physiological complexity of the central nervous system (CNS) presents challenges for the development of these analytical methods. This Account describes the rational design and careful construction of electrodes and nanoparticles with specific surface/interface chemistry for quantitative in vivo monitoring of brain chemistry. We used the redox nature of neurochemicals at the electrode/electrolyte interface to establish a basis for monitoring specific neurochemicals. Carbon nanotubes provide an electrode/electrolyte interface for the selective oxidation of ascorbate, and we have developed both in vivo voltammetry and an online electrochemical detecting system for continuously monitoring this molecule in the CNS. Although Ca(2+) and Mg(2+) are involved in a number of neurochemical signaling processes, they are still difficult to detect in the CNS. These divalent cations can enhance electrocatalytic oxidation of NADH at an electrode modified with toluidine blue O. We used this property to develop online electrochemical detection systems for simultaneous measurements of Ca(2+) and Mg(2+) and for continuous selective monitoring of Mg(2+) in the CNS. We have also harnessed biological schemes for neurosensing in the brain to design other monitoring systems. By taking advantage of the distinct reaction properties of dopamine (DA), we have developed a nonoxidative mechanism for DA sensing and a system that can potentially be used for continuously sensing of DA release. Using "artificial peroxidase" (Prussian blue) to replace a natural peroxidase (horseradish peroxidase, HRP), our online system can simultaneously detect basal levels of glucose and lactate. By substituting oxidases with dehydrogenases, we have used enzyme-based biosensing schemes to develop a physiologically

  16. The use of frequency and wavelet analysis for monitoring surface quality of wood machining applications.

    Science.gov (United States)

    Lemaster, Richard L

    2010-01-01

    The research described in this study is part of a project to provide the technology and theory to quantify surface quality for a variety of wood and wood-based products. The ultimate goal is to provide a means of monitoring trends in surface quality, which can be used to discriminate between "good" products and "bad" products (the methods described in this research are not intended to provide "grading" of individual workpieces) as well as to provide information to the machine operator as to the source of poor-quality machined surfaces. This research investigates the use of both frequency domain analysis as well as the more advanced joint time frequency analysis (JTFA). The disadvantages of traditional frequency analysis as well as the potential of the JTFA are illustrated. Sample surface profiles from actual machining defects were analyzed using traditional frequency analysis. A surface with multiple machining defects was analyzed with both traditional frequency analysis and JTFA (harmonic wavelet). Although the analysis was empirical in nature, the results show that the harmonic wavelet transform is able to detect both stationary and non-stationary surface irregularities as well as pulses (localized defects).

  17. Lectures on Yangian Symmetry

    CERN Document Server

    Loebbert, Florian

    2016-01-01

    In these introductory lectures we discuss the topic of Yangian symmetry from various perspectives. Forming the classical counterpart of the Yangian and an extension of ordinary Noether symmetries, first the concept of nonlocal charges in classical, two-dimensional field theory is reviewed. We then define the Yangian algebra following Drinfeld's original motivation to construct solutions to the quantum Yang-Baxter equation. Different realizations of the Yangian and its mathematical role as a Hopf algebra and quantum group are discussed. We demonstrate how the Yangian algebra is implemented in quantum, two-dimensional field theories and how its generators are renormalized. Implications of Yangian symmetry on the two-dimensional scattering matrix are investigated. We furthermore consider the important case of discrete Yangian symmetry realized on integrable spin chains. Finally we give a brief introduction to Yangian symmetry in planar, four-dimensional super Yang-Mills theory and indicate its impact on the dila...

  18. Spontaneous Symmetry Probing

    CERN Document Server

    Nicolis, Alberto

    2011-01-01

    For relativistic quantum field theories, we consider Lorentz breaking, spatially homogeneous field configurations or states that evolve in time along a symmetry direction. We dub this situation "spontaneous symmetry probing" (SSP). We mainly focus on internal symmetries, i.e. on symmetries that commute with the Poincare group. We prove that the fluctuations around SSP states have a Lagrangian that is explicitly time independent, and we provide the field space parameterization that makes this manifest. We show that there is always a gapless Goldstone excitation that perturbs the system in the direction of motion in field space. Perhaps more interestingly, we show that if such a direction is part of a non-Abelian group of symmetries, the Goldstone bosons associated with spontaneously broken generators that do not commute with the SSP one acquire a gap, proportional to the SSP state's "speed". We outline possible applications of this formalism to inflationary cosmology.

  19. On the potential application of land surface models for drought monitoring in China

    Science.gov (United States)

    Zhang, Liang; Zhang, Huqiang; Zhang, Qiang; Li, Yaohui; Zhao, Jianhua

    2017-05-01

    The potential of using land surface models (LSMs) to monitor near-real-time drought has not been fully assessed in China yet. In this study, we analyze the performance of such a system with a land surface model (LSM) named the Australian Community Atmosphere Biosphere Land Exchange model (CABLE). The meteorological forcing datasets based on reanalysis products and corrected by observational data have been extended to near-real time for semi-operational trial. CABLE-simulated soil moisture (SM) anomalies are used to characterize drought spatial and temporal evolutions. One outstanding feature in our analysis is that with the same meteorological data, we have calculated a range of drought indices including Standardized Precipitation Index (SPI), Standardized Precipitation-Evapotranspiration Index (SPEI), Palmer Drought Severity Index (PDSI). We have assessed the similarity among these indices against observed SM over a number of regions in China. While precipitation is the dominant factor in the drought development, relationships between precipitation, evaporation, and soil moisture anomalies vary significantly under different climate regimes, resulting in different characteristics of droughts in China. The LSM-based trial system is further evaluated for the 1997/1998 drought in northern China and 2009/2010 drought in southwestern China. The system can capture the severities and temporal and spatial evolutions of these drought events well. The advantage of using a LSM-based drought monitoring system is further demonstrated by its potential to monitor other consequences of drought impacts in a more physically consistent manner.

  20. On the potential application of land surface models for drought monitoring in China

    Science.gov (United States)

    Zhang, Liang; Zhang, Huqiang; Zhang, Qiang; Li, Yaohui; Zhao, Jianhua

    2016-01-01

    The potential of using land surface models (LSMs) to monitor near-real-time drought has not been fully assessed in China yet. In this study, we analyze the performance of such a system with a land surface model (LSM) named the Australian Community Atmosphere Biosphere Land Exchange model (CABLE). The meteorological forcing datasets based on reanalysis products and corrected by observational data have been extended to near-real time for semi-operational trial. CABLE-simulated soil moisture (SM) anomalies are used to characterize drought spatial and temporal evolutions. One outstanding feature in our analysis is that with the same meteorological data, we have calculated a range of drought indices including Standardized Precipitation Index (SPI), Standardized Precipitation-Evapotranspiration Index (SPEI), Palmer Drought Severity Index (PDSI). We have assessed the similarity among these indices against observed SM over a number of regions in China. While precipitation is the dominant factor in the drought development, relationships between precipitation, evaporation, and soil moisture anomalies vary significantly under different climate regimes, resulting in different characteristics of droughts in China. The LSM-based trial system is further evaluated for the 1997/1998 drought in northern China and 2009/2010 drought in southwestern China. The system can capture the severities and temporal and spatial evolutions of these drought events well. The advantage of using a LSM-based drought monitoring system is further demonstrated by its potential to monitor other consequences of drought impacts in a more physically consistent manner.

  1. Partial Dynamical Symmetry as an Intermediate Symmetry Structure

    CERN Document Server

    Leviatan, A

    2003-01-01

    We introduce the notion of a partial dynamical symmetry for which a prescribed symmetry is neither exact nor completely broken. We survey the different types of partial dynamical symmetries and present empirical examples in each category.

  2. Mei Symmetry and Lie Symmetry of Relativistic Hamiltonian System

    Institute of Scientific and Technical Information of China (English)

    FANG Jian-Hui; YAN Xiang-Hong; LI Hong; CHEN Pei-Sheng

    2004-01-01

    The Mei symmetry and the Lie symmetry of the relativistic Hamiltonian system are studied. The definition and criterion of the Mei symmetry and the Lie symmetry of the relativistic Hamiltonian system are given. The relationship between them is found. The conserved quantities which the Mei symmetry and the Lie symmetry lead to are obtained.An example is given to illustrate the application of the result.

  3. Monitoring of CO2 geological storage based on the passive surface waves

    Institute of Scientific and Technical Information of China (English)

    Dai Kaoshan; Li Xiaofeng; Song Xuehang; Chen Gen; Pan Yongdong; Huang Zhenhua

    2014-01-01

    Carbon dioxide (CO2) capture and geological storage (CCS) is one of promising technologies for greenhouse gas effect mitigation. Many geotechnical challenges remain during carbon dioxide storage field practices, among which effectively detecting CO2 from deep underground is one of engineering problems. This paper reviews monitoring techniques currently used during CO2 injection and storage. A method developed based on measuring seismic microtremors is of main interest. This method was first successfully used to characterize a site in this paper. To explore its feasibility in CO2 storage monitoring, numerical simulations were conducted to investigate detectable changes in elastic wave signatures due to injection and geological storage of CO2. It is found that, although it is effective for shallow earth profile estimation, the surface wave velocity is not sensitive to the CO2 layer physical parameter variations, especially for a thin CO2 geological storage layer in a deep underground reservoir.

  4. The Development of a Sub-Surface Monitoring System for Organic Contamination in Soils and Groundwater

    Directory of Open Access Journals (Sweden)

    Sharon L. Huntley

    2002-01-01

    Full Text Available A major problem when dealing with environmental contamination is the early detection and subsequent surveillance of the contamination. This paper describes the potential of sub-surface sensor technology for the early detection of organic contaminants in contaminated soils, sediments, and landfill sites. Rugged, low-power hydrocarbon sensors have been developed, along with a data-logging system, for the early detection of phase hydrocarbons in soil. Through laboratory-based evaluation, the ability of this system to monitor organic contamination in water-based systems is being evaluated. When used in conjunction with specific immunoassays, this can provide a sensitive and low-cost solution for long-term monitoring and analysis, applicable to a wide range of field applications.

  5. PHYSIOLOGICAL INFORMATION FOR PAVEMENT HEALTH MONITORING BASED ON SURFACE RIDE QUALITY

    Science.gov (United States)

    Tomiyama, Kazuya; Kawamura, Akira; Takahashi, Kiyoshi; Ishida, Tateki

    Pavement ride quality testing has traditionally been based on subjective questionnaire ratings. The questionnaire survey has ability to directly measure the sense of road users' ride quality. However, it is difficult to quantify the evaluation results based on the questionnaire due to its lack of objectivity. This study examines pavement health monitoring method using physiological information such as heart rate variability (HRV) for detecting mental stress of road users toward pavement ride quality. First, a results of a driving simulator experiment shows that potential mental stress caused by road roughness can be observed in high-frequency oscillations in 0.15-0.4Hz of HRV processed by continuous wavelet transform. Then, the high-frequency oscillations of HRV is summarized as an index related to the mental stress that makes objective ride quality evaluation possible. Finally, this study indicates that the index contributes to improve the accuracy of pavement health monitoring based on surface ride quality.

  6. Environmental protection management by monitoring the surface water quality in Semenic area

    Directory of Open Access Journals (Sweden)

    Dana SÂMBOTIN

    2011-08-01

    Full Text Available Environment seems to have been the war against all. In fact recently most people polluted the environment and those few are cared for his cleaning. Today, the relationship evolvedas societies have changed in favour of ensuring environmental protection. With modern technology, performance, monitoring the environment becomes part of human activity ever more necessary, more possible and more efficient. The quality of the environment, its components: air, water, soil, plants, vegetable and animal products, is a condition "sine qua non" for the life of the modern man. The consequences of environmental pollution areso dangerous that modern man cannot afford considering them. Through this paper I will study the environmental quality by monitoring the surfaces waters from the Semenic- Gărâna area.

  7. Automatic monitoring of ecosystem structure and functions using integrated low-cost near surface sensors

    Science.gov (United States)

    Kim, J.; Ryu, Y.; Jiang, C.; Hwang, Y.

    2016-12-01

    Near surface sensors are able to acquire more reliable and detailed information with higher temporal resolution than satellite observations. Conventional near surface sensors usually work individually, and thus they require considerable manpower from data collection through information extraction and sharing. Recent advances of Internet of Things (IoT) provides unprecedented opportunities to integrate various low-cost sensors as an intelligent near surface observation system for monitoring ecosystem structure and functions. In this study, we developed a Smart Surface Sensing System (4S), which can automatically collect, transfer, process and analyze data, and then publish time series results on public-available website. The system is composed of micro-computer Raspberry pi, micro-controller Arduino, multi-spectral spectrometers made from Light Emitting Diode (LED), visible and near infrared cameras, and Internet module. All components are connected with each other and Raspberry pi intelligently controls the automatic data production chain. We did intensive tests and calibrations in-lab. Then, we conducted in-situ observations at a rice paddy field and a deciduous broadleaf forest. During the whole growth season, 4S obtained landscape images, spectral reflectance in red, green, blue, and near infrared, normalized difference vegetation index (NDVI), fraction of photosynthetically active radiation (fPAR), and leaf area index (LAI) continuously. Also We compared 4S data with other independent measurements. NDVI obtained from 4S agreed well with Jaz hyperspectrometer at both diurnal and seasonal scales (R2 = 0.92, RMSE = 0.059), and 4S derived fPAR and LAI were comparable to LAI-2200 and destructive measurements in both magnitude and seasonal trajectory. We believe that the integrated low-cost near surface sensor could help research community monitoring ecosystem structure and functions closer and easier through a network system.

  8. T-TY Tank Farm Interim Surface Barrier Demonstration—Vadose Zone Monitoring Plan

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. F.; Strickland, Christopher E.; Field, Jim G.; Parker, Danny L.

    2010-09-27

    The Hanford Site has 149 underground single-shell tanks that store hazardous radioactive waste. Many of these tanks and their associated infrastructure (e.g., pipelines, diversion boxes) have leaked. Some of the leaked waste has entered the groundwater. The largest known leak occurred from the T-106 Tank of the 241-T Tank Farm in 1973. Five tanks are assumed to have leaked in the TY Farm. Many of the contaminants from those leaks still reside within the vadose zone within the T and TY Tank Farms. The Department of Energy’s Office of River Protection seeks to minimize the movement of these contaminant plumes by placing interim barriers on the ground surface. Such barriers are expected to prevent infiltrating water from reaching the plumes and moving them further. The soil water regime is monitored to determine the effectiveness of the interim surface barriers. Soil-water content and water pressure are monitored using off-the-shelf equipment that can be installed by the hydraulic hammer technique. Four instrument nests were installed in the T Farm in fiscal year (FY) 2006 and FY2007; two nests were installed in the TY Farm in FY2010. Each instrument nest contains a neutron probe access tube, a capacitance probe, and four heat-dissipation units. A meteorological station has been installed at the north side of the fence of the T Farm. This document summarizes the monitoring methods, the instrument calibration and installation, and the vadose zone monitoring plan for interim barriers in T farm and TY Farm.

  9. Hyperresolution Global Land Surface Modeling: Meeting a Grand Challenge for Monitoring Earth's Terrestrial Water

    Science.gov (United States)

    Wood, Eric F.; Roundy, Joshua K.; Troy, Tara J.; van Beek, L. P. H.; Bierkens, Marc F. P.; 4 Blyth, Eleanor; de Roo, Ad; Doell. Petra; Ek, Mike; Famiglietti, James; Gochis, David; van de Giesen, Nick; Houser, Paul; Jaffe, Peter R.; Kollet, Stefan; Lehner, Bernhard; Lettenmaier, Dennis P.; Peters-Lidard, Christa; Sivpalan, Murugesu; Sheffield, Justin; Wade, Andrew; Whitehead, Paul

    2011-01-01

    Monitoring Earth's terrestrial water conditions is critically important to many hydrological applications such as global food production; assessing water resources sustainability; and flood, drought, and climate change prediction. These needs have motivated the development of pilot monitoring and prediction systems for terrestrial hydrologic and vegetative states, but to date only at the rather coarse spatial resolutions (approx.10-100 km) over continental to global domains. Adequately addressing critical water cycle science questions and applications requires systems that are implemented globally at much higher resolutions, on the order of 1 km, resolutions referred to as hyperresolution in the context of global land surface models. This opinion paper sets forth the needs and benefits for a system that would monitor and predict the Earth's terrestrial water, energy, and biogeochemical cycles. We discuss six major challenges in developing a system: improved representation of surface-subsurface interactions due to fine-scale topography and vegetation; improved representation of land-atmospheric interactions and resulting spatial information on soil moisture and evapotranspiration; inclusion of water quality as part of the biogeochemical cycle; representation of human impacts from water management; utilizing massively parallel computer systems and recent computational advances in solving hyperresolution models that will have up to 10(exp 9) unknowns; and developing the required in situ and remote sensing global data sets. We deem the development of a global hyperresolution model for monitoring the terrestrial water, energy, and biogeochemical cycles a grand challenge to the community, and we call upon the international hydrologic community and the hydrological science support infrastructure to endorse the effort.

  10. [A Novel Method of Soil Moisture Content Monitoring by Land Surface Temperature and LAI].

    Science.gov (United States)

    Gao, Zhong-ling; Zheng, Xiao-po; Sun, Yue-jun; Wang, Jian-hua

    2015-11-01

    Land surface temperature (Ts) is influenced by soil background and vegetation growing conditions, and the combination of Ts and vegetation indices (Vis) can indicate the status of surface soil moisture content (SMC). In this study, Advanced Temperature Vegetation Dryness Index (ATVDI) used for monitoring SMC was proposed on the basis of the simulation results with agricultural climate model CUPID. Previous studies have concluded that Normalized Difference Vegetation Index (NDVI) easily reaches the saturation point, andLeaf Area Index (LAI) was then used instead of NDVI to estimate soil moisture content in the paper. With LAI-Ts scatter diagram established by the simulation results of CUPID model; how Ts varied with LAI and SMC was found. In the case of the identical soil background, the logarithmic relations between Ts and LAI were more accurate than the linear relations included in Temperature Vegetation Dryness Index (TVDI), based on which ATVDI was then developed. LAI-Ts scatter diagram with satellite imagery were necessary for determining the expression of the upper and lower logarithmic curves while ATVDI was used for monitoring SMC. Ts derived from satellite imagery were then transformed to the Ts-value which has the same SMC and the minimum LAI in study area with look-up table. The measured SMC from the field sites in Weihe Plain, Shanxi Province, China, and the products of LAI and Ts (MOD15A2 and MOD11A2, respectively) produced by the image derived from Moderate Resolution Imaging Spectrometer (MODIS) were collected to validate the new method proposed in this study. The validation results shown that ATVDI (R² = 0.62) was accurate enough to monitor SMC, and it achieved better result than TVDI. Moreover, ATVDI-derived result were Ts values with some physical meanings, which made it comparative in different periods. Therefore, ATVDI is a promising method for monitoring SMC in different time-spatial scales in agricultural fields.

  11. Strategies for Detecting Hidden Geothermal Systems by Near-Surface Gas Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Lewicki, Jennifer L.; Oldenburg, Curtis M.

    2004-12-15

    ''Hidden'' geothermal systems are those systems above which hydrothermal surface features (e.g., hot springs, fumaroles, elevated ground temperatures, hydrothermal alteration) are lacking. Emissions of moderate to low solubility gases (e.g., CO2, CH4, He) may be one of the primary near-surface signals from these systems. Detection of anomalous gas emissions related to hidden geothermal systems may therefore be an important tool to discover new geothermal resources. This study investigates the potential for CO2 detection and monitoring in the subsurface and above ground in the near-surface environment to serve as a tool to discover hidden geothermal systems. We focus the investigation on CO2 due to (1) its abundance in geothermal systems, (2) its moderate solubility in water, and (3) the wide range of technologies available to monitor CO2 in the near-surface environment. However, monitoring in the near-surface environment for CO2 derived from hidden geothermal reservoirs is complicated by the large variation in CO2 fluxes and concentrations arising from natural biological and hydrologic processes. In the near-surface environment, the flow and transport of CO2 at high concentrations will be controlled by its high density, low viscosity, and high solubility in water relative to air. Numerical simulations of CO2 migration show that CO2 concentrations can reach very high levels in the shallow subsurface even for relatively low geothermal source CO2 fluxes. However, once CO2 seeps out of the ground into the atmospheric surface layer, surface winds are effective at dispersing CO2 seepage. In natural ecological systems in the absence of geothermal gas emissions, near-surface CO2 fluxes and concentrations are primarily controlled by CO2 uptake by photosynthesis, production by root respiration, and microbial decomposition of soil/subsoil organic matter, groundwater degassing, and exchange with the atmosphere. Available technologies for monitoring CO2 in

  12. Observing hydrological processes: recent advancements in surface flow monitoring through image analysis

    Science.gov (United States)

    Tauro, Flavia; Grimaldi, Salvatore

    2017-04-01

    Recently, several efforts have been devoted to the design and development of innovative, and often unintended, approaches for the acquisition of hydrological data. Among such pioneering techniques, this presentation reports recent advancements towards the establishment of a novel noninvasive and potentially continuous methodology based on the acquisition and analysis of images for spatially distributed observations of the kinematics of surface waters. The approach aims at enabling rapid, affordable, and accurate surface flow monitoring of natural streams. Flow monitoring is an integral part of hydrological sciences and is essential for disaster risk reduction and the comprehension of natural phenomena. However, water processes are inherently complex to observe: they are characterized by multiscale and highly heterogeneous phenomena which have traditionally demanded sophisticated and costly measurement techniques. Challenges in the implementation of such techniques have also resulted in lack of hydrological data during extreme events, in difficult-to-access environments, and at high temporal resolution. By combining low-cost yet high-resolution images and several velocimetry algorithms, noninvasive flow monitoring has been successfully conducted at highly heterogeneous scales, spanning from rills to highly turbulent streams, and medium-scale rivers, with minimal supervision by external users. Noninvasive image data acquisition has also afforded observations in high flow conditions. Latest novelties towards continuous flow monitoring at the catchment scale have entailed the development of a remote gauge-cam station on the Tiber River and integration of flow monitoring through image analysis with unmanned aerial systems (UASs) technology. The gauge-cam station and the UAS platform both afford noninvasive image acquisition and calibration through an innovative laser-based setup. Compared to traditional point-based instrumentation, images allow for generating surface

  13. ICESat Observations of Inland Surface Water Stage, Slope, and Extent: a New Method for Hydrologic Monitoring

    Science.gov (United States)

    Harding, David J.; Jasinski, Michael F.

    2004-01-01

    River discharge and changes in lake, reservoir and wetland water storage are critical terms in the global surface water balance, yet they are poorly observed globally and the prospects for adequate observations from in-situ networks are poor (Alsdorf et al., 2003). The NASA-sponsored Surface Water Working Group has established a framework for advancing satellite observations of river discharge and water storage changes which focuses on obtaining measurements of water surface height (stage), slope, and extent. Satellite laser altimetry, which can achieve centimeter-level elevation precision for single, small laser footprints, provides a method to obtain these inland water parameters and contribute to global water balance monitoring. Since its launch in January, 2003 the Ice, Cloud, and land Elevation Satellite (ICESat), a NASA Earth Observing System mission, has achieved over 540 million laser pulse observations of ice sheet, ocean surface, land topography, and inland water elevations and cloud and aerosol height distributions. By recording the laser backscatter from 80 m diameter footprints spaced 175 m along track, ICESat acquires globally-distributed elevation profiles, using a 1064 nm laser altimeter channel, and cloud and aerosol profiles, using a 532 nm atmospheric lidar channel. The ICESat mission has demonstrated the following laser altimeter capabilities relevant to observations of inland water: (1) elevation measurements with a precision of 2 to 3 cm for flat surfaces, suitable for detecting river surface slopes along long river reaches or between multiple crossings of a meandering river channel, (2) from the laser backscatter waveform, detection of water surface elevations beneath vegetation canopies, suitable for measuring water stage in flooded forests, (3) single pulse absolute elevation accuracy of about 50 cm (1 sigma) for 1 degree sloped surfaces, with calibration work in progress indicating that a final accuracy of about 12 cm (1 sigma) will be

  14. Ground Surface Deformation around Tehran due to Groundwater Recharge: InSAR Monitoring.

    Science.gov (United States)

    Gourmelen, N.; Peyret, M.; Fritz, J. F.; Cherry, J.

    2003-04-01

    Tehran is located on an active tectonic and seismic zone. The surface deformation monitoring provides a powerful tool for getting a better understanding of faults kinematics and mechanisms. Used in conjunction with GPS networks, InSAR (Interferometric Synthetic Aperture Radar) provides dense and precise deformation measurements which are essential for mapping complex heterogeneous deformation fields. Moreover, urban and arid areas preserve interferometric phase coherence. The archived acquisitions of ERS that span 9 months between September 1998 and June 1999 reveal wide areas of surface uplift (by as much as 9 cm). This vertical deformation (gradual in time) has probably no tectonic meaning but is rather the ground response to ground water recharge. These zones are all located dowstream of large alluvial fans like the one of Karaj. The variation of effective stress caused by intersticial water draining could explain such surface deformation. It can also be noticed that some faults act as boundary for these deformation zones and fluid motion. The understanding of this deformation is relevant for groundwater monitoring and urban developement management. It is also necessary for discriminating it from tectonic deformation that also occurs on this zone. Due to the lack of attitude control of satellite ERS-2 since February 2001, the last images acquired could not be combined with the former acquisitions. Nevertheless, we expect to be able to enrich our set of images in order to map tectonic deformation on a longer period and to monitor in a more continuous way the deformation due to groundwater evolution. This would allow to quantify the permanent and reversible part of this signal.

  15. A novel method about online monitoring surface shape of optical elements in continuous polishing

    Science.gov (United States)

    Yin, Jin; Zhu, Jianqiang; Jiao, Xiang; Wu, Yongzhong

    2016-10-01

    In conventional continuous polishing process, the surface shape of work-piece was measured by an optical plane template after being placed in such environment with constant temperature for 1 to 2 hours. During this period, uncertain influence may occur on the polishing pad due to the change of system state. Meanwhile, the regular off-line testing may cause re-processing. In this paper, a new method about on-line monitoring surface shape of optical elements is proposed by the theory of run sphere, and the change in curvature radius of the work-piece which lead to its radial tilt angle change. The change in work-piece surface shape indirectly obtain by the correction plate small angle with respect to the horizontal, and the angle were detected on line by the high-precision goniometer with the resolution 0.04 ''. According to theoretical calculations, the diameter of 200mm precision work-piece PV value up to 0.02λ (λ = 632.8nm). The fused quartz glass was measured by above method. The test results showed that the surface accuracy and processing efficiency were significantly promoted, and also improving the controllability of surface shape of work-piece based on this method.

  16. Evaluation of two methods for monitoring surface cleanliness-ATP bioluminescence and traditional hygiene swabbing.

    Science.gov (United States)

    Davidson, C A; Griffith, C J; Peters, A C; Fielding, L M

    1999-01-01

    The minimum bacterial detection limits and operator reproducibility of the Biotrace Clean-Tracetrade mark Rapid Cleanliness Test and traditional hygiene swabbing were determined. Areas (100 cm2) of food grade stainless steel were separately inoculated with known levels of Staphylococcus aureus (NCTC 6571) and Escherichia coli (ATCC 25922). Surfaces were sampled either immediately after inoculation while still wet, or after 60 min when completely dry. For both organisms the minimum detection limit of the ATP Clean-Tracetrade mark Rapid Cleanliness Test was 10(4) cfu/100 cm2 (p 10(7) cfu/100 cm2. Hygiene swabbing percentage recovery rates for both organisms were less than 0.1% for dried surfaces but ranged from 0.33% to 8.8% for wet surfaces. When assessed by six technically qualified operators, the Biotrace Clean-Tracetrade mark Rapid Cleanliness Test gave superior reproducibility for both clean and inoculated surfaces, giving mean coefficients of variation of 24% and 32%, respectively. Hygiene swabbing of inoculated surfaces gave a mean CV of 130%. The results are discussed in the context of hygiene monitoring within the food industry.

  17. Ambient Noise Surface Wave Tomography for Geotechnical Monitoring Using "Large N" Distributed Acoustic Sensing

    Science.gov (United States)

    Ajo Franklin, J. B.; Lindsey, N.; Martin, E. R.; Wagner, A. M.; Robertson, M.; Bjella, K.; Gelvin, A.; Ulrich, C.; Wu, Y.; Freifeld, B. M.; Daley, T. M.; Dou, S.

    2015-12-01

    Surface wave tomography using ambient noise sources has found broad application at the regional scale but has not been adopted fully for geotechnical applications despite the abundance of noise sources in this context. The recent development of Distributed Acoustic Sensing (DAS) provides a clear path for inexpensively recording high spatial resolution (survey as well as direct-push data on ice content. We also compare vintages of ambient noise DAS data to evaluate the short-term repeatability of the technique in the face of changing noise environments. The resulting dataset demonstrates the utility of using DAS for real-time shear-modulus monitoring in support of critical infrastructure.

  18. In situ monitoring of biomolecular processes in living systems using surface-enhanced Raman scattering

    Science.gov (United States)

    Altunbek, Mine; Kelestemur, Seda; Culha, Mustafa

    2015-12-01

    Surface-enhanced Raman scattering (SERS) continues to strive to gather molecular level information from dynamic biological systems. It is our ongoing effort to utilize the technique for understanding of the biomolecular processes in living systems such as eukaryotic and prokaryotic cells. In this study, the technique is investigated to identify cell death mechanisms in 2D and 3D in vitro cell culture models, which is a very important process in tissue engineering and pharmaceutical applications. Second, in situ biofilm formation monitoring is investigated to understand how microorganisms respond to the environmental stimuli, which inferred information can be used to interfere with biofilm formation and fight against their pathogenic activity.

  19. Partial Dynamical Symmetries

    CERN Document Server

    Leviatan, A

    2010-01-01

    This overview focuses on the notion of partial dynamical symmetry (PDS), for which a prescribed symmetry is obeyed by a subset of solvable eigenstates, but is not shared by the Hamiltonian. General algorithms are presented to identify interactions, of a given order, with such intermediate-symmetry structure. Explicit bosonic and fermionic Hamiltonians with PDS are constructed in the framework of models based on spectrum generating algebras. PDSs of various types are shown to be relevant to nuclear spectroscopy, quantum phase transitions and systems with mixed chaotic and regular dynamics.

  20. Physics from symmetry

    CERN Document Server

    Schwichtenberg, Jakob

    2015-01-01

    This is a textbook that derives the fundamental theories of physics from symmetry.   It starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived. As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations.

  1. Clinical usefulness of a newly developed body surface navigation and monitoring system in radiotherapy.

    Science.gov (United States)

    Takagi, Hitoshi; Obata, Yasunori; Kobayashi, Hidetoshi; Takenaka, Kazuyuki; Hirose, Yasujirou; Goto, Hajime; Hattori, Tomohiko

    2011-02-02

    In radiotherapy, setup precision has great influence on the therapeutic effect. In addition, body movements during the irradiation and physical alternations during the treatment period might cause deviation from the planned irradiation dosage distribution. Both of these factors could undesirably influence the dose absorbed by the target. In order to solve these problems, we developed the "body surface navigation and monitoring system" (hereafter referred to as "Navi-system"). The purpose of this study is to review the precision of the Navi-system as well as its usefulness in clinical radiotherapy. The Navi-system consists of a LED projector, a CCD camera, and a personal computer (PC). The LED projector projects 19 stripes on the patient's body and the CCD camera captures these stripes. The processed image of these stripes in color can be displayed on the PC monitor along with the patient's body surface image, and the digitalized results can be also displayed on the same monitor. The Navi-system calculates the height of the body contour and the transverse height centroid for the 19 levels and compares them with the reference data to display the results on the monitor on a real-time basis. These results are always replaced with new data after they are used for display; so, if the results need to be recorded, such recording commands should be given to the computer. 1) Evaluating the accuracy of the body surface height measurement: from the relationship between actual height changes and calculated height changes with torso surface by the Navi-system, for the height changes from 0.0 mm to ± 10.0mm, the changes show the underestimation of 1.0-1.5 mm and for ± 11.0mm to ± 20.0 mm, the underestimation of 1.5-3.0 mm. 2) Evaluating the accuracy of the transverse height centroid measurement: displacement of the inclined flat panel to the right by 5.0 mm, 10.0 mm, 15.0 mm and 20.0 mm showed the transverse height centroid calculated by the Navi-system for 0.024 ± 0.007 line

  2. CryoSat-2 radar altimetry for monitoring surface water in China

    DEFF Research Database (Denmark)

    Jiang, Liguang; Bauer-Gottwein, Peter; Nielsen, Karina

    Surface water bodies (lakes, reservoirs and rivers) are key components of the water cycle and are important water sources. Water level and storage vary greatly under the impacts of climate change and human activities. A national-scale surface water monitoring dataset for China is not available...... at regional scale, i.e. declining in Junggar Basin, Huai River Basin and Hubei Province while rising in North Tibetan Plateau and Songnen Plain; 2) SWS change affects TWS variation greatly, especially in Tibetan Plateau ; 3) TWS in Songhua River basin has been fluctuating strongly over the past decade...... and the North China Plain maintained a consistently decreasing trend in TWS (- 20 mm/yr); 4) Change observed in Songnen Plain is also seen from SongLiao Water Resources Bulletin....

  3. Monitoring the on-surface synthesis of graphene nanoribbons by mass spectrometry

    KAUST Repository

    Zhang, Wen

    2017-06-14

    We present a mass spectrometric approach to monitor and characterize the intermediates of graphene nanoribbon (GNR) formation by chemical vapor deposition (CVD) on top of Au(111) surfaces. Information regarding the repeating units, lengths, and termini can be obtained directly from the surface sample by a modified matrix assisted laser desorption/ionization (MALDI) method. The mass spectrometric results reveal ample oxidative side reactions under CVD conditions which can, however, be diminished drastically by introduction of protective H2 gas at ambient pressure. Simultaneously, addition of hydrogen extends the lengths of the oligophenylenes and thus the final GNRs. Moreover, the prematurely formed cyclodehydrogenation products during the oligomer growth can be assigned by the mass spectrometric method. The obtained mechanistic insights provide valuable information for optimizing and upscaling the bottom-up fabrication of GNRs. Given the important role of GNRs as semiconductors, the mass spectrometric characterization provides a readily available tool to improve and characterize their structural perfection.

  4. Monitoring of radioactive contamination in Polish surface waters in 2012-2013.

    Science.gov (United States)

    Suplińska, M; Kardaś, M; Rubel, B; Fulara, A; Adamczyk, A

    The (90)Sr and (137)Cs contamination in Polish surface waters has been monitoring since 1994. Surface water samples from six lakes and the Vistula and Oder Rivers were collected in spring and autumn 2012 and 2013. The mean (90)Sr and (137)Cs concentrations were 3.92 ± 0.40 and 4.49 ± 2.00 mBq L(-1), respectively. Correlations were identified between the radionuclide concentrations and meteorological conditions and the original fallout distribution from the Chernobyl disaster. The annual average radionuclide concentrations were not significantly different from the concentrations found between 1994 and 2011. The (137)Cs and (90)Sr concentrations have been decreasing only slowly.

  5. Student understanding of Symmetry and Gauss' law

    CERN Document Server

    Singh, Chandralekha

    2016-01-01

    Helping students learn why Gauss' law can or cannot be easily applied to determine the strength of the electric field at various points for a particular charge distribution, and then helping them learn to determine the shape of the Gaussian surfaces if sufficient symmetry exists can develop their reasoning and problem solving skills. We investigate the difficulties that students in calculus-based introductory physics courses have with the concepts of symmetry, electric field and electric flux that are pivotal to Gauss' law of electricity. Determination of the electric field using Gauss' law requires discerning the symmetry of a particular charge distribution and being able to predict the direction of the electric field everywhere if a high symmetry exists. It requires a good grasp of how to add the electric field vectors using the principle of superposition, and the concepts of area vector and electric flux. We administered free response and multiple-choice questions and conducted interviews with individual s...

  6. Symmetry energy of warm nuclear systems

    Science.gov (United States)

    Agrawal, B. K.; De, J. N.; Samaddar, S. K.; Centelles, M.; Viñas, X.

    2014-02-01

    The temperature dependence of the symmetry energy and symmetry free energy coefficients of infinite nuclear matter and of finite nuclei is investigated. For infinite matter, both these coefficients are found to have a weaker dependence on temperature at densities close to saturation; at low but homogeneous densities, the temperature dependence becomes stronger. For finite systems, different definitions of symmetry energy coefficients are encountered in the literature yielding different values. A resolution to this problem is suggested from a global liquid-drop-inspired fit of the energies and free energies of a host of nuclei covering the entire periodic table. The hot nucleus is modeled in a subtracted finite-temperature Thomas-Fermi framework, with dynamical surface phonon coupling to nucleonic motion plugged in. Contrary to infinite nuclear matter, a substantial change in the symmetry energy coefficients is observed for finite nuclei with temperature.

  7. Symmetry energy of warm nuclear systems

    CERN Document Server

    Agrawal, B K; Samaddar, S K; Centelles, M; Viñas, X

    2013-01-01

    The temperature dependence of the symmetry energy and symmetry free energy coefficients of infinite nuclear matter and of finite nuclei is investigated. For infinite matter, both these coefficients are found to have a weaker dependence on temperature at densities close to saturation; at low but homogeneous densities, the temperature dependence becomes stronger. For finite systems, different definitions of symmetry energy coefficients are encountered in the literature yielding different values. A resolution to this problem is suggested from a global liquid-drop-inspired fit of the energies and free energies of a host of nuclei covering the entire periodic table. The hot nucleus is modeled in a subtracted finite-temperature-Thomas-Fermi framework, with dynamical surface phonon coupling to nucleonic motion plugged in. Contrary to infinite nuclear matter, a substantial change in the symmetry energy coefficients is observed for finite nuclei with temperature.

  8. Geological Carbon Sequestration: A New Approach for Near-Surface Assurance Monitoring

    Directory of Open Access Journals (Sweden)

    Lucian Wielopolski

    2011-03-01

    Full Text Available There are two distinct objectives in monitoring geological carbon sequestration (GCS: Deep monitoring of the reservoir’s integrity and plume movement and near-surface monitoring (NSM to ensure public health and the safety of the environment. However, the minimum detection limits of the current instrumentation for NSM is too high for detecting weak signals that are embedded in the background levels of the natural variations, and the data obtained represents point measurements in space and time. A new approach for NSM, based on gamma-ray spectroscopy induced by inelastic neutron scatterings (INS, offers novel and unique characteristics providing the following: (1 High sensitivity with a reducible error of measurement and detection limits, and, (2 temporal- and spatial-integration of carbon in soil that results from underground CO2 seepage. Preliminary field results validated this approach showing carbon suppression of 14% in the first year and 7% in the second year. In addition the temporal behavior of the error propagation is presented and it is shown that for a signal at the level of the minimum detection level the error asymptotically approaches 47%.

  9. Geological Carbon Sequestration: A New Approach for Near-Surface Assurance Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Wielopolski, L.

    2011-03-11

    There are two distinct objectives in monitoring geological carbon sequestration (GCS): Deep monitoring of the reservoir's integrity and plume movement and near-surface monitoring (NSM) to ensure public health and the safety of the environment. However, the minimum detection limits of the current instrumentation for NSM is too high for detecting weak signals that are embedded in the background levels of the natural variations, and the data obtained represents point measurements in space and time. A new approach for NSM, based on gamma-ray spectroscopy induced by inelastic neutron scatterings (INS), offers novel and unique characteristics providing the following: (1) High sensitivity with a reducible error of measurement and detection limits, and, (2) temporal- and spatial-integration of carbon in soil that results from underground CO{sub 2} seepage. Preliminary field results validated this approach showing carbon suppression of 14% in the first year and 7% in the second year. In addition the temporal behavior of the error propagation is presented and it is shown that for a signal at the level of the minimum detection level the error asymptotically approaches 47%.

  10. Animal Gaits and Symmetry

    Science.gov (United States)

    Golubitsky, Martin

    2012-04-01

    Many gaits of four-legged animals are described by symmetry. For example, when a horse paces it moves both left legs in unison and then both right legs and so on. The motion is described by two symmetries: Interchange front and back legs, and swap left and right legs with a half-period phase shift. Biologists postulate the existence of a central pattern generator (CPG) in the neuronal system that sends periodic signals to the legs. CPGs can be thought of as electrical circuits that produce periodic signals and can be modeled by systems with symmetry. In this lecture we discuss animal gaits; use gait symmetries to construct a simplest CPG architecture that naturally produces quadrupedal gait rhythms; and make several testable predictions about gaits.

  11. Dynamical spacetime symmetry

    CERN Document Server

    Lovelady, Benjamin C

    2015-01-01

    According to the Coleman-Mandula theorem, any gauge theory of gravity combined with an internal symmetry based on a Lie group must take the form of a direct product in order to be consistent with basic assumptions of quantum field theory. However, we show that an alternative gauging of a simple group can lead dynamically to a spacetime with compact internal symmetry. The biconformal gauging of the conformal symmetry of n-dim Euclidean space doubles the dimension to give a symplectic manifold. Examining one of the Lagrangian submanifolds in the flat case, we find that in addition to the expected SO(n) connection and curvature, the solder form necessarily becomes Lorentzian. General coordinate invariance gives rise to an SO(n-1,1) connection on the spacetime. The principal fiber bundle character of the original SO(n) guarantees that the two symmetries enter as a direct product, in agreement with the Coleman-Mandula theorem.

  12. Gauge symmetry from decoupling

    Energy Technology Data Exchange (ETDEWEB)

    Wetterich, C., E-mail: c.wetterich@thphys.uni-heidelberg.de

    2017-02-15

    Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang–Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.

  13. Gauge symmetry from decoupling

    Directory of Open Access Journals (Sweden)

    C. Wetterich

    2017-02-01

    Full Text Available Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang–Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.

  14. CPT Symmetry Without Hermiticity

    CERN Document Server

    Mannheim, Philip D

    2016-01-01

    In the literature the $CPT$ theorem has only been established for Hamiltonians that are Hermitian. Here we extend the $CPT$ theorem to quantum field theories with non-Hermitian Hamiltonians. Our derivation is a quite minimal one as it requires only the time independent evolution of scalar products and invariance under complex Lorentz transformations. The first of these requirements does not force the Hamiltonian to be Hermitian. Rather, it forces its eigenvalues to either be real or to appear in complex conjugate pairs, forces the eigenvectors of such conjugate pairs to be conjugates of each other, and forces the Hamiltonian to admit of an antilinear symmetry. The latter requirement then forces this antilinear symmetry to be $CPT$, with Hermiticity of a Hamiltonian thus only being a sufficient condition for $CPT$ symmetry and not a necessary one. $CPT$ symmetry thus has primacy over Hermiticity, and it rather than Hermiticity should be taken as a guiding principle for constructing quantum theories. With confo...

  15. Gauge symmetry from decoupling

    Science.gov (United States)

    Wetterich, C.

    2017-02-01

    Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang-Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.

  16. Dynamical spacetime symmetry

    Science.gov (United States)

    Lovelady, Benjamin C.; Wheeler, James T.

    2016-04-01

    According to the Coleman-Mandula theorem, any gauge theory of gravity combined with an internal symmetry based on a Lie group must take the form of a direct product in order to be consistent with basic assumptions of quantum field theory. However, we show that an alternative gauging of a simple group can lead dynamically to a spacetime with compact internal symmetry. The biconformal gauging of the conformal symmetry of n-dimensional Euclidean space doubles the dimension to give a symplectic manifold. Examining one of the Lagrangian submanifolds in the flat case, we find that in addition to the expected S O (n ) connection and curvature, the solder form necessarily becomes Lorentzian. General coordinate invariance gives rise to an S O (n -1 ,1 ) connection on the spacetime. The principal fiber bundle character of the original S O (n ) guarantees that the two symmetries enter as a direct product, in agreement with the Coleman-Mandula theorem.

  17. Surface Investigation of Photo-Degraded Wood by Colour Monitoring, Infrared Spectroscopy, and Hyperspectral Imaging

    Directory of Open Access Journals (Sweden)

    Giorgia Agresti

    2013-01-01

    Full Text Available The aim of this investigation is to study the changes occurring on the surface of poplar wood exposed to artificial irradiation in a Solar Box. Colour changes were monitored with a reflectance spectrophotometer. Surface chemical modifications were evaluated by measuring the infrared spectra. Hyperspectral imaging was also applied to study the surface wood changes in the visible-near infrared and the short wave infrared wavelength ranges. The data obtained from the different techniques were compared to find the possible correlations in order to evaluate the applicability of the Hyperspectral imaging to investigate wood modifications in a non-invasive modality. The study of colour changes showed an important variation due to photo-irradiation which is the greatest change occurring within the first 24 hours. Infrared spectroscopy revealed that lignin degrades mainly in the first 48 hours. Concerning Hyperspectral imaging, the spectral features in the visible-near infrared range are mainly linked to the spectral shape, whereas in the short wave infrared cellulose and lignin affect shape and reflectance levels. The proposed approach showed that a correlation can be established between colour variation and wood degradation in the visible-near infrared range; furthermore in the short wave infrared region surface chemical changes can be assessed.

  18. Real-time monitoring of carbonarius DNA structured biochip by surface plasmon resonance imaging

    Science.gov (United States)

    Manera, M. G.; Rella, R.; Spadavecchia, J.; Moreau, J.; Canva, M.

    2008-06-01

    Surface plasmon resonance imaging (SPRI) studies, performed on a specially designed system exploiting the Kretschmann configuration, have been carried out to develop a DNA sensor for the detection of gene mutations accounting for the analysis of a fungin species which can proliferate especially in cereals, producing toxic compounds such as mycotoxins. The SPRI system has been used in order to study the hybridization process of ssDNA carbonarius probes immobilized onto a bio-functionalized Au surface in order to detect in real time the mutations in a DNA fragment. The SPRI system is a good choice for real-time monitoring of hybridization dynamics on an array of immobilized oligonucleotide probes because of the high sensitivity in characterization of ultra-thin films adsorbed onto gold or other noble metal surfaces. Using this technique, local changes in the reflectivity of a thin metal film describe the hybridization process between the molecules tethered to the surface and those sent in solution in the test chamber. The increase in the greyscale levels of the images (representing the functionalized gold traps) during the hybridization process demonstrated the occurrence of the binding event. The process has been proven to be reversible and specific for the investigated probes, since no signal has been detected in the presence of a negative control which is a non-complementary target.

  19. Surface electromyography in preoperative evaluation and postoperative monitoring of Zenker's diverticulum.

    Science.gov (United States)

    Vaiman, Michael

    2006-01-01

    Patients with Zenker's diverticulum (ZD) underwent surface electromyography (sEMG) evaluation to determine sEMG patterns specific for ZD. Group 1 comprised patients with proven long-standing ZD that refused surgical treatment (n = 11, age mean = 55.7 years). Group 2 comprised surgically operated on patients with ZD (n = 6, age mean = 61 years). The timing, amplitude, and graphic patterns of activity of the masseter, submental, and laryngeal strap muscles were examined during voluntary single water swallows ("normal"), single swallows of excessive amounts of water (20 ml, "stress test"), and continuous drinking of 100 cc of water. The muscle activity in pharyngeal and initial esophageal stages of swallowing was measured, and graphic records were evaluated in relation to timing and voltage. The data were compared with the previously established normative database. The main sEMG patterns of ZD are (1) duration of swallowing and drinking is longer than normal (p swallowing activity is higher than normal (p swallow followed by secondary swallow of the regurgitated portion of a bolus as seen at the sEMG records are specific graphic patterns for the ZD. Zenker's diverticulum has its own specific sEMG patterns. Surface EMG, being an important screening method for patients with dysphagia, is a valuable additional diagnostic tool for ZD. Because it is noninvasive and nonradiographic, it can be used for monitoring of long-standing cases of the disease as well as monitoring of postsurgical recovery.

  20. Application-Ready Expedited MODIS Data for Operational Land Surface Monitoring of Vegetation Condition

    Directory of Open Access Journals (Sweden)

    Jesslyn F. Brown

    2015-12-01

    Full Text Available Monitoring systems benefit from high temporal frequency image data collected from the Moderate Resolution Imaging Spectroradiometer (MODIS system. Because of near-daily global coverage, MODIS data are beneficial to applications that require timely information about vegetation condition related to drought, flooding, or fire danger. Rapid satellite data streams in operational applications have clear benefits for monitoring vegetation, especially when information can be delivered as fast as changing surface conditions. An “expedited” processing system called “eMODIS” operated by the U.S. Geological Survey provides rapid MODIS surface reflectance data to operational applications in less than 24 h offering tailored, consistently-processed information products that complement standard MODIS products. We assessed eMODIS quality and consistency by comparing to standard MODIS data. Only land data with known high quality were analyzed in a central U.S. study area. When compared to standard MODIS (MOD/MYD09Q1, the eMODIS Normalized Difference Vegetation Index (NDVI maintained a strong, significant relationship to standard MODIS NDVI, whether from morning (Terra or afternoon (Aqua orbits. The Aqua eMODIS data were more prone to noise than the Terra data, likely due to differences in the internal cloud mask used in MOD/MYD09Q1 or compositing rules. Post-processing temporal smoothing decreased noise in eMODIS data.

  1. Monitoring of the Earth's surface deformation in the area of water dam Zarnowiec

    Science.gov (United States)

    Mojzes, Marcel; Wozniak, Marek; Habel, Branislav; Macak, Marek

    2017-04-01

    Mathematical and physical research directly motivates geodetic community which can provide very accurate measurements for testing of the proposed models Earth's surface motion near the water dams should be monitored due to the security of the area. This is a process which includes testing of existing models and their physical parameters. Change of the models can improve the practical results for analyzing the trends of motion in the area of upper reservoir of water dam Zarnowiec. Since 1998 Warsaw University of Technology realized a research focused on the horizontal displacements of the upper reservoir of water dam Zarnowiec. The 15 selected control points located on the upper reservoir crown of the water dam were monitored by classical distance measurements. It was found out that changes in the object's geometry occur due to the variation of the water level. The control measurements of the changes in the object's geometry occurring during the process of emptying and filling of the upper reservoir of water dam were compared with the deformations computed using improved Boussinesqués method programmed in the software MATLAB and ANSYS for elastic and isotropic half space as derivation of suitable potentials extended to the loaded region. The details and numerical results of this process are presented This presentation was prepared within the project "National Centre for Diagnostic of the Earth's Surface Deformations in the Area of Slovakia", ITMS code: 26220220108.

  2. T Tank Farm Interim Surface Barrier Demonstration--Vadose Zone Monitoring Plan

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. F.; Keller, Jason M.; Strickland, Christopher E.

    2007-04-01

    The Hanford Site has 149 underground single-shell tanks that store hazardous radioactive waste. Many of these tanks and their associated infrastructure (e.g., pipelines, diversion boxes) have leaked. Some of the leaked waste has entered the groundwater. The largest known leak occurred from the T-106 Tank in 1973. Many of the contaminants from that leak still reside within the vadose zone beneath the T Tank Farm. CH2M Hill Hanford Group, Inc. seeks to minimize movement of this residual contaminant plume by placing an interim barrier on the surface. Such a barrier is expected to prevent infiltrating water from reaching the plume and moving it further. A plan has been prepared to monitor and determine the effectiveness of the interim surface barrier. Soil water content and water pressure will be monitored using off-the-shelf equipment that can be installed by the hydraulic hammer technique. In fiscal year 2006, two instrument nests were installed. Each instrument nest contains a neutron probe access tube, a capacitance probe, four heat-dissipation units, and a drain gauge to measure soil water flux. A meteorological station has been installed outside of the fence. In fiscal year 2007, two additional instrument nests are planned to be installed beneath the proposed barrier.

  3. Superconductivity and symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Sarasua, L.G., E-mail: sarasua@fisica.edu.uy [Instituto de Fisica, Facultad de Ciencias, Universidad de la Republica, Montevideo (Uruguay)

    2012-02-15

    In the present work we consider the relation between superconductivity and spontaneous gauge symmetry breaking (SGBS). We show that ODLRO does not require in principle SBGS, even in the presence of particle number fluctuations, by examining exact solutions of a fermionic pairing model. The criteria become equivalent if a symmetry breaking field is allowed, which can be attributed to the interaction with the environment. However, superconducting states without SBGS are not forbidden.

  4. Quantum Spectral Symmetries

    Science.gov (United States)

    Hamhalter, Jan; Turilova, Ekaterina

    2017-02-01

    Quantum symmetries of spectral lattices are studied. Basic properties of spectral order on A W ∗-algebras are summarized. Connection between projection and spectral automorphisms is clarified by showing that, under mild conditions, any spectral automorphism is a composition of function calculus and Jordan ∗-automorphism. Complete description of quantum spectral symmetries on Type I and Type II A W ∗-factors are completely described.

  5. Dihedral flavor symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Blum, Alexander Simon

    2009-06-10

    This thesis deals with the possibility of describing the flavor sector of the Standard Model of Particle Physics (with neutrino masses), that is the fermion masses and mixing matrices, with a discrete, non-abelian flavor symmetry. In particular, mass independent textures are considered, where one or several of the mixing angles are determined by group theory alone and are independent of the fermion masses. To this end a systematic analysis of a large class of discrete symmetries, the dihedral groups, is analyzed. Mass independent textures originating from such symmetries are described and it is shown that such structures arise naturally from the minimization of scalar potentials, where the scalars are gauge singlet flavons transforming non-trivially only under the flavor group. Two models are constructed from this input, one describing leptons, based on the group D{sub 4}, the other describing quarks and employing the symmetry D{sub 14}. In the latter model it is the quark mixing matrix element V{sub ud} - basically the Cabibbo angle - which is at leading order predicted from group theory. Finally, discrete flavor groups are discussed as subgroups of a continuous gauge symmetry and it is shown that this implies that the original gauge symmetry is broken by fairly large representations. (orig.)

  6. The nuclear symmetry energy

    Science.gov (United States)

    Baldo, M.; Burgio, G. F.

    2016-11-01

    The nuclear symmetry energy characterizes the variation of the binding energy as the neutron to proton ratio of a nuclear system is varied. This is one of the most important features of nuclear physics in general, since it is just related to the two component nature of the nuclear systems. As such it is one of the most relevant physical parameters that affect the physics of many phenomena and nuclear processes. This review paper presents a survey of the role and relevance of the nuclear symmetry energy in different fields of research and of the accuracy of its determination from the phenomenology and from the microscopic many-body theory. In recent years, a great interest was devoted not only to the Nuclear Matter symmetry energy at saturation density but also to its whole density dependence, which is an essential ingredient for our understanding of many phenomena. We analyze the nuclear symmetry energy in different realms of nuclear physics and astrophysics. In particular we consider the nuclear symmetry energy in relation to nuclear structure, astrophysics of Neutron Stars and supernovae, and heavy ion collision experiments, trying to elucidate the connections of these different fields on the basis of the symmetry energy peculiarities. The interplay between experimental and observational data and theoretical developments is stressed. The expected future developments and improvements are schematically addressed, together with most demanded experimental and theoretical advances for the next few years.

  7. Chemcatcher and DGT passive sampling devices for regulatory monitoring of trace metals in surface water.

    Science.gov (United States)

    Allan, Ian J; Knutsson, Jesper; Guigues, Nathalie; Mills, Graham A; Fouillac, Anne-Marie; Greenwood, Richard

    2008-07-01

    This work aimed to evaluate whether the performance of passive sampling devices in measuring time-weighted average (TWA) concentrations supports their application in regulatory monitoring of trace metals in surface waters, such as for the European Union's Water Framework Directive (WFD). The ability of the Chemcatcher and the diffusive gradient in thin film (DGT) device sampler to provide comparable TWA concentrations of Cd, Cu, Ni, Pb and Zn was tested through consecutive and overlapping deployments (7-28 days) in the River Meuse (The Netherlands). In order to evaluate the consistency of these TWA labile metal concentrations, these were assessed against total and filtered concentrations measured at relatively high frequencies by two teams using standard monitoring procedures, and metal species predicted by equilibrium speciation modeling using Visual MINTEQ. For Cd and Zn, the concentrations obtained with filtered water samples and the passive sampling devices were generally similar. The samplers consistently underestimated filtered concentrations of Cu and Ni, in agreement with their respective predicted speciation. For Pb, a small labile fraction was mainly responsible for low sampler accumulation and hence high measurement uncertainty. While only the high frequency of spot sampling procedures enabled the observation of higher Cd concentrations during the first 14 days, consecutive DGT deployments were able to detect it and provide a reasonable estimate of ambient concentrations. The range of concentrations measured by spot and passive sampling, for exposures up to 28 days, demonstrated that both modes of monitoring were equally reliable. Passive sampling provides information that cannot be obtained by a realistic spot sampling frequency and this may impact on the ability to detect trends and assess monitoring data against environmental quality standards when concentrations fluctuate.

  8. Preliminary results of continuous GPS monitoring of surface deformation at the Aquistore underground CO2 storage site

    Science.gov (United States)

    Craymer, M. R.; Henton, J. A.; Piraszewski, M.; Silliker, J.; Samsonov, S. V.

    2013-12-01

    Aquistore is a demonstration project for the underground storage of CO2 at a depth of ~3350 m near Estevan, Saskatchewan, Canada. An objective of the project is to design, adapt, and test non-seismic monitoring methods that have not been systematically utilized to date for monitoring CO2 storage projects, and to integrate the data from these various monitoring tools to obtain quantitative estimates of the change in subsurface fluid distributions, pressure changes and associated surface deformation. Monitoring methods being applied include satellite-, surface- and wellbore-based monitoring systems and comprise natural- and controlled-source electromagnetic methods, gravity monitoring, GPS, synthetic aperture radar interferometry (InSAR), tiltmeter array analysis, and chemical tracer studies. Here we focus on the GPS monitoring of surface deformation. Five of the planned thirteen GPS monitoring stations were installed in November 2012 and results subsequently processed on a weekly basis. The first GPS results prior to CO2 injection have just been determined using both precise point positioning (PPP) and baseline processing with the Bernese GPS Software. The time series of the five sites are examined, compared and analysed with respect to monument stability, seasonal signals and estimates of expected regional ground motion. The individual weekly network solutions are combined together in a cumulative 4D network solution to provide a preliminary local velocity field in the immediately vicinity of the injection well. The results are compared to those from InSAR.

  9. Near-surface monitoring strategies for geologic carbon dioxide storage verification

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, Curtis M.; Lewicki, Jennifer L.; Hepple, Robert P.

    2003-10-31

    Geologic carbon sequestration is the capture of anthropogenic carbon dioxide (CO{sub 2}) and its storage in deep geologic formations. Geologic CO{sub 2} storage verification will be needed to ensure that CO{sub 2} is not leaking from the intended storage formation and seeping out of the ground. Because the ultimate failure of geologic CO{sub 2} storage occurs when CO{sub 2} seeps out of the ground into the atmospheric surface layer, and because elevated concentrations of CO{sub 2} near the ground surface can cause health, safety, and environmental risks, monitoring will need to be carried out in the near-surface environment. The detection of a CO{sub 2} leakage or seepage signal (LOSS) in the near-surface environment is challenging because there are large natural variations in CO{sub 2} concentrations and fluxes arising from soil, plant, and subsurface processes. The term leakage refers to CO{sub 2} migration away from the intended storage site, while seepage is defined as CO{sub 2} passing from one medium to another, for example across the ground surface. The flow and transport of CO{sub 2} at high concentrations in the near-surface environment will be controlled by its high density, low viscosity, and high solubility in water relative to air. Numerical simulations of leakage and seepage show that CO{sub 2} concentrations can reach very high levels in the shallow subsurface even for relatively modest CO{sub 2} leakage fluxes. However, once CO{sub 2} seeps out of the ground into the atmospheric surface layer, surface winds are effective at dispersing CO{sub 2} seepage. In natural ecological systems with no CO{sub 2} LOSS, near-surface CO{sub 2} fluxes and concentrations are controlled by CO{sub 2} uptake by photosynthesis, and production by root respiration, organic carbon biodegradation in soil, deep outgassing of CO{sub 2}, and by exchange of CO{sub 2} with the atmosphere. Existing technologies available for monitoring CO{sub 2} in the near-surface environment

  10. Efficient near-real-time monitoring of 3D surface displacements in complex landslide scenarios

    Science.gov (United States)

    Allasia, Paolo; Manconi, Andrea; Giordan, Daniele; Baldo, Marco; Lollino, Giorgio

    2013-04-01

    Ground deformation measurements play a key role in monitoring activities of landslides. A wide spectrum of instruments and methods is nowadays available, going from in-situ to remote sensing approaches. In emergency scenarios, monitoring is often based on automated instruments capable to achieve accurate measurements, possibly with a very high temporal resolution, in order to achieve the best information about the evolution of the landslide in near-real-time, aiming at early warning purposes. However, the available tools for a rapid and efficient exploitation, understanding and interpretation of the retrieved measurements is still a challenge. This issue is particularly relevant in contexts where monitoring is fundamental to support early warning systems aimed at ensuring safety to people and/or infrastructures. Furthermore, in many cases the results obtained might be of difficult reading and divulgation, especially when people of different backgrounds are involved (e.g. scientists, authorities, civil protection operators, decision makers, etc.). In this work, we extend the concept of automatic and near real time from the acquisition of measurements to the data processing and divulgation, in order to achieve an efficient monitoring of surface displacements in landslide scenarios. We developed an algorithm that allows to go automatically and in near-real-time from the acquisition of 3D displacements on a landslide area to the efficient divulgation of the monitoring results via WEB. This set of straightforward procedures is called ADVICE (ADVanced dIsplaCement monitoring system for Early warning), and has been already successfully applied in several emergency scenarios. The algorithm includes: (i) data acquisition and transfer protocols; (ii) data collection, filtering, and validation; (iii) data analysis and restitution through a set of dedicated software, such as ©3DA [1]; (iv) recognition of displacement/velocity threshold and early warning (v) short term

  11. Local particle-ghost symmetry

    CERN Document Server

    Kawamura, Yoshiharu

    2015-01-01

    We study the quantization of systems with local particle-ghost symmetries. The systems contain ordinary particles including gauge bosons and their counterparts obeying different statistics. The particle-ghost symmetry is a kind of fermionic symmetry, different from the space-time supersymmetry and the BRST symmetry. Subsidiary conditions on states guarantee the unitarity of systems.

  12. HadISDH: an updateable land surface specific humidity product for climate monitoring

    Directory of Open Access Journals (Sweden)

    K. M. Willett

    2013-03-01

    Full Text Available HadISDH is a near-global land surface specific humidity monitoring product providing monthly means from 1973 onwards over large-scale grids. Presented herein to 2012, annual updates are anticipated. HadISDH is an update to the land component of HadCRUH, utilising the global high-resolution land surface station product HadISD as a basis. HadISD, in turn, uses an updated version of NOAA's Integrated Surface Database. Intensive automated quality control has been undertaken at the individual observation level, as part of HadISD processing. The data have been subsequently run through the pairwise homogenisation algorithm developed for NCDC's US Historical Climatology Network monthly temperature product. For the first time, uncertainty estimates are provided at the grid-box spatial scale and monthly timescale. HadISDH is in good agreement with existing land surface humidity products in periods of overlap, and with both land air and sea surface temperature estimates. Widespread moistening is shown over the 1973–2012 period. The largest moistening signals are over the tropics with drying over the subtropics, supporting other evidence of an intensified hydrological cycle over recent years. Moistening is detectable with high (95% confidence over large-scale averages for the globe, Northern Hemisphere and tropics, with trends of 0.089 (0.080 to 0.098 g kg−1 per decade, 0.086 (0.075 to 0.097 g kg−1 per decade and 0.133 (0.119 to 0.148 g kg−1 per decade, respectively. These changes are outside the uncertainty range for the large-scale average which is dominated by the spatial coverage component; station and grid-box sampling uncertainty is essentially negligible on large scales. A very small moistening (0.013 (−0.005 to 0.031 g kg−1 per decade is found in the Southern Hemisphere, but it is not significantly different from zero and uncertainty is large. When globally averaged, 1998 is the moistest year since monitoring began in 1973, closely

  13. HadISDH: an updateable land surface specific humidity product for climate monitoring

    Science.gov (United States)

    Willett, K. M.; Williams, C. N., Jr.; Dunn, R. J. H.; Thorne, P. W.; Bell, S.; de Podesta, M.; Jones, P. D.; Parker, D. E.

    2013-03-01

    HadISDH is a near-global land surface specific humidity monitoring product providing monthly means from 1973 onwards over large-scale grids. Presented herein to 2012, annual updates are anticipated. HadISDH is an update to the land component of HadCRUH, utilising the global high-resolution land surface station product HadISD as a basis. HadISD, in turn, uses an updated version of NOAA's Integrated Surface Database. Intensive automated quality control has been undertaken at the individual observation level, as part of HadISD processing. The data have been subsequently run through the pairwise homogenisation algorithm developed for NCDC's US Historical Climatology Network monthly temperature product. For the first time, uncertainty estimates are provided at the grid-box spatial scale and monthly timescale. HadISDH is in good agreement with existing land surface humidity products in periods of overlap, and with both land air and sea surface temperature estimates. Widespread moistening is shown over the 1973-2012 period. The largest moistening signals are over the tropics with drying over the subtropics, supporting other evidence of an intensified hydrological cycle over recent years. Moistening is detectable with high (95%) confidence over large-scale averages for the globe, Northern Hemisphere and tropics, with trends of 0.089 (0.080 to 0.098) g kg-1 per decade, 0.086 (0.075 to 0.097) g kg-1 per decade and 0.133 (0.119 to 0.148) g kg-1 per decade, respectively. These changes are outside the uncertainty range for the large-scale average which is dominated by the spatial coverage component; station and grid-box sampling uncertainty is essentially negligible on large scales. A very small moistening (0.013 (-0.005 to 0.031) g kg-1 per decade) is found in the Southern Hemisphere, but it is not significantly different from zero and uncertainty is large. When globally averaged, 1998 is the moistest year since monitoring began in 1973, closely followed by 2010, two strong El

  14. Real time monitoring of urban surface water quality using a submersible, tryptophan-like fluorescence sensor

    Science.gov (United States)

    Khamis, Kieran; Bradley, Chris; Hannah, David; Stevens, Rob

    2014-05-01

    Due to the recent development of field-deployable optical sensor technology, continuous quantification and characterization of surface water dissolved organic matter (DOM) is possible now. Tryptophan-like (T1) fluorescence has the potential to be a particularly useful indicator of human influence on water quality as T1 peaks are associated with the input of labial organic carbon (e.g. sewage or farm waste) and its microbial breakdown. Hence, real-time recording of T1 fluorescence could be particular useful for monitoring waste water infrastructure, treatment efficiency and the identification of contamination events at higher temporal resolution than available hitherto. However, an understanding of sensor measurement repeatability/transferability and interaction with environmental parameters (e.g. turbidity) is required. Here, to address this practical knowledge gap, we present results from a rigorous test of a commercially available submersible tryptophan fluorometer (λex 285, λem 350). Sensor performance was first examined in the laboratory by incrementally increasing turbidity under controlled conditions. Further to this the sensor was integrated into a multi-parameter sonde and field tests were undertaken involving: (i) a spatial sampling campaign across a range of surface water sites in the West Midlands, UK; and (ii) collection of high resolution (sub-hourly) samples from an urban stream (Bournbrook, Birmingham, U.K). To determine the ability of the sensor to capture spatiotemporal dynamics of urban waters DOM was characterized for each site or discrete time step using Excitation Emission Matrix spectroscopy and PARAFAC. In both field and laboratory settings fluorescence intensity was attenuated at high turbidity due to suspended particles increasing absorption and light scattering. For the spatial survey, instrument readings were compared to those obtained by a laboratory grade fluorometer (Varian Cary Eclipse) and a strong, linear relationship was apparent

  15. Near real-time monitoring of surface deformation at Long Valley Caldera, California (Invited)

    Science.gov (United States)

    Ji, K.; Llenos, A. L.; Herring, T.

    2013-12-01

    Continuous monitoring of volcanic activity enables us to detect changes from usual activity, issue alerts of impending eruptions and thereby reduce volcanic risk. We have developed a near real-time monitoring tool for surface deformation: the Targeted Projection Operator (TPO). TPO is simple, fast, and easily applied whenever new data are available. With Global Positioning System (GPS) data, we have used TPO for continuous monitoring of surface deformation in the Long Valley Caldera (LVC) region in eastern California. TPO projects GPS position time series onto a target spatial pattern and obtains the amplitude of the projection at each epoch. For this, we assume that a deformation event (i.e., an inflationary or deflationary event) has the same spatial pattern as past events but with possibly different amplitude. This assumption is reasonable for the recent quiet phase in LVC because the 2007-2009 inflation is similar to the 2009-2010 deflation with respect to the deformation pattern. We selected horizontal pattern of the 2009-2010 event along which the GPS data are projected to recover the time-varying amplitudes. Large changes in amplitude imply changes in strength of the event. An anomalous change can be detected by comparing with amplitudes during relatively quiet time periods. Growing misfits between the TPO spatial pattern and the spatial variations of the GPS pattern, indicate changes in the deformation mechanism which can then be explored to assess whether potentially new mechanisms are developing. So far this has not been the case for LVC; the current spatial patterns of deformation match the shape deduced for the 2007-2009 inflation event. TPO shows that LVC has experienced inflation since late 2011 although the rate briefly slowed down in May and October 2012 and has started to slow again since June 2013. The rate of this event is about four times faster than the 2007-2009 inflation event and is consistent with a Mogi source located beneath the resurgent

  16. Monitoring rapid urban expansion using a multi-temporal RGB-impervious surface model

    Institute of Scientific and Technical Information of China (English)

    Amirreza SHAHTAHMASSEBI; Zhou-lu YU; Ke WANG; Hong-wei XU; Jin-song DENG; Jia-dan LI; Rui-sen LUO; Jing WU; Nathan MOORE

    2012-01-01

    In this paper,we developed a novel method of combining remote sensing tools at the sub-pixel level for accurate identification of impervious surface time series changes.We examined the use of the red-green-blue impervious surface model (RGB-IS) in detecting time series internal modification of urban regions by integrating Landsat data collected over four different periods between 1987 and 2009 (i.e.,1987,2000,2002,and 2009).The performance of this approach was compared with two conventional methods,namely standard RGB-normalized difference vegetation index (NDVI) and post-classification technique.In contrast to conventional techniques,RGB-IS could monitor between-class changes,within-class changes,and location of these modifications.The proposed method was independent of seasonal changes and was also able to serve as a useful alternative for quick mapping growth hotspots and updating transportation corridor map.The results also showed that Cixi County,Zhejiang Province,China experienced tremendous impervious surface changes,especially along the corridors of newly constructed highways and around urban areas over the past 22 years.

  17. HadISDH land surface multi-variable humidity and temperature record for climate monitoring

    Directory of Open Access Journals (Sweden)

    K. M. Willett

    2014-06-01

    Full Text Available HadISDH.2.0.0 is the first gridded, multi-variable humidity and temperature climate-data product that is homogenised and annually updated. It provides physically consistent estimates for specific humidity, vapour pressure, relative humidity, dew point temperature, wet bulb temperature, dew point depression and temperature. It is a monthly-mean gridded (5° by 5° product with uncertainty estimates that account for spatio-temporal sampling, climatology calculation, homogenisation and irreducible random measurement effects. It provides a unique tool for the monitoring of a variety of humidity-related variables which have different impacts and implications for society. HadISDH.2.0.0 is shown to be in good agreement both with other estimates where they are available, and with theoretical understanding. The dataset is available from 1973 to the present. The theme common to all variables is of a warming world with more water vapour present in the atmosphere. The largest increases in water vapour are found over the tropics and Mediterranean. Over the tropics and high northern latitudes the surface air over land is becoming more saturated. However, despite increasing water vapour over the mid-latitudes and Mediterranean, the surface air over land is becoming less saturated. These observed features may be due to atmospheric circulation changes, land–sea warming disparities and reduced water availability or changed land surface properties.

  18. Surface Deformation Monitoring in Permafrost Regions of Tibetan Plateau Based on Alos Palsar Data

    Science.gov (United States)

    Chen, L. M.; Qiao, G.; Lu, P.

    2017-09-01

    The permafrost region of Qinghai-Tibet Plateau is widely distributed with the freeze/thaw processes that cause surface structural damage. The differential interferometry synthetic aperture radar (DInSAR) can detect large scale surface deformation with high precision, thus can be used to monitor the freeze/thaw processes of frozen soil area. In this paper, the surface deformation pattern of Qinghai-Tibet railway was analyzed by using the PALSAR 1.0 raw data of the ALOS satellite (L band) and 90m resolution SRTM DEM data, with the help of two-pass DInSAR method in GAMMA software, and the differential interferograms and deformation maps were obtained accordingly. Besides, the influence of temperature, topography and other factors on deformation of frozen soil were also studied. The following conclusions were obtained: there is a negative correlation between deformation and temperature, and there is a delay between the deformation change and that of temperature; deformation and elevation are positively correlated; the permafrost deformation is also affected by solar radiation that could form variable amplitude variation.

  19. Invariants of broken discrete symmetries

    CERN Document Server

    Kalozoumis, P; Diakonos, F K; Schmelcher, P

    2014-01-01

    The parity and Bloch theorems are generalized to the case of broken global symmetry. Local inversion or translation symmetries are shown to yield invariant currents that characterize wave propagation. These currents map the wave function from an arbitrary spatial domain to any symmetry-related domain. Our approach addresses any combination of local symmetries, thus applying in particular to acoustic, optical and matter waves. Nonvanishing values of the invariant currents provide a systematic pathway to the breaking of discrete global symmetries.

  20. Selective reflection technique as a probe to monitor the growth of a metallic thin film on dielectric surfaces

    CERN Document Server

    Martins, Weliton Soares; Chevrollier, Martine; de Silans, Thierry Passerat

    2013-01-01

    Controlling thin film formation is technologically challenging. The knowledge of physical properties of the film and of the atoms in the surface vicinity can help improve control over the film growth. We investigate the use of the well-established selective reflection technique to probe the thin film during its growth, simultaneously monitoring the film thickness, the atom-surface van der Waals interaction and the vapor properties in the surface vicinity.

  1. Cylindrical polarization symmetry for nondestructive nanocharacterization

    Science.gov (United States)

    Zhan, Qiwen

    2003-07-01

    Recently there is an increasing interest in laser beams with radial symmetry in polarization. Due to the cylindrical symmetry in polarization, these beams have unique focusing properties, which may find wide applications in a variety of nanometer scale applications, including high-resolution metrology, high-density data storage, and multi-functional optical microtool. In this paper, simple method of generating cylindrically polarized beams is presented and their potential applications to nondestructive nano-characterization are discussed. A high resolution surface plasmon microscope and a surface plasmon enhanced apertureless near-field scanning optical microscope are proposed. An automatic scanning microellipsometer that uses the cylindrical symmetry to enhance the signal-to-noise-ratio in high-spatial-resolution ellipsometric measurement will also be presented.

  2. The Nuclear Symmetry Energy

    CERN Document Server

    Baldo, M

    2016-01-01

    The nuclear symmetry energy characterizes the variation of the binding energy as the neutron to proton ratio of a nuclear system is varied. This is one of the most important features of nuclear physics in general, since it is just related to the two component nature of the nuclear systems. As such it is one of the most relevant physical parameters that affect the physics of many phenomena and nuclear processes. This review paper presents a survey of the role and relevance of the nuclear symmetry energy in different fields of research and of the accuracy of its determination from the phenomenology and from the microscopic many-body theory. In recent years, a great interest was devoted not only to the Nuclear Matter symmetry energy at saturation density but also to its whole density dependence, which is an essential ingredient for our understanding of many phenomena. We analyze the nuclear symmetry energy in different realms of nuclear physics and astrophysics. In particular we consider the nuclear symmetry ene...

  3. Lectures on Yangian symmetry

    Science.gov (United States)

    Loebbert, Florian

    2016-08-01

    In these introductory lectures we discuss the topic of Yangian symmetry from various perspectives. Forming the classical counterpart of the Yangian and an extension of ordinary Noether symmetries, first the concept of nonlocal charges in classical, two-dimensional field theory is reviewed. We then define the Yangian algebra following Drinfel’d's original motivation to construct solutions to the quantum Yang-Baxter equation. Different realizations of the Yangian and its mathematical role as a Hopf algebra and quantum group are discussed. We demonstrate how the Yangian algebra is implemented in quantum, two-dimensional field theories and how its generators are renormalized. Implications of Yangian symmetry on the two-dimensional scattering matrix are investigated. We furthermore consider the important case of discrete Yangian symmetry realized on integrable spin chains. Finally we give a brief introduction to Yangian symmetry in planar, four-dimensional super Yang-Mills theory and indicate its impact on the dilatation operator and tree-level scattering amplitudes. These lectures are illustrated by several examples, in particular the two-dimensional chiral Gross-Neveu model, the Heisenberg spin chain and { N }=4 superconformal Yang-Mills theory in four dimensions.

  4. Universal 23 symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Joshipura, A.S. [Physical Research Laboratory, Navarangpura, Ahmedabad (India)

    2008-01-15

    The possible maximal mixing seen in the oscillations of atmospheric neutrinos has led to the postulate of {mu}-{tau} symmetry, which interchanges {nu}{sub {mu}} and {nu}{sub {tau}}. We argue that such a symmetry need not be special to neutrinos but can be extended to all fermions. The assumption that all fermion mass matrices are approximately invariant under the interchange of the second and the third generation fields is shown to be phenomenologically viable and has interesting consequences. In the quark sector, the smallness of V{sub ub} and V{sub cb} can be consequences of this approximate 2-3 symmetry. The same approximate symmetry can simultaneously lead to a large atmospheric mixing angle and can describe the leptonic mixing quite well. We identify two generic scenarios leading to this. One is based on the conventional type-I seesaw mechanism and the other follows from the type-II seesaw model. The latter requires a quasi-degenerate neutrino spectrum for obtaining large atmospheric neutrino mixing in the presence of an approximate {mu}-{tau} symmetry. (orig.)

  5. Monitoring for Pesticides in Groundwater and Surface Water in Nevada, 2008

    Science.gov (United States)

    Thodal, Carl E.; Carpenter, Jon; Moses, Charles W.

    2009-01-01

    Johnson, 1997). Groundwater contamination also may come indirectly by the percolation of agricultural and urban irrigation water through soil layers and into groundwater and from pesticide residue in surface water, such as drainage ditches, streams, and municipal wastewater. To protect surface water and groundwater from pesticide contamination, the USEPA requires that all states establish a pesticide management plan. The Nevada Department of Agriculture (NDOA), with assistance from the USEPA, developed a management program of education (Hefner and Donaldson, 2006), regulation (Johnson and others, 2006), and monitoring (Pennington and others, 2001) to protect Nevada's water resources from pesticide contaminants. Sampling sites are located in areas where urban or agricultural pesticide use may affect groundwater, water bodies, endangered species, and other aquatic life. Information gathered from these sites is used by NDOA to help make regulatory decisions that will protect human and environmental health by reducing and eliminating the occurrence of pesticide contamination. This fact sheet describes current (2008) pesticide monitoring of groundwater and streams by the NDOA in Nevada and supersedes Pennington and others (2001).

  6. Testing and monitoring plan for the permanent isolation surface barrier prototype

    Energy Technology Data Exchange (ETDEWEB)

    Gee, G.W.; Cadwell, L.L.; Freeman, H.D.; Ligotke, M.W.; Link, S.O.; Romine, R.A.; Walters, W.H. Jr.

    1993-06-01

    This document is a testing and monitoring plan for a prototype barrier to be constructed at the Hanford Site in 1993. The prototype barrier is an aboveground structure engineered to demonstrate the basic features of an earthen cover system, designed to permanently isolate waste from the biosphere. These features include multiple layers of soil and rock materials and a low-permeability asphalt sublayer. The surface of the barrier consists of silt loam soil, vegetated with plants. The barrier sides are reinforced with rock or coarse earthen-fill to protect against wind and water erosion. The sublayers inhibit plant and animal intrusion and percolation of water. A series of tests will be conducted on the prototype over the next several years to evaluate barrier performance under extreme climatic conditions.

  7. Monitoring and assessment of surface water acidification following rewetting of oxidised acid sulfate soils.

    Science.gov (United States)

    Mosley, Luke M; Zammit, Benjamin; Jolley, Ann-Marie; Barnett, Liz; Fitzpatrick, Rob

    2014-01-01

    Large-scale exposure of acid sulfate soils during a hydrological drought in the Lower Lakes of South Australia resulted in acidification of surface water in several locations. Our aim was to describe the techniques used to monitor, assess and manage these acidification events using a field and laboratory dataset (n = 1,208) of acidic to circum-neutral pH water samples. The median pH of the acidified (pH  H(+) ≈ Mn(II) > Fe(II/III)) but was about 20 % higher on average. Geochemical speciation calculations and XRD measurements indicated that solid phase minerals (schwertmannite and jarosite for Fe and jurbanite for Al) were likely controlling dissolved metal concentrations and influencing measured acidity between pH 2 and 5.

  8. Development of surface enhanced Raman scattering (SERS) spectroscopy monitoring of fuel markers to prevent fraud

    Science.gov (United States)

    Wilkinson, Timothy; Clarkson, John; White, Peter C.; Meakin, Nicholas; McDonald, Ken

    2013-05-01

    Governments often tax fuel products to generate revenues to support and stimulate their economies. They also subsidize the cost of essential fuel products. Fuel taxation and subsidization practices are both subject to fraud. Oil marketing companies also suffer from fuel fraud with loss of legitimate sales and additional quality and liability issues. The use of an advanced marking system to identify and control fraud has been shown to be effective in controlling illegal activity. DeCipher has developed surface enhanced Raman scattering (SERS) spectroscopy as its lead technology for measuring markers in fuel to identify and control malpractice. SERS has many advantages that make it highly suitable for this purpose. The SERS instruments are portable and can be used to monitor fuel at any point in the supply chain. SERS shows high specificity for the marker, with no false positives. Multiple markers can also be detected in a single SERS analysis allowing, for example, specific regional monitoring of fuel. The SERS analysis from fuel is also quick, clear and decisive, with a measurement time of less than 5 minutes. We will present results highlighting our development of the use of a highly stable silver colloid as a SERS substrate to measure the markers at ppb levels. Preliminary results from the use of a solid state SERS substrate to measure fuel markers will also be presented.

  9. Green tea polyphenol tailors cell adhesivity of RGD displaying surfaces: multicomponent models monitored optically

    Science.gov (United States)

    Peter, Beatrix; Farkas, Eniko; Forgacs, Eniko; Saftics, Andras; Kovacs, Boglarka; Kurunczi, Sandor; Szekacs, Inna; Csampai, Antal; Bosze, Szilvia; Horvath, Robert

    2017-02-01

    The interaction of the anti-adhesive coating, poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) and its Arg-Gly-Asp (RGD) functionalized form, PLL-g-PEG-RGD, with the green tea polyphenol, epigallocatechin-gallate (EGCg) was in situ monitored. After, the kinetics of cellular adhesion on the EGCg exposed coatings were recorded in real-time. The employed plate-based waveguide biosensor is applicable to monitor small molecule binding and sensitive to sub-nanometer scale changes in cell membrane position and cell mass distribution; while detecting the signals of thousands of adhering cells. The combination of this remarkable sensitivity and throughput opens up new avenues in testing complicated models of cell-surface interactions. The systematic studies revealed that, despite the reported excellent antifouling properties of the coatings, EGCg strongly interacted with them, and affected their cell adhesivity in a concentration dependent manner. Moreover, the differences between the effects of the fresh and oxidized EGCg solutions were first demonstrated. Using a semiempirical quantumchemical method we showed that EGCg binds to the PEG chains of PLL-g-PEG-RGD and effectively blocks the RGD sites by hydrogen bonds. The calculations supported the experimental finding that the binding is stronger for the oxidative products. Our work lead to a new model of polyphenol action on cell adhesion ligand accessibility and matrix rigidity.

  10. Green tea polyphenol tailors cell adhesivity of RGD displaying surfaces: multicomponent models monitored optically

    Science.gov (United States)

    Peter, Beatrix; Farkas, Eniko; Forgacs, Eniko; Saftics, Andras; Kovacs, Boglarka; Kurunczi, Sandor; Szekacs, Inna; Csampai, Antal; Bosze, Szilvia; Horvath, Robert

    2017-01-01

    The interaction of the anti-adhesive coating, poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) and its Arg-Gly-Asp (RGD) functionalized form, PLL-g-PEG-RGD, with the green tea polyphenol, epigallocatechin-gallate (EGCg) was in situ monitored. After, the kinetics of cellular adhesion on the EGCg exposed coatings were recorded in real-time. The employed plate-based waveguide biosensor is applicable to monitor small molecule binding and sensitive to sub-nanometer scale changes in cell membrane position and cell mass distribution; while detecting the signals of thousands of adhering cells. The combination of this remarkable sensitivity and throughput opens up new avenues in testing complicated models of cell-surface interactions. The systematic studies revealed that, despite the reported excellent antifouling properties of the coatings, EGCg strongly interacted with them, and affected their cell adhesivity in a concentration dependent manner. Moreover, the differences between the effects of the fresh and oxidized EGCg solutions were first demonstrated. Using a semiempirical quantumchemical method we showed that EGCg binds to the PEG chains of PLL-g-PEG-RGD and effectively blocks the RGD sites by hydrogen bonds. The calculations supported the experimental finding that the binding is stronger for the oxidative products. Our work lead to a new model of polyphenol action on cell adhesion ligand accessibility and matrix rigidity. PMID:28186133

  11. Thermal, Electrical and Surface Hydrophobic Properties of Electrospun Polyacrylonitrile Nanofibers for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Ibrahim M. Alarifi

    2015-10-01

    Full Text Available This paper presents an idea of using carbonized electrospun Polyacrylonitrile (PAN fibers as a sensor material in a structural health monitoring (SHM system. The electrospun PAN fibers are lightweight, less costly and do not interfere with the functioning of infrastructure. This study deals with the fabrication of PAN-based nanofibers via electrospinning followed by stabilization and carbonization in order to remove all non-carbonaceous material and ensure pure carbon fibers as the resulting material. Electrochemical impedance spectroscopy was used to determine the ionic conductivity of PAN fibers. The X-ray diffraction study showed that the repeated peaks near 42° on the activated nanofiber film were α and β phases, respectively, with crystalline forms. Contact angle, thermogravimetric analysis (TGA, differential scanning calorimetry (DSC and Fourier transform infrared spectroscopy (FTIR were also employed to examine the surface, thermal and chemical properties of the carbonized electrospun PAN fibers. The test results indicated that the carbonized PAN nanofibers have superior physical properties, which may be useful for structural health monitoring (SHM applications in different industries.

  12. Thermal, Electrical and Surface Hydrophobic Properties of Electrospun Polyacrylonitrile Nanofibers for Structural Health Monitoring.

    Science.gov (United States)

    Alarifi, Ibrahim M; Alharbi, Abdulaziz; Khan, Waseem S; Swindle, Andrew; Asmatulu, Ramazan

    2015-10-14

    This paper presents an idea of using carbonized electrospun Polyacrylonitrile (PAN) fibers as a sensor material in a structural health monitoring (SHM) system. The electrospun PAN fibers are lightweight, less costly and do not interfere with the functioning of infrastructure. This study deals with the fabrication of PAN-based nanofibers via electrospinning followed by stabilization and carbonization in order to remove all non-carbonaceous material and ensure pure carbon fibers as the resulting material. Electrochemical impedance spectroscopy was used to determine the ionic conductivity of PAN fibers. The X-ray diffraction study showed that the repeated peaks near 42° on the activated nanofiber film were α and β phases, respectively, with crystalline forms. Contact angle, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) were also employed to examine the surface, thermal and chemical properties of the carbonized electrospun PAN fibers. The test results indicated that the carbonized PAN nanofibers have superior physical properties, which may be useful for structural health monitoring (SHM) applications in different industries.

  13. New techniques for environmental monitoring and risk assessment in water surface systems

    Science.gov (United States)

    Valyrakis, Manousos; Alexakis, Athanasios-Theodosios; Maniatis, Georgios; Hoey, Trevor; Escudero, Javier; Vagras, Patricia

    2016-04-01

    Our society is continuously impacted by significant weather events many times resulting in catastrophes that interrupt our normal way of life. In the context of climate change and increasing urbanisation these "extreme" hydrologic events are intensified both in magnitude and frequency, inducing costs of the order of billions of pounds. The vast majority of such costs and impacts (even more to developed societies) are due to water related catastrophes such as the geomorphic action of flowing water (including scouring of critical infrastructure, bed and bank destabilisation) and flooding. New tools and radically novel concepts are in need, to enable our society becoming more resilient. In this presentation, new research at the interface of sensors and water engineering is presented, focusing on addressing the above challenges in a holistic and comprehensive manner. In particular, the design, development, testing and calibration, as well as preliminary field implementation of a new tool for risk assessment and environmental monitoring in water surface systems, is explored in this work. It is demonstrated that novel advances in conceptual approaches in water engineering and specifically in the field of hydrodynamic transport of solids (such as the impulse and energy criteria) can be successfully combined with rapid advances in sensors to help monitor and increase the resilience of our society against catastrophic hydrologic events.

  14. Potential of Multitemporal Tandem-X Derived Crop Surface Models for Maize Growth Monitoring

    Science.gov (United States)

    Hütt, C.; Tilly, N.; Schiedung, H.; Bareth, G.

    2016-06-01

    In this study, first results of retrieving plant heights of maize fields from multitemporal TanDEM-X images are shown. Three TanDEM-X dual polarization spotlight acquisitions were taken over a rural area in Germany in the growing season 2014. By interferometric processing, digital terrain models (DTM) were derived for each date with 5m resolution. From the data of the first acquisition (June 1st) taken before planting, a DTM of the bare ground is generated. The data of the following acquisition dates (July 15th, July 26th) are used to establish crop surface models (CSM). A CSM represents the crop surface of a whole field in a high resolution. By subtracting the DTM of the ground from each CSM, the actual plant height is calculated. Within these data sets 30 maize fields in the area of interest could be detected and verified by external land use data. Besides the spaceborne measurements, one of the maize fields was intensively investigated using terrestrial laser scanning (TLS), which was carried out at the same dates as the predicted TanDEM-X acquisitions. Visual inspection of the derived plant heights, and accordance of the individually processed polarisations over the maize fields, demonstrate the feasibility of the proposed method. Unfortunately, the infield variability of the intensively monitored field could not be successfully captured in the TanDEM-X derived plant heights and merely the general trend is visible. Nevertheless, the study shows the potential of the TanDEM-X constellation for maize height monitoring on field level.

  15. Monitoring of Sound and Carious Surfaces under Sealants over 44 Months

    Science.gov (United States)

    Fontana, M.; Platt, J.A.; Eckert, G.J.; González-Cabezas, C.; Yoder, K.; Zero, D.T.; Ando, M.; Soto-Rojas, A.E.; Peters, M.C.

    2014-01-01

    Although there is strong evidence for the effectiveness of sealants, one major barrier in sealant utilization is the concern of sealing over active caries lesions. This study evaluated detection and monitoring of caries lesions through a clear sealant over 44 mo. Sixty-four 7- to 10-year-old children with at least 2 permanent molars with International Caries Detection and Assessment System (ICDAS) scores 0-4 (and caries less than halfway through the dentin, radiographically) were examined with ICDAS, DIAGNOdent, and quantitative light-induced fluorescence (QLF) before sealant placement and 1, 12, 24, and 44 mo (except QLF) after. Bitewing radiographs were taken yearly. DIAGNOdent and QLF were able to distinguish between baseline ICDAS before and after sealant placement. There was no significant evidence of ICDAS progression at 12 mo, but there was small evidence of minor increases at 24 and 44 mo (14% and 14%, respectively) with only 2% ICDAS ≥ 5. Additionally, there was little evidence of radiographic progression (at 12 mo = 1%, 24 mo = 3%, and 44 mo = 9%). Sealant retention rates were excellent at 12 mo = 89%, 24 mo = 78%, and 44 mo = 70%. The small risk of sealant repair increased significantly as baseline ICDAS, DIAGNOdent, and QLF values increased. However, regardless of lesion severity, sealants were 100% effective at 12 mo and 98% effective over 44 mo in managing occlusal surfaces at ICDAS 0-4 (i.e., only 4 of 228 teeth progressed to ICDAS ≥ 5 associated with sealants in need of repair and none to halfway or more through the dentin, radiographically). This study suggests that occlusal surfaces without frank cavitation (ICDAS 0-4) that are sealed with a clear sealant can be monitored with ICDAS, QLF, or DIAGNOdent, which may aid in predicting the need for sealant repair. PMID:25248613

  16. Monitoring of sound and carious surfaces under sealants over 44 months.

    Science.gov (United States)

    Fontana, M; Platt, J A; Eckert, G J; González-Cabezas, C; Yoder, K; Zero, D T; Ando, M; Soto-Rojas, A E; Peters, M C

    2014-11-01

    Although there is strong evidence for the effectiveness of sealants, one major barrier in sealant utilization is the concern of sealing over active caries lesions. This study evaluated detection and monitoring of caries lesions through a clear sealant over 44 mo. Sixty-four 7- to 10-year-old children with at least 2 permanent molars with International Caries Detection and Assessment System (ICDAS) scores 0-4 (and caries less than halfway through the dentin, radiographically) were examined with ICDAS, DIAGNOdent, and quantitative light-induced fluorescence (QLF) before sealant placement and 1, 12, 24, and 44 mo (except QLF) after. Bitewing radiographs were taken yearly. DIAGNOdent and QLF were able to distinguish between baseline ICDAS before and after sealant placement. There was no significant evidence of ICDAS progression at 12 mo, but there was small evidence of minor increases at 24 and 44 mo (14% and 14%, respectively) with only 2% ICDAS ≥ 5. Additionally, there was little evidence of radiographic progression (at 12 mo = 1%, 24 mo = 3%, and 44 mo = 9%). Sealant retention rates were excellent at 12 mo = 89%, 24 mo = 78%, and 44 mo = 70%. The small risk of sealant repair increased significantly as baseline ICDAS, DIAGNOdent, and QLF values increased. However, regardless of lesion severity, sealants were 100% effective at 12 mo and 98% effective over 44 mo in managing occlusal surfaces at ICDAS 0-4 (i.e., only 4 of 228 teeth progressed to ICDAS ≥ 5 associated with sealants in need of repair and none to halfway or more through the dentin, radiographically). This study suggests that occlusal surfaces without frank cavitation (ICDAS 0-4) that are sealed with a clear sealant can be monitored with ICDAS, QLF, or DIAGNOdent, which may aid in predicting the need for sealant repair.

  17. A network of autonomous surface ozone monitors in Antarctica: technical description and first results

    Directory of Open Access Journals (Sweden)

    S. J.-B. Bauguitte

    2011-04-01

    Full Text Available A suite of 10 autonomous ozone monitoring units, each powered using renewable energy, was developed and built to study surface ozone in Antarctica during the International Polar Year (2007–2009. The monitoring systems were deployed in a network around the Weddell Sea sector of coastal Antarctica with a transect up onto the Antarctic Plateau. The aim was to measure for a full year, thus gaining a much-improved broader view of boundary layer ozone seasonality at different locations as well as of factors affecting the budget of surface ozone in Antarctica. Ozone mixing ratios were measured based on UV photometry using a modified version of the commercial 2B Technologies Inc. Model 202 instrument. All but one of the autonomous units measured successfully within its predefined duty cycle throughout the year, with some differences in performance dependent on power availability and ambient temperature. Mean data recovery after removal of outliers was on average 70% (range 44–83% and precision varied between 1.5 and 8 ppbv, thus was sufficiently good to resolve year-round the main ozone features of scientific interest. We conclude that, with adequate power, and noting a minor communication problem, our units would be able to operate successfully at ambient temperatures down to −60 °C. Systems such as the one described in this paper, or derivatives of it, could therefore be deployed either as local or regional networks elsewhere in the Arctic or Antarctic. Here we present technical information and first results from the experiment.

  18. Physics-based approach for the monitoring of Land Surface Phenology

    Science.gov (United States)

    de Beurs, K. M.; Henebry, G. M.

    2008-12-01

    The onset of greening, the start of senescence, the timing of the maximum of the growing season, and the growing season length are frequently calculated metrics of phenology based on satellite imagery. Data collected by the MODIS sensors as opposed to AVHRR sensors give us a wider range of available reflectance bands to monitor vegetation development. Nevertheless, statistical time series analysis is still typically applied to the Normalized Difference Vegetation Index (NDVI) based on only the red and near infrared bands. The Enhanced Vegetation Index (EVI) might be the only frequently used vegetation index utilizing the enhanced spectral capabilities of MODIS. While short wave infrared (SWIR) bands have proven to be extremely useful in vegetation monitoring with Landsat data, they are still rarely used in MODIS vegetation analysis. Furthermore, even though skin temperature and NDVI have been combined in energy balance and land cover studies, the combination is rarely used to investigate land surface phenology. Here we use a set of reflectance and emittance bands to provide a characterization of the growing season in North America. Using NDVI, the Normalized Difference Infrared Index (NDII), MODIS Tasseled Cap indices, and the MODIS land surface temperature, we create a broader range of phenological metrics for the characterization of the growing season vegetation activity. We demonstrate the methods using MODIS/Terra+Aqua Nadir BRDF-Adjusted Reflectance 16-Day L3 Global 0.05Deg CMG V005 (MCD43C4) data from 2001 to 2007 for North America. To illustrate the temporal stability of the selected indices, we calculate the temporal coefficient of variation and temporal interquartile range. Results show that both regions with typically very high NDVI values and regions with snow cover are better characterized using the combined approach.

  19. Two-plane symmetry in the structural organization of man.

    Science.gov (United States)

    Ermolenko, A E

    2005-01-01

    Manifestations of symmetry in the human structural organization in ontogenesis and phylogenetic development are analysed. A concept of macrobiocrystalloid with inherent complex symmetry is proposed for the description of the human organism in its integrity. The symmetry can be characterized as two-plane radial (quadrilateral), where the planar symmetry is predominant while the layout of organs of radial symmetry is subordinated to it. Out of the two planes of symmetry (sagittal and horizontal), the sagittal plane is predominant: (a) the location of the organs is governed by two principles: in compliance with the symmetry planes and in compliance with the radial symmetry around cavities; (b) the location of the radial symmetry organs is also governed by the principle of two-plane symmetry; (c) out of the four antimeres of two-plane symmetry, two are paired while the other two have merged into one organ; (d) some organs which are antimeres relative to the horizontal plane are located at the cranial end of the organism (sensory organs, cerebrum-cerebellum, heart-spleen and others). The two-plane symmetry is formed by two mechanisms--(a) the impact of morphogenetic fields of the whole crystalloid organism during embriogenesis and (b) genetic mechanisms of the development of chromosomes having two-plane symmetry. When comparing mineral and biological entities we should consider not the whole immobile crystal but only the active superficial part of a growing or dissolving crystal, the interface between the crystal surface and the crystal-forming environment which directly controls crystal growth and adapts itself to it, as well as crystal feed stock expressed in the structure of concentration flows. The symmetry of the chromosome, of the embrion at the early stages of cell cleavage as well as of some organs and systems in their phylogenetic development is described.

  20. Rigidity and symmetry

    CERN Document Server

    Weiss, Asia; Whiteley, Walter

    2014-01-01

    This book contains recent contributions to the fields of rigidity and symmetry with two primary focuses: to present the mathematically rigorous treatment of rigidity of structures, and to explore the interaction of geometry, algebra, and combinatorics. Overall, the book shows how researchers from diverse backgrounds explore connections among the various discrete structures with symmetry as the unifying theme.  Contributions present recent trends and advances in discrete geometry, particularly in the theory of polytopes. The rapid development of abstract polytope theory has resulted in a rich theory featuring an attractive interplay of methods and tools from discrete geometry, group theory, classical geometry, hyperbolic geometry and topology.  The volume will also be a valuable source as an introduction to the ideas of both combinatorial and geometric rigidity theory and its applications, incorporating the surprising impact of symmetry. It will appeal to students at both the advanced undergraduate and gradu...

  1. Seeing Science through Symmetry

    Science.gov (United States)

    Gould, L. I.

    Seeing Through Symmetry is a course that introduces non-science majors to the pervasive influence of symmetry in science. The concept of symmetry is usedboth as a link between subjects (such as physics, biology, mathematics, music, poetry, and art) and as a method within a subject. This is done through the development and use of interactive multimedia learning environments to stimulate learning. Computer-based labs enable the student to further explore the concept by being gently led from the arts to science. This talk is an update that includes some of the latest changes to the course. Explanations are given on methodology and how a variety of interactive multimedia tools contribute to both the lecture and lab portion of the course (created in 1991 and taught almost every semester since then, including one in Sweden).

  2. Binary Tetrahedral Flavor Symmetry

    CERN Document Server

    Eby, David A

    2013-01-01

    A study of the T' Model and its variants utilizing Binary Tetrahedral Flavor Symmetry. We begin with a description of the historical context and motivations for this theory, together with some conceptual background for added clarity, and an account of our theory's inception in previous works. Our model endeavors to bridge two categories of particles, leptons and quarks, a unification made possible by the inclusion of additional Higgs particles, shared between the two fermion sectors and creating a single coherent system. This is achieved through the use of the Binary Tetrahedral symmetry group and an investigation of the Tribimaximal symmetry evidenced by neutrinos. Our work details perturbations and extensions of this T' Model as we apply our framework to neutrino mixing, quark mixing, unification, and dark matter. Where possible, we evaluate model predictions against experimental results and find excellent matching with the atmospheric and reactor neutrino mixing angles, an accurate prediction of the Cabibb...

  3. Segmentation Using Symmetry Deviation

    DEFF Research Database (Denmark)

    Hollensen, Christian; Højgaard, L.; Specht, L.

    2011-01-01

    and evaluate the method. The method uses deformable registration on computed tomography(CT) to find anatomical symmetry deviations of Head & Neck squamous cell carcinoma and combining it with positron emission tomography (PET) images. The method allows the use anatomical and symmetrical information of CT scans...... to improve automatic delineations. Materials: PET/CT scans from 30 patients were used for this study, 20 without cancer in hypopharyngeal volume and 10 with hypharyngeal carcinoma. An head and neck atlas was created from the 20 normal patients. The atlas was created using affine and non-rigid registration...... of the CT-scans into a single atlas. Afterwards the standard deviation of anatomical symmetry for the 20 normal patients was evaluated using non-rigid registration and registered onto the atlas to create an atlas for normal anatomical symmetry deviation. The same non-rigid registration was used on the 10...

  4. Leadership, power and symmetry

    DEFF Research Database (Denmark)

    Spaten, Ole Michael

    2016-01-01

    Research publications concerning managers who coach their own employees are barely visible despite its wide- spread use in enterprises (McCarthy & Milner, 2013; Gregory & Levy, 2011; Crabb, 2011). This article focuses on leadership, power and moments of symmetry in the coaching relationship...... session. Thereafter we executed qualitative interviews with both managers and employees. Subsequently, a Thematic Analysis resulted in several themes, including power and moments of symmetry in the coaching relationship. One main conclusion is that the most fruitful coaching was obtained when the coachee...... experienced moments of symmetry and that necessary and sufficient conditions to bring forth such moments include a strong working alliance and the coach being aware of the power at play....

  5. Electroweak symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Chanowitz, M.S.

    1990-09-01

    The Higgs mechanism is reviewed in its most general form, requiring the existence of a new symmetry-breaking force and associated particles, which need not however be Higgs bosons. The first lecture reviews the essential elements of the Higgs mechanism, which suffice to establish low energy theorems for the scattering of longitudinally polarized W and Z gauge bosons. An upper bound on the scale of the symmetry-breaking physics then follows from the low energy theorems and partial wave unitarity. The second lecture reviews particular models, with and without Higgs bosons, paying special attention to how the general features discussed in lecture 1 are realized in each model. The third lecture focuses on the experimental signals of strong WW scattering that can be observed at the SSC above 1 TeV in the WW subenergy, which will allow direct measurement of the strength of the symmetry-breaking force. 52 refs., 10 figs.

  6. Symmetry energy and density

    CERN Document Server

    Trautmann, Wolfgang; Russotto, Paolo

    2016-01-01

    The nuclear equation-of-state is a topic of highest current interest in nuclear structure and reactions as well as in astrophysics. In particular, the equation-of-state of asymmetric matter and the symmetry energy representing the difference between the energy densities of neutron matter and of symmetric nuclear matter are not sufficiently well constrained at present. The density dependence of the symmetry energy is conventionally expressed in the form of the slope parameter L describing the derivative with respect to density of the symmetry energy at saturation. Results deduced from nuclear structure and heavy-ion reaction data are distributed around a mean value L=60 MeV. Recent studies have more thoroughly investigated the density range that a particular observable is predominantly sensitive to. Two thirds of the saturation density is a value typical for the information contained in nuclear-structure data. Higher values exceeding saturation have been shown to be probed with meson production and collective ...

  7. Gravitation and Duality Symmetry

    CERN Document Server

    D'Andrade, V C; Pereira, J G

    2005-01-01

    By generalizing the Hodge dual operator to the case of soldered bundles, and working in the context of the teleparallel equivalent of general relativity, an analysis of the duality symmetry in gravitation is performed. Although the basic conclusion is that, at least in the general case, gravitation does not present duality symmetry, there is a particular theory in which this symmetry is present. This theory is a self dual (or anti-self dual) teleparallel gravity in which, owing to the fact that it does not contribute to the gravitational interaction of fermions, the purely tensor part of torsion is assumed to vanish. The corresponding fermionic gravitational interaction is found to be chiral. Since duality is intimately related to renormalizability, this theory will probably be much more amenable to renormalization than teleparallel gravity or general relativity. Although obtained in the context of teleparallel gravity, these results must also be true for general relativity.

  8. Flavour from accidental symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Ferretti, Luca [SISSA/ISAS and INFN, I-34013 Trieste (Italy); King, Stephen F. [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Romanino, Andrea [SISSA/ISAS and INFN, I-34013 Trieste (Italy)

    2006-11-15

    We consider a new approach to fermion masses and mixings in which no special 'horizontal' dynamics is invoked to account for the hierarchical pattern of charged fermion masses and for the peculiar features of neutrino masses. The hierarchy follows from the vertical, family-independent structure of the model, in particular from the breaking pattern of the Pati-Salam group. The lightness of the first two fermion families can be related to two family symmetries emerging in this context as accidental symmetries.

  9. Symmetry, structure, and spacetime

    CERN Document Server

    Rickles, Dean

    2007-01-01

    In this book Rickles considers several interpretative difficulties raised by gauge-type symmetries (those that correspond to no change in physical state). The ubiquity of such symmetries in modern physics renders them an urgent topic in philosophy of physics. Rickles focuses on spacetime physics, and in particular classical and quantum general relativity. Here the problems posed are at their most pathological, involving the apparent disappearance of spacetime! Rickles argues that both traditional ontological positions should be replaced by a structuralist account according to which relational

  10. Weakly broken galileon symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Pirtskhalava, David [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy); Santoni, Luca; Trincherini, Enrico [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy); INFN, Sezione di Pisa, Piazza dei Cavalieri 7, 56126 Pisa (Italy); Vernizzi, Filippo [Institut de Physique Théorique, Université Paris Saclay, CEA, CNRS, Gif-sur-Yvette cédex, F-91191 (France)

    2015-09-01

    Effective theories of a scalar ϕ invariant under the internal galileon symmetryϕ→ϕ+b{sub μ}x{sup μ} have been extensively studied due to their special theoretical and phenomenological properties. In this paper, we introduce the notion of weakly broken galileon invariance, which characterizes the unique class of couplings of such theories to gravity that maximally retain their defining symmetry. The curved-space remnant of the galileon’s quantum properties allows to construct (quasi) de Sitter backgrounds largely insensitive to loop corrections. We exploit this fact to build novel cosmological models with interesting phenomenology, relevant for both inflation and late-time acceleration of the universe.

  11. Baryons and Chiral Symmetry

    CERN Document Server

    Liu, Keh-Fei

    2016-01-01

    The relevance of chiral symmetry in baryons is highlighted in three examples in the nucleon spectroscopy and structure. The first one is the importance of chiral dynamics in understanding the Roper resonance. The second one is the role of chiral symmetry in the lattice calculation of $\\pi N \\sigma$ term and strangeness. The third one is the role of chiral $U(1)$ anomaly in the anomalous Ward identity in evaluating the quark spin and the quark orbital angular momentum. Finally, the chiral effective theory for baryons is discussed.

  12. Deformed discrete symmetries

    Science.gov (United States)

    Arzano, Michele; Kowalski-Glikman, Jerzy

    2016-09-01

    We construct discrete symmetry transformations for deformed relativistic kinematics based on group valued momenta. We focus on the specific example of κ-deformations of the Poincaré algebra with associated momenta living on (a sub-manifold of) de Sitter space. Our approach relies on the description of quantum states constructed from deformed kinematics and the observable charges associated with them. The results we present provide the first step towards the analysis of experimental bounds on the deformation parameter κ to be derived via precision measurements of discrete symmetries and CPT.

  13. [Surface Cleaning and Disinfection in the Hospital. Improvement by Objective Monitoring and Intervention].

    Science.gov (United States)

    Woltering, R; Hoffmann, G; Isermann, J; Heudorf, U

    2016-11-01

    Background and Objective: An assessment of cleaning and disinfection in hospitals by the use of objective surveillance and review of mandatory corrective measures was undertaken. Methods: A prospective examination of the cleaning and disinfection of surfaces scheduled for daily cleaning in 5 general care hospitals by use of an ultraviolet fluorescence targeting method (UVM) was performed, followed by structured educational and procedural interventions. The survey was conducted in hospital wards, operating theatres and intensive care units. Cleaning performance was measured by complete removal of UVM. Training courses and reinforced self-monitoring were implemented after the first evaluation. 6 months later, we repeated the assessment for confirmation of success. Results: The average cleaning performance was 34% (31/90) at base-line with significant differences between the 5 hospitals (11-67%). The best results were achieved in intensive care units (61%) and operating theatres (58%), the worst results in hospital wards (22%). The intervention significantly improved cleaning performance up to an average of 69% (65/94; +34.7%; 95% confidence interval (CI): 21.2-48.3; pdisinfection of surfaces by fluorescence targeting is appropriate for evaluating hygiene regulations. An intervention can lead to a significant improvement of cleaning performance. As part of a strategy to improve infection control in hospitals, fluorescence targeting enables a simple inexpensive and effective surveillance of the cleaning performance and corrective measures. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Automated simultaneous monitoring of nitrate and nitrite in surface water by sequential injection analysis.

    Science.gov (United States)

    Legnerová, Zlatuse; Solich, Petr; Sklenárová, Hana; Satínský, Dalibor; Karlícek, Rolf

    2002-06-01

    A fully automated procedure based on Sequential Injection Analysis (SIA) methodology for simultaneous monitoring of nitrate and nitrite in surface water samples is described. Nitrite was determined directly using the Griess diazo-coupling reaction and the formed azo dye was measured at 540 nm in the flow cell of the fibre-optic spectrophotometer. Nitrate zone was passed through a reducing mini-column containing copperised-cadmium. After the reduction of nitrate into nitrite the sample was aspirated by flow reversal to the holding coil, treated with the reagent and finally passed through the flow cell. The calibration curve was linear over the range 0.05-1.00 mg N l(-1) of nitrite and 0.50-50.00 mg N l(-1) of nitrate; correlation coefficients were 0.9993 and 0.9988 for nitrite and nitrate, respectively. Detection limits were 0.015 and 0.10 mg N l(-1) for nitrite and nitrate, respectively. The relative standard deviation (RSD) values (n = 3) were 1.10% and 1.32% for nitrite and nitrate, respectively. The total time of one measuring cycle was 250 s, thus the sample throughput was about 14 h(-1). Nitrate and nitrite were determined in the real samples of surface water, and the results have been compared with those obtained by two other flow methods; flow injection analysis based on the same reactions and isotachophoretic determination used in a routine environmental control laboratory.

  15. Passive monitoring for near surface void detection using traffic as a seismic source

    Science.gov (United States)

    Zhao, Y.; Kuzma, H. A.; Rector, J.; Nazari, S.

    2009-12-01

    In this poster we present preliminary results based on our several field experiments in which we study seismic detection of voids using a passive array of surface geophones. The source of seismic excitation is vehicle traffic on nearby roads, which we model as a continuous line source of seismic energy. Our passive seismic technique is based on cross-correlation of surface wave fields and studying the resulting power spectra, looking for "shadows" caused by the scattering effect of a void. High frequency noise masks this effect in the time domain, so it is difficult to see on conventional traces. Our technique does not rely on phase distortions caused by small voids because they are generally too tiny to measure. Unlike traditional impulsive seismic sources which generate highly coherent broadband signals, perfect for resolving phase but too weak for resolving amplitude, vehicle traffic affords a high power signal a frequency range which is optimal for finding shallow structures. Our technique results in clear detections of an abandoned railroad tunnel and a septic tank. The ultimate goal of this project is to develop a technology for the simultaneous imaging of shallow underground structures and traffic monitoring near these structures.

  16. Passive wireless surface acoustic wave sensors for monitoring sequestration sites CO2 emission

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yizhong [Univ. of Pittsburgh, PA (United States); Chyu, Minking [Univ. of Pittsburgh, PA (United States); Wang, Qing-Ming [Univ. of Pittsburgh, PA (United States)

    2013-02-14

    University of Pittsburgh’s Transducer lab has teamed with the U.S. Department of Energy’s National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient CO2 measuring technologies for geological sequestration sites leakage monitoring. A passive wireless CO2 sensing system based on surface acoustic wave technology and carbon nanotube nanocomposite was developed. Surface acoustic wave device was studied to determine the optimum parameters. Delay line structure was adopted as basic sensor structure. CNT polymer nanocomposite was fabricated and tested under different temperature and strain condition for natural environment impact evaluation. Nanocomposite resistance increased for 5 times under pure strain, while the temperature dependence of resistance for CNT solely was -1375ppm/°C. The overall effect of temperature on nanocomposite resistance was -1000ppm/°C. The gas response of the nanocomposite was about 10% resistance increase under pure CO2 . The sensor frequency change was around 300ppm for pure CO2 . With paralyne packaging, the sensor frequency change from relative humidity of 0% to 100% at room temperature decreased from over 1000ppm to less than 100ppm. The lowest detection limit of the sensor is 1% gas concentration, with 36ppm frequency change. Wireless module was tested and showed over one foot transmission distance at preferred parallel orientation.

  17. The World Radiation Monitoring Center of the Baseline Surface Radiation Network: Status 2017

    Science.gov (United States)

    Driemel, Amelie; König-Langlo, Gert; Sieger, Rainer; Long, Charles N.

    2017-04-01

    The World Radiation Monitoring Center (WRMC) is the central archive of the Baseline Surface Radiation Network (BSRN). The BSRN was initiated by the World Climate Research Programme (WCRP) Working Group on Radiative Fluxes and began operations in 1992. One of its aims is to provide short and long-wave surface radiation fluxes of the best possible quality to support the research projects of the WCRP and other scientific projects. The high quality, uniform and consistent measurements of the BSRN network can be used to monitor the short- and long-wave radiative components and their changes with the best methods currently available, to validate and evaluate satellite-based estimates of the surface radiative fluxes, and to verify the results of global climate models. In 1992 the BSRN/WRMC started at ETH Zurich, Switzerland with 9 stations. Since 2007 the archive is hosted by the Alfred-Wegener-Institut (AWI) in Bremerhaven, Germany (http://www.bsrn.awi.de/) and comprises a network of currently 59 stations in contrasting climatic zones, covering a latitude range from 80°N to 90°S. Of the 59 stations, 23 offer the complete radiation budget (down- and upwelling short- and long-wave data). In addition to the ftp-service access instituted at ETH Zurich, the archive at AWI offers data access via PANGAEA - Data Publisher for Earth & Environmental Science (https://www.pangaea.de). PANGAEA guarantees the long-term availability of its content through a commitment of the operating institutions. Within PANGAEA, the metadata of the stations are freely available. To access the data itself an account is required. If the scientist accepts to follow the data release guidelines of the archive (http://bsrn.awi.de/data/conditions-of-data-release/) he or she can get an account from amelie.driemel@awi.de. Currently, more than 9,400 station months (>780 years) are available for interested scientists (see also https://dataportals.pangaea.de/bsrn/?q=LR0100 for an overview on available data

  18. Monitoring perturbations of earth surface process after the 2015 Gorkha earthquake in Nepal

    Science.gov (United States)

    Andermann, Christoff; Hovius, Niels; Cook, Kristen; Turowski, Jens; Illien, Luc; Sense-Schönfelder, Christoph; Rössner, Sigrid; Parajuli, Binod; Bajracharya, Krishna; Adi=hikari, Basanta

    2017-04-01

    Large earthquakes can substantially perturb a wide range of Earth surface processes. The strong shaking caused by large earthquakes weakens rockmass, causes extensive landsliding, and alter the hydrological conductivity of the near surface. This leads to subsequent responses that include sediment loading of rivers and changes in subsurface water flow paths. The long term perturbation often last several years and even might outstrip the immediate co-seismic impact in their magnitude. Over time the system restores to background conditions, and the recovery process and transient timescales of different systems provide particularly valuable insights for predicting natural risks associated with the aftermath of earthquakes. Here we will present results of the first 2 years of monitoring surface processes in the epicentral area of the 2015 Gorkha earthquake. The observations started immediately after the event and are planned to continue for a total of four monsoon seasons, in order to capture the full recovery process of the system until pre-earthquake conditions have been reached. We have installed a comprehensive network of twelve river sampling stations for daily water and sediment sampling, covering all major rivers draining the earthquake-affected areas. Nested within this regional network, we have installed an array of 16 seismometers and 6 weather stations in the upper Bhotekoshi catchment. The field measurements are accompanied by repeated mapping of landslide activities using satellite imagery. Our results show pronounced changes of the hydrological regime, underpinned by a marked change of seismic noise velocities, both indications of significant changes of the subsurface rock properties. Alongside, our landslide mapping documents about ten times greater landslide activity during the 2015 monsoon season than typically expected for this monsoon season. Very preliminary estimates for the exceptionally strong 2016 monsoon season are also elevated. This

  19. T Tank Farm Interim Surface Barrier Demonstration - Vadose Zone Monitoring FY09 Report

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. F.; Strickland, Christopher E.; Field, Jim G.; Parker, Danny L.

    2010-01-01

    DOE’s Office of River Protection constructed a temporary surface barrier over a portion of the T Tank Farm as part of the T Farm Interim Surface Barrier Demonstration Project. As part of the demonstration effort, vadose zone moisture is being monitored to assess the effectiveness of the barrier at reducing soil moisture. A solar-powered system was installed to continuously monitor soil water conditions at four locations (i.e., instrument Nests A, B, C, and D) beneath the barrier and outside the barrier footprint as well as site meteorological conditions. Nest A is placed in the area outside the barrier footprint and serves as a control, providing subsurface conditions outside the influence of the surface barrier. Nest B provides subsurface measurements to assess surface-barrier edge effects. Nests C and D are used to assess changes in soil-moisture conditions beneath the interim surface barrier. Each instrument nest is composed of a capacitance probe (CP) with multiple sensors, multiple heat-dissipation units (HDUs), and a neutron probe (NP) access tube. The monitoring results in FY09 are summarized below. The solar panels functioned normally and could provide sufficient power to the instruments. The CP in Nest C after September 20, 2009, was not functional. The CP sensors in Nest B after July 13 and the 0.9-m CP sensor in Nest D before June 10 gave noisy data. Other CPs were functional normally. All the HDUs were functional normally but some pressure-head values measured by HDUs were greater than the upper measurement-limit. The higher-than-upper-limit values might be due to the very wet soil condition and/or measurement error but do not imply the malfunction of the sensors. Similar to FY07 and FY08, in FY09, the soil under natural conditions (Nest A) was generally recharged during the winter period (October-March) and discharged during the summer period (April-September). Soil water conditions above about 1.5-m to 2-m depth from all three types of measurements

  20. The nuclear symmetry energy

    NARCIS (Netherlands)

    Dieperink, AEL; van Neck, D; Suzuki, T; Otsuka, T; Ichimura, M

    2005-01-01

    The role of isospin asymmetry in nuclei and neutron stars is discussed, with an emphasis on the density dependence of the nuclear symmetry energy. Results obtained with the self-consistent Green function method are presented and compared with various other theoretical predictions. Implications for t

  1. Quantum entanglement and symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Chruscinski, D; Kossakowski, A [Institute of Physics, Nicolaus Copernicus University, Grudziadzka 5/7, 87-100 Torun (Poland)

    2007-11-15

    One of the main problem in Quantum Information Theory is to test whether a given state of a composite quantum system is entangled or separable. It turns out that within a class of states invariant under the action of the symmetry group this problem considerably simplifies. We analyze multipartite invariant states and the corresponding symmetric quantum channels.

  2. Quantum entanglement and symmetry

    Science.gov (United States)

    Chruściński, D.; Kossakowski, A.

    2007-11-01

    One of the main problem in Quantum Information Theory is to test whether a given state of a composite quantum system is entangled or separable. It turns out that within a class of states invariant under the action of the symmetry group this problem considerably simplifies. We analyze multipartite invariant states and the corresponding symmetric quantum channels.

  3. Broken symmetry makes helium

    CERN Multimedia

    Gray, P L

    2003-01-01

    "The subatomic pion particle breaks the charge symmetry rule that governs both fusion and decay. In experiments performed at the Indiana University Cyclotron Laboratory, physicists forced heavy hydrogen (1 proton + 1 neutron) to fuse into helium in a controlled, measurable environment" (1 paragraph).

  4. Symmetries in fundamental physics

    CERN Document Server

    Sundermeyer, Kurt

    2014-01-01

    Over the course of the last century it has become clear that both elementary particle physics and relativity theories are based on the notion of symmetries. These symmetries become manifest in that the "laws of nature" are invariant under spacetime transformations and/or gauge transformations. The consequences of these symmetries were analyzed as early as in 1918 by Emmy Noether on the level of action functionals. Her work did not receive due recognition for nearly half a century, but can today be understood as a recurring theme in classical mechanics, electrodynamics and special relativity, Yang-Mills type quantum field theories, and in general relativity. As a matter of fact, as shown in this monograph, many aspects of physics can be derived solely from symmetry considerations. This substantiates the statement of E.P.Wigner "... if we knew all the laws of nature, or the ultimate Law of nature, the invariance properties of these laws would not furnish us new information." Thanks to Wigner we now also underst...

  5. Symmetries in fundamental physics

    CERN Document Server

    Sundermeyer, Kurt

    2014-01-01

    Over the course of the last century it has become clear that both elementary particle physics and relativity theories are based on the notion of symmetries. These symmetries become manifest in that the "laws of nature" are invariant under spacetime transformations and/or gauge transformations. The consequences of these symmetries were analyzed as early as in 1918 by Emmy Noether on the level of action functionals. Her work did not receive due recognition for nearly half a century, but can today be understood as a recurring theme in classical mechanics, electrodynamics and special relativity, Yang-Mills type quantum field theories, and in general relativity. As a matter of fact, as shown in this monograph, many aspects of physics can be derived solely from symmetry considerations. This substantiates the statement of E.P. Wigner "... if we knew all the laws of nature, or the ultimate Law of nature, the invariance properties of these laws would not furnish us new information." Thanks to Wigner we now also unders...

  6. Horror Vacui Symmetry.

    Science.gov (United States)

    Crumpecker, Cheryl

    2003-01-01

    Describes an art lesson used with children in the third grade to help them learn about symmetry, as well as encouraging them to draw larger than usual. Explains that students learn about the belief called "Horror Vacui" of the Northwest American Indian tribes and create their interpretation of this belief. (CMK)

  7. Gauging without Initial Symmetry

    CERN Document Server

    Kotov, Alexei

    2016-01-01

    The gauge principle is at the heart of a good part of fundamental physics: Starting with a group G of so-called rigid symmetries of a functional defined over space-time Sigma, the original functional is extended appropriately by additional Lie(G)-valued 1-form gauge fields so as to lift the symmetry to Maps(Sigma,G). Physically relevant quantities are then to be obtained as the quotient of the solutions to the Euler-Lagrange equations by these gauge symmetries. In this article we show that one can construct a gauge theory for a standard sigma model in arbitrary space-time dimensions where the target metric is not invariant with respect to any rigid symmetry group, but satisfies a much weaker condition: It is sufficient to find a collection of vector fields v_a on the target M satisfying the extended Killing equation v_{a(i;j)}=0 for some connection acting on the index a. For regular foliations this is equivalent to merely requiring the distribution orthogonal to the leaves to be invariant with respect to leaf...

  8. The politics of symmetry

    NARCIS (Netherlands)

    Pels, D.L.

    1996-01-01

    While symmetry and impartiality have become ruling principles in S&TS, defining its core ideal of a 'value-free relativism', their philosophical anchorage has attracted much less discussion than the issue or:how far their jurisdiction can be extended or generalized. This paper seeks to argue that sy

  9. Applications of chiral symmetry

    CERN Document Server

    Pisarski, R D

    1995-01-01

    I discuss several topics in the applications of chiral symmetry at nonzero temperature, including: where the rho goes, disoriented chiral condensates, and the phase diagram for QCD with 2+1 flavors. (Based upon talks presented at the "Workshop on Finite Temperature QCD", Wuhan, P.R.C., April, 1994.)

  10. Testing for central symmetry

    NARCIS (Netherlands)

    Einmahl, John; Gan, Zhuojiong

    2016-01-01

    Omnibus tests for central symmetry of a bivariate probability distribution are proposed. The test statistics compare empirical measures of opposite regions. Under rather weak conditions, we establish the asymptotic distribution of the test statistics under the null hypothesis; it follows that they a

  11. Symmetries of hadrons after unbreaking the chiral symmetry

    CERN Document Server

    Glozman, L Ya; Schröck, M

    2012-01-01

    We study hadron correlators upon artificial restoration of the spontaneously broken chiral symmetry. In a dynamical lattice simulation we remove the lowest lying eigenmodes of the Dirac operator from the valence quark propagators and study evolution of the hadron masses obtained. All mesons and baryons in our study, except for a pion, survive unbreaking the chiral symmetry and their exponential decay signals become essentially better. From the analysis of the observed spectroscopic patterns we conclude that confinement still persists while the chiral symmetry is restored. All hadrons fall into different chiral multiplets. The broken U(1)_A symmetry does not get restored upon unbreaking the chiral symmetry. We also observe signals of some higher symmetry that includes chiral symmetry as a subgroup. Finally, from comparison of the \\Delta - N splitting before and after unbreaking of the chiral symmetry we conclude that both the color-magnetic and the flavor-spin quark-quark interactions are of equal importance.

  12. Cocaine in surface waters: a new evidence-based tool to monitor community drug abuse

    Directory of Open Access Journals (Sweden)

    Bagnati Renzo

    2005-08-01

    Full Text Available Abstract Background Cocaine use seems to be increasing in some urban areas worldwide, but it is not straightforward to determine the real extent of this phenomenon. Trends in drug abuse are currently estimated indirectly, mainly by large-scale social, medical, and crime statistics that may be biased or too generic. We thus tested a more direct approach based on 'field' evidence of cocaine use by the general population. Methods Cocaine and its main urinary metabolite (benzoylecgonine, BE were measured by mass spectrometry in water samples collected from the River Po and urban waste water treatment plants of medium-size Italian cities. Drug concentration, water flow rate, and population at each site were used to estimate local cocaine consumption. Results We showed that cocaine and BE are present, and measurable, in surface waters of populated areas. The largest Italian river, the Po, with a five-million people catchment basin, steadily carried the equivalent of about 4 kg cocaine per day. This would imply an average daily use of at least 27 ± 5 doses (100 mg each for every 1000 young adults, an estimate that greatly exceeds official national figures. Data from waste water treatment plants serving medium-size Italian cities were consistent with this figure. Conclusion This paper shows for the first time that an illicit drug, cocaine, is present in the aquatic environment, namely untreated urban waste water and a major river. We used environmental cocaine levels for estimating collective consumption of the drug, an approach with the unique potential ability to monitor local drug abuse trends in real time, while preserving the anonymity of individuals. The method tested here – in principle extendable to other drugs of abuse – might be further refined to become a standardized, objective tool for monitoring drug abuse.

  13. Long-term monitoring of geodynamic surface deformation using SAR interferometry

    Science.gov (United States)

    Gong, Wenyu

    Synthetic Aperture Radar Interferometry (InSAR) is a powerful tool to measure surface deformation and is well suited for surveying active volcanoes using historical and existing satellites. However, the value and applicability of InSAR for geodynamic monitoring problems is limited by the influence of temporal decorrelation and electromagnetic path delay variations in the atmosphere, both of which reduce the sensitivity and accuracy of the technique. The aim of this PhD thesis research is: how to optimize the quantity and quality of deformation signals extracted from InSAR stacks that contain only a low number of images in order to facilitate volcano monitoring and the study of their geophysical signatures. In particular, the focus is on methods of mitigating atmospheric artifacts in interferograms by combining time-series InSAR techniques and external atmospheric delay maps derived by Numerical Weather Prediction (NWP) models. In the first chapter of the thesis, the potential of the NWP Weather Research & Forecasting (WRF) model for InSAR data correction has been studied extensively. Forecasted atmospheric delays derived from operational High Resolution Rapid Refresh for the Alaska region (HRRR-AK) products have been compared to radiosonding measurements in the first chapter. The result suggests that the HRRR-AK operational products are a good data source for correcting atmospheric delays in spaceborne geodetic radar observations, if the geophysical signal to be observed is larger than 20 mm. In the second chapter, an advanced method for integrating NWP products into the time series InSAR workflow is developed. The efficiency of the algorithm is tested via simulated data experiments, which demonstrate the method outperforms other more conventional methods. In Chapter 3, a geophysical case study is performed by applying the developed algorithm to the active volcanoes of Unimak Island Alaska (Westdahl, Fisher and Shishaldin) for long term volcano deformation

  14. Testing, Modeling, and Monitoring to Enable Simpler, Cheaper, Longer-Lived Surface Caps

    Energy Technology Data Exchange (ETDEWEB)

    Piet, Steven James; Breckenridge, Robert Paul; Burns, Douglas Edward

    2003-02-01

    Society has and will continue to generate hazardous wastes whose risks must be managed. For exceptionally toxic, long-lived, and feared waste, the solution is deep burial, e.g., deep geological disposal at Yucca Mtn. For some waste, recycle or destruction/treatment is possible. The alternative for other wastes is storage at or near the ground level (in someone’s back yard); most of these storage sites include a surface barrier (cap) to prevent downward water migration. Some of the hazards will persist indefinitely. As society and regulators have demanded additional proof that caps are robust against more threats and for longer time periods, the caps have become increasingly complex and expensive. As in other industries, increased complexity will eventually increase the difficulty in estimating performance, in monitoring system/component performance, and in repairing or upgrading barriers as risks are managed. An approach leading to simpler, less expensive, longer-lived, more manageable caps is needed. Our project, which started in April 2002, aims to catalyze a Barrier Improvement Cycle (iterative learning and application) and thus enable Remediation System Performance Management (doing the right maintenance neither too early nor too late). The knowledge gained and the capabilities built will help verify the adequacy of past remedial decisions, improve barrier management, and enable improved solutions for future decisions. We believe it will be possible to develop simpler, longer-lived, less expensive caps that are easier to monitor, manage, and repair. The project is planned to: a) improve the knowledge of degradation mechanisms in times shorter than service life; b) improve modeling of barrier degradation dynamics; c) develop sensor systems to identify early degradation; and d) provide a better basis for developing and testing of new barrier systems. This project combines selected exploratory studies (benchtop and field scale), coupled effects accelerated aging

  15. Testing, Modeling, and Monitoring to Enable Simpler, Cheaper, Longer-lived Surface Caps

    Energy Technology Data Exchange (ETDEWEB)

    Piet, S. J.; Breckenridge, R. P.; Burns, D. E.

    2003-02-25

    Society has and will continue to generate hazardous wastes whose risks must be managed. For exceptionally toxic, long-lived, and feared waste, the solution is deep burial, e.g., deep geological disposal at Yucca Mtn. For some waste, recycle or destruction/treatment is possible. The alternative for other wastes is storage at or near the ground level (in someone's back yard); most of these storage sites include a surface barrier (cap) to prevent downward water migration. Some of the hazards will persist indefinitely. As society and regulators have demanded additional proof that caps are robust against more threats and for longer time periods, the caps have become increasingly complex and expensive. As in other industries, increased complexity will eventually increase the difficulty in estimating performance, in monitoring system/component performance, and in repairing or upgrading barriers as risks are managed. An approach leading to simpler, less expensive, longer-lived, more manageable caps is needed. Our project, which started in April 2002, aims to catalyze a Barrier Improvement Cycle (iterative learning and application) and thus enable Remediation System Performance Management (doing the right maintenance neither too early nor too late). The knowledge gained and the capabilities built will help verify the adequacy of past remedial decisions, improve barrier management, and enable improved solutions for future decisions. We believe it will be possible to develop simpler, longer-lived, less expensive caps that are easier to monitor, manage, and repair. The project is planned to: (a) improve the knowledge of degradation mechanisms in times shorter than service life; (b) improve modeling of barrier degradation dynamics; (c) develop sensor systems to identify early degradation; and (d) provide a better basis for developing and testing of new barrier systems. This project combines selected exploratory studies (benchtop and field scale), coupled effects

  16. First Results of Continuous GPS Monitoring of Surface Deformation at the Aquistore Underground CO2 Storage Site

    Science.gov (United States)

    Craymer, M. R.; Ferland, R.; Piraszewski, M.; Samsonov, S. V.; Czarnogorska, M.

    2014-12-01

    Aquistore is a demonstration project for the underground storage of CO2 at a depth of ~3350 m near Estevan, Saskatchewan, Canada. An objective of the project is to design, adapt, and test non-seismic monitoring methods that have not been systematically utilized to date for monitoring CO2 storage projects, and to integrate the data from these various monitoring tools to obtain quantitative estimates of the change in subsurface fluid distributions, pressure changes and associated surface deformation. Monitoring methods being applied include satellite-, surface- and wellbore-based monitoring systems and comprise natural- and controlled-source electromagnetic methods, gravity monitoring, GPS, synthetic aperture radar interferometry (InSAR), tiltmeter array analysis, and chemical tracer studies. Here we focus on the GPS monitoring of surface deformation. Five GPS monitoring stations were installed in 2012 and another six in 2013, some collocated on top of InSAR retroreflectors. The GPS data from these stations have been processed on a weekly basis in both baseline processing mode using the Bernese GPS Software and precise point positioning mode using CSRS-PPP. Here we present the first complete results with 1-2 years of data at all sites prior to CO2 injection. The time series of these sites are examined, compared and analysed with respect to monument stability, seasonal signals and estimates of expected regional ground motion. The individual weekly network solutions have also been combined together in a cumulative 4D network solution to provide a preliminary local velocity field in the immediately vicinity of the injection well. These results are also compared to those obtained independently from InSAR, in particular the direct comparison of GPS and InSAR at the retroreflectors.

  17. Monitoring the Continuous Surface Motion of Glaciers by Low-Cost GNSS Receivers

    Science.gov (United States)

    Völksen, Christof; Mayer, Christoph

    2015-04-01

    The motion of a glacier is usually monitored by episodic geodetic observations that are carried out during the summer. During winter observations are much more difficult due to harsh weather conditions and the remote location of glaciers in general. Based on such observations the glacier surface velocity is estimated as the mean displacement rate between the positions of the different observation epochs. Alternatively remote sensing about surface displacements can be collected from space or air, but they also capture only one finite time interval. It is therefore very often difficult to estimate the seasonal behavior of a glacier or to detect sudden changes. The position estimation with Global Navigation Satellite System (GNSS) like GPS or GLONASS is today widely used in smart phones, traffic control and many other devices. To keep the costs of these sensors at a minimum they usually provide only code observations. However, some of these cheap receivers deliver also phase data, which are the key element for precise geodetic positioning. Analyzing the phase data of the Low-Cost GNSS sensor in combination with a nearby geodetic reference station allows the estimation of relative positions with an accuracy of a few centimeters. In the summer 2013 we started an experiment with two sensor systems on the glacier Vernagtferner in Austria. Each system consists of a single board computer, a GNSS receiver and solar powered energy supply. Data were collected each day for two hours. The data were analysed together with the data of a GNSS reference station, which is located in the vicinity of Vernagtferner glacier. The coordinates for each day were estimated with accuracies better than one centimetre, while the coordinate time series are very consistent. One of the sensors was placed on a stake which was drilled into the ice. Here we could observe very slow horizontal motion of about 0.3 m/a, while the height was not changing significantly. The second system was attached to a

  18. Monitoring surface geothermal features using time series of aerial and ground-based photographs

    Science.gov (United States)

    Bromley, C.; van Manen, S. M.; Graham, D.

    2010-12-01

    Geothermal systems are of high conservation and scientific value and monitoring of these is an important management tool to assess natural variations and changes resulting from development and utilization. This study examines time series of aerial and ground-based photographs of geothermal areas within the Taupo Volcanic Zone, New Zealand. A time series of aerial photographs from 1946-2007 of the Broadlands Road Scenic Reserve (Taupo, New Zealand) highlights large changes to this small area as the result of the start of geothermal fluid production for the nearby Wairakei power plant in 1958 and other causes. Prior to the opening of the plant the area was not geothermally active, but expansion of steam zones due to pressure drawdown has resulted in significant thermal changes in the subsurface. These subsurface thermal changes are evident in the aerial photographs as the appearance of hydrothermal eruption craters and areas of thermal bare ground, which are too hot for vegetation to grown on. In addition, in the late 1960’s thermotolerant vegetation started to establish itself in the adjacent area. Changes in the surface area covered by each of these, reflect changes in the geothermal system as well as changes in management (e.g. exclusion of livestock), and a time series of these changes has been produced using ArcMap™. Monthly photographs of surface geothermal expressions in the Rotorua area show changes in colour and size of chloride springs with time. Colour and size changes are difficult to quantify due to varying exposure settings, weather conditions, and vantage points. However, these qualitative descriptions can be combined with quantitative time series such as temperature measurements, to provide better insight into surface changes that have occurred at this geothermal field. This study highlights the value of both qualitative and quantitative data that can be obtained from time series of photographs, including photographs that were obtained before the

  19. Minimal Surfaces of the $AdS_5\\times S^5$ Superstring and the Symmetries of Super Wilson Loops at Strong Coupling

    CERN Document Server

    Munkler, Hagen

    2015-01-01

    Based on an extension of the holographic principle to superspace, we provide a strong-coupling description of smooth super Wilson loops in terms of minimal surfaces of the $AdS_5 \\times S^5$ superstring. We employ the classical integrability of the Green-Schwarz superstring on $AdS_5 \\times S^5$ to derive the superconformal and Yangian $Y[\\mathfrak{psu}(2,2|4)]$ Ward identities for the super Wilson loop, thus extending the strong coupling results obtained for the Maldacena-Wilson loop. In the course of the derivation, we determine the minimal surface solution up to third order in an expansion close to the conformal boundary.

  20. Minimal surfaces of the {{AdS}}_{5}\\times {S}^{5} superstring and the symmetries of super Wilson loops at strong coupling

    Science.gov (United States)

    Münkler, Hagen; Pollok, Jonas

    2015-09-01

    Based on an extension of the holographic principle to superspace, we provide a strong-coupling description of smooth super Wilson loops in {N}=4 super Yang-Mills theory in terms of minimal surfaces of the {{AdS}}5× {S}5 superstring. We employ the classical integrability of the Green-Schwarz superstring on {{AdS}}5× {S}5 to derive the superconformal and Yangian Y[{psu}(2,2| 4)] Ward identities for the super Wilson loop, thus extending the strong coupling results obtained for the Maldacena-Wilson loop. In the course of the derivation, we determine the minimal surface solution up to third order in an expansion close to the conformal boundary.

  1. On Symmetries in Optimal Control

    OpenAIRE

    van der Schaft, A. J.

    1986-01-01

    We discuss the use of symmetries in solving optimal control problems. In particular a procedure for obtaining symmetries is given which can be performed before the actual calculation of the optimal control and optimal Hamiltonian.

  2. On Symmetries in Optimal Control

    NARCIS (Netherlands)

    Schaft, A.J. van der

    1986-01-01

    We discuss the use of symmetries in solving optimal control problems. In particular a procedure for obtaining symmetries is given which can be performed before the actual calculation of the optimal control and optimal Hamiltonian.

  3. A relativistic symmetry in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ginocchio, J N [MS B283, Theoretical Division, Los Alamos National Laboratory Los Alamos, New Mexico 87545 (Mexico)

    2007-11-15

    We review some of the empirical and theoretical evidence supporting pseudospin symmetry in nuclei as a relativistic symmetry. We review the case that the eigenfunctions of realistic relativistic nuclear mean fields approximately conserve pseudospin symmetry in nuclei. We discuss the implications of pseudospin symmetry for magnetic dipole transitions and Gamow-Teller transitions between states in pseudospin doublets. We explore a more fundamental rationale for pseudospin symmetry in terms of quantum chromodynamics (QCD), the basic theory of the strong interactions. We show that pseudospin symmetry in nuclei implies spin symmetry for an anti-nucleon in a nuclear environment. We also discuss the future and what role pseudospin symmetry may be expected to play in an effective field theory of nucleons.

  4. Autonomus I&C Maintenance and Health Monitoring System for Fission Surface Power Project

    Data.gov (United States)

    National Aeronautics and Space Administration — There currently exists no end-to-end reactor/power conversion monitoring system that can provide both autonomous health monitoring, but also in-situ sensor...

  5. Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water

    NARCIS (Netherlands)

    Wood, E.F.; Roundy, J.K.; Troy, T.J.; Beek, L.P.H. van; Bierkens, M.F.P.; Blyth, E.; Roo, A.A. de; Doll, P.; Ek, M.; Famiglietti, J.; Gochis, D.; Giesen, N. van de; Houser, P.; Jaffe, P.R.; Kollet, S.; Lehner, B.; Lettenmaier, D.P.; Peters-Liedard, C.; Sivapalan, M.; Sheffield, J.; Wade, A.; Whitehead, P.

    2011-01-01

    Monitoring Earth’s terrestrial water conditions is critically important to many hydrological applications such as global food production; assessing water resources sustainability; and flood, drought, and climate change prediction. These needs have motivated the development of pilot monitoring and

  6. Invariants of broken discrete symmetries

    OpenAIRE

    Kalozoumis, P.; Morfonios, C.; Diakonos, F. K.; Schmelcher, P.

    2014-01-01

    The parity and Bloch theorems are generalized to the case of broken global symmetry. Local inversion or translation symmetries are shown to yield invariant currents that characterize wave propagation. These currents map the wave function from an arbitrary spatial domain to any symmetry-related domain. Our approach addresses any combination of local symmetries, thus applying in particular to acoustic, optical and matter waves. Nonvanishing values of the invariant currents provide a systematic ...

  7. Symmetry of “Twins”

    OpenAIRE

    Vladan Nikolić; Ljiljana Radović; Biserka Marković

    2015-01-01

    The idea of construction of twin buildings is as old as architecture itself, and yet there is hardly any study emphasizing their specificity. Most frequently there are two objects or elements in an architectural composition of “twins” in which there may be various symmetry relations, mostly bilateral symmetries. The classification of “twins” symmetry in this paper is based on the existence of bilateral symmetry, in terms of the perception of an observer. The classification includes both, 2D a...

  8. D4-symmetric Maps with Hidden Euclidean Symmetry

    CERN Document Server

    Crawford, J D

    1993-01-01

    Bifurcation problems in which periodic boundary conditions (PBC) or Neumann boundary conditions (NBC) are imposed often involve partial differential equations that have Euclidean symmetry. In this case posing the bifurcation problem with either PBC or NBC on a finite domain can lead to a symmetric bifurcation problem for which the manifest symmetries of the domain do not completely characterize the constraints due to symmetry on the bifurcation equations. Additional constraints due to the Euclidean symmetry of the equations can have a crucial influence on the structure of the bifurcation equations. An example is the bifurcation of standing waves on the surface of fluid layer. The Euclidean symmetry of an infinite fluid layer constrains the bifurcation of surface waves in a finite container with square cross section because the waves satisfying PBC or NBC can be shown to lie in certain finite-dimensional fixed point subspaces of the infinite-dimensional problem. These constraints are studied by analyzing the f...

  9. Remote monitoring of volumetric discharge employing bathymetry determined from surface turbulence metrics

    Science.gov (United States)

    Johnson, E. D.; Cowen, E. A.

    2016-03-01

    Current methods employed by the United States Geological Survey (USGS) to measure river discharge are manpower intensive, expensive, and during high flow events require field personnel to work in dangerous conditions. Indirect methods of estimating river discharge, which involve the use of extrapolated rating curves, can result in gross error during high flow conditions due to extrapolation error and/or bathymetric change. Our goal is to develop a remote method of monitoring volumetric discharge that reduces costs at the same or improved accuracy compared with current methods, while minimizing risk to field technicians. We report the results of Large-Scale Particle Image Velocimetry (LSPIV) and Acoustic Doppler Velocimetry (ADV) measurements conducted in a wide-open channel under a range of flow conditions, i.e., channel aspect ratio (B/H = 6.6-31.9), Reynolds number (ReH = 4,950-73,800), and Froude number (Fr = 0.04-0.46). Experiments were carried out for two different channel cross sections (rectangular and asymmetric compound) and two bathymetric roughness conditions (smooth glass and rough gravel bed). The results show that the mean surface velocity normalized by the depth-averaged velocity (the velocity index) decreases with increasing δ*/H, where δ* is the boundary layer displacement thickness and that the integral length scales, L11,1 and L22,1, calculated on the free-surface vary predictably with the local flow depth. Remote determination of local depth-averaged velocity and flow depth over a channel cross section yields an estimate of volumetric discharge.

  10. A smart surface from natural rubber: the mechanism of entropic control at the surface monitored by contact angle measurement

    Directory of Open Access Journals (Sweden)

    Sureurg Khongtong

    2006-03-01

    Full Text Available Surface oxidation of crosslinked natural rubber provided a hydrophilic substrate (sticky surface that became more hydrophobic (less sticky when equilibrated against hot water. This unusual temperaturedependent surface reconstruction is interpreted as the result of recoiling of entropic unfavorable uncoiled chains induced when rubber surface was oxidized. Subsequent equilibration of these annealed samples against water at room temperature returned their original hydrophilicity. The degree of this surface reconstruction and its kinetics are also dependent on the amounts of crosslinking of the samples.

  11. Dynamical Symmetries in Classical Mechanics

    Science.gov (United States)

    Boozer, A. D.

    2012-01-01

    We show how symmetries of a classical dynamical system can be described in terms of operators that act on the state space for the system. We illustrate our results by considering a number of possible symmetries that a classical dynamical system might have, and for each symmetry we give examples of dynamical systems that do and do not possess that…

  12. Scattering matrices with block symmetries

    OpenAIRE

    Życzkowski, Karol

    1997-01-01

    Scattering matrices with block symmetry, which corresponds to scattering process on cavities with geometrical symmetry, are analyzed. The distribution of transmission coefficient is computed for different number of channels in the case of a system with or without the time reversal invariance. An interpolating formula for the case of gradual time reversal symmetry breaking is proposed.

  13. Emergence of Symmetries from Entanglement

    CERN Document Server

    CERN. Geneva

    2016-01-01

    Maximal Entanglement appears to be a key ingredient for the emergence of symmetries. We first illustrate this phenomenon using two examples: the emergence of conformal symmetry in condensed matter systems and  the relation of tensor networks to holography. We further present a Principle of Maximal Entanglement that seems to dictate to a large extend the structure of gauge symmetry.

  14. Online Monitoring of Laser-Generated XUV Radiation Spectra by Surface Reflectivity Measurements with Particle Detectors

    Directory of Open Access Journals (Sweden)

    Andreas Hoffmann

    2017-01-01

    Full Text Available In this contribution, we present a wavelength-sensitive method for the detection of extreme ultraviolet (XUV photon energies between 30 eV and 120 eV. The method is based on 45° reflectivity from either a cesium iodide-coated or an uncoated metal surface, which directs the XUV beam onto an electron or ion detector and its signal is used to monitor the XUV beam. The benefits of our approach are a spectrally sensitive diagnosis of the XUV radiation at the interaction place of time-resolved XUV experiments and the detection of infrared leak light though metal filters in high-harmonic generation (HHG experiments. Both features were tested using spectrally shaped XUV pulses from HHG in a capillary, and we have achieved excellent agreement with XUV spectrometer measurements and reflectivity calculations. Our obtained results are of interest for time-resolved XUV experiments presenting an additional diagnostic directly in the interaction region and for small footprint XUV beamline diagnostics.

  15. First Derivative UV Spectra of Surface Water as a Monitor of Chlorination in Drinking Water Treatment

    Directory of Open Access Journals (Sweden)

    V. Zitko

    2001-01-01

    Full Text Available Many countries require the presence of free chlorine at about 0.1 mg/l in their drinking water supplies. For various reasons, such as cast-iron pipes or long residence times in the distribution system, free chlorine may decrease below detection limits. In such cases it is important to know whether or not the water was chlorinated or if nonchlorinated water entered the system by accident. Changes in UV spectra of natural organic matter in lakewater were used to assess qualitatively the degree of chlorination in the treatment to produce drinking water. The changes were more obvious in the first derivative spectra. In lakewater, the derivative spectra have a maximum at about 280 nm. This maximum shifts to longer wavelengths by up to 10 nm, decreases, and eventually disappears with an increasing dose of chlorine. The water treatment system was monitored by this technique for over 1 year and changes in the UV spectra of water samples were compared with experimental samples treated with known amounts of chlorine. The changes of the UV spectra with the concentration of added chlorine are presented. On several occasions, water, which received very little or no chlorination, may have entered the drinking water system. The results show that first derivative spectra are potentially a tool to determine, in the absence of residual chlorine, whether or not surface water was chlorinated during the treatment to produce potable water.

  16. Lincoln Park shoreline erosion control project: Monitoring for surface substrate, infaunal bivalves and eelgrass, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Antrim, L.D.; Thom, R.M.; Gardiner, W.W. [Battelle/Marine Sciences Lab., Sequim, WA (United States)

    1993-09-01

    In 1988, the US Army Corps of Engineers and the City of Seattle placed material on the upper beach at Lincoln Park, in West Seattle, Washington. The fill served to mitigate shoreline erosion that had caused undercutting and collapse of the seawall in several places. A series of pre- and post-construction studies have been conducted to assess the impacts to marine biota of fill placement and movement of surface substrate. This study was designed to monitor infaunal bivalves and eelgrass from intertidal areas in and adjacent to the area of original fill placement. Findings from this survey were compared to previous survey results to determine (1) if recruitment of infaunal bivalves to the fill area has occurred, (2) if infaunal bivalve densities outside the fill area are stable, and (3) if eelgrass distribution and abundance have remained stable along the adjacent shoreline. To maximize comparability of findings from this survey with previous studies, sampling techniques, transects, and tidal elevations were consistent with previous studies at this site.

  17. On the utility of land surface models for agricultural drought monitoring

    Directory of Open Access Journals (Sweden)

    W. T. Crow

    2012-09-01

    Full Text Available The lagged rank cross-correlation between model-derived root-zone soil moisture estimates and remotely sensed vegetation indices (VI is examined between January 2000 and December 2010 to quantify the skill of various soil moisture models for agricultural drought monitoring. Examined modeling strategies range from a simple antecedent precipitation index to the application of modern land surface models (LSMs based on complex water and energy balance formulations. A quasi-global evaluation of lagged VI/soil moisture cross-correlation suggests, when globally averaged across the entire annual cycle, soil moisture estimates obtained from complex LSMs provide little added skill (< 5% in relative terms in anticipating variations in vegetation condition relative to a simplified water accounting procedure based solely on observed precipitation. However, larger amounts of added skill (5–15% in relative terms can be identified when focusing exclusively on the extra-tropical growing season and/or utilizing soil moisture values acquired by averaging across a multi-model ensemble.

  18. Monitoring the accumulated water soluble airborne compounds deposited on surfaces of showcases and walls in museums, archives and historical buildings

    DEFF Research Database (Denmark)

    Skytte, Lilian; Rasmussen, Kaare Lund; Svensmark, Bo

    2017-01-01

    to implement by curators and conservators, who can the send the flush water to specialized laboratories. Brief summary: A new methodology capable of monitoring the accumulated airborne deposits on surfaces in showcases and historic buildings is presented and tested. The method is cheap and is easy to implement...... themselves. This might make the compounds seem absent from analyses of indoor air samples. Context and purpose of the study: A new method of detecting water soluble pollutants without taking samples from the interior walls or from the CH objects themselves has been developed. The method involves sampling...... the pollutants accumulated on a surface near the CH object, e.g. a nearby wall or an interior glass surface of a showcase. The samples were obtained by gently flushing the surface with deionised water to collect the ions readily removed from the surface. The method was tested on a variety of surfaces. Results...

  19. Lie symmetry analysis of a double-diffusive free convective slip flow with a convective boundary condition past a radiating vertical surface embedded in a porous medium

    Science.gov (United States)

    Afify, A. A.; Uddin, Md. J.

    2016-09-01

    A numerical study of a steady two-dimensional double-diffusive free convection boundary layer flow over a vertical surface embedded in a porous medium with slip flow and convective boundary conditions, heat generation/absorption, and solar radiation effects is performed. A scaling group of transformations is used to obtain the governing boundary layer equations and the boundary conditions. The transformed equations are then solved by the fourth- and fifth-order Runge-Kutta-Fehlberg numerical method with Maple 13. The results for the velocity, temperature, and concentration profiles, as well as the skin friction coefficient, the Nusselt number, and the Sherwood number are presented and discussed.

  20. Using distributed temperature sensing to monitor field scale dynamics of ground surface temperature and related substrate heat flux

    NARCIS (Netherlands)

    Bense, V.F.; Read, T.; Verhoef, A.

    2016-01-01

    We present one of the first studies of the use of distributed temperature sensing (DTS) along fibre-optic cables to purposely monitor spatial and temporal variations in ground surface temperature (GST) and soil temperature, and provide an estimate of the heat flux at the base of the canopy layer

  1. Leadership, power and symmetry

    DEFF Research Database (Denmark)

    Spaten, Ole Michael

    2016-01-01

    regarding managers coaching their employees and it is asked; what contributes to coaching of high quality when one reflects on the power aspect as being immanent? Fourteen middle managers coached five of their employees, and all members of each party wrote down cues and experiences immediately after each......Research publications concerning managers who coach their own employees are barely visible despite its wide- spread use in enterprises (McCarthy & Milner, 2013; Gregory & Levy, 2011; Crabb, 2011). This article focuses on leadership, power and moments of symmetry in the coaching relationship...... session. Thereafter we executed qualitative interviews with both managers and employees. Subsequently, a Thematic Analysis resulted in several themes, including power and moments of symmetry in the coaching relationship. One main conclusion is that the most fruitful coaching was obtained when the coachee...

  2. Asymmetry, Symmetry and Beauty

    Directory of Open Access Journals (Sweden)

    Abbe R. Kopra

    2010-07-01

    Full Text Available Asymmetry and symmetry coexist in natural and human processes.  The vital role of symmetry in art has been well demonstrated. This article highlights the complementary role of asymmetry. Further we show that the interaction of asymmetric action (recursion and symmetric opposition (sinusoidal waves are instrumental in generating creative features (relatively low entropy, temporal complexity, novelty (less recurrence in the data than in randomized copies and complex frequency composition. These features define Bios, a pattern found in musical compositions and in poetry, except for recurrence instead of novelty. Bios is a common pattern in many natural and human processes (quantum processes, the expansion of the universe, gravitational waves, cosmic microwave background radiation, DNA, physiological processes, animal and human populations, and economic time series. The reduction in entropy is significant, as it reveals creativity and contradicts the standard claim of unavoidable decay towards disorder. Artistic creations capture fundamental features of the world.

  3. Symmetry rules How science and nature are founded on symmetry

    CERN Document Server

    Rosen, Joe

    2008-01-01

    When we use science to describe and understand the world around us, we are in essence grasping nature through symmetry. In fact, modern theoretical physics suggests that symmetry is a, if not the, foundational principle of nature. Emphasizing the concepts, this book leads the reader coherently and comprehensively into the fertile field of symmetry and its applications. Among the most important applications considered are the fundamental forces of nature and the Universe. It is shown that the Universe cannot possess exact symmetry, which is a principle of fundamental significance. Curie's principle - which states that the symmetry of the effect is at least that of the cause - features prominently. An introduction to group theory, the mathematical language of symmetry, is included. This book will convince all interested readers of the importance of symmetry in science. Furthermore, it will serve as valuable background reading for all students in the physical sciences.

  4. Manipulating and Monitoring On-Surface Biological Reactions by Light-Triggered Local pH Alterations.

    Science.gov (United States)

    Peretz-Soroka, Hagit; Pevzner, Alexander; Davidi, Guy; Naddaka, Vladimir; Kwiat, Moria; Huppert, Dan; Patolsky, Fernando

    2015-07-08

    Significant research efforts have been dedicated to the integration of biological species with electronic elements to yield smart bioelectronic devices. The integration of DNA, proteins, and whole living cells and tissues with electronic devices has been developed into numerous intriguing applications. In particular, the quantitative detection of biological species and monitoring of biological processes are both critical to numerous areas of medical and life sciences. Nevertheless, most current approaches merely focus on the "monitoring" of chemical processes taking place on the sensing surfaces, and little efforts have been invested in the conception of sensitive devices that can simultaneously "control" and "monitor" chemical and biological reactions by the application of on-surface reversible stimuli. Here, we demonstrate the light-controlled fine modulation of surface pH by the use of photoactive molecularly modified nanomaterials. Through the use of nanowire-based FET devices, we showed the capability of modulating the on-surface pH, by intensity-controlled light stimulus. This allowed us simultaneously and locally to control and monitor pH-sensitive biological reactions on the nanodevices surfaces, such as the local activation and inhibition of proteolytic enzymatic processes, as well as dissociation of antigen-antibody binding interactions. The demonstrated capability of locally modulating the on-surface effective pH, by a light stimuli, may be further applied in the local control of on-surface DNA hybridization/dehybridization processes, activation or inhibition of living cells processes, local switching of cellular function, local photoactivation of neuronal networks with single cell resolution and so forth.

  5. Local Rotational Symmetries.

    Science.gov (United States)

    1985-08-01

    way to choose among them. Spirals can occur in natural figures, e.g. a spiralled tail or a coil of rope or vine tendril, and in line drawings. Since...generated and removes it and all regions similar to it from the list of regions. The end result is a pruned list of distinct optimal regions. 4.7...that, at least to a first approximation, the potential symmetry regions pruned by the locality restriction are not perceptually salient. For example

  6. Symmetry and quantum mechanics

    CERN Document Server

    Corry, Scott

    2016-01-01

    This book offers an introduction to quantum mechanics for professionals, students, and others in the field of mathematics who have a minimal background in physics with an understanding of linear algebra and group theory. It covers such topics as Lie groups, algebras and their representations, and analysis (Hilbert space, distributions, the spectral Theorem, and the Stone-Von Neumann Theorem). The book emphasizes the role of symmetry and is useful to physicists as it provides a mathematical introduction to the topic.

  7. Symmetry issue in Galileons

    CERN Document Server

    Momeni, Davood

    2014-01-01

    The symmetry issue for Galileons has been studied. In particular we address scaling (conformal) and Noether symmetrized Galileons. We have been proven a series of theorems about the form of Noether conserved charge (current) for irregular (not quadratic) dynamical systems. Special attentions have been made on Galileons. We have been proven that for Galileons always is possible to find a way to "symmetrized" Galileo's field .

  8. Invisibility and PT symmetry

    OpenAIRE

    MOSTAFAZADEH, Ali

    2013-01-01

    PHYSICAL REVIEW A 87, 012103 (2013) Invisibility and PT symmetry Ali Mostafazadeh* Department of Mathematics, Koc¸ University, Sarıyer 34450, Istanbul, Turkey (Received 9 July 2012; published 3 January 2013) For a general complex scattering potential defined on a real line, we show that the equations governing invisibility of the potential are invariant under the combined action of parity and time-reversal (PT ) transformation. We determine the PT -symmetric as well as no...

  9. Symmetry in music

    Energy Technology Data Exchange (ETDEWEB)

    Herrero, O F, E-mail: o.f.herrero@hotmail.co [Conservatorio Superior de Musica ' Eduardo Martinez Torner' Corrada del Obispo s/n 33003 - Oviedo - Asturias (Spain)

    2010-06-01

    Music and Physics are very close because of the symmetry that appears in music. A periodic wave is what music really is, and there is a field of Physics devoted to waves researching. The different musical scales are the base of all kind of music. This article tries to show how this musical scales are made, how the consonance is the base of many of them and how symmetric they are.

  10. Invariants of Broken Discrete Symmetries

    Science.gov (United States)

    Kalozoumis, P. A.; Morfonios, C.; Diakonos, F. K.; Schmelcher, P.

    2014-08-01

    The parity and Bloch theorems are generalized to the case of broken global symmetry. Local inversion or translation symmetries in one dimension are shown to yield invariant currents that characterize wave propagation. These currents map the wave function from an arbitrary spatial domain to any symmetry-related domain. Our approach addresses any combination of local symmetries, thus applying, in particular, to acoustic, optical, and matter waves. Nonvanishing values of the invariant currents provide a systematic pathway to the breaking of discrete global symmetries.

  11. SURFACE WATER AND GROUND WATER QUALITY MONITORING FOR RESTORATION OF URBAN LAKES IN GREATER HYDERABAD, INDIA

    Science.gov (United States)

    Mohanty, A. K.

    2009-12-01

    SURFACE WATER AND GROUND WATER QUALITY MONITORING FOR RESTORATION OF URBAN LAKES IN GREATER HYDERABAD, INDIA A.K. Mohanty, K. Mahesh Kumar, B. A. Prakash and V.V.S. Gurunadha Rao Ecology and Environment Group National Geophysical Research Institute, (CSIR) Hyderabad - 500 606, India E-mail:atulyakumarmohanty@yahoo.com Abstract: Hyderabad Metropolitan Development Authority has taken up restoration of urban lakes around Hyderabad city under Green Hyderabad Environment Program. Restoration of Mir Alam Tank, Durgamcheruvu, Patel cheruvu, Pedda Cheruvu and Nallacheruvu lakes have been taken up under the second phase. There are of six lakes viz., RKPuramcheruvu, Nadimicheruvu (Safilguda), Bandacheruvu Patelcheruvu, Peddacheruvu, Nallacheruvu, in North East Musi Basin covering 38 sq km. Bimonthly monitoring of lake water quality for BOD, COD, Total Nitrogen, Total phosphorous has been carried out for two hydrological cycles during October 2002- October 2004 in all the five lakes at inlet channels and outlets. The sediments in the lake have been also assessed for nutrient status. The nutrient parameters have been used to assess eutrophic condition through computation of Trophic Status Index, which has indicated that all the above lakes under study are under hyper-eutrophic condition. The hydrogeological, geophysical, water quality and groundwater data base collected in two watersheds covering 4 lakes has been used to construct groundwater flow and mass transport models. The interaction of lake-water with groundwater has been computed for assessing the lake water budget combining with inflow and outflow measurements on streams entering and leaving the lakes. Individual lake water budget has been used for design of appropriate capacity of Sewage Treatment Plants (STPs) on the inlet channels of the lakes for maintaining Full Tank Level (FTL) in each lake. STPs are designed for tertiary treatment i.e. removal of nutrient load viz., Phosphates and Nitrates. Phosphates are

  12. Symmetry of “Twins”

    Directory of Open Access Journals (Sweden)

    Vladan Nikolić

    2015-02-01

    Full Text Available The idea of construction of twin buildings is as old as architecture itself, and yet there is hardly any study emphasizing their specificity. Most frequently there are two objects or elements in an architectural composition of “twins” in which there may be various symmetry relations, mostly bilateral symmetries. The classification of “twins” symmetry in this paper is based on the existence of bilateral symmetry, in terms of the perception of an observer. The classification includes both, 2D and 3D perception analyses. We start analyzing a pair of twin buildings with projection of the architectural composition elements in 2D picture plane (plane of the composition and we distinguish four 2D keyframe cases based on the relation between the bilateral symmetry of the twin composition and the bilateral symmetry of each element. In 3D perception for each 2D keyframe case there are two sub-variants, with and without a symmetry plane parallel to the picture plane. The bilateral symmetry is dominant if the corresponding symmetry plane is orthogonal to the picture plane. The essence of the complete classification is relation between the bilateral (dominant symmetry of the architectural composition and the bilateral symmetry of each element of that composition.

  13. Test of Lorentz symmetry with trapped ions

    Science.gov (United States)

    Pruttivarasin, Thaned

    2016-05-01

    The outcome of an experiment should not depend on the orientation of the apparatus in space. This important cornerstone of physics is deeply engrained into the Standard Model of Physics by requiring that all fields must be Lorentz invariant. However, it is well-known that the Standard Model is incomplete. Some theories conjecture that at the Planck scale Lorentz symmetry might be broken and measurable at experimentally accessible energy scales. Therefore, a search for violation of Lorentz symmetry directly probes physics beyond the Standard model. We present a novel experiment utilizing trapped calcium ions as a direct probe of Lorentz-violation in the electron-photon sector. We monitor the energy between atomic states with different orientations of the electronic wave-functions as they rotate together with the motion of the Earth. This is analogous to the famous Michelson-Morley experiment. To remove magnetic field noise, we perform the experiment with the ions prepared in the decoherence-free states. Our result improves on the most stringent bounds on Lorentz symmetry for electrons by 100 times. The experimental scheme is readily applicable to many ion species, hence opening up paths toward much improved test of Lorentz symmetry in the future. (Ph. D. Advisor: Hartmut Haeffner, University of California, Berkeley).

  14. Africa-wide monitoring of small surface water bodies using multisource satellite data: a monitoring system for FEWS NET: chapter 5

    Science.gov (United States)

    Velpuri, Naga Manohar; Senay, Gabriel B.; Rowland, James; Verdin, James P.; Alemu, Henok; Melesse, Assefa M.; Abtew, Wossenu; Setegn, Shimelis G.

    2014-01-01

    Continental Africa has the highest volume of water stored in wetlands, large lakes, reservoirs, and rivers, yet it suffers from problems such as water availability and access. With climate change intensifying the hydrologic cycle and altering the distribution and frequency of rainfall, the problem of water availability and access will increase further. Famine Early Warning Systems Network (FEWS NET) funded by the United States Agency for International Development (USAID) has initiated a large-scale project to monitor small to medium surface water points in Africa. Under this project, multisource satellite data and hydrologic modeling techniques are integrated to monitor several hundreds of small to medium surface water points in Africa. This approach has been already tested to operationally monitor 41 water points in East Africa. The validation of modeled scaled depths with field-installed gauge data demonstrated the ability of the model to capture both the spatial patterns and seasonal variations. Modeled scaled estimates captured up to 60 % of the observed gauge variability with a mean root-mean-square error (RMSE) of 22 %. The data on relative water level, precipitation, and evapotranspiration (ETo) for water points in East and West Africa were modeled since 1998 and current information is being made available in near-real time. This chapter presents the approach, results from the East African study, and the first phase of expansion activities in the West Africa region. The water point monitoring network will be further expanded to cover much of sub-Saharan Africa. The goal of this study is to provide timely information on the water availability that would support already established FEWS NET activities in Africa. This chapter also presents the potential improvements in modeling approach to be implemented during future expansion in Africa.

  15. Digital stereo photogrammetry for grain-scale monitoring of fluvial surfaces: Error evaluation and workflow optimisation

    Science.gov (United States)

    Bertin, Stephane; Friedrich, Heide; Delmas, Patrice; Chan, Edwin; Gimel'farb, Georgy

    2015-03-01

    Grain-scale monitoring of fluvial morphology is important for the evaluation of river system dynamics. Significant progress in remote sensing and computer performance allows rapid high-resolution data acquisition, however, applications in fluvial environments remain challenging. Even in a controlled environment, such as a laboratory, the extensive acquisition workflow is prone to the propagation of errors in digital elevation models (DEMs). This is valid for both of the common surface recording techniques: digital stereo photogrammetry and terrestrial laser scanning (TLS). The optimisation of the acquisition process, an effective way to reduce the occurrence of errors, is generally limited by the use of commercial software. Therefore, the removal of evident blunders during post processing is regarded as standard practice, although this may introduce new errors. This paper presents a detailed evaluation of a digital stereo-photogrammetric workflow developed for fluvial hydraulic applications. The introduced workflow is user-friendly and can be adapted to various close-range measurements: imagery is acquired with two Nikon D5100 cameras and processed using non-proprietary "on-the-job" calibration and dense scanline-based stereo matching algorithms. Novel ground truth evaluation studies were designed to identify the DEM errors, which resulted from a combination of calibration errors, inaccurate image rectifications and stereo-matching errors. To ensure optimum DEM quality, we show that systematic DEM errors must be minimised by ensuring a good distribution of control points throughout the image format during calibration. DEM quality is then largely dependent on the imagery utilised. We evaluated the open access multi-scale Retinex algorithm to facilitate the stereo matching, and quantified its influence on DEM quality. Occlusions, inherent to any roughness element, are still a major limiting factor to DEM accuracy. We show that a careful selection of the camera

  16. Exploring Digital Surface Models from Nine Different Sensors for Forest Monitoring and Change Detection

    Directory of Open Access Journals (Sweden)

    Jiaojiao Tian

    2017-03-01

    Full Text Available Digital surface models (DSMs derived from spaceborne and airborne sensors enable the monitoring of the vertical structures for forests in large areas. Nevertheless, due to the lack of an objective performance assessment for this task, it is difficult to select the most appropriate data source for DSM generation. In order to fill this gap, this paper performs change detection analysis including forest decrease and tree growth. The accuracy of the DSMs is evaluated by comparison with measured tree heights from inventory plots (field data. In addition, the DSMs are compared with LiDAR data to perform a pixel-wise quality assessment. DSMs from four different satellite stereo sensors (ALOS/PRISM, Cartosat-1, RapidEye and WorldView-2, one satellite InSAR sensor (TanDEM-X, two aerial stereo camera systems (HRSC and UltraCam and two airborne laser scanning datasets with different point densities are adopted for the comparison. The case study is a complex central European temperate forest close to Traunstein in Bavaria, Germany. As a major experimental result, the quality of the DSM is found to be robust to variations in image resolution, especially when the forest density is high. The forest decrease results confirm that besides aerial photogrammetry data, very high resolution satellite data, such as WorldView-2, can deliver results with comparable quality as the ones derived from LiDAR, followed by TanDEM-X and Cartosat DSMs. The quality of the DSMs derived from ALOS and Rapid-Eye data is lower, but the main changes are still correctly highlighted. Moreover, the vertical tree growth and their relationship with tree height are analyzed. The major tree height in the study site is between 15 and 30 m and the periodic annual increments (PAIs are in the range of 0.30–0.50 m.

  17. Geophysical Monitoring of Ground Surface Deformation Associated with a Confined Aquifer Storage and Recovery Operation

    Science.gov (United States)

    Bonneville, Alain; Heggy, Essam; Strickland, Christopher; Normand, Jonathan; Dermond, Jeffrey; Fang, Yilin; Sullivan, Charlotte

    2015-08-01

    One important issue in the storage of large volumes of fluids, mainly water and CO2, in the deep subsurface is to determine the resulting field-scale-induced displacements and consequences of overpressures on the mechanical integrity of the storage reservoir and surroundings. A quantifiable estimation of displacement can be made by combining the robust, cost-effective, and repeatable geophysical techniques of micro-gravimetry, differential global positioning system (DGPS), and differential synthetic aperture radar interferometry (DInSAR). These techniques were field tested and evaluated for the first time on an active large-volume aquifer storage and recovery (ASR) project in Pendleton, Oregon, USA, where three ASR wells are injecting up to 1.9 million m3 year-1 into basalt aquifers to a depth of about 150 m. Injection and recovery of water at the wells are accompanied by significant gravity anomalies and vertical deformation of the ground surface localized to the immediate surroundings of the injection wells as evidenced by DGPS and gravity measurements collected in 2011. At a larger scale, and between 2011 and 2013, DInSAR monitoring of the Pendleton area shows sub- centimetric deformation in the western part of the city and close to the injection locations associated with ASR cycle. Deformations are found to be temporally out phased with the injection and recovery events due to complex groundwater flow. A numerical simulation of the effect of the water injection gives results in good agreement with the observations and confirms the validity of the approach, which could be deployed in similar geological contexts to look at the mechanical effects of water and gas injections.

  18. Design of a surface plasmon resonance immunoassay for therapeutic drug monitoring of amikacin.

    Science.gov (United States)

    Losoya-Leal, Adrian; Estevez, M-Carmen; Martínez-Chapa, Sergio O; Lechuga, Laura M

    2015-08-15

    The therapeutic drug monitoring (TDM) of pharmaceutical drugs with narrow therapeutic ranges is of great importance in the clinical setting. It provides useful information towards the enhancement of drug therapies, aiding in dosage control and toxicity risk management. Amikacin is an aminoglycoside antibiotic commonly used in neonatal therapies that is indicated for TDM due to the toxicity risks inherent in its use. Current techniques for TDM such as high performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) are costly, time consuming, and cannot be performed at the site of action. Over the last decades, surface plasmon resonance (SPR) biosensors have become increasingly popular in clinical diagnostics due to their ability to detect biomolecular interactions in real-time. We present an SPR-based competitive immunoassay for the detection of the antibiotic amikacin, suitable for TDM in both adults and neonates. We have obtained high specificity and sensitivity levels with an IC50 value of 1.4ng/mL and a limit of detection of 0.13ng/mL, which comfortably comply with the drug's therapeutic range. Simple dilution of serum can therefore be sufficient to analyze low-volume real samples from neonates, increasing the potential of the methodology for TDM. Compared to current TDM conventional methods, this SPR-based immunoassay can provide advantages such as simplicity, potential portability, and label-free measurements with the possibility of high throughput. This work is the foundation towards the development of an integrated, simple use, highly sensitive, fast, and point-of-care sensing platform for the opportune TDM of antibiotics and other drugs in a clinical setting.

  19. Retrieval of sea surface velocities using sequential Ocean Colour Monitor (OCM) data

    Indian Academy of Sciences (India)

    J S Prasad; A S Rajawat; Yaswant Pradhan; O S Chauhan; S R Nayak

    2002-09-01

    The Indian remote sensing satellite, IRS-P4 (Oceansat-I) launched on May 26th, 1999 carried two sensors on board, i.e., the Ocean Colour Monitor (OCM) and the Multi-frequency Scanning Microwave Radiometer (MSMR) dedicated for oceanographic research. Sequential data of IRS-P4 OCM has been analysed over parts of both east and west coast of India and a methodology to retrieve sea surface current velocities has been applied. The method is based on matching suspended sediment dispersion patterns, in sequential two time lapsed images. The pattern matching is performed on a pair of atmospherically corrected and geo-referenced sequential images by Maximum Cross-Correlation (MCC) technique. The MCC technique involves computing matrices of cross-correlation coe#cients and identifying correlation peaks. The movement of the pattern can be calculated knowing the displacement of windows required to match patterns in successive images. The technique provides actual flow during a specified period by integrating both tidal and wind influences. The current velocities retrieved were compared with synchronous data collected along the east coast during the GSI cruise ST-133 of R.V. Samudra Kaustubh in January 2000. The current data were measured using the ocean current meter supplied by the Environmental Measurement and CONtrol (EMCON), Kochi available with the Geological Survey of India, Marine Wing. This current meter can measure direction and magnitude with an accuracy of ± 5° and 2% respectively. The measurement accuracies with coefficient of determination (2) of 0.99, for both magnitude (cm.s-1) and direction (deg.) were achieved.

  20. Application and Evaluation of ALOS PALSAR Data for Monitoring of Mining Induced Surface Deformations Using Interferometric Techniques

    Science.gov (United States)

    Walter, Diana; Wegmuller, Urs; Spreckels, Volker; Busch, Wolfgang

    2008-11-01

    The main objective of the projects "Determination of ground motions in mining areas by interferometric analyses of ALOS data" (ALOS ADEN 3576, ESA) and "Monitoring of mining induced surface deformation" (ALOS-RA-094, JAXA) is to evaluate PALSAR data for surface deformation monitoring, using interferometric techniques. We present monitoring results of surface movements for an active hard coal colliery of the German hard coal mining company RAG Deutsche Steinkohle (RAG). Underground mining activities lead to ground movements at the surface with maximum subsidence rates of about 10cm per month for the test site. In these projects the L-band sensor clearly demonstrates the good potential for deformation monitoring in active mining areas, especially in rural areas. In comparison to C-band sensors we clearly observe advantages in resolving the high deformation gradients that are present in this area and we achieve a more complete spatial coverage than with C-band. Extensive validation data based on levelling data and GPS measurements are available within RAǴs GIS based database "GeoMon" and thus enable an adequate analysis of the quality of the interferometric results. Previous analyses confirm the good accuracy of PALSAR data for deformation monitoring in mining areas. Furthermore, we present results of special investigations like precision geocoding of PALSAR data and corner reflector analysis. At present only DInSAR results are obtained due to the currently available number of PALSAR scenes. For the future we plan to also apply Persistent Scatterer Interferometry (PSI) using longer series of PALSAR data.

  1. Analyzing the Effects of Climate Change on Sea Surface Temperature in Monitoring Coral Reef Health in the Florida Keys Using Sea Surface Temperature Data

    Science.gov (United States)

    Jones, Jason; Burbank, Renane; Billiot, Amanda; Schultz, Logan

    2011-01-01

    This presentation discusses use of 4 kilometer satellite-based sea surface temperature (SST) data to monitor and assess coral reef areas of the Florida Keys. There are growing concerns about the impacts of climate change on coral reef systems throughout the world. Satellite remote sensing technology is being used for monitoring coral reef areas with the goal of understanding the climatic and oceanic changes that can lead to coral bleaching events. Elevated SST is a well-documented cause of coral bleaching events. Some coral monitoring studies have used 50 km data from the Advanced Very High Resolution Radiometer (AVHRR) to study the relationships of sea surface temperature anomalies to bleaching events. In partnership with NOAA's Office of National Marine Sanctuaries and the University of South Florida's Institute for Marine Remote Sensing, this project utilized higher resolution SST data from the Terra's Moderate Resolution Imaging Spectroradiometer (MODIS) and AVHRR. SST data for 2000-2010 was employed to compute sea surface temperature anomalies within the study area. The 4 km SST anomaly products enabled visualization of SST levels for known coral bleaching events from 2000-2010.

  2. Influence of surface symmetry breaking on the magnetism, collapsing, and three-dimensional dispersion of the Co pnictides A Co2As2 (A =Ba , Sr, Ca)

    Science.gov (United States)

    Mansart, Joseph; Le Fèvre, Patrick; Bertran, François; Forget, Anne; Colson, Dorothée; Brouet, Véronique

    2016-12-01

    We use angle-resolved photoemission (ARPES) to study the three-dimensional (3D) electronic structure of Co pnictides A Co2As2 with A =Ba , Sr, Ca or a mixture of Sr and Ca. These compounds are isostructural to Fe based superconductors but have one more electron in the Co 3 d orbitals. Going from Ba to Ca, they become more and more 3D, eventually forming a "collapsed" tetragonal phase, where the distance between CoAs layers is markedly reduced. We observe with ARPES the periodicity of the electronic structure as a function of kz (i.e., perpendicularly to CoAs layers) and find that it matches in each case that expected from the distance between the planes in the bulk. However, the electronic structure is better fitted by a calculation corresponding to a slab with two CoAs layers than to the bulk structure. We attribute this to subtle modifications of the 2D electronic structure induced by the truncation of the 3D dispersion at the surface in the ARPES measurement. We further study how this affects the electronic properties. We show that, despite this distortion, the electronic structure of CaCo2As2 is essentially that expected for a collapsed phase. Electronic correlations produce a renormalization of the electronic structure by a factor 1.4, which is not affected by the transition to the collapsed state. On the other hand, a small shift of the Fermi level reduces the density of states in the eg bands and suppresses the magnetic transition expected in CaCo2As2 . Our study evidences that observing the 3D bulk periodicity is not sufficient to ensure bulk sensitivity. It further gives direct information on the role of 3D interactions, mostly governed by Co-As hybridization, among eg and t2 g orbitals. It is also useful to better understand the electronic structure of Fe superconductors and the range of validity of ARPES measurements.

  3. Application of open-source photogrammetric software MicMac for monitoring surface deformation in laboratory models

    Science.gov (United States)

    Galland, Olivier; Bertelsen, Hâvard S.; Guldstrand, Frank; Girod, Luc; Johannessen, Rikke F.; Bjugger, Fanny; Burchardt, Steffi; Mair, Karen

    2016-04-01

    Quantifying deformation is essential in modern laboratory models of geological systems. This paper presents a new laboratory monitoring method through the implementation of the open-source software MicMac, which efficiently implements photogrammetry in Structure-from-Motion algorithms. Critical evaluation is provided using results from two example laboratory geodesy scenarios: magma emplacement and strike-slip faulting. MicMac automatically processes images from synchronized cameras to compute time series of digital elevation models (DEMs) and orthorectified images of model surfaces. MicMac also implements digital image correlation to produce high-resolution displacements maps. The resolution of DEMs and displacement maps corresponds to the pixel size of the processed images. Using 24 MP cameras, the precision of DEMs and displacements is ~0.05 mm on a 40 × 40 cm surface. Processing displacement maps with Matlab® scripts allows automatic fracture mapping on the monitored surfaces. MicMac also offers the possibility to integrate 3-D models of excavated structures with the corresponding surface deformation data. The high resolution and high precision of MicMac results and the ability to generate virtual 3-D models of complex structures make it a very promising tool for quantitative monitoring in laboratory models of geological systems.

  4. Sampling design for compliance monitoring of surface water quality: A case study in a Polder area

    NARCIS (Netherlands)

    Brus, D.J.; Knotters, M.

    2008-01-01

    International agreements such as the EU Water Framework Directive (WFD) ask for efficient sampling methods for monitoring natural resources. In this paper a general methodology for designing efficient, statistically sound monitoring schemes is described. An important decision is the choice between a

  5. Computer modeling and laboratory experiments of a specific borehole to surface electrical monitoring technique (BSEMT)

    NARCIS (Netherlands)

    Meekes, J.A.C.; Zhang, X.; Abdul Fattah, R.

    2011-01-01

    Geophysical monitoring of the dynamical behavior of subsurface reservoirs (oil, gas, CO2) remains an important issue in geophysical research. A new idea for reservoir monitoring based on electrical resistivity tomography was developed at TNO. The essential element of the so-called BSEMT (Borehole to

  6. Groups and symmetry

    CERN Document Server

    Farmer, David W

    1995-01-01

    In most mathematics textbooks, the most exciting part of mathematics-the process of invention and discovery-is completely hidden from the reader. The aim of Groups and Symmetry is to change all that. By means of a series of carefully selected tasks, this book leads readers to discover some real mathematics. There are no formulas to memorize; no procedures to follow. The book is a guide: Its job is to start you in the right direction and to bring you back if you stray too far. Discovery is left to you. Suitable for a one-semester course at the beginning undergraduate level, there are no prerequ

  7. Symmetry implies independence

    CERN Document Server

    Renner, R

    2007-01-01

    Given a quantum system consisting of many parts, we show that symmetry of the system's state, i.e., invariance under swappings of the subsystems, implies that almost all of its parts are virtually identical and independent of each other. This result generalises de Finetti's classical representation theorem for infinitely exchangeable sequences of random variables as well as its quantum-mechanical analogue. It has applications in various areas of physics as well as information theory and cryptography. For example, in experimental physics, one typically collects data by running a certain experiment many times, assuming that the individual runs are mutually independent. Our result can be used to justify this assumption.

  8. Geometry and symmetry

    CERN Document Server

    Yale, Paul B

    2012-01-01

    This book is an introduction to the geometry of Euclidean, affine, and projective spaces with special emphasis on the important groups of symmetries of these spaces. The two major objectives of the text are to introduce the main ideas of affine and projective spaces and to develop facility in handling transformations and groups of transformations. Since there are many good texts on affine and projective planes, the author has concentrated on the n-dimensional cases.Designed to be used in advanced undergraduate mathematics or physics courses, the book focuses on ""practical geometry,"" emphasi

  9. Mirror symmetry II

    CERN Document Server

    Greene, Brian R

    1997-01-01

    Mirror symmetry has undergone dramatic progress during the last five years. Tremendous insight has been gained on a number of key issues. This volume surveys these results. Some of the contributions in this work have appeared elsewhere, while others were written specifically for this collection. The areas covered are organized into 4 sections, and each presents papers by both physicists and mathematicians. This volume collects the most important developments that have taken place in mathematical physics since 1991. It is an essential reference tool for both mathematics and physics libraries and for students of physics and mathematics.

  10. Conformal field theory with gauge symmetry

    CERN Document Server

    Ueno, Kenji

    2008-01-01

    This book presents a systematic approach to conformal field theory with gauge symmetry from the point of view of complex algebraic geometry. After presenting the basic facts of the theory of compact Riemann surfaces and the representation theory of affine Lie algebras in Chapters 1 and 2, conformal blocks for pointed Riemann surfaces with coordinates are constructed in Chapter 3. In Chapter 4 the sheaf of conformal blocks associated to a family of pointed Riemann surfaces with coordinates is constructed, and in Chapter 5 it is shown that this sheaf supports a projective flat connection-one of

  11. Bootstrap Dynamical Symmetry Breaking

    Directory of Open Access Journals (Sweden)

    Wei-Shu Hou

    2013-01-01

    Full Text Available Despite the emergence of a 125 GeV Higgs-like particle at the LHC, we explore the possibility of dynamical electroweak symmetry breaking by strong Yukawa coupling of very heavy new chiral quarks Q . Taking the 125 GeV object to be a dilaton with suppressed couplings, we note that the Goldstone bosons G exist as longitudinal modes V L of the weak bosons and would couple to Q with Yukawa coupling λ Q . With m Q ≳ 700  GeV from LHC, the strong λ Q ≳ 4 could lead to deeply bound Q Q ¯ states. We postulate that the leading “collapsed state,” the color-singlet (heavy isotriplet, pseudoscalar Q Q ¯ meson π 1 , is G itself, and a gap equation without Higgs is constructed. Dynamical symmetry breaking is affected via strong λ Q , generating m Q while self-consistently justifying treating G as massless in the loop, hence, “bootstrap,” Solving such a gap equation, we find that m Q should be several TeV, or λ Q ≳ 4 π , and would become much heavier if there is a light Higgs boson. For such heavy chiral quarks, we find analogy with the π − N system, by which we conjecture the possible annihilation phenomena of Q Q ¯ → n V L with high multiplicity, the search of which might be aided by Yukawa-bound Q Q ¯ resonances.

  12. Galactic oscillator symmetry

    Science.gov (United States)

    Rosensteel, George

    1995-01-01

    Riemann ellipsoids model rotating galaxies when the galactic velocity field is a linear function of the Cartesian coordinates of the galactic masses. In nuclear physics, the kinetic energy in the linear velocity field approximation is known as the collective kinetic energy. But, the linear approximation neglects intrinsic degrees of freedom associated with nonlinear velocity fields. To remove this limitation, the theory of symplectic dynamical symmetry is developed for classical systems. A classical phase space for a self-gravitating symplectic system is a co-adjoint orbit of the noncompact group SP(3,R). The degenerate co-adjoint orbit is the 12 dimensional homogeneous space Sp(3,R)/U(3), where the maximal compact subgroup U(3) is the symmetry group of the harmonic oscillator. The Hamiltonian equations of motion on each orbit form a Lax system X = (X,F), where X and F are elements of the symplectic Lie algebra. The elements of the matrix X are the generators of the symplectic Lie algebra, viz., the one-body collective quadratic functions of the positions and momenta of the galactic masses. The matrix F is composed from the self-gravitating potential energy, the angular velocity, and the hydostatic pressure. Solutions to the hamiltonian dynamical system on Sp(3,R)/U(3) are given by symplectic isospectral deformations. The Casimirs of Sp(3,R), equal to the traces of powers of X, are conserved quantities.

  13. Applications of chiral symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Pisarski, R.D.

    1995-03-01

    The author discusses several topics in the applications of chiral symmetry at nonzero temperature. First, where does the rho go? The answer: up. The restoration of chiral symmetry at a temperature T{sub {chi}} implies that the {rho} and a{sub 1} vector mesons are degenerate in mass. In a gauged linear sigma model the {rho} mass increases with temperature, m{sub {rho}}(T{sub {chi}}) > m{sub {rho}}(0). The author conjectures that at T{sub {chi}} the thermal {rho} - a{sub 1}, peak is relatively high, at about {approximately}1 GeV, with a width approximately that at zero temperature (up to standard kinematic factors). The {omega} meson also increases in mass, nearly degenerate with the {rho}, but its width grows dramatically with temperature, increasing to at least {approximately}100 MeV by T{sub {chi}}. The author also stresses how utterly remarkable the principle of vector meson dominance is, when viewed from the modern perspective of the renormalization group. Secondly, he discusses the possible appearance of disoriented chiral condensates from {open_quotes}quenched{close_quotes} heavy ion collisions. It appears difficult to obtain large domains of disoriented chiral condensates in the standard two flavor model. This leads to the last topic, which is the phase diagram for QCD with three flavors, and its proximity to the chiral critical point. QCD may be very near this chiral critical point, and one might thereby generated large domains of disoriented chiral condensates.

  14. Symmetry in Complex Networks

    Directory of Open Access Journals (Sweden)

    Angel Garrido

    2011-01-01

    Full Text Available In this paper, we analyze a few interrelated concepts about graphs, such as their degree, entropy, or their symmetry/asymmetry levels. These concepts prove useful in the study of different types of Systems, and particularly, in the analysis of Complex Networks. A System can be defined as any set of components functioning together as a whole. A systemic point of view allows us to isolate a part of the world, and so, we can focus on those aspects that interact more closely than others. Network Science analyzes the interconnections among diverse networks from different domains: physics, engineering, biology, semantics, and so on. Current developments in the quantitative analysis of Complex Networks, based on graph theory, have been rapidly translated to studies of brain network organization. The brain's systems have complex network features—such as the small-world topology, highly connected hubs and modularity. These networks are not random. The topology of many different networks shows striking similarities, such as the scale-free structure, with the degree distribution following a Power Law. How can very different systems have the same underlying topological features? Modeling and characterizing these networks, looking for their governing laws, are the current lines of research. So, we will dedicate this Special Issue paper to show measures of symmetry in Complex Networks, and highlight their close relation with measures of information and entropy.

  15. From symmetry to particles

    Energy Technology Data Exchange (ETDEWEB)

    El Naschie, M.S. [King Abdul Aziz City of Science and Technology, Riyadh (Saudi Arabia)

    2007-04-15

    The notion of a particle-like state emerging from a symmetry breaking is given five corresponding pictures. We start from a geometrical picture in two dimensions involving a modular curve constructed using 336 triangles. The same number of building blocks is found again, this time as 336 contact points in the ten dimensional space of super string theory in the context of the largest kissing number of lattice sphere packing. The next corresponding representation is an abstract one pertinent to the order of the simple linear Lie group SL(2, n) in seven dimensions (n = 7) which leads to 336 symmetries. Subsequently a tensorial picture is given using the Riemannian tensor of relativity theory but this time in an eight dimensional space (n = 8) for which the number of independent components is again 336. Finally we use a physical string theory related picture in the 12 dimensions of F theory to find 336 moduli space dimensions representing the instanton cells of our theory. It is evident that the five preceding pictures are ten fold interconnected and exchangeable. This additional mental freedom does not only enhance the feeling of understanding, but also facilitates the easy recognition of complex mathematical relations and its connection to the physical concepts.

  16. SYMMETRY IN WORLD TRADE NETWORK

    Institute of Scientific and Technical Information of China (English)

    Hui WANG; Guangle YAN; Yanghua XIAO

    2009-01-01

    Symmetry of the world trade network provides a novel perspective to understand the world-wide trading system. However, symmetry in the world trade network (WTN) has been rarely studied so far. In this paper, the authors systematically explore the symmetry in WTN. The authors construct WTN in 2005 and explore the size and structure of its automorphism group, through which the authors find that WTN is symmetric, particularly, locally symmetric to a certain degree. Furthermore, the authors work out the symmetric motifs of WTN and investigate the structure and function of the symmetric motifs, coming to the conclusion that local symmetry will have great effect on the stability of the WTN and that continuous symmetry-breakings will generate complexity and diversity of the trade network. Finally, utilizing the local symmetry of the network, the authors work out the quotient of WTN, which is the structural skeleton dominating stability and evolution of WTN.

  17. In search of symmetry lost

    CERN Multimedia

    Wilczek, Frank

    2004-01-01

    Powerful symmetry principles have guided physicists in their quest for nature's fundamental laws. The successful gauge theory of electroweak interactions postulates a more extensive symmetry for its equations than are manifest in the world (8 pages) Powerful symmetry principles have guided physicists in their quest for nature's fundamental laws. The successful gauge theory of electroweak interactions postulates a more extensive symmetry for its equations than are manifest in the world. The discrepancy is ascribed to a pervasive symmetry-breaking field, which fills all space uniformly, rendering the Universe a sort of exotic superconductor. So far, the evidence for these bold ideas is indirect. But soon the theory will undergo a critical test depending on whether the quanta of this symmetry-breaking field, the so-called Higgs particles, are produced at the Large Hadron Collider (due to begin operation in 2007).

  18. Symmetry of crystals and molecules

    CERN Document Server

    Ladd, Mark

    2014-01-01

    This book successfully combines a thorough treatment of molecular and crystalline symmetry with a simple and informal writing style. By means of familiar examples the author helps to provide the reader with those conceptual tools necessary for the development of a clear understanding of what are often regarded as 'difficult' topics. Christopher Hammond, University of Leeds This book should tell you everything you need to know about crystal and molecular symmetry. Ladd adopts an integrated approach so that the relationships between crystal symmetry, molecular symmetry and features of chemical interest are maintained and reinforced. The theoretical aspects of bonding and symmetry are also well represented, as are symmetry-dependent physical properties and the applications of group theory. The comprehensive coverage will make this book a valuable resource for a broad range of readers.

  19. Symmetry breaking. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Strocchi, F. [Scuola Normale Superiore, Classe di Scienze, Pisa (Italy)

    2008-07-01

    This new edition of Prof. Strocchi's well received primer on rigorous aspects of symmetry breaking presents a more detailed and thorough discussion of the mechanism of symmetry breaking in classical field theory in relation with the Noether theorem. Moreover, the link between symmetry breaking without massless Goldstone bosons in Coulomb systems and in gauge theories is made more explicit in terms of the delocalized Coulomb dynamics. Furthermore, the chapter on the Higgs mechanism has been significantly expanded with a non-perturbative treatment of the Higgs phenomenon, at the basis of the standard model of particle physics, in the local and in the Coulomb gauges. Last but not least, a subject index has been added and a number of misprints have been corrected. From the reviews of the first edition: The notion of spontaneous symmetry breaking has proven extremely valuable, the problem is that most derivations are perturbative and heuristic. Yet mathematically precise versions do exist, but are not widely known. It is precisely the aim of his book to correct this unbalance. - It is remarkable to see how much material can actually be presented in a rigorous way (incidentally, many of the results presented are due to Strocchi himself), yet this is largely ignored, the original heuristic derivations being, as a rule, more popular. - At each step he strongly emphasizes the physical meaning and motivation of the various notions introduced, a book that fills a conspicuous gap in the literature, and does it rather well. It could also be a good basis for a graduate course in mathematical physics. It can be recommended to physicists as well and, of course, for physics/mathematics libraries. J.-P. Antoine, Physicalia 28/2, 2006 Strocchi's main emphasis is on the fact that the loss of symmetric behaviour requires both the non-symmetric ground states and the infinite extension of the system. It is written in a pleasant style at a level suitable for graduate students in

  20. Monitoring annealing via carbon dioxide laser heating of defect populations in fused silica surfaces using photoluminescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Raman, R N; Matthews, M J; Adams, J J; Demos, S G

    2010-02-01

    Photoluminescence (PL) microscopy and spectroscopy under 266 nm and 355 nm laser excitation are explored as a means of monitoring defect populations in laser-modified sites on the surface of fused silica and their subsequent response to heating to different temperatures via exposure to a CO{sub 2} laser beam. Laser-induced temperature changes were estimated using an analytic solution to the heat flow equation and compared to changes in the PL emission intensity. The results indicate that the defect concentrations decrease significantly with increasing CO{sub 2} laser exposure and are nearly eliminated when the peak surface temperature exceeds the softening point of fused silica ({approx}1900K), suggesting that this method might be suitable for in situ monitoring of repair of defective sites in fused silica optical components.

  1. Monitoring of ppm level humic acid in surface water using ZnO-chitosan nano-composite as fluorescence probe

    Science.gov (United States)

    Basumallick, Srijita; Santra, Swadeshmukul

    2017-05-01

    Surface water contains natural pollutants humic acid (HA) and fulvic acid at ppm level which form carcinogenic chloro-compounds during chlorination in water treatment plants. We report here synthesis of ZnO-chitosan (CS) nano-composites by simple hydrothermal technique and examined their application potential as fluorescent probe for monitoring ppm level HA. These ZnO-CS composites have been characterized by HRTEM, EDX, FTIR, AFM and Fluorescence Spectra. HRTEM images show the formation of ZnO-CS nano-composites of average diameter of 50-250 nm. Aqueous dispersions of these nano-composites show fluorescence emission at 395 nm when excited at 300 nm which is strongly quenched by ppm level HA indicating their possible use in monitoring ppm level HA present in surface water.

  2. A thermal monitoring sheet with low influence from adjacent waterbolus for tissue surface thermometry during clinical hyperthermia.

    Science.gov (United States)

    Arunachalam, Kavitha; Maccarini, Paolo F; Stauffer, Paul R

    2008-10-01

    This paper presents a complete thermal analysis of a novel conformal surface thermometer design with directional sensitivity for real-time temperature monitoring during hyperthermia treatments of large superficial cancer. The thermal monitoring sheet (TMS) discussed in this paper consists of a 2-D array of fiberoptic sensors embedded between two layers of flexible, low-loss, and thermally conductive printed circuit board (PCB) film. Heat transfer across all interfaces from the tissue surface through multiple layers of insulating dielectrics surrounding the small buried temperature sensor and into an adjacent temperature-regulated water coupling bolus was studied using 3-D thermal simulation software. Theoretical analyses were carried out to identify the most effective differential TMS probe configuration possible with commercially available flexible PCB materials and to compare their thermal responses with omnidirectional probes commonly used in clinical hyperthermia. A TMS sensor design that employs 0.0508-mm Kapton MTB and 0.2032-mm Kapton HN flexible polyimide films is proposed for tissue surface thermometry with low influence from the adjacent waterbolus. Comparison of the thermal simulations with clinical probes indicates the new differential TMS probe design to outperform in terms of both transient response and steady-state accuracy in selectively reading the tissue surface temperature, while decreasing the overall thermal barrier of the probe between the coupling waterbolus and tissue surface.

  3. Exact Dynamical and Partial Symmetries

    CERN Document Server

    Leviatan, A

    2010-01-01

    We discuss a hierarchy of broken symmetries with special emphasis on partial dynamical symmetries (PDS). The latter correspond to a situation in which a non-invariant Hamiltonian accommodates a subset of solvable eigenstates with good symmetry, while other eigenstates are mixed. We present an algorithm for constructing Hamiltonians with this property and demonstrate the relevance of the PDS notion to nuclear spectroscopy, to quantum phase transitions and to mixed systems with coexisting regularity and chaos.

  4. Exact dynamical and partial symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Leviatan, A, E-mail: ami@phys.huji.ac.il [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel)

    2011-03-01

    We discuss a hierarchy of broken symmetries with special emphasis on partial dynamical symmetries (PDS). The latter correspond to a situation in which a non-invariant Hamiltonian accommodates a subset of solvable eigenstates with good symmetry, while other eigenstates are mixed. We present an algorithm for constructing Hamiltonians with this property and demonstrate the relevance of the PDS notion to nuclear spectroscopy, to quantum phase transitions and to mixed systems with coexisting regularity and chaos.

  5. Physical Theories with Average Symmetry

    OpenAIRE

    Alamino, Roberto C.

    2013-01-01

    This Letter probes the existence of physical laws invariant only in average when subjected to some transformation. The concept of a symmetry transformation is broadened to include corruption by random noise and average symmetry is introduced by considering functions which are invariant only in average under these transformations. It is then shown that actions with average symmetry obey a modified version of Noether's Theorem with dissipative currents. The relation of this with possible violat...

  6. Autonomus I&C Maintenance and Health Monitoring System for Fission Surface Power Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The primary goal of this project is to design and develop an autonomous instrumentation and control (I&C) health monitoring system for space nuclear power...

  7. The Surface Elevation Table and Marker Horizon Technique: A Protocol for Monitoring Wetland Elevation Dynamics

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The National Park Service, in response to the growing evidence and awareness of the effects of climate change on federal lands, determined that monitoring wetland...

  8. Physical Theories with Average Symmetry

    CERN Document Server

    Alamino, Roberto C

    2013-01-01

    This Letter probes the existence of physical laws invariant only in average when subjected to some transformation. The concept of a symmetry transformation is broadened to include corruption by random noise and average symmetry is introduced by considering functions which are invariant only in average under these transformations. It is then shown that actions with average symmetry obey a modified version of Noether's Theorem with dissipative currents. The relation of this with possible violations of physical symmetries, as for instance Lorentz invariance in some quantum gravity theories, is briefly commented.

  9. The conservation of orbital symmetry

    CERN Document Server

    Woodward, R B

    2013-01-01

    The Conservation of Orbital Symmetry examines the principle of conservation of orbital symmetry and its use. The central content of the principle was that reactions occur readily when there is congruence between orbital symmetry characteristics of reactants and products, and only with difficulty when that congruence does not obtain-or to put it more succinctly, orbital symmetry is conserved in concerted reaction. This principle is expected to endure, whatever the language in which it may be couched, or whatever greater precision may be developed in its application and extension. The book ope

  10. Toric Symmetry of CP^3

    CERN Document Server

    Karp, Dagan; Riggins, Paul; Whitcher, Ursula

    2011-01-01

    We exhaustively analyze the toric symmetries of CP^3 and its toric blowups. Our motivation is to study toric symmetry as a computational technique in Gromov-Witten theory and Donaldson-Thomas theory. We identify all nontrivial toric symmetries. The induced nontrivial isomorphisms lift and provide new symmetries at the level of Gromov-Witten Theory and Donaldson-Thomas Theory. The polytopes of the toric varieties in question include the permutohedron, the cyclohedron, the associahedron, and in fact all graph associahedra, among others.

  11. Givental graphs and inversion symmetry

    CERN Document Server

    Dunin-Barkowski, P; Spitz, L

    2012-01-01

    Inversion symmetry is a very non-trivial discrete symmetry of Frobenius manifolds. It was obtained by Dubrovin from one of the elementary Schlesinger transformations of a special ODE associated to Frobenius manifold. In this paper, we review the Givental group action on Frobenius manifolds in terms of Feynman graphs and then we obtain an interpretation of the inversion symmetry in terms of the action of the Givental group. We also consider the implication of this interpretation of the inversion symmetry for the Schlesinger transformations and for the Hamiltonians of the associated principle hierarchy.

  12. Leptogenesis and residual CP symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Peng; Ding, Gui-Jun [Department of Modern Physics, University of Science and Technology of China,Hefei, Anhui 230026 (China); King, Stephen F. [Physics and Astronomy, University of Southampton,Southampton, SO17 1BJ (United Kingdom)

    2016-03-31

    We discuss flavour dependent leptogenesis in the framework of lepton flavour models based on discrete flavour and CP symmetries applied to the type-I seesaw model. Working in the flavour basis, we analyse the case of two general residual CP symmetries in the neutrino sector, which corresponds to all possible semi-direct models based on a preserved Z{sub 2} in the neutrino sector, together with a CP symmetry, which constrains the PMNS matrix up to a single free parameter which may be fixed by the reactor angle. We systematically study and classify this case for all possible residual CP symmetries, and show that the R-matrix is tightly constrained up to a single free parameter, with only certain forms being consistent with successful leptogenesis, leading to possible connections between leptogenesis and PMNS parameters. The formalism is completely general in the sense that the two residual CP symmetries could result from any high energy discrete flavour theory which respects any CP symmetry. As a simple example, we apply the formalism to a high energy S{sub 4} flavour symmetry with a generalized CP symmetry, broken to two residual CP symmetries in the neutrino sector, recovering familiar results for PMNS predictions, together with new results for flavour dependent leptogenesis.

  13. Symmetry fractionalization and twist defects

    Science.gov (United States)

    Tarantino, Nicolas; Lindner, Netanel H.; Fidkowski, Lukasz

    2016-03-01

    Topological order in two-dimensions can be described in terms of deconfined quasiparticle excitations—anyons—and their braiding statistics. However, it has recently been realized that this data does not completely describe the situation in the presence of an unbroken global symmetry. In this case, there can be multiple distinct quantum phases with the same anyons and statistics, but with different patterns of symmetry fractionalization—termed symmetry enriched topological order. When the global symmetry group G, which we take to be discrete, does not change topological superselection sectors—i.e. does not change one type of anyon into a different type of anyon—one can imagine a local version of the action of G around each anyon. This leads to projective representations and a group cohomology description of symmetry fractionalization, with the second cohomology group {H}2(G,{{ A }}{{abelian}}) being the relevant group. In this paper, we treat the general case of a symmetry group G possibly permuting anyon types. We show that despite the lack of a local action of G, one can still make sense of a so-called twisted group cohomology description of symmetry fractionalization, and show how this data is encoded in the associativity of fusion rules of the extrinsic ‘twist’ defects of the symmetry. Furthermore, building on work of Hermele (2014 Phys. Rev. B 90 184418), we construct a wide class of exactly-solvable models which exhibit this twisted symmetry fractionalization, and connect them to our formal framework.

  14. ADVICE: A New Approach for Near-Real-Time Monitoring of Surface Displacements in Landslide Hazard Scenarios

    Directory of Open Access Journals (Sweden)

    Giorgio Lollino

    2013-06-01

    Full Text Available We present a new method for near-real-time monitoring of surface displacements due to landslide phenomena, namely ADVanced dIsplaCement monitoring system for Early warning (ADVICE. The procedure includes: (i data acquisition and transfer protocols; (ii data collection, filtering, and validation; (iii data analysis and restitution through a set of dedicated software; (iv recognition of displacement/velocity threshold, early warning messages via SMS and/or emails; (v automatic publication of the results on a dedicated webpage. We show how the system evolved and the results obtained by applying ADVICE over three years into a real early warning scenario relevant to a large earthflow located in southern Italy. ADVICE has speed-up and facilitated the understanding of the landslide phenomenon, the communication of the monitoring results to the partners, and consequently the decision-making process in a critical scenario. Our work might have potential applications not only for landslide monitoring but also in other contexts, as monitoring of other geohazards and of complex infrastructures, as open-pit mines, buildings, dams, etc.

  15. ADVICE: a new approach for near-real-time monitoring of surface displacements in landslide hazard scenarios.

    Science.gov (United States)

    Allasia, Paolo; Manconi, Andrea; Giordan, Daniele; Baldo, Marco; Lollino, Giorgio

    2013-06-27

    We present a new method for near-real-time monitoring of surface displacements due to landslide phenomena, namely ADVanced dIsplaCement monitoring system for Early warning (ADVICE). The procedure includes: (i) data acquisition and transfer protocols; (ii) data collection, filtering, and validation; (iii) data analysis and restitution through a set of dedicated software; (iv) recognition of displacement/velocity threshold, early warning messages via SMS and/or emails; (v) automatic publication of the results on a dedicated webpage. We show how the system evolved and the results obtained by applying ADVICE over three years into a real early warning scenario relevant to a large earthflow located in southern Italy. ADVICE has speed-up and facilitated the understanding of the landslide phenomenon, the communication of the monitoring results to the partners, and consequently the decision-making process in a critical scenario. Our work might have potential applications not only for landslide monitoring but also in other contexts, as monitoring of other geohazards and of complex infrastructures, as open-pit mines, buildings, dams, etc.

  16. Symmetry energy III: Isovector skins

    Science.gov (United States)

    Danielewicz, Paweł; Singh, Pardeep; Lee, Jenny

    2017-02-01

    Isoscalar density is a sum of neutron and proton densities and isovector is a normalized difference. Here, we report the experimental evidence for the displacement of the isovector and isoscalar surfaces in nuclei, by ∼ 0.9 fm from each other. We analyze data on quasielastic (QE) charge exchange (p,n) reactions, concurrently with proton and neutron elastic scattering data for the same target nuclei, following the concepts of the isoscalar and isovector potentials combined into Lane optical potential. The elastic data largely probe the geometry of the isoscalar potential and the (p,n) data largely probe a relation between the geometries of the isovector and isoscalar potentials. The targets include 48Ca, 90Zr, 120Sn and 208Pb and projectile incident energy values span the range of (10-50) MeV. In our fit to elastic and QE charge-exchange data, we allow the values of isoscalar and isovector radii, diffusivities and overall potential normalizations to float away from those in the popular Koning and Delaroche parametrization. We find that the best-fit isovector radii are consistently larger than isoscalar and the best-fit isovector surfaces are steeper. Upon identifying the displacement of the potential surfaces with the displacement of the surfaces for the densities in the Skyrme-Hartree-Fock calculations, and by supplementing the results with those from analyzing excitation energies to isobaric analog states in the past, we arrive at the slope and value of the symmetry energy at normal density of 70 < L < 101 MeV and 33.5 < aaV < 36.4 MeV, respectively.

  17. Noncommutative mirror symmetry for punctured surfaces

    NARCIS (Netherlands)

    Bocklandt, R.

    2016-01-01

    In 2013, Abouzaid, Auroux, Efimov, Katzarkov and Orlov showed that the wrapped Fukaya categories of punctured spheres and finite unbranched covers of punctured spheres are derived equivalent to the categories of singularities of a superpotential on certain crepant resolutions of toric 3 dimensional

  18. Noncommutative mirror symmetry for punctured surfaces

    NARCIS (Netherlands)

    Bocklandt, R.

    2016-01-01

    In 2013, Abouzaid, Auroux, Efimov, Katzarkov and Orlov showed that the wrapped Fukaya categories of punctured spheres and finite unbranched covers of punctured spheres are derived equivalent to the categories of singularities of a superpotential on certain crepant resolutions of toric 3 dimensional

  19. Symmetry reduction related with nonlocal symmetry for Gardner equation

    Science.gov (United States)

    Ren, Bo

    2017-01-01

    Based on the truncated Painlevé method or the Möbious (conformal) invariant form, the nonlocal symmetry for the (1+1)-dimensional Gardner equation is derived. The nonlocal symmetry can be localized to the Lie point symmetry by introducing one new dependent variable. Thanks to the localization procedure, the finite symmetry transformations are obtained by solving the initial value problem of the prolonged systems. Furthermore, by using the symmetry reduction method to the enlarged systems, many explicit interaction solutions among different types of solutions such as solitary waves, rational solutions, Painlevé II solutions are given. Especially, some special concrete soliton-cnoidal interaction solutions are analyzed both in analytical and graphical ways.

  20. Catalysis of Dynamical Chiral Symmetry Breaking by Chiral Chemical Potential

    CERN Document Server

    Braguta, V V

    2016-01-01

    In this paper we study the properties of media with chiral imbalance parameterized by chiral chemical potential. It is shown that depending on the strength of interaction between constituents in the media the chiral chemical potential either creates or enhances dynamical chiral symmetry breaking. Thus the chiral chemical potential plays a role of the catalyst of dynamical chiral symmetry breaking. Physically this effect results from the appearance of the Fermi surface and additional fermion states on this surface which take part in dynamical chiral symmetry breaking. An interesting conclusion which can be drawn is that at sufficiently small temperature chiral plasma is unstable with respect to condensation of Cooper pairs and dynamical chiral symmetry breaking even for vanishingly small interactions between constituents.

  1. Bosonization and Mirror Symmetry

    CERN Document Server

    Kachru, Shamit; Torroba, Gonzalo; Wang, Huajia

    2016-01-01

    We study bosonization in 2+1 dimensions using mirror symmetry, a duality that relates pairs of supersymmetric theories. Upon breaking supersymmetry in a controlled way, we dynamically obtain the bosonization duality that equates the theory of a free Dirac fermion to QED3 with a single scalar boson. This duality may be used to demonstrate the bosonization duality relating an $O(2)$-symmetric Wilson-Fisher fixed point to QED3 with a single Dirac fermion, Peskin-Dasgupta-Halperin duality, and the recently conjectured duality relating the theory of a free Dirac fermion to fermionic QED3 with a single flavor. Chern-Simons and BF couplings for both dynamical and background gauge fields play a central role in our approach. In the course of our study, we describe a chiral mirror pair that may be viewed as the minimal supersymmetric generalization of the two bosonization dualities.

  2. Quantum mechanics symmetries

    CERN Document Server

    Greiner, Walter

    1989-01-01

    "Quantum Dynamics" is a major survey of quantum theory based on Walter Greiner's long-running and highly successful courses at the University of Frankfurt. The key to understanding in quantum theory is to reinforce lecture attendance and textual study by working through plenty of representative and detailed examples. Firm belief in this principle led Greiner to develop his unique course and to transform it into a remarkable and comprehensive text. The text features a large number of examples and exercises involving many of the most advanced topics in quantum theory. These examples give practical and precise demonstrations of how to use the often subtle mathematics behind quantum theory. The text is divided into five volumes: Quantum Mechanics I - An Introduction, Quantum Mechanics II - Symmetries, Relativistic Quantum Mechanics, Quantum Electrodynamics, Gauge Theory of Weak Interactions. These five volumes take the reader from the fundamental postulates of quantum mechanics up to the latest research in partic...

  3. Gauged Flavor Symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Heeck, Julian

    2013-04-15

    Augmenting the Standard Model by three right-handed neutrinos allows for an anomaly-free gauge group extension G{sub max}=U(1){sub B−L}×U(1){sub L{sub e−L{sub μ}}}×U(1){sub L{sub μ−L{sub τ}}}. Simple U(1) subgroups of G{sub max} can be used to impose structure on the righthanded neutrino mass matrix, which then propagates to the active neutrino mass matrix via the seesaw mechanism. We show how this framework can be used to gauge the approximate lepton-number symmetries behind the normal, inverted, and quasidegenerate neutrino mass spectrum, and also how to generate texture-zeros and vanishing minors in the neutrino mass matrix, leading to testable relations among mixing parameters.

  4. Bosonization and mirror symmetry

    Science.gov (United States)

    Kachru, Shamit; Mulligan, Michael; Torroba, Gonzalo; Wang, Huajia

    2016-10-01

    We study bosonization in 2 +1 dimensions using mirror symmetry, a duality that relates pairs of supersymmetric theories. Upon breaking supersymmetry in a controlled way, we dynamically obtain the bosonization duality that equates the theory of a free Dirac fermion to QED3 with a single scalar boson. This duality may be used to demonstrate the bosonization duality relating an O (2 )-symmetric Wilson-Fisher fixed point to QED3 with a single Dirac fermion, Peskin-Dasgupta-Halperin duality, and the recently conjectured duality relating the theory of a free Dirac fermion to fermionic QED3 with a single flavor. Chern-Simons and BF couplings for both dynamical and background gauge fields play a central role in our approach. In the course of our study, we describe a "chiral" mirror pair that may be viewed as the minimal supersymmetric generalization of the two bosonization dualities.

  5. Geophysical monitoring of near surface CO2 injection at Svelvik - Learnings from the CO2FieldLab experiments.

    Science.gov (United States)

    Querendez, Etor; Romdhane, Anouar; Jordan, Michael; Eliasson, Peder; Grimstad, Alv-Arne

    2014-05-01

    A CO2 migration field laboratory for testing monitoring methods and tools has been established in the glaciofluvial-glaciomarine Holocene deposits of the Svelvik ridge, near Oslo (Norway). At the site, feasibility, sensitivity, acquisition geometry and usefulness of various surface and subsurface monitoring tools are investigated during controlled CO2 injection experiments. In a first stage, a shallow CO2 injection experiment was conducted in September 2011. Approximately 1700 kg of CO2 was injected at 18 m depth below surface in an unconsolidated sand formation. The objectives of this experiment were to (i) detect and, where possible, quantify migrated CO2 concentrations at the surface and very shallow subsurface, (ii) evaluate the sensitivity of the monitoring tools and (iii) study the impact of the vadose zone on observed measurements. Results showed that all deployed monitoring tools (for surface and near-surface gas monitoring, subsurface water monitoring and subsurface geophysical monitoring) where able to detect the presence of CO2 even though the CO2 plume did not migrate vertically as expected in what was thought to be an homogeneous unconsolidated sand structure. The upper part of the site revealed to be more heterogeneous than expected, mainly due to the highly variable lamination and channelling of the morainic sediments and to the presence of pebble and cobble beds sporadically showing throughout the deposits. Building on the learnings from the 18m depth injection experiment, a second experiment is being planned for a deeper injection, at a depth of 65m. Re-processing of the appraisal 2D multi-channel seismic with state-of-the-art processing techniques, like Linear Radon coherent and random noise attenuation and Full Waveform Inversion followed by pre-stack depth migration, corroborate the presence of heterogeneities at the near surface. Based on the re-interpreted seismic sections, a more realistic 3D geomodel, where the complex topography of the site

  6. Caution for monitoring the surface modification of dually emitted ZnSe quantum dots by time-resolved photoluminescence.

    Science.gov (United States)

    Wang, Chunlei; Hu, Zhiyang; Xu, Shuhong; Zhou, Shujie; Wang, Zhuyuan; Cui, Yiping

    2015-03-27

    This work wants to give a caution for monitoring the surface modification of dually emitted ZnSe quantum dots (QDs) by using time-resolved photoluminescence (PL). Aqueous ZnSe QDs have two emission bands: namely ZnSe band gap emission centered at 395 nm and ZnSe trap emission centered at 470 nm. By fitting the measured PL spectra by two peaks, serious overlapping of two emission bands can be found in the range of 360-430 nm. As a result, the measured PL lifetimes at 395 nm (the peak position of ZnSe band gap emission) is just an apparent value, composing of both ZnSe band emission (contribution proportion about 80%) and ZnSe trap emission (contribution proportion about 20%). Due to the much smaller PL lifetime of ZnSe band gap emission (less than 20 ns) than that of ZnSe trap emission (about 50-70 ns), the elevated contribution proportion of ZnSe band gap emission at improved QD surface modification will lead to the decreased average PL lifetime at 395 nm. This result is completely opposite to the traditional result where improved QD surface modification leads to increased PL lifetimes on the basis of single emitted QDs. Hence, when time-resolved PL is used for monitoring the surface modification of dually emitted QDs, the emission bands overlapping should be taken into consideration with caution.

  7. Time prediction of an onset of shallow landslides based on the monitoring of the groundwater level and the surface displacement at different locations on a sandy model slope

    Science.gov (United States)

    Sasahara, Katsuo

    2016-04-01

    Location of monitoring of the deformation and the groundwater level in a slope is important for time-prediction of an onset of shallow landslides based on the monitoring. The analysis of the monitored data of the surface displacement and the groundwater level at different locations in sandy model slope under artificial rainfall was conducted in this study. The monitored data showed that the surface displacement increased with the increase of the groundwater level significantly. Then the analysis of the monitored data revealed that the relation between the surface displacement and the groundwater level can be modified as hyperbolic curve. The surface displacement grew larger and maximum groundwater level was smaller at farther location from the toe of the slope. Time-prediction of an onset of a landslide based on the monitored data at different location on the slope was proposed as following procedures. (1) To make a regression equation for the relation between the surface displacement and the groundwater level based on the monitored data at any time before the failure, (2) To make a regression equation for the relation between the time and the groundwater level based on the same data with (1), and (3) To incorporate the equation for the relation between the time and the groundwater level into that between the surface displacement and the groundwater level to derive the time - the surface displacement relation. (4) To derive the time - the inverse of the surface displacement velocity from the equation for the time - the surface displacement relation. The equation for the time - the surface displacement and the equation for the time - the inverse of the surface displacement velocity could simulate the actual phenomena of the slope well based on the monitored data at any location on the model slope.

  8. Nonclassical Symmetries for Nonlinear Partial Differential Equations via Compatibility

    Institute of Scientific and Technical Information of China (English)

    Mostafa F. El-Sabbagh; Ahmad T. Ali

    2011-01-01

    The determining equations for the nonclassical symmetry reductions of nonlinear partial differential equations with arbitrary order can be obtained by requiring the compatibility between the original equations and the invariant surface conditions. The (2+1)-dimensional shallow water wave equation, Boussinesq equation, and the dispersive wave equations in shallow water serve as examples i11ustrating how compatibility leads quickly and easily to the determining equations for their nonclassical symmetries.

  9. Symmetry Breaking by Nonstationay Optimisation

    NARCIS (Netherlands)

    Prestwich, S.; Hnich, B.; Rossi, R.; Tarim, S.A.

    2008-01-01

    We describe a new partial symmetry breaking method that can be used to break arbitrary variable/value symmetries in combination with depth first search, static value ordering and dynamic variable ordering. The main novelty of the method is a new dominance detection technique based on local search in

  10. Lie Symmetries of Ishimori Equation

    Institute of Scientific and Technical Information of China (English)

    SONG Xu-Xia

    2013-01-01

    The Ishimori equation is one of the most important (2+1)-dimensional integrable models,which is an integrable generalization of (1+1)-dimensional classical continuous Heisenberg ferromagnetic spin equations.Based on importance of Lie symmetries in analysis of differential equations,in this paper,we derive Lie symmetries for the Ishimori equation by Hirota's direct method.

  11. Hole localization and symmetry breaking

    NARCIS (Netherlands)

    Broer, R; Nieuwpoort, W.C.

    1999-01-01

    A brief overview is presented of some theoretical work on the symmetry breaking of electronic wavefunctions that followed the early work on Bagus and Schaefer who observed that a considerable lower SCF energy could be obtained for an ionized state of the O2 molecule with a 1s hole if the symmetry re

  12. Symmetry Breaking by Nonstationay Optimisation

    NARCIS (Netherlands)

    Prestwich, S.; Hnich, B.; Rossi, R.; Tarim, S.A.

    2008-01-01

    We describe a new partial symmetry breaking method that can be used to break arbitrary variable/value symmetries in combination with depth first search, static value ordering and dynamic variable ordering. The main novelty of the method is a new dominance detection technique based on local search in

  13. Optical monitoring of thin film electro-polymerization on surface of ITO-coated lossy-mode resonance sensor

    Science.gov (United States)

    Sobaszek, Michał; Dominik, Magdalena; Burnat, Dariusz; Bogdanowicz, Robert; Stranak, Viteszlav; Sezemsky, Petr; Śmietana, Mateusz

    2017-04-01

    This work presents an optical fiber sensors based on lossy-mode resonance (LMR) phenomenon supported by indium tin oxide (ITO) thin overlay for investigation of electro-polymerization effect on ITO's surface. The ITO overlays were deposited on core of polymer-clad silica (PCS) fibers using reactive magnetron sputtering (RMS) method. Since ITO is electrically conductive and electrochemically active it can be used as a working electrode in 3-electrode cyclic voltammetry setup. For fixed potential applied to the electrode current flow decrease with time what corresponds to polymer layer formation on the ITO surface. Since LMR phenomenon depends on optical properties in proximity of the ITO surface, polymer layer formation can be monitored optically in real time. The electrodeposition process has been performed with Isatin which is a strong endogenous neurochemical regulator in humans as it is a metabolic derivative of adrenaline. It was found that optical detection of Isatin is possible in the proposed configuration.

  14. Noncommutativity in near horizon symmetries in gravity

    Science.gov (United States)

    Majhi, Bibhas Ranjan

    2017-02-01

    We have a new observation that near horizon symmetry generators, corresponding to diffeomorphisms which leave the horizon structure invariant, satisfy noncommutative Heisenberg algebra. The results are valid for any null surfaces (which have Rindler structure in the near null surface limit) and in any spacetime dimensions. Using the Sugawara construction technique the central charge is identified. It is shown that the horizon entropy is consistent with the standard form of the Cardy formula. Therefore we feel that the noncommutative algebra might lead to quantum mechanics of horizon and also can probe into the microscopic description of entropy.

  15. Asymptotic Symmetries from finite boxes

    CERN Document Server

    Andrade, Tomas

    2015-01-01

    It is natural to regulate an infinite-sized system by imposing a boundary condition at finite distance, placing the system in a "box." This breaks symmetries, though the breaking is small when the box is large. One should thus be able to obtain the asymptotic symmetries of the infinite system by studying regulated systems. We provide concrete examples in the context of Einstein-Hilbert gravity (with negative or zero cosmological constant) by showing in 4 or more dimensions how the Anti-de Sitter and Poincar\\'e asymptotic symmetries can be extracted from gravity in a spherical box with Dirichlet boundary conditions. In 2+1 dimensions we obtain the full double-Virasoro algebra of asymptotic symmetries for AdS$_3$ and, correspondingly, the full Bondi-Metzner-Sachs (BMS) algebra for asymptotically flat space. In higher dimensions, a related approach may continue to be useful for constructing a good asymptotically flat phase space with BMS asymptotic symmetries.

  16. UV completion without symmetry restoration

    CERN Document Server

    Endlich, Solomon; Penco, Riccardo

    2013-01-01

    We show that it is not possible to UV-complete certain low-energy effective theories with spontaneously broken space-time symmetries by embedding them into linear sigma models, that is, by adding "radial" modes and restoring the broken symmetries. When such a UV completion is not possible, one can still raise the cutoff up to arbitrarily higher energies by adding fields that transform non-linearly under the broken symmetries, that is, new Goldstone bosons. However, this (partial) UV completion does not necessarily restore any of the broken symmetries. We illustrate this point by considering a concrete example in which a combination of space-time and internal symmetries is broken down to a diagonal subgroup. Along the way, we clarify a recently proposed interpretation of inverse Higgs constraints as gauge-fixing conditions.

  17. Discrete symmetries in the MSSM

    Energy Technology Data Exchange (ETDEWEB)

    Schieren, Roland

    2010-12-02

    The use of discrete symmetries, especially abelian ones, in physics beyond the standard model of particle physics is discussed. A method is developed how a general, abelian, discrete symmetry can be obtained via spontaneous symmetry breaking. In addition, anomalies are treated in the path integral approach with special attention to anomaly cancellation via the Green-Schwarz mechanism. All this is applied to the minimal supersymmetric standard model. A unique Z{sup R}{sub 4} symmetry is discovered which solves the {mu}-problem as well as problems with proton decay and allows to embed the standard model gauge group into a simple group, i.e. the Z{sup R}{sub 4} is compatible with grand unification. Also the flavor problem in the context of minimal flavor violation is addressed. Finally, a string theory model is presented which exhibits the mentioned Z{sup R}{sub 4} symmetry and other desirable features. (orig.)

  18. A statistical assessment of pesticide pollution in surface waters using environmental monitoring data: Chlorpyrifos in Central Valley, California.

    Science.gov (United States)

    Wang, Dan; Singhasemanon, Nan; Goh, Kean S

    2016-11-15

    Pesticides are routinely monitored in surface waters and resultant data are analyzed to assess whether their uses will damage aquatic eco-systems. However, the utility of the monitoring data is limited because of the insufficiency in the temporal and spatial sampling coverage and the inability to detect and quantify trace concentrations. This study developed a novel assessment procedure that addresses those limitations by combining 1) statistical methods capable of extracting information from concentrations below changing detection limits, 2) statistical resampling techniques that account for uncertainties rooted in the non-detects and insufficient/irregular sampling coverage, and 3) multiple lines of evidence that improve confidence in the final conclusion. This procedure was demonstrated by an assessment on chlorpyrifos monitoring data in surface waters of California's Central Valley (2005-2013). We detected a significant downward trend in the concentrations, which cannot be observed by commonly-used statistical approaches. We assessed that the aquatic risk was low using a probabilistic method that works with non-detects and has the ability to differentiate indicator groups with varying sensitivity. In addition, we showed that the frequency of exceedance over ambient aquatic life water quality criteria was affected by pesticide use, precipitation and irrigation demand in certain periods anteceding the water sampling events.

  19. [SADE] A Maple package for the Symmetry Analysis of Differential Equations

    CERN Document Server

    Filho, Tarcí sio M Rocha

    2010-01-01

    We present the package SADE (Symmetry Analysis of Differential Equations) for the determination of symmetries and related properties of systems of differential equations. The main methods implemented are: Lie, nonclassical, Lie-B\\"acklund and potential symmetries, invariant solutions, first-integrals, N\\"other theorem for both discrete and continuous systems, solution of ordinary differential equations, reduction of order or dimension using Lie symmetries, classification of differential equations, Casimir invariants, and the quasi-polynomial formalism for ODE's (previously implemented in the package QPSI by the authors) for the determination of quasi-polynomial first-integrals, Lie symmetries and invariant surfaces. Examples of use of the package are given.

  20. Video system for monitoring sea-surface characteristics in coastal zone

    Science.gov (United States)

    Konstantinov, Oleg G.; Pavlov, Andrey N.

    2012-11-01

    A method of investigation sea surface roughness by analysis polarization images is suggested. Equipment and software were developed and tested at the Pacific Oceanological Institute (POI) It is shown a possibility to study surface manifestations of hydrodynamic processes in coastal zone, such as the dynamics of vortex structures, internal waves, spatio-temporal properties of surface waves by using the panoramic video system for a sea surface control and by the imaging polarimeter. Analysis of a time sequence of transformed to the plane panoramic images obtained using the system allows to estimate a velocity field of vortex structure, phase velocity of surface manifestations of internal waves, intensity and dynamics of surface films of oil pollution. It is shown an ability of sea surface reconstruction by analyzing time sequence of the imaging polarimeter pictures. The results are compared with the height difference of the floats located on the vertical guides that are in the imaging polarimeter field of view. The float heights obtained from its image coordinates. Field experiments were conducted at the POI marine station in the Japan Sea. Moreover, the developed methods and equipment may be used as a source of unique in situ information on the sea surface roughness during satellite optical and radar sensing.

  1. Reactivity mapping: electrochemical gradients for monitoring reactivity at surfaces in space and time

    NARCIS (Netherlands)

    Krabbenborg, Sven; Nicosia, Carlo; Chen, P.; Huskens, Jurriaan

    2013-01-01

    Studying and controlling reactions at surfaces is of great fundamental and applied interest in, among others, biology, electronics and catalysis. Because reaction kinetics is different at surfaces compared with solution, frequently, solution-characterization techniques cannot be used. Here we report

  2. Reactivity mapping: electrochemical gradients for monitoring reactivity at surfaces in space and time

    NARCIS (Netherlands)

    Krabbenborg, S.O.; Nicosia, C.; Chen, P.; Huskens, J.

    2013-01-01

    Studying and controlling reactions at surfaces is of great fundamental and applied interest in, among others, biology, electronics and catalysis. Because reaction kinetics is different at surfaces compared with solution, frequently, solution-characterization techniques cannot be used. Here we report

  3. Retrieval of sea surface velocities using sequential ocean colour monitor (OCM) data

    Digital Repository Service at National Institute of Oceanography (India)

    Prasad, J.S.; Rajawat, A.S.; Pradhan, Y.; Chauhan, O.S.; Nayak, S.R.

    The Indian Remote Sensing Satellite, IRS-P4 (Oceansat-I) launched on May 26, 1999 carried two sensors on board, i.e., Ocean Colour Monitor (OCM) and a Multifrequency Scanning Microwave Radiometer (MSMR) to study both biological and physical...

  4. A Multimodel Global Drought Information System (GDIS) for Near Real-Time Monitoring of Surface Water Conditions (Invited)

    Science.gov (United States)

    Nijssen, B.

    2013-12-01

    While the absolute magnitude of economic losses associated with weather and climate disasters such as droughts is greatest in the developed world, the relative impact is much larger in the developing world, where agriculture typically constitutes a much larger percentage of the labor force and food insecurity is a major concern. Nonetheless, our ability to monitor and predict the development and occurrence of droughts at a global scale in near real-time is limited and long-term records of soil moisture are essentially non-existent globally The problem is particularly critical given that many of the most damaging droughts occur in parts of the world that are most deficient in terms of in situ precipitation observations. In recent years, a number of near real-time drought monitoring systems have been developed with regional or global extent. While direct observations of key variables such as moisture storage are missing, the evolution of land surface models that are globally applicable provides a means of reconstructing them. The implementation of a multi-model drought monitoring system is described, which provides near real-time estimates of surface moisture storage for the global land areas between 50S and 50N with a time lag of about one day. Near real-time forcings are derived from satellite-based precipitation estimates and modeled air temperatures. The system is distinguished from other operational systems in that it uses multiple land surface models to simulate surface moisture storage, which are then combined to derive a multi-model estimate of drought. Previous work has shown that while land surface models agree in broad context, particularly in terms of soil moisture percentiles, important differences remain, which motivates a multi-model ensemble approach. The system is an extension of similar systems developed by at the University of Washington for the Pacific Northwest and for the United States, but global application of the protocols used in the U

  5. Spontaneous spherical symmetry breaking in atomic confinement

    Science.gov (United States)

    Sveshnikov, Konstantin; Tolokonnikov, Andrey

    2017-07-01

    The effect of spontaneous breaking of initial SO(3) symmetry is shown to be possible for an H-like atom in the ground state, when it is confined in a spherical box under general boundary conditions of "not going out" through the box surface (i.e. third kind or Robin's ones), for a wide range of physically reasonable values of system parameters. The most novel and nontrivial result, which has not been reported previously, is that such an effect takes place not only for attractive, but also for repulsive interactions of atomic electrons with the cavity environment. Moreover, in the limit of a large box size R ≫ aB the regime of an atom, soaring over a plane with boundary condition of "not going out", is reproduced, rather than a spherically symmetric configuration, which would be expected on the basis of the initial SO(3) symmetry of the problem.

  6. Generalized gravitational entropy without replica symmetry

    Science.gov (United States)

    Camps, Joan; Kelly, William R.

    2015-03-01

    We explore several extensions of the generalized entropy construction of Lewkowycz and Maldacena, including a formulation that does not rely on preserving replica symmetry in the bulk. We show that an appropriately general ansatz for the analytically continued replica metric gives us the flexibility needed to solve the gravitational field equations beyond general relativity. As an application of this observation we study EinsteinGauss-Bonnet gravity with a small Gauss-Bonnet coupling and derive the condition that the holographic entanglement entropy must be evaluated on a surface which extremizes the Jacobson-Myers entropy. We find that in both general relativity and Einstein-Gauss-Bonnet gravity replica symmetry breaking terms are permitted by the field equations, suggesting that they do not generically vanish.

  7. Generalized gravitational entropy without replica symmetry

    CERN Document Server

    Camps, Joan

    2014-01-01

    We explore several extensions of the generalized entropy construction of Lewkowycz and Maldacena, including a formulation that does not rely on preserving replica symmetry in the bulk. We show that an appropriately general ansatz for the analytically continued replica metric gives us the flexibility needed to solve the gravitational field equations beyond general relativity. As an application of this observation we study Einstein-Gauss-Bonnet gravity with a small Gauss-Bonnet coupling and derive the condition that the holographic entanglement entropy must be evaluated on a surface which extremizes the Jacobson-Myers entropy. We find that in both general relativity and Einstein-Gauss-Bonnet gravity replica symmetry breaking terms are permitted by the field equations, suggesting that they do not generically vanish.

  8. Analysis of recent surface deformation at Ischia Island Volcano (South Italy) via multi-platform monitoring systems

    Science.gov (United States)

    Manzo, Mariarosaria; De Martino, Prospero; Castaldo, Raffaele; De Luca, Claudio; Dolce, Mario; Scarpato, Giovanni; Tizzani, Pietro; Zinno, Ivana; Lanari, Riccardo

    2017-04-01

    Ischia Island is a densely populated volcanic area located in the North-Western sector of the Gulf of Napoli (South Italy), whose activity is characterized by eruptions (the last one occurred in 1302 A.D.), earthquakes (the most disastrous ones occurred in 1881 and in 1883), fumarolic-hydrothermal manifestations and ground deformation. In this work we carry out the surface deformation time-series analysis occurring at the Island by jointly exploiting data collected via two different monitoring systems. In particular, we take advantage from the large amount of periodic and continuous geodetic measurements collected by the GPS (campaign and permanent) stations deployed on the Island and belonging to the INGV-OV monitoring network. Moreover, we benefit from the large, free and open archive of C-band SAR data acquired over the Island by the Sentinel-1 constellation of the Copernicus Program, and processed via the advanced Differential SAR Interferometry (DInSAR) technique referred to as Small BAseline Subset (SBAS) algorithm [Berardino et al., 2002]. We focus on the 2014-2017 time period to analyze the recent surface deformation phenomena occurring on the Island, thus extending a previous study, aimed at investigating the temporal evolution of the ground displacements affecting the Island and limited to the 1992-2003 time interval [Manzo et al., 2006]. The performed integrated analysis provides relevant spatial and temporal information on the Island surface deformation pattern. In particular, it reveals a rather complex deformative scenario, where localized phenomena overlap/interact with a spatially extended deformation pattern that involves many Island sectors, with no evidence of significant uplift phenomena. Moreover, it shows a good agreement and consistency between the different kinds of data, thus providing a clear picture of the recent dynamics at Ischia Island that can be profitably exploited to deeply investigate the physical processes behind the observed

  9. Mei Symmetry and Lie Symmetry of the Rotational Relativistic Variable Mass System

    Institute of Scientific and Technical Information of China (English)

    FANGJian-Hui

    2003-01-01

    The Mei symmetry and the Lie symmetry of a rotational relativistic variable mass system are studied. The definitions and criteria of the Mei symmetry and the Lie symmetry of the rotational relativistic variable mass system are given. The relation between the Mei symmetry and the Lie symmetry is found. The conserved quantities which the Mei symmetry and the Lie symmetry lead to are obtained. An example is given to illustrate the application of the result.

  10. Groundwater and surface water monitoring program for karst river basin: example of the Jadro and Žrnovnica Rivers

    Science.gov (United States)

    Jukić, D.; Denić-Jukić, V.

    2009-04-01

    have not been recorded at any of these stations. Since 1970s, Croatian waters carry out water quality monitoring on surface waters and springs in accordance with the National water quality monitoring program. In the Jadro and Žrnovnica Rivers catchment area, the National water quality monitoring program is performed at the following stations: Jadro-Izvorište, Jadro-Ribogojilište, Jadro-Ušće, Žrnovnica-Izvorište and Žrnovnica-Ušće. In line with the Croatian legislation that has been in force, the monitoring of water status at these stations has been performed 12 times a year by testing: mandatory indices (physico - chemical, oxygen regime, nutrients, microbiological, biological) and specific indices (metals, organic compounds). The group of mandatory indices serves for determining of the general ecological function of water, whereas the group of specific indices serves for a wider assessment of the general ecological function of water and for determination of the terms of water use for particular purposes. The proposed meteorological, surface water and groundwater monitoring programs for the basin of the Jadro and Žrnovnica Rivers have three main objectives: (1) harmonization of monitoring with requirements of the EU Water Directives, (2) collection of data essential for further investigation of hydrologic and hydrogeologic characteristics of the karst aquifer, (3) continuous collection of data required for water management at operational level. Following these objectives, the proposed monitoring programs detail the design of surveillance, operational and investigative monitoring for surface waters and the monitoring of quantitative and chemical status for groundwaters. The proposed monitoring programs cover all essential meteorological, hydrological and water quality parameters to the extent relevant for the water management at operational level and the further investigation of hydrologic and hydrogeologic characteristics of the karst aquifer. Groundwater

  11. Gravitation and Gauge Symmetries

    CERN Document Server

    Stewart, J

    2002-01-01

    The purpose of this book (I quote verbatim from the back cover) is to 'shed light upon the intrinsic structure of gravity and the principle of gauge invariance, which may lead to a consistent unified field theory', a very laudable aim. The content divides fairly clearly into four sections (and origins). After a brief introduction, chapters 2-6 review the 'Structure of gravity as a theory based on spacetime gauge symmetries'. This is fairly straightforward material, apparently based on a one-semester graduate course taught at the University of Belgrade for about two decades, and, by implication, this is a reasonably accurate description of its level and assumed knowledge. There follow two chapters of new material entitled 'Gravity in flat spacetime' and 'Nonlinear effects in gravity'. The final three chapters, entitled 'Supersymmetry and supergravity', 'Kaluza-Klein theory' and 'String theory' have been used for the basis of a one-semester graduate course on the unification of fundamental interactions. The boo...

  12. Symmetries in nuclear structure

    CERN Document Server

    Allaart, K; Dieperink, A

    1983-01-01

    The 1982 summer school on nuclear physics, organized by the Nuclear Physics Division of the Netherlands' Physical Society, was the fifth in a series that started in 1963. The number of students attending has always been about one hundred, coming from about thirty countries. The theme of this year's school was symmetry in nuclear physics. This book covers the material presented by the enthusi­ astic speakers, who were invited to lecture on this subject. We think they have succeeded in presenting us with clear and thorough introductory talks at graduate or higher level. The time schedule of the school and the location allowed the participants to make many informal contacts during many social activities, ranging from billiards to surf board sailing. We hope and expect that the combination of a relaxed atmosphere during part of the time and hard work during most of the time, has furthered the interest in, and understanding of, nuclear physics. The organization of the summer school was made possible by substantia...

  13. Satellite synthetic aperture radar for monitoring of surface deformation in shallow underground mining environments

    CSIR Research Space (South Africa)

    Engelbrecht, J

    2016-08-01

    Full Text Available Surface deformations associated with shallow underground mining activities have significant implications for both the natural- and built environment. Environmental problems include the exacerbation of acid mine drainage and the alteration...

  14. Washington Maritime NWRC: Initial Survey Instructions for Surface-nesting Seabird Monitoring

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — In Region 1, the vast majority of seabirds nest on NWRs. Because seabirds are dependent on the marine environment and surface-nesters are easily observed on...

  15. Surface enhanced raman scattering on tardigrada - Towards monitoring and imaging molecular structures in live cryptobiotic organisms

    DEFF Research Database (Denmark)

    Kneipp, Harald; Møbjerg, Nadja; Jørgensen, Aslak

    2013-01-01

    Tardigrades are microscopic metazoans which are able to survive extreme physical and chemical conditions by entering a stress tolerant state called cryptobiosis. At present, the molecular mechanisms behind cryptobiosis are still poorly understood. We show that surface enhanced Raman scattering...... supported by plasmonic gold nanoparticles can measure molecular constituents and their local distribution in live tardigrades. Surface enhanced Raman signatures allow to differentiate between two species and indicate molecular structural differences between tardigrades in water and in a dry state...

  16. Applicability of rapid and on-site measured enzyme activity for surface water quality monitoring in an agricultural catchment

    Science.gov (United States)

    Stadler, Philipp; Farnleitner, Andreas H.; Sommer, Regina; Kumpan, Monika; Zessner, Matthias

    2014-05-01

    For the near real time and on-site detection of microbiological fecal pollution of water, the measurement of beta-D- Glucuronidase (GLUC) enzymatic activity has been suggested as a surrogate parameter and has been already successfully operated for water quality monitoring of ground water resources (Ryzinska-Paier et al. 2014). Due to possible short measure intervals of three hours, this method has high potential as a water quality monitoring tool. While cultivation based standard determination takes more than one working day (Cabral 2010) the potential advantage of detecting the GLUC activity is the high temporal measuring resolution. Yet, there is still a big gap of knowledge on the fecal indication capacity of GLUC (specificity, sensitivity, persistence, etc.) in relation to potential pollution sources and catchment conditions (Cabral 2010, Ryzinska-Paier et al. 2014). Furthermore surface waters are a big challenge for automated detection devices in a technical point of view due to the high sediment load during event conditions. This presentation shows results gained form two years of monitoring in an experimental catchment (HOAL) dominated by agricultural land use. Two enzymatic measurement devices are operated parallel at the catchment outlet to test the reproducibility and precision of the method. Data from continuous GLUC monitoring under both base flow and event conditions is compared with reference samples analyzed by standardized laboratory methods for fecal pollution detection (e.g. ISO 16649-1, Colilert18). It is shown that rapid enzymatic on-site GLUC determination can successfully be operated from a technical point of view for surface water quality monitoring under the observed catchment conditions. The comparison of enzyme activity with microbiological standard analytics reveals distinct differences in the dynamic of the signals during event conditions. Cabral J. P. S. (2010) "Water Microbiology. Bacterial Pathogens and Water" International Journal of

  17. O'Hanlon actions by Noether symmetry

    OpenAIRE

    Darabi, F.

    2015-01-01

    By using the conformal symmetry between Brans-Dicke action with $\\omega=-\\frac{3}{2}$ and O'Hanlon action, we seek the O'Hanlon actions in Einstein frame respecting the Noether symmetry. Since the Noether symmetry is preserved under conformal transformations, the existence of Noether symmetry in the Brans-Dicke action asserts the Noether symmetry in O'Hanlon action in Einstein frame. Therefore, the potentials respecting Noether symmetry in Brans-Dicke action give the corresponding potentials ...

  18. Spectral theorem and partial symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Gozdz, A. [University of Maria Curie-Sklodowska, Department of Mathematical Physics, Institute of Physics (Poland); Gozdz, M. [University of Maria Curie-Sklodowska, Department of Complex Systems and Neurodynamics, Institute of Informatics (Poland)

    2012-10-15

    A novel method of the decompositon of a quantum system's Hamiltonian is presented. In this approach the criterion of the decomposition is determined by the symmetries possessed by the sub-Hamiltonians. This procedure is rather generic and independent of the actual global symmetry, or the lack of it, of the full Hamilton operator. A detailed investigation of the time evolution of the various sub-Hamiltonians, therefore the change in time of the symmetry of the physical object, is presented for the case of a vibrator-plus-rotor model. Analytical results are illustrated by direct numerical calculations.

  19. Astroparticle tests of Lorentz symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Jorge [Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2016-07-01

    Lorentz symmetry is a cornerstone of modern physics. As the spacetime symmetry of special relativity, Lorentz invariance is a basic component of the standard model of particle physics and general relativity, which to date constitute our most successful descriptions of nature. Deviations from exact symmetry would radically change our view of the universe and current experiments allow us to test the validity of this assumption. In this talk, I describe effects of Lorentz violation in cosmic rays and gamma rays that can be studied in current observatories.

  20. Symmetry protected single photon subradiance

    CERN Document Server

    Cai, Han; Svidzinsky, Anatoly A; Zhu, Shi-Yao; Scully, Marlan O

    2016-01-01

    We study the protection of subradiant states by the symmetry of the atomic distributions in the Dicke limit, in which collective Lamb shift cannot be neglected. We find that anti-symmetric states are subradiant states for distribution with reflection symmetry. These states can be prepared by anti-symmetric optical modes and converted to superradiant states by properly tailored 2\\pipulses. Continuous symmetry can also be used to achieve subradiance. This study is relevant to the problem of robust quantum memory with long storage time and fast readout.

  1. Analysing the advantages of high temporal resolution geostationary MSG SEVIRI data compared to Polar operational environmental satellite data for land surface monitoring in Africa

    DEFF Research Database (Denmark)

    Fensholt, Rasmus; Anyamba, Assaf; Huber Gharib, Silvia

    2011-01-01

    Since 1972, satellite remote sensing of the environment has been dominated by polar-orbiting sensors providing useful data for monitoring the earth’s natural resources. However their observation and monitoring capacity are inhibited by daily to monthly looks for any given ground surface which oft...

  2. Surface water hydrology and geomorphic characterization of a playa lake system: Implications for monitoring the effects of climate change

    Science.gov (United States)

    Adams, Kenneth D.; Sada, Donald W.

    2014-03-01

    Playa lakes are sensitive recorders of subtle climatic perturbations because these ephemeral water bodies respond to the flux of diffuse and channelized flow from their watersheds as well as from direct precipitation. The Black Rock Playa in northwestern Nevada is one of the largest playas in North America and is noted for its extreme flatness, varying less than one meter across a surface area of 310 km2. Geo-referenced Landsat imagery was used to map surface-area fluctuations of ephemeral lakes on the playa from 1972 to 2013 to provide baseline data on surface water hydrology of this system to compare to future hydrologic conditions caused by climate change. The area measurements were transformed into depth and volumetric estimates using results of detailed topographic global positioning system (GPS) surveys and correlated with available surface hydrological and meteorological monitoring data. Playa lakes reach their maximum size (<350 km2) in spring, fed by melting snows from high mountains on the periphery of the drainage basin, and usually desiccate by early- to mid-summer. The combination of a shallow groundwater table, sediment deposition, and hydro-aeolian planation probably are largely responsible for the flatness of the playa. When lakes do not form for a period of several years, the clay- and silt-rich playa surface transforms from one that is hard and durable into one that is soft and puffy, probably from upward capillary movement of water and resultant evaporation. Subsequent flooding restores the hard and durable surface. The near-global availability of Landsat imagery for the last 41 years should allow the documentation of baseline surface hydrologic characteristics for a large number of widely-distributed playa lake systems that can be used to assess the hydrologic effects of future climate changes.

  3. Semi-continuous, real-time monitoring of protein biomarker using a recyclable surface plasmon resonance sensor.

    Science.gov (United States)

    Kim, Dong-Hyung; Cho, Il-Hoon; Park, Ji-Na; Paek, Sung-Ho; Cho, Hyun-Mo; Paek, Se-Hwan

    2017-02-15

    Although label-free immunosensors based on, for example, surface plasmon resonance (SPR) provide advantages of real-time monitoring of the analyte concentration, its application to routine clinical analysis in a semi-continuous manner is problematic because of the high cost of the sensor chip. The sensor chip is in most cases regenerated by employing an acidic pH. However, this causes gradual deterioration of the activity of the capture antibody immobilized on the sensor surface. To use sensor chips repeatedly, we investigated a novel surface modification method that enables regeneration of the sensor surface under mild conditions. We introduced a monoclonal antibody (anti-CBP Ab) that detects the conformational change in calcium binding protein (CBP) upon Ca(2+) binding (>1mM). To construct a regenerable SPR-based immunosensor, anti-CBP Ab was first immobilized on the sensor surface, and CBP conjugated to the capture antibody (specific for creatine kinase-MB isoform (CK-MB); CBP-CAb) then bound in the presence of Ca(2+). A serum sample was mixed with the detection antibody to CK-MB, which generated an SPR signal proportional to the analyte concentration. After each analysis, the sensor surface was regenerated using medium (pH 7) without Ca(2+), and then adding fresh CBP-CAb in the presence of Ca(2+) for the subsequent analysis. Analysis of multiple samples using the same sensor was reproducible at a rate >98.7%. The dose-response curve was linear for 1.75-500.75ng/mL CK-MB, with an acceptable coefficient of variation of 96%), and exhibited analytical stability for 1 month. To our knowledge, this is the first report of a renewal of a sensor surface with fresh antibody after each analysis, providing high consistency in the assay during a long-term use (e.g., a month at least).

  4. Near surface soil vapor clusters for monitoring emissions of volatile organic compounds from soils.

    Science.gov (United States)

    Ergas, S J; Hinlein, E S; Reyes, P O; Ostendorf, D W; Tehrany, J P

    2000-01-01

    The overall objective of this research was to develop and test a method of determining emission rates of volatile organic compounds (VOCs) and other gases from soil surfaces. Soil vapor clusters (SVCs) were designed as a low dead volume, robust sampling system to obtain vertically resolved profiles of soil gas contaminant concentrations in the near surface zone. The concentration profiles, when combined with a mathematical model of porous media mass transport, were used to calculate the contaminant flux from the soil surface. Initial experiments were conducted using a mesoscale soil remediation system under a range of experimental conditions. Helium was used as a tracer and trichloroethene was used as a model VOC. Flux estimations using the SVCs were within 25% of independent surface flux estimates and were comparable to measurements made using a surface isolation flux chamber (SIFC). In addition, method detection limits for the SVC were an order of magnitude lower than detection limits with the SIFC. Field trials, conducted with the SVCs at a bioventing site, indicated that the SVC method could be easily used in the field to estimate fugitive VOC emission rates. Major advantages of the SVC method were its low detection limits, lack of required auxiliary equipment, and ability to obtain real-time estimates of fugitive VOC emission rates.

  5. Satellite Monitoring of the Surface Water and Energy Budget in the Central Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    YANG Kun; Toshio KOIKE

    2008-01-01

    The water and energy cycle in the Tibetan Plateau is an important component of Monsoon Asia and the global energy and water cycle. Using data at a CEOP (Coordinated Enhanced Observing Period)-Tibet site, this study presents a first-order evaluation on the skill of weather forecasting from GCMs and satellites in producing precipitation and radiation estimates. The satellite data, together with the satellite leaf area index, are then integrated into a land data assimilation system (LDAS-UT) to estimate the soil moisture and surface energy budget on the Plateau. The system directly assimilates the satellite microwave brightness temperature, which is strongly affected by soil moisture but not by cloud layers, into a simple biosphere model. A major feature of this system is a dual-pass assimilation technique, which can auto-calibrate model parameters in one pass and estimate the soil moisture and energy budget in the other pass. The system outputs, including soil moisture, surface temperature, surface energy partition, and the Bowen ratio, are compared with observations, land surface models, the Global Land Data Assimilation System, and four general circulation models. The results show that this satellite data-based system has a high potential for a reliable estimation of the regional surface energy budget on the Plateau.

  6. Predicting input of pesticides to surface water via drains - comparing post registration monitoring data with FOCUSsw predictions

    DEFF Research Database (Denmark)

    Aagaard, Alf; Kjaer, Jeanne; Rosenbom, Annette Elisabeth

    in different water bodies (pond, ditch and stream) in 10 scenarios representing geo-climate conditions across Europe. The model provides estimates of surface water concentration, based on the intended use, taking into account potential input routes (drift, drainage and run-off). Leaching and subsequent...... transport through the drainage system poses an important contamination pathway allowing rapid transport of pesticides to the surface water system. With FOCUSsw this input is modelled via the 1 dimensional root zone model MACRO allowing preferential transport to occur in the unsaturated zone. Although models...... (such as MACRO) are widely used within the registration process, their validation requires further work, not least because of the limited availability of field data. The Danish Pesticide Leaching Assessment Programme (PLAP), an intensive monitoring programme which is used to evaluate the risk...

  7. Student understanding of symmetry and Gauss's law of electricity

    CERN Document Server

    Singh, Chandralekha

    2016-01-01

    We investigate the difficulties that students in calculus-based introductory physics courses have with the concepts of symmetry, electric field, and electric flux which are important for applying Gauss's law. The determination of the electric field using Gauss's law requires determining the symmetry of a particular charge distribution and predicting the direction of the electric field everywhere if a high symmetry exists. Effective application of Gauss's law implicitly requires understanding the principle of superposition for electric fields. Helping students learn when Gauss's law can be readily applied to determine the strength of the electric field, and then helping them learn to determine the appropriate shape of Gaussian surfaces if sufficient symmetry exists, can help develop their reasoning and problem-solving skills. We administered free-response and multiple-choice questions and conducted interviews with individual students using a think-aloud protocol to elucidate the difficulties that students have...

  8. The order parameter symmetry in CeIrIn5

    Directory of Open Access Journals (Sweden)

    H Shakeripour

    2016-06-01

    Full Text Available To understand the mechanism of superconductivity in unconventional super onductors is one of the big challenges in the field of superconductivity. Based on the BCS theory, there is a direct relation between the pairing mechanism and the symmetry of the order parameter. Therefore, identification of the structure of the superconducting gap or the order parameter provides key information on the pairing mechanism. The s-wave conventional superconductors have full point symmetry of the crystal lattice, thus they have full gap symmetry around the Fermi surface. This leads to the exponential temperature dependence of many physical properties in the superconducting state at low temperature. However, the presence of nodes imposed by symmetry in the gap function of unconventional superconductors implies a different order parameter other than conventional s-wave, which may lead to a different pairing mechanism. Here, we show how thermal conductivity measurements in CeIrIn5 at very low temperatures detect the superconducting gap structure.

  9. Symmetry breaking and the geometry of reduced density matrices

    Science.gov (United States)

    Zauner, V.; Draxler, D.; Vanderstraeten, L.; Haegeman, J.; Verstraete, F.

    2016-11-01

    The concept of symmetry breaking and the emergence of corresponding local order parameters constitute the pillars of modern day many body physics. We demonstrate that the existence of symmetry breaking is a consequence of the geometric structure of the convex set of reduced density matrices of all possible many body wavefunctions. The surfaces of these convex bodies exhibit non-analyticities, which signal the emergence of symmetry breaking and of an associated order parameter and also show different characteristics for different types of phase transitions. We illustrate this with three paradigmatic examples of many body systems exhibiting symmetry breaking: the quantum Ising model, the classical q-state Potts model in two-dimensions at finite temperature and the ideal Bose gas in three-dimensions at finite temperature. This state based viewpoint on phase transitions provides a unique novel tool for studying exotic many body phenomena in quantum and classical systems.

  10. GLORI: a new airborne GNSS reflectometry instrument for land surface monitoring

    Science.gov (United States)

    Motte, Erwan; Fanise, Pascal; Zribi, Mehrez

    2015-10-01

    From the beginning of the 1990s, the use of Global Navigation Satellite System (GNSS) reflected signals have been identified as a as source of opportunity for remote sensing applications. In the last two decades, the potential of the technique have been demonstrated for ocean and continental surfaces studies, and several applications have been proposed in the context of high availability of GNSS signals. The GNSS-R technique is generally based on the use of a passive receiver simultaneously acquiring the direct and reflected signals from various GNSS satellites to estimate geophysical parameters from the scattering surface. In the last years, several ground-based [2], [3], airborne [4] and space-borne [5]-[8] experiments have been proposed. The most considered application foreseen for GNSS-R is ocean altimetry for a precise determination of sea-surface heights as well as roughness and wind direction. For continental surfaces, because of direct relationship between surface permittivity and reflected signal, different approaches [6], [9], [10] have been proposed to estimate surface parameters (soil moisture, vegetation biomass, snow). Different observables have been proposed to analyze GNSS signals: the Delay-Doppler Map, the direct and reflected complex waveforms bistatic signal, the ratio between the direct and reflected waveform's peak time series (Interferometric Complex Field). In this context, the airborne instrument GLORI is proposed to demonstrate contribution of GNSS-R to estimate soil moisture over agricultural soils and biomass of forests or annual cultures. A secondary goal is the feasibility of centimeter-precision altimetry above continental water bodies. The second section describes the characteristics of GLORI instrument. The third section presents airborne campaigns realized over the south West of France and fourth sections discusses the first results. Conclusions are gathered in section 5.

  11. Monitoring of surface velocity of hyper-concentrated flow in a laboratory flume by means of fully-digital PIV

    Science.gov (United States)

    Termini, Donatella; Di Leonardo, Alice

    2016-04-01

    High flow conditions, which are generally characterized by high sediment concentrations, do not permit the use of traditional measurement equipment. Traditional techniques usually are based on the intrusive measure of the vertical profile of flow velocity and on the linking of water depth with the discharge through the rating curve. The major disadvantage of these measurement techniques is that they are difficult to use and not safe for operators especially in high flow conditions. The point is that, as literature shows (see as an example Moramarco and Termini, 2015), especially in such conditions, the measurement of surface velocity distribution is important to evaluate the mean flow velocity and, thus, the flow discharge. In the last decade, image-based techniques have been increasingly used for surface velocity measurements (among others Joeau et al., 2008). Experimental program has been recently conducted at the Hydraulic laboratory of the Department of Civil, Environmental, Aerospatial and of Materials Engineering (DICAM) - University of Palermo (Italy) in order to analyze the propagation phenomenon of hyper-concentrated flow in a defense channel. The experimental apparatus includes a high-precision camera and a system allowing the images recording. This paper investigates the utility and the efficiency of the digital image-technique for remote monitoring of surface velocity in hyper-concentrated flow by the aid of data collected during experiments conducted in the laboratory flume. In particular the present paper attention is focused on the estimation procedure of the velocity vectors and on their sensitivity with parameters (number of images, spatial resolution of interrogation area,) of the images processing procedure. References Jodeau M., A. Hauet, A. Paquier, Le Coz J., Dramais G., Application and evaluation of LS-PIV technique for the monitoring of river surface in high flow conditions, Flow Measurements and Instrumentation, Vol.19, No.2, 2008, pp.117

  12. The Limits of Custodial Symmetry

    CERN Document Server

    Chivukula, R Sekhar; Foadi, Roshan; Simmons, Elizabeth H

    2010-01-01

    We introduce a toy model implementing the proposal of using a custodial symmetry to protect the Z b_L bbar_L coupling from large corrections. This "doublet-extended standard model" adds a weak doublet of fermions (including a heavy partner of the top quark) to the particle content of the standard model in order to implement an O(4) x U(1)_X = SU(2)_L x SU(2)_R x P_LR x U(1)_X symmetry in the top-quark mass generating sector. This symmetry is softly broken to the gauged SU(2)_L x U(1)_Y electroweak symmetry by a Dirac mass M for the new doublet; adjusting the value of M allows us to explore the range of possibilities between the O(4)-symmetric (M to 0) and standard-model-like (M to infinity) limits.

  13. The Limits of Custodial Symmetry

    CERN Document Server

    Chivukula, R Sekhar; Foadi, Roshan; Simmons, Elizabeth H

    2010-01-01

    We introduce a toy model implementing the proposal of using a custodial symmetry to protect the Zbb coupling from large corrections. This "doublet-extended standard model" adds a weak doublet of fermions (including a heavy partner of the top quark) to the particle content of the standard model in order to implement an O(4) x U(1)_X = SU(2)_L x SU(2)_R x P_{LR} x U(1)_X symmetry that protects the Zbb coupling. This symmetry is softly broken to the gauged SU(2)_L x U(1)_Y electroweak symmetry by a Dirac mass M for the new doublet; adjusting the value of M allows us to explore the range of possibilities between the O(4)-symmetric (M to 0) and standard-model-like (M to infinity) limits.

  14. Symmetries from the solution manifold

    Science.gov (United States)

    Aldaya, Víctor; Guerrero, Julio; Lopez-Ruiz, Francisco F.; Cossío, Francisco

    2015-07-01

    We face a revision of the role of symmetries of a physical system aiming at characterizing the corresponding Solution Manifold (SM) by means of Noether invariants as a preliminary step towards a proper, non-canonical, quantization. To this end, "point symmetries" of the Lagrangian are generally not enough, and we must resort to the more general concept of contact symmetries. They are defined in terms of the Poincaré-Cartan form, which allows us, in turn, to find the symplectic structure on the SM, through some sort of Hamilton-Jacobi (HJ) transformation. These basic symmetries are realized as Hamiltonian vector fields, associated with (coordinate) functions on the SM, lifted back to the Evolution Manifold through the inverse of this HJ mapping, that constitutes an inverse of the Noether Theorem. The specific examples of a particle moving on S3, at the mechanical level, and nonlinear SU(2)-sigma model in field theory are sketched.

  15. External symmetry in general relativity

    CERN Document Server

    Cotaescu, I I

    2000-01-01

    We propose a generalization of the isometry transformations to the geometric context of the field theories with spin where the local frames are explicitly involved. We define the external symmetry transformations as isometries combined with suitable tetrad gauge transformations and we show that these form a group which is locally isomorphic with the isometry one. We point out that the symmetry transformations that leave invariant the equations of the fields with spin have generators with specific spin terms which represent new physical observables. The examples we present are the generators of the central symmetry and those of the maximal symmetries of the de Sitter and anti-de Sitter spacetimes derived in different tetrad gauge fixings. Pacs: 04.20.Cv, 04.62.+v, 11.30.-j

  16. Spontaneous spherical symmetry breaking in atomic confinement

    CERN Document Server

    Sveshnikov, K

    2016-01-01

    The effect of spontaneous breaking of initial SO(3) symmetry is shown to be possible for an H-like atom in the ground state, when it is confined in a spherical box under general boundary conditions of "not going out" through the box surface (i.e. third kind or Robin's ones), for a wide range of physically reasonable values of system parameters. The reason is that such boundary conditions could yield a large magnitude of electronic wavefunction in some sector of the box boundary, what in turn promotes atomic displacement from the box center towards this part of the boundary, and so the underlying SO(3) symmetry spontaneously breaks. The emerging Goldstone modes, coinciding with rotations around the box center, restore the symmetry by spreading the atom over a spherical shell localized at some distances from the box center. Atomic confinement inside the cavity proceeds dynamically -- due to the boundary condition the deformation of electronic wavefunction near the boundary works as a spring, that returns the at...

  17. Surface-downhole and crosshole geoelectrics for monitoring of brine injection at the Ketzin CO2 storage site

    Science.gov (United States)

    Rippe, Dennis; Bergmann, Peter; Labitzke, Tim; Wagner, Florian; Schmidt-Hattenberger, Cornelia

    2016-04-01

    The Ketzin pilot site in Germany is the longest operating on-shore CO2 storage site in Europe. From June 2008 till August 2013, a total of ˜67,000 tonnes of CO2 were safely stored in a saline aquifer at depths of 630 m to 650 m. The storage site has now entered the abandonment phase, and continuation of the multi-disciplinary monitoring as part of the national project "CO2 post-injection monitoring and post-closure phase at the Ketzin pilot site" (COMPLETE) provides the unique chance to participate in the conclusion of the complete life cycle of a CO2 storage site. As part of the continuous evaluation of the functionality and integrity of the CO2 storage in Ketzin, from October 12, 2015 till January 6, 2015 a total of ˜2,900 tonnes of brine were successfully injected into the CO2 reservoir, hereby simulating in time-lapse the natural backflow of brine and the associated displacement of CO2. The main objectives of this brine injection experiment include investigation of how much of the CO2 in the pore space can be displaced by brine and if this displacement of CO2 during the brine injection differs from the displacement of formation fluid during the initial CO2 injection. Geophysical monitoring of the brine injection included continuous geoelectric measurements accompanied by monitoring of pressure and temperature conditions in the injection well and two adjacent observation wells. During the previous CO2 injection, the geoelectrical monitoring concept at the Ketzin pilot site consisted of permanent crosshole measurements and non-permanent large-scale surveys (Kiessling et al., 2010). Time-lapse geoelectrical tomographies derived from the weekly crosshole data at near-wellbore scale complemented by six surface-downhole surveys at a scale of 1.5 km showed a noticeable resistivity signature within the target storage zone, which was attributed to the CO2 plume (Schmidt-Hattenberger et al., 2011) and interpreted in terms of relative CO2 and brine saturations (Bergmann

  18. Application of water quality indices and analysis of the surface water quality monitoring network in semiarid North-Central Chile.

    Science.gov (United States)

    Espejo, Lesly; Kretschmer, Nicole; Oyarzún, Jorge; Meza, Francisco; Núñez, Jorge; Maturana, Hugo; Soto, Guido; Oyarzo, Paula; Garrido, Marcela; Suckel, Felipe; Amezaga, Jaime; Oyarzún, Ricardo

    2012-09-01

    Surface water quality has increasing importance worldwide and is particularly relevant in the semiarid North-Central Chile, where agriculture and mining activities are imposing heavy pressure on limited water resources. The current study presents the application of a water quality index in four watersheds of the 29°-33°S realm for the period 1999-2008, based on the Canadian Council of Ministers for the Environment approach and the Chilean regulation for irrigation water quality. In addition, two modifications to the index are tested and a comprehensive characterization of the existing monitoring network is performed through cluster analysis. The basins studied show fairly good water quality in the overall, specially the Limarí basin. On the other hand, the lower index values were obtained for the headwaters of Elqui, associated with the El Indio mining district. The first modification of the indicator (i.e., to consider parameters differentially according to their effect on human health or the environment) did not produce major differences with respect to the original index, given the generally good water quality. The second modification (i.e., to consider as threshold values the more restrictive figures derived from a set of regulations) yielded important differences in the indicator values. Finally, an adequate characterization of the monitoring network was obtained. The results presented spatial coherence and the information can be used as a basis for the optimization of the monitoring network if required.

  19. Monitoring Ecological Impacts of Environmental Surface Waters using Cell-based Metabolomics

    Science.gov (United States)

    Optimized cell-based metabolomics has been used to study the impacts of contaminants in surface waters on human and fish metabolomes. This method has proven to be resource- and time-effective, as well as sustainable for long term and large scale studies. In the current study, cel...

  20. Continuous monitoring of summer surface water vapor isotopic composition above the Greenland Ice Sheet

    Directory of Open Access Journals (Sweden)

    H. C. Steen-Larsen

    2013-05-01

    Full Text Available We present here surface water vapor isotopic measurements conducted from June to August 2010 at the NEEM (North Greenland Eemian Drilling Project camp, NW Greenland (77.45° N, 51.05° W, 2484 m a.s.l.. Measurements were conducted at 9 different heights from 0.1 m to 13.5 m above the snow surface using two different types of cavity-enhanced near-infrared absorption spectroscopy analyzers. For each instrument specific protocols were developed for calibration and drift corrections. The inter-comparison of corrected results from different instruments reveals excellent reproducibility, stability, and precision with a standard deviations of ~ 0.23‰ for δ18O and ~ 1.4‰ for δD. Diurnal and intraseasonal variations show strong relationships between changes in local surface humidity and water vapor isotopic composition, and with local and synoptic weather conditions. This variability probably results from the interplay between local moisture fluxes, linked with firn–air exchanges, boundary layer dynamics, and large-scale moisture advection. Particularly remarkable are several episodes characterized by high (> 40‰ surface water vapor deuterium excess. Air mass back-trajectory calculations from atmospheric analyses and water tagging in the LMDZiso (Laboratory of Meteorology Dynamics Zoom-isotopic atmospheric model reveal that these events are associated with predominant Arctic air mass origin. The analysis suggests that high deuterium excess levels are a result of strong kinetic fractionation during evaporation at the sea-ice margin.

  1. Cytochrome C Dynamics at Gold and Glassy Carbon Surfaces Monitored by in Situ Scanning Tunnel Microscopy

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Møller, Per; Pedersen, Marianne Vind;

    1995-01-01

    composite structures of about 50 nm lateral extension at gold surfaces. The aggregates evolve in time, and structures resembling individual cyt c molecules can be distinguished in the space between the 50 nm structures. Cyt c aggregates also form at glassy carbon but have a different, unbroken character...

  2. Surface air concentration and deposition of lead-210 in French Guiana: two years of continuous monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Melieres, Marie-Antoinette E-mail: melieres@glaciog.ujf-grenoble.fr; Pourchet, Michel; Richard, Sandrine

    2003-07-01

    To make up for the lack of data on {sup 210}Pb aerosol deposition in tropical regions and to use this radionuclide as an aerosol tracer,a monitoring station was run for two years at Petit-Saut, French Guiana. Lead-210 concentration in air at ground level was monitored continuously together with atmospheric total deposition. The air concentration has a mean value of 0.23{+-}0.02 mBq m{sup -3} during both wet and dry seasons, and it is only weakly affected by the precipitation mechanism. This result was unexpected in a wet tropical region, with a high precipitation rate. In contrast, deposition clearly correlates with precipitation for low/moderate rainfall (<15 cm per 15-day), while this correlation is masked by strong fluctuations at high rainfall. The estimated mean annual deposition over the last ten years is 163{+-}75 Bq m{sup -2} y{sup -1}. This provides a procedure fo estimating this mean flux at other sites in French Guiana.

  3. Non-destructive mobile monitoring of microbial contaminations on meat surfaces using porphyrin fluorescence intensities.

    Science.gov (United States)

    Durek, J; Fröhling, A; Bolling, J; Thomasius, R; Durek, P; Schlüter, O K

    2016-05-01

    A non-destructive mobile system for meat quality monitoring was developed and investigated for the possible application along the whole production chain of fresh meat. Pork and lamb meat was stored at 5 °C for up to 20 days post mortem and measured with a fluorescence spectrometer. Additionally, the bacterial influence on the fluorescence signals was evaluated by different experimental procedures. Fluorescence of NADH and different porphyrins could be correlated to the growth of diverse bacteria and hence used for contamination monitoring. The increase of porphyrin fluorescence started after 9 days p.m. for pork and after 2 days p.m. for lamb meat. Based on the results, a mobile fluorescence system was built and compared with the laboratory system. The corrected function of the meat slices showed a root mean square error of 1156.97 r.u. and a mean absolute percentage error of 12.59%; for lamb the values were 470.81 r.u. and 15.55%, respectively. A mobile and non-invasive measurement system would improve the microbial security of fresh meat.

  4. Symmetry via Lie algebra cohomology

    CERN Document Server

    Eastwood, Michael

    2010-01-01

    The Killing operator on a Riemannian manifold is a linear differential operator on vector fields whose kernel provides the infinitesimal Riemannian symmetries. The Killing operator is best understood in terms of its prolongation, which entails some simple tensor identities. These simple identities can be viewed as arising from the identification of certain Lie algebra cohomologies. The point is that this case provides a model for more complicated operators similarly concerned with symmetry.

  5. Dynamical (Super)Symmetry Breaking

    CERN Document Server

    Murayama, H

    2001-01-01

    Dynamical Symmetry Breaking (DSB) is a concept theorists rely on very often in the discussions of strong dynamics, model building, and hierarchy problems. In this talk, I will discuss why this is such a permeating concept among theorists and how they are used in understanding physics. I also briefly review recent progress in using dynamical symmetry breaking to construct models of supersymmetry breaking and fermion masses.

  6. Discrete R Symmetries and Anomalies

    OpenAIRE

    Michael Dine(Santa Cruz Institute for Particle Physics and Department of Physics, Santa Cruz CA 95064, U.S.A.); Angelo Monteux(Santa Cruz Institute for Particle Physics, University of California Santa Cruz, 1156 High Street, Santa Cruz, U.S.A.)

    2012-01-01

    We comment on aspects of discrete anomaly conditions focussing particularly on $R$ symmetries. We review the Green-Schwarz cancellation of discrete anomalies, providing a heuristic explanation why, in the heterotic string, only the "model-independent dilaton" transforms non-linearly under discrete symmetries; this argument suggests that, in other theories, multiple fields might play a role in anomaly cancellations, further weakening any anomaly constraints at low energies. We provide examples...

  7. The effect of corrosion induced surface morphology changes on ultrasonically monitored corrosion rates

    Science.gov (United States)

    Gajdacsi, Attila; Cegla, Frederic

    2016-11-01

    Corrosion rates obtained by very frequent (daily) measurements with permanently installed ultrasonic sensors have been shown to be highly inaccurate when changes in surface morphology lead to ultrasonic signal distortion. In this paper the accuracy of ultrasonically estimated corrosion rates (mean wall thickness loss) by means of standard signal processing methods (peak to peak—P2P, first arrival—FA, cross correlation—XC) was investigated and a novel thickness extraction algorithm (adaptive cross-correlation—AXC) is presented. All of the algorithms were tested on simulated ultrasonic data that was obtained by modelling the surface geometry evolution coupled with a fast ultrasonic signal simulator based on the distributed point source method. The performance of each algorithm could then be determined by comparing the actual known mean thickness losses of the simulated surfaces to the values that each algorithm returned. The results showed that AXC is the best of the investigated processing algorithms. For spatially random thickness loss 90% of AXC estimated thickness trends were within -10 to +25% of the actual mean loss rate (e.g. 0.75-1.1 mm year-1 would be measured for a 1 mm year-1 actual mean loss rate). The other algorithms (P2P, FA, XC) exhibited error distributions that were 5-10 times larger. All algorithms performed worse in scenarios where wall loss was not distributed randomly in space (spatially correlated thickness loss occured) and where the overall rms of the surface was either growing or declining. However, on these surfaces AXC also outperformed the other algorithms and showed almost an order of magnitude improvement compared to them.

  8. Monitoring of surface-fatigue crack propagation in a welded steel angle structure using guided waves and principal component analysis

    Science.gov (United States)

    Lu, Mingyu; Qu, Yongwei; Lu, Ye; Ye, Lin; Zhou, Limin; Su, Zhongqing

    2012-04-01

    An experimental study is reported in this paper demonstrating monitoring of surface-fatigue crack propagation in a welded steel angle structure using Lamb waves generated by an active piezoceramic transducer (PZT) network which was freely surface-mounted for each PZT transducer to serve as either actuator or sensor. The fatigue crack was initiated and propagated in welding zone of a steel angle structure by three-point bending fatigue tests. Instead of directly comparing changes between a series of specific signal segments such as S0 and A0 wave modes scattered from fatigue crack tips, a variety of signal statistical parameters representing five different structural status obtained from marginal spectrum in Hilbert-huang transform (HHT), indicating energy progressive distribution along time period in the frequency domain including all wave modes of one wave signal were employed to classify and distinguish different structural conditions due to fatigue crack initiation and propagation with the combination of using principal component analysis (PCA). Results show that PCA based on marginal spectrum is effective and sensitive for monitoring the growth of fatigue crack although the received signals are extremely complicated due to wave scattered from weld, multi-boundaries, notch and fatigue crack. More importantly, this method indicates good potential for identification of integrity status of complicated structures which cause uncertain wave patterns and ambiguous sensor network arrangement.

  9. Application of surface analytical methods for hazardous situation in the Adriatic Sea: monitoring of organic matter dynamics and oil pollution

    Science.gov (United States)

    Pletikapić, Galja; Ivošević DeNardis, Nadica

    2017-01-01

    Surface analytical methods are applied to examine the environmental status of seawaters. The present overview emphasizes advantages of combining surface analytical methods, applied to a hazardous situation in the Adriatic Sea, such as monitoring of the first aggregation phases of dissolved organic matter in order to potentially predict the massive mucilage formation and testing of oil spill cleanup. Such an approach, based on fast and direct characterization of organic matter and its high-resolution visualization, sets a continuous-scale description of organic matter from micro- to nanometre scales. Electrochemical method of chronoamperometry at the dropping mercury electrode meets the requirements for monitoring purposes due to the simple and fast analysis of a large number of natural seawater samples enabling simultaneous differentiation of organic constituents. In contrast, atomic force microscopy allows direct visualization of biotic and abiotic particles and provides an insight into structural organization of marine organic matter at micro- and nanometre scales. In the future, merging data at different spatial scales, taking into account experimental input on micrometre scale, observations on metre scale and modelling on kilometre scale, will be important for developing sophisticated technological platforms for knowledge transfer, reports and maps applicable for the marine environmental protection and management of the coastal area, especially for tourism, fishery and cruiser trafficking.

  10. Evaluation of laser fluorescence in monitoring non-cavitated caries lesion progression on smooth surfaces in vitro.

    Science.gov (United States)

    Rodrigues, J A; Sarti, C S; Assunção, C M; Arthur, R A; Lussi, A; Diniz, M B

    2017-07-02

    The aim of this study was to evaluate the performance of a pen-type laser fluorescence (LF) device (LFpen: DIAGNOdent pen) to detect and monitor the progression of caries-like lesions on smooth surfaces. Fifty-two bovine enamel blocks were submitted to three different demineralisation cycles for caries-like lesion induction using Streptococcus mutans, Lactobacillus casei and Actinomyces naeslundii. At baseline and after each cycle, the enamel blocks were analysed under Knoop surface micro-hardness (SMH) and an LFpen. One enamel block after each cycle was randomly chosen for Raman spectroscopy analysis. Cross-sectional micro-hardness (CSMH) was performed at different depths (20, 40, 60, 80 and 100 μm) in 26 enamel blocks after the second cycle and 26 enamel blocks after the third cycle. Average values of SMH (± standard deviation (SD)) were 319.3 (± 21.5), 80.5 (± 31.9), 39.8 (± 12.7), and 29.77 (± 10.34) at baseline and after the first, second and third cycles, respectively. Statistical significant difference was found among all periods (p  0.05). One sample of each cycle was characterised through Raman spectroscopy analysis. It can be concluded that LF was effective in detecting the first demineralisation on enamel; however, the method did not show any effect in monitoring lesion progression after three cycles of in vitro demineralisation.

  11. Rapid selection of a representative monitoring location of soil water content for irrigation scheduling using surface moisture-density gauge

    Science.gov (United States)

    Mubarak, Ibrahim; Janat, Mussadak; Makhlouf, Mohsen; Hamdan, Altayeb

    2016-10-01

    Establishing a representative monitoring location of soil water content is important for agricultural water management. One of the challenges is to develop a field protocol for determining such a location with minimum costs. In this paper, we use the concept of time stability in soil water content to examine whether using a short term monitoring period is sufficient to identify a representative site of soil water content and, therefore, irrigation scheduling. Surface moisture-density gauge was used as a means for measuring soil water content. Variations of soil water content in space and time were studied using geostatistical tools. Measuring soil water content was made at 30 locations as nodes of a 6×8 m grid, six times during the growing season. A representative location for average soil water content estimation was allocated at the beginning of a season, and thereafter it was validated. Results indicated that the spatial pattern of soil water content was strongly temporally stable, explained by the relationship between soil water content and fine soil texture. Two field surveys of soil water content, conducted before and after the 1st irrigation, could be sufficient to allocate a representative location of soil water content, and for adequate irrigation scheduling of the whole field. Surface moisture-density gauge was found to be efficient for characterising time stability of soil water content under irrigated field conditions.

  12. Seven Years of Advanced Synthetic Aperture Radar (ASAR Global Monitoring (GM of Surface Soil Moisture over Africa

    Directory of Open Access Journals (Sweden)

    Alena Dostálová

    2014-08-01

    Full Text Available A surface soil moisture (SSM product at a 1-km spatial resolution derived from the Envisat Advanced Synthetic Aperture Radar (ASAR Global Monitoring (GM mode data was evaluated over the entire African continent using coarse spatial resolution SSM acquisitions from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E and the Noah land surface model from the Global Land Data Assimilation System (GLDAS-NOAH. The evaluation was performed in terms of relative soil moisture values (%, as well as anomalies from the seasonal cycle. Considering the high radiometric noise of the ASAR GM data, the SSM product exhibits a good ability (Pearson correlation coefficient (R = ~0.6 for relative soil moisture values and root mean square difference (RMSD = 11% when averaged to 5-km resolution to monitor temporal soil moisture variability in regions with low to medium density vegetation and yearly rainfall >250 mm. The findings agree with previous evaluation studies performed over Australia and further strengthen the understanding of the quality of the ASAR GM SSM product and its potential for data assimilation. Problems identified in the ASAR GM algorithm over arid regions were explained by azimuthal effects. Diverse backscatter behavior over different soil types was identified. The insights gained about the quality of the data were used to establish a reliable masking of the existing ASAR GM SSM product and the identification of areas where further research is needed for the future Sentinel-1-derived SSM products.

  13. Sensitive Probe for Symmetry Potential

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-Ye; XIAO Guo-Qing; GUO Wen-Jun; REN ZhongZhou; ZUO Wei; LEE Xi-Guo

    2007-01-01

    Based on both very obvious isospin effect of the neutron-proton number ratio of nucleon emissions (n/p)nucl on symmetry potential and (n/p)nucl's sensitive dependence on symmetry potential in the nuclear reactions induced by halo-neutron projectiles, compared to the same mass stable projectile, probing symmetry potential is investigated within the isospin-dependent quantum molecular dynamics with isospin and momentum-dependent interactions for different symmetry potentials U1sym and U2sym. It is found that the neutron-halo projectile induces very obvious increase of (n/p)nucl and strengthens the dependence of (n/p)nucl on the symmetry potential for all the beam energies and impact parameters, compared to the same mass stable projectile under the same incident channel condition. Therefore (n/p)nucl induced by the neutron-halo projectile is a more favourable probe than the normal neutron-rich and neutron-poor projectiles for extracting the symmetry potential.

  14. Leptogenesis and residual CP symmetry

    CERN Document Server

    Chen, Peng; King, Stephen F

    2016-01-01

    We discuss flavour dependent leptogenesis in the framework of lepton flavour models based on discrete flavour and CP symmetries applied to the type-I seesaw model. Working in the flavour basis, we analyse the case of two general residual CP symmetries in the neutrino sector, which corresponds to all possible semi-direct models based on a preserved $Z_2$ in the neutrino sector, together with a CP symmetry, which constrains the PMNS matrix up to a single free parameter which may be fixed by the reactor angle. We systematically study and classify this case for all possible residual CP symmetries, and show that the $R$-matrix is tightly constrained up to a single free parameter, with only certain forms being consistent with successful leptogenesis, leading to possible connections between leptogenesis and PMNS parameters. The formalism is completely general in the sense that the two residual CP symmetries could result from any high energy discrete flavour theory which respects any CP symmetry. As a simple example,...

  15. Mei Symmetry and Lie Symmetry of the Rotational Relativistic Variable Mass System

    Institute of Scientific and Technical Information of China (English)

    FANG Jian-Hui

    2003-01-01

    The Mei symmetry and the Lie symmetry of a rotational relativistic variable masssystem are studied. Thedefinitions and criteria of the Mei symmetry and the Lie symmetry of the rotational relativistic variable mass system aregiven. The relation between the Mei symmetry and the Lie symmetry is found. The conserved quantities which the Meisymmetry and the Lie symmetry lead to are obtained. An example is given to illustrate the application of the result.

  16. Nanoscale surface modification for enhanced biosensing a journey toward better glucose monitoring

    CERN Document Server

    Zhang, Guigen

    2015-01-01

    This book gives a comprehensive overview of electrochemical-based biosensors and their crucial components. Practical examples are given throughout the text to illustrate how the performance of electrochemical-based biosensors can be improved by nanoscale surface modification and how an optimal design can be achieved. All essential aspects of biosensors are considered, including electrode functionalization, efficiency of the mass transport of reactive species, and long term durability and functionality of the sensor. This book also: ·       Explains how the performance of an electrochemical-based biosensor can be improved by nanoscale surface modification ·       Gives readers the tools to evaluate and improve the performance of a biosensor with a multidisciplinary approach that considers electrical, electrostatic, electrochemical, chemical, and biochemical events ·       Links the performance of a sensor to the various governing physical and chemical principles so readers can fully unders...

  17. Satellite remote sensing applications for surface soil moisture monitoring: A review

    Institute of Scientific and Technical Information of China (English)

    Lingli WANG; John J.QU

    2009-01-01

    Surface soil moisture is one of the crucial variables in hydrological processes, which influences the exchange of water and energy fluxes at the land surface/ atmosphere interface. Accurate estimate of the spatial and temporal variations of soil moisture is critical for numerous environmental studies. Recent technological advances in satellite remote sensing have shown that soil moisture can be measured by a variety of remote sensing techniques,each with its own strengths and weaknesses. This paper presents a comprehensive review of the progress in remote sensing of soil moisture, with focus on technique approaches for soil moisture estimation from optical,thermal, passive microwave, and active microwave measurements. The physical principles and the status of current retrieval methods are summarized. Limitations existing in current soil moisture estimation algorithms and key issues that have to be addressed in the near future are also discussed.

  18. SLSTR: a high accuracy dual scan temperature radiometer for sea and land surface monitoring from space

    Science.gov (United States)

    Coppo, P.; Ricciarelli, B.; Brandani, F.; Delderfield, J.; Ferlet, M.; Mutlow, C.; Munro, G.; Nightingale, T.; Smith, D.; Bianchi, S.; Nicol, P.; Kirschstein, S.; Hennig, T.; Engel, W.; Frerick, J.; Nieke, J.

    2010-10-01

    SLSTR is a high accuracy infrared radiometer which will be embarked in the Earth low-orbit Sentinel 3 operational GMES mission. SLSTR is an improved version of the previous AATSR and ATSR-1/2 instruments which have flown respectively on Envisat and ERS-1/2 ESA missions. SLSTR will provide data continuity with respect to these previous missions but with a substantial improvement due to its higher swaths (750 km in dual view and 1400 km in single view) which should permit global coverage of SST and LST measurements (at 1 km of spatial resolution in IR channels) with daily revisit time, useful for climatological and meteorological applications. Two more SWIR channels and a higher spatial resolution in the VIS/SWIR channels (0.5 km) are also implemented for a better clouds/aerosols screening. Two further additional channels for global scale fire monitoring are present at the same time as the other nominal channels.

  19. HadISDH: an updated land surface specific humidity product for climate monitoring

    Directory of Open Access Journals (Sweden)

    K. M. Willett

    2012-10-01

    Full Text Available Presented herein is HadISDH: an annually-updated near-global land-surface specific humidity product providing monthly means from 1973 onwards over large scale grids. HadISDH is an update to the land component of HadCRUH utilising the global high resolution land surface station product HadISD as a basis. HadISD, in turn uses an updated version of NOAA's integrated surface database. Intensive automated quality control has been undertaken at the synoptic level, as part of HadISD processing. The data have been subsequently run through the pairwise homogenisation algorithm developed for NCDC's GHCN Monthly temperature product. Uncertainty estimates including station uncertainty and sampling uncertainty are provided at the gridbox spatial scale and monthly time scale.

    HadISDH is in good agreement with existing land surface humidity products in periods of overlap. Widespread moistening is shown over the 1973–2011 period. The largest moistening signals are over the tropics with drying over the subtropics, supporting other evidence of an intensified hydrological cycle over recent years. Moistening is detectable with high (95% confidence over large-scale averages for the globe, Northern Hemisphere and tropics with trends of 0.095 (0.086 to 0.105 g kg−1 per decade, 0.091 (0.08 to 0.103 g kg−1 per decade and 0.147 (0.133 to 0.162 g kg−1 per decade, respectively. No change (0.008 (−0.011 to 0.028 g kg−1 per decade is detectable in the Southern Hemisphere. When globally averaged, 1998 was the moistest year since records began in 1973, closely followed by 2010, two strong El Niño years.

  20. Surface diffusion of Sb on Ge(111) monitored quantitatively with optical second harmonic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, K.A.; Seebauer, E.G. (Department of Chemical Engineering, University of Illinois, Urbana, Illinois 61801 (United States))

    1992-11-01

    Surface diffusion of Sb on Ge(111) has been measured with the newly developed technique of optical second harmonic microscopy. In this method, concentration profiles at submonolayer coverage are imaged directly by surface second harmonic generation with 5 {mu} spatial resolution. A Boltzmann--Matano analysis yields the coverage dependence of the diffusivity {ital D} without parametrization. Experiments were performed at roughly 70% of the bulk melting temperature {ital T}{sub {ital m}}. In the coverage range 0{le}{theta}{le}0.6, the activation energy {ital E}{sub diff} remains constant at 47.5{plus minus}1.5 kcal/mol, but the pre-exponential factor {ital D}{sub 0} decreases from 8.7{times}10{sup 3{plus minus}0.4} to 1.6{times}10{sup 2{plus minus}0.4} cm{sup 2}/s. Both {ital E}{sub diff} and {ital D}{sub 0} are quite large, which is consistent with high-temperature measurements in other systems. The inadequacies of current theories for high-temperature surface diffusion are outlined, and a new vacancy model is proposed for low-coverage diffusion. The model accounts semiquantitatively for the large values of {ital E}{sub diff} and {ital D}{sub 0}, and suggests that these quantities may be manipulated using doping levels and photon illumination. An islanding mechanism is proposed to explain the decrease in {ital D}{sub 0} with {theta}.