WorldWideScience

Sample records for monitoring subsurface drain

  1. Analyzing subsurface drain network performance in an agricultural monitoring site with a three-dimensional hydrological model

    Science.gov (United States)

    Nousiainen, Riikka; Warsta, Lassi; Turunen, Mika; Huitu, Hanna; Koivusalo, Harri; Pesonen, Liisa

    2015-10-01

    Effectiveness of a subsurface drainage system decreases with time, leading to a need to restore the drainage efficiency by installing new drain pipes in problem areas. The drainage performance of the resulting system varies spatially and complicates runoff and nutrient load generation within the fields. We presented a method to estimate the drainage performance of a heterogeneous subsurface drainage system by simulating the area with the three-dimensional hydrological FLUSH model. A GIS analysis was used to delineate the surface runoff contributing area in the field. We applied the method to reproduce the water balance and to investigate the effectiveness of a subsurface drainage network of a clayey field located in southern Finland. The subsurface drainage system was originally installed in the area in 1971 and the drainage efficiency was improved in 1995 and 2005 by installing new drains. FLUSH was calibrated against total runoff and drain discharge data from 2010 to 2011 and validated against total runoff in 2012. The model supported quantification of runoff fractions via the three installed drainage networks. Model realisations were produced to investigate the extent of the runoff contributing areas and the effect of the drainage parameters on subsurface drain discharge. The analysis showed that better model performance was achieved when the efficiency of the oldest drainage network (installed in 1971) was decreased. Our analysis method can reveal the drainage system performance but not the reason for the deterioration of the drainage performance. Tillage layer runoff from the field was originally computed by subtracting drain discharge from the total runoff. The drains installed in 1995 bypass the measurement system, which renders the tillage layer runoff calculation procedure invalid after 1995. Therefore, this article suggests use of a local correction coefficient based on the simulations for further research utilizing data from the study area.

  2. Chemistry of subsurface drain discharge from an agricultural polder soil

    NARCIS (Netherlands)

    Hesterberg, D.; Vos, de B.; Raats, P.A.C.

    2006-01-01

    Protecting groundwater and surface water quality in drained agricultural lands is aided by an understanding of soil physical and chemical processes affecting leaching of plant nutrients and other chemical constituents, and discharge from subsurface drains. Our objectives were to determine which chem

  3. Continuous 'Passive' Registration of Non-Point Contaminant Loads Via Agricultural Subsurface Drain Tubes

    Science.gov (United States)

    Rozemeijer, J.; Jansen, S.; de Jonge, H.; Lindblad Vendelboe, A.

    2014-12-01

    Considering their crucial role in water and solute transport, enhanced monitoring and modeling of agricultural subsurface tube drain systems is important for adequate water quality management. For example, previous work in lowland agricultural catchments has shown that subsurface tube drain effluent contributed up to 80% of the annual discharge and 90-92% of the annual NO3 loads from agricultural fields towards the surface water. However, existing monitoring techniques for flow and contaminant loads from tube drains are expensive and labor-intensive. Therefore, despite the unambiguous relevance of this transport route, tube drain monitoring data are scarce. The presented study aimed developing a cheap, simple, and robust method to monitor loads from tube drains. We are now ready to introduce the Flowcap that can be attached to the outlet of tube drains and is capable of registering total flow, contaminant loads, and flow-averaged concentrations. The Flowcap builds on the existing SorbiCells, a modern passive sampling technique that measures average concentrations over longer periods of time (days to months) for various substances. By mounting SorbiCells in our Flowcap, a flow-proportional part of the drain effluent is sampled from the main stream. Laboratory testing yielded good linear relations (R-squared of 0.98) between drainage flow rates and sampling rates. The Flowcap was tested in practice for measuring NO3 loads from two agricultural fields and one glasshouse in the Netherlands. The Flowcap registers contaminant loads from tube drains without any need for housing, electricity, or maintenance. This enables large-scale monitoring of non-point contaminant loads via tube drains, which would facilitate the improvement of contaminant transport models and would yield valuable information for the selection and evaluation of mitigation options to improve water quality.

  4. Leaching of the Neonicotinoids Thiamethoxam and Imidacloprid from Sugar Beet Seed Dressings to Subsurface Tile Drains.

    Science.gov (United States)

    Wettstein, Felix E; Kasteel, Roy; Garcia Delgado, Maria F; Hanke, Irene; Huntscha, Sebastian; Balmer, Marianne E; Poiger, Thomas; Bucheli, Thomas D

    2016-08-24

    Pesticide transport from seed dressings toward subsurface tile drains is still poorly understood. We monitored the neonicotinoid insecticides imidacloprid and thiamethoxam from sugar beet seed dressings in flow-proportional drainage water samples, together with spray applications of bromide and the herbicide S-metolachlor in spring and the fungicides epoxiconazole and kresoxim-methyl in summer. Event-driven, high first concentration maxima up to 2830 and 1290 ng/L for thiamethoxam and imidacloprid, respectively, were followed by an extended period of tailing and suggested preferential flow. Nevertheless, mass recoveries declined in agreement with the degradation and sorption properties collated in the groundwater ubiquity score, following the order bromide (4.9%), thiamethoxam (1.2%), imidacloprid (0.48%), kresoxim-methyl acid (0.17%), S-metolachlor (0.032%), epoxiconazole (0.013%), and kresoxim-methyl (0.003%), and indicated increased leaching from seed dressings compared to spray applications. Measured concentrations and mass recoveries indicate that subsurface tile drains contribute to surface water contamination with neonicotinoids from seed dressings.

  5. Nitrate, phosphate, and ammonium loads at subsurface drains: agroecosystems and nitrogen management.

    Science.gov (United States)

    Hernandez-Ramirez, Guillermo; Brouder, Sylvie M; Ruark, Matthew D; Turco, Ronald F

    2011-01-01

    Artificial subsurface drainage in cropland creates pathways for nutrient movement into surface water; quantification of the relative impacts of common and theoretically improved management systems on these nutrient losses remains incomplete. This study was conducted to assess diverse management effects on long-term patterns (1998-2006) of NO, NH, and PO loads (). We monitored water flow and nutrient concentrations at subsurface drains in lysimeter plots planted to continuous corn ( L.) (CC), both phases of corn-soybean [ (L.) Merr.] rotations (corn, CS; soybean, SC), and restored prairie grass (PG). Corn plots were fertilized with preplant or sidedress urea-NHNO (UAN) or liquid swine manure injected in the fall (FM) or spring (SM). Restored PG reduced NO eightfold compared with fields receiving UAN (2.5 vs. 19.9 kg N ha yr; < 0.001), yet varying UAN application rates and timings did not affect NO across all CCUANs and CSUANs. The NO from CCFM (33.3 kg N ha yr) were substantially higher than for all other cropped fields including CCSM (average 19.8 kg N ha yr, < 0.001). With respect to NH and PO, only manured soils recorded high but episodic losses in certain years. Compared with the average of all other treatments, CCSM increased NH in the spring of 1999 (217 vs. 680 g N ha yr), while CCFM raised PO in the winter of 2005 (23 vs. 441 g P ha yr). Our results demonstrate that fall manuring increased nutrient losses in subsurface-drained cropland, and hence this practice should be redesigned for improvement or discouraged. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  6. Pesticide leaching via subsurface drains in different hydrologic situations

    Science.gov (United States)

    Zajíček, Antonín; Fučík, Petr; Liška, Marek; Dobiáš, Jakub

    2017-04-01

    esticides and their degradates in tile drainage waters were studied in two small, predominantly agricultural, tile-drained subcatchments in the Bohemian-Moravian Highlands, Czech Republic. The goal was to evaluate their occurence and the dymamics of their concentrations in drainage waters in different hydrologic situations using discharge and concentration monitoring together with 18O and 2H isotope analysis for Mean Residence Time (MRT) estimation and hydrograph separations during rainfall - runoff (R-R) events. The drainage and stream discharges were measured continuously at the closing outlets of three drainage groups and one small stream. During periods of prevailing base and interflow, samples were collected manually in two-week intervals for isotope analysis and during the spraying period (March to October) also for pesticide analysis. During R-R events, samples were taken by automatic samplers in intervals varying from 20 min (summer) to 1 hour (winter). To enable isotopic analysis, precipitation was sampled both manually at two-week intervals and also using an automatic rainfall sampler which collected samples of precipitation during the R-R events at 20-min. intervals. The isotopic analysis showed, that MRT of drainage base flow and interflow varies from 2,2 to 3,3 years, while MRT of base flow and interflow in surface stream is several months. During R-R events, the proportion of event water varied from 0 to 60 % in both drainage and surface runoff. The occurrence of pesticides and their degradates in drainage waters is strongly dependent on the hydrologic situation. While degradates were permanently present in drainage waters in high but varying concentrations according to instantaneous runoff composition, parent matters were detected almost exclusively during R-R events. In periods with prevailing base flow and interflow (grab samples), especially ESA forms of chloracetanilide degradates occured in high concentrations in all samples. Average sum of

  7. Corn stover harvest increases herbicide movement to subsurface drains – Root Zone Water Quality Model simulations

    Science.gov (United States)

    BACKGROUND: Removal of crop residues for bioenergy production can alter soil hydrologic properties, but there is little information on its impact on transport of herbicides and their degradation products to subsurface drains. The Root Zone Water Quality Model, previously calibrated using measured fl...

  8. Interaction between Engineered Cementitious Composites Lining and Foundation Subsurface Drain

    Directory of Open Access Journals (Sweden)

    Cleopatra Panganayi

    2011-01-01

    Full Text Available The effect of cyclic loads on the surface profiles of ECC linings cast on foundations comprising crushed stone and compacted soil was investigated. A geotextile was embedded between the crushed stone and ECC lining for some of the samples. After 28 days of water curing, the hardened surfaces were loaded and monitored for roughness and crack development by measuring surface levels and crack widths, respectively. Neither cracking nor significant variations in the lateral profiles were observed on all the samples for all the loads applied. However, significant variations which depended on the foundation types were observed in the vertical profiles. It was concluded that while ECC can resist cracking due to its high strain capacity, its flexibility causes ECC linings to assume the shape of the foundation material, which can increase the surface roughness at certain loading configurations.

  9. Sediment and Nutrient Contributions from Subsurface Drains and Point Sources to an Agricultural Watershed

    Directory of Open Access Journals (Sweden)

    Bonnie Ball Coelho

    2010-03-01

    Full Text Available Excess sediment and nutrients in surface waters can threaten aquatic life. To determine the relative importance of subsurface drainage as a pathway for movement of sediment and nutrients to surface waters, loading from various tile systems was compared to that from sewage treatment plants (STP within the same watershed. Movement through tiles comprised 1 to 8% of estimated total (overland plus tile annual sediment loading from the respective areas drained by the tile. Load during the growing season from five closed drain- age systems without surface inlets averaged 5 kg sediment/ha, 0.005 kg dissolved reactive P (DRP/ha, 0.003 kg NH4-N/ha, and 3.8 kg NO3-N/ha; and from two open drainage systems with surface inlets averaged 14 kg sediment/ha, 0.03 kg DRP/ha, 0.04 kg NH4-N/ha, and 3.1 kg NO3-N/ha. The eight STP contributed about 44 530 kg suspended sediments, 3380 kg total P, 1340 kg NH4-N, and 116 900 kg NO3-N to the watershed annually. Drainage systems added less NH4-N and P, but more NO3-N and suspended solids to surface waters than STP. Tile drainage pathways for NO3-N, STP in the case of P, and overland pathways for sediment are indicated as targets to control loading in artificially drained agricultural watersheds.

  10. Monitoring subsurface CO2 storage

    NARCIS (Netherlands)

    Winthaegen, P.; Arts, R.; Schroot, B.M.

    2005-01-01

    An overview is given of various currently applied monitoring techniques for CO2 storage. Techniques are subdivided in correspondence to their applicability for monitoring three distinct realms. These are: - the atmosphere and the near-surface; - the overburden (including faults and wells); - the

  11. Corn stover harvest increases herbicide movement to subsurface drains: RZWQM simulations

    Science.gov (United States)

    Shipitalo, Martin J.; Malone, Robert W.; Ma, Liwang; Nolan, Bernard T.; Kanwar, Rameshwar S.; Shaner, Dale L.; Pederson, Carl H.

    2016-01-01

    BACKGROUND Crop residue removal for bioenergy production can alter soil hydrologic properties and the movement of agrochemicals to subsurface drains. The Root Zone Water Quality Model (RZWQM), previously calibrated using measured flow and atrazine concentrations in drainage from a 0.4 ha chisel-tilled plot, was used to investigate effects of 50 and 100% corn (Zea mays L.) stover harvest and the accompanying reductions in soil crust hydraulic conductivity and total macroporosity on transport of atrazine, metolachlor, and metolachlor oxanilic acid (OXA). RESULTS The model accurately simulated field-measured metolachlor transport in drainage. A 3-yr simulation indicated that 50% residue removal decreased subsurface drainage by 31% and increased atrazine and metolachlor transport in drainage 4 to 5-fold when surface crust conductivity and macroporosity were reduced by 25%. Based on its measured sorption coefficient, ~ 2-fold reductions in OXA losses were simulated with residue removal. CONCLUSION RZWQM indicated that if corn stover harvest reduces crust conductivity and soil macroporosity, losses of atrazine and metolachlor in subsurface drainage will increase due to reduced sorption related to more water moving through fewer macropores. Losses of the metolachlor degradation product OXA will decrease due to the more rapid movement of the parent compound into the soil.

  12. Development, testing and application of DrainFlow: A fully distributed integrated surface-subsurface flow model for drainage study

    Science.gov (United States)

    Shokri, Ali; Bardsley, William Earl

    2016-06-01

    Hydrological and hydrogeological investigation of drained land is a complex and integrated procedure. The scale of drainage studies may vary from a high-resolution small scale project through to comprehensive catchment or regional scale investigations. This wide range of scales and integrated system behaviour poses a significant challenge for the development of suitable drainage models. Toward meeting these requirements, a fully distributed coupled surface-subsurface flow model titled DrainFlow has been developed and is described. DrainFlow includes both the diffusive wave equation for surface flow components (overland flow, open drain, tile drain) and Richard's equation for saturated/unsaturated zones. To overcome the non-linearity problem created from switching between wet and dry boundaries, a smooth transitioning technique is introduced to buffer the model at tile drains and at interfaces between surface and subsurface flow boundaries. This gives a continuous transition between Dirichlet and Neumann boundary conditions. DrainFlow is tested against five well-known integrated surface-subsurface flow benchmarks. DrainFlow as applied to some synthetic drainage study examples is quite flexible for changing all or part of the model dimensions as required by problem complexity, problem scale, and data availability. This flexibility enables DrainFlow to be modified to allow for changes in both scale and boundary conditions, as often encountered in real-world drainage studies. Compared to existing drainage models, DrainFlow has the advantage of estimating actual infiltration directly from the partial differential form of Richard's equation rather than through analytical or empirical infiltration approaches like the Green and Ampt equation.

  13. Flow and transport processes in a macroporous subsurface-drained glacial till soil

    DEFF Research Database (Denmark)

    Villholth, Karen Grothe; Jensen, Karsten Høgh; Fredericia, Johnny

    1998-01-01

    The qualitative and quantitative effects of macropore flow and transport in an agricultural subsurface-drained glacial till soil in eastern Denmark have been investigated. Three controlled tracer experiments on individual field plots (each approximately 1000 m(2)) were carried out by surface...... was evidenced directly by the rapid (within 10 mm of water input) and abrupt chloride breakthrough in the drainage water at 1.2 m depth in two of the tracer experiments. In the third experiment, the effect of macropore transport was obvious from the rapid and relatively deep penetration of the tracer...... into the soil profile. Dye infiltration experiments in the field as well as in the laboratory supported the recognition of the dominant contribution of macropores to the infiltration and transport process. The soil matrix significantly influenced the tracer distribution by acting as a source or sink...

  14. Flow and transport processes in a macroporous subsurface-drained glacial till soil

    DEFF Research Database (Denmark)

    Villholth, Karen G.; Jensen, Karsten Høgh

    1998-01-01

    -scale concentration gradients, is questioned. Decreasing the domain exchange resulted in an improved model correspondence with the drainage chemograph. The drainage flow pattern was altered between drainage seasons owing to the changes in hydraulic efficiency of surface-vented macropores influenced by the physical......The experimental results from a field-scale tracer experiment in a subsurface-drained glacial till soil were analyzed by the application of a single/dual porosity model (MACRO), optionally accounting for concurrent and interacting flow and transport in the bulk soil porosity as well...... as in the macropores. The model analysis showed that macropore flow is essential in describing the observed transport phenomenon on a short as well as a longer time scale. The diffusive exchange of solute between the matrix and the macropores was very sensitive and critical for the model prediction of the drainage...

  15. Radionuclide Sensors for Subsurface Water Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Timothy DeVol

    2006-06-30

    Contamination of the subsurface by radionuclides is a persistent and vexing problem for the Department of Energy. These radionuclides must be measured in field studies and monitoed in the long term when they cannot be removed. However, no radionuclide sensors existed for groundwater monitoring prior to this team's research under the EMSP program Detection of a and b decays from radionuclides in water is difficult due to their short ranges in condensed media.

  16. Instruments for subsurface monitoring of geothermal subsidence

    Energy Technology Data Exchange (ETDEWEB)

    O' Rourke, J.E.; Ranson, B.B.

    1979-07-01

    The requirements for a subsurface geothermal subsidence instrument were reviewed. Available instruments for monitoring subsurface displacements, both vertical and horizontal, were studied and the most capable instruments identified. Techniques and materials for improving existing or developing new instruments were evaluated. Elements of sensor and signal technology with potential for high temperature monitoring of subsidence were identified. Drawing from these studies, methods to adapt production wells for monitoring were proposed and several new instrumentation systems were conceptually designed. Finally, four instrumentation systems were selected for future development. These systems are: triple sensor induction sensor probe (with casing collar markers); triple sensor gamma ray detector probe (with radioactive markers); triple sensor reed switch probe (with magnet markers); and triple sensor oscillator-type magnet detector probe (with magnet markers). All are designed for use in well casing incorporating slip couplings or bellows sections, although the gamma ray detector probe may also be used in unlined holes. These systems all measure vertical moement. Instruments to measure horizontal displacement due to geothermal subsidence were studied and the required instrument performance was judged to be beyond the state-of-the-art. Thus, no conceptual designs for instruments to monitor horizontal movement are included.

  17. Low temperature monitoring system for subsurface barriers

    Science.gov (United States)

    Vinegar, Harold J.; McKinzie, II. Billy John

    2009-08-18

    A system for monitoring temperature of a subsurface low temperature zone is described. The system includes a plurality of freeze wells configured to form the low temperature zone, one or more lasers, and a fiber optic cable coupled to at least one laser. A portion of the fiber optic cable is positioned in at least one freeze well. At least one laser is configured to transmit light pulses into a first end of the fiber optic cable. An analyzer is coupled to the fiber optic cable. The analyzer is configured to receive return signals from the light pulses.

  18. Influence of rainfall distribution on simulations of atrazine, metolachlor, and isoxaflutole/metabolite transport in subsurface drained fields.

    Science.gov (United States)

    Fox, Garey A; Pulijala, Sri H; Sabbagh, George J

    2007-07-11

    This research investigated the impact of modeling atrazine, metolachlor, and isoxaflutole/metabolite transport in artificially subsurface drained sites with temporally discrete rainfall data. Differences in considering rainfall distribution are unknown in regard to estimating agrochemical fluxes in the subsurface. The Root Zone Water Quality Model (RZWQM) simulated pesticide fate and transport at three subsurface drained sites: metolachlor/atrazine field experiment in Baton Rouge, LA (1987), and two isoxaflutole/metabolite field experiments in Allen County and Owen County, Indiana (2000). The modeling assumed linear, equilibrium sorption based on average reported physicochemical and environmental fate properties. Assumed rainfall intensity and duration influenced transport by runoff more than transport by subsurface drainage. As the importance of macropore flow increased, the necessity for using temporally discrete rainfall data became more critical. Long-term simulations indicated no significant difference between average or upper percentile (i.e., rainfall assumptions. It was necessary (i.e., within 7% of predicted loss) to use hourly or average duration storm events as opposed to daily rainfall data for total (i.e., runoff and subsurface drainage) pesticide loss over the long term.

  19. Monitoring the subsurface with quasi-static deformation

    Energy Technology Data Exchange (ETDEWEB)

    Sneider, Roel; Spetzler, Hartmut

    2013-09-06

    This project consisted of three sub-projects that are all aimed at monitoring the subsurface with geophysical methods. The objectives of these sub-projects are: to investigate the use of seismic waves for remote monitoring of temperature changes in the Yucca Mountain nuclear repository; to investigate the use of measured changes in the tidal tilt as a diagnostic for the infiltration of fluids in the subsurface; and to extract the electrostatic response from dynamic field fluctuations.

  20. Modelling Water Flow, Heat Transport, Soil Freezing and Thawing, and Snow Processes in a Clayey, Subsurface Drained Agricultural Field

    Science.gov (United States)

    Warsta, L.; Turunen, M.; Koivusalo, H. J.; Paasonen-Kivekäs, M.; Karvonen, T.; Taskinen, A.

    2012-12-01

    Simulation of hydrological processes for the purposes of agricultural water management and protection in boreal environment requires description of winter time processes, including heat transport, soil freezing and thawing, and snow accumulation and melt. Finland is located north of the latitude of 60 degrees and has one third to one fourth of the total agricultural land area (2.3 milj. ha) on clay soils (> 30% of clay). Most of the clayey fields are subsurface drained to provide efficient drainage and to enable heavy machines to operate on the fields as soon as possible after the spring snowmelt. Generation of drainflow and surface runoff in cultivated fields leads to nutrient and sediment load, which forms the major share of the total load reaching surface waters at the national level. Water, suspended sediment, and soluble nutrients on clayey field surface are conveyed through the soil profile to the subsurface drains via macropore pathways as the clayey soil matrix is almost impermeable. The objective of the study was to develop the missing winter related processes into the FLUSH model, including soil heat transport, snow pack simulation and the effects of soil freezing and thawing on the soil hydraulic conductivity. FLUSH is an open source (MIT license), distributed, process-based model designed to simulate surface runoff and drainflow in clayey, subsurface drained agricultural fields. 2-D overland flow is described with the diffuse wave approximation of the Saint Venant equations and 3-D subsurface flow with a dual-permeability model. Both macropores and soil matrix are simulated with the Richards equation. Soil heat transport is described with a modified 3-D convection-diffusion equation. Runoff and groundwater data was available from different periods from January 1994 to April 1999 measured in a clayey, subsurface drained field section (3.6 ha) in southern Finland. Soil temperature data was collected in two locations (to a depth of 0.8 m) next to the

  1. Modeling Subsurface Storm and Tile Drain Systems in GSSHA with SUPERLINK

    Science.gov (United States)

    2014-09-01

    represents a major advancement in U.S. Army Corps of Engineers urban and agricultural hydrologic modeling capability. A SUPERLINK network consists of a...Management 48: 207–224. Cunge, J. A., F. M. Holly, and A. Verwey, 1980. Practical aspects of computational river hydraulics. London: Pittman Advanced ...drains. In Drainage for Agriculture, Mongraph No. 17, ed. J. van Schilfgaarde, 245–270. Madison WI: American Society of Agronomy . ERDC/CHL TR-14-11 30

  2. Online monitoring of food processes using subsurface laser scattering

    DEFF Research Database (Denmark)

    Carstensen, Jens Michael; Møller, Flemming

    Online monitoring of physical parameters during food production is not a trivial task, but promising results can often be obtained with Subsurface Laser Scattering (SLS). The first SLS instruments are on the market today, and studies are needed to asses the potential of the technology. SLS can...... monitor particle changes and gelation formation in a fast and non-invasive manner during production of most food products. SLS is correlated to classical particle sizing parameters, i.e. size, number of light scatters and refractive index, as well as sensoric parameters like mouthfeel. The background...

  3. Characterization, Modeling, Monitoring and Remediation of Radionuclides in the Subsurface

    Science.gov (United States)

    Nicholson, T. J.; Cady, R.

    2009-12-01

    NRC sponsors research to identify and assess characterization, modeling, monitoring and remediation methods used to quantify and evaluate radionuclide release and migration in the subsurface. The need for and selection of remediation methods is based on a dose assessment to determine compliance with regulatory criteria. If remediation is warranted, the choice of remediation methods is based upon site- and source-characterization data. This data is integrated in a Conceptual Site Model (CSM). The assumptions and parameterization of the CSM are tested using a program of field tests and confirmatory monitoring. In particular, the features, events and processes in the unsaturated zone where many leaks and spills originate need characterization and confirmatory monitoring. The choice of the remediation method, if warranted, is based upon the confirmed CSM and the monitoring baseline. Remediation strategies being considered are: in situ bioremediation; pump, treat, monitor and release; monitored natural attenuation. Successful remediation strategies include monitoring programs to determine their efficacy. This monitoring is coupled to performance assessment models using performance indicators (PIs). These PIs provide a measurable indication of remediation performance, and are derived from analysis of the CSM and the hydrologic, chemical and microbial functions of the chosen remediation method. Case studies illustrate these observations and provide detailed examples of CSMs and PIs.

  4. Remote Real-Time Monitoring of Subsurface Landfill Gas Migration

    Directory of Open Access Journals (Sweden)

    Alan F. Smeaton

    2011-06-01

    Full Text Available The cost of monitoring greenhouse gas emissions from landfill sites is of major concern for regulatory authorities. The current monitoring procedure is recognised as labour intensive, requiring agency inspectors to physically travel to perimeter borehole wells in rough terrain and manually measure gas concentration levels with expensive hand-held instrumentation. In this article we present a cost-effective and efficient system for remotely monitoring landfill subsurface migration of methane and carbon dioxide concentration levels. Based purely on an autonomous sensing architecture, the proposed sensing platform was capable of performing complex analytical measurements in situ and successfully communicating the data remotely to a cloud database. A web tool was developed to present the sensed data to relevant stakeholders. We report our experiences in deploying such an approach in the field over a period of approximately 16 months.

  5. Monitoring glyphosate and AMPA concentrations in wells and drains using the sorbicell passive sampler

    DEFF Research Database (Denmark)

    Vendelboe, Anders Lindblad; de Jonge, Hubert; Møldrup, Per

    2012-01-01

    Glyphosate is one of the world’s most extensively used weed control agents. Glyphosate, and its metabolite aminomethylphosphonic acid (AMPA), are suspected to be hazardous to human health and the aquatic environment. In Denmark, the extensive use has resulted in an increasing number of occurrences...... in groundwater wells and tile drains, stressing the need for extensive monitoring of this compound in the environment. Traditionally, monitoring programs are based on grab sampling which is time consuming and expensive due to the need for frequent sampling events. Using a passive sampling device, the Sorbi...

  6. Subsurface Drains on Agricultural Land in the Conterminous United States, 1992: National Resource Inventory Conservation Practice 606

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the estimated percentage of the 1-km grid cell that is covered by or subject to the agricultural conservation practice (CP606), Subsurface...

  7. Sub-Surface Oil Monitoring Cruise (GU1002, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Objectives were to evaluate ability of acoustic echosounder measurements to detect and localize a sub-surface plume of oil or related hydrocarbons released from the...

  8. Effective sensing approach for assessment and monitoring of in-situ biodegradation in a subsurface environment

    Science.gov (United States)

    Li, Dong X.

    1999-02-01

    Rapid assessment and monitoring of biological conditions in a subsurface environment is becoming more and more important as bioremediation approaches become widely used in environmental cleanup. Remediation monitoring is also more challenging for in-situ remedial approaches, such as bioventing, biosparging, or passive bioremediation, where conventional 'inlet' and 'outlet' monitoring can no longer be applied. A sensing approach using subsurface chemical sensors offers a cost- effective alternative for remediation monitoring. Additional benefits of deploying subsurface sensors include continuous and unattended measurement with minimum disturbance to the subsurface condition. In a series of field studies, an electrochemical oxygen sensor, a non-dispersive infrared (NDIR) carbon dioxide sensor, and two hydrocarbons sensors were employed for monitoring in-situ bioremediation of petroleum hydrocarbon contaminated soils. Biodegradation rates were effectively measured through an in-situ respiration measurement using subsurface oxygen and carbon dioxide sensors. The high sensitivity of the carbon dioxide sensor to small change in the concentration enables rapid respiration measurements. Subsurface hydrocarbon sensors offer a means to monitor the progress of remediation and the migration of contaminant vapors during the remediation. The chemical sensors tested are clearly cost effective for remediation monitoring. The strengths of oxygen and carbon dioxide sensors are complimentary to each other. Strengths and limitations of different hydrocarbon sensors were also noted. Balancing cost and performance of sensors is crucial for environmental remediation application.

  9. Chemical and microbiological water quality of subsurface agricultural drains during a field trial of liquid dairy manure effluent application rate and varying tillage practices, Upper Tiffin Watershed, southeastern Michigan

    Science.gov (United States)

    Haack, Sheridan Kidd; Duris, Joseph W.

    2008-01-01

    A field trial was done in the Upper Tiffin River Watershed, in southeastern Michigan, to determine the influence of liquid dairy manure effluent (LDME) management practices on the quality of agricultural subsurface-drain water. Samples from subsurface drains were analyzed for nutrients, fecal-coliform and Escherichia coli (E. coli) bacteria, antibiotics, chemicals typically detected in wastewater, and the occurrence of genes indicating the presence of shiga-toxin-producing E. coli, or of bovine-specific Bacteroidetes bacteria. Samples were collected from November 2, 2006, to March 20, 2007, from eight subsurface drains under field plots that received no LDME and no tillage (controls) or received 4,000 or 8,000 gallons per acre (gal/acre) of LDME and either no tillage or two different types of tillage. The two types of tillage tested were (1) ground-driven, rotary, subsurface cultivation and (2) rolling-tine aeration. Samples were collected before LDME application and at 4 hours, and 1, 2, 6, 7, and 14 days post-application. Nutrient concentrations were high in subsurface-drain water throughout the field-trial period and could not be attributed to the field-trial LDME application. Of the 59 drain-water samples, including those collected before LDME application and control samples for each date, 56 had concentrations greater than the U.S. Environmental Protection Agency (USEPA), Ecoregion VI recommended surface-water criterion for total phosphorus, and all samples had concentrations greater than the recommended total nitrogen criterion. Nitrate + nitrite nitrogen concentration exceeded 20 milligrams per liter for every sample and contributed most to the total nitrogen concentrations. Substantial increases in drain-water concentrations of organic and ammonia nitrogen and total phosphorus were found for all treatments, including controls, at 14 days post-application after 0.84 inch of rainfall over 2 days. E. coli concentrations exceeded the USEPA recreational

  10. Geophysical Monitoring of Two types of Subsurface Injection

    Science.gov (United States)

    Nano-scale particles of zero-valent iron (ZVI) were injected into the subsurface at the 100-D area of the DOE Hanford facility. The intent of this iron injection was to repair a gap in the existing in-situ redox manipulation barrier located at the site. A number of geophysical me...

  11. Characterization of Drain Surface Water: Environmental Profile, Degradation Level and Geo-statistic Monitoring

    Directory of Open Access Journals (Sweden)

    Muhammad Waseem Mumtaz

    2015-12-01

    Full Text Available The physico-chemical characterization of the surface water. Samples was carried out collected from nine sampling points of drain passing by the territory of Hafizabad city, Punjab, Pakistan. The water of drain is used by farmers for irrigation purposes in nearby agricultural fields. Twenty water quality parameters were evaluated in three turns and the results obtained were compared with the National Environmental Quality Standards (NEQS municipal and industrial effluents prescribed limits. The highly significant difference (p0.05 was noted for temperature, pH, electrical conductivity, hardness, calcium, sodium, chemical oxygen demand and chloride among water samples from different sampling points. Furthermore, the experimental results of different water quality parameters studied at nine sampling points of the drain were used and interpolated in ArcGIS 9.3 environment system using kriging techniques to obtain calculated values for the remaining locations of the Drain.

  12. Final Report: Baseline Selenium Monitoring of Agricultural Drains Operated by the Imperial Irrigation District in the Salton Sea Basin, California

    Science.gov (United States)

    Saiki, Michael K.; Martin, Barbara A.; May, Thomas W.

    2010-01-01

    This report summarizes comprehensive findings from a 4-year-long field investigation to document baseline environmental conditions in 29 agricultural drains and ponds operated by the Imperial Irrigation District along the southern border of the Salton Sea. Routine water-quality collections and fish community assessments were conducted on as many as 16 sampling dates at roughly quarterly intervals from July 2005 to April 2009. The water-quality measurements included total suspended solids and total (particulate plus dissolved) selenium. With one exception, fish were surveyed with baited minnow traps at quarterly intervals during the same time period. However, in July 2007, fish surveys were not conducted because we lacked permission from the California Department of Fish and Game for incidental take of desert pupfish (Cyprinodon macularius), an endangered species. During April and October 2006-08, water samples also were collected from seven intensively monitored drains (which were selected from the 29 total drains) for measurement of particulate and dissolved selenium, including inorganic and organic fractions. In addition, sediment, aquatic food chain matrices [particulate organic detritus, filamentous algae, net plankton, and midge (chironomid) larvae], and two fish species (western mosquitofish, Gambusia affinis; and sailfin molly, Poecilia latipinna) were sampled from the seven drains for measurement of total selenium concentrations. The mosquitofish and mollies were intended to serve as surrogates for pupfish, which we were not permitted to sacrifice for selenium determinations. Water quality (temperature, dissolved oxygen, pH, specific conductance, and turbidity) values were typical of surface waters in a hot, arid climate. A few drains exhibited brackish, near-anoxic conditions, especially during summer and fall when water temperatures occasionally exceeded 30 degrees Celsius. Total selenium concentrations in water were directly correlated with salinity and

  13. Identifying uncertainty of the mean of some water quality variables along water quality monitoring network of Bahr El Baqar drain

    Directory of Open Access Journals (Sweden)

    Hussein G. Karaman

    2013-10-01

    Full Text Available Assigning objectives to the environmental monitoring network is the pillar of the design to these kinds of networks. Conflicting network objectives may affect the adequacy of the design in terms of sampling frequency and the spatial distribution of the monitoring stations which in turn affect the accuracy of the data and the information extracted. The first step in resolving this problem is to identify the uncertainty inherent in the network as the result of the vagueness of the design objective. Entropy has been utilized and adopted over the past decades to identify uncertainty in similar water data sets. Therefore it is used to identify the uncertainties inherent in the water quality monitoring network of Bahr El-Baqar drain located in the Eastern Delta. Toward investigating the applicability of the Entropy methodology, comprehensive analysis at the selected drain as well as their data sets is carried out. Furthermore, the uncertainty calculated by the entropy function will be presented by the means of the geographical information system to give the decision maker a global view to these uncertainties and to open the door to other researchers to find out innovative approaches to lower these uncertainties reaching optimal monitoring network in terms of the spatial distribution of the monitoring stations.

  14. Evaluation of Deep Subsurface Resistivity Imaging for Hydrofracture Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Hibbs, Andrew [GroundMetrics, Inc., San Diego, CA (United States); Wilt, Michael [GroundMetrics, Inc., San Diego, CA (United States)

    2016-09-28

    This report describes the results of the first of its kind monitoring of a hydrofracture operation with electromagnetic measurements. The researchers teamed with oil and gas producer Encana Corporation to design and execute a borehole to surface monitoring of three fracture stages at a well pad in central Colorado. The field project consisted of an equipment upgrade, a survey design and modeling phase, several weeks of data collection, and data processing and interpretation. Existing Depth to Surface Resistivity (DSR) instrumentation was upgraded to allow for continuous high precision recording from downhole sources. The full system can now collect data continuously for up to 72 hours, which is sufficient to measure data for 10 frac stages. Next we used numerical modeling and frac treatment data supplied by Encana to design a field survey to detect EM signal from induced fractures. Prior to modeling we developed a novel technique for using well casing as an antenna for a downhole source. Modeling shows that 1) a measurable response for an induced fracture could be achieved if the facture fluid was of high salinity 2) an optimum fracture response is created when the primary source field is parallel to the well casing but perpendicular to the fracture direction. In mid-July, 2014 we installed an array of more than 100 surface sensors, distributed above the treatment wells and extending for approximately 1 km north and 750 m eastward. We applied a 0.6 Hz square wave signal to a downhole current electrode located in a horizontal well 200 m offset from the treatment well with a return electrode on the surface. The data were transmitted to a recording trailer via Wi-Fi where we monitored receiver and transmitter channels continuously in a 72-hour period which covered 7 frac stages, three of which were high salinity. Although the background conditions were very noisy we were able to extract a clear signal from the high salinity stages. Initial data interpretation attempts

  15. Drain for gain: making water management worth its salt: Subsurface drainage practices in irrigated agriculture in semi-arid and arid regions

    NARCIS (Netherlands)

    Ritzema, H.P.

    2009-01-01

    In this dissertation, the role of subsurface drainage to reduce waterlogging and salinity problems in irrigated agriculture in arid and semi-arid regions has been analysed and recommendations on how to improve subsurface drainage practices have been formulated. The study contains a synthesis based o

  16. Subsurface Monitoring of CO2 Sequestration - A Review and Look Forward

    Science.gov (United States)

    Daley, T. M.

    2012-12-01

    The injection of CO2 into subsurface formations is at least 50 years old with large-scale utilization of CO2 for enhanced oil recovery (CO2-EOR) beginning in the 1970s. Early monitoring efforts had limited measurements in available boreholes. With growing interest in CO2 sequestration beginning in the 1990's, along with growth in geophysical reservoir monitoring, small to mid-size sequestration monitoring projects began to appear. The overall goals of a subsurface monitoring plan are to provide measurement of CO2 induced changes in subsurface properties at a range of spatial and temporal scales. The range of spatial scales allows tracking of the location and saturation of the plume with varying detail, while finer temporal sampling (up to continuous) allows better understanding of dynamic processes (e.g. multi-phase flow) and constraining of reservoir models. Early monitoring of small scale pilots associated with CO2-EOR (e.g., the McElroy field and the Lost Hills field), developed many of the methodologies including tomographic imaging and multi-physics measurements. Large (reservoir) scale sequestration monitoring began with the Sleipner and Weyburn projects. Typically, large scale monitoring, such as 4D surface seismic, has limited temporal sampling due to costs. Smaller scale pilots can allow more frequent measurements as either individual time-lapse 'snapshots' or as continuous monitoring. Pilot monitoring examples include the Frio, Nagaoka and Otway pilots using repeated well logging, crosswell imaging, vertical seismic profiles and CASSM (continuous active-source seismic monitoring). For saline reservoir sequestration projects, there is typically integration of characterization and monitoring, since the sites are not pre-characterized resource developments (oil or gas), which reinforces the need for multi-scale measurements. As we move beyond pilot sites, we need to quantify CO2 plume and reservoir properties (e.g. pressure) over large scales, while still

  17. A cost-effective and field-ready potentiostat that poises subsurface electrodes to monitor bacterial respiration.

    Science.gov (United States)

    Friedman, Elliot S; Rosenbaum, Miriam A; Lee, Alexander W; Lipson, David A; Land, Bruce R; Angenent, Largus T

    2012-02-15

    Here, we present the proof-of-concept for a subsurface bioelectrochemical system (BES)-based biosensor capable of monitoring microbial respiration that occurs through exocellular electron transfer. This system includes our open-source design of a three-channel microcontroller-unit (MCU)-based potentiostat that is capable of chronoamperometry, which laboratory tests showed to be accurate within 0.95 ± 0.58% (95% Confidence Limit) of a commercial potentiostat. The potentiostat design is freely available online: http://angenent.bee.cornell.edu/potentiostat.html. This robust and field-ready potentiostat, which can withstand temperatures of -30°C, can be manufactured at relatively low cost ($600), thus, allowing for en-masse deployment at field sites. The MCU-based potentiostat was integrated with electrodes and a solar panel-based power system, and deployed as a biosensor to monitor microbial respiration in drained thaw lake basins outside Barrow, AK. At three different depths, the working electrode of a microbial three-electrode system (M3C) was maintained at potentials corresponding to the microbial reduction of iron(III) compounds and humic acids. Thereby, the working electrode mimics these compounds and is used by certain microbes as an electron acceptor. The sensors revealed daily cycles in microbial respiration. In the medium- and deep-depth electrodes the onset of these cycles followed a considerable increase in overall activity that corresponded to those soils reaching temperatures conducive to microbial activity as the summer thaw progressed. The BES biosensor is a valuable tool for studying microbial activity in situ in remote environments, and the cost-efficient design of the potentiostat allows for wide-scale use in remote areas. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Monitoring tylosin and sulfamethazine in a tile-drained agricultural watershed using polar organic chemical integrative sampler (POCIS).

    Science.gov (United States)

    Washington, Maurice T; Moorman, Thomas B; Soupir, Michelle L; Shelley, Mack; Morrow, Amy J

    2017-08-27

    This study evaluated the influence of temporal variation on the occurrence, fate, and transport of tylosin (TYL) and sulfamethazine (SMZ); antibiotics commonly used in swine production. Atrazine (ATZ) was used as a reference analyte to indicate the agricultural origin of the antibiotics. We also assessed the impact of season and hydrology on antibiotic concentrations. A reconnaissance study of the South Fork watershed of the Iowa River (SFIR), was conducted from 2013 to 2015. Tile drain effluent and surface water were monitored using polar organic integrative sampler (POCIS) technology. Approximately 169 animal feeding operations (AFOs) exist in SFIR, with 153 of them being swine facilities. All analytes were detected, and detection frequencies ranged from 69 to 100% showing the persistence in the watershed. Antibiotics were detected at a higher frequency using POCIS compared to grab samples. We observed statistically significant seasonal trends for SMZ and ATZ concentrations during growing and harvest seasons. Time weighted average (TWA) concentrations quantified from the POCIS were 1.87ngL(-1) (SMZ), 0.30ngL(-1) (TYL), and 754.2ngL(-1) (ATZ) in the watershed. SMZ and TYL concentrations were lower than the minimum inhibitory concentrations (MIC) for E. coli. All analytes were detected in tile drain effluent, confirming tile drainage as a pathway for antibiotic transport. Our results identify the episodic occurrence of antibiotics, and highlights the importance identifying seasonal fate and occurrence of these analytes. Published by Elsevier B.V.

  19. Subsurface Contaminant Focus Area: Monitored Natural Attenuation (MNA)--Programmatic, Technical, and Regulatory Issues

    Energy Technology Data Exchange (ETDEWEB)

    Krupka, Kenneth M.; Martin, Wayne J.

    2001-07-23

    Natural attenuation processes are commonly used for remediation of contaminated sites. A variety of natural processes occur without human intervention at all sites to varying rates and degrees of effectiveness to attenuate (decrease) the mass, toxicity, mobility, volume, or concentration of organic and inorganic contaminants in soil, groundwater, and surface water systems. The objective of this review is to identify potential technical investments to be incorporated in the Subsurface Contaminant Focus Area Strategic Plan for monitored natural attenuation. When implemented, the technical investments will help evaluate and implement monitored natural attenuation as a remediation option at DOE sites. The outcome of this review is a set of conclusions and general recommendations regarding research needs, programmatic guidance, and stakeholder issues pertaining to monitored natural attenuation for the DOE complex.

  20. 2012 Groundwater Monitoring Report Central Nevada Test Area, Subsurface Corrective Action Unit 443

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-04-01

    The Central Nevada Test Area was the site of a 0.2- to 1-megaton underground nuclear test in 1968. The surface of the site has been closed, but the subsurface is still in the corrective action process. The corrective action alternative selected for the site was monitoring with institutional controls. Annual sampling and hydraulic head monitoring are conducted as part of the subsurface corrective action strategy. The site is currently in the fourth year of the 5-year proof-of-concept period that is intended to validate the compliance boundary. Analytical results from the 2012 monitoring are consistent with those of previous years. Tritium remains at levels below the laboratory minimum detectable concentration in all wells in the monitoring network. Samples collected from reentry well UC-1-P-2SR, which is not in the monitoring network but was sampled as part of supplemental activities conducted during the 2012 monitoring, indicate concentrations of tritium that are consistent with previous sampling results. This well was drilled into the chimney shortly after the detonation, and water levels continue to rise, demonstrating the very low permeability of the volcanic rocks. Water level data from new wells MV-4 and MV-5 and recompleted well HTH-1RC indicate that hydraulic heads are still recovering from installation and testing. Data from wells MV-4 and MV-5 also indicate that head levels have not yet recovered from the 2011 sampling event during which several thousand gallons of water were purged. It has been recommended that a low-flow sampling method be adopted for these wells to allow head levels to recover to steady-state conditions. Despite the lack of steady-state groundwater conditions, hydraulic head data collected from alluvial wells installed in 2009 continue to support the conceptual model that the southeast-bounding graben fault acts as a barrier to groundwater flow at the site.

  1. A Cloud Based Framework For Monitoring And Predicting Subsurface System Behaviour

    Science.gov (United States)

    Versteeg, R. J.; Rodzianko, A.; Johnson, D. V.; Soltanian, M. R.; Dwivedi, D.; Dafflon, B.; Tran, A. P.; Versteeg, O. J.

    2015-12-01

    Subsurface system behavior is driven and controlled by the interplay of physical, chemical, and biological processes which occur at multiple temporal and spatial scales. Capabilities to monitor, understand and predict this behavior in an effective and timely manner are needed for both scientific purposes and for effective subsurface system management. Such capabilities require three elements: Models, Data and an enabling cyberinfrastructure, which allow users to use these models and data in an effective manner. Under a DOE Office of Science funded STTR award Subsurface Insights and LBNL have designed and implemented a cloud based predictive assimilation framework (PAF) which automatically ingests, controls quality and stores heterogeneous physical and chemical subsurface data and processes these data using different inversion and modeling codes to provide information on the current state and evolution of subsurface systems. PAF is implemented as a modular cloud based software application with five components: (1) data acquisition, (2) data management, (3) data assimilation and processing, (4) visualization and result delivery and (5) orchestration. Serverside PAF uses ZF2 (a PHP web application framework) and Python and both open source (ODM2) and in house developed data models. Clientside PAF uses CSS and JS to allow for interactive data visualization and analysis. Client side modularity (which allows for a responsive interface) of the system is achieved by implementing each core capability of PAF (such as data visualization, user configuration and control, electrical geophysical monitoring and email/SMS alerts on data streams) as a SPA (Single Page Application). One of the recent enhancements is the full integration of a number of flow and mass transport and parameter estimation codes (e.g., MODFLOW, MT3DMS, PHT3D, TOUGH, PFLOTRAN) in this framework. This integration allows for autonomous and user controlled modeling of hydrological and geochemical processes. In

  2. The migration and monitoring of viscous NAPLs (coal tar and creosote) in the subsurface

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, R. [Intera Engineering Ltd., Heidelberg, ON (Canada)

    2009-07-01

    The high viscosity of nonaqueous phase liquids (NAPLs) such as creosote and coal tar complicates efforts to monitor their mobility at contaminated sites. Viscous NAPLs can remain mobile for many decades after their application as a wood preservative, or after the closure of the facilities in which they were generated. NAPL-wet pathways in the subsurface can also lead to errors in residual saturation measurements. This abstract discussed issues related to creeping flow and the low seepage rates that are not accounted for using traditional measuring methods. Examples of creeping flow and the monitoring techniques used to assess it were presented for sites in British Columbia and Florida. The drainage of viscous NAPLs during water table declines was also considered, and a case study of a coal tar-removal procedures using polymer surfactant flooding was presented.

  3. The Development of a Sub-Surface Monitoring System for Organic Contamination in Soils and Groundwater

    Directory of Open Access Journals (Sweden)

    Sharon L. Huntley

    2002-01-01

    Full Text Available A major problem when dealing with environmental contamination is the early detection and subsequent surveillance of the contamination. This paper describes the potential of sub-surface sensor technology for the early detection of organic contaminants in contaminated soils, sediments, and landfill sites. Rugged, low-power hydrocarbon sensors have been developed, along with a data-logging system, for the early detection of phase hydrocarbons in soil. Through laboratory-based evaluation, the ability of this system to monitor organic contamination in water-based systems is being evaluated. When used in conjunction with specific immunoassays, this can provide a sensitive and low-cost solution for long-term monitoring and analysis, applicable to a wide range of field applications.

  4. Monitoring glyphosate and AMPA concentrations in wells and drains using the sorbicell passive sampler

    DEFF Research Database (Denmark)

    Vendelboe, Anders Lindblad; de Jonge, Hubert; Møldrup, Per

    2012-01-01

    Glyphosate is one of the world’s most extensively used weed control agents. Glyphosate, and its metabolite aminomethylphosphonic acid (AMPA), are suspected to be hazardous to human health and the aquatic environment. In Denmark, the extensive use has resulted in an increasing number of occurrences......Cell, will decrease the workload and number of samples freeing up funds for larger monitoring programs. When installed in a well the SorbiCell will continuously sample the water giving either a flux-weighed or time-weighted average measurement of the glyphosate/AMPA concentration throughout the sampling period....... It may therefore be possible to measure lower concentrations as the glyphosate/AMPA sorbed in the SorbiCell is an accumulated measurement. Also, glyphosate/AMPA associated with sudden flush events will be detected by the SorbiCells, while such events may pass between two consecutive grab samples...

  5. Opportunities and challenges for the application of SP measurements to monitor subsurface flow (Invited)

    Science.gov (United States)

    Jackson, M.; Vinogradov, J.; MacAllister, D.; Butler, A. P.; Leinov, E.; Zhang, J.

    2013-12-01

    Measurements of self-potential (SP) have been proposed or applied to monitor flow in the shallow subsurface in numerous settings, including volcanoes, earthquake zones, geothermal fields and hydrocarbon reservoirs, to detect leaks from dams, tanks and embankments, and to characterize groundwater flow and hydraulic properties. To interpret the measurements, it is generally assumed that the SP is dominated by the streaming potential, arising from the drag of excess electrical charge in the diffuse part of the electrical double layer at the mineral-fluid interfaces. The constitutive equation relating electrical current density j to the driving forces ▽V and ▽P is then j = -σ▽V -σC▽P=-σ▽V + Qv (1) where V is the streaming potential, P is the water pressure, σ is the saturated rock conductivity, v is the Darcy velocity, C is the streaming potential coupling coefficient, and Q is the excess charge transported by the flow. Equation (1) shows that there is a close relationship between flow properties of interest, such as the pressure gradient or Darcy velocity, and the streaming potential component of the SP. Hence SP measurements are an attractive method to monitor subsurface flow. However, the problem with interpreting the measurements is that both C and Q can vary over orders of magnitude, in response to variations in pore-water salinity, temperature, rock texture, and the presence of NAPLs in the pore-space. Moreover, additional current sources may be present if there are gradients in concentration or temperature, arising from differential rates of ion migration down gradient (diffusion potentials), and because of charge exclusion from the pore-space (exclusion potentials). In general, these additional current sources are neglected. This talk suggests a potential new opportunity for the application of SP measurements to monitor subsurface flow, in which the signal of interest arises from salinity rather than pressure gradients. Saline intrusion into

  6. Year 3 Summary Report: Baseline Selenium Monitoring of Agricultural Drains Operated by the Imperial Irrigation District in the Salton Sea Basin

    Science.gov (United States)

    Saiki, Michael K.; Martin, Barbara A.; May, Thomas W.

    2008-01-01

    This report summarizes findings from the third year of a 4-year-long field investigation to document selected baseline environmental conditions in 29 agricultural drains and ponds operated by the Imperial Irrigation District along the southern border of the Salton Sea. Routine water quality and fish species were measured at roughly quarterly intervals from April 2007 to January 2008. The water quality measurements included total suspended solids and total (particulate plus dissolved) selenium. In addition, during April and October 2007, water samples were collected from seven intensively monitored drains for measurement of particulate and dissolved selenium, including inorganic and organic fractions. In addition, sediment, aquatic food chain matrices (particulate organic detritus, filamentous algae, net plankton, and midge [chironomid] larvae), and two fish species (western mosquitofish, Gambusia affinis; and sailfin molly, Poecilia latipinna) were sampled from the seven drains for measurement of total selenium concentrations. The mosquitofish and mollies were intended to serve as surrogates for desert pupfish (Cyprinodon macularius), an endangered species that we were not permitted to take for selenium determinations. Water quality values were typical of surface waters in a hot desert climate. A few drains exhibited brackish, near anoxic conditions especially during the summer and fall when water temperatures occasionally exceeded 30 degrees C. In general, total selenium concentrations in water varied directly with conductivity and inversely with pH. Although desert pupfish were found in several drains, sometimes in relatively high numbers, the fish faunas of most drains and ponds were dominated by nonnative species, especially red shiner (Cyprinella lutrensis), mosquitofish, and mollies. Dissolved selenium in water samples from the seven intensively monitored drains ranged from 0.700 to 24.1 ug/L, with selenate as the major constituent in all samples. Selenium

  7. An Electrode-based approach for monitoring in situ microbial activity during subsurface bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Williams, K.H.; Nevin, K.P.; Franks, A.; Englert, A.; Long, P.E.; Lovley, D.R.

    2009-11-15

    Current production by microorganisms colonizing subsurface electrodes and its relationship to substrate availability and microbial activity was evaluated in an aquifer undergoing bioremediation. Borehole graphite anodes were installed downgradient from a region of acetate injection designed to stimulate bioreduction of U(VI); cathodes consisted of graphite electrodes embedded at the ground surface. Significant increases in current density ({<=}50 mA/m{sup 2}) tracked delivery of acetate to the electrodes, dropping rapidly when acetate inputs were discontinued. An upgradient control electrode not exposed to acetate produced low, steady currents ({<=}0.2 mA/m{sup 2}). Elevated current was strongly correlated with uranium removal but minimal correlation existed with elevated Fe(II). Confocal laser scanning microscopy of electrodes revealed firmly attached biofilms, and analysis of 16S rRNA gene sequences indicated the electrode surfaces were dominated (67-80%) by Geobacter species. This is the first demonstration that electrodes can produce readily detectable currents despite long-range (6 m) separation of anode and cathode, and these results suggest that oxidation of acetate coupled to electron transfer to electrodes by Geobacter species was the primary source of current. Thus it is expected that current production may serve as an effective proxy for monitoring in situ microbial activity in a variety of subsurface anoxic environments.

  8. 2015 Groundwater Monitoring Report Project Shoal Area: Subsurface Correction Unit 447

    Energy Technology Data Exchange (ETDEWEB)

    Findlay, Rick [Navarro Research and Engineering, Oak Ridge, TN (United States)

    2016-04-01

    The Project Shoal Area in Nevada was the site of a 12-kiloton-yield underground nuclear test in 1963. Although the surface of the site has been remediated, investigation of groundwater contamination resulting from the test is still in the corrective action process. Annual sampling and hydraulic head monitoring are conducted at the site as part of the subsurface corrective action strategy. The corrective action strategy is currently focused on revising the site conceptual model (SCM) and evaluating the adequacy of the monitoring well network. Some aspects of the SCM are known; however, two major concerns are the uncertainty in the groundwater flow direction and the cause of rising water levels in site wells west of the shear zone. Water levels have been rising in the site wells west of the shear zone since the first hydrologic characterization wells were installed in 1996. Although water levels in wells west of the shear zone continue to rise, the rate of increase is less than in previous years. The SCM will be revised, and an evaluation of the groundwater monitoring network will be conducted when water levels at the site have stabilized to the agreement of both the U.S. Department of Energy Office of Legacy Management and the Nevada Division of Environmental Protection.

  9. 2012 Groundwater Monitoring Report Project Shoal Area Subsurface Corrective Action Unit 447

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-03-01

    The Project Shoal Area (PSA) in Nevada was the site of a 12-kiloton underground nuclear test in 1963. Although the surface of the site has been remediated, investigation of groundwater contamination resulting from the test is still in the corrective action process. Annual sampling and hydraulic head monitoring are conducted at the site as part of the subsurface corrective action strategy. Analytical results from the 2012 monitoring are consistent with those of the previous years, with tritium detected only in well HC-4. The tritium concentration in groundwater from well HC-4 remains far below the U.S. Environmental Protection Agency-established maximum contaminant level of 20,000 picocuries per liter. Concentrations of total uranium and gross alpha were also detected during this monitoring period, with uranium accounting for nearly all the gross alpha activity. The total uranium concentrations obtained from this monitoring period were consistent with previous results and reflect a slightly elevated natural uranium concentration, consistent with the mineralized geologic terrain. Isotopic ratios of uranium also indicate a natural source of uranium in groundwater, as opposed to a nuclear-test-related source. Water level trends obtained from the 2012 water level data were consistent with those of previous years. The corrective action strategy for the PSA is currently focused on revising the site conceptual model (SCM) and evaluating the adequacy of the current monitoring well network. Some aspects of the SCM are known; however, two major concerns are the uncertainty in the groundwater flow direction and the cause of rising water levels in site wells west of the shear zone. Water levels have been rising in the site wells west of the shear zone since the first hydrologic characterization wells were installed in 1996. While water levels in wells west of the shear zone continue to rise, the rate of increase is less than in previous years. The SCM will be revised, and an

  10. Microbial monitoring during CO2 storage in deep subsurface saline aquifers in Ketzin, Germany

    Science.gov (United States)

    Wuerdemann, H.; Wandrey, M.; Fischer, S.; Zemke, K.; Let, D.; Zettlitzer, M.; Morozova, D.

    2010-12-01

    Investigations on subsurface saline aquifers have shown an active biosphere composed of diverse groups of microorganisms in the subsurface. Since microorganisms represent very effective geochemical catalysts, they may influence the process of CO2 storage significantly. In the frames of the EU Project CO2SINK a field laboratory to study CO2 storage into saline aquifer was operated. Our studies aim at monitoring of biological and biogeochemical processes and their impact on the technical effectiveness of CO2 storage technique. The interactions between microorganisms and the minerals of both the reservoir and the cap rock may cause changes to the structure and chemical composition of the rock formations, which may influence the reservoir permeability locally. In addition, precipitation and corrosion may be induced around the well affecting the casing and the casing cement. Therefore, analyses of the composition of microbial communities and its changes should contribute to an evaluation of the effectiveness and reliability of the long-term CO2 storage technique. In order to investigate processes in the deep biosphere caused by the injection of supercritical CO2, genetic fingerprinting (PCR SSCP Single-Strand-Conformation Polymorphism) and FISH (Fluorescence in situ Hybridisation) were used for identification and quantification of microorganisms. Although saline aquifers could be characterised as an extreme habitat for microorganisms due to reduced conditions, high pressure and salinity, a high number of diverse groups of microorganisms were detected with downhole sampling in the injection and observation wells at a depth of about 650m depth. Of great importance was the identification of the sulphate reducing bacteria, which are known to be involved in corrosion processes. Microbial monitoring during CO2 injection has shown that both quantity and diversity of microbial communities were strongly influenced by the CO2 injection. In addition, the indigenous microbial

  11. Monitoring radionuclides in subsurface drinking water sources near unconventional drilling operations: a pilot study.

    Science.gov (United States)

    Nelson, Andrew W; Knight, Andrew W; Eitrheim, Eric S; Schultz, Michael K

    2015-04-01

    Unconventional drilling (the combination of hydraulic fracturing and horizontal drilling) to extract oil and natural gas is expanding rapidly around the world. The rate of expansion challenges scientists and regulators to assess the risks of the new technologies on drinking water resources. One concern is the potential for subsurface drinking water resource contamination by naturally occurring radioactive materials co-extracted during unconventional drilling activities. Given the rate of expansion, opportunities to test drinking water resources in the pre- and post-fracturing setting are rare. This pilot study investigated the levels of natural uranium, lead-210, and polonium-210 in private drinking wells within 2000 m of a large-volume hydraulic fracturing operation--before and approximately one-year following the fracturing activities. Observed radionuclide concentrations in well waters tested did not exceed maximum contaminant levels recommended by state and federal agencies. No statistically-significant differences in radionuclide concentrations were observed in well-water samples collected before and after the hydraulic fracturing activities. Expanded monitoring of private drinking wells before and after hydraulic fracturing activities is needed to develop understanding of the potential for drinking water resource contamination from unconventional drilling and gas extraction activities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Geoelectrical monitoring of simulated subsurface leakage to support high-hazard nuclear decommissioning at the Sellafield Site, UK

    Energy Technology Data Exchange (ETDEWEB)

    Kuras, Oliver, E-mail: oku@bgs.ac.uk [British Geological Survey, Keyworth, Nottingham NG12 5GG (United Kingdom); Wilkinson, Paul B.; Meldrum, Philip I.; Oxby, Lucy S. [British Geological Survey, Keyworth, Nottingham NG12 5GG (United Kingdom); Uhlemann, Sebastian [British Geological Survey, Keyworth, Nottingham NG12 5GG (United Kingdom); ETH-Swiss Federal Institute of Technology, Institute of Geophysics, Sonneggstr. 5, 8092 Zurich (Switzerland); Chambers, Jonathan E. [British Geological Survey, Keyworth, Nottingham NG12 5GG (United Kingdom); Binley, Andrew [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Graham, James [National Nuclear Laboratory, Central Laboratory, Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom); Smith, Nicholas T. [National Nuclear Laboratory, Central Laboratory, Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom); School of Earth, Atmospheric and Environmental Sciences, Williamson Building, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Atherton, Nick [Sellafield Ltd, Albion Square, Swingpump Lane, Whitehaven CA28 7NE (United Kingdom)

    2016-10-01

    A full-scale field experiment applying 4D (3D time-lapse) cross-borehole Electrical Resistivity Tomography (ERT) to the monitoring of simulated subsurface leakage was undertaken at a legacy nuclear waste silo at the Sellafield Site, UK. The experiment constituted the first application of geoelectrical monitoring in support of decommissioning work at a UK nuclear licensed site. Images of resistivity changes occurring since a baseline date prior to the simulated leaks revealed likely preferential pathways of silo liquor simulant flow in the vadose zone and upper groundwater system. Geophysical evidence was found to be compatible with historic contamination detected in permeable facies in sediment cores retrieved from the ERT boreholes. Results indicate that laterally discontinuous till units forming localized hydraulic barriers substantially affect flow patterns and contaminant transport in the shallow subsurface at Sellafield. We conclude that only geophysical imaging of the kind presented here has the potential to provide the detailed spatial and temporal information at the (sub-)meter scale needed to reduce the uncertainty in models of subsurface processes at nuclear sites. - Graphical abstract: 3D fractional resistivity change (resistivity change Δρ divided by baseline resistivity ρ{sub 0}) image showing results of Stage 1 silo liquor simulant injection. The black line delineates the preferential flow path; green cylinders show regions of historic contamination found in sediment cores from ERT boreholes. - Highlights: • 4D geoelectrical monitoring at Sellafield detected and tracked simulated silo leaks. • ERT revealed likely pathways of silo liquor simulant flow in the subsurface. • The method can reduce uncertainty in subsurface process models at nuclear sites. • Has been applied in this form at a UK nuclear licensed site for the first time • Study demonstrates value of 4D geophysics for nuclear decommissioning.

  13. Using NMR, SIP, and MS measurements for monitoring subsurface biogeochemical reactions at the Rifle IFRC site

    Science.gov (United States)

    Rosier, C. L.; Keating, K.; Williams, K. H.; Robbins, M.; Ntarlagiannis, D.; Grunewald, E.; Walsh, D. O.

    2013-12-01

    The Rifle Integrated Field Research Challenge (IFRC) site is located on a former uranium ore-processing facility in Rifle, Colorado (USA). Although removal of tailings and contaminated surface materials was completed in 1996, residual uranium contamination of groundwater and subsurface sediments remains. Since 2002, research at the site has primarily focused on quantifying uranium mobility associated with stimulated and natural biogeochemical processes. Uranium mobility at the Rifle IFRC site is typically quantified through direct sampling of groundwater; however, direct sampling does not provide information about the solid phase material outside of the borehole and continuous measurements are not always possible due to multiple constraints. Geophysical methods have been suggested as a minimally invasive alternative approach for long term monitoring of biogeochemical reactions associated with uranium remediation. In this study, nuclear magnetic resonance (NMR), spectral induced polarization (SIP), and magnetic susceptibility (MS) are considered as potential geophysical methods for monitoring the biogeochemical reactions occurring at the Rifle IFRC site. Additionally, a pilot field study using an NMR borehole-logging tool was carried out at the Rifle IFRC site. These methods are sensitive to changes in the chemical and physical subsurface properties that occur as a result of bioremediation efforts; specifically, changes in the redox state and chemical form of iron, production of iron sulfide minerals, production of the magnetic mineral magnetite, and associated changes in the pore geometry. Laboratory experiments consisted of monitoring changes in the NMR, SIP and MS response of an acetate-amended columns packed with sediments from the Rifle IFRC site over the course of two months. The MS values remained relatively stable throughout the course of the experiment suggesting negligible production of magnetic phases (e.g. magnetite, pyrrhotite) as a result of enhanced

  14. Research for the Effect of Shallow-Tight Type Subsurface Drain Pipes on Improving Soda Saline-alkaline Land%浅密式暗管排盐技术改良苏打盐碱地效应研究

    Institute of Scientific and Technical Information of China (English)

    王洪义; 王智慧; 杨凤军; 纪鹏; 靳亚忠

    2013-01-01

    为探索暗管排盐技术在苏打盐碱地治理中的适用性,选择大庆地区的苏打盐碱地进行田间试验,研究排盐暗管不同间距(5mm,10 m,15 m)与埋深(0.8mm,1 m,1.2 m)下的盐碱地土壤脱盐效果.结果表明:经3次灌溉淋洗,发现埋设暗管能显著降低耕作层土壤含盐量,暗管埋设间距、埋深越小,平均排水效率越高,排水矿化度越大,土壤脱盐效率越高,改土效果越好.间距5 m、埋深0.8m的处理经淋洗后平均排水效率为2.08%,较其他处理至少提高了13.66%;土壤含盐量为0.16%,较其他处理至少降低了23.81%.由此建议大庆地区苏打盐碱土降渍脱盐的地下暗管工程最佳布设参数为间距5 m、埋深0.8m,既可以有效排除土壤中盐分,又可以确保耕作层土壤脱盐均匀.%To study the practice of subsurface drain pipe for improving soda saline-alkaline land,A soda salinealkaline land in Daqing was selected to carry out field experiment and investigate the leaching desalination of different drain pipe spacing (5,10,15 m) and burial depth (0.8,1.0,1.2 m).The result show that with use of three irrigation leaching and buried drain pipes,the plough layer soil salinity is significantly reduced;furthermore,the smaller the spacing and depth of covered pipe are,the higher the efficiency of the average drainage is; and the greater drainage salinity and the higher the efficiency of the soil desalination are,the better the soil improvement is.Under condition of 5 m spacing and 0.8 m depth after processing with leaching drainage,the average efficiency is 2.08%,increases by 13.66%; the soil salinity is 0.16%,decreases by 23.81%.The best laid spacing parameter of the soda saline-alkaline land down stains desalination is 5 m and the depth of 0.8 m,which can not only effectively exclude soil salinity,but also to ensure the uniformity of the plow layer soil desalination.

  15. Electrical signatures of ethanol-liquid mixtures: implications for monitoring biofuels migration in the subsurface

    Science.gov (United States)

    Personna, Yves Robert; Slater, Lee; Ntarlagiannis, Dimitrios; Werkema, Dale; Szabo, Zoltan

    2013-01-01

    Ethanol (EtOH), an emerging contaminant with potential direct and indirect environmental effects, poses threats to water supplies when spilled in large volumes. A series of experiments was directed at understanding the electrical geophysical signatures arising from groundwater contamination by ethanol. Conductivity measurements were performed at the laboratory scale on EtOH–water mixtures (0 to 0.97 v/v EtOH) and EtOH–salt solution mixtures (0 to 0.99 v/v EtOH) with and without a sand matrix using a conductivity probe and a four-electrode electrical measurement over the low frequency range (1–1000 Hz). A Lichtenecker–Rother (L–R) type mixing model was used to simulate electrical conductivity as a function of EtOH concentration in the mixture. For all three experimental treatments increasing EtOH concentration resulted in a decrease in measured conductivity magnitude (|σ|). The applied L–R model fitted the experimental data at concentration ≤ 0.4 v/v EtOH, presumably due to predominant and symmetric intermolecular (EtOH–water) interaction in the mixture. The deviation of the experimental |σ| data from the model prediction at higher EtOH concentrations may be associated with hydrophobic effects of EtOH–EtOH interactions in the mixture. The |σ| data presumably reflected changes in relative strength of the three types of interactions (water–water, EtOH–water, and EtOH–EtOH) occurring simultaneously in EtOH–water mixtures as the ratio of EtOH to water changed. No evidence of measurable polarization effects at the EtOH–water and EtOH–water–mineral interfaces over the investigated frequency range was found. Our results indicate the potential for using electrical measurements to characterize and monitor EtOH spills in the subsurface.

  16. Big Data Architectures for Operationalized Seismic and Subsurface Monitoring and Decision Support Workflows

    Science.gov (United States)

    Irving, D. H.; Rasheed, M.; Hillman, C.; O'Doherty, N.

    2012-12-01

    Oilfield management is moving to a more operational footing with near-realtime seismic and sensor monitoring governing drilling, fluid injection and hydrocarbon extraction workflows within safety, productivity and profitability constraints. To date, the geoscientific analytical architectures employed are configured for large volumes of data, computational power or analytical latency and compromises in system design must be made to achieve all three aspects. These challenges are encapsulated by the phrase 'Big Data' which has been employed for over a decade in the IT industry to describe the challenges presented by data sets that are too large, volatile and diverse for existing computational architectures and paradigms. We present a data-centric architecture developed to support a geoscientific and geotechnical workflow whereby: ●scientific insight is continuously applied to fresh data ●insights and derived information are incorporated into engineering and operational decisions ●data governance and provenance are routine within a broader data management framework Strategic decision support systems in large infrastructure projects such as oilfields are typically relational data environments; data modelling is pervasive across analytical functions. However, subsurface data and models are typically non-relational (i.e. file-based) in the form of large volumes of seismic imaging data or rapid streams of sensor feeds and are analysed and interpreted using niche applications. The key architectural challenge is to move data and insight from a non-relational to a relational, or structured, data environment for faster and more integrated analytics. We describe how a blend of MapReduce and relational database technologies can be applied in geoscientific decision support, and the strengths and weaknesses of each in such an analytical ecosystem. In addition we discuss hybrid technologies that use aspects of both and translational technologies for moving data and analytics

  17. Geoelectrical monitoring of simulated subsurface leakage to support high-hazard nuclear decommissioning at the Sellafield Site, UK.

    Science.gov (United States)

    Kuras, Oliver; Wilkinson, Paul B; Meldrum, Philip I; Oxby, Lucy S; Uhlemann, Sebastian; Chambers, Jonathan E; Binley, Andrew; Graham, James; Smith, Nicholas T; Atherton, Nick

    2016-10-01

    A full-scale field experiment applying 4D (3D time-lapse) cross-borehole Electrical Resistivity Tomography (ERT) to the monitoring of simulated subsurface leakage was undertaken at a legacy nuclear waste silo at the Sellafield Site, UK. The experiment constituted the first application of geoelectrical monitoring in support of decommissioning work at a UK nuclear licensed site. Images of resistivity changes occurring since a baseline date prior to the simulated leaks revealed likely preferential pathways of silo liquor simulant flow in the vadose zone and upper groundwater system. Geophysical evidence was found to be compatible with historic contamination detected in permeable facies in sediment cores retrieved from the ERT boreholes. Results indicate that laterally discontinuous till units forming localized hydraulic barriers substantially affect flow patterns and contaminant transport in the shallow subsurface at Sellafield. We conclude that only geophysical imaging of the kind presented here has the potential to provide the detailed spatial and temporal information at the (sub-)meter scale needed to reduce the uncertainty in models of subsurface processes at nuclear sites.

  18. Differential Muon Tomography to Continuously Monitor Changes in the Composition of Subsurface Fluids

    Science.gov (United States)

    Coleman, Max; Kudryavtsev, Vitaly A.; Spooner, Neil J.; Fung, Cora; Gluyas, John

    2013-01-01

    Muon tomography has been used to seek hidden chambers in Egyptian pyramids and image subsurface features in volcanoes. It seemed likely that it could be used to image injected, supercritical carbon dioxide as it is emplaced in porous geological structures being used for carbon sequestration, and also to check on subsequent leakage. It should work equally well in any other application where there are two fluids of different densities, such as water and oil, or carbon dioxide and heavy oil in oil reservoirs. Continuous monitoring of movement of oil and/or flood fluid during enhanced oil recovery activities for managing injection is important for economic reasons. Checking on leakage for geological carbon storage is essential both for safety and for economic purposes. Current technology (for example, repeat 3D seismic surveys) is expensive and episodic. Muons are generated by high- energy cosmic rays resulting from supernova explosions, and interact with gas molecules in the atmosphere. This innovation has produced a theoretical model of muon attenuation in the thickness of rock above and within a typical sandstone reservoir at a depth of between 1.00 and 1.25 km. Because this first simulation was focused on carbon sequestration, the innovators chose depths sufficient for the pressure there to ensure that the carbon dioxide would be supercritical. This innovation demonstrates for the first time the feasibility of using the natural cosmic-ray muon flux to generate continuous tomographic images of carbon dioxide in a storage site. The muon flux is attenuated to an extent dependent on, amongst other things, the density of the materials through which it passes. The density of supercritical carbon dioxide is only three quarters that of the brine in the reservoir that it displaces. The first realistic simulations indicate that changes as small as 0.4% in the storage site bulk density could be detected (equivalent to 7% of the porosity, in this specific case). The initial

  19. A Theoretical Study of Subsurface Drainage Model Simulation of ...

    African Journals Online (AJOL)

    A Theoretical Study of Subsurface Drainage Model Simulation of Drainage Flow and ... of subsurface drain spacing, evapotranspiration and irrigation water quality on ... The study was carried out on a conceptual uniform homogenous irrigated ...

  20. Invited Article: In situ comparison of passive radon-thoron discriminative monitors at subsurface workplaces in Hungary

    Science.gov (United States)

    Kávási, Norbert; Vigh, Tamás; Németh, Csaba; Ishikawa, Tetsuo; Omori, Yasutaka; Janik, Miroslaw; Yonehara, Hidenori

    2014-02-01

    During a one-year long measurement period, radon and thoron data obtained by two different passive radon-thoron discriminative monitors were compared at subsurface workplaces in Hungary, such as mines (bauxite and manganese ore) and caves (medical and touristic). These workplaces have special environmental conditions, such as, stable and high relative humidity (100%), relatively stable temperature (12°C-21°C), low or high wind speed (max. 2.4 m s-1) and low or elevated aerosol concentration (130-60 000 particles m-3). The measured radon and thoron concentrations fluctuated in a wide range among the different workplaces. The respective annual average radon concentrations and their standard deviations (in brackets) measured by the passive radon-thoron discriminative monitor with cellulose filter (CF) and the passive radon-thoron discriminative monitor with sponge filter (SF) were: 350(321) Bq m-3 and 550(497) Bq m-3 in the bauxite mine; 887(604) Bq m-3 and 1258(788) Bq m-3 in the manganese ore mine; 2510(2341) Bq m-3 and 3403(3075) Bq m-3 in the medical cave (Hospital Cave of Tapolca); and 6239(2057) Bq m-3 and 8512(1955) Bq m-3 in the touristic cave (Lake Cave of Tapolca). The respective average thoron concentrations and their standard deviation (in brackets) measured by CF and SF monitors were: 154(210) Bq m-3 and 161(148) Bq m-3 in the bauxite mine; 187(191) Bq m-3 and 117(147) Bq m-3 in the manganese-ore mine; 360(524) Bq m-3 and 371(789) Bq m-3 in the medical cave (Hospital Cave of Tapolca); and 1420(1184) Bq m-3 and 1462(3655) Bq m-3 in the touristic cave (Lake Cave of Tapolca). Under these circumstances, comparison of the radon data for the SF and CF monitors showed the former were consistently 51% higher in the bauxite mine, 38% higher in the manganese ore mine, and 34% higher in the caves. Consequently, correction is required on previously obtained radon data acquired by CF monitors at subsurface workplaces to gain comparable data for SF monitors. In the

  1. Predicting input of pesticides to surface water via drains - comparing post registration monitoring data with FOCUSsw predictions

    DEFF Research Database (Denmark)

    Aagaard, Alf; Kjaer, Jeanne; Rosenbom, Annette Elisabeth

    in different water bodies (pond, ditch and stream) in 10 scenarios representing geo-climate conditions across Europe. The model provides estimates of surface water concentration, based on the intended use, taking into account potential input routes (drift, drainage and run-off). Leaching and subsequent...... transport through the drainage system poses an important contamination pathway allowing rapid transport of pesticides to the surface water system. With FOCUSsw this input is modelled via the 1 dimensional root zone model MACRO allowing preferential transport to occur in the unsaturated zone. Although models...... (such as MACRO) are widely used within the registration process, their validation requires further work, not least because of the limited availability of field data. The Danish Pesticide Leaching Assessment Programme (PLAP), an intensive monitoring programme which is used to evaluate the risk...

  2. Monitoring Subsurface Changes with Active Sources%人工震源地下介质变化动态监测

    Institute of Scientific and Technical Information of China (English)

    王宝善; 王伟涛; 葛洪魁; 徐平; 王彬

    2011-01-01

    To provide images of Earth interior and their temporal variations are main tasks for geophysicists. Comparing to our understanding of the static structure, we are still lacking in the understanding of the temporal var iations of the subsurface. Recently, with the accumulation of observation data, repeated earthquakes and ambient noises are used to monitor subsurface changes. The resolutions and precisions of passive source monitoring are limit ed by the spatial and temporal distributions of sources. Monitoring subsurface changes with seismic wave generated by artificial sources naturally becames another goal to pursue. We systematically describe recent advances in active source monitoring at various scales. In this review, we also introduce cross-correlation based time delay estimation and its precision limitation. The precision of time delay estimation is limited by the repeatability of source, signal to-noise ratio and bandwidth of recorded signals. And seismic sources with large capacity and high repeatability are preferred for active monitoring. Advantages and disadvantages of different sources are compared in this review. According to the comparison, we suggest that the airgun source is superior to other sources for the purpose of active monitoring. Techniques as waveform stacking, coda wave interferometry and their application in active monitoring are also introduced. Waveform stacking can be used to enhance the signal-to-noise ratio and facilitate the phase identificafion. Coda wave travels longer and is more sensitive to subsurface changes than direct waves. Therefore,coda wave interferometry technique can be used to detect subtle variations. With the development of techniques for signal excitation, recording and processing, it is now possible to conduct large scale active subsurface monitoring. Relevant researches have broad potential applications to such fields as natural disaster mitigation and resource exploration.%成像地球内部介质结构及其

  3. Overland flow and sediment transport in an agricultural lowland catchments: a focus on tile drain export

    Science.gov (United States)

    Vandromme, Rosalie; Grangeon, Thomas; Cerdan, Olivier; Manière, Louis; Salvador Blanes, Sébastien; Foucher, Anthony; Chapalain, Marion; Evrard, Olivier; Le Gall, Marion

    2016-04-01

    Rural landscapes have been extensively modified by human activities in Western Europe since the beginning of the 20th century in order to intensify agricultural production. Cultivated areas often expanded at the expense of grassland and wetlands located in lowland areas (de Groot et al., 2002). Therefore, large modifications were made to the agricultural landscapes: stream redesign, land consolidation, removal of hedges, and installation of tile drainage networks to drain the hydromorphic soils. These changes modified sediment processes and resulted in large morphological alterations (e.g. channel bed incision, deposition of fine sediment, channel bank erosion). Accordingly, these alterations threaten water quality and prevent to meet the requirements of the European directives. Improving water quality requires a clear understanding of the hydrosedimentary dynamics in these lowland cultivated catchments. However, few studies were conducted in drained environments. To fill this research gap, a pilot study was started in cultivated catchment of the Loire River basin, France, where tile drain densities are very high (> 1.5 km/km²). Six hydro-sedimentary monitoring stations were installed in the Louroux catchment (24 km²). One of them was specifically dedicated to measuring water/sediment fluxes from tile drains. Water level and turbidity were continuously monitored and sediments were sampled during floods and low stage periods. Samples were measured for particle size distribution, and sediment tracing studies are currently being developed to quantify the contribution of potential sources (e.g. surface vs subsurface, lithologies) to river sediment. Hydro-sedimentary fluxes were quantified and modelled for some selected events. The catchment hydrosedimentary fluxes and their properties were shown to be impacted by tile drain sediment transport, especially regarding particle size distribution, with the dominant export of very fine particles (< 2 μm) from tile drains

  4. Two decades of temperature-time monitoring experiment: air - ground surface - shallow subsurface interactions

    Science.gov (United States)

    Cermak, Vladimir; Dedecek, Petr; Safanda, Jan; Kresl, Milan

    2014-05-01

    Long-term observations (1994-2013) of air and shallow ground temperatures at borehole Prague-Sporilov (50º02'28.5"E, 14º28'40.2"N, 274 m a.s.l.) have been thoroughly analyzed to understand the relationship between these quantities and to describe the mechanism of heat transport at the land-atmosphere boundary layer. Data provided a surprisingly small mean ground-air temperature offset of only 0.31 K with no clear annual course and with the offset value changing irregularly even on a daily scale. Such value is substantially lower than similar values (1-2 K and more) found elsewhere, but may well characterize a mild temperate zone, when all so far available information referred rather to southern locations. Borehole data were correlated with similar observations in a polygon-site under four types of surface conditions (grass, soil, sand and asphalt) completed with registration of meteorological variables (wind direction & velocity, air & soil humidity, direct & reflected solar radiation, precipitation and snow cover). The "thermal orbits" technique proved to be an effective tool for the fast qualitative diagnostics of the thermal regime in the subsurface (conductive versus non-conductive).

  5. Preliminary Results of Subsurface Exploration and Monitoring at the Johnson Creek Landslide, Lincoln County, Oregon

    Science.gov (United States)

    Schulz, William H.; Ellis, William L.

    2007-01-01

    The Johnson Creek landslide is a translational, primarily bedrock landslide located along the Oregon coast about 5 km north of Newport. The landslide has damaged U.S. Highway 101 many times since construction of the highway and at least two geological and geotechnical investigations of the landslide have been performed by Oregon State agencies. In cooperation with the Oregon Department of Geology and Mineral Industries and the Oregon Department of Transportation, the U.S. Geological Survey upgraded landslide monitoring systems and installed additional monitoring devices at the landslide beginning in 2004. Monitoring devices at the landslide measured landslide displacement, rainfall, air temperature, shallow soil-water content, and ground-water temperature and pressure. The devices were connected to automatic dataloggers and read at one-hour and, more recently, 15-minute intervals. Monitoring results were periodically downloaded from the dataloggers using cellular telemetry. The purposes of this report are to describe and present preliminary monitoring data from November 19, 2004, to March 31, 2007.

  6. A mobile laboratory for surface and subsurface imaging in geo-hazard monitoring activity

    Science.gov (United States)

    Cornacchia, Carmela; Bavusi, Massimo; Loperte, Antonio; Pergola, Nicola; Pignatti, Stefano; Ponzo, Felice; Lapenna, Vincenzo

    2010-05-01

    A new research infrastructure for supporting ground-based remote sensing observations in the different phases of georisk management cycle is presented. This instrumental facility has been designed and realised by TeRN, a public-private consortium on Earth Observations and Natural Risks, in the frame of the project "ImpresAmbiente" funded by Italian Ministry of Research and University. The new infrastructure is equipped with ground-based sensors (hyperspectral cameras, thermal cameras, laser scanning and electromagnetic antennae) able to remotely map physical parameters and/or earth-surface properties (temperature, soil moisture, land cover, etc…) and to illuminate near-surface geological structures (fault, groundwater tables, landslide bodies etc...). Furthermore, the system can be used for non-invasive investigations of architectonic buildings and civil infrastructures (bridges, tunnel, road pavements, etc...) interested by natural and man-made hazards. The hyperspectral cameras can acquire high resolution images of earth-surface and cultural objects. They are operating in the Visible Near InfraRed (0.4÷1.0μm) with 1600 spatial pixel and 3.7nm of spectral sampling and in the Short Wave InfraRed (1.3÷2.5µm) spectral region with 320 spatial pixel and 5nm of spectral sampling. The IR cameras are operating in the Medium Wavelength InfraRed (3÷5µm; 640x512; NETDtechniques. The Laser Scanner is characterized by very high data acquisition repetition rate up to 500.000 pxl/sec with a range resolution of 0.1 mm, vertical and horizontal FoV of 310° and 360° respectively with a resolution of 0.0018°. The system is also equipped with a metric camera allows to georeference the high resolution images acquired. The electromagnetic sensors allow to obtain in near real time high-resolution 2D and 3D subsurface tomographic images. The main components are a fully automatic resistivity meter for DC electrical surveys (resistivity) and Induced Polarization, a Ground

  7. Poroelastic responses of confined aquifers to subsurface strain changes and their use for volcano monitoring

    Directory of Open Access Journals (Sweden)

    K. Strehlow

    2015-06-01

    Two different aquifers are invoked – an unconsolidated pyroclastic deposit and a vesicular lava flow – and embedded in an impermeable crust, overlying a magma chamber. The time-dependent, fully coupled models simulate crustal deformation accompanying chamber pressurisation and the resulting hydraulic head changes as well as porous flow in the aquifer. The simulated deformational strain leads to centimetres (pyroclastic aquifer to meters (lava flow aquifer of hydraulic head changes; both strain and hydraulic head change with time due to substantial porous flow in the hydrological system. Well level changes are particularly sensitive to chamber volume and shape, followed by chamber depth and the phase of the pore fluid. The Young's Modulus and permeability of the aquifer, as well as the strength of pressurisation also have significant influence on the hydraulic head signal. While source characteristics, the distance between chamber and aquifer and the elastic stratigraphy determine the strain field and its partitioning, flow and coupling parameters define how the aquifer responds to this strain and how signals change with time. We investigated a period of pre-eruptive head changes recorded at Usu volcano, Japan, where well data were interpreted using an analytical deformation model. We find that generic analytical models can fail to capture the complex pre-eruptive subsurface mechanics leading to well level changes, due to aquifer pressure changes being sensitive to chamber shape and lithological heterogeneities. In addition, the presence of a pore fluid and its flow have a significant influence on the strain signal in the aquifer and are commonly neglected in analytical models. These findings highlight the need for numerical models for the interpretation of observed well level signals. However, simulated water table changes do mirror volumetric strain and wells can therefore serve as comparatively cheap strain meters that could provide important insights into

  8. Subsurface monitoring of reservoir pressure, temperature, relative humidity, and water content at the CAES Field Experiment, Pittsfield, Illinois: system design

    Energy Technology Data Exchange (ETDEWEB)

    Hostetler, D.D.; Childs, S.W.; Phillips, S.J.

    1983-03-01

    This subsurface-instrumentation design has been developed for the first Compressed Air Energy Storage (CAES) field experiment to be performed in porous media. Energy storage will be accomplished by alternating the injection and withdrawal of compressed air in a confined sandstone aquifer near Pittsfield, Illinois. The overall experiment objective is to characterize the reservoir's geochemical and thermohydraulic response to imposed CAES conditions. Specific experiment objectives require monitoring: air-bubble development; thermal development; cyclic pressure response; reservoir dehydration; and water coning. Supporting these objectives, four parameters will be continuously monitored at depth in the reservoir. They are: temperature; pressure; pore-air relative humidity; and pore-water content. Reservoir temperatures and pressures will range to maximum values approaching 200/sup 0/C and 300 psi, respectively. Both pore-air relative humidity and pore-water content will range from approx. 0 to 100%. This report discusses: instrumentation design; sensor and sensor system calibration; field installation and testing; and instrument-system operation. No comprehensive off-the-shelf instrument package exists to adequately monitor CAES reservoir parameters at depth. The best available sensors were selected and adapted for use under expected ranges of reservoir conditions. The instrumentation design criteria required: suitable sensor accuracy; continuous monitoring capability; redundancy; maximum sensor integrity; contingency planning; and minimum cost-information ratio. Three wells will be instrumented: the injection/withdrawal (I/W) well and the two instrument wells. Sensors will be deployed by wireline suspension in both open and backfilled (with sand) wellbores. The sensors deployed in the I/W well will be retrievable; the instrument-well sensors will not.

  9. Subsurface hydrological information in rock-slide phenomena from groundwater spring monitoring.

    Science.gov (United States)

    Rochetti, Francesco; Corsini, Alessandro; Deiana, Manuela; Loche, Roberto; Mulas, Marco; Russo, Michele

    2016-04-01

    Frequently rock-slide phenomena are characterized by rough topography and high declivity of the slope. Due to these characteristics, the drilling of boreholes is not so common and in some circumstance expensive. Consequently, the exact information about depth of the sliding surface and about groundwater processes, groundwater levels or pore water pressure distribution are missing. Alternately, some information about the groundwater can be obtained from the physical-chemical monitoring of springs. The research highlights preliminary results, about the groundwater processes, obtained from the continuous flow-rate monitoring of a spring located in the active Piagneto rock-slide (northern Apennine). The spring has been monitored from Sept-2014 until Oct-2015 using a piezometer transducer (sampling frequency 1 h) and a triangular weir. The landslide was monitored in continuous since the 2009 using an automatic total station and some reflectors. The monitoring of the rock-slide displacements showed creep phenomena in the summer and acceleration phases from autumn to late spring, during periods characterized by high rainfall intensity; rainfall with intensity higher than 10 mm/d and duration less than 15 days can produce the acceleration of the sliding mass. Before 2014 any information about groundwater was collected. The successively spring monitoring shows the follow results: the spring flow rate is strongly variable in the time; only some rainfall events, with particular intensity and duration (generally total amount higher than 100 mm), are responsible of strong changes in the flow rate, and the flow rate starts to increase only after some hours; the snow melting events, also when there is a fast reduction of the snow thickness, don't produce high variation in the flow rate discharge; there is a strong correlation between the flow rate peaks and the rock-slide acceleration; an infiltration coefficient higher than 70% is estimated through the comparison between the

  10. Time-Lapse Monitoring of Subsurface Fluid Flow using Parsimonious Seismic Interferometry

    KAUST Repository

    Hanafy, Sherif

    2017-04-21

    A typical small-scale seismic survey (such as 240 shot gathers) takes at least 16 working hours to be completed, which is a major obstacle in case of time-lapse monitoring experiments. This is especially true if the subject that needs to be monitored is rapidly changing. In this work, we will discuss how to decrease the recording time from 16 working hours to less than one hour of recording. Here, the virtual data has the same accuracy as the conventional data. We validate the efficacy of parsimonious seismic interferometry with the time-lapse mentoring idea with field examples, where we were able to record 30 different data sets within a 2-hour period. The recorded data are then processed to generate 30 snapshots that shows the spread of water from the ground surface down to a few meters.

  11. Borehole Calibration Facilities to Support Gamma Logging for Hanford Subsurface Investigation and Contaminant Monitoring - 13516

    Energy Technology Data Exchange (ETDEWEB)

    McCain, R.G.; Henwood, P.D.; Pope, A.D.; Pearson, A.W. [S M Stoller Corporation, 2439 Robertson Drive, Richland, WA 99354 (United States)

    2013-07-01

    Repeated gamma logging in cased holes represents a cost-effective means to monitor gamma-emitting contamination in the deep vadose zone over time. Careful calibration and standardization of gamma log results are required to track changes and to compare results over time from different detectors and logging systems. This paper provides a summary description of Hanford facilities currently available for calibration of logging equipment. Ideally, all logging organizations conducting borehole gamma measurements at the Hanford Site will take advantage of these facilities to produce standardized and comparable results. (authors)

  12. Subsurface Monitor for Dissolved Inorganic Carbon at Geological Sequestration Site Phase 1 SBIR Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sheng Wu

    2012-08-03

    Phase I research of this SBIR contract has yielded anticipated results and enable us to develop a practical new instrument to measure the Dissolved Inorganic Carbons (DIC) as well as Supercritical (SC) CO2 in underground brine water at higher sensitivity, lower cost, higher frequency and longer period of time for the Monitoring, Verification & Accounting (MVA) of CO2 sequestration as well as Enhanced Oil Recovery (EOR). We show that reduced cost and improved performance are possible; both future and emerging market exist for the proposed new instrument.

  13. A modular subsurface borehole-tower for deep vadose zone monitoring

    Science.gov (United States)

    Breitenstein, Daniel; Or, Dani

    2016-04-01

    Some of the most urgent contemporary societal challenges ranging from climate change to ecosystem services and food security are strongly linked to processes taking place in the vadose zone. The growing interest in this critical zone prompted a massive deployment of eco-hydrological networks (TERENO, CZO, and more) focusing on long term and highly resolved monitoring of key variables such as soil moisture, pressure, temperature, gas fluxes and more. A challenge in all these endeavors remains the reliable and consistent acquisition of variables to depths of eco-hydrological interest (a few meters in some cases), especially soil moisture. In the absence of off-the-shelf sensor systems capable of vertically resolved acquisition of these variables, we developed a prototype of a modular borehole-based tower for simultaneous monitoring of water content, temperature, oxygen and CO2 gas concentrations, and potentially other variables (relative humidity, capillary pressure). The modular tower is made up of 1.5 m sections of 75 mm PVC tubing with TDR waveguides mounted on outer walls. Each paired waveguides (0.15 m in length) were installed on two opposing sides of inflatable sections along the modular unit to ensure contact with the borehole walls. Oxygen and CO2 are measured using solid-state and optical gas sensors that could be periodically calibrated for potential drift. A prototype that could be extended to 6 m depth and preliminary calibration results will be presented (as a potential design for future CZO's). We welcome suggestions for expansion and improvements.

  14. Seasonal ERT monitoring of subsurface processes connected to freezing, thawing, snow accumulation and melt cycles

    Science.gov (United States)

    Krzeminska, Dominika; Starkloff, Torsten; Bloem, Esther; Stolte, Jannes

    2016-04-01

    For a better understanding of processes that influence snowmelt infiltration and runoff, and their consequences on soil erosion during spring periods, we established a long-term winter-spring ERT transect in the Gryteland catchment (Norway). The ERT transect is 71 m long, with 1 m spacing between the electrodes. It covers a depression with a north and south facing slope. The readings are collected once a week and, if needed, after a sudden change in weather conditions. Additionally, the soil transect is equipped with six TDR profiles, which register soil moisture and soil temperature every thirty minutes, at five depths (5, 10, 20, 30, 40 cm), for quantifying the ERT readings. The measurements performed during winter 2014/2015 gave promising results and showed the potential of ERT monitoring for understanding the soil thermal and hydraulic processes occurring during a winter and early spring. Moreover, there are visible differences in temporal trends and spatial variations in observed ERT patterns on the opposite facing slopes, which are of special interest. With the on-going experiment, we are aiming to understand the reoccurrence of the observed processes as well as to quantify soil moisture patterns. Herein, we would like to present the preliminary result of two ERT experiments (2014/2015 and 2015/2016) and discuss the advantages and limitations of our experiments. Moreover, we would like to stimulate the discussion about the potential of ERT for spatial and temporal monitoring of soil hydraulic and thermal processes and indirect measurements of soil water content.

  15. Wireless Subsurface Microsensors for Health Monitoring of Thermal Protection Systems on Hypersonic Vehicles

    Science.gov (United States)

    Milos, Frank S.; Watters, David G.; Pallix, Joan B.; Bahr, Alfred J.; Huestis, David L.; Arnold, Jim (Technical Monitor)

    2001-01-01

    Health diagnostics is an area where major improvements have been identified for potential implementation into the design of new reusable launch vehicles in order to reduce life cycle costs, to increase safety margins, and to improve mission reliability. NASA Ames is leading the effort to develop inspection and health management technologies for thermal protection systems. This paper summarizes a joint project between NASA Ames and SRI International to develop 'SensorTags,' radio frequency identification devices coupled with event-recording sensors, that can be embedded in the thermal protection system to monitor temperature or other quantities of interest. Two prototype SensorTag designs containing thermal fuses to indicate a temperature overlimit are presented and discussed.

  16. Wireless Subsurface Sensors for Health Monitoring of Thermal Protection Systems on Hypersonic Vehicles

    Science.gov (United States)

    Milos, Frank S.; Arnold, Jim (Technical Monitor)

    2001-01-01

    Health diagnostics is an area where major improvements have been identified for potential implementation into the design of new reusable launch vehicles (RLVs) in order to reduce life cycle costs, to increase safety margins, and to improve mission reliability. NASA Ames is leading the effort to develop inspection and health management technologies for thermal protection systems. This paper summarizes a joint project between NASA Ames and industry partners to develop "wireless" devices that can be embedded in the thermal protection system to monitor temperature or other quantities of interest. These devices are sensors integrated with radio-frequency identification (RFID) microchips to enable non-contact communication of sensor data to an external reader that may be a hand-held scanner or a large portal. Both passive and active prototype devices have been developed. The passive device uses a thermal fuse to indicate the occurrence of excessive temperature. This device has a diameter under 0.13 cm. (suitable for placement in gaps between ceramic TPS tiles on an RLV) and can withstand 370 C for 15 minutes. The active device contains a small battery to provide power to a thermocouple for recording a temperature history during flight. The bulk of the device must be placed beneath the TPS for protection from high temperature, but the thermocouple can be placed in a hot location such as near the external surface.

  17. Monitoring Perennial Sub-Surface Waterlogged Croplands Based on MODIS in Jianghan Plain, Middle Reaches of the Yangtze River

    Institute of Scientific and Technical Information of China (English)

    XIAO Fei; LI Yuan-zheng; DU Yun; LING Feng; YAN Yi; FENG Qi; BAN Xuan

    2014-01-01

    Perennial waterlogged soil (PWS) is induced by the high level of groundwater, and has a persistent impact on natural ecosystems and agricultural production. Traditionally, distribution information regarding PWS is mainly collected from in situ measurements through groundwater level surveys and physicochemical property analyses. However, in situ measurements of PWS are costly and time-consuming, only rough estimates of PWS areas are available in some regions. In this paper, we developed a method to monitor the perennial waterlogged cropland using time-series moderate resolution imaging spectroradiometer (MODIS) data. The Jianghan Plain, a lfoodplain located in the middle reaches of the Yangtze River, was selected as the study area. Temporal variations of the enhanced vegetation index (EVI), night land surface temperature (LST), diurnal LST differences (∆LST), albedo, and the apparent thermal inertia (ATI) were used to analyze the ecological and thermodynamic characteristics of the waterlogged croplands. To obtain pure remote sensing signatures of the waterlogged cropland from mixed pixels, the croplands were classiifed into different types according to soil and land cover types in this paper, and a linear mixing model was developed by iftting the signatures using the multiple linear regression approach. Afterwards, another linear spectral mixing model was used to get the proportions of waterlogged croplands in each 1 km×1 km pixel. The result showed an acceptable accuracy with a root-mean-square error of 0.093. As a tentative method, the procedure described in this paper works efifciently as a method to monitor the spatial patterns of perennial sub-surface waterlogged croplands at a wide scale.

  18. Numerical Study on Draining from Cylindrical Tank Using Stepped Drain Port

    Energy Technology Data Exchange (ETDEWEB)

    Son, Jong Hyeon; Park, Il Seouk [Kyungpook National University, Daegu (Korea, Republic of)

    2014-12-15

    An air-core vortex is generated during draining after stirring a rotating cylindrical tank or after filling it with water. The formation of the air-core vortex and the time of its formation are dependent on drain conditions such as the dimensions of the tank, the initial rotation or stirring speed, and the shape of the drain port. In this study, a draining process using a two-stage drain port was numerically investigated. The length and radius of the first drain stage located in the lower part of the drain port were kept constant, whereas the radius of the second drain stage was varied for simulating the draining process. The simulation was conducted by considering an axisymmetric swirling flow for all cases. The declining water level was monitored by an interface capturing method. Further, the effects of the radius of the second drain stage on the time of formation of the air-core vortex and the internal flow structure were investigated.

  19. Quantifying Subsurface Water and Heat Distribution and its Linkage with Landscape Properties in Terrestrial Environment using Hydro-Thermal-Geophysical Monitoring and Coupled Inverse Modeling

    Science.gov (United States)

    Dafflon, B.; Tran, A. P.; Wainwright, H. M.; Hubbard, S. S.; Peterson, J.; Ulrich, C.; Williams, K. H.

    2015-12-01

    Quantifying water and heat fluxes in the subsurface is crucial for managing water resources and for understanding the terrestrial ecosystem where hydrological properties drive a variety of biogeochemical processes across a large range of spatial and temporal scales. Here, we present the development of an advanced monitoring strategy where hydro-thermal-geophysical datasets are continuously acquired and further involved in a novel inverse modeling framework to estimate the hydraulic and thermal parameter that control heat and water dynamics in the subsurface and further influence surface processes such as evapotranspiration and vegetation growth. The measured and estimated soil properties are also used to investigate co-interaction between subsurface and surface dynamics by using above-ground aerial imaging. The value of this approach is demonstrated at two different sites, one in the polygonal shaped Arctic tundra where water and heat dynamics have a strong impact on freeze-thaw processes, vegetation and biogeochemical processes, and one in a floodplain along the Colorado River where hydrological fluxes between compartments of the system (surface, vadose zone and groundwater) drive biogeochemical transformations. Results show that the developed strategy using geophysical, point-scale and aerial measurements is successful to delineate the spatial distribution of hydrostratigraphic units having distinct physicochemical properties, to monitor and quantify in high resolution water and heat distribution and its linkage with vegetation, geomorphology and weather conditions, and to estimate hydraulic and thermal parameters for enhanced predictions of water and heat fluxes as well as evapotranspiration. Further, in the Colorado floodplain, results document the potential presence of only periodic infiltration pulses as a key hot moment controlling soil hydro and biogeochemical functioning. In the arctic, results show the strong linkage between soil water content, thermal

  20. Preferential transport of nitrate to a tile drain in an intermittent-flood-irrigated field: Model development and experimental evaluation

    Science.gov (United States)

    Mohanty, B. P.; Bowman, R. S.; Hendrickx, J. M. H.; Simunek, J.; van Genuchten, M. T.

    1998-05-01

    A comprehensive field experiment was conducted near Las Nutrias, New Mexico, to study field-scale flow and transport in the vadose zone. The field data were analyzed in terms of a two-dimensional numerical model based on the Richards equation for variably saturated water flow, convection-dispersion equations with first-order chemical decay chains for solute transport, and bimodal piecewise-continuous unsaturated hydraulic functions to account for preferential flow of water and nitrate-nitrogen (NO3-N; loosely used as NO3-) following flood irrigation events at the experimental site. The model was tested against measured NO3- flux concentrations in a subsurface tile drain, several monitoring wells and nested piezometers, and against resident NO3- concentrations in the soil profile (obtained at 52 spatial locations and four depths along a transect). NO3- transport at the field site could be described better with the bimodal hydraulic functions than using the conventional approach with unimodal van Genuchten-Mualem type hydraulic functions. Average resident nitrate concentrations measured across the soil profile were predicted reasonably well. However, NO3- flux concentrations in the subsurface tile drain and piezometers at the field site were occasionally underestimated or overestimated depending upon the irrigation sequence in three field benches, probably reflecting unrepresented three-dimensional regional flow/transport processes. Limiting the capture zone to a region closer to the tile drain did lead to a better match with observed sharp increases and decreases in predicted NO3- flux concentrations during the irrigation events. On the basis of this result we inferred that the preferential flow intercepted by the tile drain was generated in close proximity of the drain and essentially oriented vertically. In summary, our study suggests that irrigation scheduling in adjacent field plots, drainage design (e.g., spacing between tiles, drain depth, drain diameter) and

  1. SUBSURFACE EMPLACEMENT TRANSPORTATION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    T. Wilson; R. Novotny

    1999-11-22

    The objective of this analysis is to identify issues and criteria that apply to the design of the Subsurface Emplacement Transportation System (SET). The SET consists of the track used by the waste package handling equipment, the conductors and related equipment used to supply electrical power to that equipment, and the instrumentation and controls used to monitor and operate those track and power supply systems. Major considerations of this analysis include: (1) Operational life of the SET; (2) Geometric constraints on the track layout; (3) Operating loads on the track; (4) Environmentally induced loads on the track; (5) Power supply (electrification) requirements; and (6) Instrumentation and control requirements. This analysis will provide the basis for development of the system description document (SDD) for the SET. This analysis also defines the interfaces that need to be considered in the design of the SET. These interfaces include, but are not limited to, the following: (1) Waste handling building; (2) Monitored Geologic Repository (MGR) surface site layout; (3) Waste Emplacement System (WES); (4) Waste Retrieval System (WRS); (5) Ground Control System (GCS); (6) Ex-Container System (XCS); (7) Subsurface Electrical Distribution System (SED); (8) MGR Operations Monitoring and Control System (OMC); (9) Subsurface Facility System (SFS); (10) Subsurface Fire Protection System (SFR); (11) Performance Confirmation Emplacement Drift Monitoring System (PCM); and (12) Backfill Emplacement System (BES).

  2. Monitoring subsurface coal fires in Jharia coalfield using observations of land subsidence from differential interferometric synthetic aperture radar (DInSAR)

    Indian Academy of Sciences (India)

    Nishant Gupta; Tajdarul H Syed; Ashiihrii Athiphro

    2013-10-01

    Coal fires in the Jharia coalfield pose a serious threat to India’s vital resource of primary coking coal and the regional environment. In order to undertake effective preventative measures, it is critical to detect the occurrence of subsurface coal fires and to monitor the extent of the existing ones. In this study, Differential Interferometric Synthetic Aperature Radar (DInSAR) technique has been utilized to monitor subsurface coal fires in the Jharia coalfield. Results showed that majority of the coal fire-related subsidence were concentrated on the eastern and western boundaries of the coalfield. The magnitude of subsidence observed was classified into high (10–27.8 mm), low (0–10 mm) and upliftment (−10–0 mm). The results were strongly supported by in situ observations and satellite-based thermal imagery analysis. Major subsidence was observed in the areas with repeated sightings of coal fire. Further, the study highlighted on the capability of the methodology for predicting potential coal fire zones on the basis of land surface subsidence only. The results from this study have major implications for demarcating the hazardous coal fire areas as well as effective implementation of public safety measures.

  3. Monitoring subsurface coal fires in Jharia coalfield using observations of land subsidence from differential interferometric synthetic aperture radar (DInSAR)

    Science.gov (United States)

    Gupta, Nishant; Syed, Tajdarul H.; Athiphro, Ashiihrii

    2013-10-01

    Coal fires in the Jharia coalfield pose a serious threat to India's vital resource of primary coking coal and the regional environment. In order to undertake effective preventative measures, it is critical to detect the occurrence of subsurface coal fires and to monitor the extent of the existing ones. In this study, Differential Interferometric Synthetic Aperature Radar (DInSAR) technique has been utilized to monitor subsurface coal fires in the Jharia coalfield. Results showed that majority of the coal fire-related subsidence were concentrated on the eastern and western boundaries of the coalfield. The magnitude of subsidence observed was classified into high (10-27.8 mm), low (0-10 mm) and upliftment (-10-0 mm). The results were strongly supported by in situ observations and satellite-based thermal imagery analysis. Major subsidence was observed in the areas with repeated sightings of coal fire. Further, the study highlighted on the capability of the methodology for predicting potential coal fire zones on the basis of land surface subsidence only. The results from this study have major implications for demarcating the hazardous coal fire areas as well as effective implementation of public safety measures.

  4. Continuous ‘Passive’ flow-proportional monitoring of drainage using a new modified Sutro weir (MSW) unit

    DEFF Research Database (Denmark)

    Vendelboe, Anders Lindblad; Rozemeijer, Joachim; de Jonge, Lis Wollesen;

    2016-01-01

    In view of their crucial role in water and solute transport, enhanced monitoring of agricultural subsurface drain tile systems is important for adequate water quality management. However, existing monitoring techniques for flow and contaminant loads from tile drains are expensive and labour...... information for the selection and evaluation of mitigation options to improve water quality.Results from this type of monitoring can provide data for the evaluation and optimisation of best management practices in agriculture in order to produce the highest yield without water quality and recipient surface...... intensive. The aim of this study was to develop a cost-effective and simple method for monitoring loads from tile drains. The Flowcap is a modified Sutro weir (MSW) unit that canbe attached to the outlet of tile drains. It is capable of registering total flow, contaminant loads and flowaveraged...

  5. Closed suction drain with bulb

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000039.htm Closed suction drain with bulb To use the sharing features on this page, please enable JavaScript. A closed suction drain is used to remove fluids that build ...

  6. Subsurface Contamination Control

    Energy Technology Data Exchange (ETDEWEB)

    Y. Yuan

    2001-11-16

    subsurface repository; (2) provides a table of derived LRCL for nuclides of radiological importance; (3) Provides an as low as is reasonably achievable (ALARA) evaluation of the derived LRCL by comparing potential onsite and offsite doses to documented ALARA requirements; (4) Provides a method for estimating potential releases from a defective WP; (5) Provides an evaluation of potential radioactive releases from a defective WP that may become airborne and result in contamination of the subsurface facility; and (6) Provides a preliminary analysis of the detectability of a potential WP leak to support the design of an airborne release monitoring system.

  7. Subsurface Contamination Control

    Energy Technology Data Exchange (ETDEWEB)

    Y. Yuan

    2001-12-12

    subsurface repository; (2) provides a table of derived LRCL for nuclides of radiological importance; (3) Provides an as low as is reasonably achievable (ALARA) evaluation of the derived LRCL by comparing potential onsite and offsite doses to documented ALARA requirements; (4) Provides a method for estimating potential releases from a defective WP; (5) Provides an evaluation of potential radioactive releases from a defective WP that may become airborne and result in contamination of the subsurface facility; and (6) Provides a preliminary analysis of the detectability of a potential WP leak to support the design of an airborne release monitoring system.

  8. Testing a simple and low-cost method for long-term (baseline) CO2 monitoring in the shallow subsurface

    NARCIS (Netherlands)

    Gaasbeek, H.; Goldberg, T.; Koenen, M.; Visser, W.; Wildenborg, T.; Steeghs, P.

    2014-01-01

    Implementation of geological CO2 storage requires monitoring for potential leakage, with an essential part being establishment of baseline CO2 in soil gas. CO2 concentrations and weather parameters were monitored for ∼2 years at three locations in the Netherlands. CO2 concentrations in soil ranged f

  9. Testing a simple and low-cost method for long-term (baseline) CO2 monitoring in the shallow subsurface

    NARCIS (Netherlands)

    Gaasbeek, H.; Goldberg, T.; Koenen, M.; Visser, W.; Wildenborg, T.; Steeghs, P.

    2014-01-01

    Implementation of geological CO2 storage requires monitoring for potential leakage, with an essential part being establishment of baseline CO2 in soil gas. CO2 concentrations and weather parameters were monitored for ∼2 years at three locations in the Netherlands. CO2 concentrations in soil ranged f

  10. Study of the development of high resolution sub-surface fluid monitoring system using Accurately Controlled Routine Operated Seismic Sources (ACROSS); Seimitsu seigyo shingen ni yoru chika ryutai koseido monitoring no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kumazawa, M.; Ogawa, K.; Fujii, N.; Yamaoka, K.; Kumagai, H.; Takei, Y. [Nagoya University, Nagoya (Japan). Faculty of Science; Ishihara, K.; Nakaya, m. [New Energy and Industrial Technology Development Organization, Tokyo, (Japan)

    1997-02-01

    Fourier seismology capable of determining quantities related to elastic wave velocity dispersibility and non-elastic damping is under development, and studies are under way for the development of a sub-surface probing technology utilizing this seismology. It is deemed that the above-said quantities are related to the occurrence of earthquakes, behavior of sub-surface water, and migration of magma. In this method, precisely controlled sinusoidal waves are radiated and the received spectral data is subjected to cepstrum analysis, advantageous over other methods in that it achieves a high S/N ratio in a non-destructive way, facilitates deep structure analysis, and capable of monitoring changes with the elapse of time in such a structure. A newly-developed high-mobility transportable quake generator is described, which covers a wider frequency range and aims at the short-distance exploration of sub-surface conditions. Important components of the quake generator include an eccentric mass bearing capable of dealing with high-speed rotation enabling high frequency oscillation, variable mechanism for the primary moment of inertia, exciter and ground surface coupler allowing operations on a soft ground, and torque cancelling mechanism for the excitation of SH waves only. 3 figs.

  11. Bacterial diversity of floor drain biofilms and drain waters in a Listeria monocytogenes contaminated food processing environment.

    Science.gov (United States)

    Dzieciol, Monika; Schornsteiner, Elisa; Muhterem-Uyar, Meryem; Stessl, Beatrix; Wagner, Martin; Schmitz-Esser, Stephan

    2016-04-16

    Sanitation protocols are applied on a daily basis in food processing facilities to prevent the risk of cross-contamination with spoilage organisms. Floor drain water serves along with product-associated samples (slicer dust, brine or cheese smear) as an important hygiene indicator in monitoring Listeria monocytogenes in food processing facilities. Microbial communities of floor drains are representative for each processing area and are influenced to a large degree by food residues, liquid effluents and washing water. The microbial communities of drain water are steadily changing, whereas drain biofilms provide more stable niches. Bacterial communities of four floor drains were characterized using 16S rRNA gene pyrosequencing to better understand the composition and exchange of drain water and drain biofilm communities. Furthermore, the L. monocytogenes contamination status of each floor drain was determined by applying cultivation-independent real-time PCR quantification and cultivation-dependent detection according to ISO11290-1. Pyrosequencing of 16S rRNA genes of drain water and drain biofilm bacterial communities yielded 50,611 reads, which were clustered into 641 operational taxonomic units (OTUs), affiliated to 16 phyla dominated by Proteobacteria, Firmicutes and Bacteroidetes. The most abundant OTUs represented either product- (Lactococcus lactis) or fermentation- and food spoilage-associated phylotypes (Pseudomonas mucidolens, Pseudomonas fragi, Leuconostoc citreum, and Acetobacter tropicalis). The microbial communities in DW and DB samples were distinct in each sample type and throughout the whole processing plant, indicating the presence of indigenous specific microbial communities in each processing compartment. The microbiota of drain biofilms was largely different from the microbiota of the drain water. A sampling approach based on drain water alone may thus only provide reliable information on planktonic bacterial cells but might not allow conclusions

  12. Paired geochemical tracing and load monitoring analysis for identifying sediment sources in a large catchment draining into the Great Barrier Reef Lagoon

    Science.gov (United States)

    Furuichi, Takahisa; Olley, Jon; Wilkinson, Scott; Lewis, Stephen; Bainbridge, Zoe; Burton, Joanne

    2016-08-01

    While sediment tracing has been typically applied to identify sediment sources that are difficult to measure by gauging (monitoring), it can also be useful in estimating relative sediment yields from gauged river catchments. The major and trace element composition of river sediments from eleven locations in the 130000 km2 Burdekin River catchment, northeastern Australia was analysed to examine relative contributions from upstream source areas in the 2011/12 water year. Sediment tracing results are compared against estimates derived from sediment load monitoring at three locations. Comparisons show that there is good agreement between tracing results and monitoring data at one of the tributary confluences. At the second site, notable contrasts were found between the load estimates from the monitoring and tracing data. At this site a large impoundment occurs between the upstream sampling/gauging sites for source sediments and the downstream sampling/gauging sites for target sediments. The contrast is likely caused by temporal variations in particle size distributions of suspended sediment from each river and differential trapping efficiencies in the impoundment for sediment derived from the different tributaries. In the absence of the detailed particle size data and trapping efficiency estimates, sediment tracing provides the unique opportunity to elucidate source contributions of the finer fractions of suspended sediment. At a third site, where there were recognised measurement gaps in the monitoring data during large discharge events, the relative load estimates from the tracing data provided a means of constraining the recognized uncertainty of monitored load estimates. We conclude that sediment tracing can be used as a valuable adjunct to monitoring data particularly in remote, large and data-sparse catchments. Both tracing results and monitoring data show that the Upper Burdekin River and Bowen-Bogie Rivers were the dominant source of the < 10 μm sediments

  13. Final Report Real Time Monitoring of Rates of Subsurface Microbial Activity Associated with Natural Attenuation and Electron Donor Availability

    Energy Technology Data Exchange (ETDEWEB)

    Lovley, Derek R. [Univ. of Massachusetts, Amherst, MA (United States)

    2016-03-22

    The project was successful in developing new sensing technologies for monitoring rates of microbial activity in soils and sediments and also developed a novel proof-of-concept for monitoring the presence of bioavailable concentrations of a diversity of metabolites and toxic components in sedimentary environments. These studies led not only to publications in the peer-reviewed literature, but also two patent applications and a start-up company.

  14. Sub-Surface Carbon Dioxide Concentration Measurement Using a Fiber Based Sensor in a Call/Return Geometry for Carbon Sequestration Site Monitoring

    Science.gov (United States)

    Wicks, G. R.; Soukup, B.; Repasky, K. S.; Carlsten, J.; Barr, J. L.; Dobeck, L.

    2010-12-01

    Geologic carbon sequestration is a means to mitigate the increasing atmospheric concentration of carbon dioxide (CO2) by capturing the CO2 at a source such as a power generation facility and storing the captured CO2 in geologic formations. Many technologic advances will need to occur for successful carbon sequestration including near surface monitoring tools and techniques to ensure site integrity and public safety. Researchers at Montana State University (MSU) are developing a scalable fiber sensor array in a call/return configuration for monitoring near sub-surface CO2 concentrations. The low cost fiber sensor array being developed at MSU for sub-surface CO2 detection for monitoring carbon sequestration sites will utilize a series of fiber probes connected to a two detectors and a 1 x N fiber switch that can direct the light to one of N fiber probes. The fiber sensor array will utilize a single tunable distributed feedback (DFB) diode laser with a center wavelength of 2.004 μm to access CO2 absorption features. The output from the DFB laser is incident on an inline fiber splitter that directs part of the light to a reference detector while the remaining light is directed to a fiber probe where the laser light interacts with the CO2. The light from the fiber probe is directed back through the switch and is incident on a transmission detector. The transmission as a function of wavelength is measured and a CO2 concentration is calculated. The fiber sensor array can easily be reconfigured by simply moving the fiber probes. Low cost is achieved by using inexpensive passive components in the fiber probes while limiting the number of the more expensive components including the DFB laser, the two detectors, and the single fiber switch. The fiber sensor was tested over a thirty day period at the Zero Emission Research Technology (ZERT) facility that was developed for testing surface and near surface carbon sequestration monitoring instrumentation using a controlled

  15. Subsurface Ventilation System Description Document

    Energy Technology Data Exchange (ETDEWEB)

    Eric Loros

    2001-07-25

    The Subsurface Ventilation System supports the construction and operation of the subsurface repository by providing air for personnel and equipment and temperature control for the underground areas. Although the system is located underground, some equipment and features may be housed or located above ground. The system ventilates the underground by providing ambient air from the surface throughout the subsurface development and emplacement areas. The system provides fresh air for a safe work environment and supports potential retrieval operations by ventilating and cooling emplacement drifts. The system maintains compliance within the limits established for approved air quality standards. The system maintains separate ventilation between the development and waste emplacement areas. The system shall remove a portion of the heat generated by the waste packages during preclosure to support thermal goals. The system provides temperature control by reducing drift temperature to support potential retrieval operations. The ventilation system has the capability to ventilate selected drifts during emplacement and retrieval operations. The Subsurface Facility System is the main interface with the Subsurface Ventilation System. The location of the ducting, seals, filters, fans, emplacement doors, regulators, and electronic controls are within the envelope created by the Ground Control System in the Subsurface Facility System. The Subsurface Ventilation System also interfaces with the Subsurface Electrical System for power, the Monitored Geologic Repository Operations Monitoring and Control System to ensure proper and safe operation, the Safeguards and Security System for access to the emplacement drifts, the Subsurface Fire Protection System for fire safety, the Emplacement Drift System for repository performance, and the Backfill Emplacement and Subsurface Excavation Systems to support ventilation needs.

  16. Subsurface Ventilation System Description Document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-10-12

    The Subsurface Ventilation System supports the construction and operation of the subsurface repository by providing air for personnel and equipment and temperature control for the underground areas. Although the system is located underground, some equipment and features may be housed or located above ground. The system ventilates the underground by providing ambient air from the surface throughout the subsurface development and emplacement areas. The system provides fresh air for a safe work environment and supports potential retrieval operations by ventilating and cooling emplacement drifts. The system maintains compliance within the limits established for approved air quality standards. The system maintains separate ventilation between the development and waste emplacement areas. The system shall remove a portion of the heat generated by the waste packages during preclosure to support thermal goals. The system provides temperature control by reducing drift temperature to support potential retrieval operations. The ventilation system has the capability to ventilate selected drifts during emplacement and retrieval operations. The Subsurface Facility System is the main interface with the Subsurface Ventilation System. The location of the ducting, seals, filters, fans, emplacement doors, regulators, and electronic controls are within the envelope created by the Ground Control System in the Subsurface Facility System. The Subsurface Ventilation System also interfaces with the Subsurface Electrical System for power, the Monitored Geologic Repository Operations Monitoring and Control System to ensure proper and safe operation, the Safeguards and Security System for access to the emplacement drifts, the Subsurface Fire Protection System for fire safety, the Emplacement Drift System for repository performance, and the Backfill Emplacement and Subsurface Excavation Systems to support ventilation needs.

  17. To drain or not to drain in perforated peptic ulcer

    Directory of Open Access Journals (Sweden)

    Zafer Kilbas

    2012-02-01

    Full Text Available In their study, published in the current issue of the Journal of Experimental and Integrative Medicine, Ansari et al investigated the role of prophylactic abdominal drain usage in perforated peptic ulcer (PPU, a frequently performed surgical procedure in the emergency departments. Surgical treatment of PPU has not changed much, i.e. primary closure of the perforation and careful cleansing of the abdominal cavity, since it was described by Johann von Mikulicz-Radecki (1850-1905. There have been different applications related to drain usage and drain numbers in different centers. While a single drain... [J Exp Integr Med 2012; 2(1.000: 45-46

  18. Experimental measurements of the SP response to concentration and temperature gradients in sandstones with application to subsurface geophysical monitoring

    Science.gov (United States)

    Leinov, E.; Jackson, M. D.

    2014-09-01

    Exclusion-diffusion potentials arising from temperature gradients are widely neglected in self-potential (SP) surveys, despite the ubiquitous presence of temperature gradients in subsurface settings such as volcanoes and hot springs, geothermal fields, and oil reservoirs during production via water or steam injection. Likewise, with the exception of borehole SP logging, exclusion-diffusion potentials arising from concentration gradients are also neglected or, at best, it is assumed that the diffusion potential dominates. To better interpret these SP sources requires well-constrained measurements of the various coupling terms. We report measurements of thermoelectric and electrochemical exclusion-diffusion potentials across sandstones saturated with NaCl brine and find that electrode effects can dominate the measured voltage. After correcting for these, we find that Hittorf transport numbers are the same within experimental error regardless of whether ion transport occurs in response to temperature or concentration gradients over the range of NaCl concentration investigated that is typical of natural systems. Diffusion potentials dominate only if the pore throat radius is more than approximately 4000 times larger than the diffuse layer thickness. In fine-grained sandstones with small pore throat diameter, this condition is likely to be met only if the saturating brine is of relatively high salinity; thus, in many cases of interest to earth scientists, exclusion-diffusion potentials will comprise significant contributions from both ionic diffusion through, and ionic exclusion from, the pore space of the rock. However, in coarse-grained sandstones, or sandstones saturated with high-salinity brine, exclusion-diffusion potentials can be described using end-member models in which ionic exclusion is neglected. Exclusion-diffusion potentials in sandstones depend upon pore size and salinity in a complex way: they may be positive, negative, or zero depending upon sandstone

  19. Continuous Passive Sampling of Solutes from Agricultural Subsurface Drainage Tubes

    Science.gov (United States)

    Lindblad Vendelboe, Anders; de Jonge, Hubert; Rozemeijer, Joachim; Wollesen de Jonge, Lis

    2015-04-01

    Agricultural subsurface tube drain systems play an important role in water and solute transport. One study, focusing on lowland agricultural catchments, showed that subsurface tube drainage contributed up to 80% of the annual discharge and 90% of the annual NO3 load from agricultural fields to the receiving water bodies. Knowledge of e.g. nutrient loads and drainage volumes, based on measurements and modelling, are important for adequate water quality management. Despite the importance of tube drain transport of solutes, monitoring data are scarce. This scarcity is a result of the existing monitoring techniques for flow and contaminant load from tube drains being expensive and labor-extensive. The study presented here aimed at developing a cheap, simple, and robust method to monitor solute loads from tube drains. The method is based on the newly developed Flowcap, which can be attached to existing tube drain outlets and can measure total flow, contaminant load and flow-averaged concentrations of solutes in the drainage. The Flowcap builds on the existing Sorbicell principle, a passive sampling system that measures average concentrations over longer periods of time (days to months) for various compounds. The Sorbicell consists of two compartments permeable to water. One compartment contains an adsorbent and one contains a tracer. When water passes through the Sorbicell the compound of interest is absorbed while a tracer is released. Using the tracer loss to calculate the volume of water that has passed the Sorbicell it is possible to calculate the average concentration of the compound. When mounting Sorbicells in the Flowcap, a flow-proportional part of the drainage is sampled from the main stream. To accommodate the wide range of drainage flow rates two Flowcaps with different capacities were tested in the laboratory: one with a capacity of 25 L min-1 (Q25) and one with a capacity of 256 L min-1 (Q256). In addition, Sorbicells with two different hydraulic

  20. Model-based evaluation of subsurface monitoring networks for improved efficiency and predictive certainty of regional groundwater models

    Science.gov (United States)

    Gosses, M. J.; Wöhling, Th.; Moore, C. R.; Dann, R.; Scott, D. M.; Close, M.

    2012-04-01

    Groundwater resources worldwide are increasingly under pressure. Demands from different local stakeholders add to the challenge of managing this resource. In response, groundwater models have become popular to make predictions about the impact of different management strategies and to estimate possible impacts of changes in climatic conditions. These models can assist to find optimal management strategies that comply with the various stakeholder needs. Observations of the states of the groundwater system are essential for the calibration and evaluation of groundwater flow models, particularly when they are used to guide the decision making process. On the other hand, installation and maintenance of observation networks are costly. Therefore it is important to design monitoring networks carefully and cost-efficiently. In this study, we analyse the Central Plains groundwater aquifer (~ 4000 km2) between the Rakaia and Waimakariri rivers on the Eastern side of the Southern Alps in New Zealand. The large sedimentary groundwater aquifer is fed by the two alpine rivers and by recharge from the land surface. The area is mainly under agricultural land use and large areas of the land are irrigated. The other major water use is the drinking water supply for the city of Christchurch. The local authority in the region, Environment Canterbury, maintains an extensive groundwater quantity and quality monitoring programme to monitor the effects of land use and discharges on groundwater quality, and the suitability of the groundwater for various uses, especially drinking-water supply. Current and projected irrigation water demand has raised concerns about possible impacts on groundwater-dependent lowland streams. We use predictive uncertainty analysis and the Central Plains steady-state groundwater flow model to evaluate the worth of pressure head observations in the existing groundwater well monitoring network. The data worth of particular observations is dependent on the problem

  1. Subsurface Characterization and Seismic Monitoring for the Southwest Partnerships Phase III Demonstration Project at Farnsworth Field, TX

    Science.gov (United States)

    Will, R. A.; Balch, R. S.

    2015-12-01

    The Southwest Partnership on Carbon Sequestration is performing seismic based characterization and monitoring activities at an active CO2 EOR project at Farnsworth Field, Texas. CO2 is anthropogenically sourced from a fertilizer and an ethanol plant. The field has 13 CO2 injectors and has sequestered 302,982 metric tonnes of CO2 since October 2013. The field site provides an excellent laboratory for testing a range of monitoring technologies in an operating CO2 flood since planned development is sequential and allows for multiple opportunities to record zero CO2 baseline data, mid-flood data, and fully flooded data. The project is comparing and contrasting several scales of seismic technologies in order to determine best practices for large scale commercial sequestration projects. Characterization efforts include an 85 km2 3D surface seismic survey, baseline and repeat 3D VSP surveys centered on injection wells, cross-well tomography baseline and repeat surveys between injector/producer pairs, and a borehole passive seismic array to monitor induced seismicity. All surveys have contributed to detailed geologic models which were then used for fluid flow and risk assessment simulations. 3D VSP and cross-well data with repeat surveys have allowed for direct comparisons of the reservoir prior to CO2 injection and at eight months into injection, with a goal of imaging the CO2 plume as it moves away from injection wells. Additional repeat surveys at regular intervals will continue to refine the plume. The goal of this work is to demonstrate seismic based technologies to monitor CO2 sequestration projects, and to contribute to best practices manuals for commercial scale CO2 sequestration projects. In this talk the seismic plan will be outlined, progress towards goals enumerated, and preliminary results from baseline and repeat seismic data will be discussed. Funding for this project is provided by the U.S. Department of Energy under Award No. DE-FC26-05NT42591.

  2. Denitrification in the shallow ground water of a tile-drained, agricultural watershed

    Science.gov (United States)

    Mehnert, E.; Hwang, H.-H.; Johnson, T.M.; Sanford, R.A.; Beaumont, W.C.; Holm, T.R.

    2007-01-01

    Nonpoint-source pollution of surface water by N is considered a major cause of hypoxia. Because Corn Belt watersheds have been identified as major sources of N in the Mississippi River basin, the fate and transport of N from midwestern agricultural watersheds have received considerable interest. The fate and transport of N in the shallow ground water of these watersheds still needs additional research. Our purpose was to estimate denitrification in the shallow ground water of a tile-drained, Corn Belt watershed with fine-grained soils. Over a 3-yr period, N was monitored in the surface and ground water of an agricultural watershed in central Illinois. A significant amount of N was transported past the tile drains and into shallow ground water. The ground water nitrate was isotopically heavier than tile drain nitrate, which can be explained by denitrification in the subsurface. Denitrifying bacteria were found at depths to 10 m throughout the watershed. Laboratory and push-pull tests showed that a significant fraction of nitrate could be denitrified rapidly. We estimated that the N denitrified in shallow ground water was equivalent to 0.3 to 6.4% of the applied N or 9 to 27% of N exported via surface water. These estimates varied by water year and peaked in a year of normal precipitation after 2 yr of below average precipitation. Three years of monitoring data indicate that shallow ground water in watersheds with fine-grained soils may be a significant N sink compared with N exported via surface water. ?? ASA, CSSA, SSSA.

  3. "Not just eliminating the mosquito but draining the swamp": A critical geopolitics of Turkish Monitoring Center for Drugs and Drug Addiction and Turkey's approach to illicit drugs.

    Science.gov (United States)

    Evered, Kyle T; Evered, Emine Ö

    2016-07-01

    In the 1970s, Turkey ceased to be a significant producer state of illicit drugs, but it continued to serve as a key route for the trade of drugs between East and West. Over the past decade, however, authorities identified two concerns beyond its continued transit state status. These reported problems entail both new modes of production and a rising incidence of drug abuse within the nation-state - particularly among its youth. Amid these developments, new law enforcement institutions emerged and acquired European sponsorship, leading to the establishment of TUBİM (the Turkish Monitoring Center for Drugs and Drug Addiction). Coordinating with and reporting to the European Union agency EMCDDA (the European Monitoring Center for Drugs and Drug Addiction), TUBİM's primary assigned duties entail the collection and analysis of data on drug abuse, trafficking, and prevention, the geographic identification of sites of concern (e.g. consumption, drug-related crimes, and peoples undergoing treatment), and the production of annual national reports. In this article, we examine the geopolitical origins of TUBİM as Turkey's central apparatus for confronting drug problems and its role as a vehicle for policy development, interpretation, and enforcement. In doing so, we emphasize the political and spatial dimensions inherent to the country's institutional and policy-driven approaches to contend with drug-related problems, and we assess how this line of attack reveals particular ambiguities in mission when evaluated from scales at world regional, national, and local levels. In sum, we assess how Turkey's new institutional and legislative landscapes condition the state's engagements with drug use, matters of user's health, and policy implementation at local scales and amid ongoing political developments. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Subsurface Facility System Description Document

    Energy Technology Data Exchange (ETDEWEB)

    Eric Loros

    2001-07-31

    The Subsurface Facility System encompasses the location, arrangement, size, and spacing of the underground openings. This subsurface system includes accesses, alcoves, and drifts. This system provides access to the underground, provides for the emplacement of waste packages, provides openings to allow safe and secure work conditions, and interfaces with the natural barrier. This system includes what is now the Exploratory Studies Facility. The Subsurface Facility System physical location and general arrangement help support the long-term waste isolation objectives of the repository. The Subsurface Facility System locates the repository openings away from main traces of major faults, away from exposure to erosion, above the probable maximum flood elevation, and above the water table. The general arrangement, size, and spacing of the emplacement drifts support disposal of the entire inventory of waste packages based on the emplacement strategy. The Subsurface Facility System provides access ramps to safely facilitate development and emplacement operations. The Subsurface Facility System supports the development and emplacement operations by providing subsurface space for such systems as ventilation, utilities, safety, monitoring, and transportation.

  5. External ventricular drains: Management and complications

    Directory of Open Access Journals (Sweden)

    Rajanandini Muralidharan

    2015-01-01

    Full Text Available Background: Insertion of an External Ventricular Drain (EVD is arguably one of the most common and important lifesaving procedures in neurologic intensive care unit. Various forms of acute brain injury benefit from the continuous intracranial pressure (ICP monitoring and cerebrospinal fluid (CSF diversion provided by an EVD. After insertion, EVD monitoring, maintenance and troubleshooting essentially become a nursing responsibility. Methods: Articles pertaining to EVD placement, management, and complications were identified from PubMed electronic database. Results: Typically placed at the bedside by a neurosurgeon or neurointensivist using surface landmarks under emergent conditions, this procedure has the ability to drain blood and CSF to mitigate intracranial hypertension, continuously monitor intracranial pressure, and instill medications. Nursing should ensure proper zeroing, placement, sterility, and integrity of the EVD collecting system. ICP waveform analysis and close monitoring of CSF drainage are extremely important and can affect clinical outcomes of patients. In some institutions, nursing may also be responsible for CSF sampling and catheter irrigation. Conclusion: Maintenance, troubleshooting, and monitoring for EVD associated complications has essentially become a nursing responsibility. Accurate and accountable nursing care may have the ability to portend better outcomes in patients requiring CSF drainage.

  6. Final Report: DoE SBIR Phase 2 Low-Cost Small Diameter NMR Technologies for In-Situ Subsurface Characterization and Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, David Oliver [Vista Clara Inc., Mukilteo, WA (United States)

    2010-09-03

    In this Phase 2 SBIR program, Vista Clara successfully developed and field-tested small diameter NNR logging tools for subsurface characterization and monitoring. This effort involved the design and development surface electronics, a winch with 470ft cable, and three interchangeable downhole probes: a 3.5â diameter borehole NMR probe, a 1.67â diameter borehole NMR probe, and a 2.5â diameter NMR probe that can be deployed using a Geoprobe direct push machine. The 3.5â probe was tested extensively over a 6 week period including 4â to 8â boreholes in Washington, Idaho, Nebraska, Colorado, Kansas, Connecticut and Massachusetts. The field test campaign was highly successful. The 1.67â probe was assembled, tested and calibrated in the laboratory. The 2.5â Geoprobe probe is in final assembly and testing at the time of this report. The completed Phase 2 R&D program has resulted in the first NMR logging tool that can be deployed in boreholes of 4â diameter, the first NMR logging tool that can be deployed in boreholes on 2â diameter, and the first NMR logging tool that can be deployed by a direct push machine. These small diameter tools make NMR logging technically and economically feasible, for the first time. Previously available NMR logging tools were developed for oilfield applications and are prohibitively large and expensive for the majority of near surface groundwater characterization problems.

  7. Plumbing the brain drain.

    Science.gov (United States)

    Saravia, Nancy Gore; Miranda, Juan Francisco

    2004-08-01

    Opportunity is the driving force of migration. Unsatisfied demands for higher education and skills, which have been created by the knowledge-based global economy, have generated unprecedented opportunities in knowledge-intensive service industries. These multi-trillion dollar industries include information, communication, finance, business, education and health. The leading industrialized nations are also the focal points of knowledge-intensive service industries and as such constitute centres of research and development activity that proactively draw in talented individuals worldwide through selective immigration policies, employment opportunities and targeted recruitment. Higher education is another major conduit of talent from less-developed countries to the centres of the knowledge-based global economy. Together career and educational opportunities drive "brain drain and recirculation". The departure of a large proportion of the most competent and innovative individuals from developing nations slows the achievement of the critical mass needed to generate the enabling context in which knowledge creation occurs. To favourably modify the asymmetric movement and distribution of global talent, developing countries must implement bold and creative strategies that are backed by national policies to: provide world-class educational opportunities, construct knowledge-based research and development industries, and sustainably finance the required investment for these strategies. Brazil, China and India have moved in this direction, offering world-class education in areas crucial to national development, such as biotechnology and information technology, paralleled by investments in research and development. As a result, only a small proportion of the most highly educated individuals migrate from these countries, and research and development opportunities employ national talent and even attract immigrants.

  8. No drain, autologous transfusion drain or suction drain? A randomised prospective study in total hip replacement surgery of 168 patients

    OpenAIRE

    Cheung, G.; Carmont, MR; Bing, AJ; Kuiper, JH; Alcock, RJ; Graham, NM

    2010-01-01

    We performed a prospective, randomised controlled trial to assess the differences in the use of a conventional suction drain, an Autologous Blood Transfusion (ABT) drain and no drain, in 168 patients. There was no significant difference between the drainage from ABT drains ( mean : 345 ml) and the suction drain (314 ml). Forty percent of patients receiving a suction drain had a haemoglobin level less than 10 g/dL at 24 hours, compared to 35% with no drain and 28% with an ABT drain. Patients t...

  9. Continuous monitoring of the C isotope composition of CO_{2}-rich subsurface degassing at Tenerife, Canary Islands

    Science.gov (United States)

    Melián, Gladys; Asensio-Ramos, María; Padrón, Eleazar; Barrancos, José; Hernández, Pedro A.; Pérez, Nemesio M.

    2017-04-01

    gas bubbling spot (˜-4.7‰ unpublished data) and analyzed with a Thermo Finnigan MAT 253 isotope ratio mass spectrometer, which supports the validity of the analytical method used. This is the first time that this type of instrumentation is used to continuously monitor the δ13C(CO2) isotopic composition of the gas discharged from a gas bubbling in a horizontal drill as a geochemical tool to evaluate the volcanic activity, in particular in Tenerife, a unique natural-scale laboratory for hydrological studies in oceanic volcanic islands. To correlate temporal variations in the δ13C(CO2) isotopic composition with changes in the seismic-volcanic activity of Tenerife, a longer observation period will be required. References: Pérez et al., 2007. Pure Appl. Geophys. DOI 10.1007/s00024-007-0280

  10. Effect of tillage on macropore flow and phosphorus transport to tile drains

    Science.gov (United States)

    Williams, Mark R.; King, Kevin W.; Ford, William; Buda, Anthony R.; Kennedy, Casey D.

    2016-04-01

    Elevated phosphorus (P) concentrations in subsurface drainage water are thought to be the result of P bypassing the soil matrix via macropore flow. The objectives of this study were to quantify event water delivery to tile drains via macropore flow paths during storm events and to determine the effect of tillage practices on event water and P delivery to tiles. Tile discharge, total dissolved P (DP) and total P (TP) concentrations, and stable oxygen and deuterium isotopic signatures were measured from two adjacent tile-drained fields in Ohio, USA during seven spring storms. Fertilizer was surface-applied to both fields and disk tillage was used to incorporate the fertilizer on one field while the other remained in no-till. Median DP concentration in tile discharge prior to fertilizer application was 0.08 mg L-1 in both fields. Following fertilizer application, median DP concentration was significantly greater in the no-tilled field (1.19 mg L-1) compared to the tilled field (0.66 mg L-1), with concentrations remaining significantly greater in the no-till field for the remainder of the monitored storms. Both DP and TP concentrations in the no-till field were significantly related to event water contributions to tile discharge, while only TP concentration was significantly related to event water in the tilled field. Event water accounted for between 26 and 69% of total tile discharge from both fields, but tillage substantially reduced maximum contributions of event water. Collectively, these results suggest that incorporating surface-applied fertilizers has the potential to substantially reduce the risk of P transport from tile-drained fields.

  11. Subarachnoid hemorrhage due to retained lumbar drain.

    Science.gov (United States)

    Guppy, Kern H; Silverthorn, James W; Akins, Paul T

    2011-12-01

    Intrathecal spinal catheters (lumbar drains) are indicated for several medical and surgical conditions. In neurosurgical procedures, they are used to reduce intracranial and intrathecal pressures by diverting CSF. They have also been placed for therapeutic access to administer drugs, and more recently, vascular surgeons have used them to improve spinal cord perfusion during the treatment of thoracic aortic aneurysms. Insertion of these lumbar drains is not without attendant complications. One complication is the shearing of the distal end of the catheter with a resultant retained fragment. The authors report the case of a 65-year-old man who presented with a subarachnoid hemorrhage due to the migration of a retained lumbar drain that sheared off during its removal. To the best of the authors' knowledge, this is the first case of rostral migration of a retained intrathecal catheter causing subarachnoid hemorrhage. The authors review the literature on retained intrathecal spinal catheters, and their findings support either early removal of easily accessible catheters or close monitoring with serial imaging.

  12. Drain Back Systems in Laboratory and in Practice

    DEFF Research Database (Denmark)

    Perers, Bengt; Furbo, Simon; Fan, Jianhua

    2015-01-01

    Drain Back systems with ETC collectors are tested and analyzed in a Danish - Chinese cooperation project. Experiences from early work at DTU, with drain back, low flow systems, was used to design two systems: 1) One laboratory system at DTU. 2) One demonstration system in a single family house...... in Sorö Denmark. Detailed monitoring and modelling/validation of the system in the DTU lab is done, to be able to generalize the results, to other climates and loads by simulation and to make design optimizations. The advantage with drain back, low flow systems, is that the system can be made more simple...... with less components and that the performance can be enhanced. Also problems with long term degradation of glycol collector loops are totally avoided. A combination of the drain back and system expansion vessel was tested successfully. It is very important to achieve a continuous slope for the pipes...

  13. No drain, autologous transfusion drain or suction drain? A randomised prospective study in total hip replacement surgery of 168 patients.

    Science.gov (United States)

    Cheung, Graham; Carmont, Michael R; Bing, Andrew J F; Kuiper, Jan-Herman; Alcock, Robert J; Graham, Niall M

    2010-10-01

    We performed a prospective, randomised controlled trial to assess the differences in the use of a conventional suction drain, an Autologous Blood Transfusion (ABT) drain and no drain, in 168 patients. There was no significant difference between the drainage from ABT drains ( mean : 345 ml) and the suction drain (314 ml). Forty percent of patients receiving a suction drain had a haemoglobin level less than 10 g/dL at 24 hours, compared to 35% with no drain and 28% with an ABT drain. Patients that had no drains had wounds that were dry significantly sooner, mean 3.0 days compared to a mean of 3.9 days with an ABT drain and a mean of 4 days with a suction drain. Patients that did not have a drain inserted stayed in hospital a significantly shorter period of time, compared with drains. We feel the benefits of quicker drying wounds, shorter hospital stays and the economic savings justify the conclusion that no drain is required after hip replacement.

  14. Cultural mediation or brain drain?

    African Journals Online (AJOL)

    chrischisoni

    2014-06-11

    Jun 11, 2014 ... US Diversity Visa Lottery program claiming that can make the lives of Americans insecure by providing .... But other studies reveal negative effects of assimilation, ..... workplace and follow the code of conduct in that environment. Hence ...... The Brain Drain and Taxation II: Theory and Empirical Analysis (pp.

  15. Accuracy of tunnelated vs. bolt-connected external ventricular drains

    DEFF Research Database (Denmark)

    Bergdal, Ove; Springborg, Jacob Bertram; Holst, Anders Vedel;

    2013-01-01

    Ventriculostomy is one of the most common neurosurgical procedures and an important tool in the treatment and monitoring of elevated intracranial pressure. Low accuracy has frequently been reported in the literature with risk of drain misplacement over 20% and with a need for reinsertion in up to...

  16. Subsurface stormflow modeling with sensitivity analysis using a Latin-hypercube sampling technique

    Energy Technology Data Exchange (ETDEWEB)

    Gwo, J.P.; Toran, L.E.; Morris, M.D. [Oak Ridge National Lab., TN (United States); Wilson, G.V. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Plant and Soil Science

    1994-09-01

    Subsurface stormflow, because of its dynamic and nonlinear features, has been a very challenging process in both field experiments and modeling studies. The disposal of wastes in subsurface stormflow and vadose zones at Oak Ridge National Laboratory, however, demands more effort to characterize these flow zones and to study their dynamic flow processes. Field data and modeling studies for these flow zones are relatively scarce, and the effect of engineering designs on the flow processes is poorly understood. On the basis of a risk assessment framework and a conceptual model for the Oak Ridge Reservation area, numerical models of a proposed waste disposal site were built, and a Latin-hypercube simulation technique was used to study the uncertainty of model parameters. Four scenarios, with three engineering designs, were simulated, and the effectiveness of the engineering designs was evaluated. Sensitivity analysis of model parameters suggested that hydraulic conductivity was the most influential parameter. However, local heterogeneities may alter flow patterns and result in complex recharge and discharge patterns. Hydraulic conductivity, therefore, may not be used as the only reference for subsurface flow monitoring and engineering operations. Neither of the two engineering designs, capping and French drains, was found to be effective in hydrologically isolating downslope waste trenches. However, pressure head contours indicated that combinations of both designs may prove more effective than either one alone.

  17. Geophysical characterization of subsurface barriers

    Energy Technology Data Exchange (ETDEWEB)

    Borns, D.J.

    1995-08-01

    An option for controlling contaminant migration from plumes and buried waste sites is to construct a subsurface barrier of a low-permeability material. The successful application of subsurface barriers requires processes to verify the emplacement and effectiveness of barrier and to monitor the performance of a barrier after emplacement. Non destructive and remote sensing techniques, such as geophysical methods, are possible technologies to address these needs. The changes in mechanical, hydrologic and chemical properties associated with the emplacement of an engineered barrier will affect geophysical properties such a seismic velocity, electrical conductivity, and dielectric constant. Also, the barrier, once emplaced and interacting with the in situ geologic system, may affect the paths along which electrical current flows in the subsurface. These changes in properties and processes facilitate the detection and monitoring of the barrier. The approaches to characterizing and monitoring engineered barriers can be divided between (1) methods that directly image the barrier using the contrasts in physical properties between the barrier and the host soil or rock and (2) methods that reflect flow processes around or through the barrier. For example, seismic methods that delineate the changes in density and stiffness associated with the barrier represents a direct imaging method. Electrical self potential methods and flow probes based on heat flow methods represent techniques that can delineate the flow path or flow processes around and through a barrier.

  18. Draining mafic magma from conduits during Strombolian eruption

    Science.gov (United States)

    Wadsworth, F. B.; Kennedy, B.; Branney, M. J.; Vasseur, J.; von Aulock, F. W.; Lavallée, Y.; Kueppers, U.

    2014-12-01

    During and following eruption, mafic magmas can readily drain downward in conduits, dykes and lakes producing complex and coincident up-flow and down-flow textures. This process can occur at the top of the plumbing system if the magma outgases as slugs or through porous foam, causing the uppermost magma surface to descend and the magma to densify. In this scenario the draining volume is limited by the gas volume outgassed. Additionally, magma can undergo wholesale backflow when the pressure at the base of the conduit or feeder dyke exceeds the driving pressure in the chamber beneath. This second scenario will continue until pressure equilibrium is established. These two scenarios may occur coincidently as local draining of uppermost conduit magma by outgassing can lead to wholesale backflow because the densification of magma is an effective way to modify the vertical pressure profile in a conduit. In the rare case where conduits are preserved in cross section, the textural record of draining is often complex and great care should be taken in interpreting bimodal kinematic trends in detail. Lateral cooling into country rock leads to lateral profiles of physical and flow properties and, ultimately, outgassing potential, and exploration of such profiles elucidates the complexity involved. We present evidence from Red Crater volcano, New Zealand, and La Palma, Canary Islands, where we show that at least one draining phase followed initial ascent and eruption. We provide a rheological model approach to understand gravitational draining velocities and therefore, the timescales of up- and down-flow cycles predicted. These timescales can be compared with observed geophysical signals at monitored mafic volcanoes worldwide. Finally, we discuss the implications of shallow magma draining for edifice stability, eruption longevity and magma-groundwater interaction.

  19. Use of drains in surgery: a review.

    Science.gov (United States)

    Durai, Rajaraman; Mownah, Abdoolla; Ng, Philip C H

    2009-06-01

    Drains have been used in surgery for several years to remove body fluids thereby preventing the accumulation of serous fluid and improving wound healing. Drains may be classified as closed or open systems, and active or passive depending on their intended function. Closed vacuum drains apply negative suction in a sealed environment, producing apposition of tissues and thus promoting healing. Correct assessment of clinical indications might reduce unnecessary usage. This article will introduce the principles and practice of various types of drains and highlight the importance of understanding how surgical drains promote quality patient care.

  20. Predicting rapid herbicide leaching to surface waters from an artificially drained headwater catchment using a one dimensional two-domain model coupled with a simple groundwater model.

    Science.gov (United States)

    Tediosi, A; Whelan, M J; Rushton, K R; Gandolfi, C

    2013-02-01

    Pesticide losses to water can present problems for environmental management, particularly in catchments where surface waters are abstracted for drinking water supply. The relative role of different transfer pathways (spray drift, spills, overland flow and leaching from soils) is often uncertain, and there is a need for experimental observation and modelling to ensure that processes are understood under a range of conditions. Here we examine the transport of propyzamide and carbetamide in a small (15.5 ha) headwater sub-catchment dominated by an artificially drained field with strongly undulating topography (topographic gradients >1:10). Specifically, we explore the validity of the "field-scale lysimeter" analogy by applying the one dimensional mathematical model MACRO. Although one dimensional representation has been shown to be reasonable elsewhere, the scale and topography of the monitored system challenge many of the underlying assumptions. MACRO considers two interacting flow domains: micropores and macropores. The effect of subsurface drains can also be included. A component of the outflow from the main drain was identified as originating from an upslope permeable shallow aquifer which was represented using a simple groundwater model. Predicted herbicide losses were sensitive to drain spacing and the organic carbon to water partition coefficient, K(OC). The magnitude of the peak water and herbicide transport and their timing were simulated satisfactorily, although model performance was poor following a period of one month when snow covered the ground and precipitation was underestimated by the rain gauge. Total herbicide loads were simulated adequately by MACRO, suggesting that the field-scale lysimeter analogy is valid at this scale, although baseflow contributions to flow needed to be accounted for separately in order to adequately represent hydrological response.

  1. Chapter 6: Biological Effects of the Reopening of the San Luis Drain to Carry Subsurface Irrigation Drain Water

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — In the second year of operation of the Grassland Bypass Project (GBP), the biological effects of contaminants improved in some geographic areas and worsened in...

  2. Cardiovascular collapse with attempted pericardial drain withdrawal

    Directory of Open Access Journals (Sweden)

    Molly B Kraus

    2016-01-01

    Full Text Available Cardiac tamponade is a rare but serious emergency condition in the pediatric population. As treatment, a pericardial drain is often placed to evacuate the fluid. We present a case of a 4-year-old girl with cardiac tamponade secondary to renal failure. After the tamponade resolved, she suffered cardiovascular collapse upon attempted drain withdrawal. This case highlights an unusual cause for cardiovascular collapse, which occurred on blind removal of a pericardial drain.

  3. Cardiovascular collapse with attempted pericardial drain withdrawal

    OpenAIRE

    Molly B Kraus; Spitznagel, Rachel A; Kugler, Jane A

    2016-01-01

    Cardiac tamponade is a rare but serious emergency condition in the pediatric population. As treatment, a pericardial drain is often placed to evacuate the fluid. We present a case of a 4-year-old girl with cardiac tamponade secondary to renal failure. After the tamponade resolved, she suffered cardiovascular collapse upon attempted drain withdrawal. This case highlights an unusual cause for cardiovascular collapse, which occurred on blind removal of a pericardial drain.

  4. SUBSURFACE REPOSITORY INTEGRATED CONTROL SYSTEM DESIGN

    Energy Technology Data Exchange (ETDEWEB)

    D.C. Randle

    2000-01-07

    The primary purpose of this document is to develop a preliminary high-level functional and physical control system architecture for the potential repository at Yucca Mountain. This document outlines an overall control system concept that encompasses and integrates the many diverse process and communication systems being developed for the subsurface repository design. This document presents integrated design concepts for monitoring and controlling the diverse set of subsurface operations. The Subsurface Repository Integrated Control System design will be composed of a series of diverse process systems and communication networks. The subsurface repository design contains many systems related to instrumentation and control (I&C) for both repository development and waste emplacement operations. These systems include waste emplacement, waste retrieval, ventilation, radiological and air monitoring, rail transportation, construction development, utility systems (electrical, lighting, water, compressed air, etc.), fire protection, backfill emplacement, and performance confirmation. Each of these systems involves some level of I&C and will typically be integrated over a data communications network throughout the subsurface facility. The subsurface I&C systems will also interface with multiple surface-based systems such as site operations, rail transportation, security and safeguards, and electrical/piped utilities. In addition to the I&C systems, the subsurface repository design also contains systems related to voice and video communications. The components for each of these systems will be distributed and linked over voice and video communication networks throughout the subsurface facility. The scope and primary objectives of this design analysis are to: (1) Identify preliminary system-level functions and interfaces (Section 6.2). (2) Examine the overall system complexity and determine how and on what levels the engineered process systems will be monitored, controlled, and

  5. Microstrip antennas in subsurface sensing

    Science.gov (United States)

    Volgyi, Ferenc

    2000-07-01

    This paper reviews the various applications of microstrip antennas with special emphasis on subsurface sensing, microwave moisture measurement and nondestructive testing of dielectric materials. With reference to the literature, we first describe the commonly used GPR-antennas, the printed Vivaldi-antennas, and microstrip antennas used in moisture content measurement. Furthermore, attention is given to the problems of new antenna technologies, showing examples for active integrated antennas, a photonic band gap patch antenna and a silicon micromachined patch antenna. The reminder of the paper summarizes relevant R&D activities in microstrip antennas at BUTE/DMT, focusing on near-field experiments, monitoring of particleboards and WLAN- applications of patch radiators.

  6. Surface and Subsurface Geochemical Monitoring of an EOR-CO2 Field: Buracica, Brazil Monitoring géochimique en surface et sub-surface d’un gisement en production par récupération assistée et injection de CO2 : le champ de Buracica, Brésil

    Directory of Open Access Journals (Sweden)

    Magnier C.

    2012-04-01

    Full Text Available This paper presents a surface and subsurface geochemical survey of the Buracica EOR-CO2 field onshore Brazil. We adopted a methodology coupling the stable isotopes of carbon with noble gases to investigate the adequacy of geochemical monitoring to track deep fluid leakage at the surface. Three campaigns of CO2 flux and concentration in soils were performed to understand the CO2 variability across the field. The distribution of the CO2 soil contents between 0.8 and 14% is in great part controlled by the properties of the soil, with a first-order topographic dependency. These results, together with a δ13CCO2 between –15 and –23‰, suggest that the bulk of the soil CO2 flux is biological. The gas injected and produced at numerous wells across the field showed a great spatial and somewhat temporal heterogeneity with respect to molecular, δ13CCO2 and noble gas compositions. This heterogeneity is a consequence of the EOR-induced sweeping of the petroleum fluids by the injected CO2, producing a heterogeneous mixing controlled by the production scheme and the distribution in reservoir permeability. In light of the δ13CCO2 found in the reservoir, the stable isotopic composition of carbon was insufficient to track CO2 leaks at the surface. We demonstrate how noble gases may be powerful leak discriminators, even for CO2 abundances in soils in the bottom range of the biological baseline (~1%. The results presented in this study show the potential of geochemical monitoring techniques, involving stable isotopes and noble gases at the reservoir and soil levels, for tracing CO2 in CCS projects. Le monitoring géochimique du gisement de Buracica, qui produit des hydrocarbures par récupération assistée et injection de dioxyde de carbone, est présenté dans cet article. Une méthodologie permettant de coupler l’utilisation des isotopes stables du carbone et des isotopes des gaz rares pour étudier la faisabilité de traçage d’une fuite de CO2 du r

  7. Drain tip culture following total knee arthroplasty

    Directory of Open Access Journals (Sweden)

    Bahubali Aski

    2015-02-01

    Full Text Available Background: Placing a suction drain following total knee replacement is usual practice which is been followed by many surgeons. Closed suction drainage following arthroplasty is a routine with the aim of preventing wound hematoma and thereby reducing the risk of infection. Surgical site infections in orthopaedic surgeries are disastrous and often lead to significant morbidity and mortality. Usefulness of drain tip culture in predicting the wound infection is been tested but results are controversial. Methods: It is a prospective study of 546 drains (352 patients who underwent unilateral or bilateral Total Knee Arthroplasty (TKA. The drain tip was sent for culture at the time of removing. Cultures from the SSI (surgical site infection were also collected. Cases that had at least six months of follow up were included in the study. However in one patient with superficial infection, the drain tip culture was negative. Results: Drain tip culture was positive in total of 18 patients. Three patients had developed deep infection and 10 patients had superficial infection. All three patients with deep infection and 9 out of 10 patients of superficial infection were culture positive. Out of 8 culture positive superficial infections, one had different bacteria identified from the site. Drain tip culture was positive in 3.39% of drains and infection rate was positive in 1.88% of wounds. On statistical analysis we found drain tip culture sensitivity of 90%, specificity of 98.46%, positive predictive value of 52.9% and negative predictive value of 99.8%. Conclusion: Drain tip culture positivity helps in predicting the future chance of developing the infection. If drain tip culture is negative, then there is almost near nil chances of infection. [Int J Res Med Sci 2015; 3(2.000: 409-411

  8. SUBSURFACE REPOSITORY INTEGRATED CONTROL SYSTEM DESIGN

    Energy Technology Data Exchange (ETDEWEB)

    C.J. Fernado

    1998-09-17

    The purpose of this document is to develop preliminary high-level functional and physical control system architectures for the proposed subsurface repository at Yucca Mountain. This document outlines overall control system concepts that encompass and integrate the many diverse systems being considered for use within the subsurface repository. This document presents integrated design concepts for monitoring and controlling the diverse set of subsurface operations. The subsurface repository design will be composed of a series of diverse systems that will be integrated to accomplish a set of overall functions and objectives. The subsurface repository contains several Instrumentation and Control (I&C) related systems including: waste emplacement systems, ventilation systems, communication systems, radiation monitoring systems, rail transportation systems, ground control monitoring systems, utility monitoring systems (electrical, lighting, water, compressed air, etc.), fire detection and protection systems, retrieval systems, and performance confirmation systems. Each of these systems involve some level of I&C and will typically be integrated over a data communication network. The subsurface I&C systems will also integrate with multiple surface-based site-wide systems such as emergency response, health physics, security and safeguards, communications, utilities and others. The scope and primary objectives of this analysis are to: (1) Identify preliminary system level functions and interface needs (Presented in the functional diagrams in Section 7.2). (2) Examine the overall system complexity and determine how and on what levels these control systems will be controlled and integrated (Presented in Section 7.2). (3) Develop a preliminary subsurface facility-wide design for an overall control system architecture, and depict this design by a series of control system functional block diagrams (Presented in Section 7.2). (4) Develop a series of physical architectures that

  9. Drain Back, Low Flow Solar Combi Systems

    DEFF Research Database (Denmark)

    Perers, Bengt; Furbo, Simon; Fan, Jianhua

    2014-01-01

    Drain Back systems with ETC collectors are tested and analyzed in a Danish - Chinese cooperation project. Experiences from early work at DTU, with drain back, low flow systems, was used to design two systems: 1) One laboratory system at DTU and 2) One demonstration system in a single family house...

  10. Potential for Nitrogen Fixation and Nitrification in the Granite-Hosted Subsurface at Henderson Mine, CO

    OpenAIRE

    Swanner, Elizabeth D.; Templeton, Alexis S.

    2011-01-01

    The existence of life in the deep terrestrial subsurface is established, yet few studies have investigated the origin of nitrogen that supports deep life. Previously, 16S rRNA gene surveys cataloged a diverse microbial community in subsurface fluids draining from boreholes 3000 feet deep at Henderson Mine, CO, USA (Sahl et al., 2008). The prior characterization of the fluid chemistry and microbial community forms the basis for the further investigation here of the source of NH4 +. The reporte...

  11. Continuous 'Passive' flow-proportional monitoring of drainage using a new modified Sutro weir (MSW) unit.

    Science.gov (United States)

    Vendelboe, Anders Lindblad; Rozemeijer, Joachim; de Jonge, Lis Wollesen; de Jonge, Hubert

    2016-03-01

    In view of their crucial role in water and solute transport, enhanced monitoring of agricultural subsurface drain tile systems is important for adequate water quality management. However, existing monitoring techniques for flow and contaminant loads from tile drains are expensive and labour intensive. The aim of this study was to develop a cost-effective and simple method for monitoring loads from tile drains. The Flowcap is a modified Sutro weir (MSW) unit that can be attached to the outlet of tile drains. It is capable of registering total flow, contaminant loads and flow-averaged concentrations. The MSW builds on a modern passive sampling technique that responds to hydraulic pressure and measures average concentrations over time (days to months) for various substances. Mounting the samplers in the MSW allowed a flow-proportional part of the drainage to be sampled. Laboratory testing yielded high linear correlation between the accumulated sampler flow, q total, and accumulated drainage flow, Q total (r (2) > 0.96). The slope of these correlations was used to calculate the total drainage discharge from the sampled volume, and therefore contaminant load. A calibration of the MSW under controlled laboratory condition was needed before interpretation of the monitoring results was possible. The MSW does not require a shed, electricity, or maintenance. This enables large-scale monitoring of contaminant loads via tile drains, which can improve contaminant transport models and yield valuable information for the selection and evaluation of mitigation options to improve water quality. Results from this type of monitoring can provide data for the evaluation and optimisation of best management practices in agriculture in order to produce the highest yield without water quality and recipient surface waters being compromised.

  12. Drainage of shallow peat harvesting areas with pipe drains; Mataloituneen turvekentaen kuivatus putkisalaojilla

    Energy Technology Data Exchange (ETDEWEB)

    Klemetti, V.; Saenkiaho, K. [Vapo Oy, Jyvaeskylae (Finland); Rautiainen, O. [Ojamarkkinointi Oy, Heinola (Finland)

    1996-12-31

    This study aims to develop pipe draining technics in peat harvesting areas, which have been in active use so long time that the remaining peat layer is about one meter thick. The method should be technically and economically feasible as well as environmentally acceptable. Special attention is paid to pipe installation techniques, drain spacing and impacts on watercourses, which receive the drainage waters. After pipe installation the area is monitored by measuring pipe runoffs, water tables, moisture content of peat and quality of drain water

  13. Ceramic subsurface marker prototypes

    Energy Technology Data Exchange (ETDEWEB)

    Lukens, C.E. [Rockwell International Corp., Richland, WA (United States). Rockwell Hanford Operations

    1985-05-02

    The client submitted 5 sets of porcelain and stoneware subsurface (radioactive site) marker prototypes (31 markers each set). The following were determined: compressive strength, thermal shock resistance, thermal crazing resistance, alkali resistance, color retention, and chemical resistance.

  14. App-assisted external ventricular drain insertion.

    Science.gov (United States)

    Eftekhar, Behzad

    2016-09-01

    The freehand technique for insertion of an external ventricular drain (EVD) is based on fixed anatomical landmarks and does not take individual variations into consideration. A patient-tailored approach based on augmented-reality techniques using devices such as smartphones can address this shortcoming. The Sina neurosurgical assist (Sina) is an Android mobile device application (app) that was designed and developed to be used as a simple intraoperative neurosurgical planning aid. It overlaps the patient's images from previously performed CT or MRI studies on the image seen through the device camera. The device is held by an assistant who aligns the images and provides information about the relative position of the target and EVD to the surgeon who is performing EVD insertion. This app can be used to provide guidance and continuous monitoring during EVD placement. The author describes the technique of Sina-assisted EVD insertion into the frontal horn of the lateral ventricle and reports on its clinical application in 5 cases as well as the results of ex vivo studies of ease of use and precision. The technique has potential for further development and use with other augmented-reality devices.

  15. Mechanisms, Monitoring and Modeling Earth Fissure generation and Fault activation due to subsurface Fluid exploitation (M3EF3): A UNESCO-IGCP project in partnership with the UNESCO-IHP Working Group on Land Subsidence

    Science.gov (United States)

    Teatini, P.; Carreon-Freyre, D.; Galloway, D. L.; Ye, S.

    2015-12-01

    Land subsidence due to groundwater extraction was recently mentioned as one of the most urgent threats to sustainable development in the latest UNESCO IHP-VIII (2014-2020) strategic plan. Although advances have been made in understanding, monitoring, and predicting subsidence, the influence of differential vertical compaction, horizontal displacements, and hydrostratigraphic and structural features in groundwater systems on localized near-surface ground ruptures is still poorly understood. The nature of ground failure may range from fissuring, i.e., formation of an open crack, to faulting, i.e., differential offset of the opposite sides of the failure plane. Ground ruptures associated with differential subsidence have been reported from many alluvial basins in semiarid and arid regions, e.g. China, India, Iran, Mexico, Saudi Arabia, Spain, and the United States. These ground ruptures strongly impact urban, industrial, and agricultural infrastructures, and affect socio-economic and cultural development. Leveraging previous collaborations, this year the UNESCO Working Group on Land Subsidence began the scientific cooperative project M3EF3 in collaboration with the UNESCO International Geosciences Programme (IGCP n.641; www.igcp641.org) to improve understanding of the processes involved in ground rupturing associated with the exploitation of subsurface fluids, and to facilitate the transfer of knowledge regarding sustainable groundwater management practices in vulnerable aquifer systems. The project is developing effective tools to help manage geologic risks associated with these types of hazards, and formulating recommendations pertaining to the sustainable use of subsurface fluid resources for urban and agricultural development in susceptible areas. The partnership between the UNESCO IHP and IGCP is ensuring that multiple scientific competencies required to optimally investigate earth fissuring and faulting caused by groundwater withdrawals are being employed.

  16. Mass transfer effects in 2-D dual-permeability modeling of field preferential bromide leaching with drain effluent

    Directory of Open Access Journals (Sweden)

    H. H. Gerke

    2011-06-01

    Full Text Available Subsurface drained experimental fields are frequently used for studying preferential flow (PF in structured soils. Considering two-dimensional (2-D transport towards the drain, however, the relevance of mass transfer coefficients, apparently reflecting small-scale soil structural properties, for the water and solute balances of the entire drained field is largely unknown. This paper reviews and analyzes effects of mass transfer reductions on Br leaching for a subsurface drained experimental field using a numerical 2-D dual-permeability model (2D-DPERM. The sensitivity of the "diffusive" mass transfer component on bromide (Br leaching patterns is discussed. Flow and transport is simulated in a 2-D vertical cross-section using parameters, boundary conditions (BC, and data of a Br tracer irrigation experiment on a subsurface drained field (5000 m2 area at Bokhorst (Germany, where soils have developed from glacial till sediments. The 2D-DPERM simulation scenarios assume realistic irrigation and rainfall rates, and Br-application in the soil matrix (SM domain. The mass transfer reduction controls preferential tracer movement and can be related to physical and chemical properties at the interface between flow path and soil matrix in structured soil. A reduced solute mass transfer rate coefficient allows a better match of the Br mass flow observed in the tile drain discharge. The results suggest that coefficients of water and solute transfer between PF and SM domains have a clear impact on Br effluent from the drain. Amount and composition of the drain effluent is analyzed as a highly complex interrelation between temporally and spatially variable mass transfer in the 2-D vertical flow domain that depends on varying "advective" and "diffusive" transfer components, the spatial distribution of residual tracer concentrations, and the lateral flow fields in both domains from

  17. Brain Drain Is Real Problem

    Institute of Scientific and Technical Information of China (English)

    丁祖兴

    2000-01-01

    英语真会造词,一个brain drain就颇可玩味一番。它不是什么新词。《英汉大词典》早已收入,并提供一个释义:(因科学家、学者等向国外移居而造成的)人才流失,人才外流,智囊枯竭。brain drain原本是一个存在于第二、第三世界的现象。不料,近来在英国也冒出了这个问题: Britain must raise salaries and improve the career structure of scientists toplug(阻止)a brain drain. 本文的难句是: In a letter to the science journal Nature,Pierson and Cotgreave said thenumber of citations per article for the 252 scientists they had tracked weresignificantly higher for those who are living in the United Sates than for those whoremained in Britain. 读者朋友,当你遇到难句,经过思考分析,终于征服了它,你有怎样的感觉?下面我们提供上句的译文。你不妨先自译,而后再读我们的参考译文不迟。 参考译文: Pierson和Cotgreave在给《自然》这本科学杂志的一封信中说,对他们跟踪调查的252名科学家每篇文章被引用次数来看,那些已经移居美国的要比仍留居英国的要多得多。

  18. Subsurface Environment Sampler for Improved In Situ Characterization of Subsurface Microbial Communities

    Science.gov (United States)

    Barnhart, E. P.; Ruppert, L. F.; Orem, W. H.; McIntosh, J. C.; Cunningham, A. B.; Fields, M. W.; Hiebert, R.; Hyatt, R.

    2016-12-01

    There is an increasing threat that deep aquifers, an important drinking water resource, may be contaminated by the extraction and transport of fossil fuels. This threat increases the need for improved groundwater monitoring and the ability to predict the extent to which microbial activity may remediate such contamination. The characterization of subsurface microbial communities could provide an ideal biomonitoring tool for the assessment of subsurface contamination due to prokaryotes environmental ubiquity, rapidity of response to environmental perturbation and the important role they play in hydrocarbon degradation and bioremediation. New DNA sequencing technologies provide the opportunity to cost-effectively identify the vast subsurface microbial ecosystem, but use of this new technology is restricted due to issues with sampling. Prior subsurface microbiology studies have relied on core samples that are expensive to obtain hard to collect aseptically and/or ground water samples that do not reflect in situ microbial densities or activities. The development of down-well incubation of sterile sediment with a Diffusive Microbial Sampler (DMS) has emerged as an alternative method to sample subsurface microbial communities that minimizes cost and contamination issues associated with traditional methods. We have designed a Subsurface Environment Sampler with a DMS module that could enable the anaerobic transport of the in situ microbial community from the field for laboratory bioremediation studies. This sampler could provide an inexpensive and standard method for subsurface microbial sampling which would make this tool useful for Federal, State, private and local agencies interested in monitoring contamination or the effectiveness of bioremediation activities in subsurface aquifers.

  19. Quasinormal Modes of the Draining Bathtub

    Science.gov (United States)

    Oliveira, Leandro A.; Crispino, Luís C. B.; Dolan, Sam R.

    2015-01-01

    We present an investigation of the quasinormal modes of the draining bathtub using three different methods, namely: finite difference, continued fraction and geodesic expansion. We compare the results obtained with these different approaches.

  20. Best Practice -- Subsurface Investigations

    Energy Technology Data Exchange (ETDEWEB)

    Clark Scott

    2010-03-01

    These best practices for Subsurface Survey processes were developed at the Idaho National Laboratory (INL) and later shared and formalized by a sub-committee, under the Electrical Safety Committee of EFCOG. The developed best practice is best characterized as a Tier II (enhanced) survey process for subsurface investigations. A result of this process has been an increase in the safety and lowering of overall cost, when utility hits and their related costs are factored in. The process involves improving the methodology and thoroughness of the survey and reporting processes; or improvement in tool use rather than in the tools themselves. It is hoped that the process described here can be implemented at other sites seeking to improve their Subsurface Investigation results with little upheaval to their existing system.

  1. A method of determining and designing the drained slope in drained aluminum reduction cells

    Institute of Scientific and Technical Information of China (English)

    周乃君; 梅炽; 姜昌伟; 李劼

    2003-01-01

    Based on principles of electromagnetic fluid dynamics the exerted forces and movement states of melted aluminum in the traditional reduction cells and the drained cells were compared and analyzed in this paper. And based on the theory of slow movement, a formula in respect of the drained angle was derived, i.e. θ≥ (JzBx-JxBz)/ ρg-(JxBy-JxBx) . It can be seen that the drained slope can be decided by respectively multiplying the area current densities and magnetic induction intensities in three coordinate directions in aluminum reduction cells, and the drained slope is approximate to 0.6% derived from typical data based on measurement and calculation,which implies that the key parameter is obtained in designing of drained cells. The results can be used for a designing basis for drained cathodes.

  2. The Serpentinite Subsurface Microbiome

    Science.gov (United States)

    Schrenk, M. O.; Nelson, B. Y.; Brazelton, W. J.

    2011-12-01

    Microbial habitats hosted in ultramafic rocks constitute substantial, globally-distributed portions of the subsurface biosphere, occurring both on the continents and beneath the seafloor. The aqueous alteration of ultramafics, in a process known as serpentinization, creates energy rich, high pH conditions, with low concentrations of inorganic carbon which place fundamental constraints upon microbial metabolism and physiology. Despite their importance, very few studies have attempted to directly access and quantify microbial activities and distributions in the serpentinite subsurface microbiome. We have initiated microbiological studies of subsurface seeps and rocks at three separate continental sites of serpentinization in Newfoundland, Italy, and California and compared these results to previous analyses of the Lost City field, near the Mid-Atlantic Ridge. In all cases, microbial cell densities in seep fluids are extremely low, ranging from approximately 100,000 to less than 1,000 cells per milliliter. Culture-independent analyses of 16S rRNA genes revealed low-diversity microbial communities related to Gram-positive Firmicutes and hydrogen-oxidizing bacteria. Interestingly, unlike Lost City, there has been little evidence for significant archaeal populations in the continental subsurface to date. Culturing studies at the sites yielded numerous alkaliphilic isolates on nutrient-rich agar and putative iron-reducing bacteria in anaerobic incubations, many of which are related to known alkaliphilic and subsurface isolates. Finally, metagenomic data reinforce the culturing results, indicating the presence of genes associated with organotrophy, hydrogen oxidation, and iron reduction in seep fluid samples. Our data provide insight into the lifestyles of serpentinite subsurface microbial populations and targets for future quantitative exploration using both biochemical and geochemical approaches.

  3. Terrestrial Subsurface Ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Wilkins, Michael J.; Fredrickson, Jim K.

    2015-10-15

    The Earth’s crust is a solid cool layer that overlays the mantle, with a varying thickness of between 30-50 km on continental plates, and 5-10 km on oceanic plates. Continental crust is composed of a variety of igneous, metamorphic, and sedimentary rocks that weather and re-form over geologic cycles lasting millions to billions of years. At the crust surface, these weathered minerals and organic material combine to produce a variety of soils types that provide suitable habitats and niches for abundant microbial diversity (see Chapter 4). Beneath this soil zone is the subsurface. Once thought to be relatively free of microorganisms, recent estimates have calculated that between 1016-1017 g C biomass (2-19% of Earth’s total biomass) may be present in this environment (Whitman et al., 1998;McMahon and Parnell, 2014). Microbial life in the subsurface exists across a wide range of habitats: in pores associated with relatively shallow unconsolidated aquifer sediments to fractures in bedrock formations that are more than a kilometer deep, where extreme lithostatic pressures and temperatures are encountered. While these different environments contain varying physical and chemical conditions, the absence of light is a constant. Despite this, diverse physiologies and metabolisms enable microorganisms to harness energy and carbon for growth in water-filled pore spaces and fractures. Carbon and other element cycles are driven by microbial activity, which has implications for both natural processes and human activities in the subsurface, e.g., bacteria play key roles in both hydrocarbon formation and degradation. Hydrocarbons are a major focus for human utilization of the subsurface, via oil and gas extraction and potential geologic CO2 sequestration. The subsurface is also utilized or being considered for sequestered storage of high-level radioactive waste from nuclear power generation and residual waste from past production of weapons grade nuclear materials. While our

  4. Monitoring and Modelling of the Long-term Effect of Changing Agriculture on Nitrate Concentrations in Groundwater and Streams in Small Experimental subsurface dominant watersheds

    Science.gov (United States)

    Fovet, Ophelie; Hrachowitz, Markus; Ruiz, Laurent; Faucheux, Mikael; Aquilina, Luc; Molenat, Jerome; Durand, Patrick; Gascuel-Odoux, Chantal

    2013-04-01

    Management and prediction of water quality in watersheds is critical especially in agricultural regions. Water quality in watersheds varies in a very broad range of temporal scales, from storm events or diurnal cycles, seasonal cycles, to pluriannual trends. It varies also spatially, with contrasted dynamics of solutes in the soil, the recharge, the groundwater and the streams. This is challenging both in term of monitoring and of modelling. Agricultural watershed are interesting to discriminate short term from long term mechanisms, as most of them experienced drastic changes in agricultural inputs in the past 50 years. Recently, the analysis of long-term stream water quality data sets has allowed improving significantly our understanding of solute residence time in watersheds [1]. However, as historical agricultural practices are usually poorly documented, large assumptions are needed to achieve such exercises. Despite the large amount of research in the past 30 years dedicated to understand and model the dynamics of agricultural-borne diffuse pollution at the watershed level, there is no accepted perceptual model explaining the observed dynamics of water quality simultaneously at all the relevant spatial and temporal scales and a very little number of sites sufficiently documented to test it. We present results from a long-term comprehensive monitoring of agricultural inputs and chemistry of surface water (20 years) and groundwater (10 years) in small experimental watersheds (ORE AgrHys, http://www.inra.fr/ore_agrhys/). Results showed (i) a strong stability in the stream chemistry whereas agricultural inputs in these small watersheds were highly variable from year to year, (ii) a high spatial heterogeneity of the groundwater chemistry, both laterally along the hillslope and vertically and (iii) contrasted behavior of long-term trends in agricultural inputs and nitrate concentration in groundwater. A simple model was developed, based on linear reservoirs, and run

  5. Application of Prefabricated Vertical Drain in Soil Improvement

    Directory of Open Access Journals (Sweden)

    Tedjakusuma B.

    2012-01-01

    Full Text Available Although the use of Prefabricated Vertical Drain (PVD in soil improvement is not new, this paper is interesting since it gives the full spectrum from preliminary design stage; trial embankment and pilot test to final soil improvement. The final installation of the PVD was based on the soil investigation report and the results of instrumentation monitoring. Finally, using back analysis, vertical and horizontal coefficients of consolidation and compression index can be determined, which can be applied to predict a more accurate prediction of settlement.

  6. Subsurface connection methods for subsurface heaters

    Energy Technology Data Exchange (ETDEWEB)

    Vinegar, Harold J. (Bellaire, TX); Bass, Ronald Marshall (Houston, TX); Kim, Dong Sub (Sugar Land, TX); Mason, Stanley Leroy (Allen, TX); Stegemeier, George Leo (Houston, TX); Keltner, Thomas Joseph (Spring, TX); Carl, Jr., Frederick Gordon (Houston, TX)

    2010-12-28

    A system for heating a subsurface formation is described. The system includes a first elongated heater in a first opening in the formation. The first elongated heater includes an exposed metal section in a portion of the first opening. The portion is below a layer of the formation to be heated. The exposed metal section is exposed to the formation. A second elongated heater is in a second opening in the formation. The second opening connects to the first opening at or near the portion of the first opening below the layer to be heated. At least a portion of an exposed metal section of the second elongated heater is electrically coupled to at least a portion of the exposed metal section of the first elongated heater in the portion of the first opening below the layer to be heated.

  7. Laparoscopic radical prostatectomy: omitting a pelvic drain

    Directory of Open Access Journals (Sweden)

    David Canes

    2008-03-01

    Full Text Available PURPOSE: Our goal was to assess outcomes of a selective drain placement strategy during laparoscopic radical prostatectomy (LRP with a running urethrovesical anastomosis (RUVA using cystographic imaging in all patients. Materials and Methods: A retrospective chart review was performed for all patients undergoing LRP between January 2003 and December 2004. The anastomosis was performed using a modified van Velthoven technique. A drain was placed at the discretion of the senior surgeon when a urinary leak was demonstrated with bladder irrigation, clinical suspicion for a urinary leak was high, or a complex bladder neck reconstruction was performed. Routine postoperative cystograms were obtained. RESULTS: 208 patients underwent LRP with a RUVA. Data including cystogram was available for 206 patients. The overall rate of cystographic urine leak was 5.8%. A drain was placed in 51 patients. Of these, 8 (15.6% had a postoperative leak on cystogram. Of the 157 undrained patients, urine leak was radiographically visible in 4 (2.5%. The higher leak rate in the drained vs. undrained cohort was statistically significant (p = 0.002. Twenty-four patients underwent pelvic lymph node dissection (8 drained, 16 undrained. Three undrained patients developed lymphoceles, which presented clinically on average 3 weeks postoperatively. There were no urinomas or hematomas in either group. CONCLUSIONS: Routine placement of a pelvic drain after LRP with a RUVA is not necessary, unless the anastomotic integrity is suboptimal intraoperatively. Experienced clinical judgment is essential and accurate in identifying patients at risk for postoperative leakage. When suspicion is low, omitting a drain does not increase morbidity.

  8. Design and construction of a French drain for groundwater diversion in solid waste storage area six at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Davis, E.C.; Stansfield, R.G.

    1984-05-01

    Engineering modifiations or engineered barriers have been suggested as a possible means of improving the performance of low-level waste disposal sites located in the humid eastern United States. Design and construction of a passive French drain, located in Solid Waste Storage Area No. 6 at the Oak Ridge National Laboratory. The drain was designed to hydrologically isolate a 0.44-ha area that contains a group of 49 low-level waste trenches by separating it from upgradient groundwater recharge areas. The 252-m drain (maximum depth = 9 m) that surrounds the group of trenches on the north and east sides was excavated, lined with filter fabric, backfilled with crushed stone, and covered with a 0.6 m layer of excavated material at an estimated cost of $153,000. Of the 17 days it took to complete the work, about 5 days were spent excavating sidewall slide material that fell into the drain during excavation. Photography of the drain wall revealed the contorted structure of the weathered shale, which was responsible for many of the slides. Monitoring wells placed at intervals on the drain centerline indicate that groundwater is draining from the surrounding Maryville Formation (Conasauga Group); flows at catch basin No. 2 ranged from a base flow of 4 to 7 L/min to a maximum of 35 L/min, recorded on October 13. In response to groundwater flow in the drain, water levels in several monitoring wells adjacent to the drain have dropped by as much as 2.24 m to an elevation only slightly higher than the bottom of the French drain. In addition to the general lowering of the water table in the vicinity of the drain, water levels in three trenches began to subside, indicating that the drain is beginning to have an effect on the water in the trenches as well. Further monitoring of both drain discharge and water levels in monitoring wells across the site is continuing.

  9. In-Situ Measurement of Vertical Bypass Flow Using a Drain Gauge

    Science.gov (United States)

    Payne, W. L.; Brooks, E. S.; Sanchez-Murillo, R.

    2012-12-01

    With widespread technological advances in precision fertilizer application in agricultural production there is an increasing need to better understand the subsurface transport and vertical leaching of nitrate fertilizers. Optimizing fertilizer application reduces cost to the grower and improves downstream water supplies. In-situ measurement of nitrate flux is difficult and expensive. In this experiment nitrate transport was measured using a passive capillary drain gauge developed by Decagon Devices in Pullman, WA. The drain gauge measures water flux from a 30 cm diameter soil core 60 cm in length. In this study the drain gauge was installed 0.9 m to 1.5 m below the soil surface in a no-till field in cereal grain production. A potassium bromide tracer was applied using a rainfall simulator over a 5 day period to the drain gage roughly one year following installation of the drain gauge and approximately 3 months after being seeded to spring wheat. Bromide tracer movement was compared to measurements of stable oxygen/hydrogen isotopes, and nitrate in the leachate and from soil water extracted within the soil profile using suction lysimeters. Significant preferential flow occurred during the experiment. Vertical leaching initiated at the 1.5 m depth at a time when the wetting front had just reached the 0.3 cm depth. By the time the wetting front had reached a 1.5 m depth, 18 kg/ha of nitrogen fertilizer had leached beyond the root zone. Once the wetting front reached 1.5 m bromide and stable isotope data indicated that 60% of the total flow occurred through macropore flow. Stable isotope measurements responded similarly to the electrical conductivity and nitrate measurements suggesting their potential use as a groundwater tracer. The nitrate leaching observed in the drain gauge would not have been accounted for if soil moisture measurements alone were used to indicate potential nitrate transport.

  10. 21 CFR 868.5995 - Tee drain (water trap).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tee drain (water trap). 868.5995 Section 868.5995...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5995 Tee drain (water trap). (a) Identification. A tee drain (water trap) is a device intended to trap and drain water that collects in...

  11. Perfect drain for the Maxwell fish eye lens

    Science.gov (United States)

    González, Juan C.; Benítez, Pablo; Miñano, Juan C.

    2011-02-01

    Perfect imaging of electromagnetic waves using the Maxwell fish eye (MFE) requires a new concept: a point called the perfect drain that we shall call the perfect point drain. From the mathematical point of view, a perfect point drain is just like an ideal point source, except that it drains power from the electromagnetic field instead of generating it. We introduce here the perfect drain for the MFE as a dissipative region of non-zero size that completely drains the power from the point source. To accomplish this goal, the region must have a precise complex permittivity that depends on its size as well as on the frequency. The perfect point drain is obtained when the diameter of the perfect drain tends to zero. This interpretation of the perfect point drain is connected well with common concepts of electromagnetic theory, opening up both modeling in computer simulations and experimental verification of setups containing a perfect point drain.

  12. Subsurface contaminants focus area

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites.

  13. Asphalt for draining pavement; Haisuisei hosoyo asphalt

    Energy Technology Data Exchange (ETDEWEB)

    Yamamori, H.; Nakamura, Y. [Mitsubishi Oil Co. Ltd., Tokyo (Japan)

    1994-12-28

    The effect and functions of draining pavement with a superb performance as a paved road were introduced. In the draining pavement, a porous asphalt mixture was used for the surface and base layers of the road and the remaining layers are not in water penetration property. It is necessary that void continues to prevent water film from being generated when rain falls and resistance against water flow is small but durability has problems when the void rate is large. According to the balance, the void rate ranges from 20 to 23 % for execution, thus preventing water splash on a rainy day, hydroplaning, and dazzlement, etc. due to reflection of light. The noise during driving due to the tire of an automobile is reduced by 5 to 6 dB owing to draining pavement. Also, engine noise is reduced to 40 - 60 % since the surface is porous. In the draining pavement, a high-viscosity asphalt is used for a binder and the void rate is large, thus preventing temperature to rise easily due to heat release and achieving an improved flow behavior. 6 refs., 11 figs., 14 tabs.

  14. Modelling bacterial water quality in streams draining pastoral land.

    Science.gov (United States)

    Collins, Rob; Rutherford, Kit

    2004-02-01

    A model has been developed to predict concentrations of the faecal bacteria indicator E. coli in streams draining grazed hill-country in New Zealand. The long-term aim of the modelling is to assess effects of land management upon faecal contamination and, in the short term, to provide a framework for field-based research. A daily record of grazing livestock is used to estimate E. coli inputs to a catchment, and transport of bacteria to the stream network is simulated within surface and subsurface flows. Deposition of E. coli directly to streams is incorporated where cattle have access to them, and areas of permanent saturation ('seepage zones') are also represented. Bacteria are routed down the stream network and in-stream processes of deposition and entrainment are simulated. Die-off, both on land and in water, is simulated as a function of temperature and solar radiation. The model broadly reproduces observed E. coli concentrations in a hill-country catchment grazed by sheep and beef cattle, although uncertainty exists with a number of the processes represented. The model is sensitive to the distance over which surface runoff delivers bacteria to a stream and the amount of excretion direct to streams and onto seepage zones. Scenario analysis suggests that riparian buffer strips may improve bacterial water quality both by eliminating livestock defaecation in and near streams, and by trapping of bacteria by the riparian vegetation.

  15. Drain Current Modulation of a Single Drain MOSFET by Lorentz Force for Magnetic Sensing Application

    Directory of Open Access Journals (Sweden)

    Prasenjit Chatterjee

    2016-08-01

    Full Text Available This paper reports a detailed analysis of the drain current modulation of a single-drain normal-gate n channel metal-oxide semiconductor field effect transistor (n-MOSFET under an on-chip magnetic field. A single-drain n-MOSFET has been fabricated and placed in the center of a square-shaped metal loop which generates the on-chip magnetic field. The proposed device designed is much smaller in size with respect to the metal loop, which ensures that the generated magnetic field is approximately uniform. The change of drain current and change of bulk current per micron device width has been measured. The result shows that the difference drain current is about 145 µA for the maximum applied magnetic field. Such changes occur from the applied Lorentz force to push out the carriers from the channel. Based on the drain current difference, the change in effective mobility has been detected up to 4.227%. Furthermore, a detailed investigation reveals that the device behavior is quite different in subthreshold and saturation region. A change of 50.24 µA bulk current has also been measured. Finally, the device has been verified for use as a magnetic sensor with sensitivity 4.084% (29.6 T−1, which is very effective as compared to other previously reported works for a single device.

  16. Subsurface Biogeochemistry of Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Kersting, Annie B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Univ. Relations and Science Education; Zavarin, Mavrik [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Glenn T. Seaborg Inst.

    2016-06-29

    A major scientific challenge in environmental sciences is to identify the dominant processes controlling actinide transport in the environment. It is estimated that currently, over 2200 metric tons of plutonium (Pu) have been deposited in the subsurface worldwide, a number that increases yearly with additional spent nuclear fuel (Ewing et al., 2010). Plutonium has been shown to migrate on the scale of kilometers, giving way to a critical concern that the fundamental biogeochemical processes that control its behavior in the subsurface are not well understood (Kersting et al., 1999; Novikov et al., 2006; Santschi et al., 2002). Neptunium (Np) is less prevalent in the environment; however, it is predicted to be a significant long-term dose contributor in high-level nuclear waste. Our focus on Np chemistry in this Science Plan is intended to help formulate a better understanding of Pu redox transformations in the environment and clarify the differences between the two long-lived actinides. The research approach of our Science Plan combines (1) Fundamental Mechanistic Studies that identify and quantify biogeochemical processes that control actinide behavior in solution and on solids, (2) Field Integration Studies that investigate the transport characteristics of Pu and test our conceptual understanding of actinide transport, and (3) Actinide Research Capabilities that allow us to achieve the objectives of this Scientific Focus Area (SFA and provide new opportunities for advancing actinide environmental chemistry. These three Research Thrusts form the basis of our SFA Science Program (Figure 1).

  17. Drained Triaxial Tests on Eastern Scheldt Sand

    DEFF Research Database (Denmark)

    Praastrup, U.; Jakobsen, Kim Parsberg

    In the process of understanding and developing models for geomaterials, the stress-strain behaviour is commonly studied by performing triaxial tests. In the present study static triaxial tests have been performed to gain knowledge of the stress-strain behaviour of frictional materials during...... monotonic loading. The tests reported herein are all drained tests, starting from different initial states of stress and following various stress paths. AIl the tests are performed on reconstituted medium dense specimens of Eastern Scheldt Sand....

  18. 46 CFR 45.157 - Scuppers and gravity drains.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Scuppers and gravity drains. 45.157 Section 45.157 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES GREAT LAKES LOAD LINES Conditions of Assignment § 45.157 Scuppers and gravity drains. Scuppers and gravity deck drains from...

  19. MEDICAL BRAIN DRAIN - A THEORETICAL APPROACH

    Directory of Open Access Journals (Sweden)

    Boncea Irina

    2013-07-01

    Full Text Available Medical brain drain is defined as the migration of health personnel from developing countries to developed countries and between industrialized nations in search for better opportunities. This phenomenon became a global growing concern due to its impact on both the donor and the destination countries. This article aims to present the main theoretical contributions starting from 1950 until today and the historical evolution, in the attempt of correlating the particular case of medical brain drain with the theory and evolution of the brain drain in general. This article raises questions and offers answers, identifies the main issues and looks for possible solutions in order to reduce the emigration of medical doctors. Factors of influence include push (low level of income, poor working conditions, the absence of job openings and social recognition, oppressive political climate and pull (better remuneration and working conditions, prospects for career development, job satisfaction, security factors. Developing countries are confronting with the loss of their most valuable intellectuals and the investment in their education, at the benefit of developed nations. An ethical debate arises as the disparities between countries increases, industrialized nations filling in the gaps in health systems with professionals from countries already facing shortages. However, recent literature emphasizes the possibility of a “beneficial brain drain” through education incentives offered by the emigration prospects. Other sources of “brain gain” for donor country are the remittances, the scientific networks and return migration. Measures to stem the medical brain drain involve the common effort and collaboration between developing and developed countries and international organizations. Measures adopted by donor countries include higher salaries, better working conditions, security, career opportunities, incentives to stimulate return migration. Destination

  20. SUBSURFACE FACILITY WORKER DOES ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    V. Arakali; E. Faillace; A. Linden

    2004-02-27

    The purpose of this design calculation is to estimate radiation doses received by personnel working in the subsurface facility of the repository performing emplacement, maintenance, and retrieval operations under normal conditions. The results of this calculation will be used to support the design of the subsurface facilities and provide occupational dose estimates for the License Application.

  1. Modeling and analysis of sub-surface leakage current in nano-MOSFET under cutoff regime

    Science.gov (United States)

    Swami, Yashu; Rai, Sanjeev

    2017-02-01

    The high leakage current in nano-meter regimes is becoming a significant portion of power dissipation in nano-MOSFET circuits as threshold voltage, channel length, and gate oxide thickness are scaled down to nano-meter range. Precise leakage current valuation and meticulous modeling of the same at nano-meter technology scale is an increasingly a critical work in designing the low power nano-MOSFET circuits. We present a specific compact model for sub-threshold regime leakage current in bulk driven nano-MOSFETs. The proposed logical model is instigated and executed into the latest updated PTM bulk nano-MOSFET model and is found to be in decent accord with technology-CAD simulation data. This paper also reviews various transistor intrinsic leakage mechanisms for nano-MOSFET exclusively in weak inversion, like drain-induced barricade lowering (DIBL), gate-induced drain leakage (GIDL), gate oxide tunneling (GOT) leakage etc. The root cause of the sub-surface leakage current is mainly due to the nano-scale short channel length causing source-drain coupling even in sub-threshold domain. Consequences leading to carriers triumphing the barricade between the source and drain. The enhanced model effectively considers the following parameter dependence in the account for better-quality value-added results like drain-to-source bias (VDS), gate-to-source bias (VGS), channel length (LG), source/drain junction depth (Xj), bulk doping concentration (NBULK), and operating temperature (Top).

  2. Perfect drain for the Maxwell Fish Eye lens

    CERN Document Server

    Gonzalez, Juan C; Minano, Juan C

    2010-01-01

    Perfect imaging for electromagnetic waves using the Maxwell Fish Eye (MFE) requires a new concept: the perfect drain. From the mathematical point of view, a perfect point drain is just like an ideal point source, except that it drains power from the electromagnetic field instead of generating it. We show here that the perfect drain for the MFE can be seen as a dissipative region the diameter of which tends to zero. The complex permittivity $\\varepsilon$ of this region cannot take arbitrary values, however, since it depends on the size of the drain as well as on the frequency. This interpretation of the perfect drain connects well with central concepts of electromagnetic theory. This opens up both the modeling in computer simulations and the experimental verification of the perfect drain.

  3. An overview of impact of subsurface drainage project studies on salinity management in developing countries

    Science.gov (United States)

    Tiwari, Priyanka; Goel, Arun

    2017-05-01

    Subsurface drainage has been used for more than a century to keep water table at a desired level of salinity and waterlogging control. This paper has been focused on the impact assessment of pilot studies in India and some other countries from 1969 to 2014 . This review article may prove quite useful in deciding the installation of subsurface drainage project depending on main design parameters, such as drain depth and drain spacing, installation area and type of used outlet. A number of pilot studies have been taken up in past to solve the problems of soil salinity and waterlogging in India. The general guidelines that arise on the behalf of this review paper are to adapt drain depth >1.2 m and spacing depending on soil texture classification, i.e., 100-150 m for light-textured soils, 50-100 m for medium-textured soils and 30-50 m heavy-textured soils, for better result obtained from the problem areas in Indian soil and climatic conditions. An attempt has been made in the manner of literature survey to highlight the salient features of these studies, and it is hopeful to go a long way in selecting design parameters for subsurface drainage problems in the future with similar soil, water table and climatic conditions.

  4. Evaluation of the Dutch subsurface geoportal: What lies beneath?

    NARCIS (Netherlands)

    Lance, K.T.; Georgiadou, Y.; Bregt, A.K.

    2011-01-01

    This paper focuses on a geoportal from a “what lies beneath” perspective. It analyses processes of budgeting, planning, monitoring, performance measurement, and reporting of the national initiative titled Digital Information of the Dutch Subsurface (known by its Dutch acronym, DINO). The study is us

  5. Acoustic metric of the compressible draining bathtub

    Science.gov (United States)

    Cherubini, C.; Filippi, S.

    2011-10-01

    The draining bathtub flow, a cornerstone in the theory of acoustic black holes, is here extended to the case of exact solutions for compressible nonviscous flows characterized by a polytropic equation of state. Investigating the analytical configurations obtained for selected values of the polytropic index, it is found that each of them becomes nonphysical at the so called limiting circle. By studying the null geodesics structure of the corresponding acoustic line elements, it is shown that such a geometrical locus coincides with the acoustic event horizon. This region is characterized also by an infinite value of space-time curvature, so the acoustic analogy breaks down there. Possible applications for artificial and natural vortices are finally discussed.

  6. Scattering by a draining bathtub vortex

    Science.gov (United States)

    Dolan, Sam R.; Oliveira, Ednilton S.

    2013-06-01

    We present an analysis of scattering by a fluid-mechanical “black hole analogue,” known as the draining bathtub vortex: a two-dimensional flow that possesses both a sonic horizon and an ergoregion. We consider the scattering of a plane wave of fixed frequency impinging upon the vortex. At low frequency, we encounter a modified Aharonov-Bohm effect. At high frequencies, we observe regular “orbiting” oscillations in the scattering length, due to interference between contra-orbiting rays. We present approximate formulas for both effects and a selection of numerical results obtained by summing partial-wave series. Finally, we examine interference patterns in the vicinity of the vortex and highlight the prospects for experimental investigation.

  7. Scattering by a draining bathtub vortex

    CERN Document Server

    Dolan, Sam R

    2013-01-01

    We present an analysis of scattering by a fluid-mechanical `black hole analogue', known as the draining bathtub (DBT) vortex: a two-dimensional flow which possesses both a sonic horizon and an ergoregion. We consider the scattering of a plane wave of fixed frequency impinging upon the vortex. At low frequency, we encounter a modified Aharonov-Bohm effect. At high frequencies, we observe regular `orbiting' oscillations in the scattering length, due to interference between contra-orbiting rays. We present approximate formulae for both effects, and a selection of numerical results obtained by summing partial-wave series. Finally, we examine interference patterns in the vicinity of the vortex, and highlight the prospects for experimental investigation.

  8. Thermokarst lakes, drainage, and drained basins

    Science.gov (United States)

    Grosse, G.; Jones, B.; Arp, C.; Shroder, John F.

    2013-01-01

    Thermokarst lakes and drained lake basins are widespread in Arctic and sub-Arctic permafrost lowlands with ice-rich sediments. Thermokarst lake formation is a dominant mode of permafrost degradation and is linked to surface disturbance, subsequent melting of ground ice, surface subsidence, water impoundment, and positive feedbacks between lake growth and permafrost thaw, whereas lake drainage generally results in local permafrost aggradation. Thermokarst lakes characteristically have unique limnological, morphological, and biogeochemical characteristics that are closely tied to cold-climate conditions and permafrost properties. Thermokarst lakes also have a tendency toward complete or partial drainage through permafrost degradation and erosion. Thermokarst lake dynamics strongly affect the development of landscape geomorphology, hydrology, and the habitat characteristic of permafrost lowlands.

  9. Fine root production at drained peatland sites

    Energy Technology Data Exchange (ETDEWEB)

    Finer, L. [Finnish Forest Research Inst. (Finland). Joensuu Research Station; Laine, J. [Helsinki Univ. (Finland). Dept. of Forest Ecology

    1996-12-31

    The preliminary results of the Finnish project `Carbon balance of peatlands and climate change` show that fine roots play an important role in carbon cycling on peat soils. After drainage the roots of mire species are gradually replaced by the roots of trees and other forest species. Pine fine root biomass reaches a maximum level by the time of crown closure, some 20 years after drainage on pine mire. The aim of this study is to compare the results of the sequential coring method and the ingrowth bag method used for estimating fine root production on three drained peatland sites of different fertility. The results are preliminary and continuation to the work done in the study Pine root production on drained peatlands, which is part of the Finnish project `Carbon cycling on peatlands and climate change`. In this study the fine root biomass was greater on the poor site than on the rich sites. Pine fine root production increased with the decrease in fertility. Root turnover and the production of field layer species were greater on the rich sites than on the poor site. The results suggested that the in growth bag method measured more root activity than the magnitude of production. More than two growing seasons would have been needed to balance the root dynamics in the in growth bags with the surrounding soil. That time would probably have been longer on the poor site than on the rich ones and longer for pine and field layer consisting of dwarf shrubs than for field layer consisting of sedge like species and birch. (11 refs.)

  10. Late sensory changes following chest drain insertion during thoracotomy

    DEFF Research Database (Denmark)

    Wildgaard, K; Ringsted, T K; Ravn, J

    2013-01-01

    ) patients, in regard to pain and sensory dysfunction. METHODS: We quantified thermal and pressure thresholds on both the chest drain side and the contralateral side in 11 PTPS patients and 10 pain-free post-thoracotomy patients 33 months after the thoracotomy. On average, each patient had two chest drains...... inserted during surgery. RESULTS: At follow up, two patients experienced pain at the chest drain sites, but had maximal pain near or at the thoracotomy scar. Comparison between chest drain side and control side for all 21 patients demonstrated significantly elevated thresholds for warmth detection and heat...

  11. Minimally invasive surgical technique for tethered surgical drains

    Directory of Open Access Journals (Sweden)

    Shane R Hess

    2017-01-01

    Full Text Available A feared complication of temporary surgical drain placement is from the technical error of accidentally suturing the surgical drain into the wound. Postoperative discovery of a tethered drain can frequently necessitate return to the operating room if it cannot be successfully removed with nonoperative techniques. Formal wound exploration increases anesthesia and infection risk as well as cost and is best avoided if possible. We present a minimally invasive surgical technique that can avoid the morbidity associated with a full surgical wound exploration to remove a tethered drain when other nonoperative techniques fail.

  12. Subsurface Geotechnical Parameters Report

    Energy Technology Data Exchange (ETDEWEB)

    D. Rigby; M. Mrugala; G. Shideler; T. Davidsavor; J. Leem; D. Buesch; Y. Sun; D. Potyondy; M. Christianson

    2003-12-17

    The Yucca Mountain Project is entering a the license application (LA) stage in its mission to develop the nation's first underground nuclear waste repository. After a number of years of gathering data related to site characterization, including activities ranging from laboratory and site investigations, to numerical modeling of processes associated with conditions to be encountered in the future repository, the Project is realigning its activities towards the License Application preparation. At the current stage, the major efforts are directed at translating the results of scientific investigations into sets of data needed to support the design, and to fulfill the licensing requirements and the repository design activities. This document addresses the program need to address specific technical questions so that an assessment can be made about the suitability and adequacy of data to license and construct a repository at the Yucca Mountain Site. In July 2002, the U.S. Nuclear Regulatory Commission (NRC) published an Integrated Issue Resolution Status Report (NRC 2002). Included in this report were the Repository Design and Thermal-Mechanical Effects (RDTME) Key Technical Issues (KTI). Geotechnical agreements were formulated to resolve a number of KTI subissues, in particular, RDTME KTIs 3.04, 3.05, 3.07, and 3.19 relate to the physical, thermal and mechanical properties of the host rock (NRC 2002, pp. 2.1.1-28, 2.1.7-10 to 2.1.7-21, A-17, A-18, and A-20). The purpose of the Subsurface Geotechnical Parameters Report is to present an accounting of current geotechnical information that will help resolve KTI subissues and some other project needs. The report analyzes and summarizes available qualified geotechnical data. It evaluates the sufficiency and quality of existing data to support engineering design and performance assessment. In addition, the corroborative data obtained from tests performed by a number of research organizations is presented to reinforce

  13. Reactive transport benchmarks for subsurface environmental simulation

    Energy Technology Data Exchange (ETDEWEB)

    Steefel, Carl I.; Yabusaki, Steven B.; Mayer, K. U.

    2015-06-01

    Over the last 20 years, we have seen firsthand the evolution of multicomponent reactive transport modeling and the expanding range and increasing complexity of subsurface applications it is being used to address. There is a growing reliance on reactive transport modeling (RTM) to address some of the most compelling issues facing our planet: climate change, nuclear waste management, contaminant remediation, and pollution prevention. While these issues are motivating the development of new and improved capabilities for subsurface environmental modeling using RTM (e.g., biogeochemistry from cell-scale physiology to continental-scale terrestrial ecosystems, nonisothermal multiphase conditions, coupled geomechanics), there remain longstanding challenges in characterizing the natural variability of hydrological, biological, and geochemical properties in subsurface environments and limited success in transferring models between sites and across scales. An equally important trend over the last 20 years is the evolution of modeling from a service sought out after data has been collected to a multifaceted research approach that provides (1) an organizing principle for characterization and monitoring activities; (2) a systematic framework for identifying knowledge gaps, developing and integrating new knowledge; and (3) a mechanistic understanding that represents the collective wisdom of the participating scientists and engineers. There are now large multidisciplinary projects where the research approach is model-driven, and the principal product is a holistic predictive simulation capability that can be used as a test bed for alternative conceptualizations of processes, properties, and conditions. Much of the future growth and expanded role for RTM will depend on its continued ability to exploit technological advancements in the earth and environmental sciences. Advances in measurement technology, particularly in molecular biology (genomics), isotope fractionation, and high

  14. Generation of airborne Listeria innocua from model floor drains.

    Science.gov (United States)

    Berrang, Mark E; Frank, Joseph F

    2012-07-01

    Listeria monocytogenes can colonize floor drains in poultry processing and further processing facilities, remaining present even after cleaning and disinfection. Therefore, during wash down, workers exercise caution to avoid spraying hoses directly into drains in an effort to prevent the escape and transfer of drain microflora to food contact surfaces. The objective of this study was to examine the extent to which an inadvertent water spray into a colonized floor drain can cause the spread of airborne Listeria. Listeria innocua was used to inoculate a polyvinyl chloride model floor drain, resulting in approximately 10(8) cells per ml of phosphate-buffered saline and 10(4) attached cells per square centimeter of inner surface. Each model drain was subjected to a 2-s spray of tap water at 68.9 kPa from a distance of 1 m. Drains were sprayed while filled and again after emptying. Airborne cells were collected by using sedimentation plates containing Listeria selective agar which were placed on the floor and walls of a contained room at incremental horizontal and vertical distances of 0.6, 1.2, 2.4, or 4.0 m from the drain. Sedimentation plates were exposed for 10 min. A mechanical sampler was used to also collect air by impaction on the surface of Listeria selective agar to determine the number of cells per liter of air. The experiment was conducted in triplicate rooms for each of four replications. L. innocua was detected on sedimentation plates on the floor as far as 4.0 m from the drain and on walls as high as 2.4 m above the floor and 4 m from the drain. A 2-s spray with a water hose into a contaminated drain can cause airborne spread of Listeria, resulting in the potential for cross-contamination of food contact surfaces, equipment, and exposed product.

  15. Scenario simulation based assessment of subsurface energy storage

    Science.gov (United States)

    Beyer, C.; Bauer, S.; Dahmke, A.

    2014-12-01

    -processes, mutual effects and influences on protected entities. The scenario analyses allow the deduction of monitoring concepts as well as a first methodology for large scale spatial planning of the geological subsurface. This concept is illustrated for different storage options and their impacts in space and time.

  16. Noble gas fractionation during subsurface gas migration

    Science.gov (United States)

    Sathaye, Kiran J.; Larson, Toti E.; Hesse, Marc A.

    2016-09-01

    Environmental monitoring of shale gas production and geological carbon dioxide (CO2) storage requires identification of subsurface gas sources. Noble gases provide a powerful tool to distinguish different sources if the modifications of the gas composition during transport can be accounted for. Despite the recognition of compositional changes due to gas migration in the subsurface, the interpretation of geochemical data relies largely on zero-dimensional mixing and fractionation models. Here we present two-phase flow column experiments that demonstrate these changes. Water containing a dissolved noble gas is displaced by gas comprised of CO2 and argon. We observe a characteristic pattern of initial co-enrichment of noble gases from both phases in banks at the gas front, followed by a depletion of the dissolved noble gas. The enrichment of the co-injected noble gas is due to the dissolution of the more soluble major gas component, while the enrichment of the dissolved noble gas is due to stripping from the groundwater. These processes amount to chromatographic separations that occur during two-phase flow and can be predicted by the theory of gas injection. This theory provides a mechanistic basis for noble gas fractionation during gas migration and improves our ability to identify subsurface gas sources after post-genetic modification. Finally, we show that compositional changes due to two-phase flow can qualitatively explain the spatial compositional trends observed within the Bravo Dome natural CO2 reservoir and some regional compositional trends observed in drinking water wells overlying the Marcellus and Barnett shale regions. In both cases, only the migration of a gas with constant source composition is required, rather than multi-stage mixing and fractionation models previously proposed.

  17. Subsurface lateral flow from hillslope and its contribution to nitrate loading in streams through an agricultural catchment during subtropical rainstorm events

    Science.gov (United States)

    Zhang, B.; Tang, J. L.; Gao, Ch.; Zepp, H.

    2011-10-01

    Subsurface lateral flow from agricultural hillslopes is often overlooked compared with overland flow and tile drain flow, partly due to the difficulties in monitoring and quantifying. The objectives of this study were to examine how subsurface lateral flow generated through soil pedons from cropped hillslopes and to quantify its contribution to nitrate loading in the streams through an agricultural catchment in the subtropical region of China. Profiles of soil water potential along hillslopes and stream hydro-chemographs in a trenched stream below a cropped hillslope and at the catchment outlet were simultaneously recorded during two rainstorm events. The dynamics of soil water potential showed positive matrix soil water potential over impermeable soil layer at 0.6 to 1.50 m depths during and after the storms, indicating soil water saturation and drainage processes along the hillslopes irrespective of land uses. The hydro-chemographs in the streams, one trenched below a cropped hillslope and one at the catchment outlet, showed that the concentrations of particulate nitrogen and phosphorus corresponded well to stream flow during the storm, while the nitrate concentration increased on the recession limbs of the hydrographs after the end of the storm. All the synchronous data revealed that nitrate was delivered from the cropped hillslope through subsurface lateral flow to the streams during and after the end of the rainstorms. A chemical mixing model based on electricity conductivity (EC) and H+ concentration was successfully established, particularly for the trenched stream. The results showed that the subsurface lateral flow accounted for 29% to 45% of total stream flow in the trenched stream, responsible for 86% of total NO3--N loss (or 26% of total N loss), and for 5.7% to 7.3% of total stream flow at the catchment outlet, responsible for about 69% of total NO3--N loss (or 28% of total N loss). The results suggest that subsurface lateral flow through hydraulically

  18. Subsurface lateral flow from hillslope and its contribution to nitrate loading in streams through an agricultural catchment during subtropical rainstorm events

    Directory of Open Access Journals (Sweden)

    B. Zhang

    2011-10-01

    Full Text Available Subsurface lateral flow from agricultural hillslopes is often overlooked compared with overland flow and tile drain flow, partly due to the difficulties in monitoring and quantifying. The objectives of this study were to examine how subsurface lateral flow generated through soil pedons from cropped hillslopes and to quantify its contribution to nitrate loading in the streams through an agricultural catchment in the subtropical region of China. Profiles of soil water potential along hillslopes and stream hydro-chemographs in a trenched stream below a cropped hillslope and at the catchment outlet were simultaneously recorded during two rainstorm events. The dynamics of soil water potential showed positive matrix soil water potential over impermeable soil layer at 0.6 to 1.50 m depths during and after the storms, indicating soil water saturation and drainage processes along the hillslopes irrespective of land uses. The hydro-chemographs in the streams, one trenched below a cropped hillslope and one at the catchment outlet, showed that the concentrations of particulate nitrogen and phosphorus corresponded well to stream flow during the storm, while the nitrate concentration increased on the recession limbs of the hydrographs after the end of the storm. All the synchronous data revealed that nitrate was delivered from the cropped hillslope through subsurface lateral flow to the streams during and after the end of the rainstorms. A chemical mixing model based on electricity conductivity (EC and H+ concentration was successfully established, particularly for the trenched stream. The results showed that the subsurface lateral flow accounted for 29% to 45% of total stream flow in the trenched stream, responsible for 86% of total NO3-N loss (or 26% of total N loss, and for 5.7% to 7.3% of total stream flow at the catchment outlet, responsible for about 69% of total NO3-N loss (or 28% of total N

  19. Subsurface Event Detection and Classification Using Wireless Signal Networks

    Directory of Open Access Journals (Sweden)

    Muhannad T. Suleiman

    2012-11-01

    Full Text Available Subsurface environment sensing and monitoring applications such as detection of water intrusion or a landslide, which could significantly change the physical properties of the host soil, can be accomplished using a novel concept, Wireless Signal Networks (WSiNs. The wireless signal networks take advantage of the variations of radio signal strength on the distributed underground sensor nodes of WSiNs to monitor and characterize the sensed area. To characterize subsurface environments for event detection and classification, this paper provides a detailed list and experimental data of soil properties on how radio propagation is affected by soil properties in subsurface communication environments. Experiments demonstrated that calibrated wireless signal strength variations can be used as indicators to sense changes in the subsurface environment. The concept of WSiNs for the subsurface event detection is evaluated with applications such as detection of water intrusion, relative density change, and relative motion using actual underground sensor nodes. To classify geo-events using the measured signal strength as a main indicator of geo-events, we propose a window-based minimum distance classifier based on Bayesian decision theory. The window-based classifier for wireless signal networks has two steps: event detection and event classification. With the event detection, the window-based classifier classifies geo-events on the event occurring regions that are called a classification window. The proposed window-based classification method is evaluated with a water leakage experiment in which the data has been measured in laboratory experiments. In these experiments, the proposed detection and classification method based on wireless signal network can detect and classify subsurface events.

  20. Circuital model for the Maxwell Fish Eye perfect drain

    CERN Document Server

    Gonzalez, Juan C; Minano, Juan C; Benitez, Pablo

    2012-01-01

    Perfect drain for the Maxwell Fish Eye (MFE) is a non-magnetic dissipative region placed in the focal point to absorb all the incident radiation without reflection or scattering. The perfect drain was recently designed as a material with complex electrical permittivity that depends on frequency. However, this material is only a theoretical material, so it can not be used in practical devices. Recently, the perfect drain has been claimed as necessary to achieve super-resolution [Leonhard 2009, New J. Phys. 11 093040], which has increased the interest for practical perfect drains suitable for manufacturing. Here, we analyze the super-resolution properties of a device equivalent to the MFE, known as Spherical Geodesic Waveguide (SGW), loaded with the perfect drain. In the SGW the source and drain are implemented with coaxial probes. The perfect drain is realized using a circuit (made of a resistance and a capacitor) connected to the drain coaxial probes. Super-resolution analysis for this device is done in Comso...

  1. The stable stiffness triangle - drained sand during deformation cycles

    DEFF Research Database (Denmark)

    Sabaliauskas, Tomas; Ibsen, Lars Bo

    2017-01-01

    Cyclic, drained sand stiffness was observed using the Danish triaxial appa- ratus. New, deformation dependant soil property (the stable stiffness triangle) was detected. Using the the stable stiffness triangle, secant stiffness of drained sand was plausible to predict (and control) even during ir...

  2. Analytically computed rates of seepage flow into drains and cavities

    Science.gov (United States)

    Fujii, N.; Kacimov, A. R.

    1998-04-01

    The known formulae of Freeze and Cherry, Polubarinova-Kochina, Vedernikov for flow rate during 2-D seepage into horizontal drains and axisymmetric flow into cavities are examined and generalized. The case of an empty drain under ponded soil surface is studied and existence of drain depth providing minimal seepage rate is presented. The depth is found exhibiting maximal difference in rate between a filled and an empty drain. 3-D flow to an empty semi-spherical cavity on an impervious bottom is analysed and the difference in rate as compared with a completely filled cavity is established. Rate values for slot drains in a two-layer aquifer are inverted using the Schulgasser theorem from the Polubarinova-Kochina expressions for corresponding flow rates under a dam. Flow to a point sink modelling a semi-circular drain in a layered aquifer is treated by the Fourier transform method. For unsaturated flow the catchment area of a single drain is established in terms of the quasi-linear model assuming the isobaric boundary condition along the drain contour. Optimal shape design problems for irrigation cavities are addressed in the class of arbitrary contours with seepage rate as a criterion and cavity cross-sectional area as an isoperimetric restriction.

  3. 241-AY-102 Leak Detection Pit Drain Line Inspection Report

    Energy Technology Data Exchange (ETDEWEB)

    Boomer, Kayle D. [Washington River Protection Solutions, LLC (United States); Engeman, Jason K. [Washington River Protection Solutions, LLC (United States); Gunter, Jason R. [Washington River Protection Solutions, LLC (United States); Joslyn, Cameron C. [Washington River Protection Solutions, LLC (United States); Vazquez, Brandon J. [Washington River Protection Solutions, LLC (United States); Venetz, Theodore J. [Washington River Protection Solutions, LLC (United States); Garfield, John S. [AEM Consulting (United States)

    2014-01-20

    This document provides a description of the design components, operational approach, and results from the Tank AY-102 leak detection pit drain piping visual inspection. To perform this inspection a custom robotic crawler with a deployment device was designed, built, and operated by IHI Southwest Technologies, Inc. for WRPS to inspect the 6-inch leak detection pit drain line.

  4. A new specifically designed forceps for chest drain insertion.

    LENUS (Irish Health Repository)

    Andrews, Emmet

    2012-02-03

    Insertion of a chest drain can be associated with serious complications. It is recommended that the drain is inserted with blunt dissection through the chest wall but there is no specific instrument to aid this task. We describe a new reusable forceps that has been designed specifically to facilitate the insertion of chest drains.A feasibility study of its use in patients who required a chest drain as part of elective cardiothoracic operations was undertaken. The primary end-point was successful and accurate placement of the drain. The operators also completed a questionnaire rating defined aspects of the procedure. The new instrument was used to insert the chest drain in 30 patients (19 male, 11 female; median age 61.5 years (range 16-81 years)). The drain was inserted successfully without the trocar in all cases and there were no complications. Use of the instrument rated as significantly easier relative to experience of previous techniques in all specified aspects. The new device can be used to insert intercostal chest drains safely and efficiently without using the trocar or any other instrument.

  5. Lower-Temperature Subsurface Layout and Ventilation Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Christine L. Linden; Edward G. Thomas

    2001-06-20

    This analysis combines work scope identified as subsurface facility (SSF) low temperature (LT) Facilities System and SSF LT Ventilation System in the Technical Work Plan for Subsurface Design Section FY 01 Work Activities (CRWMS M&O 2001b, pp. 6 and 7, and pp. 13 and 14). In accordance with this technical work plan (TWP), this analysis is performed using AP-3.10Q, Analyses and Models. It also incorporates the procedure AP-SI.1Q, Software Management. The purpose of this analysis is to develop an overall subsurface layout system and the overall ventilation system concepts that address a lower-temperature operating mode for the Monitored Geologic Repository (MGR). The objective of this analysis is to provide a technical design product that supports the lower-temperature operating mode concept for the revision of the system description documents and to provide a basis for the system description document design descriptions. The overall subsurface layout analysis develops and describes the overall subsurface layout, including performance confirmation facilities (also referred to as Test and Evaluation Facilities) for the Site Recommendation design. This analysis also incorporates current program directives for thermal management.

  6. Soil Carbon Dioxide Production and Surface Fluxes: Subsurface Physical Controls

    Science.gov (United States)

    Risk, D.; Kellman, L.; Beltrami, H.

    Soil respiration is a critical determinant of landscape carbon balance. Variations in soil temperature and moisture patterns are important physical processes controlling soil respiration which need to be better understood. Relationships between soil respi- ration and physical controls are typically addressed using only surface flux data but other methods also exist which permit more rigorous interpretation of soil respira- tion processes. Here we use a combination of subsurface CO_{2} concentrations, surface CO_{2} fluxes and detailed physical monitoring of the subsurface envi- ronment to examine physical controls on soil CO_{2} production at four climate observatories in Eastern Canada. Results indicate that subsurface CO_{2} produc- tion is more strongly correlated to the subsurface thermal environment than the surface CO_{2} flux. Soil moisture was also found to have an important influence on sub- surface CO_{2} production, particularly in relation to the soil moisture - soil profile diffusivity relationship. Non-diffusive profile CO_{2} transport appears to be im- portant at these sites, resulting in a de-coupling of summertime surface fluxes from subsurface processes and violating assumptions that surface CO_{2} emissions are the result solely of diffusion. These results have implications for the study of soil respiration across a broad range of terrestrial environments.

  7. VISUALIZATION OF REGISTERED SUBSURFACE ANATOMY

    DEFF Research Database (Denmark)

    2010-01-01

    A system and method for visualization of subsurface anatomy includes obtaining a first image from a first camera and a second image from a second camera or a second channel of the first camera, where the first and second images contain shared anatomical structures. The second camera and the second...... channel of the first camera are capable of imaging anatomy beneath the surface in ultra-violet, visual, or infra-red spectrum. A data processor is configured for computing registration of the first image to the second image to provide visualization of subsurface anatomy during surgical procedures...

  8. Infiltration measurements and modeling in a soil-vertical drain system

    Science.gov (United States)

    Hammecker, Claude; Siltecho, Siwaporn; Angulo-Jaramillo, Rafael; Lassabatere, Laurent; Robain, Henri; Winiarski, Thierry; Trelo-ges, Vidaya; Suvannang, Nopmanee

    2016-04-01

    Severe water logging problems occur in rubber tree plantations in NE Thailand during the rainy season and create adverse conditions for the development of the trees. Moreover this situation contributes to a waste of scarce rainfall and reduce it's efficiency, as 50% is lost by hypodermic water flow and superficial runoff. The presence of a clayey layer at 1m depth with low permeability, hindering the water infiltration that led to the occurrence of a perched water table. In order to drawdown the water level of the perched water table and to increase the efficiency of the rainfall by storing water in the underlying bedrock a vertical drainage system was developed. In order to test the feasibility of this solution we chose to use the numerical modelling of water flow in soil and to test different set-ups (size and spacing between the drains). The objective of this study was to characterise the hydraulic properties and of the soil-drain system in a rubber tree plantation. Therefore an experiment was set up in rubber tree plantation at Ban Non Tun, Khon Kaen Province (Northeast of Thailand). Infiltration experiments around the vertical drains with single ring of 1m diameter, were conducted in three different locations to measure infiltration rate. The infiltration experiments were also monitored with two complementary geophysical methods (ERT and GPR) to asses the progression ans at the geometry of the wetting front. The model Hydrus2D was used to adjust the computed infiltration curves and water level in the drain to the experimental data, by fitting effective unsaturated hydrodynamic parameters for the drain. These parameters were used to calibrate the model and to perform further predictive numerical simulations.

  9. Design criteria Drain Rerouting Project 93-OR-EW-2

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    This document contains the design criteria to be used by the architect-engineer (A--E) in the performance of Title I and II design for the Drain Rerouting Project. The Drain Rerouting project at the US Department of Energy`s (DOE) Oak Ridge Reservation in Oak Ridge, Tennessee will provide the Y-12 Plant with the capability to reroute particular drains within buildings 9202, 9203 and 9995. Process drains that are presently connected to the storm sewer shall be routed to the sanitary sewer to ensure that any objectionable material inadvertently discharged into process drains will not discharge to East Fork Popular Creek (EFPC) without treatment. The project will also facilitate compliance with the Y-12 Plant`s National Pollutant Discharge Elimination System (NPDES) discharge permit and allow for future pretreatment of once-through coolant.

  10. Drain removal and aspiration to treat low output chylous fistula.

    Science.gov (United States)

    Dhiwakar, Muthuswamy; Nambi, G I; Ramanikanth, T V

    2014-03-01

    Chylous fistula following neck dissection is difficult to treat. We hypothesized that timely removal of the suction drain followed by daily aspiration might aid in resolution of the condition. The study model is prospective cohort study. Out of 170 consecutive neck dissections, 7 (4 %) developed chylous fistula postoperatively. Retaining the suction drain was associated with resolution of the fistula in only one case. The remaining six had peak 24 h outputs between 85 and 675 ml that showed no significant fall despite maximal conservative treatment. Suction drain removal followed by daily needle aspiration however led to cessation of the fistula in all six cases. No patient required surgical re-exploration. Drain removal was associated with a significant fall in the volume of chylous output (p = 0.002). In selected cases of low output chylous fistula, suction drain removal and daily needle aspiration is an effective treatment option.

  11. Time-Lapse Electrical Resistivity Investigations for Imaging the Grouting Injection in Shallow Subsurface Cavities

    Directory of Open Access Journals (Sweden)

    Muhammad Farooq

    2014-01-01

    Full Text Available The highway of Yongweol-ri, Muan-gun, south-western part of the South Korean Peninsula, is underlain by the abandoned of subsurface cavities, which were discovered in 2005. These cavities lie at shallow depths with the range of 5∼15 meters below the ground surface. Numerous subsidence events have repeatedly occurred in the past few years, damaging infrastructure and highway. As a result of continuing subsidence issues, the Korean Institute of Geosciences and Mineral Resources (KIGAM was requested by local administration to resolve the issue. The KIGAM used geophysical methods to delineate subsurface cavities and improve more refined understanding of the cavities network in the study area. Cement based grouting has been widely employed in the construction industry to reinforce subsurface ground. In this research work, time-lapse electrical resistivity surveys were accomplished to monitor the grouting injection in the subsurface cavities beneath the highway, which have provided a quasi-real-time monitoring for modifying the subsurface cavities related to ground reinforcement, which would be difficult with direct methods. The results obtained from time-lapse electrical resistivity technique have satisfactory imaged the grouting injection experiment in the subsurface cavities beneath the highway. Furthermore, the borehole camera confirmed the presence of grouting material in the subsurface cavities, and hence this procedure increases the mechanical resistance of subsurface cavities below the highway.

  12. Dual diaphragm tank with telltale drain

    Science.gov (United States)

    Tuthill, Wallace C., Jr. (Inventor)

    1991-01-01

    A fluid storage and expulsion system comprising a tank with an internal flexible diaphragm assembly of dual diaphragms in back-to-back relationship, at least one of which is provided with a patterned surface having fine edges such that the diaphragms are in contact along said edges without mating contact of surface areas to thereby form fluid channels which extend outwardly to the peripheral edges of the diaphragms is described. The interior wall of the tank at the juncture of tank sections is formed with a circumferential annular recess comprising an outer annular recess portion which forms a fluid collection chamber and an inner annular recess portion which accommodates the peripheral edge portions of the diaphragms and a sealing ring in clamped sealing relation therebetween. The sealing ring is perforated with radially extending passages which allow any fluid leaking or diffusing past a diaphragm to flow through the fluid channels between the diaphragms to the fluid collection chamber. Ports connectable to pressure fittings are provided in the tank sections for admission of fluids to opposite sides of the diaphragm assembly. A drain passage through the tank wall to the fluid collection chamber permits detection, analysis and removal of fluids in the collection chamber.

  13. LIGHT regulates inflamed draining lymph node hypertrophy

    Science.gov (United States)

    Zhu, Mingzhao; Yang, Yajun; Wang, Yugang; Wang, Zhongnan; Fu, Yang-Xin

    2011-01-01

    Lymph node (LN) hypertrophy, the increased cellularity of LNs, is the major indication of the initiation and expansion of the immune response against infection, vaccination, cancer or autoimmunity. The mechanisms underlying LN hypertrophy remain poorly defined. Here, we demonstrate that LIGHT (TNFSF14) is a novel factor essential for LN hypertrophy after CFA immunization. Mechanistically, LIGHT is required for the influx of lymphocytes into but not egress out of LNs. In addition, LIGHT is required for DC migration from the skin to draining LNs. Compared with WT mice, LIGHT−/− mice express lower levels of chemokines in skin and addressins in LN vascular endothelial cells after CFA immunization. We unexpectedly observed that LIGHT from radioresistant rather than radiosensitive cells, likely Langerhans cells, is required for LN hypertrophy. Importantly, antigen-specific T cell responses were impaired in DLN of LIGHT−/− mice, suggesting the importance of LIGHT regulation of LN hypertrophy in the generation of an adaptive immune response. Collectively, our data reveal a novel cellular and molecular mechanism for the regulation of LN hypertrophy and its potential impact on the generation of an optimal adaptive immune response. PMID:21572030

  14. Thermophoresis of polymers: nondraining vs draining coil.

    Science.gov (United States)

    Morozov, Konstantin I; Köhler, Werner

    2014-06-10

    Present theories for the thermophoretic mobility of polymers in dilute solution without long-ranged electrostatic interaction are based on a draining coil model with short-ranged segment-solvent interaction. We show that the characteristic thermophoretic interaction decays as r(-2) with the distance from the chain segment, which is of much longer range than the underlying rapidly decaying binary van der Waals interaction (∝ r(-6)). As a consequence, thermophoresis on the monomer level is governed by volume forces, resulting in hydrodynamic coupling between the chain segments. The inner parts of the nondraining coil do not actively participate in thermophoresis. The flow lines penetrate only into a thin surface layer of the coil and cause tangential stresses along the surface of the entire coil, not the individual segments. This model is motivated by recent experimental findings for thermoresponsive polymers and core-shell particles, and it explains the well-known molar mass independent thermophoretic mobility of polymers in dilute solution.

  15. Subsurface irrigation of potato crop (Solanum tuberosum ssp. Andigena) in Suka Kollus with different drainage systems

    Science.gov (United States)

    Serrano-Coronel, Genaro; Chipana-Rivera, René; Fátima Moreno-Pérez, María; Roldán-Cañas, José

    2016-04-01

    Among the most important hydraulic structures of pre-Hispanic ancestral technology developed in the Andean region, we find the suka kollus, aymara word, called also waru waru, en quechua or raised fields, in English. They are raised platforms surrounded by water canals that irrigate subsurface, but also have the function of draining, to deal with floods because they are surrounding Lake Titicaca. They also have the property of generating a thermoregulatory effect to crops, depending on the configuration of the channels and platforms. Such agro-ecosystems are being abandoned, however, if properly addressed crop management and some drainage canals are replaced by underground drains for increased crop area could be very useful in enabling marginal soils affected by salts and / or excess water. For these reasons, the objective of this study was to evaluate the subsurface irrigation in the potato crop in suka kollus under a system of surface drainage, and mixed drainage (surface and subsurface). The study was conducted in marginal soils of Kallutaca area, located 30 km from the city of La Paz, Bolivia, at a height of 3892 m.a.s.l. The cultivation of the potato (Solanum tuberosum ssp. Andigena) was used. Four treatments were tested with different widths of the platforms: T1 (Control) with drainage through channels; T2 (replacing a channel by a drain); T3 (replacing two channels by two drains); T4 (replacing three channels by three drains). The flow of water into the soil from the water table was predominantly upward, except during periods of high rainfall. In terms of treatments, the flow in T1 was higher, mainly at weeks 8 to 11 after seedling emergence, coinciding with the phenological phases of flowering and at the beginning of the tuber ripening. It was followed by T3, T2 and T4 treatments, respectively. Tuber yield, if one considers that the channels detract arable land, was higher in the T3 treatment,16.4 Mg / ha, followed by T2 treatment, 15.2 Mg / ha, T1

  16. Reactive transport codes for subsurface environmental simulation

    NARCIS (Netherlands)

    Steefel, C.I.; Appelo, C.A.J.; Arora, B.; Kalbacher, D.; Kolditz, O.; Lagneau, V.; Lichtner, P.C.; Mayer, K.U.; Meeussen, J.C.L.; Molins, S.; Moulton, D.; Shao, D.; Simunek, J.; Spycher, N.; Yabusaki, S.B.; Yeh, G.T.

    2015-01-01

    A general description of the mathematical and numerical formulations used in modern numerical reactive transport codes relevant for subsurface environmental simulations is presented. The formulations are followed by short descriptions of commonly used and available subsurface simulators that conside

  17. Chest drain care bundle: Improving documentation and safety.

    Science.gov (United States)

    Hutton, Joe; Graham, Selina

    2015-01-01

    Chest drain insertion is a common advanced procedure with a significant associated risk of pain, distress, and complications. Nationally, audit and recommendations from leading bodies have highlighted a number of safety concerns around chest drain insertion. Audit work has demonstrated poor levels of documentation; particularly around use of premedication, use of ultrasound guidance and consent. This has obvious potential consequences for patient safety and thus is an important target for improvement work. This project quantifies current standards of documentation and aims to improve this through a combination of accessible and easy to read guidelines, education, and the introduction of a chest drain insertion bundle. National best practice standards were identified through review of national guidance. Drain insertion was prospectively analysed over a three month period to establish baseline standards of documentation. This initial work was presented and a bundle and clinical guidelines produced. Chest drain insertion was then reaudited and assessed for improvement. Results demonstrated an improvement in many areas of documentation, pushing local results above the national average. However, only 40% of cases used the new bundle due to a mixture of staff rotation and an unexpectedly high proportion of drains inserted in non targeted areas including the emergency department, theatre, and intensive care. Despite this, the introduction of accessible guidance and bundle has significantly improved chest drain insertion documentation to the benefit of all.

  18. Integrated geomechanical modelling for deep subsurface damage

    NARCIS (Netherlands)

    Wees, J.D. van; Orlic, B.; Zijl, W.; Jongerius, P.; Schreppers, G.J.; Hendriks, M.

    2001-01-01

    Government, E&P and mining industry increasingly demand fundamental insight and accurate predictions on subsurface and surface deformation and damage due to exploitation of subsurface natural resources, and subsurface storage of energy residues (e.g. CO2). At this moment deformation is difficult to

  19. A technical investigation on tools and concepts for sustainable management of the subsurface in The Netherlands.

    Science.gov (United States)

    Griffioen, Jasper; van Wensem, Joke; Oomes, Justine L M; Barends, Frans; Breunese, Jaap; Bruining, Hans; Olsthoorn, Theo; Stams, Alfons J M; van der Stoel, Almer E C

    2014-07-01

    In response to increasing use of the subsurface, there is a need to modernise policies on sustainable use of the subsurface. This holds in particular for the densely populated Netherlands. We aimed to analyse current practice of subsurface management and the associated pressure points and to establish a conceptual overview of the technical issues related to sustainable management of the subsurface. Case studies on the exploitation of subsurface resources (including spatial use of the subsurface) were analysed, examining social relevance, environmental impact, pressure points and management solutions. The case studies ranged from constructing underground garages to geothermal exploitation. The following issues were identified for the technological/scientific aspects: site investigation, suitability, risk assessment, monitoring and measures in the event of failure. Additionally, the following general issues were identified for the administrative aspects: spatial planning, option assessment, precaution, transparency, responsibility and liability. These issues were explored on their technological implications within the framework of sustainable management of the subsurface. This resulted into the following key aspects: (1) sustainability assessment, (2) dealing with uncertainty and (3) policy instruments and governance. For all three aspects, different options were identified which might have a legal, economic or ethical background. The technological implications of these backgrounds have been identified. A set of recommendations for sustainable management of the subsurface resources (incl. space) was established: (1) management should be driven by scarcity, (2) always implement closed loop monitoring when the subsurface activities are high-risk, (3) when dealing with unknown features and heterogeneity, apply the precautionary principle, (4) responsibility and liability for damage must be set out in legislation and (5) sustainability should be incorporated in all

  20. Subsurface Assessment at McMurdo Station, Antarctica

    Science.gov (United States)

    2017-02-01

    Logistics, and Research (EPOLAR) EP-ANT-15-19, “Geotechnical Assessment for McMurdo Station Landscape and Infrastructure Improvements” ERDC/CRREL... Assessment for McMurdo Station Landscape and Infrastructure Improvements.” The technical monitor was Margaret Knuth (program manager), NSF-OPP, U.S...ER D C/ CR RE L TR -1 7- 4 Engineering for Polar Operations, Logistics, and Research (EPOLAR) Subsurface Assessment at McMurdo Station

  1. Does the suction drain diameter matter? Bleeding analysis after total knee replacement comparing different suction drain gauges ☆

    OpenAIRE

    Marcos George de Souza Leao; Gladys Martins Pedroza Neta; Thiago Montenegro da Silva; Yacov Machado Costa Ferreira; Waryla Raissa Vasconcelos Dias

    2016-01-01

    ABSTRACT OBJECTIVES: To evaluate bleeding and the estimated blood loss in patients who underwent total knee replacement (TKR) with different closed suction drains (3.2-mm and 4.8-mm gauge). METHODS: This was a randomized controlled trial with 22 patients who underwent TKR and were divided into two groups: Group I, with 11 patients in whom the 3.2-mm suction drain was used, and Group II, with 11 patients in whom the 4.8-mm suction drain was used. The hematocrit was measured after 24, 48 an...

  2. Drain field at Little Bighorn Battlefield National Monument, Montana

    Data.gov (United States)

    National Park Service, Department of the Interior — This is a vector polygon file showing the drain field that is part of the sewer system utility at Little Bighorn Battlefield National Monument (LIBI). The...

  3. The Hunter Drain Stillwater National Wildlife Refuge Fallon, Nevada

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document outlines water quality concerns related to the operation of the Hunter Drain located in the vicinity of the Stillwater National Wildlife Refuge. This...

  4. Development of Charge Drain Coatings: Final CRADA Report

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Jeffrey W. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-01-17

    The primary goal of this CRADA project was to develop and optimize tunable resistive coatings prepared by atomic layer deposition (ALD) for use as charge-drain coatings on the KLA-Tencor digital pattern generators (DPGs).

  5. Use of a Nasal Speculum for Chest-Drain Insertion

    Science.gov (United States)

    Saxena, Pankaj; Konstantinov, Igor E.; Newman, Mark A.J.

    2006-01-01

    Tube thoracostomy is a very commonly performed procedure in cardiothoracic surgery. Insertion of a chest drain requires expertise to minimize complications. We describe a simple technique of using a nasal speculum to perform this procedure. PMID:17041709

  6. Predicting artificailly drained areas by means of selective model ensemble

    DEFF Research Database (Denmark)

    Møller, Anders Bjørn; Beucher, Amélie; Iversen, Bo Vangsø

    . The approaches employed include decision trees, discriminant analysis, regression models, neural networks and support vector machines amongst others. Several models are trained with each method, using variously the original soil covariates and principal components of the covariates. With a large ensemble...... out since the mid-19th century, and it has been estimated that half of the cultivated area is artificially drained (Olesen, 2009). A number of machine learning approaches can be used to predict artificially drained areas in geographic space. However, instead of choosing the most accurate model....... The study aims firstly to train a large number of models to predict the extent of artificially drained areas using various machine learning approaches. Secondly, the study will develop a method for selecting the models, which give a good prediction of artificially drained areas, when used in conjunction...

  7. VISUALIZATION OF REGISTERED SUBSURFACE ANATOMY

    DEFF Research Database (Denmark)

    2010-01-01

    A system and method for visualization of subsurface anatomy includes obtaining a first image from a first camera and a second image from a second camera or a second channel of the first camera, where the first and second images contain shared anatomical structures. The second camera and the secon....... A visual interface displays the registered visualization of the first and second images. The system and method are particularly useful for imaging during minimally invasive surgery, such as robotic surgery....

  8. Dissolved organic nitrogen (DON) losses from nested artificially drained lowland catchments with contrasting soil types

    Science.gov (United States)

    Tiemeyer, Bärbel; Kahle, Petra; Lennartz, Bernd

    2010-05-01

    Artificial drainage is a common practice to improve moisture and aeration conditions of agricultural land. It shortens the residence time of water in the soil and may therefore contribute to the degradation of peatlands as well as to the still elevated level of diffuse pollution of surface water bodies, particularly if flow anomalies like preferential flow cause a further acceleration of water and solute fluxes. Especially in the case of nitrate, artificially drained sub-catchments are found to control the catchment-scale nitrate losses. However, it is frequently found that nitrate losses and nitrogen field balances do not match. At the same time, organic fertilizers are commonly applied and, especially in lowland catchments, organic soils have been drained for agricultural use. Thus, the question arises whether dissolved organic nitrogen (DON) forms an important component of the nitrogen losses from artificially drained catchments. However, in contrast to nitrate and even to dissolved organic carbon (DOC), this component is frequently overlooked, especially in nested catchment studies with different soil types and variable land use. Here, we will present data from a hierarchical water quantity and quality measurement programme in the federal state Mecklenburg-Vorpommern (North-Eastern Germany). The monitoring programme in the pleistocene lowland catchment comprises automatic sampling stations at a collector drain outlet (4.2 ha catchment), at a ditch draining arable land on mineral soils (179 ha), at a ditch mainly draining grassland on organic soils (85 ha) and at a brook with a small rural catchment (15.5 km²) of mixed land use and soil types. At all sampling stations, daily to weekly composite samples were taken, while the discharge and the meteorological data were recorded continuously. Water samples were analyzed for nitrate-nitrogen, ammonium-nitrogen and total nitrogen. We will compare two years: 2006/07 was a very wet year (P = 934 mm) with a high summer

  9. Circuital model for the spherical geodesic waveguide perfect drain

    Science.gov (United States)

    González, Juan C.; Grabovičkić, Dejan; Benítez, Pablo; Miñano, Juan C.

    2012-08-01

    The perfect drain for the Maxwell fish eye (MFE) is a non-magnetic dissipative region placed in the focal point to absorb all the incident radiation without reflection or scattering. The perfect drain was recently designed as a material with complex permittivity that depends on frequency. However, this material is only a theoretical material, so it cannot be used in practical devices. The perfect drain has been claimed as necessary for achieving super-resolution (Leonhardt 2009 New J. Phys. 11 093040), which has increased the interest in practical perfect drains suitable for manufacturing. Here, we present a practical perfect drain that is designed using a simple circuit (made of a resistance and a capacitor) connected to the coaxial line. Moreover, we analyze the super-resolution properties of a device equivalent to the MFE, known as a spherical geodesic waveguide, loaded with this perfect drain. The super-resolution analysis for this device is carried out using COMSOL Multiphysics. The results of simulations predict a super-resolution of up to λ/3000.

  10. Drain line melt through experiment under water-free condition

    Energy Technology Data Exchange (ETDEWEB)

    Nakada, Kotaro [Nuclear Engineering Lab., Toshiba Corp., Kawasaki, Kanagawa (Japan); Jaeckel, Bernd; Hirschmann, Harald; Patorski, Jacek; Duijvestijn, Guus

    1999-07-01

    In order to investigate the behavior of a BWR drain line attacked by an oxidic melt, the experiment, CORVIS (Corium Reactor Vessel Interaction Studies) 03/2 was performed. The drain line tube was formed according to the design of an existing BWR. Aluminum oxide was used as the core melt substitute. The melt with an initial temperature of 2518 to 2543 K flowed into the water-free drain line and filled it on entire length of 7012 mm. The melt would have penetrated even further it the melt flow was not stopped by a steel plug at the tube end. The drain line did not fail but was distorted at the high temperature and elongated by 50 mm by thermoplastic deformation under its dead weight. Maximum surface temperature of 1323 K were measured near the drain line welding nozzle. It was concluded that the drain was torn off at higher internal pressure under the same thermal conditions. Temperature histories indicate that a crust was formed on the test plate screening temporarily the steel structures against melting. (author)

  11. Modelling of nitrogen leaching under a complex winter wheat and red clover crop rotation in a drained agricultural field

    Science.gov (United States)

    Conrad, Y.; Fohrer, N.

    The European Water Framework Directive requires conformity of water management structures all over Europe to pursue a good water quality for all water bodies. The highest nitrate concentrations in the water were measured in regions with well-drained soils, ploughed pastures and high nitrogen inputs. The objective of this study was to calculate the nitrate nitrogen leaching out of a subsurface drainage system under organic farming conditions, especially for the seepage period in winter. Water and nitrogen fluxes between soil and vegetation were simulated with the soil-vegetation-atmosphere-transfer model CoupModel using data from an 8 years lasting monitoring programme on a field in Northern Germany. Modelling was focused on a crop rotation sequence consisting of winter wheat with undersown red clover followed by two years of red clover used as temporary grassland. Measured soil temperature in a depth of 15 cm was reproduced very well (Nash-Sutcliffe-efficiency NSE = 0.95; R2 = 0.98). Results also indicated that CoupModel accurately simulated drainage discharge and nitrate N loss under winter wheat from 2001 to 2002 with a NSE of 0.73 for the drainage discharge and a NSE of 0.49 for the nitrate N leaching. For the following red clover period the accordance between simulated and measured drainage discharge (NSE = 0.01) and nitrate N loads in the drainage (NSE = 0.31) was much lower. The inaccuracy in the modelling results in November 2002 seems to origin from an inadequate description of soil covering and thus the interception of the hibernating red clover. Secondly, the high nitrogen leaching in February 2004 could not be matched due to poorly adapted nitrogen dynamics in the model. The reason could be that common single parameter values in the mineralization part of the model were not suitable to reproduce an abrupt, short-term N leaching. In general, the results demonstrate the potential of CoupModel to predict water and nitrate N fluxes under complex crop

  12. Phylogenetic relationships among subsurface microorganisms. Project technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Nierzwicki-Bauer, S.A.

    1993-08-01

    The development of group-specific, 16S ribosomal RNA-targeted oligonucleotide hybridization probes for the rapid detection of specific types of subsurface microorganisms is described. Because portions of the 16S RRNA molecule are unique to particular organisms or groups, these unique sequences can serve as targets for hybridization probes with varied specificity. Target sequences for selected microbial groups have been identified by analysis of the available RRNA sequence data for subsurface microbes. Hybridization probes for these target sequences were produced and their effectiveness and specificity tested with RNA cell blot and in situ hybridizations. Selected probes were used to study phylogenetic relationships among subsurface microbes and to classify these organisms into the specific groups that the probes are designed to detect. To date, this work has been performed on the P24 and C10 borehole isolates from the Savannah River Site. The probes will also be used, with in situ hybridizations, to detect and monitor selected microbial groups in freshly collected subsurface samples and laboratory microcosms in collaboration with other investigators. In situ hybridizations permit detection of selected microbial types without the necessity to isolate and culture them in the laboratory.

  13. Seasonal thaw settlement at drained thermokarst lake basins, Arctic Alaska

    Science.gov (United States)

    Liu, Lin; Schaefer, Kevin; Gusmeroli, Alessio; Grosse, Guido; Jones, Benjamin M.; Zhang, Tinjun; Parsekian, Andrew; Zebker, Howard

    2014-01-01

    Drained thermokarst lake basins (DTLBs) are ubiquitous landforms on Arctic tundra lowland. Their dynamic states are seldom investigated, despite their importance for landscape stability, hydrology, nutrient fluxes, and carbon cycling. Here we report results based on high-resolution Interferometric Synthetic Aperture Radar (InSAR) measurements using space-borne data for a study area located on the North Slope of Alaska near Prudhoe Bay, where we focus on the seasonal thaw settlement within DTLBs, averaged between 2006 and 2010. The majority (14) of the 18 DTLBs in the study area exhibited seasonal thaw settlement of 3–4 cm. However, four of the DTLBs examined exceeded 4 cm of thaw settlement, with one basin experiencing up to 12 cm. Combining the InSAR observations with the in situ active layer thickness measured using ground penetrating radar and mechanical probing, we calculated thaw strain, an index of thaw settlement strength along a transect across the basin that underwent large thaw settlement. We found thaw strains of 10–35% at the basin center, suggesting the seasonal melting of ground ice as a possible mechanism for the large settlement. These findings emphasize the dynamic nature of permafrost landforms, demonstrate the capability of the InSAR technique to remotely monitor surface deformation of individual DTLBs, and illustrate the combination of ground-based and remote sensing observations to estimate thaw strain. Our study highlights the need for better description of the spatial heterogeneity of landscape-scale processes for regional assessment of surface dynamics on Arctic coastal lowlands.

  14. Subsurface Carbon Cycling Below the Root Zone

    Science.gov (United States)

    Wan, J.; Dong, W.; Kim, Y.; Tokunaga, T. K.; Bill, M.; Conrad, M. E.; Williams, K. H.; Long, P. E.; Hubbard, S. S.

    2014-12-01

    Carbon in the subsurface below the root zone is an important yet poorly understood link in the terrestrial C cycle, interfacing between overlying soil and downstream aquatic systems. Thus, the nature and behavior of C in the vadose zone and groundwater, particularly the dynamics of mobile dissolved and suspended aqueous species, need to be understood for predicting C cycling and responses to climate change. This study is designed to understand the C balance (influxes, effluxes, and sequestration) and mechanisms controlling subsurface organic and inorganic C transport and transformation. Our initial investigations are being conducted at the Rifle Site floodplain along the Colorado River, in Colorado (USA). Within this floodplain, sediment samples were collected and sampling/monitoring instruments were installed down to 7 m depth at three sites. Pore water and gas samplers at 0.5 m depth intervals within the ~3.5 m deep vadose zone, and multilevel aquifer samplers have yielded depth- and time-resolved profiles of dissolved and suspended organic and inorganic C, and CO2 for over 1.5 years. Analyses conducted to determine seasonally and vertically resolved geochemical profiles show that dissolved organic matter (DOM) characteristics vary among three distinct hydrobiogeochemical zones; the vadose zone, capillary fringe, and saturated zone. The concentrations of dissolved organic matter (DOM) are many times higher in the vadose zone and the capillary fringe than in groundwater, and vary seasonally. The DOM speciation, aqueous geochemistry, solid phase analyses, and d13C isotope data show the importance of both biotic and abiotic C transformations during transport through the vertical gradients of moisture and temperature. In addition to DOM, suspended organic C and bacteria have been collected from samplers within the capillary fringe. Based on the field-based findings, long-term laboratory column experiments are being conducted under simulated field moisture

  15. Drilling Automation Demonstrations in Subsurface Exploration for Astrobiology

    Science.gov (United States)

    Glass, Brian; Cannon, H.; Lee, P.; Hanagud, S.; Davis, K.

    2006-01-01

    This project proposes to study subsurface permafrost microbial habitats at a relevant Arctic Mars-analog site (Haughton Crater, Devon Island, Canada) while developing and maturing the subsurface drilling and drilling automation technologies that will be required by post-2010 missions. It builds on earlier drilling technology projects to add permafrost and ice-drilling capabilities to 5m with a lightweight drill that will be automatically monitored and controlled in-situ. Frozen cores obtained with this drill under sterilized protocols will be used in testing three hypotheses pertaining to near-surface physical geology and ground H2O ice distribution, viewed as a habitat for microbial life in subsurface ice and ice-consolidated sediments. Automation technologies employed will demonstrate hands-off diagnostics and drill control, using novel vibrational dynamical analysis methods and model-based reasoning to monitor and identify drilling fault states before and during faults. Three field deployments, to a Mars-analog site with frozen impact crater fallback breccia, will support science goals, provide a rigorous test of drilling automation and lightweight permafrost drilling, and leverage past experience with the field site s particular logistics.

  16. Travel time analysis for a subsurface drained sub-watershed in Upper Big Walnut Creek Watershed, Ohio

    Science.gov (United States)

    Runoff travel time, which is a function of watershed and storm characteristics, is an important parameter affecting the prediction accuracy of hydrologic models. Although, time of concentration (tc) is a most widely used time parameter, it has multiple conceptual and computational definitions. Most ...

  17. Successful closed suction drain management of a canine elbow hygroma.

    Science.gov (United States)

    Pavletic, M M; Brum, D E

    2015-07-01

    A 1-year-old castrated male St. Bernard dog presented to Angell Animal Medical Center with bilateral elbow hygromas which had been present for several weeks. The largest hygroma involving the left elbow was managed with a closed suction (active) drain system to continuously collapse the hygroma pocket over a 3-week period. Soft bedding was used to protect the elbows from further impact trauma to the olecranon areas. Following drain removal, there was no evidence of hygroma recurrence based on periodic examinations over an 18-month period. The smaller non-operated right elbow hygroma had slightly enlarged during this period. Closed suction drain management of the hygroma proved to be a simple and economical method of collapsing the left elbow hygroma. This closed drainage system eliminated the need for the postoperative bandage care required with the use of the Penrose (passive) drain method of managing elbow hygromas. The external drain tube should be adequately secured in order to minimise the risk of its inadvertent displacement.

  18. Retained drains causing a bronchoperitoneal fistula: a case report

    Directory of Open Access Journals (Sweden)

    Kieninger Alicia A

    2011-05-01

    Full Text Available Abstract Introduction Bronchoperitoneal fistulas are extremely rare. We present a case where retained surgical drains from a previous surgery resulted in erosion and fistula formation. This condition required an extensive surgical procedure and advanced ventilator techniques. Case presentation A 24-year-old African-American man presented to our Emergency Department with a one-week history of fever, dyspnea, cough, and abdominal pain. A computed tomography scan of his chest and abdomen revealed bilateral lower lobe pneumonia and two retained Jackson-Pratt drains in the right upper quadrant. He was taken to the operating room for drain removal, a right hemicolectomy, debridement of a duodenal injury, a Roux-en-y duodenojejunostomy, and an end ileostomy. He subsequently became increasing hypoxemic in the intensive care unit and a bronchoperitoneal fistula was diagnosed. He required high-frequency oscillatory ventilation followed by lung isolation, and was successfully resuscitated using these techniques. Conclusion To the best of our knowledge, this is the first known case report of a bronchoperitoneal fistula caused by retained surgical drains. This is also the first known report that details successful management of this condition with advanced ventilatory techniques. This case highlights the importance of follow-up for trauma patients since retained surgical drains have the potential to cause life-threatening complications. When faced with this condition, clinicians should be aware of advanced ventilatory methods that can be employed in the intensive care unit. In this case, these techniques proved to be life-saving.

  19. Iterative Workflows for Numerical Simulations in Subsurface Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Chase, Jared M.; Schuchardt, Karen L.; Chin, George; Daily, Jeffrey A.; Scheibe, Timothy D.

    2008-07-08

    Numerical simulators are frequently used to assess future risks, support remediation and monitoring program decisions, and assist in design of specific remedial actions with respect to groundwater contaminants. Due to the complexity of the subsurface environment and uncertainty in the models, many alternative simulations must be performed, each producing data that is typically post-processed and analyzed before deciding on the next set of simulations Though parts of the process are readily amenable to automation through scientific workflow tools, the larger”research workflow”, is not supported by current tools. We present a detailed use case for subsurface modeling, describe the use case in terms of workflow structure, briefly summarize a prototype that seeks to facilitate the overall modeling process, and discuss the many challenges for building such a comprehensive environment.

  20. Introduction: energy and the subsurface.

    Science.gov (United States)

    Christov, Ivan C; Viswanathan, Hari S

    2016-10-13

    This theme issue covers topics at the forefront of scientific research on energy and the subsurface, ranging from carbon dioxide (CO2) sequestration to the recovery of unconventional shale oil and gas resources through hydraulic fracturing. As such, the goal of this theme issue is to have an impact on the scientific community, broadly, by providing a self-contained collection of articles contributing to and reviewing the state-of-the-art of the field. This collection of articles could be used, for example, to set the next generation of research directions, while also being useful as a self-study guide for those interested in entering the field. Review articles are included on the topics of hydraulic fracturing as a multiscale problem, numerical modelling of hydraulic fracture propagation, the role of computational sciences in the upstream oil and gas industry and chemohydrodynamic patterns in porous media. Complementing the reviews is a set of original research papers covering growth models for branched hydraulic crack systems, fluid-driven crack propagation in elastic matrices, elastic and inelastic deformation of fluid-saturated rock, reaction front propagation in fracture matrices, the effects of rock mineralogy and pore structure on stress-dependent permeability of shales, topographic viscous fingering and plume dynamics in porous media convection.This article is part of the themed issue 'Energy and the subsurface'.

  1. The Stoppa procedure in inguinal hernia repair: to drain or not to drain

    Directory of Open Access Journals (Sweden)

    Rodrigues Jr. Aldo Junqueira

    2003-01-01

    Full Text Available OBJECTIVE: The objective of this study is to evaluate the benefits of drainage in the Stoppa procedure for inguinal repair. PATIENTS AND METHODS: The use of a suction drain was randomized at the end of the surgical intervention in 26 male patients undergoing inguinal hernia repair, divided into 2 groups: Group A, 12 patients undergoing drainage, and group B, 14 patients not undergoing drainage. On the second postoperative day, all patients underwent abdominal pelvic computed tomography scan examination to detect the presence of abdominal fluid collection. RESULTS: In group A, no patient developed fluid collection in the preperitoneal space, and 1 patient presented with an abscess in the preperitoneal space on the 15th postoperative day. In group B, 12 patients presented with fluid collections in the preperitoneal space on computed tomography scan evaluation. However, only 3 patients presented minor complications. None of the patients developed a major complication. CONCLUSION: The use of suction drainage with the Stoppa procedure does not provide any benefit.

  2. Subsurface Thermal Erosion Of Ice-Wedge Polygon Terrains: Implications For Arctic Geosystem In Transition

    Science.gov (United States)

    Fortier, D.; Godin, E.; Lévesque, E.; Veillette, A.

    2014-12-01

    Subsurface thermal erosion is triggered by convective heat transfers between flowing water and permafrost. For inland ice-wedge polygon terrains, heat advection due to infiltration of run-off in the massive ice wedges and the ice-rich upper portion of permafrost creates sink holes and networks of interconnected tunnels in the permafrost. Mass movements such as collapse of tunnel's roof, retrogressive thaw-slumping along exposed permafrost and active layer detachment slides lead to the development of extensive gully networks in the landscape. These gullies drastically change the hydrology of ice-wedge polygon terrains and the fluxes of heat, water, sediment and carbon within the permafrost geosystem. Exportation of sediments by fluvial processes within gullies are positive mechanical feed-back effects that keep gully channels active over decades. Along gully margins, drainage of disturbed polygons and ponds, slope drainage, soil consolidation, plant colonization of disturbed gully slopes and wet to mesic plant succession of drained polygons change the thermal properties of the active layer and create negative feedback effects that stabilize active erosion processes and promote permafrost recovery in gully slopes and adjacent disturbed polygons. On Bylot Island (Nunavut), over 40 gullies were mapped and monitored to characterize gully geomorphology, thermal and mechanical processes of gully erosion, rates of gully erosion over time within different sedimentary deposits, total volume of eroded permafrost at the landscape scale and gully hydrology. We conducted field and laboratory experiments to quantify heat convection processes and speed of ice wedge ablation in order to derive empirical equations to develop a numerical, fully-coupled, heat and mass (water) transfer model of ice-wedge thermal erosion. We used data collected over 10 years of geomorphological gully monitoring, regional climate scenarios, our physics-based numerical thermal erosion model and our field

  3. The role of subgaleal suction drain placement in chronic subdural hematoma evacuation

    OpenAIRE

    Yadav, Yad Ram; Parihar, Vijay; Chourasia, Ishwar D.; Bajaj, Jitin; Namdev, Hemant

    2016-01-01

    Introduction: There is lack of uniformity about the preferred surgical treatment, role of drain, and type of drain among various surgeons in chronic subdural hematoma (CSDH). The present study is aimed to evaluate role of subgaleal drain. Materials and Methods: This was a prospective study of 260 patients of CSDH treated surgically. Burr-hole irrigation with and without suction drain was done in 140 and 120 patients, respectively. Out of 120 patients without suction drain 60 each were managed...

  4. Acetic acid as a decontamination method for sink drains in a nosocomial outbreak of metallo-β-lactamase-producing Pseudomonas aeruginosa.

    Science.gov (United States)

    Stjärne Aspelund, A; Sjöström, K; Olsson Liljequist, B; Mörgelin, M; Melander, E; Påhlman, L I

    2016-09-01

    Pseudomonas aeruginosa may colonize water systems via biofilm formation. In hospital environments, contaminated sinks have been associated with nosocomial transmission. Here we describe a prolonged outbreak of a metallo-β-lactamase-producing P. aeruginosa (Pae-MBL) associated with sink drains, and propose a previously unreported decontamination method with acetic acid. To describe a nosocomial outbreak of Pae-MBL associated with hospital sink drains and to evaluate acetic acid as a decontamination method. The outbreak was investigated by searching the microbiology database, microbiological sampling and strain typing. Antibacterial and antibiofilm properties of acetic acid were evaluated in vitro. Pae-MBL-positive sinks were treated with 24% acetic acid once weekly and monitored with repeated cultures. Fourteen patients with positive cultures for Pae-MBL were identified from 2008 to 2014. The patients had been admitted to three wards, where screening discovered Pae-MBL in 12 sink drains located in the patient bathrooms. Typing of clinical and sink drain isolates revealed identical or closely related strains. Pae-MBL biofilm was highly sensitive to acetic acid with a minimum biofilm eradication concentration of 0.75% (range: 0.19-1.5). Weekly treatment of colonized sink drains with acetic acid resulted in negative cultures and terminated transmission. Acetic acid is highly effective against Pae-MBL biofilms, and may be used as a simple method to decontaminate sink drains and to prevent nosocomial transmission. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Effects of Solar Loading and Other Environmental Conditions on Thermographic Imaging of Subsurface Defects in Concrete

    Science.gov (United States)

    Washer, G. A.; Fenwick, R. G.; Bolleni, N.; Harper, J.

    2009-03-01

    The detection of subsurface defects in concrete using infrared cameras relies on thermal variations in the ambient environment to provide heat flow. Solar loading can provide significant thermal energy that enables the imaging of subsurface defects. This paper presents results of a study to determine the optimum environmental conditions for conducting thermal inspection of concrete bridges. This study has included continuous monitoring of a large concrete specimen under ambient environmental condition in central Missouri. The thermal contrast of subsurface targets in the specimen has been analyzed to determine the optimum conditions and time for detection of subsurface features as a function of depth. Environmental conditions that result in the largest contrast in surface temperature are discussed.

  6. Shallow Subsurface transport and eruption of basaltic foam

    Science.gov (United States)

    Parcheta, C. E.; Mitchell, K. L.

    2016-12-01

    Volcanic fissure vents are difficult to quantify, and details of eruptive behavior are elusive even though it is the most common eruption mechanism on Earth and across the solar system. A fissure's surface expression is typically concealed, but when a fissure remains exposed, its subsurface conduit can be mapped post-eruptively with VolcanoBot. The robot uses a NIR structured light sensor that reproduces a 3D surface model to cm-scale accuracy, documenting the shallow conduit. VolcanoBot3 has probed >1000m3 of volcanic fissure vents at the Mauna Ulu fissure system on Kilauea. Here we present the new 3D model of a flared vent on the Mauna Ulu fissure system. We see a self-similar pattern of irregularities on the fissure walls throughout the entire shallow subsurface, implying a fracture mechanical origin similar to faults. These irregularities are typically 1 m across, protrude 30 cm horizontally into the drained fissure, and have a vertical spacing of 2-3 m. However, irregularity size is variable and distinct with depth, potentially reflecting stratigraphy in the wall rock. Where piercing points are present, we infer the dike broke the wall rock in order to propagate upwards; where they are not, we infer that syn-eruptive mechanical erosion has taken place. One mechanism for mechanical erosion is supersonic shocks, which may occur in Hawaiian fountains. We are calculating the speed of sound in 64% basaltic foam, which appears to be the same velocity (or slightly slower) than inferred eruption velocities. Irregularities are larger than the maximum 10% wall roughness used in engineering fluid dynamic studies, indicating that magma fluid dynamics during fissure eruptions are probably not as passive nor as simple as previously thought. We are currently using the mapped conduit geometries and derived speed of sound for basaltic foam in fluid dynamical modeling of fissure-fed lava fountains.

  7. Does the suction drain diameter matter? Bleeding analysis after total knee replacement comparing different suction drain gauges

    Directory of Open Access Journals (Sweden)

    Marcos George de Souza Leao

    Full Text Available ABSTRACT OBJECTIVES: To evaluate bleeding and the estimated blood loss in patients who underwent total knee replacement (TKR with different closed suction drains (3.2-mm and 4.8-mm gauge. METHODS: This was a randomized controlled trial with 22 patients who underwent TKR and were divided into two groups: Group I, with 11 patients in whom the 3.2-mm suction drain was used, and Group II, with 11 patients in whom the 4.8-mm suction drain was used. The hematocrit was measured after 24, 48 and 72 h after surgery in order to calculate the estimated blood loss. The drained volume was measured 3, 6, 12, 24, and 48 h after TKR, and thereafter both groups were compared. RESULTS: Regarding the hematocrit, there were no differences between groups in measured periods (24, 48, and 72 h after surgery. The total bleeding measured at the suction drains within 48 h was higher in Group II, with a statistically significant difference (p = 0.005; in the first 24 h, there was major bleeding in Group II (mean 893 mL, with a significant difference (p = 0.004. Between 24 and 48 h, there was no statistically significant difference in both groups (p = 0.710. The total estimated bleeding was higher in Group I, with mean of 463 mL, versus 409 mL in Group II, with no statistical significance (p = 0.394. CONCLUSIONS: Bleeding was higher in the group that used the 4.8 mm gauge suction drain, with no differences in hematocrit and estimated blood loss.

  8. Microbial processes and subsurface contaminants

    Science.gov (United States)

    Molz, Fred J.

    A Chapman Conference entitled “Microbial Processes in the Transport, Fate, and In Situ Treatment of Subsurface Contaminants” was held in Snowbird, Utah, October 1-3, 1986. Members of the program committee and session chairmen were Lenore Clesceri (Rensselaer Polytechnic Institute, Troy, N.Y.), David Gibson (University of Texas, Austin), James Mercer (GeoTrans, Inc., Herndon , Va.), Donald Michelsen (Virginia Polytechnic Institute and State University, Blacksburg), Fred Molz (Auburn University, Auburn, Ala.), Bruce Rittman (University of Illinois, Urbana), Gary Sayler (University of Tennessee, Knoxville), and John T. Wilson (U.S. Environmental Protection Agency, Ada, Okla.). The following report attempts to highlight the six sessions that constituted the conference. For additional information, including a bound summary and abstracts, contact Fred J. Molz, Civil Engineering Department, Auburn University, AL 36849 (telephone: 205-826-4321).

  9. Acclimation of subsurface microbial communities to mercury

    DEFF Research Database (Denmark)

    de Lipthay, Julia R.; Rasmussen, Lasse Dam; Oregaard, Gunnar

    2008-01-01

    of the subsurface communities, possibly due to differences in the availability of mercury. IncP-1 trfA genes were detected in extracted community DNA from all soil depths of the contaminated site, and this finding was correlated to the isolation of four different mercury-resistance plasmids, all belonging...... as subsurface soil microbial communities....

  10. Brain Drain in Higher Education: Lost Hope or Opportunity?

    Science.gov (United States)

    Odhiambo, George

    2012-01-01

    The flight of human capital is a phenomenon that has been of concern to academics and development practitioners for decades but unfortunately, there is no systematic record of the number of skilled professionals that many African countries have continued to lose to the developed world. Termed the "brain drain", it represents the loss of…

  11. The Albanian Brain Drain phenomena and the Brain Gain strategy

    Directory of Open Access Journals (Sweden)

    Arta Musaraj

    2011-06-01

    Full Text Available Qualitative human resources remain one of the main problem of Eastern Europe and in particular Western Balkan countries. After 20 years of deep economic, political and social transformation, those countries are facing the problem of the highly qualified human resources they lost in these two decades, while in most of cases there is no a real measurement of the weight and impact these phenomena of Brain Drain has in the quality of the work force. Most of them are trying to set up and apply Brain Gain strategies at a national level. The paper aims to analyze and evaluate the influence that the missing of a previous qualitative and quantitative evaluation of the Phenomena of Brain Drain in Albania, has in the successful application of the Brain Gain strategy. The research objective will be fulfilled by analyzing the evolution of the Brain Drain phenomena, by an introduction of the Albanian characteristic and shape of  Brain Drain from 1990, by analyzing the Brain Gain strategy applied in the country comparing it to a successful application. The paper analyzes factors and variables which may affect the successful application of Brain Gain in Albania while  evidences the importance of stakeholder approach in objectives and aims of Brain Gain program and strategy and the use of the  Balance Scorecard as a strategic management system in “brain gain” strategy set up and application in the case of Albania and those of other countries of the region as well.

  12. State waste discharge permit application, 200-E chemical drain field

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations (Ecology et al. 1994), the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect ground would be subject to permitting under the structure of Chapter 173-216 (or 173-218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. As a result of this decision, the Washington State Department of Ecology and the US Department of Energy, Richland Operations Office entered into Consent Order No. DE 91NM-177, (Ecology and DOE-RL 1991). The Consent Order No. DE 91NM-177 requires a series of permitting activities for liquid effluent discharges. This document presents the State Waste Discharge Permit (SWDP) application for the 200-E Chemical Drain Field. Waste water from the 272-E Building enters the process sewer line directly through a floor drain, while waste water from the 2703-E Building is collected in two floor drains, (north and south) that act as sumps and are discharged periodically. The 272-E and 2703-E Buildings constitute the only discharges to the process sewer line and the 200-E Chemical Drain Field.

  13. Brain drain or brain gain : The case of Suriname

    NARCIS (Netherlands)

    T.W. Dulam (Tina)

    2015-01-01

    markdownabstractAbstract Brain drain refers to the emigration of highly skilled individuals mostly from a less developed (home) to a developed country (destination) thereby reducing the capacity of the home country to generate welfare for its population. In the literature there is much written ab

  14. On the use of drains in orthopedic and trauma

    African Journals Online (AJOL)

    2013-11-08

    Nov 8, 2013 ... Introduction: The use of drains in trauma and Orthopaedic practice has been affected by the concept of evidence based medicine that has .... had superficial wound infection with two of them occurring in the same individual who .... limb elevation when used together will reduce the risk for significant ankle ...

  15. Brain drain or brain gain : The case of Suriname

    NARCIS (Netherlands)

    T.W. Dulam (Tina)

    2015-01-01

    markdownabstractAbstract Brain drain refers to the emigration of highly skilled individuals mostly from a less developed (home) to a developed country (destination) thereby reducing the capacity of the home country to generate welfare for its population. In the literature there is much written

  16. Anomie and the "Brain Drain": A Sociological Explanation.

    Science.gov (United States)

    Karadima, Oscar

    The concept of anomie is proposed as one sociological variable that may explain the "brain drain" phenomenon (i.e., the movement of highly qualified personnel from their country of origin to another, most often a more developed, technologically advanced country). It is hypothesized that the higher the level of anomie found among…

  17. Brain Drain: A Child's Brain on Poverty. Poverty Fact Sheet

    Science.gov (United States)

    Damron, Neil

    2015-01-01

    "Brain Drain: A Child's Brain on Poverty," released in March 2015 and prepared by intern Neil Damron, explores the brain's basic anatomy and recent research findings suggesting that poverty affects the brain development of infants and young children and the potential lifelong effects of the changes. The sheet draws from a variety of…

  18. Phosphorus modeling in tile drained agricultural systems using APEX

    Science.gov (United States)

    Phosphorus losses through tile drained systems in agricultural landscapes may be causing the persistent eutrophication problems observed in surface water. The purpose of this paper is to evaluate the state of the science in the Agricultural Policy/Environmental eXtender (APEX) model related to surf...

  19. Brain drain or brain gain : The case of Suriname

    NARCIS (Netherlands)

    T.W. Dulam (Tina)

    2015-01-01

    markdownabstractAbstract Brain drain refers to the emigration of highly skilled individuals mostly from a less developed (home) to a developed country (destination) thereby reducing the capacity of the home country to generate welfare for its population. In the literature there is much written ab

  20. Is prophylactic placement of drains necessary after subtotal gastrectomy?

    Institute of Scientific and Technical Information of China (English)

    Manoj Kumar; Seung Bong Yang; Vijay Kumar Jaiswal; Jay N Shah; Manish Shreshtha; Rajesh Gongal

    2007-01-01

    AIM: To determine the evidence-based values of prophylactic drainage in gastric cancer surgery.METHODS: One hundred and eight patients, who underwent subtotal gastrectomy with D1 or D2 lymph node dissection for gastric cancer between January 2001 and December 2005, were divided into drain group or no-drain group. Surgical outcome and post-operative complications within four weeks were compared between the two groups.RESULTS: No significant differences were observed between the drain group and no-drain group in terms of operating time (171±42 min vs 156±39 min), number of post-operative days until passage of flatus (3.7±0.5d vs 3.5±1.0 d), number of post-operative days until initiation of soft diet (4.9±0.7 d vs 4.8±0.8 d), length of post-operative hospital stay (9.3±2.2 d vs 8.4±2.4 d), mortality rate (5.4% vs 3.8%), and overall postoperative complication rate (21.4% vs19.2%).CONCLUSION: Prophylactic drainage placement is not necessary after subtotal gastrectomy for gastric cancer since it does not offer additional benefits for the patients.

  1. Anomie and the "Brain Drain": A Sociological Explanation.

    Science.gov (United States)

    Karadima, Oscar

    The concept of anomie is proposed as one sociological variable that may explain the "brain drain" phenomenon (i.e., the movement of highly qualified personnel from their country of origin to another, most often a more developed, technologically advanced country). It is hypothesized that the higher the level of anomie found among…

  2. Moving Policy Forward: "Brain Drain" as a Wicked Problem

    Science.gov (United States)

    Logue, Danielle

    2009-01-01

    The mobility of scientists and the concerns surrounding "brain drain" are not new. Even in the Ptolemic dynasty, the first king set out to attract and influence the movements of scholars to shift the centre of learning from Athens to Alexandria. Yet after all this time, there is still much policy discourse and debate focused on attempting to…

  3. Does State Merit-Based Aid Stem Brain Drain?

    Science.gov (United States)

    Zhang, Liang; Ness, Erik C.

    2010-01-01

    In this study, the authors use college enrollment and migration data to test the brain drain hypothesis. Their results suggest that state merit scholarship programs do indeed stanch the migration of "best and brightest" students to other states. In the aggregate and on average, the implementation of state merit aid programs increases the…

  4. Primum nocere: medical brain drain and the duty to stay

    NARCIS (Netherlands)

    Ferracioli, L.; de Lora, P.

    2015-01-01

    In this essay, we focus on the moral justification of a highly controversial measure to redress medical brain drain: the duty to stay. We argue that the moral justification for this duty lies primarily in the fact that medical students impose high risks on their fellow citizens while receiving their

  5. Brain Drain: A Child's Brain on Poverty. Poverty Fact Sheet

    Science.gov (United States)

    Damron, Neil

    2015-01-01

    "Brain Drain: A Child's Brain on Poverty," released in March 2015 and prepared by intern Neil Damron, explores the brain's basic anatomy and recent research findings suggesting that poverty affects the brain development of infants and young children and the potential lifelong effects of the changes. The sheet draws from a variety of…

  6. Anomie and the "Brain Drain": A Sociological Explanation.

    Science.gov (United States)

    Karadima, Oscar

    The concept of anomie is proposed as one sociological variable that may explain the "brain drain" phenomenon (i.e., the movement of highly qualified personnel from their country of origin to another, most often a more developed, technologically advanced country). It is hypothesized that the higher the level of anomie found among professionally…

  7. Can a brain drain be good for growth?

    NARCIS (Netherlands)

    Mountford, A.W.

    1995-01-01

    This paper shows how a brain drain - the emigration of agents with a relatively high level of human capital in an economy - can paradoxically increase the productivity of an economy where productivity is a function of the average level of human capital. The model uses Galor and Tsiddon's model of in

  8. Impact assessment of subsurface drainage on waterlogged and saline lands.

    Science.gov (United States)

    Ghumman, Abdul R; Ghazaw, Yousry Mahmoud; Niazi, Muhammed F; Hashmi, Hashim N

    2011-01-01

    Waterlogging and salinity due to seepage from canals have polluted land and environment in various parts of Pakistan. A sustainable environment requires urgent remedial measures for this problem. The research in this paper presents the impacts of the Fourth Drainage Project, Faisalabad on the twin problem of waterlogging and salinity. Monitoring of the project was made on regular basis. The key performance indicators for the project include the lowering of water table, improvement of water quality and soil salinity, increase in area under cultivation, cropping intensity, and socioeconomic status of the project population. Data regarding water levels and discharge from the drain pipes were collected to monitor the impact on waterlogging. Soil samples were tested to evaluate the impact of drainage on land. It has been found that the percentage of the contaminated land in the project area has considerably been decreased, while the cropping intensities have been increased.

  9. Applications of electrical resistance tomography to subsurface environmental restoration

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, A.L. [Lawrence Livermore National Lab., CA (United States); Daily, W.D.

    1994-11-15

    We are developing a new imaging technique, Electrical Resistance Tomography (ERT), to map subsurface liquids as flow occurs during natural or clean-up processes and to map geologic structure. Natural processes (such as surface water infiltrating the vadose zone) and man-induced processes (such as tank leaks and clean-up processes such as steam injection), can create changes in a soil`s electrical properties that are readily measured. We have conducted laboratory and a variety of field experiments to investigate the capabilities and limitations of ERT for imaging underground structures and processes. In the last four years we have used ERT to successfully monitor several field processes including: a subsurface steam injection process (for VOC removal), an air injection process (below the water table) for VOC removal, water infiltration through the vadose zone, radio-frequency heating, ohmic heating, and tank and pond leaks. The information derived from ERT can be used by remediation projects to: detect and locate leaks, determine the effectiveness of clean-up processes, select appropriate clean-up alternatives, and to verify the installation and performance of subsurface barriers.

  10. Bacterial growth in a simulated Martian subsurface environment

    Science.gov (United States)

    Kronyak, R. E.; Pavlov, A.; House, C. H.

    2013-12-01

    The ability of microorganisms to grow under Martian conditions has implications in both the search for life and habitability of Mars as well as the potential contamination of Mars by landing spacecraft. Factors that inhibit the growth of organisms on Mars include UV radiation, low pressure and temperature, CO2 atmosphere, lack of liquid water, and extreme desiccation. Yet a possible biozone capable of supporting microbial life on Mars exists in the shallow subsurface where there is protection from harsh UV rays. In addition, the presence of widespread subsurface ice, confirmed by the Phoenix Lander, offers a water source as the ice sublimates through the upper soil. Here we will determine the ability of the organism Halomonas desiderata strain SP1 to grow in the simulated Martian subsurface environment. Halomonas was chosen as the bacteria of interest due to its tolerance to extreme environments, including carrying salt concentrations and pH. Experiments were carried out in the Mars Simulation Chamber, where temperatures, pressures, and atmospheric composition can be closely monitored to simulate Martian conditions. A series of stress experiments were conducted to observe Halomonas's ability to withstand exposure to a Mars analog soil, freezing temperatures, anoxic conditions, and low pressures. We have determined that Halomonas is able to survive exposures to low temperatures, pressures, and anoxic conditions. We will report on the survival and growth of Halomonas in the simulated Martian permafrost under low (6-10 mbar) atmospheric pressures.

  11. Subsurface barrier validation with the SEAtrace{trademark} system

    Energy Technology Data Exchange (ETDEWEB)

    Sandra Dalvit Dunn; William Lowry; Veraun Chipman

    1999-09-01

    Under contract to the Department of Energy, Science and Engineering Associates has completed development and testing of a subsurface barrier verification and monitoring system. This system, called SEAtrace{trademark}, is able to locate and size leaks with a high degree of accuracy in subsurface barriers that are emplaced in an unsaturated medium. It uses gaseous tracer injection, in-field real-time monitoring, and real time data analysis to evaluate barrier integrity. The approach is: Conservative as it measures vapor leaks in a containment system whose greatest risk is posed by liquid leaks; Applicable to any impermeable type of barrier emplacement technology in the unsaturated zone; Inexpensive as it uses readily available, non-toxic, nonhazardous gaseous tracers, does not require an inordinately large number of sampling points, and injection and sampling points can be emplaced by direct push techniques; Capable of assessing not only a barrier's initial integrity, but can also provide long-term monitoring. To date, six demonstrations of the system have been completed. Results from two of the demonstrations are detailed in this report. They include the final developmental demonstration of the SEAtrace system and a comparison demonstration of two tracer based verification technologies. The final developmental demonstration of SEAtrace was completed at a naval facility in Brunswick, Maine. The demonstration was funded solely by the DOE and was performed in cooperation with the US Navy, the Environmental Protection Agency, and the Maine Department of Environmental Protection.

  12. Numerical Analysis of the Transport and Fate of Nitrate in the Soil and Nitrate Leaching to Drains

    Directory of Open Access Journals (Sweden)

    Alaa El-Sadek

    2001-01-01

    Full Text Available In this study, the transport and fate of nitrate within the soil profile and nitrate leaching to drains were analyzed by comparing historic field data with the simulation results of the DRAINMOD model. The nitrogen version of DRAINMOD was used to simulate the performance of the nitrogen transport and transformation of the Hooibeekhoeve experiment, situated in the sandy region of the Kempen (Belgium and conducted for a 30-year (1969–1998 period. In the analysis, a continuous cropping with maize was assumed. Comparisons between experimentally measured and simulated state variables indicate that the nitrate concentrations in the soil and nitrate leaching to drains are controlled by the fertilizer practice, the initial conditions, and the rainfall depth and distribution. Furthermore, the study reveals that the model used gives a fair description of the nitrogen dynamics in the soil and subsurface drainage at field scale. From the comparative analysis between experimental data and simulation results it can also be concluded that the model after calibration is a useful tool to optimize as a function of the combination “climate-crop-soil-bottom boundary condition” the nitrogen application strategy resulting in an acceptable level of nitrate leaching for the environment.

  13. Numerical analysis of the transport and fate of nitrate in the soil and nitrate leaching to drains.

    Science.gov (United States)

    El-Sadek, A; Radwan, M; Feyen, J

    2001-12-01

    In this study, the transport and fate of nitrate within the soil profile and nitrate leaching to drains were analyzed by comparing historic field data with the simulation results of the DRAINMOD model. The nitrogen version of DRAINMOD was used to simulate the performance of the nitrogen transport and transformation of the Hooibeekhoeve experiment, situated in the sandy region of the Kempen (Belgium) and conducted for a 30-year (1969-1998) period. In the analysis, a continuous cropping with maize was assumed. Comparisons between experimentally measured and simulated state variables indicate that the nitrate concentrations in the soil and nitrate leaching to drains are controlled by the fertilizer practice, the initial conditions, and the rainfall depth and distribution. Furthermore, the study reveals that the model used gives a fair description of the nitrogen dynamics in the soil and subsurface drainage at field scale. From the comparative analysis between experimental data and simulation results it can also be concluded that the model after calibration is a useful tool to optimize as a function of the combination "climate-crop-soil-bottom boundary condition" the nitrogen application strategy resulting in an acceptable level of nitrate leaching for the environment.

  14. Drain fistulography: Radiological sphincter identification in high anal fistulae. Drain-Fistulographie. Radiologische Sphinkteridentifikation bei hohen Analfisteln

    Energy Technology Data Exchange (ETDEWEB)

    Barton, P. (Abt. fuer Roentgendiagnostik, 1. Chirurgische Universitaetsklinik, Vienna (Austria)); Wunderlich, M. (Krankenhaus Hollabrunn (Austria). Chirurgische Abt.); Herbst, F. (1. Chirurgische Universitaetsklinik, Vienna (Austria)); Jantsch, H. (Abt. fuer Roentgendiagnostik, 1. Chirurgische Universitaetsklinik, Vienna (Austria)); Waneck, R. (Abt. fuer Roentgendiagnostik, 1. Chirurgische Universitaetsklinik, Vienna (Austria)); Lechner, G. (Abt. fuer Roentgendiagnostik, 1. Chirurgische Universitaetsklinik, Vienna (Austria))

    1993-07-01

    To warrant permanent surgical cure of high anal fistulae, while avoiding at the same time faecal incontinence due to inadvertent division of the puborectalis muscle, distinction between a trans- and suprasphincteric fistula track is essential. This differentiation is often crucial, since digital-rectal palpation and conventional fistulography tend to be unreliable. Therefore we developed a radiological technique of imaging the anorectal fistulous track, 'drain fistulography'. After silicon drainage of the fistula the contrast-visualization of anal canal, rectum and fistula drain allows to assess the topographic relation between fistula and anal sphincters as well as the sphincteric functional component above the fistula. A transsphincteric fistula track was demonstrated in 7 of 8 patients (5 with recurrent fistulae) by means of 'drain fistulography', permitting complete laying open of each fistula in a second operation. In one patient a supraphincteric fistula track was found and a 'mucosal flap repair' was carried out. After a mean observation time of 53 months all patients are perfectly continent and free of recurrence. The method of 'drain fistulography' is a valuable diagnostic tool to select the appropriate definitive surgical procedure in the treatment of high anal fistulae. (orig.)

  15. Iatrogenic Perforation of the Left Ventricle during Insertion of a Chest Drain

    Science.gov (United States)

    Kim, Dongmin; Lim, Seong-Hoon

    2013-01-01

    Chest draining is a common procedure for treating pleural effusion. Perforation of the heart is a rare often fatal complication of chest drain insertion. We report a case of a 76-year-old female patient suffering from congestive heart failure. At presentation, unilateral opacity of the left chest observed on a chest X-ray was interpreted as massive pleural effusion, so an attempt was made to drain the left pleural space. Malposition of the chest drain was suspected because blood was draining in a pulsatile way from the catheter. Computed tomography revealed perforation of the left ventricle. Mini-thoracotomy was performed and the drain extracted successfully. PMID:23772413

  16. Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs.

    Science.gov (United States)

    Jones, D M; Head, I M; Gray, N D; Adams, J J; Rowan, A K; Aitken, C M; Bennett, B; Huang, H; Brown, A; Bowler, B F J; Oldenburg, T; Erdmann, M; Larter, S R

    2008-01-10

    Biodegradation of crude oil in subsurface petroleum reservoirs has adversely affected the majority of the world's oil, making recovery and refining of that oil more costly. The prevalent occurrence of biodegradation in shallow subsurface petroleum reservoirs has been attributed to aerobic bacterial hydrocarbon degradation stimulated by surface recharge of oxygen-bearing meteoric waters. This hypothesis is empirically supported by the likelihood of encountering biodegraded oils at higher levels of degradation in reservoirs near the surface. More recent findings, however, suggest that anaerobic degradation processes dominate subsurface sedimentary environments, despite slow reaction kinetics and uncertainty as to the actual degradation pathways occurring in oil reservoirs. Here we use laboratory experiments in microcosms monitoring the hydrocarbon composition of degraded oils and generated gases, together with the carbon isotopic compositions of gas and oil samples taken at wellheads and a Rayleigh isotope fractionation box model, to elucidate the probable mechanisms of hydrocarbon degradation in reservoirs. We find that crude-oil hydrocarbon degradation under methanogenic conditions in the laboratory mimics the characteristic sequential removal of compound classes seen in reservoir-degraded petroleum. The initial preferential removal of n-alkanes generates close to stoichiometric amounts of methane, principally by hydrogenotrophic methanogenesis. Our data imply a common methanogenic biodegradation mechanism in subsurface degraded oil reservoirs, resulting in consistent patterns of hydrocarbon alteration, and the common association of dry gas with severely degraded oils observed worldwide. Energy recovery from oilfields in the form of methane, based on accelerating natural methanogenic biodegradation, may offer a route to economic production of difficult-to-recover energy from oilfields.

  17. Transport of Chemical Vapors from Subsurface Sources to Atmosphere as Affected by Shallow Subsurface and Atmospheric Conditions

    Science.gov (United States)

    Rice, A. K.; Smits, K. M.; Hosken, K.; Schulte, P.; Illangasekare, T. H.

    2012-12-01

    experiments. Water saturation, capillary pressure, air and soil temperature, and relative humidity were continuously monitored. Aqueous TCE was injected into the tank below the water table and allowed to volatilize. TCE concentration exiting the tank head space was measured through interval sampling by direct injection into a gas chromatograph. To quantify the transient concentration of TCE vapor in the soil pore space a novel use of Solid Phase Micro-Extraction (SPME) was developed. Results from our numerical simulations were compared with the experimental data, which demonstrated the importance of considering the interaction of the atmosphere with the subsurface in conceptualization and numerical model development. Results also emphasize that soil saturation and transient sorption have a significant effect on vapor transport through the vadose zone. Follow-up tests and detailed analyses are still underway. Additional applications of this work include carbon sequestration leakage, methane contamination in the shallow subsurface and environmental impact of hydraulic fracturing.

  18. Inferring the interconnections between surface water bodies, tile-drains and an unconfined aquifer-aquitard system: A case study

    Science.gov (United States)

    Colombani, N.; Di Giuseppe, D.; Faccini, B.; Ferretti, G.; Mastrocicco, M.; Coltorti, M.

    2016-06-01

    Shallow lenses in reclaimed coastal areas are precious sources of freshwater for crop development, but their seasonal behaviour is seldom known in tile-drained fields. In this study, field monitoring and numerical modelling provide a robust conceptual model of these complex environments. Crop and meteorological data are used to implement an unsaturated flow model to reconstruct daily recharge. Groundwater fluxes and salinity, water table elevation, tile-drains' discharge and salinity are used to calibrate a 2D density-dependent numerical model to quantify non-reactive solute transport within the aquifer-aquitard system. Results suggest that lateral fluxes in low hydraulic conductivity sediments are limited, while water table fluctuation is significant. The use of depth-integrated monitoring to calibrate the model results in poor efficiency, while multi-level soil profiles are crucial to define the mixing zone between fresh and brackish groundwater. Measured fluxes and chloride concentrations from tile-drains not fully compare with calculated ones due to preferential flow through cracks.

  19. Tropical Pacific Decadal Variability in Subsurface Temperature

    Institute of Scientific and Technical Information of China (English)

    LIU Qinyu; XU Lixiao; LU Jiuyou; WANG Qi

    2012-01-01

    The nature decadal variability of the equatorial Pacific subsurface temperature is examined in the control simulation with the Geophysical Fluid Dynamics Laboratory coupled model CM2.1.The dominant mode of the subsurface temperature variations in the equator Pacific features a 20-40 year period and is North-South asymmetric about the equator.Decadal variations of the thermocline are most pronounced in the southwest of the Tropical Pacific.Decadal variation of the north-south asymmetric Sea Surface wind in the tropical Pacific,especially in the South Pacific Convergence,is the dominant mechanism of the nature decadal variation of the subsurface temperature in the equatorial Pacific.

  20. Solar subsurface flows from local helioseismology

    Science.gov (United States)

    Zhao, Junwei; Chen, Ruizhu

    2016-07-01

    In this article, we review recent progresses in subsurface flows obtained from two local helioseismology methods: time-distance helioseismology and ring-diagram analysis. We review results in the following four topics: flows beneath sunspots and active regions, supergranular subsurface flows, shallow meridional flow and its variations with solar cycles, and meridional circulation in the deep solar interior. Despite recent advancements in methodology, modeling, and observations, many questions are still to be answered and a few topics remain controversial. More efforts, especially in numerical modeling and accurate interpretation of acoustic wave travel-time measurements, are needed to improve the derivations of subsurface flows.

  1. Introduction: energy and the subsurface

    Science.gov (United States)

    Viswanathan, Hari S.

    2016-01-01

    This theme issue covers topics at the forefront of scientific research on energy and the subsurface, ranging from carbon dioxide (CO2) sequestration to the recovery of unconventional shale oil and gas resources through hydraulic fracturing. As such, the goal of this theme issue is to have an impact on the scientific community, broadly, by providing a self-contained collection of articles contributing to and reviewing the state-of-the-art of the field. This collection of articles could be used, for example, to set the next generation of research directions, while also being useful as a self-study guide for those interested in entering the field. Review articles are included on the topics of hydraulic fracturing as a multiscale problem, numerical modelling of hydraulic fracture propagation, the role of computational sciences in the upstream oil and gas industry and chemohydrodynamic patterns in porous media. Complementing the reviews is a set of original research papers covering growth models for branched hydraulic crack systems, fluid-driven crack propagation in elastic matrices, elastic and inelastic deformation of fluid-saturated rock, reaction front propagation in fracture matrices, the effects of rock mineralogy and pore structure on stress-dependent permeability of shales, topographic viscous fingering and plume dynamics in porous media convection. This article is part of the themed issue ‘Energy and the subsurface’. PMID:27597784

  2. Larvivorous activity of Poecilia reticulata against Culex quinquefasciatus larvae in a polluted water drain in Hardwar, India.

    Science.gov (United States)

    Dua, Virendra K; Pandey, A C; Rai, Swapnil; Dash, A P

    2007-12-01

    The efficacy of the larvivorous fish Poecilia reticulata against mosquito larvae was monitored in a drain at Bharat Heavy Electricals Limited, Hardwar, India. The water was polluted and the water flow was in some way impeded. Poecilia reticulata failed to feed on Culex quinquefasciatus larvae in this drain. Laboratory experiments also confirmed the inefficacy of P. reticulata as a predator of Cx. quinquefasciatus larvae during the first 24 h. Significant differences in the efficacy of P. reticulata against Cx. quinquefasciatus were recorded between polluted water and drinking water. Poecilia reticulata preferred to feed on other available food present in the polluted water rather than on Cx. quinquefasciatus larvae. This was verified by the identification of plankton in the gut content of the fish and by the high density of plankton present in the polluted water.

  3. Effects of drain-fill cycling on chlorpyrifos mineralization in wetland sediment-water microcosms.

    Science.gov (United States)

    Gebremariam, Seyoum Yami; Beutel, Marc W

    2010-03-01

    Constructed treatment wetlands are efficient at retaining a range of pesticides, however the ultimate fate of many of these compound is not well understood. This study evaluated the effect of drain-fill cycling on the mineralization of chlorpyrifos, a commonly used organophosphate insecticide, in wetland sediment-water microcosms. Monitoring of the fate of (14)C ring-labeled chlorpyrifos showed that drain-fill cycling resulted in significantly lower mineralization rates relative to permanently flooded conditions. The reduction in mineralization was linked to enhanced partitioning of the pesticide to the sediment phase, which could potentially inhibit chlorpyrifos hydrolysis and mineralization. Over the nearly two-month experiment, less than 2.5% of the added compound was mineralized. While rates of mineralization in this experiment were higher than those reported for other soils and sediments, their low magnitude underscores how persistent chlorpyrifos and its metabolites are in aquatic environments, and suggests that management strategies and ecological risk assessment should focus more on ultimate mineralization rather than the simple disappearance of the parent compound.

  4. Return Migration After Brain Drain: An Agent Based Simulation Approach

    CERN Document Server

    Biondo, A E; Rapisarda, A

    2012-01-01

    The Brain Drain phenomenon is particularly heterogeneous and is characterized by peculiar specifications. It influences the economic fundamentals of both the country of origin and the host one in terms of human capital accumulation. Here, the brain drain is considered from a microeconomic perspective: more precisely we focus on the individual rational decision to return, referring it to the social capital owned by the worker. The presented model, restricted to the case of academic personnel, compares utility levels to justify agent's migration conduct and to simulate several scenarios with a NetLogo agent based model. In particular, we developed a simulation framework based on two fundamental individual features, i.e. risk aversion and initial expectation, which characterize the dynamics of different agents according to the random evolution of their personal social networks. Our main result is that, according to the value of risk aversion and initial expectation, the probability of return migration depends on...

  5. Aharonov-Bohm effect in a draining bathtub vortex

    Science.gov (United States)

    Dolan, Sam R.; Oliveira, Ednilton S.; Crispino, Luís C. B.

    2011-07-01

    We study planar waves in a circulating, draining fluid flow, which: (i) exhibit an analogue of the Aharonov-Bohm (AB) effect in Quantum Mechanics; (ii) obey a Klein-Gordon equation on an 'effective spacetime' which resembles the Kerr spacetime of General Relativity; and (iii) may be observed in the laboratory using gravity waves in a shallow basin. We describe a modified AB effect which depends on two dimensionless parameters, associated with the circulation α and draining β rates; we call this the 'αβ effect'. We show that the αβ effect is inherently asymmetric even in the low-frequency limit, and that it leads to novel interference patterns which carry the signature of both rotation and absorption.

  6. Waves and null congruences in a draining bathtub

    CERN Document Server

    Dempsey, David

    2016-01-01

    We study wave propagation in a draining bathtub: a fluid-mechanical black hole analogue in which perturbations are governed by a Klein-Gordon equation on an effective Lorentzian geometry. Like the Kerr spacetime, the draining bathtub geometry possesses an (effective) horizon, an ergosphere and null circular orbits. We propose that a `pulse' disturbance may be used to map out the light-cone of the effective geometry. First, we apply the eikonal approximation to elucidate the link between wavefronts, null geodesic congruences and the Raychaudhuri equation. Next, we solve the wave equation numerically in the time domain using the method of lines. Starting with Gaussian initial data, we demonstrate that a pulse will propagate along a null congruence and thus trace out the light-cone of the effective geometry. Our numerical results reveal features, such as wavefront intersections, frame-dragging, winding and interference effects, that are closely associated with the presence of null circular orbits and the ergosph...

  7. An experimental study on recovering heat from domestic drain water

    Science.gov (United States)

    Ramadan, Mohamad; Al Shaer, Ali; Haddad, Ahmad; Khaled, Mahmoud

    2016-07-01

    This paper concerns an experimental study on a system of heat recovery applied to domestic drain water pipes. The concept suggested consists of using the heat still present in the drain water as a preheating/heating source to the cold water supply of the building. To proceed, an appropriate experimental setup is developed and a coil heat exchanger is used as heat transfer device in the recovery system. Several scenarios are simulated and corresponding parameters are recorded and analyzed. It was shown that the suggested recovery concept can considerably preheat the cold water supply and then decrease the energy consumption. Particularly, up to 8.6 kW of heat were recovered when the cold water supply is initially at 3 °C.

  8. Denitrifying bioreactors for nitrate removal from tile drained cropland

    Science.gov (United States)

    Denitrification bioreactors are a promising technology for mitigation of nitrate-nitrogen (NO3-N) losses in subsurface drainage water. Bioreactors are constructed with carbon substrates, typically wood chips, to provide a substrate for denitrifying microorganisms. Researchers in Iowa found that for ...

  9. Soil moisture monitoring results at the radioactive waste management complex of the Idaho National Engineering Laboratory, FY-1993

    Energy Technology Data Exchange (ETDEWEB)

    McElroy, D.L.

    1993-11-01

    In FY-1993, two tasks were performed for the Radioactive Waste Management Complex (RWMC) Low Level Waste Performance Assessment to estimate net infiltration from rain and snow at the Subsurface Disposal Area (SDA) and provide soil moisture data for hydrologic model calibration. The first task was to calibrate the neutron probe to convert neutron count data to soil moisture contents. A calibration equation was developed and applied to four years of neutron probe monitoring data (November 1986 to November 1990) at W02 and W06 to provide soil moisture estimates for that period. The second task was to monitor the soils at two neutron probe access tubes (W02 and W06) located in the SDA of the RWMC with a neutron probe to estimate soil moisture contents. FY-1993 monitoring indicated net infiltration varied widely across the SDA. Less than 1.2 in. of water drained into the underlying basalts near W02 in 1993. In contrast, an estimated 10.9 in. of water moved through the surficial sediments and into the underlying basalts at neutron probe access tube W06. Net infiltration estimates from the November 1986 to November 1990 neutron probe monitoring data are critical to predictive contaminant transport modeling and should be calculated and compared to the FY-1993 net infiltration estimates. In addition, plans are underway to expand the current neutron probe monitoring system in the SDA to address the variability in net infiltration across the SDA.

  10. Tree rings as biosensor to detect leakage of subsurface fossil CO2

    NARCIS (Netherlands)

    Donders, T.H.; Decuyper, M.; Beaubien, S.E.; van Hoof, T.B.; Cherubini, P.; Sass-Klaassen, U.

    2013-01-01

    Monitoring the surface composition of CO2 derived from subsurface reservoirs is an important part of the carbon capture and storage (CCS) chain. Most approaches use geochemical or geophysical instrumental approaches but these have the drawback that no long-term time series are available, which depen

  11. Tree rings as biosensor to detect leakage of subsurface fossil CO2

    NARCIS (Netherlands)

    Donders, T.H.; Decuyper, M.; Beaubien, S.E.; van Hoof, T.B.; Cherubini, P.; Sass-Klaassen, U.

    2013-01-01

    Monitoring the surface composition of CO2 derived from subsurface reservoirs is an important part of the carbon capture and storage (CCS) chain. Most approaches use geochemical or geophysical instrumental approaches but these have the drawback that no long-term time series are available, which depen

  12. A field study of colloid transport in surface and subsurface flows

    Science.gov (United States)

    Zhang, Wei; Tang, Xiang-Yu; Xian, Qing-Song; Weisbrod, Noam; Yang, Jae E.; Wang, Hong-Lan

    2016-11-01

    Colloids have been recognized to enhance the migration of strongly-sorbing contaminants. However, few field investigations have examined combined colloid transport via surface runoff and subsurface flows. In a headwater catchment of the upper Yangtze River, a 6 m (L) by 4 m (W) sloping (6°) farmland plot was built by cement walls to form no-flow side boundaries. The plot was monitored in the summer of 2014 for the release and transport of natural colloids via surface runoff and subsurface flows (i.e., the interflow from the soil-mudrock interface and fracture flow from the mudrock-sandstone interface) in response to rain events. The water sources of the subsurface flows were apportioned to individual rain events using a two end-member model (i.e., mobile pre-event soil water extracted by a suction-cup sampler vs. rainwater (event water)) based on δ18O measurements. For rain events with high preceding soil moisture, mobile pre-event soil water was the main contributor (generally >60%) to the fracture flow. The colloid concentration in the surface runoff was 1-2 orders of magnitude higher than that in the subsurface flows. The lowest colloid concentration was found in the subsurface interflow, which was probably the result of pore-scale colloid straining mechanisms. The rainfall intensity and its temporal variation govern the dynamics of the colloid concentrations in both surface runoff and subsurface flows. The duration of the antecedent dry period affected not only the relative contributions of the rainwater and the mobile pre-event soil water to the subsurface flows but also the peak colloid concentration, particularly in the fracture flow. The rain period because their transport in association with colloids may occur rapidly over long distances via both surface runoff and subsurface flows with rainfall.

  13. Comment on 'Perfect drain for the Maxwell fish eye lens'

    CERN Document Server

    Sun, Fei

    2012-01-01

    The non-magnetic loss material has been proposed (2011 New J. Phys. 13 023038) to mimic a passive perfect drain in the Maxwell's fish eye lens (MFL). In this comment, we argue that this passive medium can only be treated as a perfect absorber which can totally absorb all incident radiation without scattering by it, but it cannot mimic a delta function at the image point. As a result, this passive medium cannot help to achieve a perfect focusing in MFL.

  14. Relationship Between Storm Hydrograph Components and Subsurface Flow Processes in a Hilly Headwater Basin, Toyota, Japan

    Science.gov (United States)

    Tsujimura, M.; Asai, K.; Takei, R.

    2001-05-01

    Temporal and spatial distribution of tracer elements and subsurface flow processes were investigated to study relationship between storm hydrograph components and behavior of subsurface water in a headwater catchment of Toyota Hill, Aichi prefecture, central Japan. The catchment has an area of 0.857 ha with an altitude of 60 to 100 m, and is underlain by granite. The soil depth revealed by sounding test ranges from 0.5 to 4.0 m. Rain, stream, soil and ground waters were sampled once in a week, and the stream water was sampled at 5 to 60 minute intervals during rainstorms. The pressure head of subsurface water was monitored using tensiometers and piezometers nests, and the stream flow was monitored using V-notch weir. The stable isotopic ratios of deuterium and oxygen 18 and inorganic ion concentrations were determined on all water samples. The oxygen 18 isotopic ratio in stream water decreased with rainfall during the rainstorms. The ratio of event water component to the total runoff water at the peak discharge ranged from 16 to 92 %, and the event water ratio correlated with the peak discharge rate and rainfall intensity. The tesiometric data showed that the shallow subsurface water with low isotopic ratios at the lower slope discharged directly to the stream during the heavy rainstorms. The shallow subsurface flow at the lower slope and overland flow on the raiparian zone contributed much to the stream water chemistry during heavy rainstorms.

  15. DOE UST interim subsurface barrier technologies workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-09-01

    This document contains information which was presented at a workshop regarding interim subsurface barrier technologies that could be used for underground storage tanks, particularly the tank 241-C-106 at the Hanford Reservation.

  16. Subsurface application enhances benefits of manure redistribution

    Science.gov (United States)

    Sustainable nutrient management requires redistribution of livestock manure from nutrient-excess areas to nutrient-deficit areas. Field experiments were conducted to assess agronomic and environmental effects of different poultry litter application methods (surface vs. subsurface) and timings (fall ...

  17. PERISCOPE: PERIapsis Subsurface Cave OPtical Explorer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lunar sub-surface exploration has been a topic of discussion since the Lunar Reconnaissance Orbiter identified openings (cave skylights) on the surface of the moon...

  18. Subsurface geology of the Bombay Harbour

    Digital Repository Service at National Institute of Oceanography (India)

    Almeida, F.; Ramana, M.V.; Vora, K.H.; Bhattacharya, G.C.; Subrahmanyam, V.

    /eroded bedrock which is the continuation of the onshore Deccan flood basalts. Buried channels, interbedded sand bodies, small scale ripples, scouring of the seabed and gas charged sediments were identified. The subsurface geology of the area, relevant to offshore...

  19. LIBS Sensor for Sub-surface CO2 Leak Detection in Carbon Sequestration

    Directory of Open Access Journals (Sweden)

    Jinesh JAIN

    2017-07-01

    Full Text Available Monitoring carbon sequestration poses numerous challenges to the sensor community. For example, the subsurface environment is notoriously harsh, with large potential mechanical, thermal, and chemical stresses, making long-term stability and survival a challenge to any potential in situ monitoring method. Laser induced breakdown spectroscopy (LIBS has been demonstrated as a promising technology for chemical monitoring of harsh environments and hard to reach places. LIBS has a real- time monitoring capability and can be used for the elemental and isotopic analysis of solid, liquid, and gas samples. The flexibility of the probe design and the use of fiber- optics has made LIBS particularly suited for remote measurements. The paper focuses on developing a LIBS instrument for downhole high-pressure, high-temperature brine experiments, where CO2 leakage could result in changes in the trace mineral composition of an aquifer. The progress in fabricating a compact, robust, and simple LIBS sensor for widespread subsurface leak detection is presented.

  20. Suction drain tip culture in orthopaedic surgery: a prospective study of 214 clean operations

    OpenAIRE

    Sankar, B.; P Ray; Rai, J.

    2004-01-01

    We conducted a prospective cohort study in order to determine whether suction drain specimen cultures from orthopaedic surgery predicted an early wound infection. We included 218 consecutive clean orthopaedic operations requiring drains in one unit over a period of 1 year. The suction drain tip, drain fluid and wound discharge specimens were cultured, and the surgical wound was followed up for 3 months. There were six deep and two superficial wound infections. Wound infection was significantl...

  1. Floating insulated conductors for heating subsurface formations

    Science.gov (United States)

    Burns, David; Goodwin, Charles R.

    2014-07-29

    A heating system for a subsurface formation includes a conduit located in a first opening in the subsurface formation. Three electrical conductors are located in the conduit. A return conductor is located inside the conduit. The return conductor is electrically coupled to the ends of the electrical conductors distal from the surface of the formation. Insulation is located inside the conduit. The insulation electrically insulates the three electrical conductors, the return conductor, and the conduit from each other.

  2. Microbial life in the deep terrestrial subsurface

    Energy Technology Data Exchange (ETDEWEB)

    Fliermans, C.B. [E.I. DuPont de Nemours and Co., Aiken, SC (United States). Savannah River Lab.; Balkwill, D.L. [Florida State Univ., Tallahassee, FL (United States); Beeman, R.E. [Univ. of Oklahoma, Norman, OK (United States)] [and others

    1988-12-31

    The distribution and function of microorganisms is a vital issue in microbial ecology. The US Department of Energy`s Program, ``Microbiology of the Deep Subsurface,`` concentrates on establishing fundamental scientific information about organisms at depth, and the use of these organisms for remediation of contaminants in deep vadose zone and groundwater environments. This investigation effectively extends the Biosphere hundreds of meters into the Geosphere and has implications to a variety of subsurface activities.

  3. Tomato Root Response to Subsurface Drip Irrigation

    Institute of Scientific and Technical Information of China (English)

    ZHUGE Yu-Ping; ZHANG Xu-Dong; ZHANG Yu-Long; LI Jun; YANG Li-Juan; HUANG Yi; LIU Ming-Da

    2004-01-01

    Four depth treatments of subsurface drip irrigation pipes were designated as 1) at 20,2) 30 and 3) 40 cm depths all with a drip-proof flumes underneath,and 4) at 30 cm without a drip-proof flume to investigate the responses of a tomato root system to different technical parameters of subsurface drip irrigation in a glass greenhouse,to evaluate tomato growth as affected by subsurface drip irrigation,and to develop an integrated subsurface drip irrigation method for optimal tomato yield and water use in a glass greenhouse. Tomato seedlings were planted above the subsurface drip irrigation pipe. Most of the tomato roots in treatment 1 were found in the top 0-20 cm soil depth with weak root activity but with yield and water use efficiency (WUE) significantly less (P ---- 0.05) than treatment 2; root activity and tomato yield were significantly higher (P = 0.05) with treatment 3 compared to treatment 1; and with treatment 2 the tomato roots and shoots grew harmoniously with root activity,nutrient uptake,tomato yield and WUE significantly higher (P= 0.05) or as high as the other treatments. These findings suggested that subsurface drip irrigation with pipes at 30 cm depth with a drip-proof flume placed underneath was best for tomato production in greenhouses. In addition,the irrigation interval should be about 7-8 days and the irrigation rate should be set to 225 m3 ha-1 per event.

  4. Effects of drain doping concentration on switching characteristics of tunnel field-effect transistor inverters

    Science.gov (United States)

    Kwon, Dae Woong; Kim, Jang Hyun; Park, Byung-Gook

    2016-11-01

    In order to investigate the effects of the modulation of drain doping concentration (N drain) on alternating current (AC) switching characteristics of a tunnel filed-effect transistor (TFET) inverter, the characteristics of TFETs with various N drains are analyzed rigorously through mixed-mode device and circuit TCAD simulations. As the N drain gets decreased, the drain current (I D) becomes reduced and the gate-to-drain capacitance (C GD) reflects the entire gate capacitance (C GG) at a lower gate voltage (V G), which leads to the degradation of falling/rising delay in TFET inverters. These phenomena are explained successfully by the change of quasi-Fermi energy in the drain (E F_drain) as a function of V G. The E F_drain rises dramatically from when tunneling current starts to flow from the source in the n-type TFET with low N drain. As a result, drain-side channel inversion occurs at a lower V G due to the reduction of the energy barrier between the E F_drain and the conduction band edge of the channel.

  5. 75 FR 21985 - Virginia Graeme Baker Pool and Spa Safety Act; Interpretation of Unblockable Drain

    Science.gov (United States)

    2010-04-27

    ... is creating a new Sec. 1450.2(b) to interpret ``unblockable drain'' as follows: A suction outlet...) Unblockable drain includes a suction outlet defined as all components, including the sump and/or body, cover... Drain AGENCY: Consumer Product Safety Commission. ACTION: Final interpretive rule. SUMMARY: The...

  6. 76 FR 62605 - Virginia Graeme Baker Pool and Spa Safety Act; Interpretation of Unblockable Drain

    Science.gov (United States)

    2011-10-11

    ... 19, 2008. The VGB Act's purpose is to prevent suction entrapment by swimming pool and spa drains and...; Suction-limiting vent system; Gravity drainage system; Automatic pump shut-off system; Drain disablement.... A ] drain is ``unblockable'' if the suction outlet, including the sump, has a perforated (open)...

  7. On the role of discharge events on nitrogen and phosphorus loads from small tile-drained catchments

    Science.gov (United States)

    Fučík, Petr; Zajíček, Antonín; Kaplická, Markéta; Peterková, Jana; Duffková, Renata

    2017-04-01

    There is a great concern among hydrologists, watershed managers as well as policy makers on how different rainfall-runoff events influence the loss of pollutants from agricultural land. Often, a substantial share of nitrogen (N) and particularly phosphorus (P) loss is reported to happen during discharge events of various magnitude, especially in tile-drained landscapes. We monitored ten small (4 - 35 ha) tile-drained catchments of different land use and agricultural management in Czech Republic for five years (2012 - 2016). Discharge was measured continuously at 10 min interval with ultrasound probes, a regular 14-day scheme of water quality monitoring was accompanied by withdrawal of water samples during discharge events by automatic samplers with 20 - 120 minutes span. For the non-sampled periods, a semi-automated algorithm was developed for selection of discharge events; water quality was set here as the average flow-weighted concentration from a particular site and season. We then quantified the share of discharge events on runoff, N and P loss and further, we compared six different methods for solute load estimation. The results showed considerable differences among the monitored sites and seasons. The share of discharge events on N loads was on average 5 - 30% of the total year load, whereas for P (dissolved and total), the share of discharge events was on average 10 - 80% on the total year load. The most precise method for solute load estimation was apparently the one including the discharge events. The methods based on point monitoring of discharge and water quality underestimated the solute loads of N by 10 - 20%, of P by 30 - 80%. The acquired findings are useful for improvement of nutrient load assessment in tile-drained catchments of various scales as well as for design of diverse mitigation measures on agricultural land or tile drainage systems.

  8. An economic perspective on Malawi's medical "brain drain"

    Directory of Open Access Journals (Sweden)

    Mohiddin Abdu

    2006-12-01

    Full Text Available Abstract Background The medical "brain drain" has been described as rich countries "looting" doctors and nurses from developing countries undermining their health systems and public health. However this "brain-drain" might also be seen as a success in the training and "export" of health professionals and the benefits this provides. This paper illustrates the arguments and possible policy options by focusing on the situation in one of the poorest countries in the world, Malawi. Discussion Many see this "brain drain" of medical staff as wrong with developed countries exploiting poorer ones. The effects are considerable with Malawi facing high vacancy rates in its public health system, and with migration threatening to outstrip training despite efforts to improve pay and conditions. This shortage of staff has made it more challenging for Malawi to deliver on its Essential Health Package and to absorb new international health funding. Yet, without any policy effort Malawi has been able to demonstrate its global competitiveness in the training ("production" of skilled health professionals. Remittances from migration are a large and growing source of foreign exchange for poor countries and tend to go directly to households. Whilst the data for Malawi is limited, studies from other poor countries demonstrate the power of remittances in significantly reducing poverty. Malawi can benefit from the export of health professionals provided there is a resolution of the situation whereby the state pays for training and the benefits are gained by the individual professional working abroad. Solutions include migrating staff paying back training costs, or rich host governments remitting part of a tax (e.g. income or national insurance to the Malawi government. These schemes would allow Malawi to scale up training of health professionals for local needs and to work abroad. Summary There is concern about the negative impacts of the medical "brain-drain". However a

  9. Monitoring Changes in Soil Water Content Using Subsurface Displacement

    Science.gov (United States)

    Thrash, C. J.; Miller, S.; Murdoch, L. C.; Germanovich, L. N.; Gates, J. B.; Volkmer, A.; Weinburg, A.

    2013-12-01

    Closing the water balance is important in many research and water resource applications, but it can be difficult to accomplish due to a variety of factors. A new technique that measures vertical displacement of soil in order to estimate the change in mass of water stored in overlying material is being developed. The measurement technique uses an extensometer that functions as a lysimeter, and we refer to the technique as Displacement Extensometry for Lysimetric Terrain Analysis (DELTA). DELTA extensometers are 2-m-long devices deployed by creating a friction fit with intact soil below a cased borehole. The instrument measures small displacements (better than 10 nm resolution) in response to changes of mass in the overlying soil, or other factors. The instrument averages over a region that scales with the depth of installation (the radius of influence is approximately 2x the depth). The spatial averaging of this instrument extends over regions representative of agricultural fields, hydrologic model grid blocks, and small watersheds. Five DELTA extensometers have been deployed at a field site near Clemson, SC at depths of 3, 6, and 9 m within saprolite derived from biotite gneiss. Barometric pressure, precipitation, and soil moisture are being measured along with displacement. Signals from the co-located extensometers are remarkably similar, demonstrating reproducibility of the technique. Rainfall causes soil compression, and at 6 m depth there is approximately 200 nm of compression per 1 mm of rainfall. There is gradual expansion, which ranges from 0.15 to 1.75 μm/day, following rainfall. The gradual unloading of the soil is interpreted as water loss due to evapotranspiration. Superimposed on the signal are diurnal fluctuations of 0.5 to 1 μm, which correlate to changes in barometric pressure. Four DELTA extensometers were recently deployed in hard, clayey sediments at two field locations south of Amarillo, TX. The instruments will compliment current research on groundwater recharge in playas. Two other extensometers were deployed in loess at a field site near Holdredge, NE, where they will be used to help characterize water cycling beneath irrigated agriculture. Calibration data has been obtained and the instruments appear to be functioning properly. The preliminary data suggest that the DELTA technique should be applicable in a variety of soil types.

  10. Remote Monitoring of Subsurface Flow Conditions in Rivers

    Science.gov (United States)

    2013-09-30

    measured by the ADV. The colored stars represent the run mean flow magnitudes obtained by the 3 methods: DPIV, OF and SAS. TKE Dissipation The...Mech., vol. 77, 531-560. Korchoka Y. M. (1968). Investigation of the dune movement of sediments on the Polomet’ River. Sov. Hydrol. 541-559. McKenna

  11. Tuning the Activity of Pt(111) for Oxygen Electroreduction by Subsurface Alloying

    DEFF Research Database (Denmark)

    Stephens, Ifan; Bondarenko, A.S.; Perez-Alonso, F.J.

    2011-01-01

    To enable the development of low temperature fuel cells, significant improvements are required to the efficiency of the Pt electrocatalysts at the cathode, where oxygen reduction takes place. Herein, we study the effect of subsurface solute metals on the reactivity of Pt, using a Cu/Pt(111) near......-surface alloy. Our investigations incorporate electrochemical measurements, ultrahigh vacuum experiments, and density functional theory. Changes to the OH binding energy, ΔEOH, were monitored in situ and adjusted continuously through the subsurface Cu coverage. The incorporation of submonolayer quantities of Cu...

  12. Analytical drain current model for amorphous IGZO thin-film transistors in abovethreshold regime

    Institute of Scientific and Technical Information of China (English)

    He Hongyu; Zheng Xueren

    2011-01-01

    An analytical drain current model is presented for amorphous In-Ga-Zn-oxide thin-film transistors in the above-threshold regime,assuming an exponential trap states density within the bandgap.Using a charge sheet approximation,the trapped and free charge expressions are calculated,then the surface potential based drain current expression is developed.Moreover,threshold voltage based drain current expressions are presented using the Taylor expansion to the surface potential based drain current expression.The calculated results of the surface potential based and threshold voltage based drain current expressions are compared with experimental data and good agreements are achieved.

  13. Automated detection of external ventricular and lumbar drain-related meningitis using laboratory and microbiology results and medication data.

    Directory of Open Access Journals (Sweden)

    Maaike S M van Mourik

    Full Text Available OBJECTIVE: Monitoring of healthcare-associated infection rates is important for infection control and hospital benchmarking. However, manual surveillance is time-consuming and susceptible to error. The aim was, therefore, to develop a prediction model to retrospectively detect drain-related meningitis (DRM, a frequently occurring nosocomial infection, using routinely collected data from a clinical data warehouse. METHODS: As part of the hospital infection control program, all patients receiving an external ventricular (EVD or lumbar drain (ELD (2004 to 2009; n = 742 had been evaluated for the development of DRM through chart review and standardized diagnostic criteria by infection control staff; this was the reference standard. Children, patients dying <24 hours after drain insertion or with <1 day follow-up and patients with infection at the time of insertion or multiple simultaneous drains were excluded. Logistic regression was used to develop a model predicting the occurrence of DRM. Missing data were imputed using multiple imputation. Bootstrapping was applied to increase generalizability. RESULTS: 537 patients remained after application of exclusion criteria, of which 82 developed DRM (13.5/1000 days at risk. The automated model to detect DRM included the number of drains placed, drain type, blood leukocyte count, C-reactive protein, cerebrospinal fluid leukocyte count and culture result, number of antibiotics started during admission, and empiric antibiotic therapy. Discriminatory power of this model was excellent (area under the ROC curve 0.97. The model achieved 98.8% sensitivity (95% CI 88.0% to 99.9% and specificity of 87.9% (84.6% to 90.8%. Positive and negative predictive values were 56.9% (50.8% to 67.9% and 99.9% (98.6% to 99.9%, respectively. Predicted yearly infection rates concurred with observed infection rates. CONCLUSION: A prediction model based on multi-source data stored in a clinical data warehouse could accurately

  14. Subsurface ecosystem resilience: long-term attenuation of subsurface contaminants supports a dynamic microbial community

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, J.M.; Neuhauser, E.F.; Ripp, J.A.; Mauro, D.M.; Madsen, E.L. [Cornell University, Ithaca, NY (United States). Dept. of Microbiology

    2010-01-15

    The propensity for groundwater ecosystems to recover from contamination by organic chemicals (in this case, coal-tar waste) is of vital concern for scientists and engineers who manage polluted sites. The microbially mediated cleanup processes are also of interest to ecologists because they are an important mechanism for the resilience of ecosystems. In this study we establish the long-term dynamic nature of a coal-tar waste-contaminated site and its microbial community. We present 16 years of chemical monitoring data, tracking responses of a groundwater ecosystem to organic contamination (naphthalene, xylenes, toluene, 2-methyl naphthalene and acenaphthylene) associated with coal-tar waste. In addition, we analyzed small-subunit (SSU) ribosomal RNA (rRNA) genes from two contaminated wells at multiple time points over a 2-year period. Principle component analysis of community rRNA fingerprints (terminal-restriction fragment length polymorphism (T-RFLP)) showed that the composition of native microbial communities varied temporally, yet remained distinctive from well to well. After screening and analysis of 1178 cloned SSU rRNA genes from Bacteria, Archaea and Eukarya, we discovered that the site supports a robust variety of eukaryotes (for example, alveolates (especially anaerobic and predatory ciliates), stramenopiles, fungi, even the small metazoan flatworm, Suomina) that are absent from an uncontaminated control well. This study links the dynamic microbial composition of a contaminated site with the long-term attenuation of its subsurface contaminants.

  15. Study of the patency of different peritoneal drains used prophylactically in bariatric surgery

    Institute of Scientific and Technical Information of China (English)

    Wilson Salgado Júnior; Marcelo Martins Macedo Neto; José Sebastiao dos Santos; Ajith Kumar Sakarankutty; Reginaldo Ceneviva; Orlando de Castro e Silva Jr

    2009-01-01

    AIM: To compare the performance of different types of abdominal drains used in bariatric surgery. METHODS: A vertical banded Roux-en-Y gastric bypass was performed in 33 morbidly obese patients. Drainage of the peritoneal cavity was performed in each case using three different types of drain selected in a randomized manner: a latex tubular drain, a Watterman tubulolaminar drain, and a silicone channeled drain. Drain permeability, contamination of the drained fluid, ease of handling, and patient discomfort were evaluated postoperatively over a period of 7 d. RESULTS: The patients with the silicone channeled drain had larger volumes of drainage compared to patients with tubular and tubulolaminar drains between the third and seventh postoperative days. In addition, a lower incidence of discomfort and of contamination with bacteria of a more pathogenic profile was observed in the patients with the silicone channeled drain.CONCLUSION: The silicone channeled drain was more comfortable and had less chance of occlusion, which is important in the detection of delayed dehiscence.

  16. A retrospective study of the use of active suction wound drains in dogs and cats.

    Science.gov (United States)

    Bristow, P C; Halfacree, Z J; Baines, S J

    2015-05-01

    To report indications for use and complications associated with commonly used closed active suction wound drains in a large number of clinical cases. Retrospective review of medical case records (from 2004 to 2010) for dogs and cats that had a closed active suction drain placed into a wound. Only the four most common drain types were included: Mini Redovac®, Redovac®, Jackson Pratt® and Wound Evac®. Two hundred and fifty-three drains were placed in 33 cats and 195 dogs. Mini Redovac drains were used most frequently in cats (76 · 5%) and Redovac drains in dogs (54 · 3%). The infection rate for clean surgeries in dogs was 15 · 6% (unattainable in cats). Major complications occurred in four dogs; minor complications occurred in 12 drains in cats (35 · 3%), and in 74 drains in dogs (33 · 8%). There was no statistically significant association between the type of drain and complication rate for either species. Although closed active suction drains can be used with low risk of major complications, they lead to a high rate of infection in clean surgeries in dogs. It is recommended that such drains are kept in place for the shortest time possible and that strict asepsis is adhered to both during placement and management. © 2015 British Small Animal Veterinary Association.

  17. Drain current local variability from linear to saturation region in 28 nm bulk NMOSFETs

    Science.gov (United States)

    Karatsori, T. A.; Theodorou, C. G.; Haendler, S.; Dimitriadis, C. A.; Ghibaudo, G.

    2017-02-01

    In this work, we investigate the impact of the source - drain series resistance mismatch on the drain current variability in 28 nm bulk MOSFETs. For the first time, a mismatch model including the local fluctuations of the threshold voltage (Vt), the drain current gain factor (β) and the source - drain series resistance (RSD) in both linear and saturation regions is presented. Furthermore, it is demonstrated that the influence of the source - drain series resistance mismatch is attenuated in the saturation region, due to the weaker sensitivity of the drain current variability on the series resistance variation. The experimental results were further verified by numerical simulations of the drain current characteristics with sensitivity analysis of the MOSFET parameters Vt, β and RSD.

  18. Water and nutrient balances in a large tile-drained agricultural catchment: a distributed modeling study

    Directory of Open Access Journals (Sweden)

    H. Li

    2010-11-01

    Full Text Available This paper presents the development and implementation of a distributed model of coupled water nutrient processes, based on the representative elementary watershed (REW approach, to the Upper Sangamon River Basin, a large, tile-drained agricultural basin located in central Illinois, mid-west of USA. Comparison of model predictions with the observed hydrological and biogeochemical data, as well as regional estimates from literature studies, shows that the model is capable of capturing the dynamics of water, sediment and nutrient cycles reasonably well. The model is then used as a tool to gain insights into the physical and chemical processes underlying the inter- and intra-annual variability of water and nutrient balances. Model predictions show that about 80% of annual runoff is contributed by tile drainage, while the remainder comes from surface runoff (mainly saturation excess flow and subsurface runoff. It is also found that, at the annual scale nitrogen storage in the soil is depleted during wet years, and is supplemented during dry years. This carryover of nitrogen storage from dry year to wet year is mainly caused by the lateral loading of nitrate. Phosphorus storage, on the other hand, is not affected much by wet/dry conditions simply because the leaching of it is very minor compared to the other mechanisms taking phosphorous out of the basin, such as crop harvest. The analysis then turned to the movement of nitrate with runoff. Model results suggested that nitrate loading from hillslope into the channel is preferentially carried by tile drainage. Once in the stream it is then subject to in-stream denitrification, the significant spatio-temporal variability of which can be related to the variation of the hydrologic and hydraulic conditions across the river network.

  19. Water and Nutrient Balances in a Large Tile-Drained Agricultural Catchment: A Distributed Modeling Study

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongyi; Sivapalan, Murugesu; Tian, Fuqiang; Liu, Dengfeng

    2010-11-16

    This paper presents the development and implementation of a distributed model of coupled water nutrient processes, based on the representative elementary watershed (REW) approach, to the Upper Sangamon River Basin, a large, tile-drained agricultural basin located in central Illinois, mid-west of USA. Comparison of model predictions with the observed hydrological and biogeochemical data, as well as regional estimates from literature studies, shows that the model is capable of capturing the dynamics of water, sediment and nutrient cycles reasonably well. The model is then used as a tool to gain insights into the physical and chemical processes underlying the inter- and intra-annual variability of water and nutrient balances. Model predictions show that about 80% of annual runoff is contributed by tile drainage, while the remainder comes from surface runoff (mainly saturation excess flow) and subsurface runoff. It is also found that, at the annual scale nitrogen storage in the soil is depleted during wet years, and is supplemented during dry years. This carryover of nitrogen storage from dry year to wet year is mainly caused by the lateral loading of nitrate. Phosphorus storage, on the other hand, is not affected much by wet/dry conditions simply because the leaching of it is very minor compared to the other mechanisms taking phosphorous out of the basin, such as crop harvest. The analysis then turned to the movement of nitrate with runoff. Model results suggested that nitrate loading from hillslope into the channel is preferentially carried by tile drainage. Once in the stream it is then subject to in-stream denitrification, the significant spatio-temporal variability of which can be related to the variation of the hydrologic and hydraulic conditions across the river network.

  20. Whole-stream response to nitrate loading in three streams draining agricultural landscapes

    Science.gov (United States)

    Duff, J.H.; Tesoriero, A.J.; Richardson, W.B.; Strauss, E.A.; Munn, M.D.

    2008-01-01

    Physical, chemical, hydrologic, and biologic factors affecting nitrate (NO3 −) removal were evaluated in three agricultural streams draining orchard/dairy and row crop settings. Using 3-d “snapshots” during biotically active periods, we estimated reach-level NO3 − sources, NO3 − mass balance, in-stream processing (nitrification, denitrification, and NO3 − uptake), and NO3 − retention potential associated with surface water transport and ground water discharge. Ground water contributed 5 to 11% to stream discharge along the study reaches and 8 to 42% of gross NO3 − input. Streambed processes potentially reduced 45 to 75% of ground water NO3 − before discharge to surface water. In all streams, transient storage was of little importance for surface water NO3 − retention. Estimated nitrification (1.6–4.4 mg N m−2 h−1) and unamended denitrification rates (2.0–16.3 mg N m−2 h−1) in sediment slurries were high relative to pristine streams. Denitrification of NO3 − was largely independent of nitrification because both stream and ground water were sources of NO3 − Unamended denitrification rates extrapolated to the reach-scale accounted for 30% in an organic-poor, autotrophic stream with the lowest denitrification potentials and highest benthic chlorophyll a, photosynthesis/respiration ratio, pH, dissolved oxygen, and diurnal NO3 − variation. Biotic processing potentially removed 75% of ground water NO3 − at this site, suggesting an important role for photosynthetic assimilation of ground water NO3 − relative to subsurface denitrification as water passed directly through benthic diatom beds.

  1. Wave-Based Subsurface Guide Star

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, S K

    2011-07-26

    Astronomical or optical guide stars are either natural or artificial point sources located above the Earth's atmosphere. When imaged from ground-based telescopes, they are distorted by atmospheric effects. Knowing the guide star is a point source, the atmospheric distortions may be estimated and, deconvolved or mitigated in subsequent imagery. Extending the guide star concept to wave-based measurement systems to include acoustic, seismo-acoustic, ultrasonic, and radar, a strong artificial scatterer (either acoustic or electromagnetic) may be buried or inserted, or a pre-existing or natural sub-surface point scatterer may be identified, imaged, and used as a guide star to determine properties of the sub-surface volume. That is, a data collection is performed on the guide star and the sub-surface environment reconstructed or imaged using an optimizer assuming the guide star is a point scatterer. The optimization parameters are the transceiver height and bulk sub-surface background refractive index. Once identified, the refractive index may be used in subsequent reconstructions of sub-surface measurements. The wave-base guide star description presented in this document is for a multimonostatic ground penetrating radar (GPR) but is applicable to acoustic, seismo-acoustic, and ultrasonic measurement systems operating in multimonostatic, multistatic, multibistatic, etc., modes.

  2. The Albanian Brain Drain phenomena and the Brain Gain strategy

    OpenAIRE

    Arta Musaraj

    2011-01-01

    Qualitative human resources remain one of the main problem of Eastern Europe and in particular Western Balkan countries. After 20 years of deep economic, political and social transformation, those countries are facing the problem of the highly qualified human resources they lost in these two decades, while in most of cases there is no a real measurement of the weight and impact these phenomena of Brain Drain has in the quality of the work force. Most of them are trying to set up and apply Bra...

  3. Absorption of planar waves in a draining bathtub

    Science.gov (United States)

    Oliveira, Ednilton S.; Dolan, Sam R.; Crispino, Luís C. B.

    2010-06-01

    We present an analysis of the absorption of acoustic waves by a black hole analogue in (2+1) dimensions generated by a fluid flow in a draining bathtub. We show that the low-frequency absorption length is equal to the acoustic hole circumference and that the high-frequency absorption length is 4 times the ergoregion radius. For intermediate values of the wave frequency, we compute the absorption length numerically and show that our results are in excellent agreement with the low- and high-frequency limits. We analyze the occurrence of superradiance, manifested as negative partial absorption lengths for corotating modes at low frequencies.

  4. Fat Harvest Using a Closed-Suction Drain

    Directory of Open Access Journals (Sweden)

    Kavit Amin

    2016-05-01

    Full Text Available We propose a safe, simple, and novel method to harvest fat using a standard liposuction cannula and a Redivac or alternative closed-suction drain. The authors have used this technique for both 'dry' and 'wet' liposuction. This technique is both easy to perform and cost-effective whilst providing both a silent and relatively atraumatic fat harvest. The lower negative pressure compared with traditional harvesting systems likely preserves fat integrity for lipofilling. This method maximises resources already held within a hospital environment.

  5. Right superior vena cava draining into the left atrium

    Energy Technology Data Exchange (ETDEWEB)

    Calcagni, Giulio; Sidi, Daniel; Bonnet, Damien [University Rene Descartes-Paris 5, Department of Paediatric Cardiology, Hopital Necker-Enfants Malades, Paris (France); Batisse, Alain [Institut de Puericulture et de Perinatalogie, Paris (France); Vouhe, Pascal [University Rene Descartes-Paris 5, Department of Paediatric Cardiac Surgery, Hopital Necker-Enfants Malades, Paris (France); Ou, Phalla [University Rene Descartes-Paris 5, Department of Paediatric Cardiology, Hopital Necker-Enfants Malades, Paris (France); University Rene Descartes-Paris 5, Department of Pediatric Radiology, Hopital Necker-Enfants Malades, Paris (France)

    2008-08-15

    The right superior vena cava draining into the left atrium is a rare malformation causing cyanosis and clubbing in patients in whom no other signs of congenital heart defect are present. Diagnosis may be difficult as cyanosis may be mild and the anomaly is not always easily detectable by echocardiography. For this reason we report a 13-month-old male in whom we confirmed the clinical and echocardiographic suspicion of anomalous drainage of the right superior vena cava using multidetector CT. This allowed successful surgical reconnection of the right superior vena cava to the right atrium. (orig.)

  6. Characterization Plan for Soils Around Drain Line PLA-100115

    Energy Technology Data Exchange (ETDEWEB)

    D. Shanklin

    2006-05-24

    This Characterization Plan supports the Hazardous Waste Management Act/Resource Conservation and Recovery Act (HWMA/RCRA) closure of soils that may have been contaminated by releases from drain line PLA-100115, located within the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory Site. The requirements to address the closure of soils contaminated by a potential release from this line in a characterization plan was identified in the "HWMA/RCRA Less Than 90-day Generator Closure Report for the VES-SFE-126."

  7. Randomized trial of drain antisepsis after mastectomy and immediate prosthetic breast reconstruction.

    Science.gov (United States)

    Degnim, Amy C; Hoskin, Tanya L; Brahmbhatt, Rushin D; Warren-Peled, Anne; Loprinzi, Margie; Pavey, Emily S; Boughey, Judy C; Hieken, Tina J; Jacobson, Steven; Lemaine, Valerie; Jakub, James W; Irwin, Chetan; Foster, Robert D; Sbitany, Hani; Saint-Cyr, Michel; Duralde, Erin; Ramaker, Sheri; Chin, Robin; Sieg, Monica; Wildeman, Melissa; Scow, Jeffrey S; Patel, Robin; Ballman, Karla; Baddour, Larry M; Esserman, Laura J

    2014-10-01

    In this 2-site randomized trial, we investigated the effect of antiseptic drain care on bacterial colonization of surgical drains and infection after immediate prosthetic breast reconstruction. With IRB approval, we randomized patients undergoing bilateral mastectomy and reconstruction to drain antisepsis (treatment) for one side, with standard drain care (control) for the other. Antisepsis care included both: chlorhexidine disc dressing at drain exit site(s) and irrigation of drain bulbs twice daily with dilute sodium hypochlorite solution. Cultures were obtained from bulb fluid at 1 week and at drain removal, and from the subcutaneous drain tubing at removal. Positive cultures were defined as ≥1+ growth for fluid and >50 CFU for tubing. Cultures of drain bulb fluid at 1 week (the primary endpoint) were positive in 9.9 % of treatment sides (10 of 101) versus 20.8 % (21 of 101) of control sides (p = 0.02). Drain tubing cultures were positive in 0 treated drains versus 6.2 % (6 of 97) of control drains (p = 0.03). Surgical site infection occurred within 30 days in 0 antisepsis sides versus 3.8 % (4 of 104) of control sides (p = 0.13), and within 1 year in three of 104 (2.9 %) of antisepsis sides versus 6 of 104 (5.8 %) of control sides (p = 0.45). Clinical infection occurred within 1 year in 9.7 % (6 of 62) of colonized sides (tubing or fluid) versus 1.5 % (2 of 136) of noncolonized sides (p = 0.03). Simple and inexpensive local antiseptic interventions with a chlorhexidine disc and hypochlorite solution reduce bacterial colonization of drains, and reduced drain colonization was associated with fewer infections.

  8. Experimental determination of methane dissolution from simulated subsurface oil leakages

    Science.gov (United States)

    Sauthoff, W.; Peltzer, E. T.; Walz, P. M.; Brewer, P. G.

    2013-12-01

    Subsurface oil leakages and increased offshore drilling efforts have raised concern over the fate of hydrocarbon mixtures of oil and gas in ocean environments. Recent wellhead and pipeline failures in the Gulf of Mexico are extreme examples of this problem. Understanding the mechanism and rate of vertical transport of hydrocarbon chemical species is necessary to predict the environmental impact of subsurface leakages. In a series of controlled experiments, we carried out a deep-sea field experiment in Monterey Canyon to investigate the behavior of a gas-saturated liquid hydrocarbon mass rising from the seafloor. Aboard the R/V Rachel Carson, we used the ROV Ventana to transport a laboratory prepared volume of decane (C10H22) saturated with methane gas (CH4) to mimic a subsurface seafloor discharge. We released the oil and gas mixture into a vertically oriented open bottom glass tube followed by methane loss rate measurements both at discrete depths, and during rapid, continuous vehicle ascent from 800 to 100 m water depth to monitor changes in dissolution and bubble nucleation. Using laser Raman techniques and HD video we quantified the chemical state of the hydrocarbon fluid, including rate of methane gas dissolution. The primary methane Raman peak was readily observable within the decane C-H stretching complex. Variation in the amount of gas dissolved in the oil greatly influences oil plume density and in turn oil plume vertical rise rate. Our results show that the rise rate of the hydrocarbon mass significantly exceeds the rate at which the excess methane was lost by dissolution. This result implies that vertical transport of methane in the saturated hydrocarbon liquid phase can greatly exceed a gas bubble plume ascending the water column from a seafloor source. These results and observations may be applicable to improved understanding of the composition, distribution, and environmental fate of leaked hydrocarbon mixtures and inform remediation efforts.

  9. Subsurface Characterization of Shallow Water Regions using Airborne Bathymetric Lidar

    Science.gov (United States)

    Bradford, B.; Neuenschwander, A. L.; Magruder, L. A.

    2013-12-01

    Understanding the complex interactions between air, land, and water in shallow water regions is becoming increasingly critical in the age of climate change. To effectively monitor and manage these zones, scientific data focused on changing water levels, quality, and subsurface topography are needed. Airborne remote sensing using light detection and ranging (LIDAR) is naturally suited to address this need as it can simultaneously provide detailed three-dimensional spatial data for both topographic and bathymetric applications in an efficient and effective manner. The key to useful data, however, is the correct interpretation of the incoming laser returns to distinguish between land, water, and objects. The full waveform lidar receiver captures the complete returning signal reflected from the Earth, which contains detailed information about the structure of the objects and surfaces illuminated by the beam. This study examines the characterization of this full waveform with respect to water surface depth penetration and subsurface classification, including sand, rock, and vegetation. Three assessments are performed to help characterize the laser interaction within the shallow water zone: evaluation of water surface backscatter as a function of depth and location, effects from water bottom surface roughness and reflectivity, and detection and classification of subsurface structure. Using the Chiroptera dual-laser lidar mapping system from Airborne Hydrography AB (AHAB), both bathymetric and topographic mapping are possible. The Chiroptera system combines a 1064nm near infrared topographic laser with a 515nm green bathymetric laser to seamlessly map the land/water interface in coastal areas. Two survey sites are examined: Lake Travis in Austin, Texas, USA, and Lake Vättern in Jönköping, Sweden. Water quality conditions were found to impact depth penetration of the lidar, as a maximum depth of 5.5m was recorded at Lake Travis and 11m at Lake Vättern.

  10. Reconstruction of Solar Subsurfaces by Local Helioseismology

    CERN Document Server

    Kosovichev, Alexander G

    2016-01-01

    Local helioseismology has opened new frontiers in our quest for understanding of the internal dynamics and dynamo on the Sun. Local helioseismology reconstructs subsurface structures and flows by extracting coherent signals of acoustic waves traveling through the interior and carrying information about subsurface perturbations and flows, from stochastic oscillations observed on the surface. The initial analysis of the subsurface flow maps reconstructed from the 5 years of SDO/HMI data by time-distance helioseismology reveals the great potential for studying and understanding of the dynamics of the quiet Sun and active regions, and the evolution with the solar cycle. In particular, our results show that the emergence and evolution of active regions are accompanied by multi-scale flow patterns, and that the meridional flows display the North-South asymmetry closely correlating with the magnetic activity. The latitudinal variations of the meridional circulation speed, which are probably related to the large-scal...

  11. Tidal response of Europa's subsurface ocean

    Science.gov (United States)

    Karatekin, Özgür; Comblen, Richard; Toubeau, Jonathan; Deleersnijder, Eric; van Hoolst, Tim; Dehant, Veronique

    2010-05-01

    Observations of Cassini and Galileo spacecrafts suggest the presence of subsurface global water oceans under the icy shells of several satellites of Jupiter and Saturn. Previous studies have shown that in the presence of subsurface oceans, time-variable tides cause large periodic surface displacements and that tidal dissipation in the icy shell becomes a major energy source that can affect long-term orbital evolution. However, in most studies so far, the dynamics of these satellite oceans have been neglected. In the present study, we investigate the tidal response of the subsurface ocean of Europa to a time-varying potential. Two-dimensional nonlinear shallow water equations are solved on a sphere by means of a finite element code. The resulting ocean tidal flow velocities and surface displacements will be presented.

  12. Twin screw subsurface and surface multiphase pumps

    Energy Technology Data Exchange (ETDEWEB)

    Dass, P. [CAN-K GROUP OF COMPANIES, Edmonton, Alberta (Canada)

    2011-07-01

    A new subsurface twin screw multiphase pump has been developed to replace ESP and other artificial lift technologies. This technology has been under development for a few years, has been field tested and is now going for commercial applications. The subsurface twin screw technology consists of a pair of screws that do not touch and can be run with a top drive or submersible motor; and it carries a lot of benefits. This technology is easy to install and its low slippage makes it highly efficient with heavy oil. In addition twin screw multiphase pumps are capable of handling high viscosity fluids and thus their utilization can save water when used in thermal applications. It also induces savings of chemicals because asphaltenes do not break down easily as well as a reduction in SOR. The subsurface twin screw multiphase pump presented herein is an advanced technology which could be used in thermal applications.

  13. Anthropogenic effects on subsurface temperature in Bangkok

    Science.gov (United States)

    Taniguchi, M.

    2006-09-01

    Subsurface temperatures in Bangkok, where population and density increase rapidly, were analyzed to evaluate the effects of surface warming due to urbanization. The magnitude of surface warming evaluated from subsurface temperature in Bangkok was 1.7°C which agreed with meteorological data during the last 50 years. The depth apart from steady thermal gradient, which shows an indicator of the magnitude of surface warming due to additional heat from urbanization, was deeper at the center of the city than in the suburb areas of Bangkok. In order to separate surface warming effects into global warming effect and urbanization effect, analyses of subsurface temperature have been done depending on the distance from the city center. The results show that the expansion of urbanization in Bangkok reaches up to 80 km from the city center.

  14. Autonomous microexplosives subsurface tracing system final report.

    Energy Technology Data Exchange (ETDEWEB)

    Engler, Bruce Phillip; Nogan, John; Melof, Brian Matthew; Uhl, James Eugene; Dulleck, George R., Jr.; Ingram, Brian V.; Grubelich, Mark Charles; Rivas, Raul R.; Cooper, Paul W.; Warpinski, Norman Raymond; Kravitz, Stanley H.

    2004-04-01

    The objective of the autonomous micro-explosive subsurface tracing system is to image the location and geometry of hydraulically induced fractures in subsurface petroleum reservoirs. This system is based on the insertion of a swarm of autonomous micro-explosive packages during the fracturing process, with subsequent triggering of the energetic material to create an array of micro-seismic sources that can be detected and analyzed using existing seismic receiver arrays and analysis software. The project included investigations of energetic mixtures, triggering systems, package size and shape, and seismic output. Given the current absence of any technology capable of such high resolution mapping of subsurface structures, this technology has the potential for major impact on petroleum industry, which spends approximately $1 billion dollar per year on hydraulic fracturing operations in the United States alone.

  15. Influence of spatial and temporal variability of subsurface soil moisture and temperature on vapour intrusion

    Science.gov (United States)

    Bekele, Dawit N.; Naidu, Ravi; Chadalavada, Sreenivasulu

    2014-05-01

    A comprehensive field study was conducted at a site contaminated with chlorinated solvents, mainly trichloroethylene (TCE), to investigate the influence of subsurface soil moisture and temperature on vapour intrusion (VI) into built structures. Existing approaches to predict the risk of VI intrusion into buildings assume homogeneous or discrete layers in the vadose zone through which TCE migrates from an underlying source zone. In reality, the subsurface of the majority of contaminated sites will be subject to significant variations in moisture and temperature. Detailed site-specific data were measured contemporaneously to evaluate the impact of spatial and temporal variability of subsurface soil properties on VI exposure assessment. The results revealed that indoor air vapour concentrations would be affected by spatial and temporal variability of subsurface soil moisture and temperature. The monthly monitoring of soil-gas concentrations over a period of one year at a depth of 3 m across the study site demonstrated significant variation in TCE vapour concentrations, which ranged from 480 to 629,308 μg/m3. Soil-gas wells at 1 m depth exhibited high seasonal variability in TCE vapour concentrations with a coefficient of variation 1.02 in comparison with values of 0.88 and 0.74 in 2 m and 3 m wells, respectively. Contour plots of the soil-gas TCE plume during wet and dry seasons showed that the plume moved across the site, hence locations of soil-gas monitoring wells for human risk assessment is a site specific decision. Subsurface soil-gas vapour plume characterisation at the study site demonstrates that assessment for VI is greatly influenced by subsurface soil properties such as temperature and moisture that fluctuate with the seasons of the year.

  16. MSTS - Multiphase Subsurface Transport Simulator theory manual

    Energy Technology Data Exchange (ETDEWEB)

    White, M.D.; Nichols, W.E.

    1993-05-01

    The US Department of Energy, through the Yucca Mountain Site Characterization Project Office, has designated the Yucca Mountain site in Nevada for detailed study as the candidate US geologic repository for spent nuclear fuel and high-level radioactive waste. Site characterization will determine the suitability of the Yucca Mountain site for the potential waste repository. If the site is determined suitable, subsequent studies and characterization will be conducted to obtain authorization from the Nuclear Regulatory Commission to construct the potential waste repository. A principal component of the characterization and licensing processes involves numerically predicting the thermal and hydrologic response of the subsurface environment of the Yucca Mountain site to the potential repository over a 10,000-year period. The thermal and hydrologic response of the subsurface environment to the repository is anticipated to include complex processes of countercurrent vapor and liquid migration, multiple-phase heat transfer, multiple-phase transport, and geochemical reactions. Numerical simulators based on mathematical descriptions of these subsurface phenomena are required to make numerical predictions of the thermal and hydrologic response of the Yucca Mountain subsurface environment The engineering simulator called the Multiphase Subsurface Transport Simulator (MSTS) was developed at the request of the Yucca Mountain Site Characterization Project Office to produce numerical predictions of subsurface flow and transport phenomena at the potential Yucca Mountain site. This document delineates the design architecture and describes the specific computational algorithms that compose MSTS. Details for using MSTS and sample problems are given in the {open_quotes}User`s Guide and Reference{close_quotes} companion document.

  17. Waves and null congruences in a draining bathtub

    Science.gov (United States)

    Dempsey, David; Dolan, Sam R.

    2016-04-01

    We study wave propagation in a draining bathtub: a black hole analogue in fluid mechanics whose perturbations are governed by a Klein-Gordon equation on an effective Lorentzian geometry. Like the Kerr spacetime, the draining bathtub geometry possesses an (effective) horizon, an ergosphere and null circular orbits. We propose here that a ‘pulse’ disturbance may be used to map out the light-cone of the effective geometry. First, we apply the eikonal approximation to elucidate the link between wavefronts, null geodesic congruences and the Raychaudhuri equation. Next, we solve the wave equation numerically in the time domain using the method of lines. Starting with Gaussian initial data, we demonstrate that a pulse will propagate along a null congruence and thus trace out the light-cone of the effective geometry. Our new results reveal features, such as wavefront intersections, frame-dragging, winding and interference effects, that are closely associated with the presence of null circular orbits and the ergosphere.

  18. English and the Brain Drain: an Uncertain Relationship

    Directory of Open Access Journals (Sweden)

    Houtkamp Christopher

    2016-10-01

    Full Text Available In his book Linguistic Justice for Europe and the World, Van Parijs analyses in one of his chapters the brain drain from non-Anglophone to Anglophone countries, which hurts the economic development of the non-Anglophone states. Van Parijs deems it clear that English is a very important factor to explain high-skilled migration. He, therefore, urges the non-Anglophone countries to relax their linguistic territorial constraints and allow English as a communication language in many different sectors, most notably higher education and scientific research. This would remove the incentive for potential expatriate brains to migrate for linguistic reasons. This article takes a closer look at Van Parijs’ reasoning and proposed solutions. It is concluded that the assumed connection between English and high-skilled migration cannot be proven empirically for research on this topic is scarcely available. Furthermore, the solutions presented by Van Parijs will produce uncertain results at best. Van Parijs rightfully puts the brain drain problem on the political and research agenda, but much more additional studies are needed to formulate solid solutions.

  19. Consolidation by Prefabricated Vertical Drains with a Threshold Gradient

    Directory of Open Access Journals (Sweden)

    Xiao Guo

    2014-01-01

    Full Text Available This paper shows the development of an approximate analytical solution of radial consolidation by prefabricated vertical drains with a threshold gradient. To understand the effect of the threshold gradient on consolidation, a parametric analysis was performed using the present solution. The applicability of the present solution was demonstrated in two cases, wherein the comparisons with Hansbo’s results and observed data were conducted. It was found that (1 the flow with the threshold gradient would not occur instantaneously throughout the whole unit cell. Rather, it gradually occurs from the vertical drain to the outside; (2 the moving boundary would never reach the outer radius of influence if R+1

  20. Heating systems for heating subsurface formations

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

    2011-04-26

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  1. TECHNOLOGICAL WASTE DISPOSAL BY SUBSURFACE INJECTION TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Janković Branimir

    2002-12-01

    Full Text Available The application of oilfield and solution mining technology to subsurface disposal of technological wastes has proven to be an environmentally, technically and economically suitable method for the disposal of the waste generated in petroleum industry as well as other industrial branches. This paper describes the subsurface injection technology, the disposal formation characteristics, the waste disposal well design, evaluates the environmental impact of above mentioned technology and proposes a solutions for disposing of technological wastes in Croatia or nerby region by implementing underground injection technology according to the world experience (the paper is published in Croatian.

  2. Brain drain and health workforce distortions in Mozambique.

    Directory of Open Access Journals (Sweden)

    Kenneth Sherr

    Full Text Available INTRODUCTION: Trained human resources are fundamental for well-functioning health systems, and the lack of health workers undermines public sector capacity to meet population health needs. While external brain drain from low and middle-income countries is well described, there is little understanding of the degree of internal brain drain, and how increases in health sector funding through global health initiatives may contribute to the outflow of health workers from the public sector to donor agencies, non-governmental organisations (NGOs, and the private sector. METHODS: An observational study was conducted to estimate the degree of internal and external brain drain among Mozambican nationals qualifying from domestic and foreign medical schools between 1980-2006. Data were collected 26-months apart in 2008 and 2010, and included current employment status, employer, geographic location of employment, and main work duties. RESULTS: Of 723 qualifying physicians between 1980-2006, 95.9% (693 were working full-time, including 71.1% (493 as clinicians, 20.5% (142 as health system managers, and 6.9% (48 as researchers/professors. 25.5% (181 of the sample had left the public sector, of which 62.4% (113 continued working in-country and 37.6% (68 emigrated from Mozambique. Of those cases of internal migration, 66.4% (75 worked for NGOs, 21.2% (24 for donor agencies, and 12.4% (14 in the private sector. Annual incidence of physician migration was estimated to be 3.7%, predominately to work in the growing NGO sector. An estimated 36.3% (41/113 of internal migration cases had previously held senior-level management positions in the public sector. DISCUSSION: Internal migration is an important contributor to capital flight from the public sector, accounting for more cases of physician loss than external migration in Mozambique. Given the urgent need to strengthen public sector health systems, frank reflection by donors and NGOs is needed to assess how hiring

  3. Greenhouse gases emission from the sewage draining rivers.

    Science.gov (United States)

    Hu, Beibei; Wang, Dongqi; Zhou, Jun; Meng, Weiqing; Li, Chongwei; Sun, Zongbin; Guo, Xin; Wang, Zhongliang

    2017-09-09

    Carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) concentration, saturation and fluxes in rivers (Beitang drainage river, Dagu drainage rive, Duliujianhe river, Yongdingxinhe river and Nanyunhe river) of Tianjin city (Haihe watershed) were investigated during July and October in 2014, and January and April in 2015 by static headspace gas chromatography method and the two-layer model of diffusive gas exchange. The influence of environmental variables on greenhouse gases (GHGs) concentration under the disturbance of anthropogenic activities was discussed by Spearman correlative analysis and multiple stepwise regression analysis. The results showed that the concentration and fluxes of CO2, CH4 and N2O were seasonally variable with >winter>fall>summer, spring>summer>winter>fall and summer>spring>winter>fall for concentrations and spring>summer>fall>winter, spring>summer>winter>fall and summer>spring>fall>winter for fluxes respectively. The GHGs concentration and saturation were higher in comprehensively polluted river sites and lower in lightly polluted river sites. The three GHGs emission fluxes in two sewage draining rivers of Tianjin were clearly higher than those of other rivers (natural rivers) and the spatial variation of CH4 was more obvious than the others. CO2 and N2O air-water interface emission fluxes of the sewage draining rivers in four seasons were about 1.20-2.41 times and 1.13-3.12 times of those in the natural rivers. The CH4 emission fluxes of the sewage draining rivers were 3.09 times in fall to 10.87 times in spring of those in the natural rivers in different season. The wind speed, water temperature and air temperature were related to GHGs concentrations. Nitrate and nitrite (NO3(-)+NO2(-)-N) and ammonia (NH4(+)-N) were positively correlated with CO2 concentration and CH4 concentration; and dissolved oxygen (DO) concentration was negatively correlated with CH4 concentration and N2O concentration. The effect of human activities on carbon

  4. Characterization of imidacloprid availability in subsurface soils

    Science.gov (United States)

    Degradation and sorption/desorption are the most important processes affecting the leaching of pesticides through soil because they control the amount of pesticide available for transport. Once pesticides move past the surface soil layers, variations in subsurface soil physical, chemical, and biolog...

  5. Geophysical subsurface imaging for ecological applications.

    Science.gov (United States)

    Jayawickreme, Dushmantha H; Jobbágy, Esteban G; Jackson, Robert B

    2014-03-01

    Ecologists, ecohydrologists, and biogeochemists need detailed insights into belowground properties and processes, including changes in water, salts, and other elements that can influence ecosystem productivity and functioning. Relying on traditional sampling and observation techniques for such insights can be costly, time consuming, and infeasible, especially if the spatial scales involved are large. Geophysical imaging provides an alternative or complement to traditional methods to gather subsurface variables across time and space. In this paper, we review aspects of geophysical imaging, particularly electrical and electromagnetic imaging, that may benefit ecologists seeking clearer understanding of the shallow subsurface. Using electrical resistivity imaging, for example, we have been able to successfully show the effect of land-use conversions to agriculture on salt mobilization and leaching across kilometer-long transects and to depths of tens of meters. Recent advances in ground-penetrating radar and other geophysical imaging methods currently provide opportunities for subsurface imaging with sufficient detail to locate small (≥5 cm diameter) animal burrows and plant roots, observe soil-water and vegetation spatial correlations in small watersheds, estuaries, and marshes, and quantify changes in groundwater storage at local to regional scales using geophysical data from ground- and space-based platforms. Ecologists should benefit from adopting these minimally invasive, scalable imaging technologies to explore the subsurface and advance our collective research.

  6. Clinical Use of a Drain Incision Placed Below and Bilaterial to Near Total Thyroidectomy Incision

    Institute of Scientific and Technical Information of China (English)

    LIU Bao-guo; ZHAO Qi-kang; CHEN Rong-rui; LI Ming-qiang; WANG Jian-jun

    2008-01-01

    Objective:To design a new draining method for near total thyroidectomy at the lower two sides of the neck.Methods:Near total thyroidectomies in 63 cases were performed with new drain incisions at the lower two sides of the neck between December 1998 and July 2004. Results:All the draining operative procedures were performed smoothly,and all produced cosmetic scars were effective. The mean amount drained was 38 ml(minimum 10 ml,maximum 120 ml)and no patient developed wound infection. Conclusion:The drain incision for near total thyroidectomy placed at the lower sides of the neck results in a cosmetic scar which is easily covered by the collar,and was safe and efiective.We thereby recommend the use of this drain incision for near total thyroidectomy.

  7. CLINICAL USE OF A DRAIN INCISION PLACED BELOW AND LATERIAL TO THE THYROIDECTOMY INCISION

    Institute of Scientific and Technical Information of China (English)

    刘宝国; 王斌; 张乃嵩

    2004-01-01

    Objective: To design a new draining method for hemithyroidectomy at the lower side of the neck. Methods:Hemithyroidectomies of 235 cases were performed with the new drain incision at the lower side of the neck between December 1998 and July 2003. Results: All the draining operative procedures were performed smoothly, and produced a cosmeticulous scar. The mean amount drained was 20 ml (minimum 5 ml, maximum 80 ml) and no patients developed wound infection. Conclusion: The drain incision for hemithyroidectomy placed at the lower side of the neck results in a cosmeticulous scar which is easily covered by the collar and was safe and effective. We thereby recommend the use of this drain incision for hemithyroidectomy.

  8. Detection of Subsurface Defects in Concrete Bridge Deck Joints

    Directory of Open Access Journals (Sweden)

    Wonchang Choi

    2011-01-01

    Full Text Available Problem statement: The integrity of deck joints in highway bridges plays a major role to determine overall performance of bridge system. As the bridge maintenance program, the defects in deck joints have historically been detected by conventional non-destructive testing and evaluation methods such as visual inspection, chain-dragging and by the detecting sounds under the traffic. Future bridge maintenance challenges will demand the development of techniques and procedures to detect and monitor such defects before they become apparent. Approach: Two non-destructive methods; namely Ground Penetration Radar (GPR and Seismic Properties Analyzer (SPA were employed to assess the integrity of deck joins installed in North Carolina bridges. Results: The results obtained with the GPR and SPA allows to quantify the subsurface defects in bridge deck joints. Conclusion: The practical application and limitations of each method are discussed in this study.

  9. Forecasting selenium discharges to the San Francisco Bay-Delta Estuary: ecological effects of a proposed San Luis drain extension

    Science.gov (United States)

    Luoma, Samuel N.; Presser, Theresa S.

    2000-01-01

    During the next few years, federal and state agencies may be required to evaluate proposals and discharge permits that could significantly change selenium (Se) inputs to the San Francisco Bay-Delta Estuary (Bay-Delta), particularly in the North Bay (i.e., Suisun Bay and San Pablo Bay). These decisions may include discharge requirements for an extension of the San Luis Drain (SLD) to the estuary to convey subsurface agricultural drainage from the western San Joaquin Valley (SJV), a renewal of an agreement to allow the existing portion of the SLD to convey subsurface agricultural drainage to a tributary of the San Joaquin River (SJR) (coincident with changes in flow patterns of the lower SJR), and refinements to promulgated Se criteria for the protection of aquatic life for the estuary. Understanding the biotransfer of Se is essential to evaluating the fate and impact of proposed changes in Se discharges to the Bay-Delta. However, past monitoring programs have not addressed the specific protocols necessary for an element that bioaccumulates. Confusion about Se threats in the past have stemmed from failure to consider the full complexity of the processes that result in Se toxicity. Past studies show that predators are more at risk from Se contamination than their prey, making it difficult to use traditional methods to predict risk from environmental concentrations alone. In this report, we employ a novel procedure to model the fate of Se under different, potentially realistic load scenarios from the SJV. For each potential load, we progressively forecast the resulting environmental concentrations, speciation, transformation to particulate form, bioaccumulation by invertebrates, trophic transfer to predators, and effects in those predators. Enough is known to establish a first order understanding of effects should Se be discharged directly into the North Bay via a conveyance such as the SLD. Our approach uses 1) existing knowledge concerning the biogeochemical

  10. Brain drain e crescita economica: Una rassegna critica sugli effetti prodotti

    OpenAIRE

    Simona Monteleone

    2009-01-01

    Has brain drain either negative or positive effect on the development and growth of those left behind? This paper shows empirical and theoretical relevance of the phenomenon and reviews both traditional literature and recent contributions about brain drain’s effects. First generation models consider brain drain dangerous for the country of origin, underlining effects on wage, employment and growth; whilst recent literature shows positive effects on population and holds brain drain increases h...

  11. Energy capability enhancement for isolated extended drain NMOS transistors

    Institute of Scientific and Technical Information of China (English)

    聂卫东; 吴金; 马晓辉; 于宗光

    2012-01-01

    Isolated extended drain NMOS (EDNMOS) transistors are widely used in power signal processing.The hole current induced by a high electric field can result in a serious reliability problem due to a parasitic NPN effect.By optimizing p-type epitaxial (p-epi) thickness,n-type buried layer (BLN) and nwell doping distribution,the peak electric field is decreased by 30% and the peak hole current is decreased by 60%,which obviously suppress the parasitic NPN effect.Measured I-V characteristics and transmission line pulsing (TLP) results show that the onstate breakdown voltage is increased from 28 to 37 V when 6 V Vgs is applied and the energy capability is improved by about 30%,while the on-state resistance remains unchanged.

  12. Energy capability enhancement for isolated extended drain NMOS transistors

    Science.gov (United States)

    Weidong, Nie; Jin, Wu; Xiaohui, Ma; Zongguang, Yu

    2012-02-01

    Isolated extended drain NMOS (EDNMOS) transistors are widely used in power signal processing. The hole current induced by a high electric field can result in a serious reliability problem due to a parasitic NPN effect. By optimizing p-type epitaxial (p-epi) thickness, n-type buried layer (BLN) and nwell doping distribution, the peak electric field is decreased by 30% and the peak hole current is decreased by 60%, which obviously suppress the parasitic NPN effect. Measured I-V characteristics and transmission line pulsing (TLP) results show that the on-state breakdown voltage is increased from 28 to 37 V when 6 V Vgs is applied and the energy capability is improved by about 30%, while the on-state resistance remains unchanged.

  13. Wettable Ceramic-Based Drained Cathode Technology for Aluminum Electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    J.N. Bruggeman; T.R. Alcorn; R. Jeltsch; T. Mroz

    2003-01-09

    The goal of the project was to develop the ceramic based materials, technology, and necessary engineering packages to retrofit existing aluminum reduction cells in order to reduce energy consumption required for making primary aluminum. The ceramic materials would be used in a drained cathode configuration which would provide a stable, molten aluminum wetted cathode surface, allowing the reduction of the anode-cathode distance, thereby reducing the energy consumption. This multi-tasked project was divided into three major tasks: (1) Manufacturing and laboratory scale testing/evaluation of the ceramic materials, (2) Pilot scale testing of qualified compositions from the first task, and (3) Designing, retrofitting, and testing the ceramic materials in industrial cells at Kaiser Mead plant in Spokane, Washington. Specific description of these major tasks can be found in Appendix A - Project Scope. Due to the power situation in the northwest, the Mead facility was closed, thus preventing the industrial cell testing.

  14. The chronically draining ear. Notes on management in the office.

    Science.gov (United States)

    Sheehy, J L

    1966-07-01

    THERE ARE THREE FACTORS RESPONSIBLE FOR PERSISTENCE OF DISCHARGE FROM A CHRONICALLY DRAINING EAR: Moisture, opportunistic bacteria, and debris and diseased tissue. In most cases, the discharge may be temporarily controlled or eliminated by office treatment:* Instruction of the patient in aural hygiene and impressing upon him the importance of avoiding getting water in the ear.* Thorough cleaning of the ear, by the physician initially, and by the patient as frequently as necessary to keep the ear free of discharge.* Antibiotics, used locally rather than systemically, and usually in the form of a powder applied by the patient daily at home.* Culture and sensitivity tests when the problem does not respond to routine office treatment as outlined.

  15. Centrifuge modelling of drained lateral pile - soil response

    DEFF Research Database (Denmark)

    Klinkvort, Rasmus Tofte

    of rigid piles. The tests have been performed in homogeneously dense dry or saturated Fontainebleau sand in order to mimic simplified drained offshore soil conditions. Approximately half of the tests have been carried out to investigate the centrifuge procedure in order to create a methodology of testing...... for monopiles today. Therefore it appears that the methodology for monopiles lacks scientific justification and a better understanding of rigid piles is needed. More than 70 centrifuge tests on laterally loaded rigid model piles have been carried out in connection with this thesis to get a better understanding...... that enables the transformation of result from tests in model scale to prototype scale. The grain size to pile diameter ratio, the non-linear stress distribution and the pile installation was identified from this investigation as important parameters in reliable scaling of centrifuge results. The remaining...

  16. Differential radiodiagnosis of draining pararectal cysts and rectal fistulas

    Energy Technology Data Exchange (ETDEWEB)

    Mushnikova, V.N.; Savvateeva, N.Yu.; Arablinskij, V.M.

    Proceeding from an analysis of multimodality examination and treatment of patients with difficulties in differential diagnosis, it has been established that proctography and fistulography play the most important role in radiodiagnosis. The presence of a multichamber cavity with clear even contours at the level of the medium- or lower ampullar region of the rectum is characteristic of draining pararectal cysts. The fustulous passage is single and unramified. Usually there is no connection between the cavity and fistula with the rectum. In rectal fistulas as a result of chronic periproctites the cavity is single, of uneven shape with unclear irregular contours at the level of the anal canal or lower ampullar region of the rectum. The fustulous passage is ramified, frequently connected with the rectal lumen.

  17. Decommissioning of Experimental Breeder Reactor - II Complex, Post Sodium Draining

    Energy Technology Data Exchange (ETDEWEB)

    J. A. (Bart) Michelbacher; S. Paul Henslee; Collin J. Knight; Steven R. sherman

    2005-09-01

    The Experimental Breeder Reactor - II (EBR-II) was shutdown in September 1994 as mandated by the United States Department of Energy. This sodium-cooled reactor had been in service since 1964. The bulk sodium was drained from the primary and secondary systems and processed. Residual sodium remaining in the systems after draining was converted into sodium bicarbonate using humid carbon dioxide. This technique was tested at Argonne National Laboratory in Illinois under controlled conditions, then demonstrated on a larger scale by treating residual sodium within the EBR-II secondary cooling system, followed by the primary tank. This process, terminated in 2002, was used to place a layer of sodium bicarbonate over all exposed surfaces of sodium. Treatment of the remaining EBR-II sodium is governed by the Resource Conservation and Recovery Act (RCRA). The Idaho Department of Environmental Quality issued a RCRA Operating Permit in 2002, mandating that all hazardous materials be removed from EBR-II within a 10 year period, with the ability to extend the permit and treatment period for another 10 years. A preliminary plan has been formulated to remove the remaining sodium and NaK from the primary and secondary systems using moist carbon dioxide, steam and nitrogen, and a water flush. The moist carbon dioxide treatment was resumed in May 2004. As of August 2005, approximately 60% of the residual sodium within the EBR-II primary tank had been treated. This process will continue through the end of 2005, when it is forecast that the process will become increasingly ineffective. At that time, subsequent treatment processes will be planned and initiated. It should be noted that the processes and anticipated costs associated with these processes are preliminary. Detailed engineering has not been performed, and approval for these methods has not been obtained from the regulator or the sponsors.

  18. Landslide Monitoring in Southwestern China via Time-lapse Electrical Resistivity Tomography

    Science.gov (United States)

    Xu, D.; Hu, X.; Shan, C.

    2016-12-01

    The dynamic monitoring of landslides in engineering geology has focused on the correlation among landslide stability, rainwater infiltration, and subsurface hydrogeology. However, the understanding of this complicated correlation is still poor and inadequate. Thus, in this study, we investigated a typical landslide in southwestern China via time-lapse electrical resistivity tomography (TLERT) in November 2013, August 2014 and May 2016. From the data, shallow sediments showed short-term resistivity variability due to evaporation and rainfall, whereas deep zone exhibited seasonal fluctuations related to dry season, rainy season and snow melting during springtime. We also studied landslide mechanisms based on the spatiotemporal characteristics of surface water infiltration and flow within the landslide body. Combined with borehole data, inverted resistivity models accurately defined the interface between Quaternary sediments and bedrock. Preferential flow pathways attributed to fracture zones and fissures were also delineated. In addition, we found that surface water permeates through these pathways into the slipping mass and drains away as fissure water in the fractured bedrock, probably causing the weakly weathered layer to gradually soften and erode, eventually leading to a landslide. Clearly, TLERT dynamic monitoring can provide precursory information of critical sliding and can be used in landslide stability analysis and prediction.

  19. Landslide monitoring in southwestern China via time-lapse electrical resistivity tomography

    Institute of Scientific and Technical Information of China (English)

    Xu Dong; Hu Xiang-Yun; Shan Chun-Ling; Li Rui-Heng

    2016-01-01

    The dynamic monitoring of landslides in engineering geology has focused on the correlation among landslide stability, rainwater infiltration, and subsurface hydrogeology. However, the understanding of this complicated correlation is still poor and inadequate. Thus, in this study, we investigated a typical landslide in southwestern China via time-lapse electrical resistivity tomography (TLERT) in November 2013 and August 2014. We studied landslide mechanisms based on the spatiotemporal characteristics of surface water infi ltration andfl ow within the landslide body. Combined with borehole data, inverted resistivity models accurately defined the interface between Quaternary sediments and bedrock. Preferential fl ow pathways attributed to fracture zones andfi ssures were also delineated. In addition, we found that surface water permeates through these pathways into the slipping mass and drains away asfi ssure water in the fractured bedrock, probably causing the weakly weathered layer to gradually soften and erode, eventually leading to a landslide. Clearly, TLERT dynamic monitoring can provide precursory information of critical sliding and can be used in landslide stability analysis and prediction.

  20. Modelling of deep subsurface for geohazard risk assessment.

    NARCIS (Netherlands)

    Orlic, B.; Eijs, R. van

    2002-01-01

    Exploitation of subsurface natural resources, and subsurface storage of energy residues, may cause subsurface and surface deformation and damage to property. Deformation is generally difficult to assess and prove, although economical, environmental and societal interests are huge in terms of strain

  1. Modelling of deep subsurface for geohazard risk assessment.

    NARCIS (Netherlands)

    Orlic, B.; Eijs, R. van

    2002-01-01

    Exploitation of subsurface natural resources, and subsurface storage of energy residues, may cause subsurface and surface deformation and damage to property. Deformation is generally difficult to assess and prove, although economical, environmental and societal interests are huge in terms of strain

  2. In-Situ Ultrasonic Characterization of Patterns of Sediment Surface Roughness and Subsurface Volume Inhomogeneities

    Science.gov (United States)

    2016-06-07

    successfully images surface and sub-surface biogenic structure non-invasively in the laboratory (ultrasound) and convert the technology for use in...5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of Rhode Island,Graduate School of Oceanography,Narragansett...RI,02882 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11

  3. Advancements in subsurface barrier wall technology

    Energy Technology Data Exchange (ETDEWEB)

    Mutch, R.D. Jr.; Ash, R.E. IV; Caputi, J.R. [Eckenfelder Inc., Mahwah, NJ (United States)

    1995-12-31

    Subsurface barrier walls have been an important component of site remediation efforts for nearly thirty years. However, until the last decade, limited design options were available for barrier wall construction. Most barrier walls were constructed using traditional technologies such as soil-bentonite slurry trench and, in some instances, conventional compacted clay. While other technologies certainly existed, such as vibrating beam and sheet pile walls, they represented a minor share of the remediation market. Today the remediation engineer considering a subsurface barrier wall-based remediation is confronted with a baffling array, of new technologies and permutations of these technologies. Moreover, new technologies are entering the marketplace seemingly on a monthly basis. A partial listing of available barrier wall technologies is presented.

  4. Microbial nanowires: Is the subsurface "hardwired"?

    Science.gov (United States)

    Ntarlagiannis, Dimitrios; Atekwana, Estella A.; Hill, Eric A.; Gorby, Yuri

    2007-09-01

    The Earth's shallow subsurface results from integrated biological, geochemical, and physical processes. Methods are sought to remotely assess these interactive processes, especially those catalysed by micro-organisms. Using saturated sand columns and the metal reducing bacterium Shewanella oneidensis MR-1, we show that electrically conductive appendages called bacterial nanowires are directly associated with electrical potentials. No significant electrical potentials were detectable in columns inoculated with mutant strains that produced non-conductive appendages. Scanning electron microscopy imaging revealed a network of nanowires linking cells-cells and cells to mineral surfaces, "hardwiring" the entire length of the column. We hypothesize that the nanowires serve as conduits for transfer of electrons from bacteria in the anaerobic part of the column to bacteria at the surface that have access to oxygen, akin to a biogeobattery. These results advance understanding of the mechanisms of electron transport in subsurface environments and of how microorganisms cycle geologic material and share energy.

  5. Subsurface Airflow Induced by Natural Forcings

    Institute of Scientific and Technical Information of China (English)

    Jiu J. Jiao; LI Hai-long

    2004-01-01

    Subsurface air flow can be induced by natural processes, such as atmospheric or barometric pressure changes, water table fluctuations, topographic effects, and rainfall infiltration. Barometric pressure fluctuations are the most common cause of subsurface air flow, which can be significant under favourable geological conditions. This process has been studied most extensively because of its application to passive soil vapor extraction. Soil air flow induced by water table fluctuations can be significant, particularly where the fluctuations are of high frequency, for example, in tidal-influenced coastal areas. Topographic effects can lead to strong subsoil air flow in areas with great elevation differences. Rainfall infiltration usually produces only weak airflow. Air flow induced by these natural processes has important environmental and engineering implications. Among the different processes, air flow induced by tidal fluctuations has been studied the least, although it has exciting applications to coastal engineering projects and environmental remediation.

  6. Metalliferous Biosignatures for Deep Subsurface Microbial Activity

    Science.gov (United States)

    Parnell, John; Brolly, Connor; Spinks, Sam; Bowden, Stephen

    2016-03-01

    The interaction of microbes and metals is widely assumed to have occurred in surface or very shallow subsurface environments. However new evidence suggests that much microbial activity occurs in the deep subsurface. Fluvial, lacustrine and aeolian `red beds' contain widespread centimetre-scale reduction spheroids in which a pale reduced spheroid in otherwise red rocks contains a metalliferous core. Most of the reduction of Fe (III) in sediments is caused by Fe (III) reducing bacteria. They have the potential to reduce a range of metals and metalloids, including V, Cu, Mo, U and Se, by substituting them for Fe (III) as electron acceptors, which are all elements common in reduction spheroids. The spheroidal morphology indicates that they were formed at depth, after compaction, which is consistent with a microbial formation. Given that the consequences of Fe (III) reduction have a visual expression, they are potential biosignatures during exploration of the terrestrial and extraterrestrial geological record. There is debate about the energy available from Fe (III) reduction on Mars, but the abundance of iron in Martian soils makes it one of the most valuable prospects for life there. Entrapment of the microbes themselves as fossils is possible, but a more realistic target during the exploration of Mars would be the colour contrasts reflecting selective reduction or oxidation. This can be achieved by analysing quartz grains across a reduction spheroid using Raman spectroscopy, which demonstrates its suitability for life detection in subsurface environments. Microbial action is the most suitable explanation for the formation of reduction spheroids and may act as metalliferous biosignatures for deep subsurface microbial activity.

  7. Drill Embedded Nanosensors For Planetary Subsurface Exploration

    Science.gov (United States)

    Li, Jing

    2014-01-01

    We have developed a carbon nanotube (CNT) sensor for water vapor detection under Martian Conditions and the miniaturized electronics can be embedded in the drill bit for collecting sensor data and transmit it to a computer wirelessly.This capability will enable the real time measurement of ice during drilling. With this real time and in-situ measurement, subsurface ice detection can be easy, fast, precise and low cost.

  8. Filling, storing and draining. Three key aspects of landslide hydrology

    Science.gov (United States)

    Bogaard, Thom; Greco, Roberto

    2016-04-01

    Rainfall-triggered landslides are among the most widespread hazards in the world. The hydrology in and around a landslide area is key to pore pressure build-up in the soil skeleton which reduces shear strength due to the buoyancy force exerted by water in a saturated soil and to soil suction in an unsaturated soil. Extraordinary precipitation events trigger most of the landslides, but, at the same time, the vast majority of slopes do not fail. The intriguing question is: 'When and where exactly can a slope become triggered to slide and flow downwards?' The objective of this article is to present and discuss landslide hydrology at three scales - pore, hillslope, and catchment - which, taken together, give an overview of this interdisciplinary science. In fact, for rainfall-triggered landslides to occur, an unfavourable hydrological interplay should exist between fast and/or prolonged infiltration, and a relatively 'slow' drainage. The competition of water storage, pressure build-up and the subsequently induced drainage contains the importance of the timing, which is indisputably one of the more delicate but relevant aspects of landslide modelling, the overlay of hydrological processes with different time scales. As slopes generally remain stable, we can argue that effective drainage mechanisms spontaneously develop, as the best for a slope to stay stable is getting rid of the overload of water (above field capacity), either vertically or laterally. So, landslide hydrology could be framed as 'Filling-Storing-Draining'. Obviously, 'Storing' is added to stress the importance of dynamic pressure build-up for slope stability. 'Draining' includes all removal of water from the system (vertical and lateral flow, evaporation and transpiration) and thus pore water pressure release. Furthermore, by addressing landslide hydrology from both earth sciences and soil mechanics perspectives, we aim to manifest the hydrological processes in hillslopes and their influence on behaviour

  9. Non-invasive chemically specific measurement of subsurface temperature in biological tissues using surface-enhanced spatially offset Raman spectroscopy.

    Science.gov (United States)

    Gardner, Benjamin; Stone, Nicholas; Matousek, Pavel

    2016-06-23

    Here we demonstrate for the first time the viability of characterising non-invasively the subsurface temperature of SERS nanoparticles embedded within biological tissues using spatially offset Raman spectroscopy (SORS). The proposed analytical method (T-SESORS) is applicable in general to diffusely scattering (turbid) media and features high sensitivity and high chemical selectivity. The method relies on monitoring the Stokes and anti-Stokes bands of SERS nanoparticles in depth using SORS. The approach has been conceptually demonstrated using a SORS variant, transmission Raman spectroscopy (TRS), by measuring subsurface temperatures within a slab of porcine tissue (5 mm thick). Root-mean-square errors (RMSEs) of 0.20 °C were achieved when measuring temperatures over ranges between 25 and 44 °C. This unique capability complements the array of existing, predominantly surface-based, temperature monitoring techniques. It expands on a previously demonstrated SORS temperature monitoring capability by adding extra sensitivity stemming from SERS to low concentration analytes. The technique paves the way for a wide range of applications including subsurface, chemical-specific, non-invasive temperature analysis within turbid translucent media including: the human body, subsurface monitoring of chemical (e.g. catalytic) processes in manufacture quality and process control and research. Additionally, the method opens prospects for control of thermal treatment of cancer in vivo with direct non-invasive feedback on the temperature of mediating plasmonic nanoparticles.

  10. Hydrogen utilization potential in subsurface sediments

    Directory of Open Access Journals (Sweden)

    Rishi Ram Adhikari

    2016-01-01

    Full Text Available Subsurface microbial communities undertake many terminal electron-accepting processes, often simultaneously. Using a tritium-based assay, we measured the potential hydrogen oxidation catalyzed by hydrogenase enzymes in several subsurface sedimentary environments (Lake Van, Barents Sea, Equatorial Pacific and Gulf of Mexico with different predominant electron-acceptors. Hydrogenases constitute a diverse family of enzymes expressed by microorganisms that utilize molecular hydrogen as a metabolic substrate, product or intermediate. The assay reveals the potential for utilizing molecular hydrogen and allows qualitative detection of microbial activity irrespective of the predominant electron-accepting process. Because the method only requires samples frozen immediately after recovery, the assay can be used for identifying microbial activity in subsurface ecosystems without the need to preserve live material.We measured potential hydrogen oxidation rates in all samples from multiple depths at several sites that collectively span a wide range of environmental conditions and biogeochemical zones. Potential activity normalized to total cell abundance ranges over five orders of magnitude and varies, dependent upon the predominant terminal electron acceptor. Lowest per-cell potential rates characterize the zone of nitrate reduction and highest per-cell potential rates occur in the methanogenic zone. Possible reasons for this relationship to predominant electron acceptor include (i increasing importance of fermentation in successively deeper biogeochemical zones and (ii adaptation of H2ases to successively higher concentrations of H2 in successively deeper zones.

  11. New technologies for subsurface barrier wall construction

    Energy Technology Data Exchange (ETDEWEB)

    Mutch, R.D. Jr.; Ash, R.E. IV; Caputi, J.R. [Eckenfelder Inc., Mahwah, NJ (United States)

    1996-12-31

    New technologies for subsurface barrier wall construction are entering the marketplace at an unprecedented pace. Much of this innovation centers around construction of geomembrane barrier walls but also includes advancements in self-hardening slurries and in permeation grouts, involving such diverse materials as colloidal silica gel and montan wax emulsions. These advancements come at a time when subsurface barrier walls are cautiously emerging out of the technological closet. During much of the 1980s, barrier walls of any type were regarded in some quarters as crude and antiquated. It was correspondingly predicted that remediation would be dominated by emerging treatment technologies such as bioremediation, air sparging, and surfactant flushing. Notwithstanding the considerable successes of these emerging technologies, particularly bioremediation, the fact remains that a significant percentage of Superfund, RCRA-corrective action and other waste disposal sites present hydrogeologic, chemical, and waste matrix complexities that far exceed the capabilities of current treatment-based remedial technologies. Consequently, containment-based technologies such as subsurface barrier walls and caps are being recognized once again as irreplaceable components of practical remediation programs at many complex sites.

  12. Activation of Peroxymonosulfate by Subsurface Minerals

    Science.gov (United States)

    Yu, Miao; Teel, Amy L.; Watts, Richard J.

    2016-08-01

    In situ chemical oxidation (ISCO) has become a widely used technology for the remediation of soil and groundwater. Although peroxymonosulfate is not a common oxidant source for ISCO, its chemical structure is similar to the ISCO reagents hydrogen peroxide and persulfate, suggesting that peroxymonosulfate may have the beneficial properties of each of these oxidants. Peroxymonosulfate activation in the presence of subsurface minerals was examined as a basis for ISCO, and possible reactive species (hydroxyl radical, sulfate radical, and reductants + nucleophiles) generated in the mineral-activated peroxymonosulfate systems were investigated. Rates of peroxymonosulfate decomposition and generation rates of reactive species were studied in the presence of three iron oxides, one manganese oxide, and three soil fractions. The iron oxide hematite-activated peroxymonosulfate system most effectively degraded the hydroxyl radical probe nitrobenzene. Reductants + nucleophiles were not generated in mineral-activated peroxymonosulfate systems. Use of the probe compound anisole in conjunction with scavengers demonstrated that both sulfate radical and hydroxyl radical are generated in mineral-activated peroxymonosulfate systems. In order to confirm the activation of peroxymonosulfate by subsurface minerals, one natural soil and associated two soil fractions were evaluated as peroxymonosulfate catalysts. The natural soil did not effectively promote the generation of oxidants; however, the soil organic matter was found to promote the generation of reductants + nucleophiles. The results of this research show that peroxymonosulfate has potential as an oxidant source for ISCO applications, and would be most effective in treating halogenated contaminants when soil organic matter is present in the subsurface.

  13. Resonant seismic emission of subsurface objects

    Energy Technology Data Exchange (ETDEWEB)

    Korneev, Valeri A.

    2009-04-15

    Numerical modeling results and field data indicate that some contrasting subsurface objects (such as tunnels, caves, pipes, filled pits, and fluid-filled fractures) are capable of generating durable resonant oscillations after trapping seismic energy. These oscillations consist of surface types of circumferential waves that repeatedly propagate around the object. The resonant emission of such trapped energy occurs primarily in the form of shear body waves that can be detected by remotely placed receivers. Resonant emission reveals itself in the form of sharp resonant peaks for the late parts of the records, when all strong direct and primary reflected waves are gone. These peaks were observed in field data for a buried barrel filled with water, in 2D finite-difference modeling results, and in the exact canonical solution for a fluid-filled sphere. A computed animation for the diffraction of a plane wave upon a low-velocity elastic sphere confirms the generation of resonances by durable surface waves. Resonant emission has characteristic quasi-hyperbolic traveltime patterns on shot gathers. The inversion of these patterns can be performed in the frequency domain after muting the strong direct and primary scattered waves. Subsurface objects can be detected and imaged at a single resonance frequency without an accurate knowledge of source trigger time. The imaging of subsurface objects requires information about the shear velocity distribution in an embedding medium, which can be done interactively during inversion.

  14. Subsurface urban heat islands in German cities.

    Science.gov (United States)

    Menberg, Kathrin; Bayer, Peter; Zosseder, Kai; Rumohr, Sven; Blum, Philipp

    2013-01-01

    Little is known about the intensity and extension of subsurface urban heat islands (UHI), and the individual role of the driving factors has not been revealed either. In this study, we compare groundwater temperatures in shallow aquifers beneath six German cities of different size (Berlin, Munich, Cologne, Frankfurt, Karlsruhe and Darmstadt). It is revealed that hotspots of up to +20K often exist, which stem from very local heat sources, such as insufficiently insulated power plants, landfills or open geothermal systems. When visualizing the regional conditions in isotherm maps, mostly a concentric picture is found with the highest temperatures in the city centers. This reflects the long-term accumulation of thermal energy over several centuries and the interplay of various factors, particularly in heat loss from basements, elevated ground surface temperatures (GST) and subsurface infrastructure. As a primary indicator to quantify and compare large-scale UHI intensity the 10-90%-quantile range UHII(10-90) of the temperature distribution is introduced. The latter reveals, in comparison to annual atmospheric UHI intensities, an even more pronounced heating of the shallow subsurface. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Experimental study on geotextile envelope for subsurface drainage in Yellow River Delta%黄河三角洲暗管排水土工布外包滤料的试验研究

    Institute of Scientific and Technical Information of China (English)

    刘文龙; 罗纨; 贾忠华; 卜凡敏; 潘延鑫; 唐双成; 袁黄春; 李山

    2013-01-01

    In recent years, subsurface drainage has been greatly advocated in the Yellow River Delta area for salinity control and land reclamation. With the very uniform textured silty sand as major soils in the Yellow River Delta, and lacking of gravel envelope material, there is an urgent need to select proper synthetic envelope for subsurface drainage construction in the area. Proper selection of envelope materials is critical for a subsurface drainage system construction. Geotextile envelope has multiple advantages, including good water conductivity, retaining soil particles from clogging the drains, low cost and convenience for mechanical construction. Thus geotextile envelope is widely used in subsurface drainage system constructions throughout the world. In China, however, very few subsurface drainage projects used geotextiles as envelope materials for various reasons. Therefore, geotextile envelope may find its wide application in many poorly drained areas, such as the Yellow River Delta in China provided that proper selection criteria are met. Based on soil particle size analysis and theoretical calculations, this paper presents an experimental study on geotextile material used for subsurface drainage envelope in the Yellow River Delta, China. A testing permeameter was built on the basis of existing literature-Materials for subsurface drainage system (IDP 60). The selection criteria have three major factors, including thickness, permeability and O90. After analyzing the soil particle size distribution and measuring the saturated hydraulic conductivity (Ks) with the falling head method, we chose two types of geotextiles as the tested samples. One of these geo-textiles (Geotextile A) has a larger O90 than that in the criterion by IDP 60, while the other one (Geotextile B) meets the criterion. With these essential information, we conducted a series of experimental studies to evaluate the performance of geotextiles in filtration, permeability and anti-clogging. After

  16. Drain Tube-Induced Jejunal Penetration Masquerading as Bile Leak following Whipple’s Operation

    Directory of Open Access Journals (Sweden)

    Sang Ho Bae

    2011-05-01

    Full Text Available A 70-year-old man had undergone pancreaticoduodenectomy due to a distal common bile duct malignancy. After the operation, serous fluid discharge decreased from two drain tubes in the retroperitoneum. Over four weeks, the appearance of the serous fluid changed to a greenish bile color and the patient persistently drained over 300 ml/day. Viewed as bile leak at the choledochojejunostomy, treatment called for endoscopic diagnosis and therapy. Cap-fitted forward-viewing endoscopy demonstrated that the distal tip of a pancreatic drain catheter inserted at the pancreaticojejunostomy site had penetrated the opposite jejunum wall. One of the drain tubes primarily placed in the retroperitoneum had also penetrated the jejunum wall, with the distal tip positioned near the choledochojejunostomy site. No leak of contrast appeared beyond the jejunum or anastomosis site. Following repositioning of a penetrating catheter of the pancreaticojejunostomy, four days later, the patient underwent removal of two drain tubes without additional complications. In conclusion, the distal tip of the catheter, placed to drain pancreatic juice, penetrated the jejunum wall and may have caused localized perijejunal inflammation. The other drain tube, placed in the retroperitoneal space, might then have penetrated the inflamed wall of the jejunum, allowing persistent bile drainage via the drain tube. The results masqueraded as bile leakage following pancreaticoduodenectomy.

  17. The use of the Mini-Flap wound suction drain in maxillofacial surgery.

    OpenAIRE

    Nasser, N. A.

    1986-01-01

    Preliminary experience using the Mini-Flap closed suction drain after maxillofacial surgery is described. The drain fulfils many of the criteria required for drainage of small wounds about the face and neck, and is associated with a low incidence of postoperative haematoma, oozing and infection.

  18. A comparative study of use of negative drain in lichenstein repair for large inguinal hernia repair

    Directory of Open Access Journals (Sweden)

    Abhay Kumar Aaudichya

    2016-06-01

    Conclusion: Drain is more commonly used in patient who had more dissection and longer duration of operation. Drain used in selected patients seems to not increase infection risk but associated with longer hospital stay. [Int J Res Med Sci 2016; 4(6.000: 2054-2058

  19. Research on forced gas draining from coal seams by surface well drilling

    Institute of Scientific and Technical Information of China (English)

    Wu Dongmei; Wang Haifeng; Ge Chungui; An Fenghua

    2011-01-01

    Surface drilling was performed at the Luling Coal Mine, in Huaibei, to shorten the period required for gas draining. The experimental study was designed to reduce the cost of gas control by efficiently draining gas from the upper protected layer. The structural arraignment and technical principles of pressure relief via surface drilling are discussed. Results from the trial showed that gas drained from the surface system over a period of 10 months. The total amount of collected gas was 248.4 million m3. The gas draining occurred in three stages: a growth period; a period of maximum gas production; and an attenuation period. The period of maximum gas production lasted for 4 months. During this time the methane concentration ranged from 60% to 90% and the average draining rate was 10.6 m3/min. Combined with other methods of draining it was possible to drain 70.6% of the gas from middle coal seam groups. The amount of residual gas dropped to 5.2 m3/ton, and the pressure of the residual gas fell to 0.53 MPa,thereby eliminating the outburst danger in the middle coal seam groups. The factors affecting pressure relief gas draining by surface drilling were analysed.

  20. Methodology for Rewetting Drained Tropical Peatlands. Approved Verified Carbon Standard (VCS) Methodology VM0027

    NARCIS (Netherlands)

    Hoffer, S.; Laer, Y.; Navrátil, R.; Wosten, J.H.M.

    2014-01-01

    The first methodology to address the rewetting of drained peatlands "Methodology for rewetting Drained Tropical Peatlands" has been approved by the Verified Carbon Standard (VCS) Program. As the methodology is the first of its kind, it will provide unique guidance for other projects that aim at rewe

  1. Subsoil drain sumps are a key container for Aedes aegypti in Cairns, Australia.

    Science.gov (United States)

    Montgomery, Brian L; Ritchie, Scott A; Hart, Alistair J; Long, Sharron A; Walsh, Ian D

    2004-12-01

    The contribution of subterranean drain sumps to pupal and adult populations of Aedes aegypti is reported for the 1st time in Cairns, Australia. Pupal surveys were used to quantify the relative contribution of drain sumps to the total population of Ae. aegypti by concurrent survey of sump and water-bearing containers in yards of inner-city premises. A total of 854 mosquito pupae were collected, predominantly Ae. aegypti and Culex quinquefasciatus (26.3 and 69.8%, respectively). Drain sumps provided a relatively uncommon (n = 4) but productive source for pupal Ae. aegypti, producing 14.7% of the combined yard and drain sump population. Drain sumps in inner-city Cairns most commonly occurred in parking lots (52.6%). Subsequently, a sticky emergent adult trap (SEAT) was developed to provide a pragmatic method to assess production of Ae. aegypti by drain sumps. A total of 866 adult mosquitoes were trapped from 162 drain sumps over a 48-h exposure period, comprising Ae. aegypti and Cx. quinquefasciatus (21 and 79%, respectively). Advantages of the SEAT are an ability to rapidly count, identify, and sex mosquitoes and to provide specimens for molecular analysis where necessary. The treatment of water-bearing drain sumps is a critical element of control campaigns against Ae. aegypti.

  2. Retrospective analysis of the relationship between time of thoracostomy drain removal and discharge time.

    Science.gov (United States)

    Marques, A I D C; Tattersall, J; Shaw, D J; Welsh, E

    2009-04-01

    The objective of this study was to evaluate the relationship between the volume of fluid being produced at the time of thoracostomy drain removal and the time to hospital discharge in dogs and cats. Records of 101 dogs and 26 cats with thoracostomy drains were reviewed. Three subgroups were created according to the reason for thoracostomy drain placement: P (postsurgical), A (air) and F (fluid). A generalised linear model with Poisson Errors was performed to test the relationship between the volume of fluid produced at the time of thoracostomy drain removal and the time to discharge. The volume of fluid produced and the time to discharge were compared between species and subgroups. No significant relationship was found between the volume of fluid produced at the time of thoracostomy drain removal and the time to discharge in either species or between the time to discharge and the reason for thoracostomy drain placement. Animals with a volume of fluid higher than 2 ml/kg/day at the time of thoracostomy drain removal did not have increased hospitalisation times. Thoracostomy drain can be removed, without clinical compromise, when the volume of fluid produced exceeds 2 ml/kg/day. However, other clinical parameters must be taken into consideration.

  3. 77 FR 30886 - Virginia Graeme Baker Pool and Spa Safety Act; Interpretation of Unblockable Drain

    Science.gov (United States)

    2012-05-24

    ... Baker Pool and Spa Safety Act; Interpretation of Unblockable Drain AGENCY: Consumer Product Safety... interpretation of the term ``unblockable drain,'' as used in the Virginia Graeme Baker Pool and Spa Safety Act... document does not alter the current requirement that public pools and spas be in compliance with the VGBA...

  4. Use of a phytotoxicity test to screen drain water before re-use

    NARCIS (Netherlands)

    Blok, C.; Boer-Tersteeg, de P.M.; Maas, van der A.A.; Khodabaks, M.R.; Enthoven, N.L.M.

    2014-01-01

    Recycling of the nutrient solution during cultivation of greenhouse crops reduces the total input of water and fertilizers and decreases emission of nutrients to the environment. However growers fear accumulation of harmful substances in the drain water. For this reason drain water in practice is

  5. Use of a phytotoxicity test to screen drain water before re-use

    NARCIS (Netherlands)

    Blok, C.; Boer-Tersteeg, de P.M.; Maas, van der A.A.; Khodabaks, M.R.; Enthoven, N.L.M.

    2014-01-01

    Recycling of the nutrient solution during cultivation of greenhouse crops reduces the total input of water and fertilizers and decreases emission of nutrients to the environment. However growers fear accumulation of harmful substances in the drain water. For this reason drain water in practice is re

  6. 40 CFR 63.136 - Process wastewater provisions-individual drain systems.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Process wastewater provisions... Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.136 Process wastewater provisions—individual drain systems. (a) For each individual drain...

  7. Monitoring of tylosin and sulfamethazine in a tile drained agricultural Watershed using (POCIS)

    Science.gov (United States)

    The seasonal occurrence, fate, and transport of agricultural emerging contaminants (AECs) was evaluated in the South Fork watershed of the Iowa River (SFIR) using Polar Organic Chemical Integrative Samplers (POCIS) over a three year period. The AECs of concern were tylosin (TYL) and sulfamethazine (...

  8. Simulation and validation of concentrated subsurface lateral flow paths in an agricultural landscape

    Directory of Open Access Journals (Sweden)

    Q. Zhu

    2009-08-01

    Full Text Available The importance of soil water flow paths to the transport of nutrients and contaminants has long been recognized. However, effective means of detecting concentrated subsurface flow paths in a large landscape are still lacking. The flow direction and accumulation algorithm based on single-direction flow algorithm (D8 in GIS hydrologic modeling is a cost-effective way to simulate potential concentrated flow paths over a large area once relevant data are collected. This study tested the D8 algorithm for simulating concentrated lateral flow paths at three interfaces in soil profiles in a 19.5-ha agricultural landscape in central Pennsylvania, USA. These interfaces were (1 the interface between surface plowed layers of Ap1 and Ap2 horizons, (2 the interface with subsoil water-restricting clay layer where clay content increased to over 40%, and (3 the soil-bedrock interface. The simulated flow paths were validated through soil hydrologic monitoring, geophysical surveys, and observable soil morphological features. The results confirmed that concentrated subsurface lateral flow occurred at the interfaces with the clay layer and the underlying bedrock. At these two interfaces, the soils on the simulated flow paths were closer to saturation and showed more temporally unstable moisture dynamics than those off the simulated flow paths. Apparent electrical conductivity in the soil on the simulated flow paths was elevated and temporally unstable as compared to those outside the simulated paths. The soil cores collected from the simulated flow paths showed significantly higher Mn content at these interfaces than those away from the simulated paths. These results suggest that (1 the D8 algorithm is useful in simulating possible concentrated subsurface lateral flow paths if used with appropriate threshold value of contributing area and sufficiently detailed digital elevation model (DEM; (2 repeated electromagnetic surveys can reflect the temporal change of soil

  9. Immunological techniques as tools to characterize the subsurface microbial community at a trichloroethylene contaminated site

    Energy Technology Data Exchange (ETDEWEB)

    Fliermans, C.B.; Dougherty, J.M.; Franck, M.M.; McKinzey, P.C.; Hazen, T.C.

    1992-12-31

    Effective in situ bioremediation strategies require an understanding of the effects pollutants and remediation techniques have on subsurface microbial communities. Therefore, detailed characterization of a site`s microbial communities is important. Subsurface sediment borings and water samples were collected from a trichloroethylene (TCE) contaminated site, before and after horizontal well in situ air stripping and bioventing, as well as during methane injection for stimulation of methane-utilizing microorganisms. Subsamples were processed for heterotrophic plate counts, acridine orange direct counts (AODC), community diversity, direct fluorescent antibodies (DFA) enumeration for several nitrogen-transforming bacteria, and Biolog {reg_sign} evaluation of enzyme activity in collected water samples. Plate counts were higher in near-surface depths than in the vadose zone sediment samples. During the in situ air stripping and bioventing, counts increased at or near the saturated zone, remained elevated throughout the aquifer, but did not change significantly after the air stripping. Sporadic increases in plate counts at different depths as well as increased diversity appeared to be linked to differing lithologies. AODCs were orders of magnitude higher than plate counts and remained relatively constant with depth except for slight increases near the surface depths and the capillary fringe. Nitrogen-transforming bacteria, as measured by serospecific DFA, were greatly affected both by the in situ air stripping and the methane injection. Biolog{reg_sign} activity appeared to increase with subsurface stimulation both by air and methane. The complexity of subsurface systems makes the use of selective monitoring tools imperative.

  10. Immunological techniques as tools to characterize the subsurface microbial community at a trichloroethylene contaminated site

    Energy Technology Data Exchange (ETDEWEB)

    Fliermans, C.B.; Dougherty, J.M.; Franck, M.M.; McKinzey, P.C.; Hazen, T.C.

    1992-01-01

    Effective in situ bioremediation strategies require an understanding of the effects pollutants and remediation techniques have on subsurface microbial communities. Therefore, detailed characterization of a site's microbial communities is important. Subsurface sediment borings and water samples were collected from a trichloroethylene (TCE) contaminated site, before and after horizontal well in situ air stripping and bioventing, as well as during methane injection for stimulation of methane-utilizing microorganisms. Subsamples were processed for heterotrophic plate counts, acridine orange direct counts (AODC), community diversity, direct fluorescent antibodies (DFA) enumeration for several nitrogen-transforming bacteria, and Biolog [reg sign] evaluation of enzyme activity in collected water samples. Plate counts were higher in near-surface depths than in the vadose zone sediment samples. During the in situ air stripping and bioventing, counts increased at or near the saturated zone, remained elevated throughout the aquifer, but did not change significantly after the air stripping. Sporadic increases in plate counts at different depths as well as increased diversity appeared to be linked to differing lithologies. AODCs were orders of magnitude higher than plate counts and remained relatively constant with depth except for slight increases near the surface depths and the capillary fringe. Nitrogen-transforming bacteria, as measured by serospecific DFA, were greatly affected both by the in situ air stripping and the methane injection. Biolog[reg sign] activity appeared to increase with subsurface stimulation both by air and methane. The complexity of subsurface systems makes the use of selective monitoring tools imperative.

  11. Blooms and subsurface phytoplankton layers on the Scotian Shelf: Insights from profiling gliders

    Science.gov (United States)

    Ross, Tetjana; Craig, Susanne E.; Comeau, Adam; Davis, Richard; Dever, Mathieu; Beck, Matthew

    2017-08-01

    Understanding how phytoplankton respond to their physical environment is key to predicting how bloom dynamics might change under future climate change scenarios. Phytoplankton are at the base of most marine food webs and play an important role in drawing CO2 out of the atmosphere. Using nearly 5 years of simultaneous CTD, irradiance, chlorophyll a fluorescence and optical backscattering observations obtained from Slocum glider missions, we observed the subsurface phytoplankton populations across the Scotian Shelf, near Halifax (Nova Scotia, Canada) along with their physical environment. Bloom conditions were observed in each of the 5 springs, with the average chlorophyll in the upper 60 m of water generally exceeding 3 mg m- 3. These blooms occurred when the upper water column stratification was at its lowest, in apparent contradiction of the critical depth hypothesis. A subsurface chlorophyll layer was observed each summer at about 30 m depth, which was below the base of the mixed layer. This subsurface layer lasted 3-4 months and contained, on average, 1/4 of the integrated water column chlorophyll found during the spring bloom. This suggests that a significant portion of the primary productivity over the Scotian Shelf occurs at depths that cannot be observed by satellites-highlighting the importance of including subsurface observations in the monitoring of future changes to primary productivity in the ocean.

  12. Concept of subsurface micro-sensing; Chika joho no micro sensing

    Energy Technology Data Exchange (ETDEWEB)

    Niitsuma, H. [Tohoku University, Sendai (Japan). Faculty of Engineering

    1997-05-27

    This paper describes concept of subsurface micro-sensing. It is intended to achieve an epoch-making development of subsurface engineerings by developing such technologies as micro measurement of well interior, micro measurement while drilling (MWD), and micro intelligent logging. These technologies are supported by development of micro sensors and micro drilling techniques using micro machine technologies. Micronizing the subsurface sensors makes mass production of sensors with equivalent performance possible, and the production cost can be reduced largely. The sensors can be embedded or used disposably, resulting in increased mobility in measurement and higher performance. Installing multiple number of sensors makes high-accuracy measurement possible, such as array measurement. The sensors can be linked easily with photo-electronics components, realizing remote measurement at low price and high accuracy. Control in micro-drilling and MWD also become possible. Such advantages may also be expected as installing the sensors on the outer side of wells in use and monitoring subsurface information during production. Expectation on them is large as a new paradigm of underground exploration and measurement. 1 fig.

  13. Oculo-peritoneal shunt: draining aqueous humor to the peritoneum

    Directory of Open Access Journals (Sweden)

    Ana Maldonado-Junyent

    2015-04-01

    Full Text Available In 2010, there were estimated to be approximately 60.5 million people with glaucoma. This number is expected to increase to 79.6 million by 2020. In 2010, there were 8.4 million people with bilateral blindness caused by glaucoma, and this number is expected in increase to 11.2 million by 2020. Filtering implants are special devices that have been developed to reduce intraocular pressure in patients with refractory glaucoma. The success rate of these implants is relatively low, and they continue to fail over time. To avoid failure caused by the formation of scar tissue around the implants, attempts have been made to drain the aqueous humor to various sites, including the venous system, lacrimal sac, sinuses, and conjunctival fornix. Recently, a system to shunt aqueous humor from the anterior chamber to the peritoneum has been developed. The surgical technique involved in this system is a modification of the technique currently used by neurosurgeons for the treatment of hydrocephalus. We present the first case operated using this technique.

  14. BRAIN DRAIN – BRAIN GAIN: SLOVAK STUDENTS AT CZECH UNIVERSITIES

    Directory of Open Access Journals (Sweden)

    FISCHER, Jakub

    2015-09-01

    Full Text Available The Slovak Republic is experiencing a growing brain drain of elite secondary school students. Slovak human capital flows chiefly to Czech Higher Education Institutes (HEIs. The aim of this paper is to analyse who these Slovak students are to create a complete profile of Slovak students at Czech HEIs. We used a unique dataset based on the surveys EUROSTUDENT V and DOKTORANDI 2014 to explore differences between Czech and Slovak students, their financial situation and the functionality of the intergenerational transmission mechanism. We have found that Slovak students at Czech HEIs come from highly educated families and from the middle and higher class families significantly more often than Czech students at Czech HEIs or Slovak students at Slovak HEIs. Approximately 80% of them came from grammar schools. Slovak students also often have better language skills. We have discovered that Slovak students at Czech HEIs enjoy certain social benefits, slightly more often they have higher monthly income compared to Czech students, and they work slightly less often during their studies. Finally, according to our findings, Slovak doctoral students are often reluctant to return back to the Slovak Republic or to stay in the Czech Republic.

  15. Hydraulic Capacity of an ADA Compliant Street Drain Grate

    Energy Technology Data Exchange (ETDEWEB)

    Lottes, Steven A. [Argonne National Lab. (ANL), Argonne, IL (United States); Bojanowski, Cezary [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    Resurfacing of urban roads with concurrent repairs and replacement of sections of curb and sidewalk may require pedestrian ramps that are compliant with the American Disabilities Act (ADA), and when street drains are in close proximity to the walkway, ADA compliant street grates may also be required. The Minnesota Department of Transportation ADA Operations Unit identified a foundry with an available grate that meets ADA requirements. Argonne National Laboratory’s Transportation Research and Analysis Computing Center used full scale three dimensional computational fluid dynamics to determine the performance of the ADA compliant grate and compared it to that of a standard vane grate. Analysis of a parametric set of cases was carried out, including variation in longitudinal, gutter, and cross street slopes and the water spread from the curb. The performance of the grates was characterized by the fraction of the total volume flow approaching the grate from the upstream that was captured by the grate and diverted into the catch basin. The fraction of the total flow entering over the grate from the side and the fraction of flow directly over a grate diverted into the catch basin were also quantities of interest that aid in understanding the differences in performance of the grates. The ADA compliant grate performance lagged that of the vane grate, increasingly so as upstream Reynolds number increased. The major factor leading to the performance difference between the two grates was the fraction of flow directly over the grates that is captured by the grates.

  16. Reverse brain drain in South Korea: state-led model.

    Science.gov (United States)

    Yoon, B L

    1992-01-01

    Korea's reverse brain drain (RBD) has been an organized government effort, rather than a spontaneous social phenomenon, in that various policies and the political support of President Park, Chung-Hee were instrumental in laying the groundwork for its success. Particular features of Korea's RBD policies are the creation of a conducive domestic environment (i.e., government-sponsored strategic R & D institution-building, legal, and administrative reforms), and importantly, the empowerment of returnees (via, i.e., exceptionally good maternal benefits, guarantees of research autonomy). President Park played the cardinal role in empowering repatriates at the expense of his own civil bureaucracy, and his capacity for such patronage derived from Korea's bureaucratic-authoritarian political system. Returning scientists and engineers directly benefitted from this political system as well as Park's personal guardianship. For Park, empowerment of returning "brains" was necessary to accomplish his national industrialization plan, thereby enhancing his political legitimacy in domestic politics. An alliance with the R & D cadre was functionally necessary to successfully consolidate strong presidential power, and politically nonthreatening due to the particular form of "pact of domination" in Korea's power structure. RBD in Korea will continue in the near future given Korea's drive for high technology, and the remarkable expansion of local industrial and educational sectors. Korea's future RBD, however, needs to pay closer attention to the following 4 problems: research autonomy; equality issues; skill-based repatriation of technicians and engineers rather than Ph.Ds; and subsidies to small and medium industry for RBD.

  17. Carbon export by rivers draining the conterminous United States

    Science.gov (United States)

    Stets, Edward G.; Striegl, Robert G.

    2012-01-01

    Material exports by rivers, particularly carbon exports, provide insight to basin geology, weathering, and ecological processes within the basin. Accurate accounting of those exports is valuable to understanding present, past, and projected basin-wide changes in those processes. We calculated lateral export of inorganic and organic carbon (IC and OC) from rivers draining the conterminous United States using stream gaging and water quality data from more than 100 rivers. Approximately 90% of land area and 80% of water export were included, which enabled a continental-scale estimate using minor extrapolation. Total carbon export was 41–49 Tg C yr−1. IC was >75% of export and exceeded OC export in every region except the southeastern Atlantic seaboard. The 10 largest rivers, by discharge, accounted for 66% of water export and carried 74 and 62% of IC and OC export, respectively. Watershed carbon yield for the conterminous United States was 4.2 and 1.3 g C m−2 yr−1 for IC and OC, respectively. The dominance of IC export was unexpected but is consistent with geologic models suggesting high weathering rates in the continental United States due to the prevalence of easily weathered sedimentary rock.

  18. Oculo-peritoneal shunt: draining aqueous humor to the peritoneum.

    Science.gov (United States)

    Maldonado-Junyent, Ana; Maldonado-Bas, Arturo; Gonzalez, Andrea; Pueyrredón, Francisco; Maldonado-Junyent, María; Maldonado-Junyent, Arturo; Rodriguez, Diego; Bulacio, Mariano

    2015-01-01

    In 2010, there were estimated to be approximately 60.5 million people with glaucoma. This number is expected to increase to 79.6 million by 2020. In 2010, there were 8.4 million people with bilateral blindness caused by glaucoma, and this number is expected in increase to 11.2 million by 2020. Filtering implants are special devices that have been developed to reduce intraocular pressure in patients with refractory glaucoma. The success rate of these implants is relatively low, and they continue to fail over time. To avoid failure caused by the formation of scar tissue around the implants, attempts have been made to drain the aqueous humor to various sites, including the venous system, lacrimal sac, sinuses, and conjunctival fornix. Recently, a system to shunt aqueous humor from the anterior chamber to the peritoneum has been developed. The surgical technique involved in this system is a modification of the technique currently used by neurosurgeons for the treatment of hydrocephalus. We present the first case operated using this technique.

  19. Measurement and conceptual modelling of herbicide transport to field drains in a heavy clay soil with implications for catchment-scale water quality management.

    Science.gov (United States)

    Tediosi, A; Whelan, M J; Rushton, K R; Thompson, T R E; Gandolfi, C; Pullan, S P

    2012-11-01

    Propyzamide and carbetamide are essential for blackgrass control in oilseed rape production. However, both of these compounds can contaminate surface waters and pose compliance problems for water utilities. The transport of propyzamide and carbetamide to an instrumented field drain in a small clay headwater tributary of the Upper Cherwell catchment was monitored over a winter season. Despite having very different sorption and dissipation properties, both herbicides were transported rapidly to the drain outlet in the first storm event after application, although carbetamide was leached more readily than propyzamide. A simple conceptual model was constructed to represent solute displacement from mobile pore water and preferential flow to drains. The model was able to reproduce the timing and magnitude of herbicide losses well, lending support to its conceptual basis. Measured losses in drainflow in the month following application were 1.1 and 8.1%, respectively, for propyzamide and carbetamide. Differences were due to a combination of differences in herbicide mobility and due to the fact that the monitoring period for carbetamide was hydrologically more active. For both compounds, losses were greater than those typically reported elsewhere for other herbicides. The data suggest that drainflow is the dominant pathway for the transfer of these herbicides to the catchment outlet, where water is abstracted for municipal supply. This imposes considerable constraints on the management options available to reduce surface water concentrations of herbicides in this catchment.

  20. Hillslope characteristics as controls of subsurface flow variability

    Directory of Open Access Journals (Sweden)

    S. Bachmair

    2012-06-01

    Full Text Available Hillslope hydrological dynamics, particularly subsurface flow (SSF, are highly variable and complex. A profound understanding of factors controlling this variability is needed. Therefore we investigated the relationship between variability of shallow water table dynamics and various hillslope characteristics. We ask whether measurable hillslope properties explain patterns of subsurface flow variability. To approach this question shallow water table dynamics of three adjacent large-scale hillslopes were monitored with high spatial and temporal resolution over 18 months. The hillslopes are similar in terms of topography and parent material, but different in vegetation cover (grassland, coniferous forest, and mixed forest. We expect vegetation to be an important driver of water table dynamics at our study site, especially given the minor differences in topography. Various hillslope properties were determined in the field and via GIS analysis: common topography descriptors, well depth, soil properties via slug tests, and several vegetation parameters. Response variables characterizing the water table response per well were calculated for different temporal scales (entire time series, seasonal scale, event scale. Partial correlation analysis and a Random Forest machine learning approach were carried out to assess the explainability of SSF variability by measurable hillslope characteristics. We found a complex interplay of predictors, yet soil properties and topography showed the highest single explanatory power. Surprisingly, vegetation characteristics played a minor role. Solely throughfall and canopy cover exerted a slightly stronger control, especially in summer. Most importantly, the examined hillslope characteristics explained only a small proportion of the observed SSF variability. Consequently there must be additional important drivers not represented by current measurement techniques of the hillslope configuration (e.g. bedrock properties

  1. Hillslope characteristics as controls of subsurface flow variability

    Science.gov (United States)

    Bachmair, S.; Weiler, M.

    2012-10-01

    Hillslope hydrological dynamics, particularly subsurface flow (SSF), are highly variable and complex. A profound understanding of factors controlling this variability is needed. Therefore we investigated the relationship between variability of shallow water table dynamics and various hillslope characteristics. We ask whether measurable hillslope properties explain patterns of subsurface flow variability. To approach this question, shallow water table dynamics of three adjacent large-scale hillslopes were monitored with high spatial and temporal resolution over 18 months. The hillslopes are similar in terms of topography and parent material, but different in vegetation cover (grassland, coniferous forest, and mixed forest). We expect vegetation to be an important driver of water table dynamics at our study site, especially given the minor differences in topography. Various hillslope properties were determined in the field and via GIS analysis: common topography descriptors, well depth, soil properties via slug tests, and several vegetation parameters. Response variables characterizing the water table response per well were calculated for different temporal scales (entire time series, seasonal scale, event scale). Partial correlation analysis and a Random Forest machine learning approach were carried out to assess the explainability of SSF variability by measurable hillslope characteristics. We found a complex interplay of predictors, yet soil properties and topography showed the highest single explanatory power. Surprisingly, vegetation characteristics played a minor role. Solely throughfall and canopy cover exerted a slightly stronger control, especially in summer. Most importantly, the examined hillslope characteristics explained only a small proportion of the observed SSF variability. Consequently there must be additional important drivers not represented by current measurement techniques of the hillslope configuration (e.g. bedrock properties, preferential

  2. Hillslope characteristics as controls of subsurface flow variability

    Directory of Open Access Journals (Sweden)

    S. Bachmair

    2012-10-01

    Full Text Available Hillslope hydrological dynamics, particularly subsurface flow (SSF, are highly variable and complex. A profound understanding of factors controlling this variability is needed. Therefore we investigated the relationship between variability of shallow water table dynamics and various hillslope characteristics. We ask whether measurable hillslope properties explain patterns of subsurface flow variability. To approach this question, shallow water table dynamics of three adjacent large-scale hillslopes were monitored with high spatial and temporal resolution over 18 months. The hillslopes are similar in terms of topography and parent material, but different in vegetation cover (grassland, coniferous forest, and mixed forest. We expect vegetation to be an important driver of water table dynamics at our study site, especially given the minor differences in topography. Various hillslope properties were determined in the field and via GIS analysis: common topography descriptors, well depth, soil properties via slug tests, and several vegetation parameters. Response variables characterizing the water table response per well were calculated for different temporal scales (entire time series, seasonal scale, event scale. Partial correlation analysis and a Random Forest machine learning approach were carried out to assess the explainability of SSF variability by measurable hillslope characteristics. We found a complex interplay of predictors, yet soil properties and topography showed the highest single explanatory power. Surprisingly, vegetation characteristics played a minor role. Solely throughfall and canopy cover exerted a slightly stronger control, especially in summer. Most importantly, the examined hillslope characteristics explained only a small proportion of the observed SSF variability. Consequently there must be additional important drivers not represented by current measurement techniques of the hillslope configuration (e.g. bedrock properties

  3. Greenhouse gas emissions from short-rotation forestry on a drained and rewetted fen

    Science.gov (United States)

    Schlaipfer, Martina; Fuertes Sánchez, Alicia; Drösler, Matthias

    2017-04-01

    More than 95 % of German peatlands have been drained, primarily for agricultural and forestry use. They constitute a significant source of greenhouse gases (GHG) with emissions of approximately 47 million tons per year. Propelled by the German energy turnaround farmers have increasingly converted their cropland to short rotation forestry (SRF), amongst them some who are cultivating drained peatland. In this study GHG emissions from alder and poplar short rotation plantations with differing groundwater levels near Rosenheim, Bavaria, were monitored over the course of three-and-a-half years. Moreover, the effect of ploughing for SRF establishment was investigated as well. Understorey GHG fluxes were measured using closed-chamber approaches. Gas samples were enclosed in vials every second week and analysed for their CH4 and N2O concentrations by gas chromatography at a laboratory. On-site measurements of CO2 fluxes were carried out over the course of a day every three to four weeks with a dynamic closed-chamber technique. Allometric methods were employed to estimate carbon sequestration into trees. Sheet piling was installed around a set of measurement sites in December 2014 to accentuate the difference between the sites with high and low water tables. As a result the water level around those sites rose from an average of -36.1 ± 6.1 cm in 2013 and 2014 to -20.8 ± 3.7 cm in 2015. The water table outside the sheet piling showed values of -61.8 ± 5.7 cm and -72.1 ± 6.2 cm in those years, respectively. First results suggest a limited effect of ploughing for SRF establishment on understorey GHG emissions. However, there seems to be a distinct impact on tree productivity. CO2 fluxes in the understorey seem to be strongly influenced by water table, but also land management (mulching of understorey vegetation to reduce weed competition for trees during the first year and for pest control in subsequent years) and shading of the understorey vegetation by trees. There is a

  4. Integrating experimental and numerical methods for a scenario-based quantitative assessment of subsurface energy storage options

    Science.gov (United States)

    Kabuth, Alina; Dahmke, Andreas; Hagrey, Said Attia al; Berta, Márton; Dörr, Cordula; Koproch, Nicolas; Köber, Ralf; Köhn, Daniel; Nolde, Michael; Tilmann Pfeiffer, Wolf; Popp, Steffi; Schwanebeck, Malte; Bauer, Sebastian

    2016-04-01

    Within the framework of the transition to renewable energy sources ("Energiewende"), the German government defined the target of producing 60 % of the final energy consumption from renewable energy sources by the year 2050. However, renewable energies are subject to natural fluctuations. Energy storage can help to buffer the resulting time shifts between production and demand. Subsurface geological structures provide large potential capacities for energy stored in the form of heat or gas on daily to seasonal time scales. In order to explore this potential sustainably, the possible induced effects of energy storage operations have to be quantified for both specified normal operation and events of failure. The ANGUS+ project therefore integrates experimental laboratory studies with numerical approaches to assess subsurface energy storage scenarios and monitoring methods. Subsurface storage options for gas, i.e. hydrogen, synthetic methane and compressed air in salt caverns or porous structures, as well as subsurface heat storage are investigated with respect to site prerequisites, storage dimensions, induced effects, monitoring methods and integration into spatial planning schemes. The conceptual interdisciplinary approach of the ANGUS+ project towards the integration of subsurface energy storage into a sustainable subsurface planning scheme is presented here, and this approach is then demonstrated using the examples of two selected energy storage options: Firstly, the option of seasonal heat storage in a shallow aquifer is presented. Coupled thermal and hydraulic processes induced by periodic heat injection and extraction were simulated in the open-source numerical modelling package OpenGeoSys. Situations of specified normal operation as well as cases of failure in operational storage with leaking heat transfer fluid are considered. Bench-scale experiments provided parameterisations of temperature dependent changes in shallow groundwater hydrogeochemistry. As a

  5. Numerical analysis of vortex core phenomenon during draining from cylinder tank for various initial swirling speeds and various tank and drain port sizes

    Institute of Scientific and Technical Information of China (English)

    SOHN Chang Hyun; SON Jong Hyeon; PARK Il Seouk

    2013-01-01

    A dimple appears on a free surface while rotating a cylinder tank filled with liquid.The dimple starts to concentrically deeper to a drain port at the bottom center of the tank.Over time,the dimple penetrates the drain port,a free surface forms a long and slender string shape in the tank,and a so-called vortexing (air core) phenomenon occurs.The generation of a vortex core depends on the size of the tank and drain port,and on the properties of the liquid in the tank.In this study,the liquid level and the time at which the vortex core is initially generated are numerically investigated using different values of tank diameter,drain port diameter,and initial tank rotational speeds.Instead of a full three-dimensional analysis,a two-dimensional axisymmetric simulation is conducted.The momentum conservation equation in the circumferential direction is additionally solved in the two-dimensional mesh system.Several non-dimensional variables are created:the ratio of the air core generation distance and tank diameter,the diameter ratio of the tank and drain port,the rotational Reynolds number,the rotational Froude number,and the rotational Weber number.Finally,the nondimensional air core generation distance is correlated with the other non-dimensional parameters.

  6. Oxic limestone drains for treatment of dilute, acidic mine drainage

    Science.gov (United States)

    Cravotta, Charles A.

    1998-01-01

    Limestone treatment systems can be effective for remediation of acidic mine drainage (AMD) that contains moderate concentrations of dissolved O2 , Fe3+ , or A13+ (1‐5 mg‐L‐1 ). Samples of water and limestone were collected periodically for 1 year at inflow, outflow, and intermediate points within underground, oxic limestone drains (OLDs) in Pennsylvania to evaluate the transport of dissolved metals and the effect of pH and Fe‐ and Al‐hydrolysis products on the rate of limestone dissolution. The influent was acidic and relatively dilute (pH 1 mg‐L‐1 ) but was near neutral (pH = 6.2‐7.0); Fe and Al decreased to less than 5% of influent concentrations. As pH increased near the inflow, hydrous Fe and Al oxides precipitated in the OLDs. The hydrous oxides, nominally Fe(OH)3 and AI(OH)3, were visible as loosely bound, orange‐yellow coatings on limestone near the inflow. As time elapsed, Fe(OH)3 and AI(OH)3 particles were transported downflow. During the first 6 months of the experiment, Mn 2+ was transported conservatively through the OLDs; however, during the second 6 months, concentrations of Mn in effluent decreased by about 50% relative to influent. The accumulation of hydrous oxides and elevated pH (>5) in the downflow part of the OLDs promoted sorption and coprecipitation of Mn as indicated by its enrichment relative to Fe in hydrous‐oxide particles and coatings on limestone. Despite thick (~1 mm) hydrous‐oxide coatings on limestone near the inflow, CaCO3 dissolution was more rapid near the inflow than at downflow points within the OLD where the limestone was not coated. The rate of limestone dissolution decreased with increased residence time, pH, and concentrations of Ca2+ and HCO3‐ and decreased PCO2. The following overall reaction shows alkalinity as an ultimate product of the iron hydrolysis reaction in an OLD:Fe2+ + 0.25 O2 +CaCO3 + 2.5 H2O --> Fe(OH)3 + 2 Ca2+ + 2 HCO3-where 2 moles of CaCO3 dissolve for each mole of Fe(OH)3 produced

  7. Nitrogen compounds in drain sewage after constructed wetlands.

    Science.gov (United States)

    Paweska, K; Malczewska, B

    2009-01-01

    Constructed wetlands, commonly known as ground filters, are well suited mostly for wastewater treatment in areas with no central sewage system. The basic difficulty with exploitation of constructed wetlands is connected with irregular hydraulic overload of its surface. However, irregular wastewater inflow can be reduced by cyclical irrigation which increases efficiency. The unquestionable advantage of the constructed wetlands is inexpensive construction and exploitation as well as low energy consumption. The constructed wetlands also fit very well in surrounding area. The investigation concerned the analysis of two constructed wetlands which are composed of mechanical separation (septic tank) and a filter bed with subsurface flow. The research has been undertaken in a period from July to December 2008, with regard to concentration distribution of nitrogen compounds in municipal sewage after constructed wetlands. The preliminary investigation on constructed wetland which has been exploited for 10 years showed variable removal efficiency of nitrogen compounds. The continuation of the research can indicate the efficiency of wastewater treatment in summer and winter season.

  8. Phosphorus fate, management, and modeling in artificially drained systems.

    Science.gov (United States)

    Kleinman, Peter J A; Smith, Douglas R; Bolster, Carl H; Easton, Zachary M

    2015-03-01

    Phosphorus (P) losses in agricultural drainage waters, both surface and subsurface, are among the most difficult form of nonpoint source pollution to mitigate. This special collection of papers on P in drainage waters documents the range of field conditions leading to P loss in drainage water, the potential for drainage and nutrient management practices to control drainage losses of P, and the ability of models to represent P loss to drainage systems. A review of P in tile drainage and case studies from North America, Europe, and New Zealand highlight the potential for artificial drainage to exacerbate watershed loads of dissolved and particulate P via rapid, bypass flow and shorter flow path distances. Trade-offs are identified in association with drainage intensification, tillage, cover crops, and manure management. While P in drainage waters tends to be tied to surface sources of P (soil, amendments or vegetation) that are in highest concentration, legacy sources of P may occur at deeper depths or other points along drainage flow paths. Most startling, none of the major fate-and-transport models used to predict management impacts on watershed P losses simulate the dominant processes of P loss to drainage waters. Because P losses to drainage waters can be so difficult to manage and to model, major investment are needed (i) in systems that can provide necessary drainage for agronomic production while detaining peak flows and promoting P retention and (ii) in models that can adequately describe P loss to drainage waters.

  9. Assessing the biodegradability of microparticles disposed down the drain.

    Science.gov (United States)

    McDonough, Kathleen; Itrich, Nina; Casteel, Kenneth; Menzies, Jennifer; Williams, Tom; Krivos, Kady; Price, Jason

    2017-05-01

    Microparticles made from naturally occurring materials or biodegradable plastics such as poly(3-hydroxy butyrate)-co-(3-hydroxy valerate), PHBV, are being evaluated as alternatives to microplastics in personal care product applications but limited data is available on their ultimate biodegradability (mineralization) in down the drain environmental compartments. An OECD 301B Ready Biodegradation Test was used to quantify ultimate biodegradability of microparticles made of PHBV foam, jojoba wax, beeswax, rice bran wax, stearyl stearate, blueberry seeds and walnut shells. PHBV polymer was ready biodegradable reaching 65.4 ± 4.1% evolved CO2 in 5 d and 90.5 ± 3.1% evolved CO2 in 80 d. PHBV foam microparticles (125-500 μm) were mineralized extensively with >66% CO2 evolution in 28 d and >82% CO2 evolution in 80 d. PHBV foam microparticles were mineralized at a similar rate and extent as microparticles made of jojoba wax, beeswax, rice bran wax, and stearyl stearate which reached 84.8  ± 4.8, 84.9  ± 2.2, 82.7  ± 4.7, and 86.4 ± 3.2% CO2 evolution respectively in 80 d. Blueberry seeds and walnut shells mineralized more slowly only reaching 39.3  ± 6.9 and 5.1 ± 2.8% CO2 evolution in 80 d respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Variable carbon losses from recurrent fires in drained tropical peatlands.

    Science.gov (United States)

    Konecny, Kristina; Ballhorn, Uwe; Navratil, Peter; Jubanski, Juilson; Page, Susan E; Tansey, Kevin; Hooijer, Aljosja; Vernimmen, Ronald; Siegert, Florian

    2016-04-01

    Tropical peatland fires play a significant role in the context of global warming through emissions of substantial amounts of greenhouse gases. However, the state of knowledge on carbon loss from these fires is still poorly developed with few studies reporting the associated mass of peat consumed. Furthermore, spatial and temporal variations in burn depth have not been previously quantified. This study presents the first spatially explicit investigation of fire-driven tropical peat loss and its variability. An extensive airborne Light Detection and Ranging data set was used to develop a prefire peat surface modelling methodology, enabling the spatially differentiated quantification of burned area depth over the entire burned area. We observe a strong interdependence between burned area depth, fire frequency and distance to drainage canals. For the first time, we show that relative burned area depth decreases over the first four fire events and is constant thereafter. Based on our results, we revise existing peat and carbon loss estimates for recurrent fires in drained tropical peatlands. We suggest values for the dry mass of peat fuel consumed that are 206 t ha(-1) for initial fires, reducing to 115 t ha(-1) for second, 69 t ha(-1) for third and 23 t ha(-1) for successive fires, which are 58-7% of the current IPCC Tier 1 default value for all fires. In our study area, this results in carbon losses of 114, 64, 38 and 13 t C ha(-1) for first to fourth fires, respectively. Furthermore, we show that with increasing proximity to drainage canals both burned area depth and the probability of recurrent fires increase and present equations explaining burned area depth as a function of distance to drainage canal. This improved knowledge enables a more accurate approach to emissions accounting and will support IPCC Tier 2 reporting of fire emissions.

  11. Effects of pond draining on biodiversity and water quality of farm ponds.

    Science.gov (United States)

    Usio, Nisikawa; Imada, Miho; Nakagawa, Megumi; Akasaka, Munemitsu; Takamura, Noriko

    2013-12-01

    Farm ponds have high conservation value because they contribute significantly to regional biodiversity and ecosystem services. In Japan pond draining is a traditional management method that is widely believed to improve water quality and eradicate invasive fish. In addition, fishing by means of pond draining has significant cultural value for local people, serving as a social event. However, there is a widespread belief that pond draining reduces freshwater biodiversity through the extirpation of aquatic animals, but scientific evaluation of the effectiveness of pond draining is lacking. We conducted a large-scale field study to evaluate the effects of pond draining on invasive animal control, water quality, and aquatic biodiversity relative to different pond-management practices, pond physicochemistry, and surrounding land use. The results of boosted regression-tree models and analyses of similarity showed that pond draining had little effect on invasive fish control, water quality, or aquatic biodiversity. Draining even facilitated the colonization of farm ponds by invasive red swamp crayfish (Procambarus clarkii), which in turn may have detrimental effects on the biodiversity and water quality of farm ponds. Our results highlight the need for reconsidering current pond management and developing management plans with respect to multifunctionality of such ponds. Efectos del Drenado de Estanques sobre la Biodiversidad y la Calidad del Agua en Estanques de Cultivo.

  12. ROUTINE PLACEMENT OF DRAIN IN THYROID SURGERY: IS THERE ANY SCIENTIFIC BASIS?

    Directory of Open Access Journals (Sweden)

    Srikanth

    2016-03-01

    Full Text Available OBJECTIVE To determine the efficacy of routine placement of drain after Thyroid surgery. To compare patients undergoing thyroid surgery without placement of suction drain versus patients undergoing surgery with placement of suction drain. METHODOLOGY This is a Single Surgeon’s Clinical study over a period of 8 years in 2 teaching hospitals; 112 patients undergoing thyroid surgeries for various diagnoses from July 2007 to August 2015 were studied retrospectively. Variables taken into account were duration of hospital stay, postoperative pain and postoperative complications. RESULTS The study included 112 patients undergoing thyroid surgeries being grouped into two groups. The length of the hospital stay was reduced in the no drain group. Mean duration of hospital stay was 5+/-1.78 days in drain group and 2+/-0.72 in no drain group. But no significant difference was found between the groups in the postoperative complications like haematoma and seroma formation. CONCLUSION Drains should be used only in selected cases of Thyroid surgeries. Drainless thyroidectomy causes less discomfort, short hospital stay and does not increase the risk of postoperative complications.

  13. Association of suction drain tips culture with postoperative infection in benign thyroid surgeries

    Directory of Open Access Journals (Sweden)

    Seyed Ziaeddin Rasihashemi

    2017-01-01

    Full Text Available Introduction: Wound infection is a rare complication after thyroid surgery. Because of controversy concerning with routine use of the drain by surgeons and its being considered a foreign body material, we aimed to evaluate the clinical significance and relevance of the drain tip culture and wound infection. Materials and methods: From March 2014 to March 2015, 150 consecutive patients undergoing thyroid surgery were studied. Wound infection was defined as occurring within the first 14 days from surgery. While we were suspicious to wound infection, sterile wound sampling was performed and sent to microbiology laboratory. Results: Postoperative infection developed in 4 patients (2.6% during 2 weeks follow up. The sensitivity and specificity of the drain tip culture were 15% and 82%, respectively with a positive predictive value of 7.6%. Prolonged operative time was an independent risk factor for wound infection. There was no significant relationship between drain tip culture and wound infection. Conclusion: Routine use of the surgical drain can increase the incidence of the wound infection. However, the drain tip culture was not a predictor for wound complications after thyroid surgeries.   Key Words: Thyroid; Wound infection; Drain; Culture;

  14. Can Maxwell's Fish Eye Lens Really Give Perfect Imaging? Part II. The case with drains

    CERN Document Server

    Sun, Fei; He, Sailing

    2010-01-01

    We use both FEM (finite element method) and FDTD (finite difference time domain method) to simulate the field distribution in Maxwell's fish eye lens with one or more passive drains around the image point. We use the same Maxwell's fish eye lens structure as the one used in recent microwave experiment [arXiv:1007.2530]: Maxwell's fish eye lens bounded by PEC (perfect electric conductor) is inserted between two parallel PEC plates (as a waveguide structure). Our simulation results indicate that if one uses an active coaxial cable as the object and set an array of passive drains around the image region, what one obtains is not an image of the object but only multiple spots resembling the array of passive drains. The resolution of Maxwell's fish eye is finite even with such passive drains at the image locations. We also found that the subwavelength spot around the passive drain is due to the local field enhancement of the metal tip of the drain rather than the fish eye medium or the ability of the drain in extra...

  15. Maintenance of agricultural drains alters physical habitat, but not macroinvertebrate assemblages exploited by fishes.

    Science.gov (United States)

    Ward-Campbell, Belinda; Cottenie, Karl; Mandrak, Nicholas; McLaughlin, Robert

    2017-12-01

    The effects of drain maintenance on fish habitat and benthic macroinvertebrate assemblages (fish prey) were investigated for eight agricultural drains in southwestern Ontario, Canada. Our investigation employed a replicated Before-After-Control-Impact (BACI) design where each maintained section of a drain was paired with an unmaintained section downstream and an unmaintained section on a nearby reference drain of similar size and position in the watershed. Seven variables characterizing physical habitat features important to fishes and three variables characterizing the taxonomic abundance, densities, and relative densities of benthic macroinvertebrates were measured before drain maintenance and 10-12 times over 2 years following maintenance. Pulse responses were detected for three habitat variables quantifying vegetative cover: percent vegetation on the bank, percent in-stream vegetation, and percent cover. All three variables returned to pre-maintenance levels within two years of maintenance. No consistent changes were observed in the remaining habitat features or in the richness and densities of benthic invertebrate assemblages following drain maintenance. Our findings suggest that key features of fish habitat, structural properties and food availability, are resistant to drain maintenance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Numerical study of air-core vortex dynamics during liquid draining from cylindrical tanks

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, Sam; Patnaik, B S V [Fluid Mechanics Laboratory, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036 (India); Tharakan, T John, E-mail: bsvp@iitm.ac.in [Flow and Acoustics Group, Liquid Propulsion Systems Centre, Indian Space Research Organization, Trivandrum 695547 (India)

    2014-04-01

    An air core is often formed during liquid draining from cylindrical tanks. An understanding of the mechanism behind its formation and the parameters that accentuate its growth is central to the development of an air-core vortex suppression strategy. In the present study, liquid draining from a cylindrical tank is investigated with the aid of computational fluid dynamics tools. A qualitative and a quantitative comparison of the temporal variation of critical height against available experiments is reported. A systematic investigation has revealed that, drain port shape, size, pressurization, initial rotation, etc, play a vital role in the formation of an air core vortex and its growth. These variables were also observed to influence critical height and total drain time, both of which are of engineering interest. Towards the development of a gas-core suppression strategy, the circular drain port is modified to either a stepped or a bell mouth shape. Although the new drain port shapes have delayed the gas-core from entering the drain-port, they were found to be only marginally advantageous. (paper)

  17. Tree Distributions, Subsurface Characteristics and Nitrogen Cycling

    Science.gov (United States)

    Brunner, L.; Wallace, M. C.; Brush, G.

    2014-12-01

    This study examines the connection between vegetation and geologic, soil and hydrologic subsurface characteristics of a natural deciduous forest in Oregon Ridge Park, located in the Piedmont physiographic province in Maryland, USA. A preliminary study showed the relationship between nitrogen cycling and four different species occurring on a coarse grained schist and a fine grained schist. Mineralization values for Liriodendon tulipifera were positive on the coarser grained substrate and negative on the fine grained substrate. Nitrification values were positive on both substrates. Mineralization and nitrification values were both positive for Quercus prinus on both the coarse and fine substrates. Mineralization values for Acer rubrum were negative on the coarse substrate and positive on the finer substrate, while mineralization for Quercus rubra was negative on the coarse substrate and positive on the fine schist. Nitrification was positive for Q. rubra on the coarse schist and both positive and negative on the fine schist. Resistivity analyses were performed in collaboration with the Wyoming Center for Environmental Hydrology and Geophysics (WyCEHG) along two perpendicular transects at the study site. This analysis provides indirect information on subsurface conductivity, with low resistivity being interpreted as subsurface water or clay. One transect crossed a valley with a first-order stream in the center, while the second transect was taken along the break and slope of the hillslope. All trees were identified and diameter at breast height (DBH) measured in sixty-three randomly located plots along both transects. A principle components analysis of all tree data showed four associations of species. The plots were labelled as to association. The position of the associations along the transects show a relationship between wet, dry and mesic associations with differences in transect resistivity.

  18. Single cell genomics of subsurface microorganisms

    Science.gov (United States)

    Stepanauskas, R.; Onstott, T. C.; Lau, C.; Kieft, T. L.; Woyke, T.; Rinke, C.; Sczyrba, A.; van Heerden, E.

    2012-12-01

    Recent studies have revealed unexpected abundance and diversity of microorganisms in terrestrial and marine subsurface, providing new perspectives over their biogeochemical significance, evolution, and the limits of life. The now commonly used research tools, such as metagenomics and PCR-based gene surveys enabled cultivation-unbiased analysis of genes encoded by natural microbial communities. However, these methods seldom provide direct evidence for how the discovered genes are organized inside genomes and from which organisms do they come from. Here we evaluated the feasibility of an alternative, single cell genomics approach, in the analysis of subsurface microbial community composition, metabolic potential and microevolution at the Sanford Underground Research Facility (SURF), South Dakota, and the Witwaterstrand Basin, South Africa. We successfully recovered genomic DNA from individual microbial cells from multiple locations, including ultra-deep (down to 3,500 m) and low-biomass (down to 10^3 cells mL^-1) fracture water. The obtained single amplified genomes (SAGs) from SURF contained multiple representatives of the candidate divisions OP3, OP11, OD1 and uncharacterized archaea. By sequencing eight of these SAGs, we obtained the first genome content information for these phylum-level lineages that do not contain a single cultured representative. The Witwaterstrand samples were collected from deep fractures, biogeochemical dating of which suggests isolation from tens of thousands to tens of millions of years. Thus, these fractures may be viewed as "underground Galapagos", a natural, long-term experiment of microbial evolution within well-defined temporal and spatial boundaries. We are analyzing multiple SAGs from these environments, which will provide detailed information about adaptations to life in deep subsurface, mutation rates, selective pressures and gene flux within and across microbial populations.

  19. Using Muons to Image the Subsurface.

    Energy Technology Data Exchange (ETDEWEB)

    Bonal, Nedra [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cashion, Avery Ted [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cieslewski, Grzegorz [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dorsey, Daniel J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Foris, Adam [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, Timothy J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Barry L [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Su, Jiann-Cherng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dreesen, Wendi [NSTec, Livermore, CA (United States); Green, J. Andrew [NSTec, Livermore, CA (United States); Schwellenbach, David [NSTec, Livermore, CA (United States)

    2016-11-01

    Muons are subatomic particles that can penetrate the earth 's crust several kilometers and may be useful for subsurface characterization . The absorption rate of muons depends on the density of the materials through which they pass. Muons are more sensitive to density variation than other phenomena, including gravity, making them beneficial for subsurface investigation . Measurements of muon flux rate at differing directions provide density variations of the materials between the muon source (cosmic rays and neutrino interactions) and the detector, much like a CAT scan. Currently, muon tomography can resolve features to the sub-meter scale. This work consists of three parts to address the use of muons for subsurface characterization : 1) assess the use of muon scattering for estimating density differences of common rock types, 2 ) using muon flux to detect a void in rock, 3) measure muon direction by designing a new detector. Results from this project lay the groundwork for future directions in this field. Low-density objects can be detected by muons even when enclosed in high-density material like lead, and even small changes in density (e.g. changes due to fracturing of material) can be detected. Rock density has a linear relationship with muon scattering density per rock volume when this ratio is greater than 0.10 . Limitations on using muon scattering to assess density changes among common rock types have been identified. However, other analysis methods may show improved results for these relatively low density materials. Simulations show that muons can be used to image void space (e.g. tunnels) within rock but experimental results have been ambiguous . Improvements are suggested to improve imaging voids such as tunnels through rocks. Finally, a muon detector has been designed and tested to measure muon direction, which will improve signal-to-noise ratio and help address fundamental questions about the source of upgoing muons .

  20. Hydrogen utilization potential in subsurface sediments

    DEFF Research Database (Denmark)

    Adhikari, Rishi Ram; Glombitza, Clemens; Nickel, Julia

    2016-01-01

    Pacific, and Gulf of Mexico) with different predominant electron-acceptors. Hydrogenases constitute a diverse family of enzymes expressed by microorganisms that utilize molecular hydrogen as a metabolic substrate, product, or intermediate. The assay reveals the potential for utilizing molecular hydrogen...... and allows qualitative detection of microbial activity irrespective of the predominant electron-accepting process. Because the method only requires samples frozen immediately after recovery, the assay can be used for identifying microbial activity in subsurface ecosystems without the need to preserve live...

  1. Transport of subsurface bacteria in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Bales, R.C.; Arnold, R.G.; Gerba, C.P.

    1995-02-01

    The primary objective of this study was to develop tools with which to measure the advective transport of microorganisms through porous media. These tools were then applied to investigate the sorptive properties of representative microorganisms that were selected at random from the DOE`s deep subsurface collection of bacterial, maintained at Florida State University. The transport screening procedure that arose from this study was also used to investigate biological factors that affect the transport/sorption of biocolloids during their movement through porous media with the bulk advective flow.

  2. Parallel heater system for subsurface formations

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Christopher Kelvin (Houston, TX); Karanikas, John Michael (Houston, TX); Nguyen, Scott Vinh (Houston, TX)

    2011-10-25

    A heating system for a subsurface formation is disclosed. The system includes a plurality of substantially horizontally oriented or inclined heater sections located in a hydrocarbon containing layer in the formation. At least a portion of two of the heater sections are substantially parallel to each other. The ends of at least two of the heater sections in the layer are electrically coupled to a substantially horizontal, or inclined, electrical conductor oriented substantially perpendicular to the ends of the at least two heater sections.

  3. GEOSSAV: a simulation tool for subsurface applications

    Science.gov (United States)

    Regli, Christian; Rosenthaler, Lukas; Huggenberger, Peter

    2004-04-01

    Geostatistical Environment fOr Subsurface Simulation And Visualization (GEOSSAV) is a tool for the integration of hard and soft data into stochastic simulation and visualization of distributions of geological structures and hydrogeological properties in the subsurface. GEOSSAV, as an interface to selected geostatistical modules (bicalib, gamv, vargplt, and sisim) from the Geostatistical Software LIBrary, GSLIB (GSLIB: Geostatistical Software Library and User's Guide, 2nd Edition, Oxford University Press, Oxford, 1998, 369pp), can be used for data analysis, variogram computation of regularly or irregularly spaced data, and sequential indicator simulation of subsurface heterogeneities. Sequential indicator simulation, based on various kriging techniques (simple, ordinary, and Bayesian), is suitable for the simulation of continuous variables such as hydraulic conductivity of an aquifer or chemical concentrations at a contaminated site, and categorical variables which indicate the presence or absence of a particular lithofacies. The software integration platform and development environment of GEOSSAV is Tool command language (Tcl) with its graphical user interface, Toolkit (Tk), and a number of Tcl/Tk extensions. The standard Open Graphics Library application programming interface is used for rendering three-dimensional (3D) data distributions and for slicing perpendicular to the main coordinate axis. Export options for finite-difference groundwater models allow either files that characterize single model layers (which are saved in ASCII matrix format) or files that characterize the complete 3D flow model setup for MODFLOW-based groundwater simulation systems (which are saved in block-centered flow package files (User's documentation for MODFLOW-96, an update to the US Geological Survey modular finite-difference ground-water flow model, Geological Survey Open-File Report 96-485, Reston, VA, 1996, 56pp)). GEOSSAV can be used whenever stochastic solutions are preferred

  4. Optimization Study on the Space and Depth of Subsurface Drainage Tubes for Greenhouse Salty Soils: A 3-Year Field Experiment in South of China

    Directory of Open Access Journals (Sweden)

    Yaming Zhai

    2015-04-01

    Full Text Available A well-designed subsurface drainage system with reasonable drain space and depth contributes to large ratio of desalination and high crop yield. In order to find out the optimal space and depth of subsurface drainage tubes for tomato cultivation in greenhouse salty soils in south of China, drainage treatments with different buried methods were designed, the tomato quality, yield, Irrigation Water Use Efficiency (IWUE and surface soil electricity conductivity in the treatments were observed during 2010 to 2012 growth seasons and the principle component analysis model and projection pursuit model were used to select the treatment with best comprehensive effects. Results showed that: (1 The tomato yield was increased by 14.21 to 50.29% during the growth seasons; (2 Surface soil EC decreased significantly, although in the process of experiments, surface soil EC of some treatments showed a temporary rise; (3 Under the same buried depth, the closer arrangement of subsurface drainage tubes appeared to be more effective for the yield gaining and topsoil desalination; (4 T7 was proved to be the optimal treatment according to the calculations of projection pursuit model, the comprehensive effects of which were the best, mainly embodying in improving the tomato quality, increasing the yield and IWUE and reducing salinity in topsoil. In this study, 0.8m depth combining with 4m space was selected as the optimized layout of subsurface drainage tubes for the tomato cultivation in greenhouse salty soils of south China.

  5. Laparoscopic retrieval of retained intraperitoneal drains in the immediate postoperative period.

    Science.gov (United States)

    Liao, Chih-Szu; Shieh, Min-Chieh

    2011-03-01

    Retained intraperitoneal Penrose drain secondary to fracture and adhesions in the immediate postoperative period happens on occasion. Most are unreported because of the fear of medico-legal problems. Previous management of such iatrogenic complications requires repeated laparotomy or wound exploration. Two patients who underwent appendectomy for ruptured appendicitis, with retained intraabdominal drains in the immediate postoperative period, managed eventually by laparoscopic retrieval are presented. Both patients had right low transverse incisions and intraabdominal drains exiting through a separate right lateral abdomen skin opening. Patient 1 had a stuck intraabdominal drain unable to be removed up to the second week. Patient 2's drain retracted intraperitoneally after its mobilization on the sixth post-op day. Both were managed by laparoscopy under general anesthesia with successful removal of both drains. Patient 1 underwent the procedure 3 weeks after the appendectomy, whereas Patient 2 had the procedure on her sixth post-op day. An additional new 1-cm wound in the periumbilical area was done for the introduction of pneumoperitoneum and 10-mm port for which the laparoscope was inserted. The second 5-mm port was inserted through the old drain site wound with peritoneal entry opening separate from the previous peritoneal defect viewed from laparoscope. Both drains had some marked adhesions from ingrowth of omentum to the side holes of the drain, causing it to get stuck in the pelvic cavity. This laparoscopic approach in the management of such iatrogenic complication, besides being cosmetically acceptable, contributes to early recovery and discharge of the patient, and helps to lessen the friction in the recently worsening doctor-patient relationship in Taiwan. Copyright © 2011. Published by Elsevier B.V.

  6. Use of multiple drains after mastectomy is associated with more patient discomfort and longer postoperative stay.

    Science.gov (United States)

    Saratzis, Athanasios; Soumian, Soni; Willetts, Rachel; Rastall, Sarah; Stonelake, Paul S

    2009-11-01

    Seromas constitute a common complication following surgery for breast cancer, and closed drainage is used routinely to reduce its incidence. The aim of this study was to evaluate the influence of number of drains on patient discomfort, seroma formation, and hospital stay during the immediate postoperative period after mastectomy for breast cancer. Based on a retrospective review of our clinical database, 110 consecutive patients from January 2004 through January 2006 who had undergone a mastectomy and axillary clearance for breast cancer were sent a simple postal questionnaire for collection of data. A total of 70 patients responded (all women; mean age, 69.4 +/- 11.4 years). Twenty-seven patients (38.57%) had 3 drains implanted unilaterally, 24 (34.28%) had 2, and 19 (27.14%) had 1 drain. They were divided into 2 groups: the first group with 1 drain (19 patients) and the other with 2 or 3 drains (51 patients). Median postoperative hospital stay was 2 days (range, 1-8 days); patients with 1 drain had a significantly shorter postoperative hospital stay (median, 2 days [range, 1-4 days] vs. 2 days [range, 1-8 days]; Mann-Whitney U test, P = .02). A total of 15 patients (21.43%) complained of a seroma. There was no difference in seroma rates between groups. Patients who had a single drain implanted had a significantly lower rate of discomfort (median, 2 [range, 1-5] vs. 3 [range, 1-7]; Mann-Whitney U test; P = .04). The number of drains used after a mastectomy for breast cancer did not significantly affect the rate or amount of seromas in this study, but the use of a single drain after mastectomy was significantly associated with less discomfort and shorter postoperative hospital stay.

  7. Multicenter, Prospective Trial of Selective Drain Management for Pancreatoduodenectomy Using Risk Stratification.

    Science.gov (United States)

    McMillan, Matthew T; Malleo, Giuseppe; Bassi, Claudio; Allegrini, Valentina; Casetti, Luca; Drebin, Jeffrey A; Esposito, Alessandro; Landoni, Luca; Lee, Major K; Pulvirenti, Alessandra; Roses, Robert E; Salvia, Roberto; Vollmer, Charles M

    2017-06-01

    This multicenter study sought to prospectively evaluate a drain management protocol for pancreatoduodenectomy (PD). Recent evidence suggests value for both selective drain placement and early drain removal for PD. Both strategies have been associated with reduced rates of clinically relevant pancreatic fistula (CR-POPF)-the most common and morbid complication after PD. The protocol was applied to 260 consecutive PDs performed at two institutions over 17 months. Risk for ISGPF CR-POPF was determined intraoperatively using the Fistula Risk Score (FRS); drains were omitted in negligible/low risk patients and drain fluid amylase (DFA) was measured on postoperative day 1 (POD 1) for moderate/high risk patients. Drains were removed early (POD 3) in patients with POD 1 DFA ≤5,000 U/L, whereas patients with POD 1 DFA >5,000 U/L were managed by clinical discretion. Outcomes were compared with a historical cohort (N = 557; 2011-2014). Fistula risk did not differ between cohorts (median FRS: 4 vs 4; P = 0.933). No CR-POPFs developed in the 70 (26.9%) negligible/low risk patients. Overall CR-POPF rates were significantly lower after protocol implementation (11.2 vs 20.6%, P = 0.001). The protocol cohort also demonstrated lower rates of severe complication, any complication, reoperation, and percutaneous drainage (all P < 0.05). These patients also experienced reduced hospital stay (median: 8 days vs 9 days, P = 0.001). There were no differences between cohorts in the frequency of bile or chyle leaks. Drains can be safely omitted for one-quarter of PDs. Drain amylase analysis identifies which moderate/high risk patients benefit from early drain removal. This data-driven, risk-stratified approach significantly decreases the occurrence of clinically relevant pancreatic fistula.

  8. ESTIMATION OF NEAR SUBSURFACE COAL FIRE GAS EMISSIONS BASED ON GEOPHYSICAL INVESTIGATIONS

    Science.gov (United States)

    Chen-Brauchler, D.; Meyer, U.; Schlömer, S.; Kus, J.; Gundelach, V.; Wuttke, M.; Fischer, C.; Rueter, H.

    2009-12-01

    Spontaneous and industrially caused subsurface coal fires are worldwide disasters that destroy coal resources, cause air pollution and emit a large amount of green house gases. Especially in developing countries, such as China, India and Malaysia, this problem has intensified over the last 15 years. In China alone, 10 to 20 million tons of coal are believed to be lost in uncontrolled coal fires. The cooperation of developing countries and industrialized countries is needed to enforce internationally concerted approaches and political attention towards the problem. The Clean Development Mechanism (CDM) under the framework of the Kyoto Protocol may provide an international stage for financial investment needed to fight the disastrous situation. A Sino-German research project for coal fire exploration, monitoring and extinction applied several geophysical approaches in order to estimate the annual baseline especially of CO2 emissions from near subsurface coal fires. As a result of this project, we present verifiable methodologies that may be used in the CDM framework to estimate the amount of CO2 emissions from near subsurface coal fires. We developed three possibilities to approach the estimation based on (1) thermal energy release, (2) geological and geometrical determinations as well as (3) direct gas measurement. The studies involve the investigation of the physical property changes of the coal seam and bedrock during different burning stages of a underground coal fire. Various geophysical monitoring methods were applied from near surface to determine the coal volume, fire propagation, temperature anomalies, etc.

  9. Monitoring perturbations of earth surface process after the 2015 Gorkha earthquake in Nepal

    Science.gov (United States)

    Andermann, Christoff; Hovius, Niels; Cook, Kristen; Turowski, Jens; Illien, Luc; Sense-Schönfelder, Christoph; Rössner, Sigrid; Parajuli, Binod; Bajracharya, Krishna; Adi=hikari, Basanta

    2017-04-01

    Large earthquakes can substantially perturb a wide range of Earth surface processes. The strong shaking caused by large earthquakes weakens rockmass, causes extensive landsliding, and alter the hydrological conductivity of the near surface. This leads to subsequent responses that include sediment loading of rivers and changes in subsurface water flow paths. The long term perturbation often last several years and even might outstrip the immediate co-seismic impact in their magnitude. Over time the system restores to background conditions, and the recovery process and transient timescales of different systems provide particularly valuable insights for predicting natural risks associated with the aftermath of earthquakes. Here we will present results of the first 2 years of monitoring surface processes in the epicentral area of the 2015 Gorkha earthquake. The observations started immediately after the event and are planned to continue for a total of four monsoon seasons, in order to capture the full recovery process of the system until pre-earthquake conditions have been reached. We have installed a comprehensive network of twelve river sampling stations for daily water and sediment sampling, covering all major rivers draining the earthquake-affected areas. Nested within this regional network, we have installed an array of 16 seismometers and 6 weather stations in the upper Bhotekoshi catchment. The field measurements are accompanied by repeated mapping of landslide activities using satellite imagery. Our results show pronounced changes of the hydrological regime, underpinned by a marked change of seismic noise velocities, both indications of significant changes of the subsurface rock properties. Alongside, our landslide mapping documents about ten times greater landslide activity during the 2015 monsoon season than typically expected for this monsoon season. Very preliminary estimates for the exceptionally strong 2016 monsoon season are also elevated. This

  10. Analysing and modelling battery drain of 3G terminals due to port scan attacks

    OpenAIRE

    Pascual Trigos, Mar

    2010-01-01

    In this thesis there is detected a threat in 3G mobile phone, specifically in the eventual draining terminal's battery due to undesired data traffic. The objectives of the thesis are to analyse the battery drain of 3G mobile phones because of uplink and downlink traffic and to model the battery drain. First of all, there is described how we can make a mobile phone to increase its consumption, and therefore to shorten its battery life time. Concretely, we focus in data traffic. This traffic ca...

  11. 4D DATA FUSION TECHNIQUE IN URBAN WATERLOG-DRAINING DECISION SUPPORT SYSTEM

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper studies urban waterlog-draining decision support system based on the 4D data fusion technique.4D data includes DEM,DOQ,DLG and DRG.It supplies entire databases for waterlog forecast and analysis together with non-spatial fundamental database.Data composition and reasoning are two key steps of 4D data fusion.Finally,this paper gives a real case: Ezhou Waterlog-Draining Decision Support System (EWDSS) with two application models,i.e.,DEM application model,water generating and draining model.

  12. Reduction method of gate-to-drain capacitance by oxide spacer formation in tunnel field-effect transistor with elevated drain

    Science.gov (United States)

    Kwon, Dae Woong; Kim, Jang Hyun; Park, Euyhwan; Lee, Junil; Park, Taehyung; Lee, Ryoongbin; Kim, Sihyun; Park, Byung-Gook

    2016-06-01

    A novel fabrication method is proposed to reduce large gate-to-drain capacitance (C GD) and to improve AC switching characteristics in tunnel field-effect transistor (TFETs) with elevated drain (TFETED). In the proposed method, gate oxide at drain region (GDOX) is selectively formed through oxide deposition and spacer-etch process. Furthermore, the thicknesses of the GDOX are simply controlled by the amount of the oxide deposition and etch. Mixed-mode device and circuit technology computer aided design (TCAD) simulations are performed to verify the effects of the GDOX thickness on DC and AC switching characteristics of a TFETED inverter. As a result, it is found that AC switching characteristics such as output voltage pre-shoot and falling/rising delay are improved with nearly unchanged DC characteristics by thicker GDOX. This improvement is explained successfully by reduced C GD and positive shifted gate voltage (V G) versus C GD curves with the thicker GDOX.

  13. The subsurface origin of microbial life on the Earth.

    Science.gov (United States)

    Trevors, J T

    2002-10-01

    Life on Earth can be divided into life on the surface made possible by photosynthesis and subsurface life with chemical energy as the driving force. An understanding of both environments is central to our understanding of the origin of life, the search for novel microbial species in the subsurface and for extraterrestrial life or life signatures. In this manuscript, the surface and subsurface worlds are examined with a focus on the origin or assembly of bacterial life.

  14. The subsurface of Pluto from submillimetre observations

    Science.gov (United States)

    Greaves, J. S.; Whitelaw, A. C. M.; Bendo, G. J.

    2015-04-01

    Surface areas on Pluto change in brightness and colour, at optical to infrared wavelengths, over time-scales as short as years. The subsurface contains a reservoir of frozen volatiles, but little is known about it because Pluto is out of reach for cm-radar. Here we present a 0.85 mm wavelength light curve of the Pluto system, from archival data taken in 1997 August with the SCUBA (Submillimetre Common-User Bolometer Array) camera on the James Clerk Maxwell Telescope (JCMT). This wavelength probes for the first time to just below the skin depth of thermal changes over Pluto's day. The light curve differs significantly from counterparts in the mid- to far-infrared, in a longitude range that is optically dark on Pluto's surface. An estimate from Herschel of the 0.5 mm flux in 2012 is comparable to the mean 0.45 mm flux from SCUBA in 1997, suggesting that layers centimetres below the surface have not undergone any gross temperature change. The longitudes that are relatively submillimetre-faint could have a different emissivity, perhaps with a subsurface layer richer in nitrogen or methane ices than at the surface. The Radio Science Experiment (REX) instrument on New Horizons may be able to constrain physical properties deeper down, as it looks back on Pluto's nightside after the 2015 July flyby.

  15. Geophysical data fusion for subsurface imaging

    Science.gov (United States)

    Hoekstra, P.; Vandergraft, J.; Blohm, M.; Porter, D.

    1993-08-01

    A geophysical data fusion methodology is under development to combine data from complementary geophysical sensors and incorporate geophysical understanding to obtain three dimensional images of the subsurface. The research reported here is the first phase of a three phase project. The project focuses on the characterization of thin clay lenses (aquitards) in a highly stratified sand and clay coastal geology to depths of up to 300 feet. The sensor suite used in this work includes time-domain electromagnetic induction (TDEM) and near surface seismic techniques. During this first phase of the project, enhancements to the acquisition and processing of TDEM data were studied, by use of simulated data, to assess improvements for the detection of thin clay layers. Secondly, studies were made of the use of compressional wave and shear wave seismic reflection data by using state-of-the-art high frequency vibrator technology. Finally, a newly developed processing technique, called 'data fusion' was implemented to process the geophysical data, and to incorporate a mathematical model of the subsurface strata. Examples are given of the results when applied to real seismic data collected at Hanford, WA, and for simulated data based on the geology of the Savannah River Site.

  16. Soil Enzyme Activities with Greenhouse Subsurface Irrigation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu-Long; WANG Yao-Sheng

    2006-01-01

    Various environmental conditions determine soil enzyme activities, which are important indicators for changes of soil microbial activity, soil fertility, and land quality. The effect of subsurface irrigation scheduling on activities of three soil enzymes (phosphatase, urease, and catalase) was studied at five depths (0-10, 10-20, 20-30, 30-40, and 40-60 cm) of a tomato greenhouse soil. Irrigation was scheduled when soil water condition reached the maximum allowable depletion(MAD) designed for different treatments (-10, -16, -25, -40, and -63 kPa). Results showed that soil enzyme activities had significant responses to the irrigation scheduling during the period of subsurface irrigation. The neutral phosphatase activity and the catalase activity were found to generally increase with more frequent irrigation (MAD of -10 and -16kPa). This suggested that a higher level of water content favored an increase in activity of these two enzymes. In contrast,the urease activity decreased under irrigation, with less effect for MAD of -40 and -63 kPa. This implied that relatively wet soil conditions were conducive to retention of urea N, but relatively dry soil conditions could result in increasing loss of urea N. Further, this study revealed that soil enzyme activities could be alternative natural bio-sensors for the effect of irrigation on soil biochemical reactions and could help optimize irrigation management of greenhouse crop production.

  17. Atmospheric energy for subsurface life on Mars?

    Science.gov (United States)

    Weiss, B. P.; Yung, Y. L.; Nealson, K. H.

    2000-01-01

    The location and density of biologically useful energy sources on Mars will limit the biomass, spatial distribution, and organism size of any biota. Subsurface Martian organisms could be supplied with a large energy flux from the oxidation of photochemically produced atmospheric H(2) and CO diffusing into the regolith. However, surface abundance measurements of these gases demonstrate that no more than a few percent of this available flux is actually being consumed, suggesting that biological activity driven by atmospheric H(2) and CO is limited in the top few hundred meters of the subsurface. This is significant because the available but unused energy is extremely large: for organisms at 30-m depth, it is 2,000 times previous estimates of hydrothermal and chemical weathering energy and far exceeds the energy derivable from other atmospheric gases. This also implies that the apparent scarcity of life on Mars is not attributable to lack of energy. Instead, the availability of liquid water may be a more important factor limiting biological activity because the photochemical energy flux can only penetrate to 100- to 1,000-m depth, where most H(2)O is probably frozen. Because both atmospheric and Viking lander soil data provide little evidence for biological activity, the detection of short-lived trace gases will probably be a better indicator of any extant Martian life.

  18. Microbial communities in the deep subsurface

    Science.gov (United States)

    Krumholz, Lee R.

    The diversity of microbial populations and microbial communities within the earth's subsurface is summarized in this review. Scientists are currently exploring the subsurface and addressing questions of microbial diversity, the interactions among microorganisms, and mechanisms for maintenance of subsurface microbial communities. Heterotrophic anaerobic microbial communities exist in relatively permeable sandstone or sandy sediments, located adjacent to organic-rich deposits. These microorganisms appear to be maintained by the consumption of organic compounds derived from adjacent deposits. Sources of organic material serving as electron donors include lignite-rich Eocene sediments beneath the Texas coastal plain, organic-rich Cretaceous shales from the southwestern US, as well as Cretaceous clays containing organic materials and fermentative bacteria from the Atlantic Coastal Plain. Additionally, highly diverse microbial communities occur in regions where a source of organic matter is not apparent but where igneous rock is present. Examples include the basalt-rich subsurface of the Columbia River valley and the granitic subsurface regions of Sweden and Canada. These subsurface microbial communities appear to be maintained by the action of lithotrophic bacteria growing on H2 that is chemically generated within the subsurface. Other deep-dwelling microbial communities exist within the deep sediments of oceans. These systems often rely on anaerobic metabolism and sulfate reduction. Microbial colonization extends to the depths below which high temperatures limit the ability of microbes to survive. Energy sources for the organisms living in the oceanic subsurface may originate as oceanic sedimentary deposits. In this review, each of these microbial communities is discussed in detail with specific reference to their energy sources, their observed growth patterns, and their diverse composition. This information is critical to develop further understanding of subsurface

  19. The cost of health professionals' brain drain in Kenya

    Directory of Open Access Journals (Sweden)

    Gbary Akpa

    2006-07-01

    Full Text Available Abstract Background Past attempts to estimate the cost of migration were limited to education costs only and did not include the lost returns from investment. The objectives of this study were: (i to estimate the financial cost of emigration of Kenyan doctors to the United Kingdom (UK and the United States of America (USA; (ii to estimate the financial cost of emigration of nurses to seven OECD countries (Canada, Denmark, Finland, Ireland, Portugal, UK, USA; and (iii to describe other losses from brain drain. Methods The costs of primary, secondary, medical and nursing schools were estimated in 2005. The cost information used in this study was obtained from one non-profit primary and secondary school and one public university in Kenya. The cost estimates represent unsubsidized cost. The loss incurred by Kenya through emigration was obtained by compounding the cost of educating a medical doctor and a nurse over the period between the average age of emigration (30 years and the age of retirement (62 years in recipient countries. Results The total cost of educating a single medical doctor from primary school to university is US$ 65,997; and for every doctor who emigrates, a country loses about US$ 517,931 worth of returns from investment. The total cost of educating one nurse from primary school to college of health sciences is US$ 43,180; and for every nurse that emigrates, a country loses about US$ 338,868 worth of returns from investment. Conclusion Developed countries continue to deprive Kenya of millions of dollars worth of investments embodied in her human resources for health. If the current trend of poaching of scarce human resources for health (and other professionals from Kenya is not curtailed, the chances of achieving the Millennium Development Goals would remain bleak. Such continued plunder of investments embodied in human resources contributes to further underdevelopment of Kenya and to keeping a majority of her people in the vicious

  20. Water and Solute Transport in the Shallow Subsurface of a Natural Levee

    Science.gov (United States)

    Newman, A.; Keim, R.

    2008-12-01

    In riverine wetlands, river channels are separated from backswamps by natural levees that form adjacent to the channel by sediment deposition during floods. The conventional conceptual framework is that backswamp water is impounded and disconnected from surface flow; however, layered sediments, shrink-swell clays, roots and decayed organic matter, and animal burrows likely form preferential pathways for subsurface flow and may substantially affect water and solute exchange between wetlands and river channels. To test the hypothesis that preferential flow is an important pathway of subsurface water movement through natural levees, we measured hydraulic gradients and solute tracers in a 5 x 5 m grid of 19 shallow (2m) monitoring wells within a large representative elementary volume (300 m3) of natural levee in the Atchafalaya Basin, Louisiana. In addition to measuring transient responses to precipitation, we constructed a small reservoir on the backswamp side of the levee to simulate a seasonal hydraulic gradient from the swamp to the adjacent river channel. Results indicate rapid response of water levels in all monitoring wells to the imposed hydraulic gradient as well as rain events, which included two tropical cyclones. In contrast, tracer response was highly variable, both spatially and across events, indicating a complex relationship between subsurface flow processes and water chemistry. Groundwater chemistry indicated spatially variable flowpaths. In some wells, hydraulic response coincided with a chemical shift toward low-conductivity surface water; however, other wells showed similar hydraulic responses but no change in tracer concentrations or even a shift toward higher-conductivity water that was presumably stored in the soil matrix. This spatial variation in tracer response indicates multiple mechanisms of hydraulic response, each of which has important implications for biogeochemical interactions between backswamps and channels in the shallow subsurface

  1. Carbon balance of rewetted and drained peat soils used for biomass production: A mesocosm study

    DEFF Research Database (Denmark)

    Karki, Sandhya; Elsgaard, Lars; Kandel, Tanka

    2016-01-01

    Rewetting of drained peatlands has been recommended to reduce CO2 emissions and to restore the carbon sink function of peatlands. Recently, the combination of rewetting and biomass production (paludiculture) has gained interest as a possible land use option in peatlands for obtaining such benefits...... of lower CO2 emissions without losing agricultural land. The present study quantified the carbon balance (CO2, CH4 and harvested biomass C) of rewetted and drained peat soils under intensively managed reed canary grass (RCG) cultivation. Mesocosms were maintained at five different ground water levels (GWL...... closed chamber methods. The average dry biomass yield was significantly lower from rewetted peat soils (12 Mg ha−1) than drained peat soils (15 Mg ha−1). Also, CO2 fluxes of gross primary production (GPP) and ecosystem respiration (ER) from rewetted peat soils were significantly lower than drained peat...

  2. Systematic review and meta-analysis of wound drains after thyroid surgery.

    LENUS (Irish Health Repository)

    Woods, R S R

    2014-04-01

    Drainage after routine thyroid and parathyroid surgery remains controversial. However, there is increasing evidence from a number of randomized clinical trials (RCTs) suggesting no benefit from the use of drains.

  3. Numerical simulation on electrolyte flow field in 156 kA drained aluminum reduction cells

    Institute of Scientific and Technical Information of China (English)

    ZHOU Nai-jun; XIA xiao-xia; WANG Fu-qiang

    2007-01-01

    Based on the commercial CFD software CFX-4.3, two-phase flow of electrolyte in 156 kA drained aluminum reduction cells with a new structure was numerically simulated by multi-fluid model and k-εturbulence model. The results show that the electrolyte flow in the drained cells is more even than in the conventional cells. Corresponding to center point feeding,the electrolyte flow in the drained cells is more advantageous to the release of anode gas, the dissolution and diflusion of alumina, and the gradient reduction of the electrolyte density and temperature. The average velocity of the electrolyte is 8.3 cm/s, and the maximum velocity is 59.5 cm/s.The average and maximum velocities of the gas are 23.2 cm/s and 61.1 cm/s, respectively. The cathode drained slope and anode cathode distance have certain effects on the electrolyte flow.

  4. Bryophytes from the area drained by the Peel and Mackenzie Rivers, Yukon and Northwest Territories, Canada

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report is on bryophytes from the area drained by the Peel and Mackenzie rivers in the Yukon territory of Canada. The distribution and general ecology of 263...

  5. Drain-Site Hernia Containing the Vermiform Appendix: Report of a Case

    Directory of Open Access Journals (Sweden)

    Markus Gass

    2013-01-01

    Full Text Available The herniated vermiform appendix has been described as content of every hernia orifice in the right lower quadrant. While the femoral and inguinal herniated vermiform appendix is frequent enough to result in an own designation, port-site or even drain-site hernias are less frequently described. We report the case of a 62-year-old woman who presented with right lower quadrant pain seven years after Roux-en-Y Cystojejunostomy for a pancreatic cyst. CT scan showed herniation of the vermiform appendix through a former drain-site. A diagnostic laparoscopy with appendectomy and direct closure of the abdominal wall defect combined with mesh reinforcement was performed. Despite the decreasing use of intraperitoneal drains over the recent years, a multitude of patients had intraperitoneal drainage in former times. These patients face nowadays the risk of drain-site hernias with sometimes even unexpected structures inside.

  6. Effluent Salinity of Pipe Drains and Tube-Wells. A case study from the Indus plain

    NARCIS (Netherlands)

    Kelleners, T.J.

    2001-01-01

    Keywords: anisotropy, aquifer, desalinization, effluent salinity, groundwater, irrigation, salt-water upconing, soil salinity, stream-function, subsurface drainageIrrigated agriculture in arid and semi-arid zones often suffers from waterlogging and salinity problems. Sub-surface drainage systems can

  7. Planetary heat flow from shallow subsurface measurements: Mars

    Science.gov (United States)

    Cornwall, Marc; Hagermann, Axel

    2016-10-01

    Planetary heat flow probes measure heat flow (depth-resolved temperature and thermal conductivity) to provide insight into the internal state of a planet. The probes have been utilized extensively on Earth, twice on the Moon, and once on the Surface of comet 67P-CG. Mars is an important target for heat flow measurement as heat flow is a critical parameter in Martian thermal history models. Earlier studies indicate that Martian planetary heat flow can be accessed at 5 m below the surface in dry regolith monitored over at least one Martian year. A one Martian year monitoring period is necessary because, in the shallow subsurface, heat flow from the interior is superposed with time varying heat flow contributions, primarily due to insolation. Given that a heat flow probe may not achieve its target depth or monitoring period, this study investigates how the depth (2-5 m), duration (0-1 Martian year) and quality of measurements influence the accuracy of planetary heat flow. An inverse model is used to show that, in the preceding scenarios, the accuracy of planetary heat flow directly estimated from depth-dependent thermal conductivity with 10-20% precision errors, temperatures with 50-100 mK precision errors and modelling uncertainties up to 500 mK, can, on average, be improved by a factor of 27 with optimization to 13%. Accuracies increase with sensor penetration depth and regolith monitoring period. Heat flow optimized from instantaneous measurements or those with the shortest regolith monitoring periods have increased accuracy where the frequency and amplitude of the temperature variation are lowest. The inverse model is based on the Function Specification Inversion method. This study demonstrates that a solution subspace can be identified within a space of uncertainties modelled for the temperature measurements and planetary heat flow: the subspace is defined by a constant log-ratio of their respective standard deviations. Optimized heat flow estimates display

  8. Microbial activity and dissolved organic carbon production in drained and rewetted blanket peat

    Science.gov (United States)

    Wallage, Z. E.; Holden, J.; Jones, T.; McDonald, A. T.

    2009-04-01

    Heightened levels of degradation in response to environmental change have resulted in an increased loss of dissolved organic carbon (DOC) in the drainage waters of many peatland catchments across Europe and North America. One significant threat to peatland sustainability has been the installation of artificial drainage ditches, and although recent restoration schemes have pursued drain blocking as a possible strategy for reducing degradation and fluvial carbon losses, little is known about how such processes influence the intimate biological systems operating within these soils. This paper investigates how disturbance, in the form of drainage and drain blocking, influences the rate of microbial activity within a peat soil, and the subsequent impact this has on DOC production potential. Peat samples were extracted from three treatment sites (intact peat, drained peat and drain-blocked peat) in an upland blanket peat catchment in the UK. Microbial activity was measured via laboratory experimentation that incorporated the use of an INT-Formazan dehydrogenase enzyme assay to assess the level of electron transport system (ETS) activity occurring within each treatment. Drainage significantly lowered the height of the water table relative to the intact peat, whilst drain blocking successfully rewetted the peat, having raised the height of the water table relative to the drained site. Mean microbial activity rates at the drained site were found to be 33 % greater than the undisturbed intact peat and almost double that of the restored, drain-blocked site. These results correspond well with previously published data observing significantly greater DOC concentrations in the pore waters of the drained site and significantly lower concentrations at the blocked site, relative to the intact peat. Data from the drain-blocked treatment also provides evidence contrary to the commonly quoted hypothesis that an enzyme-latch reaction may be sustained in drained peat, even once it has

  9. Pleurotomy with subxyphoid pleural drain affords similar effects to pleural integrity in pulmonary function after off-pump coronary artery bypass graft

    Directory of Open Access Journals (Sweden)

    Guizilini Solange

    2012-01-01

    Full Text Available Abstract Background Exacerbation of pulmonary dysfunction has been reported in patients receiving a pleural drain inserted through the intercostal space in comparison to patients with an intact pleura undergoing coronary artery bypass grafting (CABG. Evidence suggests that shifting the site of pleural drain insertion to the subxyphoid position minimizes chest wall trauma and preserves respiratory function in the early postoperative period. The aim of this study was to compare the pulmonary function parameters, clinical outcomes, and pain score between patients undergoing pleurotomy with pleural drain placed in the subxyphoid position and patients with intact pleural cavity after off-pump CABG (OPCAB using left internal thoracic artery (LITA. Methods Seventy-one patients were allocated into two groups: I (n = 38 open left pleural cavity and pleural drain inserted in the subxyphoid position; II (n = 33 intact pleural cavity. Pulmonary function tests and clinical parameters were recorded preoperatively and on postoperative days (POD 1, 3 and 5. Arterial blood gas analysis and shunt fraction were evaluated preoperatively and in POD1. Pain score was assessed on POD1. To monitor pleural effusion and atelectasis chest radiography was performed routinely 1 day before operation and until POD5. Results In both groups a significant impairment was found in lung function parameters until on POD5. However, no significant difference in forced vital capacity and forced expiratory volume in 1 second were seen between groups. A significant decrease in partial pressure of arterial oxygen and an increase in shunt fraction values were observed on POD1 in both groups, but no statistical difference was found when the groups were compared. Pleural effusion and atelectasis until on POD5 were similar in both groups. There were no statistical differences in pain score, duration of mechanical ventilation and postoperative hospital stay between groups. Conclusion Subxyphoid

  10. Subsurface data visualization in Virtual Reality

    Science.gov (United States)

    Krijnen, Robbert; Smelik, Ruben; Appleton, Rick; van Maanen, Peter-Paul

    2017-04-01

    Due to their increasing complexity and size, visualization of geological data is becoming more and more important. It enables detailed examining and reviewing of large volumes of geological data and it is often used as a communication tool for reporting and education to demonstrate the importance of the geology to policy makers. In the Netherlands two types of nation-wide geological models are available: 1) Layer-based models in which the subsurface is represented by a series of tops and bases of geological or hydrogeological units, and 2) Voxel models in which the subsurface is subdivided in a regular grid of voxels that can contain different properties per voxel. The Geological Survey of the Netherlands (GSN) provides an interactive web portal that delivers maps and vertical cross-sections of such layer-based and voxel models. From this portal you can download a 3D subsurface viewer that can visualize the voxel model data of an area of 20 × 25 km with 100 × 100 × 5 meter voxel resolution on a desktop computer. Virtual Reality (VR) technology enables us to enhance the visualization of this volumetric data in a more natural way as compared to a standard desktop, keyboard mouse setup. The use of VR for data visualization is not new but recent developments has made expensive hardware and complex setups unnecessary. The availability of consumer of-the-shelf VR hardware enabled us to create an new intuitive and low visualization tool. A VR viewer has been implemented using the HTC Vive head set and allows visualization and analysis of the GSN voxel model data with geological or hydrogeological units. The user can navigate freely around the voxel data (20 × 25 km) which is presented in a virtual room at a scale of 2 × 2 or 3 × 3 meters. To enable analysis, e.g. hydraulic conductivity, the user can select filters to remove specific hydrogeological units. The user can also use slicing to cut-off specific sections of the voxel data to get a closer look. This slicing

  11. ASSESSMENT OF THE SUBSURFACE FATE OF MONOETHANOLAMINE

    Energy Technology Data Exchange (ETDEWEB)

    James A. Sorensen; John R. Gallagher; Lori G. Kays

    2000-05-01

    Burial of amine reclaimer unit sludges and system filters has resulted in contamination of soil at the CanOxy Okotoks decommissioned sour gas-processing plant with amines, amine byproducts, and salts. A three-phase research program was devised to investigate the natural attenuation process that controls the subsurface transport and fate of these contaminants and to apply the results toward the development of a strategy for the remediation of this type of contamination in soils. Phase I experimental activities examined interactions between monoethanolamine (MEA) and sediment, the biodegradability of MEA in soils at various concentrations and temperatures, and the biodegradability of MEA sludge contamination in a soil slurry bioreactor. The transport and fate of MEA in the subsurface was found to be highly dependant on the nature of the release, particularly MEA concentration and conditions of the subsurface environment, i.e., pH, temperature, and oxygen availability. Pure compound biodegradation experiments in soil demonstrated rapid biodegradation of MEA under aerobic conditions and moderate temperatures (>6 C). Phase II landfarming activities confirmed that these contaminants are readily biodegradable in soil under ideal laboratory conditions, yet considerable toxicity was observed in the remaining material. Examination of water extracts from the treated soil suggested that the toxicity is water-soluble. Phase II activities led to the conclusion that landfarming is not the most desirable bioremediation technique; however, an engineered biopile with a leachate collection system could remove the remaining toxic fraction from the soil. Phase III was initiated to conduct field-based experimental activities to examine the optimized remediation technology. A pilot-scale engineered biopile was constructed at a decommissioned gas-sweetening facility in Okotoks, Alberta, Canada. On the basis of a review of the analytical and performance data generated from soil and

  12. Comparison of methods for placing and managing a silastic drain after pulmonary resection.

    Science.gov (United States)

    Fukui, Takayuki; Sakakura, Noriaki; Kobayashi, Rei; Katayama, Tatsuya; Ito, Simon; Hatooka, Shunzo; Mitsudomi, Tetsuya

    2009-10-01

    We have been using a silastic drain [Blake drain (BD)] after pulmonary resection by different placement methods and reviewed the daily amount of drainage in each patient. A 19-Fr BD was placed for each of 110 patients. First, a drain was inserted from the anterior chest wall and the tip reached the dorsal part of the diaphragm [anterior-to-posterior (AP)]. For the others [posterior-to-anterior (PA); n=37], we inserted a drain from the lower intercostal space, turned it around the apex and placed its tip in the lower front. Patients in the AP group included those placed under a water seal (AP-WS; n=43) or suction (AP-SC; n=30). The reference group consisted of 68 patients with a 32-Fr plastic drain during the same period [conventional drains (CD)]. The amount of drainage on the day of surgery in the PA group was significantly higher than that in the AP-WS group (Pdrain placement showed no significant differences between the four groups. A BD placed using a PA approach with suction might be efficient for drainage.

  13. Monitoring of Underground Coal Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wagoner, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ramirez, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-08-31

    For efficient and responsible UCG operations, a UCG process must be monitored in the following three categories: 1) process parameters such as injection and product gas flow rates, temperature, pressure and syngas content and heating value; 2) geomechanical parameters, e.g., cavity and coal seam pressures, cavity development, subsidence and ground deformation; and 3) environmental parameters, e.g., groundwater chemistry and air quality. This report focuses on UCG monitoring with geophysical techniques that can contribute to monitoring of subsurface temperature, cavity development, burn front, subsidence and deformation.

  14. To drain or not to drain? Predictors of tube thoracostomy insertion and outcomes associated with drainage of traumatic hemothoraces.

    Science.gov (United States)

    Wells, Bryan J; Roberts, Derek J; Grondin, Sean; Navsaria, Pradeep H; Kirkpatrick, Andrew W; Dunham, Michael B; Ball, Chad G

    2015-09-01

    Historical data suggests that many traumatic hemothoraces (HTX) can be managed expectantly without tube thoracostomy (TT) drainage. The purpose of this study was to identify predictors of TT, including whether the quantity of pleural blood predicted tube placement, and to evaluate outcomes associated with TT versus expected management (EM) of traumatic HTXs. A retrospective cohort study of all trauma patients with HTXs and an Injury Severity Score (ISS) ≥12 managed at a level I trauma centre between April 1, 2005 and December 31, 2012 was completed. Mixed-effects models with a subject-specific random intercept were used to identify independent risk factors for TT. Logistic and log-linear regression were used to compute odds ratios (ORs) for mortality and empyema and percent increases in length of hospital and intensive care unit stay between patients managed with TT versus EM, respectively. A total of 635 patients with 749 HTXs were included in the study. Overall, 491 (66%) HTXs were drained while 258 (34%) were managed expectantly. Independent predictors of TT placement included concomitant ipsilateral flail chest [OR 3.03; 95% confidence interval (CI) 1.04-8.80; p=0.04] or pneumothorax (OR 6.19; 95% CI 1.79-21.5; p<0.01) and the size of the HTX (OR per 10cc increase 1.12; 95% CI 1.04-1.21; p<0.01). Although the adjusted odds of mortality were not significantly different between groups (OR 3.99; 95% CI 0.87-18.30; p=0.08), TT was associated with a 47.14% (95% CI, 25.57-69.71%; p<0.01) adjusted increase in hospital length of stay. Empyemas (n=29) only occurred among TT patients. Expectant management of traumatic HTX was associated with a shorter length of hospital stay, no empyemas, and no increase in mortality. Although EM of smaller HTXs may be safe, these findings must be confirmed by a large multi-centre cohort study and randomized controlled trials before they are used to guide practice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Evaluation on the Efficiency of Subsurface Drainage in Chiu-Fen Landslide at Northern Taiwan

    Science.gov (United States)

    Ying, L. Y.; Lin, D. G.

    2015-12-01

    For administrative district, the Chiu-Fen landslide is situated at northern Taiwan and comes within the jurisdiction of Ruei-Fang district, New Taipei City Government. Chiu-Fen village is a famous spot for sightseeing and tourism in Southeast Asia. In the last decade, for economic purpose, a vast area of slope land in Chiu-Fen area was reclaimed into business and commercial districts. However, due to the complicated geological and hydrological conditions, improper reclamation, and lack of appropriate soil and water conservation facilities, large scale landslides are frequently triggered by typhoon rainfall and causes damages to the transportation and residential building in the community. As a consequence, the government initiated a comprehensive field investigations and remediation plans to stabilize the landslide from 1997 and the remediation works were concentrated on subsurface drainages, namely the application of drainage well (a vertical shaft with multi-level horizontal drainage boreholes). To investigate the efficiency of drainage wells on the landslide, the A1-profile in the landslide which covers the drainage wells W2 and W4 was selected for a series of rainfall seepage and slope stability analyses. In addition, a 48-hrs design rainfall with return period of 25, 50 and 100 years based on the local meteorological data bank was adopted for the analyses. The numerical results indicate the factor safety FS of the three potential sliding surfaces within A1-profile are constantly keeping greater than one (FS > 1.0) and without decreasing with the elapsed time during rainfall. This implies that the subsurface drainage works can drain off the infiltrated rainwater from a high intensity and long duration rainfall and preserve the slope stability of landslides from deterioration. Finally, the efficiency of the drainage wells can be evaluated quantitatively in terms of the time-dependent factor of safety and the pore water pressure distribution on several potential

  16. Aerobic Heterotrophic Biodégradation in Polluted Drains and Sewers: The drain and sewer as dual-phase biological reactors

    NARCIS (Netherlands)

    Cao, Y.S.

    1994-01-01

    Wastewater collection systems such as sewers, sewage drains, and polluted shallow aquatic systems such as rivers, streams, and lagoons are characterized by the fact that both suspended and attached biomass exist and function. They are dual-phase systems. Contrary to biofilm dominated systems such as

  17. Reverse blocking characteristics and mechanisms in Schottky-drain AlGaN/GaN HEMT with a drain field plate and floating field plates

    Science.gov (United States)

    Wei, Mao; Wei-Bo, She; Cui, Yang; Jin-Feng, Zhang; Xue-Feng, Zheng; Chong, Wang; Yue, Hao

    2016-01-01

    In this paper, a novel AlGaN/GaN HEMT with a Schottky drain and a compound field plate (SD-CFP HEMT) is presented for the purpose of better reverse blocking capability. The compound field plate (CFP) consists of a drain field plate (DFP) and several floating field plates (FFPs). The physical mechanisms of the CFP to improve the reverse breakdown voltage and to modulate the distributions of channel electric field and potential are investigated by two-dimensional numerical simulations with Silvaco-ATLAS. Compared with the HEMT with a Schottky drain (SD HEMT) and the HEMT with a Schottky drain and a DFP (SD-FP HEMT), the superiorities of SD-CFP HEMT lie in the continuous improvement of the reverse breakdown voltage by increasing the number of FFPs and in the same fabrication procedure as the SD-FP HEMT. Two useful optimization laws for the SD-CFP HEMTs are found and extracted from simulation results. The relationship between the number of the FFPs and the reverse breakdown voltage as well as the FP efficiency in SD-CFP HEMTs are discussed. The results in this paper demonstrate a great potential of CFP for enhancing the reverse blocking ability in AlGaN/GaN HEMT and may be of great value and significance in the design and actual manufacture of SD-CFP HEMTs. Project supported by the National Natural Science Foundation of China (Grant Nos. 61204085, 61334002, 61306017, 61474091, 61574112, and 61574110).

  18. Drain tube migration into the anastomotic site of an esophagojejunostomy for gastric small cell carcinoma: short report

    Directory of Open Access Journals (Sweden)

    Lin Long-Wei

    2010-05-01

    Full Text Available Abstract Background Intraluminal migration of a drain through an anastomotic site is a rare complication of gastric surgery. Case Presentation We herein report the intraluminal migration of a drain placed after a lower esophagectomy and total gastrectomy with Roux-en-Y anastomosis for gastric small cell carcinoma. Persistent drainage was noted 1 month after surgery, and radiographic studies were consistent with drain tube migration. Endoscopy revealed the drain had migrated into the esophagojejunostomy anastomotic site. The drain was removed from outside of abdominal wound while observing the anastomotic site endoscopically. The patient was treated with suction via a nasogastric tube drain for 5 days, and thereafter had an uneventful recovery. Conclusions Though drain tube migration is a rare occurrence, it should be considered in patients with persistent drainage who have undergone gastric surgery.

  19. Repository Subsurface Preliminary Fire Hazard Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Richard C. Logan

    2001-07-30

    This fire hazard analysis identifies preliminary design and operations features, fire, and explosion hazards, and provides a reasonable basis to establish the design requirements of fire protection systems during development and emplacement phases of the subsurface repository. This document follows the Technical Work Plan (TWP) (CRWMS M&O 2001c) which was prepared in accordance with AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities''; Attachment 4 of AP-ESH-008, ''Hazards Analysis System''; and AP-3.11Q, ''Technical Reports''. The objective of this report is to establish the requirements that provide for facility nuclear safety and a proper level of personnel safety and property protection from the effects of fire and the adverse effects of fire-extinguishing agents.

  20. Air-water flow in subsurface systems

    Science.gov (United States)

    Hansen, A.; Mishra, P.

    2013-12-01

    Groundwater traces its roots to tackle challenges of safe and reliable drinking water and food production. When the groundwater level rises, air pressure in the unsaturated Vadose zone increases, forcing air to escape from the ground surface. Abnormally high and low subsurface air pressure can be generated when the groundwater system, rainfall, and sea level fluctuation are favorably combined [Jiao and Li, 2004]. Through this process, contamination in the form of volatile gases may diffuse from the ground surface into residential areas, or possibly move into groundwater from industrial waste sites. It is therefore crucial to understand the combined effects of air-water flow in groundwater system. Here we investigate theoretically and experimentally the effects of air and water flow in groundwater system.

  1. Directional Dipole Model for Subsurface Scattering

    DEFF Research Database (Denmark)

    Frisvad, Jeppe Revall; Hachisuka, Toshiya; Kjeldsen, Thomas Kim

    2014-01-01

    Rendering translucent materials using Monte Carlo ray tracing is computationally expensive due to a large number of subsurface scattering events. Faster approaches are based on analytical models derived from diffusion theory. While such analytical models are efficient, they miss out on some...... point source diffusion. A ray source corresponds better to the light that refracts through the surface of a translucent material. Using this ray source, we are able to take the direction of the incident light ray and the direction toward the point of emergence into account. We use a dipole construction...... similar to that of the standard dipole model, but we now have positive and negative ray sources with a mirrored pair of directions. Our model is as computationally efficient as existing models while it includes single scattering without relying on a separate Monte Carlo simulation, and the rendered images...

  2. Subsurface Meridional Circulation in the Active Belts

    CERN Document Server

    Hernandez, I Gonzalez; Hill, F; Howe, R; Komm, R

    2008-01-01

    Temporal variations of the subsurface meridional flow with the solar cycle have been reported by several authors. The measurements are typically averaged over periods of time during which surface magnetic activity existed in the regions were the velocities are calculated. The present work examines the possible contamination of these measurements due to the extra velocity fields associated with active regions plus the uncertainties in the data obtained where strong magnetic fields are present. We perform a systematic analysis of more than five years of GONG data and compare meridional flows obtained by ring-diagram analysis before and after removing the areas of strong magnetic field. The overall trend of increased amplitude of the meridional flow towards solar minimum remains after removal of large areas associated with surface activity. We also find residual circulation toward the active belts that persist even after the removal of the surface magnetic activity, suggesting the existence of a global pattern o...

  3. Subsurface Raman analysis of thin painted layers.

    Science.gov (United States)

    Conti, Claudia; Colombo, Chiara; Realini, Marco; Zerbi, Giuseppe; Matousek, Pavel

    2014-01-01

    Here we present, for the first time, an extension of spatially offset Raman spectroscopy to thin (tens of micrometers thick), highly turbid stratified media such as those encountered in paintings. The method permits the non-destructive interrogation of painted layers in situations where conventional Raman microscopy is not applicable due to high turbidity of the top layer(s). The concept is demonstrated by recovering the pure Raman spectra of paint sub-layers that are completely obscured by paint over-layers. Potential application areas include the analysis of paintings in art preservation and restoration avoiding the cross-sectional analysis used currently with this type of samples. The technique also holds promise for the development as a non-destructive subsurface tool for in situ analysis using portable instruments.

  4. Water-quality trends for a stream draining the Southern Anthracite Field, Pennsylvania

    Science.gov (United States)

    Cravotta, C.A.; Bilger, M.D.

    2001-01-01

    Stream flow, chemical and biological data for the northern part of Swatara Creek, which drains a 112 km2 area in the Southern Anthracite Field of eastern Pennsylvania, indicate progressive improvement in water quality since 1959, after which most mines in the watershed had been flooded. Drainage from the flooded mines contributes substantially to base flow in Swatara Creek. Beginning in 1995, a variety of treatment systems and surface reclamation were implemented at some of the abandoned mines. At Ravine, Pa., immediately downstream of the mined area, median SO4 concentration declined from about 150 mg l-1 in 1959 to 75 mg l-1 in 1999 while pH increased from acidic to near-neutral values (medians: c. pH 4 before 1975; c. pH 6 after 1975). Fish populations rebounded from non-existent during 1959-1990 to 21 species identified in 1999. Nevertheless, recent monitoring indicates (1) episodic acidification and elevated concentrations and transport of Fe, Al, Mn, and trace metals during storm flow; (2) elevated concentrations of Fe, Mn, Co, Cu, Pb, Ni, and Zn in streambed sediments relative to unmined areas and to toxicity guidelines for aquatic invertebrates and fish; and (3) elevated concentrations of metals in fish tissue, notably Zn. The metals are ubiquitous in the fine fraction (acidic storm runoff derived mainly from low-pH rainfall. Declines in pH to values approaching 5.0 during storm flow events or declines in redox potential during burial of sediment could result in the remobilization of metals associated with suspended solids and streambed deposits.

  5. Water and nitrogen requirements of subsurface drip irrigated pomegranate

    Science.gov (United States)

    Surface drip irrigation is a well-developed practice for both annual and perennial crops. The use of subsurface drip is a well-established practice in many annual row crops, e.g. tomatoes, strawberries, lettuce. However, the use of subsurface drip on perennial crops has been slow to develop. With th...

  6. Geochemical characterization of subsurface sediments in the netherlands.

    NARCIS (Netherlands)

    Huisman, D.J.

    1998-01-01

    Traditionally, the Netherlands' subsurface is mainly used to obtain good quality drinking and industrial waters from the different aquifers. Due to the lack of space on the surface, increasing environmental problems and demand for energy, the subsurface will be used increasingly for other activities

  7. The distribution of subsurface damage in fused silica

    Energy Technology Data Exchange (ETDEWEB)

    Miller, P E; Suratwala, T I; Wong, L L; Feit, M D; Menapace, J A; Davis, P J; Steele, R A

    2005-11-21

    Managing subsurface damage during the shaping process and removing subsurface damage during the polishing process is essential in the production of low damage density optical components, such as those required for use on high peak power lasers. Removal of subsurface damage, during the polishing process, requires polishing to a depth which is greater than the depth of the residual cracks present following the shaping process. To successfully manage, and ultimately remove subsurface damage, understanding the distribution and character of fractures in the subsurface region introduced during fabrication process is important. We have characterized the depth and morphology of subsurface fractures present following fixed abrasive and loose abrasive grinding processes. At shallow depths lateral cracks and an overlapping series of trailing indentation fractures were found to be present. At greater depths, subsurface damage consists of a series of trailing indentation fractures. The area density of trailing fractures changes as a function of depth, however the length and shape of individual cracks remain nearly constant for a given grinding process. We have developed and applied a model to interpret the depth and crack length distributions of subsurface surface damage in terms of key variables including abrasive size and load.

  8. Imaging the Subsurface with Upgoing Muons

    Science.gov (United States)

    Bonal, N.; Preston, L. A.; Schwellenbach, D.; Dreesen, W.; Green, A.

    2014-12-01

    We assess the feasibility of imaging the subsurface using upgoing muons. Traditional muon imaging focuses on more-prevalent downgoing muons. Muons are subatomic particles capable of penetrating the earth's crust several kilometers. Downgoing muons have been used to image the Pyramid of Khafre of Giza, various volcanoes, and smaller targets like cargo. Unfortunately, utilizing downgoing muons requires below-target detectors. For aboveground objects like a volcano, the detector is placed at the volcano's base and the top portion of the volcano is imaged. For underground targets like tunnels, the detector would have to be placed below the tunnel in a deeper tunnel or adjacent borehole, which can be costly and impractical for some locations. Additionally, detecting and characterizing subsurface features like voids from tunnels can be difficult. Typical characterization methods like sonar, seismic, and ground penetrating radar have shown mixed success. Voids have a marked density contrast with surrounding materials, so using methods sensitive to density variations would be ideal. High-energy cosmic ray muons are more sensitive to density variation than other phenomena, including gravity. Their absorption rate depends on the density of the materials through which they pass. Measurements of muon flux rate at differing directions provide density variations of the materials between the muon source (cosmic rays and neutrino interactions) and detector, much like a CAT scan. Currently, tomography using downgoing muons can resolve features to the sub-meter scale. We present results of exploratory work, which demonstrates that upgoing muon fluxes appear sufficient to achieve target detection within a few months. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  9. SWRO feed water quality improvement using subsurface intakes in Oman, Spain, Turks and Caicos Islands, and Saudi Arabia

    KAUST Repository

    Rachman, Rinaldi

    2014-10-01

    Water quality sampling and analysis conducted at four global locations, along the shorelines of the Arabian Sea, the Red Sea, the Mediterranean Sea, and the Caribbean Sea, demonstrated that subsurface intakes (wells) provide a robust degree of feed water treatment close to that provided by energy-intensive, conventional pretreatment systems. SDI values were reduced in virtually all cases to below 3. In vertical wells, from 70 to 100% of the TEP and 50% of the TOC and DOC found in natural seawater were removed in the aquifer. Reduction in the concentration of the organic fractions was selective based on molecular weight with the biopolymers nearly fully removed. Humic substances, building blocks, and light organic substances were removed at lesser percentages. Site geology was not the predominant factor affecting the removal efficiency, but the length of the flow path from the sea to the wells and the hydraulic retention time appear to be most significant. A comparison between vertical wells, a tunnel intake system, and a horizontal drain system at Alicante, Spain, demonstrated that the vertical wells performed best followed by the tunnel system, and the horizontal drain system which showed a breakthrough of algae and a very high organic carbon concentration. © 2014 Elsevier B.V.

  10. In patients with extensive subcutaneous emphysema, which technique achieves maximal clinical resolution: infraclavicular incisions, subcutaneous drain insertion or suction on in situ chest drain?

    Science.gov (United States)

    Johnson, Charles H N; Lang, Sommer A; Bilal, Haris; Rammohan, Kandadai S

    2014-06-01

    A best evidence topic in cardiac surgery was written according to a structured protocol. The question addressed was: 'In patients with extensive subcutaneous emphysema, which technique achieves maximal clinical resolution: infraclavicular incisions, subcutaneous drain insertion or suction on in situ chest drain?'. Altogether more than 200 papers were found using the reported search, of which 14 represented the best evidence to answer the clinical question. The authors, journal, date and country of publication, patient group studied, study type, relevant outcomes and results of these papers are tabulated. Subcutaneous emphysema is usually a benign, self-limiting condition only requiring conservative management. Interventions are useful in the context of severe patient discomfort, respiratory distress or persistent air leak. In the absence of any comparative study, it is not possible to choose definitively between infraclavicular incisions, drain insertion and increasing suction on an in situ drain as the best method for managing severe subcutaneous emphysema. All the three techniques described have been shown to provide effective relief. Increasing suction on a chest tube already in situ provided rapid relief in patients developing SE following pulmonary resection. A retrospective study showed resolution in 66%, increasing to 98% in those who underwent video-assisted thoracic surgery with identification and closure of the leak. Insertion of a drain into the subcutaneous tissue also provided rapid sustained relief. Several studies aided drainage by using regular compressive massage. Infraclavicular incisions were also shown to provide rapid relief, but were noted to be more invasive and carried the potential for cosmetic defect. No major complications were illustrated.

  11. Nitrogen patterns in subsurface waters of the Yzeron stream: effect of combined sewer overflows and subsurface-surface water mixing.

    Science.gov (United States)

    Aucour, A M; Bariac, T; Breil, P; Namour, P; Schmitt, L; Gnouma, R; Zuddas, P

    2013-01-01

    Urbanization subjects streams to increased nitrogen loads. Therefore studying nitrogen forms at the interface between urban stream and groundwater is important for water resource management. In this study we report results on water δ(18)O and nitrogen forms in subsurface waters of a stream (Yzeron, France). The sites studied were located upstream and downstream of combined sewer overflows (CSO) in a rural area and a periurban area, respectively. Water δ(18)O allowed us to follow the mixing of subsurface water with surface water. Dissolved organic nitrogen and organic carbon of fine sediment increased by 20-30% between rural and periurban subsurface waters in the cold season, under high flow. The highest nitrate levels were observed in rural subsurface waters in the cold season. The lowest nitrate levels were found in periurban subsurface waters in the warm season, under low flow. They corresponded to slow exchange of subsurface waters with channel water. Thus reduced exchange between surface and subsurface waters and organic-matter-rich input seemed to favor nitrate reduction in the downstream, periurban, subsurface waters impacted by CSO.

  12. The contribution of drained organic soils to the globally emitted greenhouse gases and emission hotspots

    Science.gov (United States)

    Barthelmes, Alexandra; Couwenberg, John; Joosten, Hans

    2016-04-01

    Key words: organic soils, peatlands, drainage, emissions, globally Peatlands cover only 3% of the global land surface. Some 15% of these peatlands have been drained for agriculture, forestry and grazing, which leads to the release of huge amounts of carbon. The '2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands' (IPCC 2014) offers up-to-date default emission factors for different land use types on organic soil and thus enables proper reporting. For this, realistic area data of drained organic soils are needed at a national scale. We analysed the drained organic soil areas and related emissions as reported to the UNFCCC in 2014 for several Nordic-Baltic countries . The analysis revealed that the areas often seem to be underestimated and that several countries use outdated emission factors. The re-assessment of the drained area and the application of the IPCC (2014) default emission factors resulted in 5-10 x higher emissions from drained organic soils for some countries. Out of 9 Nordic-Baltic countries only 1 country seems to have overestimated the drainage related organic soil emissions. If adopting the default emission factors from IPCC (2014) globally, the emissions from drained and degrading organic soils (~ 1,600 Mt CO2-eq.) amount to almost double the amount of CO2 emissions from aviation, even when emissions from peat fires are not included . By far the top single emitter of drained peatland related greenhouse gases is Indonesia, followed by the European Union and Russia. 25 countries are together responsible for 95% of global emissions from peatland drainage, excluding fires. Fires raise the importance of particularly Indonesia and Russian Federation. In 25 countries emissions from peatland degradation are over 50% of the emissions from fossil fuels and cement production combined, hence peatland emissions are of national significance.

  13. Radiation dose associated with CT-guided drain placement for pediatric patients

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Cody J.; Isaacson, Ari J.; Fordham, Lynn Ansley; Ivanovic, Marija; Dixon, Robert G. [University of North Carolina at Chapel Hill, Department of Radiology, UNC Health Care, Chapel Hill, NC (United States); Taylor, J.B. [University of North Carolina at Chapel Hill, Environment, Health and Safety, Chapel Hill, NC (United States)

    2017-05-15

    To date, there are limited radiation dose data on CT-guided procedures in pediatric patients. Our goal was to quantify the radiation dose associated with pediatric CT-guided drain placement and follow-up drain evaluations in order to estimate effective dose. We searched the electronic medical record and picture archiving and communication system (PACS) to identify all pediatric (<18 years old) CT-guided drain placements performed between January 2008 and December 2013 at our institution. We compiled patient data and radiation dose information from CT-guided drain placements as well as pre-procedural diagnostic CTs and post-procedural follow-up fluoroscopic abscess catheter injections (sinograms). Then we converted dose-length product, fluoroscopy time and number of acquisitions to effective doses using Monte Carlo simulations and age-appropriate conversion factors based on annual quality-control testing. Fifty-two drainages were identified with mean patient age of 11.0 years (5 weeks to 17 years). Most children had diagnoses of appendicitis (n=23) or inflammatory bowel disease (n=11). Forty-seven patients had diagnostic CTs, with a mean effective dose of 7.3 mSv (range 1.1-25.5 mSv). Drains remained in place for an average of 16.9 days (range 0-75 days), with an average of 0.9 (0-5) sinograms per patient in follow-up. The mean effective dose for all drainages and follow-up exams was 5.3 mSv (0.7-17.1) and 62% (32/52) of the children had effective doses less than 5 mSv. The majority of pediatric patients who have undergone CT-guided drain placements at our institution have received total radiation doses on par with diagnostic ranges. This information could be useful when describing the dose of radiation to parents and providers when CT-guided drain placement is necessary. (orig.)

  14. Postoperative drain amylase predicts pancreatic fistula in pancreatic surgery: A systematic review and meta-analysis.

    Science.gov (United States)

    Yang, Ji; Huang, Qiang; Wang, Chao

    2015-10-01

    This study to evaluate the utility of drain fluid amylase as a predictor of PF in patients undergoing pancreatic surgery based on the International Study Group of Pancreatic Fistula definitions of pancreatic fistula. A comprehensive search was carried out using Pubmed (Medline), Embase, Web of science and Cochrane database for clinical trials, which studied DFA as a diagnostic marker for pancreatic fistula after pancreatic surgery. Sensitivity, specificity and the diagnostic odds ratios with 95% confidence interval were calculated for each study. Summary receiver-operating curves were conducted and the area under the curve was evaluated. A total of 10 studies were included. The pooled sensitivity and specificity of drain fluid amylase Day 1 for the diagnosis of postoperative pancreatic fistula were 81% and 87%, respectively (area under the curve was 0.897, diagnostic odds ratios was 16.83 and 95%CI was 12.66-22.36), the pooled sensitivity and specificity of drain fluid amylase Day 3 for the diagnosis of postoperative pancreatic fistula were 56% and 79%, respectively (area under the curve was 0.668, diagnostic odds ratios was 3.26 and 95%CI was 1.83-5.82) CONCLUSIONS: The drain fluid amylase Day 1, instead of drain fluid amylase Day 3, may be a useful criterion for the early identification of postoperative pancreatic fistula, and a value of drain fluid amylase Day 1 over than 1300 U/L was a risk factor of pancreatic fistula. And the diagnostic accuracy and the proposed cut-off levels of drain fluid amylase Day 1 in predicting the postoperative pancreatic fistula will have to be validated by multicenter prospective studies. Copyright © 2015. Published by Elsevier Ltd.

  15. Seismic Survey Report for Central Nevada Test Area, Subsurface, Correction Action Unit 443, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-12-19

    The seismic survey was successful in imaging the water table and underlying structures at the site. The configuration of the water table reflector confirms the general southeast horizontal flow direction in the alluvial aquifer. Offsets in the water table reflector, both at known faults that reach the surface and at subsurface faults not previously recognized, indicate that both extension and blast-related faults are barriers to lateral groundwater flow. The results from this study have been used to optimally locate two new wells designed to monitor head levels and possible contaminant migration in the alluvial aquifer at CTNA.

  16. Tomographic SAR analysis of subsurface ice structure in Greenland: first results

    DEFF Research Database (Denmark)

    Banda, Francesco; Dall, Jørgen; Tebaldini, Stefano

    2013-01-01

    Due to the increased melting of ice sheets over the last decades, monitoring of ice dynamics and structure with remote sensing instruments is of extreme importance to achieve a deeper insight on related environmental issues. The study presented in this paper documents an attempt of mapping ice...... structure with P-band SAR tomography. First results from ESA IceSAR 2012 campaign carried out in south-west Greenland are presented. It is found that significant penetration in the upper layers of glacial subsurface can be achieved up to an extent of about 20–60 m, conditional on the different type...

  17. RADIOIODINE GEOCHEMISTRY IN THE SRS SUBSURFACE ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, D.; Emerson, H.; Powell, B.; Roberts, K.; Zhang, S.; Xu, C.; Schwer, K.; Li, H.; Ho, Y.; Denham, M.; Yeager, C.; Santschi, P.

    2013-05-16

    Iodine-129 is one of the key risk drivers for several Savannah River Site (SRS) performance assessments (PA), including that for the Low-Level Waste Disposal Facility in E-Area. In an effort to reduce the uncertainty associated with the conceptual model and the input values used in PA, several studies have recently been conducted dealing with radioiodine geochemistry at the SRS. The objective of this report was to review these recent studies and evaluate their implications on SRS PA calculations. For the first time, these studies measured iodine speciation in SRS groundwater and provided technical justification for assuming the presence of more strongly sorbing species (iodate and organo-iodine), and measured greater iodine sediment sorption when experiments included these newly identified species; specifically they measured greater sorption coefficients (K{sub d} values: the concentration ratio of iodine on the solid phase divided by the concentration in the aqueous phase). Based on these recent studies, new best estimates were proposed for future PA calculations. The new K{sub d} values are greater than previous recommended values. These proposed K{sub d} values reflect a better understanding of iodine geochemistry in the SRS subsurface environment, which permits reducing the associated conservatism included in the original estimates to account for uncertainty. Among the key contributing discoveries supporting the contention that the K{sub d} values should be increased are that: 1) not only iodide (I{sup -}), but also the more strongly sorbing iodate (IO{sub 3}{sup -}) species exists in SRS groundwater (average total iodine = 15% iodide, 42% iodate, and 43% organoiodine), 2) when iodine was added as iodate, the measured K{sub d} values were 2 to 6 times greater than when the iodine was added as iodide, and perhaps most importantly, 3) higher desorption (10 to 20 mL/g) than (ad)sorption (all previous studies) K{sub d} values were measured. The implications of this

  18. Novel determination of radon-222 velocity in deep subsurface rocks and the feasibility to using radon as an earthquake precursor

    Science.gov (United States)

    Zafrir, Hovav; Ben Horin, Yochai; Malik, Uri; Chemo, Chaim; Zalevsky, Zeev

    2016-09-01

    A novel technique utilizing simultaneous radon monitoring by gamma and alpha detectors to differentiate between the radon climatic driving forces and others has been improved and used for deep subsurface investigation. Detailed long-term monitoring served as a proxy for studying radon movement within the shallow and deep subsurface, as well as for analyzing the effect of various parameters of the radon transport pattern. The main achievements of the investigation are (a) determination, for the first time, of the radon movement velocity within rock layers at depths of several tens of meters, namely, 25 m/h on average; (b) distinguishing between the diurnal periodical effect of the ambient temperature and the semidiurnal effect of the ambient pressure on the radon temporal spectrum; and (c) identification of a radon random preseismic anomaly preceding the Nuweiba, M 5.5 earthquake of 27 June 2015 that occurred within Dead Sea Fault Zone.

  19. Assessment of DInSAR Potential in Simulating Geological Subsurface Structure

    Science.gov (United States)

    Fouladi Moghaddam, N.; Rudiger, C.; Samsonov, S. V.; Hall, M.; Walker, J. P.; Camporese, M.

    2013-12-01

    High resolution geophysical surveys, including seismic, gravity, magnetic, etc., provide valuable information about subsurface structuring but they are very costly and time consuming with non-unique and sometimes conflicting interpretations. Several recent studies have examined the application of DInSAR to estimate surface deformation, monitor possible fault reactivation and constrain reservoir dynamic behaviour in geothermal and groundwater fields. The main focus of these studies was to generate an elevation map, which represents the reservoir extraction induced deformation. This research study, however, will focus on developing methods to simulate subsurface structuring and identify hidden faults/hydraulic barriers using DInSAR surface observations, as an innovative and cost-effective reconnaissance exploration tool for planning of seismic acquisition surveys in geothermal and Carbon Capture and Sequestration regions. By direct integration of various DInSAR datasets with overlapping temporal and spatial coverage we produce multi-temporal ground deformation maps with high resolution and precision to evaluate the potential of a new multidimensional MSBAS technique (Samsonov & d'Oreye, 2012). The technique is based on the Small Baseline Subset Algorithm (SBAS) that is modified to account for variation in sensor parameters. It allows integration of data from sensors with different wave-band, azimuth and incidence angles, different spatial and temporal sampling and resolutions. These deformation maps then will be used as an input for inverse modelling to simulate strain history and shallow depth structure. To achieve the main objective of our research, i.e. developing a method for coupled InSAR and geophysical observations and better understanding of subsurface structuring, comparing DInSAR inverse modelling results with previously provided static structural model will result in iteratively modified DInSAR structural model for adequate match with in situ observations

  20. Equatorial Indian Ocean subsurface current variability in an Ocean General Circulation Model

    Science.gov (United States)

    Gnanaseelan, C.; Deshpande, Aditi

    2017-05-01

    The variability of subsurface currents in the equatorial Indian Ocean is studied using high resolution Ocean General Circulation Model (OGCM) simulations during 1958-2009. February-March eastward equatorial subsurface current (ESC) shows weak variability whereas strong variability is observed in northern summer and fall ESC. An eastward subsurface current with maximum amplitude in the pycnocline is prominent right from summer to winter during strong Indian Ocean Dipole (IOD) years when air-sea coupling is significant. On the other hand during weak IOD years, both the air-sea coupling and the ESC are weak. This strongly suggests the role of ESC on the strength of IOD. The extension of the ESC to the summer months during the strong IOD years strengthens the oceanic response and supports intensification and maintenance of IODs through modulation of air sea coupling. Although the ESC is triggered by equatorial winds, the coupled air-sea interaction associated with IODs strengthens the ESC to persist for several seasons thereby establishing a positive feedback cycle with the surface. This suggests that the ESC plays a significant role in the coupled processes associated with the evolution and intensification of IOD events by cooling the eastern basin and strengthening thermocline-SST (sea surface temperature) interaction. As the impact of IOD events on Indian summer monsoon is significant only during strong IOD years, understanding and monitoring the evolution of ESC during these years is important for summer monsoon forecasting purposes. There is a westward phase propagation of anomalous subsurface currents which persists for a year during strong IOD years, whereas such persistence or phase propagation is not seen during weak IOD years, supporting the close association between ESC and strength of air sea coupling during strong IOD years. In this study we report the processes which strengthen the IOD events and the air sea coupling associated with IOD. It also unravels

  1. Subsurface absorption of anthropogenic warming of the land surface: the case of the world's largest brickworks (Stewartby, Bedfordshire, UK).

    Science.gov (United States)

    Westaway, Rob; Scotney, Philip M; Younger, Paul L; Boyce, Adrian J

    2015-03-01

    Stewartby works, for a time the world's largest brickworks, began operation around the start of the twentieth century and closed in 2008. Subsurface temperature measurements are available in its vicinity, obtained as part of monitoring of an adjacent landfill in one of the former quarries for the Oxford Clay, which was the raw material for brick manufacture. A striking subsurface temperature anomaly, an increment of ~12°C, was first measured in 2004, and has subsequently decayed over time. The anomaly is centred beneath one of the former brick kilns, which operated between 1935 and 1991. To investigate processes of heat absorption by the shallow subsurface, this anomaly has been modelled as a consequence of conductive heat flow into the ground due to the operation of the ~3000 m(2) kiln. This modelling indicates that a very large amount of heat energy was transported into the subsurface; we estimate the typical downward surface heat flow during operation of the kiln as ~1 W m(-2) and the energy stored in the subsurface beneath it at its time of shutdown as ~6 TJ, or ~0.03% of that released by the fuel for heating the kiln, such that the total heat energy stored beneath this multi-kiln site peaked at ~200TJ. The proportion of heat energy transported into the subsurface was relatively low due to the nature of the Oxford Clay, which has a low thermal conductivity (~0.8 W m(-1)°C(-1)) and diffusivity (~0.3mm(2)s(-1)); in a more conductive lithology it might well have been three times greater. After kiln shutdown this subsurface thermal anomaly began to dissipate by upward heat conduction and release of heat into the atmosphere; at present about half of the peak energy stored remains, decreasing at ~1% per year, the maximum temperature anomaly being currently ~7°C at a depth of ~30 m and the typical upward heat flow during this span of time having exceeded the regional ~40 mW m(-2) background by roughly an order of magnitude. We believe this to be the first

  2. Permanent occlusion of feeding arteries and draining veins in solid mouse tumors by vascular targeted photodynamic therapy (VTP with Tookad.

    Directory of Open Access Journals (Sweden)

    Noa Madar-Balakirski

    Full Text Available BACKGROUND: Antiangiogenic and anti-vascular therapies present intriguing alternatives to cancer therapy. However, despite promising preclinical results and significant delays in tumor progression, none have demonstrated long-term curative features to date. Here, we show that a single treatment session of Tookad-based vascular targeted photodynamic therapy (VTP promotes permanent arrest of tumor blood supply by rapid occlusion of the tumor feeding arteries (FA and draining veins (DV, leading to tumor necrosis and eradication within 24-48 h. METHODOLOGY/PRINCIPAL FINDINGS: A mouse earlobe MADB106 tumor model was subjected to Tookad-VTP and monitored by three complementary, non-invasive online imaging techniques: Fluorescent intravital microscopy, Dynamic Light Scattering Imaging and photosensitized MRI. Tookad-VTP led to prompt tumor FA vasodilatation (a mean volume increase of 70% with a transient increase (60% in blood-flow rate. Rapid vasoconstriction, simultaneous blood clotting, vessel permeabilization and a sharp decline in the flow rates then followed, culminating in FA occlusion at 63.2 sec+/-1.5SEM. This blockage was deemed irreversible after 10 minutes of VTP treatment. A decrease in DV blood flow was demonstrated, with a slight lag from FA response, accompanied by frequent changes in flow direction before reaching a complete standstill. In contrast, neighboring, healthy tissue vessels of similar sizes remained intact and functional after Tookad-VTP. CONCLUSION/SIGNIFICANCE: Tookad-VTP selectively targets the tumor feeding and draining vessels. To the best of our knowledge, this is the first mono-therapeutic modality that primarily aims at the larger tumor vessels and leads to high cure rates, both in the preclinical and clinical arenas.

  3. Level of 8-OHdG in drained dialysate appears to be a marker of peritoneal damage in peritoneal dialysis

    Directory of Open Access Journals (Sweden)

    Morishita Y

    2011-12-01

    Full Text Available Yoshiyuki Morishita, Minami Watanabe, Ichiro Hirahara, Tetsu Akimoto, Shigeaki Muto, Eiji KusanoDivision of Nephrology, Department of Medicine, Jichi Medical University, Tochigi, JapanPurpose: Peritoneal dialysis (PD is a successful renal replacement therapy; however, long-term PD leads to structural and functional peritoneal damage. Therefore, the monitoring and estimation of peritoneal function are important in PD patients. Oxidative stress has been implicated as one possible mechanism of peritoneal membrane damage. The aim of this study was to evaluate the association between an oxidative stress marker, 8-hydroxydeoxyguanosine (8-OHdG, and peritoneal damage in PD patients.Methods: The authors evaluated 8-OHdG in drained dialysate by enzyme immunoassay to investigate the association between 8-OHdG and solute transport rate estimated by peritoneal equilibration test and matrix metalloproteinase-2 (MMP-2 level in 45 samples from 28 PD patients.Results: The 8-OHdG level was significantly correlated with dialysate:plasma creatine ratio (r = 0.463, P < 0.05 and significantly inversely correlated with D/D0 glucose (where D is the glucose level of peritoneal effluents obtained 4 hours after the injection and D0 is the glucose level obtained immediately after the injection (r = -0.474, P < 0.05. The 8-OHdG level was also significantly correlated with MMP-2 level (r = 0.551, P < 0.05, but it was not correlated with the age of subjects, the duration of PD, or blood pressure.Conclusion: The level of 8-OHdG in drained dialysate may be a useful novel marker of peritoneal damage in PD.Keywords: oxidative stress, solute transport rate, MMP-2, peritoneal equilibration test

  4. Understanding the rapidity of subsurface storm flow response from a fracture-oriented shallow vadose through a new perspective

    Science.gov (United States)

    Zhao, Peng; Zhao, Pei; Liang, Chuan; Li, Tianyang; Zhou, Baojia

    2017-01-01

    Velocity and celerity in hydrologic systems are controlled by different mechanisms. Efforts were made through joint sample collection and the use of hydrographs and tracers to understand the rapidity of the subsurface flow response to rainstorms on hourly time scales. Three deep subsurface flows during four natural rainstorm events were monitored. The results show that (1) deeper discharge was observed early in responding rainfall events and yielded a high hydrograph amplitude; (2) a ratio index, k, reflecting the dynamic change of the rainfall perturbation intensity in subsurface flow, might reveal inner causal relationships between the flow index and the tracer signal index. Most values of k were larger than 1 at the perturbation stage but approximated 1 at the no-perturbation stage; and (3) for statistical analysis of tracer signals in subsurface flows, the total standard deviation was 17.2, 11.9, 7.4 and 3.5 at perturbation stages and 4.4, 2.5, 1.1, and 0.95 at the non-perturbation stage for observed events. These events were 3-7 times higher in the former rather than the later, reflecting that the variation of tracer signals primarily occurred under rainfall perturbation. Thus, we affirmed that the dynamic features of rainfall have a key effect on rapid processes because, besides the gravity, mechanical waves originating from dynamic rainfall features are another driving factor for conversion between different types of rainfall mechanical energy. A conceptual model for pressure wave propagation was proposed, in which virtual subsurface flow processes in a heterogeneous vadose zone under rainfall are analogous to the water hammer phenomenon in complex conduit systems. Such an analogy can allow pressure in a shallow vadose to increase and decrease and directly influence the velocity and celerity of the flow reflecting a mechanism for rapid subsurface hydrologic response processes in the shallow vadose zone.

  5. Development of stream-subsurface flow module in sub-daily simulation of Escherichia coli using SWAT

    Science.gov (United States)

    Kim, Minjeong; Boithias, Laurie; Cho, Kyung Hwa; Silvera, Norbert; Thammahacksa, Chanthamousone; Latsachack, Keooudone; Rochelle-Newall, Emma; Sengtaheuanghoung, Oloth; Pierret, Alain; Pachepsky, Yakov A.; Ribolzi, Olivier

    2017-04-01

    Water contaminated with pathogenic bacteria poses a large threat to public health, especially in the rural areas in the tropics where sanitation and drinking water facilities are often lacking. Several studies have used the Soil and Water Assessment Tool (SWAT) to predict the export of in-stream bacteria at a watershed-scale. However, SWAT is limited to in-stream processes, such as die-off, resuspension and, deposition; and it is usually implemented on a daily time step using the SCS Curve Number method, making it difficult to explore the dynamic fate and transport of bacteria during short but intense events such as flash floods in tropical humid montane headwaters. To address these issues, this study implemented SWAT on an hourly time step using the Green-Ampt infiltration method, and tested the effects of subsurface flow (LATQ+GWQ in SWAT) on bacterial dynamics. We applied the modified SWAT model to the 60-ha Houay Pano catchment in Northern Laos, using sub-daily rainfall and discharge measurements, electric conductivity-derived fractions of overland and subsurface flows, suspended sediments concentrations, and the number of fecal indicator organism Escherichia coli monitored at the catchment outlet from 2011 to 2013. We also took into account land use change by delineating the watershed with the 3-year composite land use map. The results show that low subsurface flow of less than 1 mm recovered the underestimation of E. coli numbers during the dry season, while high subsurface flow caused an overestimation during the wet season. We also found that it is more reasonable to apply the stream-subsurface flow interaction to simulate low in-stream bacteria counts. Using fecal bacteria to identify and understand the possible interactions between overland and subsurface flows may well also provide some insight into the fate of other bacteria, such as those involved in biogeochemical fluxes both in-stream and in the adjacent soils and hyporheic zones.

  6. The role of the benthic-hyporheic zone in controlling nitrous oxide emissions along two stream networks draining watersheds with contrasting land use

    Science.gov (United States)

    Marzadri, Alessandra; Dee, Martha M.; Tonina, Daniele; Tank, Jennifer L.; Bellin, Alberto

    2016-04-01

    Nitrous oxide (N2O) is a potent greenhouse gas responsible of stratospheric ozone destruction. Denitrification in stream ecosystems occurs within the benthic layer at the sediment-water interface and within subsurface environments such as the hyporheic zone and results in N2O production that could be eventually emitted to the atmosphere. Here, we quantify the role of benthic and hyporheic zones as sources of N2O gas and explore the dependence of emissions from stream morphology, flow hydraulics, land use and climate using a recently-developed fully analytical framework. Variations in N2O emissions within and among catchments of contrasting land use can be explained with a new denitrification Damköhler number (DaD) that accounts for denitrification processes within both benthic and hyporheic zones. For initial model development, we found a strong relationship between DaD and stream N2O emissions using field data collected from multiple headwater streams (i.e., LINXII project) from different biomes draining contrasting land use. We then tested its generality by comparing N2O emissions predicted with DaD to those measured using a synoptic sampling campaign in two stream networks draining contrasting land use: Manistee R (Michigan, USA) and Tippecanoe R (Indiana, USA). Our dimensionless analysis shows that the effect of land use disappears after making the emissions dimensionless with respect to the nitrogen load. Reliable predictions of N2O emissions at the stream network scale can be obtained from a limited amount of information, consisting in relatively easy to obtain biogeochemical and hydromorphological quantities.

  7. The Prognostic Value of Drain Amylase on Post-Operative Day One after the Whipple Procedure

    Directory of Open Access Journals (Sweden)

    Kristina Hasselgren

    2016-03-01

    Full Text Available Introduction For patients with periampullary tumors, the only treatment with curative intention is resection. One potentially serious complication is a postoperative pancreatic fistula. The reported risk factors are a soft pancreas and a small pancreatic duct as well as overweight/ obesity. The aim of this study was to investigate the prognostic value for a postoperative pancreatic fistula of elevated drain amylase (>3 times the upper limit in serum on postoperative day 1. Results In total, 170 patients underwent a pancreaticoduodenectomy at Linköping University Hospital between 2011 and 2014; 27 patients (16% had a postoperative complication ≥ grade 3b, and the postoperative mortality was 3%. The patients with elevated drain amylase on postoperative day one (n=65 had more complications (≥3b than the patients without elevated levels (n=80, although the difference was not significant (p=0.054. Two patients (3% without elevated amylase on postoperative day 1 developed postoperative pancreatic fistula (p<0.001 compared to 29 patients (45% with elevated amylase. Conclusion Normal drain amylase on postoperative day 1 is associated with a lower risk of postoperative complications than is elevated drain amylase. Elevated amylase in the drain fluid on postoperative day 1 is significantly correlated with POPF and is associated with an increased risk of postoperative complications.

  8. Outbreak of severe Pseudomonas aeruginosa infections caused by a contaminated drain in a whirlpool bathtub.

    Science.gov (United States)

    Berrouane, Y F; McNutt, L A; Buschelman, B J; Rhomberg, P R; Sanford, M D; Hollis, R J; Pfaller, M A; Herwaldt, L A

    2000-12-01

    During a 14-month period, 7 patients with hematological malignancies acquired serious infections caused by a single strain of multiply resistant Pseudomonas aeruginosa. A case-control study, culture surveys, and pulsed-field gel electrophoresis implicated a whirlpool bathtub on the unit as the reservoir. All case patients and 32% of control patients used this bathtub (P=.003). The epidemic strain was found only in cultures of samples taken from the bathtub. The drain of the whirlpool bathtub, which was contaminated with the epidemic strain, closed approximately 2.54 cm below the drain's strainer. Water from the faucet, which was not contaminated, became contaminated with P. aeruginosa from the drain when the tub was filled. The design of the drain allowed the epidemic strain to be transmitted to immunocompromised patients who used the whirlpool bathtub. Such tubs are used in many hospitals, and they may be an unrecognized source of nosocomial infections. This potential source of infection could be eliminated by using whirlpool bathtubs with drains that seal at the top.

  9. Water movement and isoproturon behaviour in a drained heavy clay soil: 1. Preferential flow processes

    Science.gov (United States)

    Haria, A. H.; Johnson, A. C.; Bell, J. P.; Batchelor, C. H.

    1994-12-01

    The processes and mechanisms that control pesticide transport from drained heavy clay catchments are being studied at Wytham Farm (Oxford University) in southern England. In the first field season field-drain water contained high concentrations of pesticide. Soil studies demonstrated that the main mechanism for pesticide translocation was by preferential flow processes, both over the soil surface and through the soil profile via a macropore system that effectively by-passed the soil matrix. This macropore system included worm holes, shrinkage cracks and cracks resulting from ploughing. Rainfall events in early winter rapidly created a layer of saturation in the A horizon perched above a B horizon of very low hydraulic conductivity. Drain flow was initiated when the saturated layer in the A horizon extended into the upper 0.06m of the soil profile; thereafter water moved down slope via horizontal macropores possibly through a band of incorporated straw residues. These horizontal pathways for water movement connected with the fracture system of the mole drains, thus feeding the drains. Overland flow occurred infrequently during the season.

  10. Stemming the impact of health professional brain drain from Africa: a systemic review of policy options

    Directory of Open Access Journals (Sweden)

    Edward Zimbudzi

    2013-06-01

    Full Text Available Africa has been losing professionally trained health workers who are the core of the health system of this continent for many years. Faced with an increased burden of disease and coupled by a massive exodus of the health workforce, the health systems of many African nations are risking complete paralysis. Several studies have suggested policy options to reduce brain drain from Africa. The purpose of this paper is to review possible policies, which can stem the impact of health professional brain drain from Africa. A systemic literature review was conducted. Cinahl, Science Direct and PubMed databases were searched with the following terms: health professional brain drain from Africa and policies for reducing impact of brain drain from Africa. References were also browsed for relevant articles. A total of 425 articles were available for the study but only 23 articles met the inclusion criteria. The review identified nine policy options, which were being implemented in Africa, but the most common was task shifting which had success in several African countries. This review has demonstrated that there is considerable consensus on task shifting as the most appropriate and sustainable policy option for reducing the impact of health professional brain drain from Africa.

  11. Incarceration of the appendix into silicone drain holes without signs of appendicytis

    Institute of Scientific and Technical Information of China (English)

    Milivoje Vukovi; Neboja Moljevi; Sinia Crnogorac

    2012-01-01

    A surgical drainage simple surgical procedure that enables elimination of pathological effluent from operative wounds or other anatomical spaces, as well as removal of possible pathological exudates (blood, pus, enteric content, pancreatic juice, etc.). Nowadays, silicone drains are used for draining of the peritoneal cavity. In this study we presented a case of 42-year old female patient who underwent surgery after traumatic injury of intraabdominal organs and fracture of pelvic ring bone structure. Postoperative drain placed into the rectovesical space could not be removed on day 17 post surgery. Additional diagnostics could not identify the actual reason of failing to remove the drain, thus relaparotomy was required. Intraoperative diagnosis revealed incarceration of the antimesenteric part of the appendix into two circumjacent side perforations in the drain, without signs of acute inflammation. This paper presents an unusual and rare case of peritoneal drainage complication. The drainage of peritoneal cavity should be performed only in appropriate clinical situations, i.e. when the procedure is surgically indicated.

  12. Cover cropping to reduce nitrate loss through subsurface drainage in the northern U.S. corn belt.

    Science.gov (United States)

    Strock, J S; Porter, P M; Russelle, M P

    2004-01-01

    Despite the use of best management practices for nitrogen (N) application rate and timing, significant losses of nitrate nitrogen (NO3(-)-N) in drainage discharge continue to occur from row crop cropping systems. Our objective was to determine whether a autumn-seeded winter rye (Secale cereale L.) cover crop following corn (Zea mays L.) would reduce NO3(-)-N losses through subsurface tile drainage in a corn-soybean [Glycine mar (L.) Merr.] cropping system in the northern Corn Belt (USA) in a moderately well-drained soil. Both phases of the corn-soybean rotation, with and without the winter rye cover crop following corn, were established in 1998 in a Normania clay loam (fine-loamy, mixed, mesic Aquic Haplustoll) soil at Lamberton, MN. Cover cropping did not affect subsequent soybean yield, but reduced drainage discharge, flow-weighted mean nitrate concentration (FWMNC), and NO3(-)-N loss relative to winter fallow, although the magnitude of the effect varied considerably with annual precipitation. Three-year average drainage discharge was lower with a winter rye cover crop than without (p = 0.06). Over three years, subsurface tile-drainage discharge was reduced 11% and NO3(-)-N loss was reduced 13% for a corn-soybean cropping system with a rye cover crop following corn than with no rye cover crop. We estimate that establishment of a winter rye cover crop after corn will be successful in one of four years in southwestern Minnesota. Cover cropping with rye has the potential to be an effective management tool for reducing NO3(-)-N loss from subsurface drainage discharge despite challenges to establishment and spring growth in the north-central USA.

  13. Biogenic Carbon on Mars: A Subsurface Chauvinistic Viewpoint

    Science.gov (United States)

    Onstott, T. C.; Lau, C. Y. M.; Magnabosco, C.; Harris, R.; Chen, Y.; Slater, G.; Sherwood Lollar, B.; Kieft, T. L.; van Heerden, E.; Borgonie, G.; Dong, H.

    2015-12-01

    A review of 150 publications on the subsurface microbiology of the continental subsurface provides ~1,400 measurements of cellular abundances down to 4,800 meter depth. These data suggest that the continental subsurface biomass is comprised of ~1016-17 grams of carbon, which is higher than the most recent estimates of ~1015 grams of carbon (1 Gt) for the marine deep biosphere. If life developed early in Martian history and Mars sustained an active hydrological cycle during its first 500 million years, then is it possible that Mars could have developed a subsurface biomass of comparable size to that of Earth? Such a biomass would comprise a much larger fraction of the total known Martian carbon budget than does the subsurface biomass on Earth. More importantly could a remnant of this subsurface biosphere survive to the present day? To determine how sustainable subsurface life could be in isolation from the surface we have been studying subsurface fracture fluids from the Precambrian Shields in South Africa and Canada. In these environments the energetically efficient and deeply rooted acetyl-CoA pathway for carbon fixation plays a central role for chemolithoautotrophic primary producers that form the base of the biomass pyramid. These primary producers appear to be sustained indefinitely by H2 generated through serpentinization and radiolytic reactions. Carbon isotope data suggest that in some subsurface locations a much larger population of secondary consumers are sustained by the primary production of biogenic CH4 from a much smaller population of methanogens. These inverted biomass and energy pyramids sustained by the cycling of CH4 could have been and could still be active on Mars. The C and H isotopic signatures of Martian CH4 remain key tools in identifying potential signatures of an extant Martian biosphere. Based upon our results to date cavity ring-down spectroscopic technologies provide an option for making these measurements on future rover missions.

  14. Postoperative use of drain in thyroid lobectomy – a randomized clinical trial conducted at Civil Hospital, Karachi, Pakistan

    Directory of Open Access Journals (Sweden)

    Memon Zahid

    2012-09-01

    Full Text Available Abstract Background Thyroidectomy is a common surgical procedure, after which drains are placed routinely. This study aims to assess the benefits of placing postoperative drains, its complications and affects on postoperative stay, in thyroid lobectomy. Methodology Randomized Clinical Trial of 60 goitre patients undergoing lobectomy was conducted at Civil Hospital Karachi, during July’11-December’11. Patients were randomly assigned into drain and non drain groups. Patient demographics, labs and complications were noted. Ultrasound of neck was performed on both groups. For drain group, the amount of fluid present in the surgical bed and redivac drain was added to calculate fluid collection while in non drain group it was calculated by ultrasound of neck on first and second post-op days. Data was entered and analyzed on SPSS v16 using Independent T tests. Result The mean total drain output for 2 days in non-drain group was significantly lower 10.67 (±9.072 ml while in drain group was 30.97 (±42.812 ml (p = 0.014. The mean postoperative stay of drain group (79.2 ±15.63 hours was significantly higher, as compared to mean postoperative stay of non drain group (50.4 ±7.32 hours. Mean Visual Analogue Score (VAS for pain day 1 (6.2 ±0.997 and day 2 (4.17 ±0.95 in drain group were significantly higher compared to day 1 (2.6 ±1.163 and day 2 (1.3 ±0.877 of non drain group. From drain group, 2 patients complained of stridor, dyspnea on Day 1 which subsided by Day 2 and 1 case of voice change, with no such complains in non drain group. No patients from both groups developed seroma, wound infection or hematoma. Conclusion In uncomplicated surgeries especially for lobectomy, use of drain can be omitted.

  15. Enhanced bioremediation of subsurface contamination: Enzyme recruitment and redesign

    Energy Technology Data Exchange (ETDEWEB)

    Brockman, F.J.; Ornstein, R.L.

    1991-12-01

    Subsurface systems containing radionuclide, heavy metal, and organic wastes must be carefully attended to avoid further impacts to the environment or exposures to human populations. It is appropriate, therefore, to invest in basic research to develop the requisite tools and methods for addressing complex cleanup problems. The rational modification of subsurface microoganisms by enzyme recruitment and enzyme design, in concert with engineered systems for delivery of microorganisms and nutrients to the contaminated zone, are potentially useful tools in the spectrum of approaches that will be required for successful remediation of deep subsurface contamination.

  16. Evidence for a subsurface ocean on Europa

    Science.gov (United States)

    Carr, M.H.; Belton, M.J.S.; Chapman, C.R.; Davies, M.E.; Geissler, P.; Greenberg, R.; McEwen, A.S.; Tufts, B.R.; Greeley, R.; Sullivan, R.; Head, J.W.; Pappalardo, R.T.; Klaasen, K.P.; Johnson, T.V.; Kaufman, J.; Senske, D.; Moore, J.; Neukum, G.; Schubert, G.; Burns, J.A.; Thomas, P.; Veverka, J.

    1998-01-01

    Ground-based spectroscopy of Jupiter's moon Europa, combined with gravity data, suggests that the satellite has an icy crust roughly 150 km thick and a rocky interior. In addition, images obtained by the Voyager spacecraft revealed that Europa's surface is crossed by numerous intersecting ridges and dark bands (called lineae) and is sparsely cratered, indicating that the terrain is probably significantly younger than that of Ganymede and Callisto. It has been suggested that Europa's thin outer ice shell might be separated from the moon's silicate interior by a liquid water layer, delayed or prevented from freezing by tidal heating; in this model, the lineae could be explained by repetitive tidal deformation of the outer ice shell. However, observational confirmation of a subsurface ocean was largely frustrated by the low resolution (>2 km per pixel) of the Voyager images. Here we present high-resolution (54 m per pixel) Galileo spacecraft images of Europa, in which we find evidence for mobile 'icebergs'. The detailed morphology of the terrain strongly supports the presence of liquid water at shallow depths below the surface, either today or at some time in the past. Moreover, lower- resolution observations of much larger regions suggest that the phenomena reported here are widespread.

  17. The DOE Subsurface Microbial Culture Collection (SMCC)

    Energy Technology Data Exchange (ETDEWEB)

    Balkwill, David L.

    2006-05-23

    The primary activities associated with maintenance of the Subsurface Microbial Culture Collection (SMCC) were designed to ensure that the collection served as a valuable resource to DOE-funded and other scientists, especially DOE-funded scientists associated with the NABIR Program. These activities were carried out throughout the period covered by this report and in-cluded: (1) assistance in the selection of cultures for research, (2) distribution of cultures and/or data on request, (3) incorporation of newly isolated microbial strains, (4) preservation of newly isolated strains, (5) partial characterization of newly isolated strains, (6) development and main-tenance of representative subsets of cultures, (6) screening of SMCC strains for specific charac-teristics, (7) phylogenetic characterization of SMCC strains, (8) development and maintenance of a SMCC website, (9) maintenance of the SMCC databases, (10) archiving of SMCC records, and (11) quality assurance/quality control (QA/QC) activities. We describe in the Final Technical Report our accomplishments related to these activities during the period covered by this report.

  18. Delineating groundwater and subsurface structures by

    Science.gov (United States)

    Araffa, Sultan Awad Sultan; Helaly, Ahmed S.; Khozium, Ashraf; Lala, Amir M. S.; Soliman, Shokry A.; Hassan, Noha M.

    2015-06-01

    Geophysical tools such as magnetic, gravity and electric resistivity have been used to delineate subsurface structures, groundwater aquifer around Cairo-Belbies Desert road. A dipole-dipole section was measured at the central part of the study area with 2100 m length and electrode spacing 50 m for greater penetration depth. The results of the inverse resistivity data indicate that the study area includes two groundwater aquifers at different depths. The shallow aquifer water is near the surface and the deep aquifer lies at depth of about 115 m and exhibits low resistivity values ranging from 20 to 100 ohm m. One hundred and fifty-two gravity stations were measured using Autograv gravimeter (CG3), different gravity corrections (drift, elevation and latitude corrections) were applied. The corrected data represented by Bouguer anomaly map were filtered into regional and residual gravity anomaly maps. The residual gravity map indicates that the area is dissected by many faults with NW-SE, N-S, E-W and NE-SW trends. One hundred and fifty-three ground magnetic measurements are collected using two Proton magnetometers (Envimag). The corrected magnetic data are represented by total magnetic intensity map that was reduced to the magnetic pole. 3D magnetic modeling was applied to detect the depth of basaltic sheet and basement complex. The results indicated that the elevation of upper surface of basalt is ranging from 148 to -153 m and the elevation of lower surface of basalt is ranging from 148 to 269 m.

  19. iSTREEM(®) : An approach for broad-scale in-stream exposure assessment of "down-the-drain" chemicals.

    Science.gov (United States)

    Kapo, Katherine E; DeLeo, Paul C; Vamshi, Raghu; Holmes, Christopher M; Ferrer, Darci; Dyer, Scott D; Wang, Xinhao; White-Hull, Charlotte

    2016-10-01

    The "in-stream exposure model" iSTREEM(®) , a Web-based model made freely available to the public by the American Cleaning Institute, provides a means to estimate concentrations of "down-the-drain" chemicals in effluent, receiving waters, and drinking water intakes across national and regional scales under mean annual and low-flow conditions. We provide an overview of the evolution and utility of the iSTREEM model as a screening-level risk assessment tool relevant for down-the-drain products. The spatial nature of the model, integrating point locations of facilities along a hydrologic network, provides a powerful framework to assess environmental exposure and risk in a spatial context. A case study compared national distributions of modeled concentrations of the fragrance 1,3,4,6,7,8-Hexahydro-4,6,6,7,8,8,-hexamethylcyclopenta-γ-2-benzopyran (HHCB) and the insect repellent N,N-Diethyl-m-toluamide (DEET) to available monitoring data at comparable flow conditions. The iSTREEM low-flow model results yielded a conservative distribution of values, whereas the mean-flow model results more closely resembled the concentration distribution of monitoring data. We demonstrate how model results can be used to construct a conservative estimation of the distribution of chemical concentrations for effluents and streams leading to the derivation of a predicted environmental concentration (PEC) using the high end of the concentration distribution (e.g., 90th percentile). Data requirements, assumptions, and applications of iSTREEM are discussed in the context of other down-the-drain modeling approaches to enhance understanding of comparative advantages and uncertainties for prospective users interested in exposure modeling for ecological risk assessment. Integr Environ Assess Manag 2016;12:782-792. © 2016 SETAC.

  20. Interpretation of Cone Penetration Testing in Silty Soils Conducted under Partially Drained Conditions

    DEFF Research Database (Denmark)

    Holmsgaard, Rikke; Nielsen, Benjaminn Nordahl; Ibsen, Lars Bo

    2016-01-01

    The standard penetration rate used in cone penetration tests (CPTs) is 20 mm=s, regardless of soil type, which yields fully drained penetration in sand and fully undrained penetration in clay. However, for silty soils that represent an intermediate grain size composition and unique characteristics...... compared with sand and clay, the standard rate of penetration results in partially drained penetration, often leading to misinterpretation of this soil type. In this study, 15 CPTs, with penetration rates varying from 0.5 to 60 mm=s, were performed at a test site in northern Denmark, where the subsoil...... consisted primarily of sandy silt with clay bands. The results illustrated that when the penetration rate is reduced, the cone resistance increases, but the pore pressure decreases. The transition between undrained and fully drained penetration was determined by converting the results into a normalized...

  1. Pesticide transport to tile-drained fields in SWAT model – macropore flow and sediment

    DEFF Research Database (Denmark)

    Lu, Shenglan; Trolle, Dennis; Blicher-Mathiesen, Gitte;

    2015-01-01

    as a fraction of effective rainfall and transported to the tile drains directly. Macropore sediment transport is calculated similarly to the MACRO model (Jarvis et al., 1999). Mobile pesticide transport is calculated with a decay function with the flow, whereas sorbed pesticides transport is associated...... Tool (SWAT) to simulate transport of both mobile (e.g. Bentazon) and strongly sorbed (e.g. Diuron) pesticides in tile drains. Macropore flow is initiated when soil water content exceeds a threshold and rainfall intensity exceeds infiltration capacity. The amount of macropore flow is calculated......Preferential flow and colloidal facilitated transport via macopores connected to tile drains are the main pathways for pesticide transport from agricultural areas to surface waters in some area. We developed a macropore flow module and a sediment transport module for the Soil and Water Assessment...

  2. Restructuring of colloidal aggregates in shear flows and limitations of the free-draining approximation.

    Science.gov (United States)

    Becker, Volker; Schlauch, Eva; Behr, Marek; Briesen, Heiko

    2009-11-15

    We investigated the restructuring behavior of colloidal aggregates by means of the discrete element method. We used a recently proposed model [V. Becker, H. Briesen, Physical Review E 78 (6) (2008) 061404] for tangential inter-particle forces, capable of supporting bending moments. We extended this model by the capability of supporting torsional moments. The time evolution of the aggregates' radius of gyration was tracked and a power law relation between the number of primary particles and the final radius of gyration was found. For the hydrodynamic drag forces the free-draining approximation is employed. We investigated the quality of the free-draining approximation by fully resolved finite element simulations for small aggregates. We found that the free-draining approximation overestimates the drag forces and we identified the usage of effective shear rates as a possible ansatz for reduced modeling of hydrodynamic forces.

  3. Cardiac Arrest after Connecting Negative Pressure to the Subgaleal Drain during Craniotomy Closure

    Directory of Open Access Journals (Sweden)

    Monu Yadav

    2014-01-01

    Full Text Available A one-year-old child operated on for arachnoid cyst in right frontoparietotemporal region had sudden bradycardia followed by cardiac arrest leading to death after connecting negative pressure to the subgaleal drain during craniotomy closure. The surgical procedure was uneventful. It is a common practice to place epidural or subgaleal drains connected to a vacuum system towards the end of craniotomy to prevent accumulation of intracranial and extracranial blood. The phenomenon of bradycardia with hypotension is known to occur following negative pressure application to the epidural, epicranial, or subgaleal space after craniotomy closure. However cardiac arrest as a complication of negative pressure suction drain in neurosurgical patients is not described in the literature.

  4. Modeling the drain current and its equation parameters for lightly doped symmetrical double-gate MOSFETs

    Science.gov (United States)

    Bhartia, Mini; Chatterjee, Arun Kumar

    2015-04-01

    A 2D model for the potential distribution in silicon film is derived for a symmetrical double gate MOSFET in weak inversion. This 2D potential distribution model is used to analytically derive an expression for the subthreshold slope and threshold voltage. A drain current model for lightly doped symmetrical DG MOSFETs is then presented by considering weak and strong inversion regions including short channel effects, series source to drain resistance and channel length modulation parameters. These derived models are compared with the simulation results of the SILVACO (Atlas) tool for different channel lengths and silicon film thicknesses. Lastly, the effect of the fixed oxide charge on the drain current model has been studied through simulation. It is observed that the obtained analytical models of symmetrical double gate MOSFETs are in good agreement with the simulated results for a channel length to silicon film thickness ratio greater than or equal to 2.

  5. Short-channel drain current model for asymmetric heavily/lightly doped DG MOSFETs

    Indian Academy of Sciences (India)

    PRADIPTA DUTTA; BINIT SYAMAL; KALYAN KOLEY; ARKA DUTTA; C K SARKAR

    2017-08-01

    The paper presents a drain current model for double gate metal oxide semiconductor field effect transistors (DG MOSFETs) based on a new velocity saturation model that accounts for short-channel velocity saturation effect independently in the front and the back gate controlled channels under asymmetric front and back gate bias and oxide thickness. To determine the front and the back-channel velocity saturation, drain-induced barrierlowering is evaluated by effective gate voltages at the front and back gates obtained from surface potential at the threshold condition after considering symmetric and asymmetric front and back oxide thickness. The model alsoincorporates surface roughness scattering and ionized impurity scattering to estimate drain current for heavily/lightly doped channel for short-channel asymmetric DG MOSFET and a good agreement has been achieved with TCADsimulations, with a relative error of around 3–7%.

  6. Endoscopic placement of pancreatic stents and drains in the management of pancreatitis.

    Science.gov (United States)

    Kozarek, R A; Patterson, D J; Ball, T J; Traverso, L W

    1989-01-01

    Although widely used in the biliary tree, little data is available on endoscopic placement of stents or drains within the pancreas. This report describes 17 patients, nine with acute relapsing pancreatitis and eight with chronic pancreatitis, who had drain or stent placement for hypertensive pancreatic duct (PD) sphincter, dominant ductal stenosis, duct disruption, or pseudocyst. Two patients have subsequently undergone surgery, and six other patients continue long-term stent placement with marked reduction of chronic pain or attacks of recurrent pancreatitis. All six pseudocysts resolved, although one recurred and required surgery. It is concluded that pancreatic drains or stents may obviate the need for surgery, temporize before definitive therapy, or direct a subsequent surgical procedure. Images Figs. 1A and B. Figs. 2A-C. Figs. 2A-C. Fig. 3. Figs. 4A-D. Figs. 5A and B. PMID:2923512

  7. Uncontrolled Draining of Rainwater and Health Consequences in Yaoundé – Cameroon Uncontrolled Draining of Rainwater and Health Consequences in Yaoundé – Cameroon

    Directory of Open Access Journals (Sweden)

    Ojuku Tiafack

    2012-02-01

    Full Text Available Context: Like many sub Saharan African cities, Yaoundé is experiencing a faster growth of its population and urban perimeter. The urban population has grown from 812 000 inhabitants in 1987 to 2 100 000 inhabitants in 2006. However, this population growth has not been monitored by the city planners and decision makers. Accordingly, the city is lacking basic urban facilities. such as a good sewage system to evacuate urban waste water. Objective: This paper aims at addressing health consequences resulting from inadequate management of rainwater in Yaoundé. Material and methods: From the data gathered by us in the framework of the PERSAN programme focused on urban health, a cross sectional study has been carried out in 2002 and 2006 across the city. Based on socio-environmental and medical surveys, the study covered neighborhoods and 3 034 households in Yaoundé. Results: It comes out that that the present urban draining network is outdated and ineffective. This has led to increasing fl oods in several sectors of the city, with health hazards. It has been noted that many diarrheal diseases in Yaoundé are related to the poor sanitation resulting from urban waste coupled with standing waters. Conclusion: We are of the opinion that to solve this problem, there is urgent need to set up a new town-planning mechanism which takes into account the city’s demographic and space dynamics. Contexto: Como muchas ciudades africanas secundarias del Sahara, Yaoundé está experimentando un crecimiento rápido de su población y perímetro urbano. La población urbana ha crecido de 812 000 habitantes en 1987 a 2 100 000 habitantes en 2006. Sin embargo, este crecimiento de la población no ha sido supervisado por los planificadores de la ciudad y los que toman decisión. Por consiguiente, la ciudad está careciendo de instalaciones urbanas básicas tales como un buen sistema de las aguas residuales para evacuar las aguas negras urbanas. Objetivo: Este papel

  8. The hydrology of a drained topographical depression within an agricutlural field in north-central Iowa

    Science.gov (United States)

    Roth, Jason L.; Capel, Paul D.

    2012-01-01

    North-central Iowa is an agriculturally intensive area comprising the southeastern portion of the Prairie Pothole Region, a landscape containing a high density of enclosed topographical depressions. Artificial drainage practices have been implemented throughout the area to facilitate agricultural production. Vertical surface drains are utilized to drain the topographical depressions that accumulate water. This study focuses on the hydrology of a drained topographical depression located in a 39.5 ha agricultural field. To assess the hydrology of the drained depression, a water balance was constructed for 11 ponding events during the 2008 growing season. Continuous pond and groundwater level data were obtained with pressure transducers. Flows into the vertical surface drain were calculated based on pond depth. Precipitation inflows and evaporative outflows of the ponds were calculated using climatic data. Groundwater levels were used to assess groundwater/pond interactions. Results of the water balances show distinct differences between the inflows to and outflows from the depression based on antecedent conditions. In wet conditions, groundwater inflow sustained the ponds. The ponds receded only after the groundwater level declined to below the land surface. In drier conditions, groundwater was not a source of water to the depression. During these drier conditions, infiltration comprised 30% of the outflows from the depression during declining pond stages. Over the entire study period, the surface drain, delivering water to the stream, was the largest outflow from the pond, accounting for 97% of the outflow, while evapotranspiration was just 2%. Precipitation onto the pond surface proved to be a minor component, accounting for 4% of the total inflows.

  9. Effects of Drains on Pain, Comfort and Anxiety in Patients Undergone Surgery

    Directory of Open Access Journals (Sweden)

    Ummu Yildiz Findik

    2013-01-01

    Full Text Available Backround: Surgical drains negatively affect patients’ comfort, cause anxiety along with pain, as they are used to promote healing after surgery.Purpose: This study aimed to determine pain, comfort and anxiety levels of patients with drains postoperatively.Methodology: Research was performed with 192 patients undergone abdominal, neck, breast and open heart surgery and had surgical and underwater chest drains at the postoperative period. Patient Information Form, Numerical Pain Scale, General Comfort Questionnaire and Trait Anxiety Scale was used for collection of data. In evaluating the data, we used the t-test, variance and correlation analysis, mean, percentage and frequency.Results: The patients’ mean score of pain was 4.67±2.93, comfort was 2.75±0.29 and anxiety was 39.31±9.21. It was found statistically significant that the comfort level decreases as the pain level increases and that the patients undergone open heart surgery and with underwater chest drains have higher pain levels. It was found statistically significant that, comfort level in patients undergone abdominal or cardiac surgery is lower than patients undergone breast or neck surgery, and that the comfort level decreases as the duration of drains increases. The increasing state anxiety while pain increases and comfort decreases was found statistically significant.Conclusions: Surgeries and drains applied after these procedures decrease the comfort level of the patients as increases the pain level. Also, pain and discomfort increase the patients’ anxiety. Nurses who providing care to these patients are suggested to improve measures about pain and anxiety reduction for maintaining of comfort.

  10. Use of closed suction drain after primary total knee arthroplasty – an overrated practice

    Directory of Open Access Journals (Sweden)

    Sharma Gaurav M.

    2016-01-01

    Full Text Available Purpose: The age-old practice of closed suction drain following orthopedic procedures has been challenged since past few decades. Our aim was to assess the effectiveness of closed suction drain after total knee arthroplasty. Materials and methods: One hundred twenty patients (135 knees with primary Total Knee Arthroplasty were divided into a study group (no drain and a control group (drain used. Inclusion criteria were grade 3 and grade 4 osteoarthritis of the knee. Revision cases and rheumatoid arthritis were excluded. Parameters assessed were pain, pre and post-op Hb, dressing change, early infection, ecchymosis and duration of stay. Results were calculated using Western Ontario and McMaster Universities Osteoarthritis Index and Oxford Knee scoring systems at two weeks, six months and one year. Results: Mean age was 72.03 ± 6.68 in study group and 71.38 ± 7.02 in control group. Pre and post op Hb was 12.1678 ± 1.3220 (study group, 12.1803 ± 1.2717 (control group and 9.8373 ± 1.5703 (study group, 9.7918 ± 1.4163 (control group. There was one case of early infection in both groups which was controlled by oral antibiotics. Change of dressing and ecchymosis were more in the study group. Duration of hospital stay was more in the control group p < 0.0006 (statistically significant. Conclusion: There is no added advantage of closed suction drain over no drain usage and this practice can safely be brought to a halt.

  11. Numerical simulation of draining and drying procedure for the ITER Generic Equatorial Port Plug cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Tanchuk, Victor, E-mail: Victor.Tanchuk@sintez.niiefa.spb.su [JSC “D.V. Efremov Institute of Electrophysical Apparatus”, 196641 St. Petersburg (Russian Federation); Grigoriev, Sergey; Lyublin, Boris [JSC “D.V. Efremov Institute of Electrophysical Apparatus”, 196641 St. Petersburg (Russian Federation); Maquet, Philippe [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Senik, Konstantin [JSC “D.V. Efremov Institute of Electrophysical Apparatus”, 196641 St. Petersburg (Russian Federation); Pak, Sunil [National Fusion Research Institute, Daejeon (Korea, Republic of); Udintsev, Victor [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France)

    2016-11-01

    Highlights: • The cooling system of the ITER Generic Equatorial Port Plug (GEPP) is of a complicated combination of horizontal and vertical channels. • The calculation model for the entire GEPP cooling circuit comprising 12 sub-circuits and built up of 2421 finite-volume elements has been developed. • Transient analysis of this model simulating the draining procedure by the KORSAR/B1 code has been performed. • Water in amount of 263 g of initial 531 kg in the GEPP remains in the dead-ends of the DSM and DFW channels in 150 s of draining procedure. • Almost 3 h are required to boil off 263 g of water trapped in the dead-ends. - Abstract: For effective vacuum leak testing all cooling circuits serving the ITER vessel and in-vessel components shall be drained and dried so that after this procedure taking less than 100 h the purge gas passing through a component has water content less than 100 ppm. This process is four-stage, with the first stage using a short blast of compressed nitrogen to blow most of water in the coolant channels out of the circuit. This process is hindered by volumes which trap water due to gravity. To remove the trapped water, it is necessary, first, to heat up the structure by hot and compressed nitrogen, and then water is evaporated by depressurized nitrogen. The cooling system of the ITER Diagnostic Equatorial Port Plugs is of a complicated hydraulic configuration. The system branching might make difficult removal of water from the piping in the scheduled draining mode. The authors have proposed the KORSAR computation code to simulate draining of the GEPP cooling circuit. The numerical simulation performed has made it possible to describe the process dynamics during draining of the entire GEPP cooling circuit and to define the process time, amount and location of residual water and evolution of two-phase flow regime.

  12. A two-step model for Langerhans cell migration to skin-draining LN

    OpenAIRE

    2008-01-01

    Although the role of Langerhans cells (LC) in skin immune responses is still a matter of debate, it is known that LC require the chemokine receptor CCR7 for migrating to skin-draining LN. A report in the current issue of the European Journal of Immunology unfolds some of the intricacies of LC migration, showing that LC need CXCR4, but not CCR7, for their migration from the epidermis to the dermis. Thus, LC migration to skin-draining LN occurs in two distinct phases: a first step from the epid...

  13. An improvised two in one syringe suction drain for surgeries of extremities.

    Directory of Open Access Journals (Sweden)

    Kamath J

    2005-01-01

    Full Text Available Use of an improvised two in one syringe suction drain is being presented for a case with two adjacent non-communicating surgical wounds following release of Duputryn′s contracture primarily involving the longitudinal band of the palmar fascia of the hand, in line with the middle and ring finger. Instead of using two separate closed suction drainage system we modified our method by using a 3 way cannula which could accept 2 draining tubes to be connected to one 50cc syringe with negative suction pressure.

  14. West Twin Creek Alaska Subsurface Bromide Tracer Experiment, 2015

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data was produced as part of a subsurface tracer experiment performed on a boreal hillslope in July, 2015. The data is separated into three files: 'Well...

  15. SOLID OXYGEN SOURCE FOR BIOREMEDIATION IN SUBSURFACE SOILS

    Science.gov (United States)

    Sodium percarbonate was encapsulated in poly(vinylidene chloride) to determine its potential as a slow-release oxygen source for biodegradation of contaminan ts in subsurface soils. In laboratory studies under aqueous conditions, the encapsulated sodium percarbonate was estimate...

  16. Application of sand and geotextile envelope in subsurface drip ...

    African Journals Online (AJOL)

    TUOYO

    2010-08-09

    Aug 9, 2010 ... Subsurface drip irrigation is a technology used for better management of irrigation water. This ... for commercial vegetable production, with turbulent flow ... delivery system to carry the water to the field (Reich et al., 2009).

  17. A hydrogen-based subsurface microbial community dominated by methanogens.

    Science.gov (United States)

    Chapelle, Francis H; O'Neill, Kathleen; Bradley, Paul M; Methé, Barbara A; Ciufo, Stacy A; Knobel, LeRoy L; Lovley, Derek R

    2002-01-17

    The search for extraterrestrial life may be facilitated if ecosystems can be found on Earth that exist under conditions analogous to those present on other planets or moons. It has been proposed, on the basis of geochemical and thermodynamic considerations, that geologically derived hydrogen might support subsurface microbial communities on Mars and Europa in which methanogens form the base of the ecosystem. Here we describe a unique subsurface microbial community in which hydrogen-consuming, methane-producing Archaea far outnumber the Bacteria. More than 90% of the 16S ribosomal DNA sequences recovered from hydrothermal waters circulating through deeply buried igneous rocks in Idaho are related to hydrogen-using methanogenic microorganisms. Geochemical characterization indicates that geothermal hydrogen, not organic carbon, is the primary energy source for this methanogen-dominated microbial community. These results demonstrate that hydrogen-based methanogenic communities do occur in Earth's subsurface, providing an analogue for possible subsurface microbial ecosystems on other planets.

  18. Multi-Robot Systems for Subsurface Planetary Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a heterogeneous multi-robot team developed as a platform for effective subsurface planetary exploration. State-of-art robotic exploration...

  19. Dagang Subsurface Sucker Rod Pump and Its Fitting

    Institute of Scientific and Technical Information of China (English)

    Liu Chunyong

    1995-01-01

    @@ Petroleum Machinery Manufacturing Plant,Dagang Petroleum Administration is a manufacturer of subsurface sucker rod pump and its fittings. The plant is located in Tianjin,Bohai Bay, near communication hubs of Beijin and Tianjin port, covering an area of 286 000 square meter. Since the plant was established in 1974, it has been developed to be a modern enterprise of subsurface pump with enormous potentiality.

  20. Geochemical characterization of subsurface sediments in the netherlands.

    OpenAIRE

    1998-01-01

    Traditionally, the Netherlands' subsurface is mainly used to obtain good quality drinking and industrial waters from the different aquifers. Due to the lack of space on the surface, increasing environmental problems and demand for energy, the subsurface will be used increasingly for other activities, including large underground infrastructural projects, underground storage of waste and greenhousegasses and underground storage capacity for the energy sector.In order to evaluate the effects of ...