WorldWideScience

Sample records for monitoring studies conducted

  1. Monitoring corrosion rates and localised corrosion in low conductivity water

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    2006-01-01

    Monitoring of low corrosion rates and localised corrosion in a media with low conductivity is a challenge. In municipal district heating, quality control may be improved by implementing on-line corrosion monitoring if a suitable technique can be identified to measure both uniform and localised...... corrosion. Electrochemical techniques (LPR, EIS, crevice corrosion current) as well as direct measurement techniques (high-sensitive electrical resistance, weight loss) have been applied in operating plants. Changes in the corrosion processes are best monitored in non-aggressive, low conductivity media...... with sensitive electrical resistance technique and crevice corrosion current measurements....

  2. The electrical conductivity of CO2-bearing pore waters at elevated pressure and temperature: a laboratory study and its implications in CO2 storage monitoring and leakage detection

    Science.gov (United States)

    Börner, Jana H.; Herdegen, Volker; Repke, Jens-Uwe; Spitzer, Klaus

    2015-11-01

    and ion species dependence of the CO2 effect. Furthermore, the observations are analysed and predicted with a semi-analytical formulation for the electrical pore water conductivity taking into account the species' interactions. For the applicability of our results in practice of exploration and monitoring, we additionally provide a purely empirical formulation to compute the impact of CO2 on pore water conductivity at equilibrium which only requires the input of pressure, temperature and salinity information.

  3. Studies on Nanocomposite Conducting Coatings

    Directory of Open Access Journals (Sweden)

    Amitava Bhattacharyya

    2013-01-01

    Full Text Available Nanocomposite conducting coatings can impart stable surface electrical conductivity on the substrate. In this paper, carbon nanofiber (CNF and nanographite (NG are dispersed in thermoplastic polyurethane matrix and coated on the surface of glass and polyethylene terephthalate (PET film. The nanoparticles dispersion was studied under TEM. The coating thicknesses were estimated. Further, their resistance and impedance were measured. It has been observed that the 5 wt% CNF dispersed nanocomposite coatings show good conductivity. The use of NG can bring down the amount of CNF; however, NG alone has failed to show significant improvement in conductivity. The nanocomposite coating on PET film using 2.5 wt% of both CNF and NG gives frequency-independent impedance which indicates conducting network formation by the nanoparticles. The study was carried out at different test distances on nanocomposite coated PET films to observe the linearity and continuity of the conducting network, and the result shows reasonable linearity in impedance over total test length (from 0.5 cm to 4.5 cm. The impedance of nanocomposite coatings on glass is not frequency independent and also not following linear increase path with distance. This indicates that the dispersion uniformity is not maintained in the coating solution when it was coated on glass.

  4. Conducting Simulation Studies in Psychometrics

    Science.gov (United States)

    Feinberg, Richard A.; Rubright, Jonathan D.

    2016-01-01

    Simulation studies are fundamental to psychometric discourse and play a crucial role in operational and academic research. Yet, resources for psychometricians interested in conducting simulations are scarce. This Instructional Topics in Educational Measurement Series (ITEMS) module is meant to address this deficiency by providing a comprehensive…

  5. Nerve conduction and electromyography studies.

    Science.gov (United States)

    Kane, N M; Oware, A

    2012-07-01

    Nerve conduction studies (NCS) and electromyography (EMG), often shortened to 'EMGs', are a useful adjunct to clinical examination of the peripheral nervous system and striated skeletal muscle. NCS provide an efficient and rapid method of quantifying nerve conduction velocity (CV) and the amplitude of both sensory nerve action potentials (SNAPs) and compound motor action potentials (cMAPs). The CV reflects speed of propagation of action potentials, by saltatory conduction, along large myelinated axons in a peripheral nerve. The amplitude of SNAPs is in part determined by the number of axons in a sensory nerve, whilst amplitude of cMAPs reflects integrated function of the motor axons, neuromuscular junction and striated muscle. Repetitive nerve stimulation (RNS) can identify defects of neuromuscular junction (NMJ) transmission, pre- or post-synaptic. Needle EMG examination can detect myopathic changes in muscle and signs of denervation. Combinations of these procedures can establish if motor and/or sensory nerve cell bodies or peripheral nerves are damaged (e.g. motor neuronopathy, sensory ganglionopathy or neuropathy), and also indicate if the primary target is the axon or the myelin sheath (i.e. axonal or demyelinating neuropathies). The distribution of nerve damage can be determined as either generalised, multifocal (mononeuropathy multiplex) or focal. The latter often due to compression at the common entrapment sites (such as the carpal tunnel, Guyon's canal, cubital tunnel, radial groove, fibular head and tarsal tunnel, to name but a few of the reported hundred or so 'entrapment neuropathies').

  6. Electrical Properties of PPy-Coated Conductive Fabrics for Human Joint Motion Monitoring

    Directory of Open Access Journals (Sweden)

    Jiyong Hu

    2016-03-01

    Full Text Available Body motion signals indicate several pathological features of the human body, and a wearable human motion monitoring system can respond to human joint motion signal in real time, thereby enabling the prevention and treatment of some diseases. Because conductive fabrics can be well integrated with the garment, they are ideal as a sensing element of wearable human motion monitoring systems. This study prepared polypyrrole conductive fabric by in situ polymerization, and the anisotropic property of the conductive fabric resistance, resistance–strain relationship, and the relationship between resistance and the human knee and elbow movements are discussed preliminarily.

  7. Challenges in conducting psychiatry studies in India

    Directory of Open Access Journals (Sweden)

    Saifuddin Kharawala

    2011-01-01

    Full Text Available A large number of psychiatry studies are conducted in India. Psychiatry studies are complex and present unique challenges in the Indian setting. Ethical issues pertaining to the risk of worsening of illness, use of placebo and validity of informed consents are commonly faced. Site selection can be difficult due to the relative paucity of ICH-GCP (International Conference on Harmonisation - Good Clinical Practice trained psychiatry investigators in India. Recruitment can be challenging due to issues such as strict eligibility criteria, (lack of availability of caregiver, illness-related considerations, etc. Assessment of the consent capacity of patients is not simple, while structured assessments are not commonly employed. As the illness fluctuates, the consent capacity may change, thus requiring continued assessment of consent capacity. Study patients run the risk of worsening of illness and suicide due to exposure to inactive treatments; this risk is counterbalanced by use of appropriate study designs, as well as the indirect psychotherapeutic support received. Psychiatry studies are associated with a high placebo response. This necessitates conduct of placebo-controlled studies despite the attendant difficulties. Also, the high placebo response is often the cause of failed trials. Rating scales are essential for assessment of drug response. Some rating instruments as well as some rater training procedures may not be suitable for the Indian setting. Technological advancements may increase the procedural complexity but improve the quality of ratings. Psychiatry studies present monitors and auditors with unique scenarios too. Utilization of psychiatry specific training and expertise is recommended to ensure successful conduct of these studies in India.

  8. Conducting pilot and feasibility studies.

    Science.gov (United States)

    Cope, Diane G

    2015-03-01

    Planning a well-designed research study can be tedious and laborious work. However, this process is critical and ultimately can produce valid, reliable study findings. Designing a large-scale randomized, controlled trial (RCT)-the gold standard in quantitative research-can be even more challenging. Even the most well-planned study potentially can result in issues with research procedures and design, such as recruitment, retention, or methodology. One strategy that may facilitate sound study design is the completion of a pilot or feasibility study prior to the initiation of a larger-scale trial. This article will discuss pilot and feasibility studies, their advantages and disadvantages, and implications for oncology nursing research. 
.

  9. STUDIES ON ENHANCED CONDUCTIVITY OF STRETCHED CONDUCTING POLYMERS

    Institute of Scientific and Technical Information of China (English)

    WAN Meixiang

    1995-01-01

    A physical model of series of the conductivity on chain and the interchain conductivity between chains is proposed to explain enhanced conductivity of stretched conducting polymers.This model suggests that the enhanced conductivity for stretched conducting polymers might be due to increasing of the interchain conductivity between chains along the elongation direction after drawing processes if the conductivity on chain is assumed much larger than that of the interchain conductivity between chains. According to this model, it is expected that the temperature dependence of conductivity measured by four-probe method for stretched conducting polymers is controlled by a variation of the interchain conductivity between chains with temperature, which can be used to explain that a metallic temperature dependence of conductivity for stretched conducting polymers is not observed although the conductivity along the elongation direction is enhanced by two or three orders of magnitude.

  10. Organizational aspects of conducting of bioequivalence study

    Directory of Open Access Journals (Sweden)

    Khokhlov A.L.

    2014-03-01

    Full Text Available Aim: to evaluate the organizational aspects of conducting bioequivalence study in Russia on the example of one of the clinical centers, Yaroslavl. Material and methods. On the basis of the Municipal Autonomous institution of health care of the Yaroslavl region Clinical hospital №2 (CH, clinical base of the Department of clinical pharmacology of YSMA was held 93 bioequivalence studies and pharmacokinetics in the period from 2011 to 2014, of which 15 studies of foreign sponsors and 78 of domestic producers. Result.: The studies involved 48 volunteers of both sexes from the database of clinical center CH №2. There were 698 females (48.6% and 739 males (51.4%. The average age of the volunteers was 26,37 years. In each study there were from 18 to 103 volunteers, depending on the design of the research Protocol. At the same time Russian studies ranged about 18-24 volunteers, about 30-103 volunteers abroad. The number of doubles in domestic studies ranged from 2 to 6 persons, and foreign — from 6 to 12 people. 10-15% from the whole number of subjects were not included into the study. Conclusion. In Russia bioequivalence of medicines for more than ten years is the main requirement of medico-biological control generic drugs. Regardless of the manufacturer to the generic drugs are exactly the same as the original drugs, must meet the following requirements: quality efficiency and safety. In connection with the increase in recent years of bioequivalence studies of medicines, require close monitoring of the quality of these studies on the territory of the Russian Federation.

  11. Self-monitoring electrically conductive asphalt-based composite containing carbon fillers

    Institute of Scientific and Technical Information of China (English)

    WU Shao-peng; LIU Xiao-ming; YE Qun-shan; LI Ning

    2006-01-01

    A new novel function materials,structure self-monitoring asphalt-based composite was introduced. The results show that the output resistance of electrically conductive asphalt-based composites would change under cyclic loading and vehicle loading action. The resistance change of conductive asphalt-based composites was aroused by the variation of its interior structure. When the fatigue failure was studied,the larger cracks cut the continuous electrically conductive path and the electron is difficult to overcome the potential barrier of gap. In the early period,the slight deformation and microcrack may be recovered due to the viscoelasticity character of asphalt,which leads to some cracks close again,the output resistance changes a little. But with the shear process performs continuously,the cracks become larger and larger,which would cut the conductive path and block off the transition of electrons,and if the cracks are large enough,the pitch-matrix composites containing carbon fillers will lose electrically conductive function. When the rutting failure was studied,the flowage of conductive substance results in the decrease of substance due to electrically conducting and conductive path decreasing. The decrease of electron volume contribute to electrically conducting and large stone aggregate prevent the electron from transiting. In a word,the variation of output resistance is aroused by the variation of interior structure completely.

  12. Monitoring of enzymatic reactions using capillary electrophoresis with conductivity detection

    OpenAIRE

    2009-01-01

    Capillary electrophoresis combined with contactless conductivity detection allows to separate and detect the ionic species, which are neither UV absorbing nor fluorescent. This thesis focuses on the applications of this method on enzymatic reactions in different analytical tasks. First, the non-ionic species ethanol, glucose, ethyl acetate and ethyl butyrate were made accessible for analysis by capillary electrophoresis via charged products or byproducts obtained in enzymati...

  13. Measuring the Thermal Conductivities of Low Heat Conducting Disk Samples by Monitoring the Heat Flow

    Directory of Open Access Journals (Sweden)

    José A. Ibáñez-Mengual

    2017-02-01

    Full Text Available This article aims to establish an experimental procedure to measure heat transmission coefficients in low heat conductive materials. The newly developed model takes as starting point the application of Fourier’s law to a disk sample when a temperature gradient is established between its faces. The power of a heating element is determined as the heat transfer coefficient of the problem disk. Initially, a glass vessel containing water is placed in direct contact with the heating element; then, a problem plastic disk is placed between this element and the glass vessel, treating the set as a composite wall. Prior to the above the water equivalent of a calorimetric set (vessel + water + accessories and the thermal conductivity of the vessel must be determined. The thermal conductivity of the problem plastic disk sample is obtained for temperatures ranging from 30 to 70° C. The results reveal the existence of some type of structural transition for the problem material.

  14. An inductive conductivity meter for monitoring the salinity of dialysis water

    DEFF Research Database (Denmark)

    Diamond, J.M.

    1970-01-01

    An inductive conductivity meter is described, especially adapted as a salinity monitor for dialysis water. Salinity are given. The principal problems of the inductive conductivity meter result from the low conductivity of electrolytes. The weak coupling due to the electrolyte means that stray...

  15. DC electrical conductivity study of cerium doped conducting glass systems

    Science.gov (United States)

    Barde, R. V.; Waghuley, S. A.

    2013-06-01

    The glass samples of composition 60V2O5-5P2O5-(35-x)B2O3-xCeO2, (1 ≤ x ≤ 5) were prepared by the conventional melt quench method. The samples were characterized by X-ray diffraction and thermo gravimetric-differential thermal analysis. The glass transition temperature and crystallization temperature determined from TG-DTA analysis. The DC electrical conductivity has been carried out in the temperature range 303-473 K. The maximum conductivity and minimum activation energy were found to be 0.039 Scm-1 and 0.15 eV at 473 K for x=1, respectively.

  16. Sensory nerve conduction studies in neuralgic amyotrophy.

    Science.gov (United States)

    van Alfen, Nens; Huisman, Willem J; Overeem, S; van Engelen, B G M; Zwarts, M J

    2009-11-01

    Neuralgic amyotrophy is a painful, episodic peripheral nerve disorder localized to the brachial plexus. Sensory symptoms occur in 80% of the patients. We assessed the frequency of abnormalities in sensory nerve conduction studies of the lateral and medial antebrachial cutaneous, radial sensory, median sensory, and ulnar sensory nerves in 112 patients. Sensory nerve conduction studies showed abnormalities in nerves, even when the nerve was clinically affected. The lateral and medial antebrachial cutaneous nerves were most often abnormal, in 15% and 17% of nerves. No correlation with the presence or localization of clinical deficits was found. Brachial plexus sensory nerve conduction studies seem to be of little diagnostic value in neuralgic amyotrophy. Our findings also indicate that some sensory lesions may be in the nerve roots instead of the plexus. An examination of normal sensory nerve conduction studies does not preclude neuralgic amyotrophy as a diagnosis.

  17. Robust, low-cost data loggers for stream temperature, flow intermittency, and relative conductivity monitoring

    Science.gov (United States)

    Chapin, Thomas; Todd, Andrew S.; Zeigler, Matthew P.

    2014-01-01

    Water temperature and streamflow intermittency are critical parameters influencing aquatic ecosystem health. Low-cost temperature loggers have made continuous water temperature monitoring relatively simple but determining streamflow timing and intermittency using temperature data alone requires significant and subjective data interpretation. Electrical resistance (ER) sensors have recently been developed to overcome the major limitations of temperature-based methods for the assessment of streamflow intermittency. This technical note introduces the STIC (Stream Temperature, Intermittency, and Conductivity logger); a robust, low-cost, simple to build instrument that provides long-duration, high-resolution monitoring of both relative conductivity (RC) and temperature. Simultaneously collected temperature and RC data provide unambiguous water temperature and streamflow intermittency information that is crucial for monitoring aquatic ecosystem health and assessing regulatory compliance. With proper calibration, the STIC relative conductivity data can be used to monitor specific conductivity.

  18. Electric conductivity for laboratory and field monitoring of induced partial saturation (IPS) in sands

    Science.gov (United States)

    Kazemiroodsari, Hadi

    Liquefaction is loss of shear strength in fully saturated loose sands caused by build-up of excess pore water pressure, during moderate to large earthquakes, leading to catastrophic failures of structures. Currently used liquefaction mitigation measures are often costly and cannot be applied at sites with existing structures. An innovative, practical, and cost effective liquefaction mitigation technique titled "Induced Partial Saturation" (IPS) was developed by researchers at Northeastern University. The IPS technique is based on injection of sodium percarbonate solution into fully saturated liquefaction susceptible sand. Sodium percarbonate dissolves in water and breaks down into sodium and carbonate ions and hydrogen peroxide which generates oxygen gas bubbles. Oxygen gas bubbles become trapped in sand pores and therefore decrease the degree of saturation of the sand, increase the compressibility of the soil, thus reduce its potential for liquefaction. The implementation of IPS required the development and validation of a monitoring and evaluation technique that would help ensure that the sands are indeed partially saturated. This dissertation focuses on this aspect of the IPS research. The monitoring system developed was based on using electric conductivity fundamentals and probes to detect the transport of chemical solution, calculate degree of saturation of sand, and determine the final zone of partial saturation created by IPS. To understand the fundamentals of electric conductivity, laboratory bench-top tests were conducted using electric conductivity probes and small specimens of Ottawa sand. Bench-top tests were used to study rate of generation of gas bubbles due to reaction of sodium percarbonate solution in sand, and to confirm a theory based on which degree of saturation were calculated. In addition to bench-top tests, electric conductivity probes were used in a relatively large sand specimen prepared in a specially manufactured glass tank. IPS was

  19. In Situ Monitoring of Dispersion Dynamics of Carbon Nanotubes during Sonication Using Electrical Conductivity Measurements

    Directory of Open Access Journals (Sweden)

    Syed Sadiq Ali

    2015-01-01

    Full Text Available The main challenge in the fabrication of carbon nanotube- (CNT- based composite materials is the optimization of the sonication time in order to obtain homogenous and uniform dispersion of CNTs. Past studies mostly relied on postprocessing characterization techniques to address this issue. In the present, however, in situ monitoring of dispersion dynamics of CNTs in distilled water is carried out using instantaneous conductivity measurements. Using a computer controlled data acquisition system, the time evolution of the solution conductivity was carefully recorded. The data were then used to evaluate the intensity of turbulent fluctuations, which clearly highlighted the existence of three distinct sonication phases. During the first phase, the conductivity fluctuations initially increased attaining ultimately a maximum, thus indicating the occurrence of large agglomerates of CNTs. During the second phase of sonication, the solution conductivity showed a rather steep increase while fluctuations steadily declined. This phenomenon can be attributed to the breakdown of large CNT agglomerates, resulting in greater dispersion homogeneity of CNTs. During the third phase, after almost 650 kJ/L of sonication energy, the conductivity increase was almost negligible. The fluctuation intensity also remained constant during this phase signifying that the further sonication was no longer required.

  20. A first approach to foot motion monitoring using conductive polymer sensors

    Science.gov (United States)

    Castano, L. M.; Winkelmann, A. E.; Flatau, A. B.

    2009-03-01

    A study was conducted of socks fitted with thin flexible conductive polymer sensors for the potential use as a smart sock for monitoring foot motion. The thin flexible sensors consisted of a conductive polymer applied on an elastic textile substrate that exhibited a resistance change when strained. Quasi-static response tests of the basic sensor over a static load range of a few Newtons were conducted and showed a time varying response as observed by previous investigators. Dynamic testing through an electrodynamic shaker shows good dynamic response at a low frequency range, less than 4Hz. Strips of 12 cm x 1 cm of the sensor on fabric showed a reproducible basal resistance on the order of 10KOhms. Other geometries of the continuous sensors and correlation of strain to resistance variation were studied. Similar tests were performed on different textile substrates which vary in composition and microstructure, i.e. woven, knitted, nylon%, polyester%, etc... These sensors were integrated into socks and preliminary results indicate that distinct responses to different foot motion patterns are detected in sensors placed at different joint locations on the foot. Further processing of strain results from smart socks should provide information about the kinematics and dynamics of the human foot.

  1. Laboratory monitoring of CO2 migration and phase transition using complex electrical conductivity

    NARCIS (Netherlands)

    Kirichek, O.; Ghose, R.; Heller, H.K.J.

    2013-01-01

    We explore a new monitoring technique for the CO2 front propagation and phase transition processes using complex electrical conductivity measurements. A laboratory facility has been built to conduct coreflood experiments under reservoir conditions. CO2 is injected in both dry and brine-saturated res

  2. Self-potential and Complex Conductivity Monitoring of In Situ Hydrocarbon Remediation in Microbial Fuel Cell

    Science.gov (United States)

    Zhang, C.; Revil, A.; Ren, Z.; Karaoulis, M.; Mendonca, C. A.

    2013-12-01

    Petroleum hydrocarbon contamination of soil and groundwater in both non-aqueous phase liquid and dissolved forms generated from spills and leaks is a wide spread environmental issue. Traditional cleanup of hydrocarbon contamination in soils and ground water using physical, chemical, and biological remedial techniques is often expensive and ineffective. Recent studies show that the microbial fuel cell (MFC) can simultaneously enhance biodegradation of hydrocarbons in soil and groundwater and yield electricity. Non-invasive geophysical techniques such as self-potential (SP) and complex conductivity (induced polarization) have shown the potential to detect and characterize the nature of electron transport mechanism of in situ bioremediation of organic contamination plumes. In this study, we deployed both SP and complex conductivity in lab scale MFCs to monitor time-laps geophysical response of degradation of hydrocarbons by MFC. Two different sizes of MFC reactors were used in this study (DI=15 cm cylinder reactor and 94.5cm x 43.5 cm rectangle reactor), and the initial hydrocarbon concentration is 15 g diesel/kg soil. SP and complex conductivity measurements were measured using non-polarizing Ag/AgCl electrodes. Sensitivity study was also performed using COMSOL Multiphysics to test different electrode configurations. The SP measurements showed stronger anomalies adjacent to the MFC than locations afar, and both real and imaginary parts of complex conductivity are greater in areas close to MFC than areas further away and control samples without MFC. The joint use of SP and complex conductivity could in situ evaluate the dynamic changes of electrochemical parameters during this bioremediation process at spatiotemporal scales unachievable with traditional sampling methods. The joint inversion of these two methods to evaluate the efficiency of MFC enhanced hydrocarbon remediation in the subsurface.

  3. Sensory nerve conduction studies in neuralgic amyotrophy.

    NARCIS (Netherlands)

    Alfen, N. van; Huisman, W.J.; Overeem, S.; Engelen, B.G.M. van; Zwarts, M.J.

    2009-01-01

    Neuralgic amyotrophy is a painful, episodic peripheral nerve disorder localized to the brachial plexus. Sensory symptoms occur in 80% of the patients. We assessed the frequency of abnormalities in sensory nerve conduction studies of the lateral and medial antebrachial cutaneous, radial sensory, medi

  4. Miniature ambulatory skin conductance monitor and algorithm for investigating hot flash events.

    Science.gov (United States)

    Bahr, Dennis E; Webster, John G; Grady, Deborah; Kronenberg, Fredi; Creasman, Jennifer; Macer, Judy; Shults, Mark; Tyler, Mitchell; Zhou, Xin

    2014-02-01

    A skin conductance monitoring system was developed and shown to reliably acquire and record hot flash events in both supervised laboratory and unsupervised ambulatory conditions. The 7.2 × 3.8 × 1.2 cm(3) monitor consists of a disposable adhesive patch supporting two hydrogel electrodes and a reusable, miniaturized, enclosed electronic circuit board that snaps onto the electrodes. The monitor measures and records the skin conductance for seven days without external wires or telemetry and has an event marker that the subject can press whenever a hot flash is experienced. The accuracy of the system was demonstrated by comparing the number of hot flashes detected by algorithms developed during this research with the number identified by experts in hot flash studies. Three methods of detecting hot flash events were evaluated, but only two were fully developed. The two that were developed were an artificial neural network and a matched filter technique with multiple kernels implemented as a sliding form of the Pearson product-moment correlation coefficient. Both algorithms were trained on a 'development' cohort of 17 women and then validated using a second similar 'validation' cohort of 20. All subjects were between the ages of 40 and 60 and self-reported ten or more hot flashes per day over a three day period. The matched filter was the most accurate with a mean sensitivity of 0.92 and a mean specificity of 0.90 using the data from the development cohort and a mean sensitivity of 0.92 and a mean specificity of 0.87 using the data from the validation cohort. The matched filter was the method implemented in our processing software.

  5. Use of the Complex Conductivity Method to Monitor Hydrocarbon Degradation in Brackish Environments

    Science.gov (United States)

    Ntarlagiannis, D.; Beaver, C. L.; Kimak, C.; Slater, L. D.; Atekwana, E. A.; Rossbach, S.

    2015-12-01

    Hydrocarbon contamination of the subsurface is a global environmental problem. The size, location and recurrence rate of contamination very often inhibits active remediation strategies. When there is no direct threat to humans, and direct/invasive remediation methods are prohibited, monitored natural attenuation is often the remediation method of choice. Consequently, long-term monitoring of hydrocarbon degradation is needed to validate remediation. Geophysical methods, frequently utilized to characterize subsurface contamination, have the potential to be adopted for long term monitoring of contaminant degradation. Over the last decade, the complex conductivity method has shown promise as a method for monitoring hydrocarbon degradation processes in freshwater environments. We investigated the sensitivity of complex conductivity to natural attenuation of oil in a brackish setting, being more representative of the conditions where most oil spills occur such as in coastal environments. We performed a series of laboratory hydrocarbon biodegradation experiments whilst continuously monitoring complex conductivity. Sediments from a beach impacted by the Deepwater Horizon (DWH) spill were used to provide the hydrocarbon degraders, while fluids with three different salinities, ranging from fresh water to brackish water, were used as the supporting media. All experimental columns, including two abiotic controls, were run in duplicate. Early results show a dependence of the complex conductivity parameters (both electrolytic and interfacial) on biodegradation processes. Despite the small signals relative to freshwater conditions, the imaginary part of the complex conductivity appears to be sensitive to biodegradation processes. The columns with highest salinity fluids - similar to the salinites for the site where the sediments were collected - showed distinctive complex conductivity responses similar to microbial growth curves. Geochemical monitoring confirmed elevated rates

  6. Conductivity-based strain monitoring and damage characterization of fiber reinforced cementitious structural components

    Science.gov (United States)

    Hou, Tsung-Chin; Lynch, Jerome P.

    2005-05-01

    In recent years, a new class of cementitious composite has been proposed for the design and construction of durable civil structures. Termed engineered cementitious composites (ECC), ECC utilizes a low volume fraction of short fibers (polymer, steel, carbon) within a cementitious matrix resulting in a composite that strain hardens when loaded in tension. By refining the mechanical properties of the fiber-cement interface, the material exhibits high tolerance to damage. This study explores the electrical properties of ECC materials to monitor their performance and health when employed in the construction of civil structures. In particular, the conductivity of ECC changes in proportion to strain indicating that the material is piezoresistive. In this paper, the piezoresistive properties of various ECC composites are thoroughly explored. To measure the electrical resistance of ECC structures in the field, a low-cost wireless active sensing unit is proposed. The wireless active sensing unit is capable of applying DC and AC voltage signals to ECC elements while simultaneously measuring their corresponding voltages away from the signal input. By locally processing the corresponding input-output electrical signals recorded by the wireless active sensing units, the magnitude of strain in ECC elements can be calculated. In addition to measuring strain, the study seeks to correlate changes in ECC electrical properties to the magnitude of crack damage witnessed in tested specimens. A large number of ECC specimens are tested in the laboratory including a large-scale ECC bridge pier laterally loaded under cyclically repeated drift reversals. The novel self-sensing properties of ECC exploited by a wireless monitoring system hold tremendous promise for the advancement of structural health monitoring of ECC structures.

  7. Cotton Fabric Coated with Conducting Polymers and its Application in Monitoring of Carnivorous Plant Response

    Directory of Open Access Journals (Sweden)

    Václav Bajgar

    2016-04-01

    Full Text Available The paper describes the electrical plant response to mechanical stimulation monitored with the help of conducting polymers deposited on cotton fabric. Cotton fabric was coated with conducting polymers, polyaniline or polypyrrole, in situ during the oxidation of respective monomers in aqueous medium. Thus, modified fabrics were again coated with polypyrrole or polyaniline, respectively, in order to investigate any synergetic effect between both polymers with respect to conductivity and its stability during repeated dry cleaning. The coating was confirmed by infrared spectroscopy. The resulting fabrics have been used as electrodes to collect the electrical response to the stimulation of a Venus flytrap plant. This is a paradigm of the use of conducting polymers in monitoring of plant neurobiology.

  8. Conducting Polymer Scaffolds for Hosting and Monitoring 3D Cell Culture

    KAUST Repository

    Inal, Sahika

    2017-05-03

    This work reports the design of a live-cell monitoring platform based on a macroporous scaffold of a conducting polymer, poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate). The conducting polymer scaffolds support 3D cell cultures due to their biocompatibility and tissue-like elasticity, which can be manipulated by inclusion of biopolymers such as collagen. Integration of a media perfusion tube inside the scaffold enables homogenous cell spreading and fluid transport throughout the scaffold, ensuring long term cell viability. This also allows for co-culture of multiple cell types inside the scaffold. The inclusion of cells within the porous architecture affects the impedance of the electrically conducting polymer network and, thus, is utilized as an in situ tool to monitor cell growth. Therefore, while being an integral part of the 3D tissue, the conducting polymer is an active component, enhancing the tissue function, and forming the basis for a bioelectronic device with integrated sensing capability.

  9. 21 CFR 312.87 - Active monitoring of conduct and evaluation of clinical trials.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Active monitoring of conduct and evaluation of clinical trials. 312.87 Section 312.87 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE INVESTIGATIONAL NEW DRUG APPLICATION Drugs Intended to Treat Life-threatening...

  10. 40 CFR 141.211 - Special notice for repeated failure to conduct monitoring of the source water for Cryptosporidium...

    Science.gov (United States)

    2010-07-01

    ... conduct monitoring of the source water for Cryptosporidium and for failure to determine bin classification... Notification of Drinking Water Violations § 141.211 Special notice for repeated failure to conduct monitoring....701 must notify persons served by the water system that monitoring has not been completed as specified...

  11. Electrochemical Study of Conductive Gel Polymer

    Institute of Scientific and Technical Information of China (English)

    Zhaohui Li; Jing Jiang; Gangtie Lei

    2005-01-01

    @@ 1Introduction Conventional ion-conducting polymer consists of electrolyte salt and polymer matrix, so-called salt-inpolymer. It possesses lower conductivity because the migration of ions depends on the motion of polymer segmental. To increase the ionic conductivity, a kind of gel polymer film (GPF) was prepared by in situ polymerization of methyl methacrylate (MMA) monomer in room-temperature ionic liquid(RTIL), 1-butyl-3-methylimidazolium hexafluorophosphate (BMIPF6). Due to immeasurably low vapor pressure, high ionic conductivity, and greater thermal and electrochemical stability, BMIPF6 is suitable electrolyte salts for ion-conducting polymer.

  12. Sensitive and Fast Humidity Sensor Based on A Redox Conducting Supramolecular Ionic Material for Respiration Monitoring.

    Science.gov (United States)

    Yan, Hailong; Zhang, Li; Yu, Ping; Mao, Lanqun

    2017-01-03

    Real-time monitoring of respiratory rate (RR) is highly important for human health, clinical diagnosis, and fundamental scientific research. Exhaled humidity-based RR monitoring has recently attracted increased attention because of its accuracy and portability. Here, we report a new design of an exhaled humidity sensor for the real-time monitoring of the RR based on a synthetic redox conducting supramolecular ionic material (SIM). The humidity-dependent conducting SIM is prepared by ionic self-assembly in aqueous solutions of electroactive 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 1,10-bis(3-methylimidazolium-1-yl) decane (C10(mim)2). By taking full advantage of the high hygroscopicity and water stability arising from the ionic and hydrophobic interactions between two building blocks (i.e., ABTS and C10(mim)2), the SIM-based humidity sensor exhibits both high sensitivity (less than 0.1% relative humidity) and fast response time (∼37 ms). These excellent properties allow this humidity sensor to noninvasively monitor the RRs of not only humans but also rats that have a much faster RR and much smaller tidal volume than humans. Moreover, this sensor could also be efficiently used for the real-time monitoring of the recovery process of rats from anesthesia.

  13. Case management for the treatment of patients with major depression in general practices – rationale, design and conduct of a cluster randomized controlled trial – PRoMPT (Primary care Monitoring for depressive Patient's Trial [ISRCTN66386086] – Study protocol

    Directory of Open Access Journals (Sweden)

    Krauth Christian

    2005-10-01

    Full Text Available Abstract Background Depression is a disorder with high prevalence in primary health care and a significant burden of illness. The delivery of health care for depression, as well as other chronic illnesses, has been criticized for several reasons and new strategies to address the needs of these illnesses have been advocated. Case management is a patient-centered approach which has shown efficacy in the treatment of depression in highly organized Health Maintenance Organization (HMO settings and which might also be effective in other, less structured settings. Methods/Design PRoMPT (PRimary care Monitoring for depressive Patients Trial is a cluster randomised controlled trial with General Practice (GP as the unit of randomisation. The aim of the study is to evaluate a GP applied case-management for patients with major depressive disorder. 70 GPs were randomised either to intervention group or to control group with the control group delivering usual care. Each GP will include 10 patients suffering from major depressive disorder according to the DSM-IV criteria. The intervention group will receive treatment based on standardized guidelines and monthly telephone monitoring from a trained practice nurse. The nurse investigates the patient's status concerning the MDD criteria, his adherence to GPs prescriptions, possible side effects of medication, and treatment goal attainment. The control group receives usual care – including recommended guidelines. Main outcome measure is the cumulative score of the section depressive disorders (PHQ-9 from the German version of the Prime MD Patient Health Questionnaire (PHQ-D. Secondary outcome measures are the Beck-Depression-Inventory, self-reported adherence (adapted from Moriskey and the SF-36. In addition, data are collected about patients' satisfaction (EUROPEP-tool, medication, health care utilization, comorbidity, suicide attempts and days out of work. The study comprises three assessment times: baseline

  14. Electrochemical Corrosion Studies in Low Conductivity Media

    Science.gov (United States)

    1990-11-01

    E.o (2) and the Tafel slopes: B - bbc/2.3(b + b,). (3) A Qomputer program has been devloped and tested earlier which allows simultaneous determinacion ...conductance of a solution made up of ions of high equivalent conductance, which is the case here. A Bode plot (log IZI vs log f) representation of

  15. Conductivity studies on microwave synthesized glasses

    Indian Academy of Sciences (India)

    Asha Rajiv; M Sudhakara Reddy; R Viswanatha; Jayagopal Uchil; C Narayana Reddy

    2015-08-01

    Conductivity measurements have been made on 2O5 − (100 − ) [0.5 Na2O + 0.5 B2O3] (where 10 ≤ ≤ 50) glasses prepared by using microwave method. DC conductivity () measurements exhibit temperature-and compositional-dependent trends. It has been found that conductivity in these glasses changes from the predominantly ‘ionic’ to predominantly ‘electronic’ depending upon the chemical composition. The dc conductivity passes through a deep minimum, which is attributed to network disruption. Also, this nonlinear variation in dc and activation energy can be interpreted using ion–polaron correlation effect. Electron paramagnetic resonance (EPR) and impedance spectroscopic techniques have been used to elucidate the nature of conduction mechanism. The EPR spectra reveals, in least modified (25 Na2O mol%) glasses, conduction is due to the transfer of electrons via aliovalent vanadium sites, while in highly modified (45 Na2O mol%) glasses Na+ ion transport dominates the electrical conduction. For highly modified glasses, frequency-dependent conductivity has been analysed using electrical modulus formalism and the observations have been discussed.

  16. Study on conductance of supersaturated chloride microdroplets

    Institute of Scientific and Technical Information of China (English)

    HE KeJuan; CHENG Hua; ZHU YanYing; WANG LiangYu; ZHANG YunHong

    2009-01-01

    By using the measuring system previously designed by the authors,the conductance of KCI,NaCl and NH4Cl microdroplets is obtained in the whole measuring RH range,especially in the supersaturation region,which cannot be acquired from the bulk solutions and fills the gap of lack of experimental data of conductance under the supersaturated state.The ERH and DRH of these three kinds of microdroplets observed from a microscope are 80.5% and 95.4% (KCI),75.7% and 93.3% (NaCl),and 69.9% and 96.6% (NH4Cl),respectively.In addition,it can be found from the dependence of conductance on RH that conductance is very sensitive to the existence of water molecules inside the microdroplet and the threshold of the deliquescence process can be predicted by the variation of conductance.

  17. Study on conductance of supersaturated chloride microdroplets

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    By using the measuring system previously designed by the authors, the conductance of KCl, NaCl and NH4Cl microdroplets is obtained in the whole measuring RH range, especially in the supersaturation region, which cannot be acquired from the bulk solutions and fills the gap of lack of experimental data of conductance under the supersaturated state. The ERH and DRH of these three kinds of microdroplets observed from a microscope are 80.5% and 95.4% (KCl), 75.7% and 93.3% (NaCl), and 69.9% and 96.6% (NH4Cl), respectively. In addition, it can be found from the dependence of conductance on RH that conductance is very sensitive to the existence of water molecules inside the microdroplet and the threshold of the deliquescence process can be predicted by the variation of conductance.

  18. Structural and Electrical Study of Conducting Polymers

    Science.gov (United States)

    Shaktawat, Vinodini; Dixit, Manasvi; Saxena, N. S.; Sharma, Kananbala

    2010-06-01

    Pure and oxalic acid doped conducting polymers (polyaniline and polypyrrole) were chemically synthesized using ammonium persulfate (APS) as an oxidant. These samples were characterized through Scanning Electron Microscopy (SEM), which provides information about the surface topography of polymers. I-V characteristics have been recorded at room temperature as well as in the temperature range from 313 K to 463 K. So obtained characteristic curves were found to be linear. Temperature dependence of conductivity suggests a semiconducting nature in polyaniline samples with increase in temperature, whereas oxalic acid doped polypyrrole sample suggests a transition from semiconducting to metallic nature with the increase of temperature.

  19. Neuroscience Investigations: An Overview of Studies Conducted

    Science.gov (United States)

    Reschke, Millard F.

    1999-01-01

    The neural processes that mediate human spatial orientation and adaptive changes occurring in response to the sensory rearrangement encountered during orbital flight are primarily studied through second and third order responses. In the Extended Duration Orbiter Medical Project (EDOMP) neuroscience investigations, the following were measured: (1) eye movements during acquisition of either static or moving visual targets, (2) postural and locomotor responses provoked by unexpected movement of the support surface, changes in the interaction of visual, proprioceptive, and vestibular information, changes in the major postural muscles via descending pathways, or changes in locomotor pathways, and (3) verbal reports of perceived self-orientation and self-motion which enhance and complement conclusions drawn from the analysis of oculomotor, postural, and locomotor responses. In spaceflight operations, spatial orientation can be defined as situational awareness, where crew member perception of attitude, position, or motion of the spacecraft or other objects in three-dimensional space, including orientation of one's own body, is congruent with actual physical events. Perception of spatial orientation is determined by integrating information from several sensory modalities. This involves higher levels of processing within the central nervous system that control eye movements, locomotion, and stable posture. Spaceflight operational problems occur when responses to the incorrectly perceived spatial orientation are compensatory in nature. Neuroscience investigations were conducted in conjunction with U. S. Space Shuttle flights to evaluate possible changes in the ability of an astronaut to land the Shuttle or effectively perform an emergency post-landing egress following microgravity adaptation during space flights of variable length. While the results of various sensory motor and spatial orientation tests could have an impact on future space flights, our knowledge of

  20. 40 CFR 160.130 - Conduct of a study.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Conduct of a study. 160.130 Section... LABORATORY PRACTICE STANDARDS Protocol for and Conduct of a Study § 160.130 Conduct of a study. (a) The study... the conduct of a study, except those that are generated by automated data collection systems, shall be...

  1. Luminosity monitor studies for TESLA

    Energy Technology Data Exchange (ETDEWEB)

    Napoly, O. [CEA Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l`Instrumentation Associee; Schulte, D. [European Organization for Nuclear Research CERN, Geneva (Switzerland)

    1997-11-01

    The feasibility of a luminosity monitor based on a radiative Bhabha detector is investigated n the context of the TESLA linear collider. Another option based on low energy e{sup +}e{sup -} pair calorimetry is also discussed. In order to monitor the beam parameters at the interaction point by optimizing the luminosity, these detectors should be able to provide a relative measurement of the luminosity with a resolution better that 1% using a fraction of the TESLA bunch train. (author) 8 refs.

  2. Nuts and bolts of conducting feasibility studies.

    Science.gov (United States)

    Tickle-Degnen, Linda

    2013-01-01

    Many factors can affect the successful implementation and validity of intervention studies. A primary purpose of feasibility and pilot studies is to assess the potential for successful implementation of the proposed main intervention studies and to reduce threats to the validity of these studies. This article describes a typology to guide the aims of feasibility and pilot studies designed to support the development of randomized controlled trials and provides an example of the studies underlying the development of one rehabilitation trial. The purpose of most feasibility and pilot studies should be to describe information and evidence related to the successful implementation and validity of a planned main trial. Null hypothesis significance testing is not appropriate for these studies unless the sample size is properly powered. The primary tests of the intervention effectiveness hypotheses should occur in the main study, not in the studies that are serving as feasibility or pilot studies.

  3. Study of the conductivity of irradiated dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Maslov, V.V.; Ivanov, N.V.; Shelenin, A.V.

    1977-01-01

    The processes of ionization of air, metals and dielectrics arising from Gamma irradiation are analyzed. The effect of these processes on the measurement of the electrical conductivity of the dielectrics which are irradiated is evaluated. The maximum current which can be carried by an ionized gas is proportional to the radiation dose, gas pressure and reciprocal gas temperature. It is much more difficult to define the voltage developing between the two metal objects exposed to ionizing radiation due to such factors as the variation in resistance with dose, difficulty in defining the coefficient characterizing the accumulated charge, which depends on the nature of the metal, its shape, thickness and many other factors. Results of a simple calculation are presented in tabular form for aluminum. In some cases the voltage which develops is proportional to dose, in other cases--to the square root of dose, in still other cases--somewhere in between. 3 tables, 6 references.

  4. Undergraduate Study of Thermal Conductivity of Metals

    Directory of Open Access Journals (Sweden)

    Ferrari T. B.

    2002-01-01

    Full Text Available In this work we analyze an undergraduate experiment used to determine the thermal conductivity of metals (K. We introduce few modifications in order to offer the student the chance to explore dierent models, learning the basic scientiffic method of developing appropriate and improved explanations for each experiment in order to better link theory and empirical results. Semi-empirical corrections are introduced in the system in order to check the experimental results according to previously reported K values. As specific cases we use copper [K = 0.92 cal /(°C s cm], aluminum [K = 0.49 cal /(°C s cm] and brass [K = 0.26 cal /(°C s cm] cylinders.

  5. Monitoring the injection of microscale zerovalent iron particles for groundwater remediation by means of complex electrical conductivity imaging.

    Science.gov (United States)

    Flores Orozco, Adrián; Velimirovic, Milica; Tosco, Tiziana; Kemna, Andreas; Sapion, Hans; Klaas, Norbert; Sethi, Rajandrea; Bastiaens, Leen

    2015-05-01

    The injection of microscale zerovalent iron (mZVI) particles for groundwater remediation has received much interest in recent years. However, to date, monitoring of mZVI particle injection is based on chemical analysis of groundwater and soil samples and thus might be limited in its spatiotemporal resolution. To overcome this deficiency, in this study, we investigate the application of complex electrical conductivity imaging, a geophysical method, to monitor the high-pressure injection of mZVI in a field-scale application. The resulting electrical images revealed an increase in the induced electrical polarization (∼20%), upon delivery of ZVI into the targeted area, due to the accumulation of metallic surfaces at which the polarization takes place. Furthermore, larger changes (>50%) occurred in shallow sediments, a few meters away from the injection, suggesting the migration of particles through preferential flowpaths. Correlation of the electrical response and geochemical data, in particular the analysis of recovered cores from drilling after the injection, confirmed the migration of particles (and stabilizing solution) to shallow areas through fractures formed during the injection. Hence, our results demonstrate the suitability of the complex conductivity imaging method to monitor the transport of mZVI during subsurface amendment in quasi real-time.

  6. PRACTICE OF CONDUCTING A GEOTECHNICAL MONITORING FOR THE CONSTRUCTION OF THE ROAD TUNNEL “DOUBLER KURORTNOGO PROSPEKTA” IN SOCHI

    Directory of Open Access Journals (Sweden)

    Lesnoy V. A.

    2016-06-01

    Full Text Available This article describes the practice of conducting a geotechnical monitoring of the road tunnel № № 8, 8а «Doubler Kurortnogo Prospekta» in Sochi in difficult geotechnical conditions. Geotechnical monitoring method was developed on the results of mathematical modeling performed based on engineering studies and design solutions. The particular importance is paid to areas of shallow road tunnels, because in these areas there are the highest strain that could lead to malfunction of the lithological technical system "accommodating array - fixing tunnel" and the further destruction of the road tunnel walling. Geotechnical monitoring at the stage of engineering survey allows us to assess comprehensively the condition of the geological environment in a pristine condition, as well as detailed consideration to the effect on her of construction of mining operations. Implementation of geotechnical monitoring at the stages the engineering survey and construction will identify weaknesses malfunction of the lithological technical system "accommodating array - fixing tunnel" and ensure the security of the operation of such a technically complex and demanding facilities such as road tunnels

  7. Modified cation conductivity[Monitoring water/steam chemistry]; Modifierad sur konduktivitet

    Energy Technology Data Exchange (ETDEWEB)

    Staalenheim, Annika [Vattenfall Utveckling AB, Aelvkarleby (Sweden)

    2004-08-01

    A commercially available instrument for monitoring of cation conductivity after removal of carbon dioxide (CO{sub 2}) has been investigated. The sample is first treated in an acid cation exchanger. The carbon dioxide is removed in a degasser consisting of a heater and a column and the sample is cooled to ambient temperature. The cation conductivity is measured before as well as after degassing and cooling, so called 'degassed' cation conductivity. The cause of the interest for monitoring degassed cation conductivity is that the high content of CO{sub 2} in certain plants makes it difficult to use conventional cation conductivity to estimate if the level of more aggressive impurities like chloride and sulphate is acceptable. A high content of CO{sub 2} provides a high background level, overshadowing the contribution from the more aggressive compounds. There are alternative methods designed to provide information regarding the content of aggressive anions, usually based on analysis of the composition of the sample, like ion chromatography. These alternative methods are, however, often too expensive and/or too labour intensive to be used in smaller plants. Methods by which the influence of CO{sub 2} on the cation conductivity can be separated from the corresponding influence of more aggressive impurities are therefore of interest. Such alternative methods are usually based on removal of CO{sub 2}. The most common method involves heating as described in ASTM D4519-94. The method investigated follows this ASTM standard, except for the fact that the sample is cooled before the final conductivity measurement. The removal of CO{sub 2} is not the only critical factor. Another is that aggressive impurities like chloride and sulphate must not be removed. The effect on organic acids may also be of interest. Tests have been performed to determine the influence of the flow and temperature as well as of the influence of addition of varying levels and combinations of

  8. [A hardware-software system for monitoring the characteristics of the cardiac conduction system].

    Science.gov (United States)

    Fedotov, N M; Oferkin, A I; Zharyĭ, S V

    2008-01-01

    A new hardware-software system for monitoring and treatment of the cardiac conduction system abnormalities is described. The system can also be used to test non-X-ray devices for detection and imaging of endocardial electrodes. The system uses a reliable position measurement method based on biplane fluoroscopy. The system consists of standard units for electrophysiological examination of the heart. The system can operate using a preset model stored in the system database or a model constructed from X-ray imaging data. The preset mathematical model provides fast detection of the abnormal excitation site and effective electrode navigation based on the iteration procedure. On the other hand, the constructed model is more specific: it provides an opportunity to reconstruct the excitation front and store the electrode and site positions.

  9. Provide a Vessel to Conduct Observations and Deploy Sound Source and a Vessel for Passive Acoustic Monitoring for a Behavioral Response Study of Cetaceans off Southern California in 2011 and 2012

    Science.gov (United States)

    2013-09-30

    to extend from Moro Bay to San Diego and offshore to include waters west of San Clemente and around San Nicolas and Catalina Islands  Cruising...hours typically heading out to the study area ahead of the other vessels to begin the search for beaked whales. During operations in the Catalina Basin

  10. Geophysical monitoring of simulated graves with resistivity, magnetic susceptibility, conductivity and GPR in Colombia, South America.

    Science.gov (United States)

    Molina, Carlos Martin; Pringle, Jamie K; Saumett, Miguel; Evans, Gethin T

    2016-04-01

    In most Latin American countries there are significant numbers of both missing people and forced disappearances, ∼71,000 Colombia alone. Successful detection of buried human remains by forensic search teams can be difficult in varying terrain and climates. Three clandestine burials were simulated at two different depths commonly encountered in Latin America. In order to gain critical knowledge of optimum geophysical detection techniques, burials were monitored using: ground penetrating radar, magnetic susceptibility, bulk ground conductivity and electrical resistivity up to twenty-two months post-burial. Radar survey results showed good detection of modern 1/2 clothed pig cadavers throughout the survey period on 2D profiles, with the 250MHz antennae judged optimal. Both skeletonised and decapitated and burnt human remains were poorly imaged on 2D profiles with loss in signal continuity observed throughout the survey period. Horizontal radar time slices showed good anomalies observed over targets, but these decreased in amplitude over the post-burial time. These were judged due to detecting disturbed grave soil rather than just the buried targets. Magnetic susceptibility and electrical resistivity were successful at target detection in contrast to bulk ground conductivity surveys which were unsuccessful. Deeper burials were all harder to image than shallower ones. Forensic geophysical surveys should be undertaken at suspected burial sites.

  11. Automatic monitoring of the effective thermal conductivity of snow in a low Arctic shrub tundra

    Science.gov (United States)

    Domine, F.; Barrere, M.; Sarrazin, D.; Morin, S.

    2015-03-01

    The effective thermal conductivity of snow, keff, is a critical variable which determines the temperature gradient in the snowpack and heat exchanges between the ground and the atmosphere through the snow. Its accurate knowledge is therefore required to simulate snow metamorphism, the ground thermal regime, permafrost stability, nutrient recycling and vegetation growth. Yet, few data are available on the seasonal evolution of snow thermal conductivity in the Arctic. We have deployed heated needle probes on low Arctic shrub tundra near Umiujaq, Quebec, (56°34´ N; 76°29´ W) and monitored automatically the evolution of keff for two consecutive winters, 2012-2013 and 2013-2014, at 4 heights in the snowpack. Shrubs are 20 cm high dwarf birch. Here, we develop an algorithm for the automatic determination of keff from the heating curves and obtain 404 keff values. We evaluate possible errors and biases associated with the use of the heated needles. The time-evolution of keff is very different for both winters. This is explained by comparing the meteorological conditions in both winters, which induced different conditions for snow metamorphism. In particular, important melting events the second year increased snow hardness, impeding subsequent densification and increase in thermal conductivity. Shrubs are observed to have very important impacts on snow physical evolution: (1) shrubs absorb light and facilitate snow melt under intense radiation; (2) the dense twig network of dwarf birch prevents snow compaction and therefore keff increase; (3) the low density depth hoar that forms within shrubs collapsed in late winter, leaving a void that was not filled by snow.

  12. Automatic monitoring of the effective thermal conductivity of snow in a low-Arctic shrub tundra

    Science.gov (United States)

    Domine, F.; Barrere, M.; Sarrazin, D.; Morin, S.; Arnaud, L.

    2015-06-01

    The effective thermal conductivity of snow, keff, is a critical variable which determines the temperature gradient in the snowpack and heat exchanges between the ground and the atmosphere through the snow. Its accurate knowledge is therefore required to simulate snow metamorphism, the ground thermal regime, permafrost stability, nutrient recycling and vegetation growth. Yet, few data are available on the seasonal evolution of snow thermal conductivity in the Arctic. We have deployed heated needle probes on low-Arctic shrub tundra near Umiujaq, Quebec, (N56°34'; W76°29') and monitored automatically the evolution of keff for two consecutive winters, 2012-2013 and 2013-2014, at four heights in the snowpack. Shrubs are 20 cm high dwarf birch. Here, we develop an algorithm for the automatic determination of keff from the heating curves and obtain 404 keff values. We evaluate possible errors and biases associated with the use of the heated needles. The time evolution of keff is very different for both winters. This is explained by comparing the meteorological conditions in both winters, which induced different conditions for snow metamorphism. In particular, important melting events in the second year increased snow hardness, impeding subsequent densification and increase in thermal conductivity. We conclude that shrubs have very important impacts on snow physical evolution: (1) shrubs absorb light and facilitate snow melt under intense radiation; (2) the dense twig network of dwarf birch prevent snow compaction, and therefore keff increase; (3) the low density depth hoar that forms within shrubs collapsed in late winter, leaving a void that was not filled by snow.

  13. DSC and conductivity studies on PVA based proton conducting gel electrolytes

    Indian Academy of Sciences (India)

    S L Agrawal; Arvind Awadhia

    2004-12-01

    An attempt has been made in the present work to prepare polyvinyl alcohol (PVA) based proton conducting gel electrolytes in ammonium thiocyanate (NH4SCN) solution and characterize them. DSC studies affirm the formation of gels along with the presence of partial complexes. The cole–cole plots exhibit maximum ionic conductivity (2.58 × 10-3 S cm-1) for gel samples containing 6 wt% of PVA. The conductivity of gel electrolytes exhibit liquid like nature at low polymer concentrations while the behaviour is seen to be affected by the formation of PVA–NH4SCN complexes upon increase in polymer content beyond 5 wt%. Temperature dependence of ionic conductivity exhibits VTF behaviour.

  14. 18 CFR 5.15 - Conduct of studies.

    Science.gov (United States)

    2010-04-01

    ... to the facts of the case, a demonstration that: (1) Approved studies were not conducted as provided... met with the approved study methodology; (3) Why the request was not made earlier; (4) Significant... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Conduct of studies....

  15. Near real-time monitoring and mapping of specific conductivity levels across Lake Texoma, USA

    Science.gov (United States)

    Atkinson, S.F.; Mabe, J.A.

    2006-01-01

    A submersible sonde equipped with a specific conductivity probe, linked with a global positioning satellite receiver was developed, deployed on a small boat, and used to map spatial and temporal variations in specific conductivity in a large reservoir. 7,695 sample points were recorded during 8 sampling trips. Specific conductivity ranged from 442 uS/cm to 3,378 uS/cm over the nine-month study. The data showed five statistically different zones in the reservoir: 2 different riverine zones, 2 different riverine transition zones, and a lacustrine zone (the main lake zone). These data were imported to a geographic information system where they were spatially interpolated to generate 8 maps showing specific conductivity levels across the entire surface of the lake. The highly dynamic nature of water quality, due to the widely differing nature of the rivers that flow into the reservoir and the effect of large inflows of fresh water during winter storms is easily captured and visualized using this approach. ?? Springer Science+Business Media, Inc. 2006.

  16. Estimating Saturated Hydraulic Conductivity from Surface Ground-Penetrating Radar Monitoring of Infiltration

    CERN Document Server

    Léger, Emmanuel; Coquet, Yves

    2013-01-01

    In this study we used Hydrus-1D to simulate water infiltration from a ring infiltrometer. We generated water content profiles at each time step of infiltration, based on a particular value of the saturated hydraulic conductivity while knowing the other van Genuchten parameters. Water content profiles were converted to dielectric permittivity profiles using the Complex Refractive Index Method relation. We then used the GprMax suite of programs to generate radargrams and to follow the wetting front using arrival time of electromagnetic waves recorded by a Ground-Penetrating Radar (GPR). Theoretically, the depth of the inflection point of the water content profile simulated at any infiltration time step is related to the peak of the reflected amplitude recorded in the corresponding trace in the radargram. We used this relationship to invert the saturated hydraulic conductivity for constant and falling head infiltrations. We present our method on synthetic examples and on two experiments carried out on sand. We f...

  17. Real-time electrical impedimetric monitoring of blood coagulation process under temperature and hematocrit variations conducted in a microfluidic chip.

    Directory of Open Access Journals (Sweden)

    Kin Fong Lei

    Full Text Available Blood coagulation is an extremely complicated and dynamic physiological process. Monitoring of blood coagulation is essential to predict the risk of hemorrhage and thrombosis during cardiac surgical procedures. In this study, a high throughput microfluidic chip has been developed for the investigation of the blood coagulation process under temperature and hematocrit variations. Electrical impedance of the whole blood was continuously recorded by on-chip electrodes in contact with the blood sample during coagulation. Analysis of the impedance change of the blood was conducted to investigate the characteristics of blood coagulation process and the starting time of blood coagulation was defined. The study of blood coagulation time under temperature and hematocrit variations was shown a good agreement with results in the previous clinical reports. The electrical impedance measurement for the definition of blood coagulation process provides a fast and easy measurement technique. The microfluidic chip was shown to be a sensitive and promising device for monitoring blood coagulation process even in a variety of conditions. It is found valuable for the development of point-of-care coagulation testing devices that utilizes whole blood sample in microliter quantity.

  18. STUDIES ON TOOL WEAR CONDITION MONITORING

    Directory of Open Access Journals (Sweden)

    Hüseyin Metin ERTUNÇ

    2001-01-01

    Full Text Available In this study, wear mechanisms on cutting tools, especially for the drill bits, during the cutting operation have been investigated. As the importance of full automation in industry has gained substantial importance, tool wear condition monitoring during the cutting operation has been the subject of many investigators. Tool condition monitoring is very crucial in order to change the tool before breakage. Because tool breakage can cause considerable economical damage to both the machine tool and workpiece. In this paper, the studies on the monitoring of drill bit wear in literature have been introduced; the direct/indirect techniques used and sensor fusion techniques have been summarized. The methods which were proposed to determine tool wear evolution as processing the sensor signals collected have been provided and their references have been given for detailed information.

  19. Non-destructive label-free continuous monitoring of in vitro chondrogenesis via electrical conductivity and its anisotropy.

    Science.gov (United States)

    Oh, Tong In; Kim, Changhwan; Karki, Bishal; Son, Youngsook; Lee, EunAh; Woo, Eung Je

    2015-02-01

    Non-destructive label-free continuous monitoring of in vitro tissue culture is an unmet demand in tissue engineering. Noting that different compositions of cartilage lead to different electrical tissue properties, we propose a new method to measure the electrical conductivity and its anisotropy during in vitro chondrogenesis. We used a conductivity tensor probe with 17 electrodes and a bio-impedance spectroscopy (BIS) device to measure the conductivity values and the anisotropy ratios at the bottom and top surfaces of the tissue samples during the culture period of 6 weeks. Clearly distinguishing glycosaminoglycans (GAGs), collagen, and also various mixtures of them, the measured conductivity value and the estimated tissue anisotropy provide diagnostic information of the depth-dependent tissue structure and compositions. Continuously monitoring the individual tissue during the entire chondrogenesis process without any adverse effect, the proposed method may significantly increase the productivity of cartilage tissue engineering.

  20. Theoretical studies of ionic conductivity of crosslinked chitosan membranes

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, Ernesto Lopez [Programa de Ingenieria Molecular y Nuevos Materiales, Universidad Autonoma de la Ciudad de Mexico, Fray Servando Teresa de Mier 92, 1er. Piso, Col Centro, Mexico D.F. CP 06080 (Mexico); Oviedo-Roa, R.; Contreras-Perez, Gustavo; Martinez-Magadan, Jose Manuel [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas Norte 152, Col. San Bartolo Atepehuacan, CP 07730 Mexico D.F. (Mexico); Castillo-Alvarado, F.L. [Escuela Superior de Fisica y Matematicas del Instituto Politecnico Nacional, Edificio 9 de la UPALM, Colonia Lindavista, Mexico D.F. CP 07738 (Mexico)

    2010-11-15

    Ionic conductivity of crosslinked chitosan membranes was studied using techniques of molecular modeling and simulation. The COMPASS force field was used. The simulation allows the description of the mechanism of ionic conductivity along the polymer matrix. The theoretical results obtained are compared with experimental results for chitosan membranes. The analysis suggests that the conduction mechanism is portrayed by the overlapping large Polaron tunneling model. In addition, when the chitosan membrane was crosslinked with an appropriate degree of crosslinking its ionic conductivity, at room temperature, was increased by about one order of magnitude. The chitosan membranes can be used as electrolytes in solid state batteries, electric double layer capacitors and fuel cells. (author)

  1. Groundwater level and specific conductance monitoring at Marine Corps Base, Camp Lejeune, Onslow County, North Carolina, 2007-2008

    Science.gov (United States)

    McSwain, Kristen Bukowski

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Marine Corps Base, Camp Lejeune, monitored water-resources conditions in the surficial, Castle Hayne, Peedee, and Black Creek aquifers in Onslow County, North Carolina, from November 2007 through September 2008. To comply with North Carolina Central Coastal Plain Capacity Use Area regulations, large-volume water suppliers in Onslow County must reduce their dependency on the Black Creek aquifer as a water-supply source and have, instead, proposed using the Castle Hayne aquifer as an alternative water-supply source. The Marine Corps Base, Camp Lejeune, uses water obtained from the unregulated surficial and Castle Hayne aquifers for drinking-water supply. Water-level data were collected and field measurements of physical properties were made at 19 wells at 8 locations spanning the Marine Corps Base, Camp Lejeune. These wells were instrumented with near real-time monitoring equipment to collect hourly measurements of water level. Additionally, specific conductance and water temperature were measured hourly in 16 of the 19 wells. Graphs are presented relating altitude of groundwater level to water temperature and specific conductance measurements collected during the study, and the relative vertical gradients between aquifers are discussed. The period-of-record normal (25th to 75th percentile) monthly mean groundwater levels at two well clusters were compared to median monthly mean groundwater levels at these same well clusters for 2008 to determine groundwater-resources conditions. In 2008, water levels were below normal in the 3 wells at one of the well clusters and were normal in 4 wells at the other cluster.

  2. Continuous glucose monitoring microsensor with a nanoscale conducting matrix and redox mediator

    Science.gov (United States)

    Pesantez, Daniel

    The major limiting factor in kidney clinical transplantation is the shortage of transplantable organs. The current inability to distinguish viability from non-viability on a prospective basis represents a major obstacle in any attempt to expand organ donor criteria. Consequently, a way to measure and monitor a relevant analyte to assess kidney viability is needed. For the first time, the initial development and characterization of a metabolic microsensor to assess kidney viability is presented. The rate of glucose consumption appears to serve as an indicator of kidney metabolism that may distinguish reversible from irreversible kidney damage. The proposed MetaSense (Metabolic Sensor) microdevice would replace periodic laboratory diagnosis tests with a continuous monitor that provides real-time data on organ viability. Amperometry, a technique that correlates an electrical signal with analyte concentration, is used as a method to detect glucose concentrations. A novel two-electrode electrochemical sensing cell design is presented. It uses a modified metallic working electrode (WE) and a bare metallic reference electrode (RE) that acts as a pseudo-reference/counter electrode as well. The proposed microsensor has the potential to be used as a minimally invasive sensor for its reduced number of probes and very small dimensions achieved by micromachining and lithography. In order to improve selectivity of the microdevice, two electron transfer mechanisms or generations were explored. A first generation microsensor uses molecular oxygen as the electron acceptor in the enzymatic reaction and oxidizes hydrogen peroxide (H2O2) to get the electrical signal. The microsensor's modified WE with conductive polymer polypyrrole (PPy) and corresponding enzyme glucose oxidase (GOx) immobilized into its matrix, constitutes the electrochemical detection mechanism. Photoluminescence spectroscopic analysis confirmed and quantified enzyme immobilized concentrations within the matrix. In

  3. Degassed conductivity - comments on an interesting and reasonable plant cycle chemistry monitoring technique. Part 1. Degassing of low-molecular-weight organic acis in technical degassed cation conductivity monitors

    Energy Technology Data Exchange (ETDEWEB)

    Gruszkiewicz, M. [Oak Ridge National Lab., Oak Ridge, TN (United States). Chemical Sciences Div.; Bursik, A. [PowerPlant Chemistry GmbH, Neulussheim (Germany)

    2004-03-01

    Degassed cation conductivity monitoring is not as common as specific and cation conductivity monitoring even though this technique offers some very interesting features. This technique can help to distinguish between plant cycle contamination with inorganic and/or organic acids and/or their salts and that caused by carbon dioxide. This may be important, e.g., during startup of a unit. Two issues are often discussed in connection with degassed conductivity monitoring: the behavior of formic and acetic acid during degassing and the correct conversion of values measured at nearly 100 C to standard temperature (25 C). This first part of a two-part publication focuses on the first issue. A rigorous thermodynamic approach was chosen for the evaluation of conditions in the degassing part of the monitoring system. The results of calculations clearly show that the actual loss of formic and acetic acid in a technical atmospheric degassing system via system vents is so low that it can be disregarded. In contrast, the concentration of formic and acetic acid in the sample exiting the technical atmospheric degassing system is somewhat higher than that in the original sample. The actual increase in concentration is based on the volatility behavior of both acids and depends additionally on the evaporation rate of the system. (orig.)

  4. Short-term memory predictions across the lifespan: monitoring span before and after conducting a task.

    Science.gov (United States)

    Bertrand, Julie Marilyne; Moulin, Chris John Anthony; Souchay, Céline

    2017-05-01

    Our objective was to explore metamemory in short-term memory across the lifespan. Five age groups participated in this study: 3 groups of children (4-13 years old), and younger and older adults. We used a three-phase task: prediction-span-postdiction. For prediction and postdiction phases, participants reported with a Yes/No response if they could recall in order a series of images. For the span task, they had to actually recall such series. From 4 years old, children have some ability to monitor their short-term memory and are able to adjust their prediction after experiencing the task. However, accuracy still improves significantly until adolescence. Although the older adults had a lower span, they were as accurate as young adults in their evaluation, suggesting that metamemory is unimpaired for short-term memory tasks in older adults. •We investigate metamemory for short-term memory tasks across the lifespan. •We find younger children cannot accurately predict their span length. •Older adults are accurate in predicting their span length. •People's metamemory accuracy was related to their short-term memory span.

  5. Experiment study of forming and activation of conductive film of the surface conduction electron emitter display

    Institute of Scientific and Technical Information of China (English)

    LEI Xin; XU Wei-jun; LIU Chun-liang; LIANG Zhi-hu

    2007-01-01

    The forming and activation of the conductive films are studied experimentally. The power supply,a peak-to-peak 30 V triangle profile voltage,is applied to three kinds of conductive films that contain 0.25%,0.5%,and 1% of palladium respectively. In the experiments we contrasted the values of related parameter in different conditions,observed the lumi nous spots on the anode panel,dealt with and analyzed the related data,and compared the positions and the amount of the luminous spots. We have gotten the conclusion that there is a threshold value Uth. The emission current Ie will increase rapidly when the device voltage Uf is greater than Uth. And the emission current Ie could be controlled by the device voltage Uf.The positions of the luminous spots on the anode panel are related with the device voltage Uf.

  6. Application of Electromagnetic Induction to Monitor Changes in Soil Electrical Conductivity Profiles in Arid Agriculture

    KAUST Repository

    Jadoon, K.Z.

    2015-09-06

    In this research, multi-configuration electromagnetic induction (EMI) measurements were conducted in a corn field to estimate variation in soil electrical conductivity profiles in the roots zone. Electromagnetic forward model based on the full solution of Maxwell\\'s equation was used to simulate the apparent electrical conductivity measured with EMI system (the CMD mini-Explorer). Joint inversion of multi-configuration EMI measurements were performed to estimate the vertical soil electrical conductivity profiles. The inversion minimizes the misfit between the measured and modeled soil apparent electrical conductivity by DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm, which is based on Bayesain approach. Results indicate that soil electrical conductivity profiles have low values close to the corn plants, which indicates loss of soil moisture due to the root water uptake. These results offer valuable insights into future potential and emerging challenges in the development of joint analysis of multi-configuration EMI measurements to retrieve effective soil electrical conductivity profiles.

  7. Highly stretchable strain sensor based on SWCNTs/CB synergistic conductive network for wearable human-activity monitoring and recognition

    Science.gov (United States)

    Guo, Xiaohui; Huang, Ying; Zhao, Yunong; Mao, Leidong; Gao, Le; Pan, Weidong; Zhang, Yugang; Liu, Ping

    2017-09-01

    Flexible, stretchable, and wearable strain sensors have attracted significant attention for their potential applications in human movement detection and recognition. Here, we report a highly stretchable and flexible strain sensor based on a single-walled carbon nanotube (SWCNTs)/carbon black (CB) synergistic conductive network. The fabrication, synergistic conductive mechanism, and characterization of the sandwich-structured strain sensor were investigated. The experimental results show that the device exhibits high stretchability (120%), excellent flexibility, fast response (∼60 ms), temperature independence, and superior stability and reproducibility during ∼1100 stretching/releasing cycles. Furthermore, human activities such as the bending of a finger or elbow and gestures were monitored and recognized based on the strain sensor, indicating that the stretchable strain sensor based on the SWCNTs/CB synergistic conductive network could have promising applications in flexible and wearable devices for human motion monitoring.

  8. Development of a Conductivity Sensor for Monitoring Groundwater Resources to Optimize Water Management in Smart City Environments.

    Science.gov (United States)

    Parra, Lorena; Sendra, Sandra; Lloret, Jaime; Bosch, Ignacio

    2015-08-26

    The main aim of smart cities is to achieve the sustainable use of resources. In order to make the correct use of resources, an accurate monitoring and management is needed. In some places, like underground aquifers, access for monitoring can be difficult, therefore the use of sensors can be a good solution. Groundwater is very important as a water resource. Just in the USA, aquifers represent the water source for 50% of the population. However, aquifers are endangered due to the contamination. One of the most important parameters to monitor in groundwater is the salinity, as high salinity levels indicate groundwater salinization. In this paper, we present a specific sensor for monitoring groundwater salinization. The sensor is able to measure the electric conductivity of water, which is directly related to the water salinization. The sensor, which is composed of two copper coils, measures the magnetic field alterations due to the presence of electric charges in the water. Different salinities of the water generate different alterations. Our sensor has undergone several tests in order to obtain a conductivity sensor with enough accuracy. First, several prototypes are tested and are compared with the purpose of choosing the best combination of coils. After the best prototype was selected, it was calibrated using up to 30 different samples. Our conductivity sensor presents an operational range from 0.585 mS/cm to 73.8 mS/cm, which is wide enough to cover the typical range of water salinities. With this work, we have demonstrated that it is feasible to measure water conductivity using solenoid coils and that this is a low cost application for groundwater monitoring.

  9. Polyaniline Conducting Electroactive Polymers Thermal and Environmental Stability Studies

    Directory of Open Access Journals (Sweden)

    Reza Ansari

    2006-01-01

    Full Text Available In the current studies, polyaniline (PANi was prepared both chemical and electrochemically in the presence of different bronsted acids from aqueous solutions. The effect of thermal treatment on electrical conductivity, and thermal stability of the PANi conducting polymers were investigated using 4-point probe and TGA techniques respectively. It was found that polymer prepared by CV method is more thermally stable than those prepared by the other electrochemical techniques. In this paper we have also reviewed some fundamental information about synthesis, general properties, diverse applications, thermal and environmental stability of polyaniline conducting polymers.

  10. Thermal conductivity of penta-graphene from molecular dynamics study.

    Science.gov (United States)

    Xu, Wen; Zhang, Gang; Li, Baowen

    2015-10-21

    Using classical equilibrium molecular dynamics simulations and applying the original Tersoff interatomic potential, we study the thermal transport property of the latest two dimensional carbon allotrope, penta-graphene. It is predicted that its room-temperature thermal conductivity is about 167 W/mK, which is much lower than that of graphene. With normal mode decomposition, the accumulated thermal conductivity with respect to phonon frequency and mean free path is analyzed. It is found that the acoustic phonons make a contribution of about 90% to the thermal conductivity, and phonons with mean free paths larger than 100 nm make a contribution over 50%. We demonstrate that the remarkably lower thermal conductivity of penta-graphene compared with graphene results from the lower phonon group velocities and fewer collective phonon excitations. Our study highlights the importance of structure-property relationship and provides better understanding of thermal transport property and valuable insight into thermal management of penta-graphene.

  11. APPLICATION OF NUMERICAL SIMULATION TO STUDY ON THERMAL CONDUCTION

    Institute of Scientific and Technical Information of China (English)

    C. Zhu; Z. Xu; D.E. Wu

    2004-01-01

    In this paper, using computer simulation and mathematic experiment method to solve the simplified one dimensional thermal conduction equation and to obtain the temperature distribution in a metal bar when its one end was heated. According to principle of hot expansion, a holograph of temperature distribution in the bar by laser holotechnique was taken. The results of numerical simulation and experiments are in good agreement and a new method for study on thermal conduction by laser holo-technique was found.

  12. Studies and Properties of Ceramics with High Thermal Conductivity

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The sintering technology of the AlN ceramics power were discussed. It is discussed that the compound sintering aids is consistent with the enhancement of the the thermal conductivity of AlN ceramics, and sintering technics is helped to the improvement of density. It is analyzed how to sinter machinable AlN ceramics with high thermal conductivity. And the microstructure of compound ceramics based on AlN was studied.

  13. Monitoring scale-specific and temporal variation in electromagnetic conductivity images

    Science.gov (United States)

    In the semi-arid and arid landscapes of southwest USA, irrigation sustains agricultural activity; however, there are increasing demands on water resources. As such spatial temporal variation of soil moisture needs to be monitored. One way to do this is to use electromagnetic (EM) induction instrumen...

  14. Time-lapse monitoring of soil water content using electromagnetic conductivity imaging

    Science.gov (United States)

    The volumetric soil water content (VWC) is fundamental to agriculture. Unfortunately, the universally accepted thermogravimetric method is labour intensive and time-consuming to use for field-scale monitoring. Electromagnetic (EM) induction instruments have proven to be useful in mapping the spatio-...

  15. Improved Fuzzy Logic System to Evaluate Milk Electrical Conductivity Signals from On-Line Sensors to Monitor Dairy Goat Mastitis.

    Science.gov (United States)

    Zaninelli, Mauro; Tangorra, Francesco Maria; Costa, Annamaria; Rossi, Luciana; Dell'Orto, Vittorio; Savoini, Giovanni

    2016-07-13

    The aim of this study was to develop and test a new fuzzy logic model for monitoring the udder health status (HS) of goats. The model evaluated, as input variables, the milk electrical conductivity (EC) signal, acquired on-line for each gland by a dedicated sensor, the bandwidth length and the frequency and amplitude of the first main peak of the Fourier frequency spectrum of the recorded milk EC signal. Two foremilk gland samples were collected from eight Saanen goats for six months at morning milking (lactation stages (LS): 0-60 Days In Milking (DIM); 61-120 DIM; 121-180 DIM), for a total of 5592 samples. Bacteriological analyses and somatic cell counts (SCC) were used to define the HS of the glands. With negative bacteriological analyses and SCC 1,000,000 cells/mL, glands were classified as not healthy (NH). For each EC signal, an estimated EC value was calculated and a relative deviation was obtained. Furthermore, the Fourier frequency spectrum was evaluated and bandwidth length, frequency and amplitude of the first main peak were identified. Before using these indexes as input variables of the fuzzy logic model a linear mixed-effects model was developed to evaluate the acquired data considering the HS, LS and LS × HS as explanatory variables. Results showed that performance of a fuzzy logic model, in the monitoring of mammary gland HS, could be improved by the use of EC indexes derived from the Fourier frequency spectra of gland milk EC signals recorded by on-line EC sensors.

  16. Improved Fuzzy Logic System to Evaluate Milk Electrical Conductivity Signals from On-Line Sensors to Monitor Dairy Goat Mastitis

    Directory of Open Access Journals (Sweden)

    Mauro Zaninelli

    2016-07-01

    Full Text Available The aim of this study was to develop and test a new fuzzy logic model for monitoring the udder health status (HS of goats. The model evaluated, as input variables, the milk electrical conductivity (EC signal, acquired on-line for each gland by a dedicated sensor, the bandwidth length and the frequency and amplitude of the first main peak of the Fourier frequency spectrum of the recorded milk EC signal. Two foremilk gland samples were collected from eight Saanen goats for six months at morning milking (lactation stages (LS: 0–60 Days In Milking (DIM; 61–120 DIM; 121–180 DIM, for a total of 5592 samples. Bacteriological analyses and somatic cell counts (SCC were used to define the HS of the glands. With negative bacteriological analyses and SCC < 1,000,000 cells/mL, glands were classified as healthy. When bacteriological analyses were positive or showed a SCC > 1,000,000 cells/mL, glands were classified as not healthy (NH. For each EC signal, an estimated EC value was calculated and a relative deviation was obtained. Furthermore, the Fourier frequency spectrum was evaluated and bandwidth length, frequency and amplitude of the first main peak were identified. Before using these indexes as input variables of the fuzzy logic model a linear mixed-effects model was developed to evaluate the acquired data considering the HS, LS and LS × HS as explanatory variables. Results showed that performance of a fuzzy logic model, in the monitoring of mammary gland HS, could be improved by the use of EC indexes derived from the Fourier frequency spectra of gland milk EC signals recorded by on-line EC sensors.

  17. Nerve conduction and excitability studies in peripheral nerve disorders

    DEFF Research Database (Denmark)

    Krarup, Christian; Moldovan, Mihai

    2009-01-01

    PURPOSE OF REVIEW: The review is aimed at providing information about the role of nerve excitability studies in peripheral nerve disorders. It has been known for many years that the insight into peripheral nerve pathophysiology provided by conventional nerve conduction studies is limited. Nerve...

  18. Concurrent adversities among adolescents with conduct problems: the NAAHS study.

    Science.gov (United States)

    Reigstad, Bjørn; Kvernmo, Siv

    2016-10-01

    Several studies have confirmed that maltreatment and abuse in childhood are related to conduct problems. Less is known about such relationships with concurrent adversities in adolescence and, also, when compared with other severe adversities and possible multiple additive effects. The study encompassed a community population of 4881 adolescents 15-16 years of age 50.1 % boys and 49.9 % girls. Youth with and without conduct problem scores within the deviant range on the Strength and Difficulties Questionnaire (SDQ) was compared on 12 concurrent adversities. Based on self-reports, 4.4 % of the adolescents had conduct problem scores within the deviant range and more girls (5.1 %) than boys (3.7 %). In the deviant conduct problem group, 65.1 % had experienced two or more concurrent adversities compared with 26.3 % of youths in the non-deviant group (OR 5.23, 95 % CI 3.91-7.01). Likewise, the deviant conduct problem group was from 1.71 to 8.43 times more at the risk of experiencing the different adversities. Parental mental health problems and experiences of violence were multivariately strongest associated with conduct problem scores within the deviant range on the SDQ. A strong multiple additive relationship with adversities was found. Two-thirds of youth with SDQ conduct problem scores within the deviant range reported two or more concurrent adversities. Clinicians should seek information about kinds and amount of possible traumatic adversities in youth with conduct problems and offer evidence based treatment.

  19. Gum ghatti based novel electrically conductive biomaterials: A study of conductivity and surface morphology

    Directory of Open Access Journals (Sweden)

    S. Kalia

    2014-04-01

    Full Text Available Gum ghatti-cl-poly(acrylamide-aniline interpenetrating network (IPN was synthesized by a two-step aqueous polymerization method, in which aniline monomer was absorbed into the network of gum ghatti-cl-poly(acrylamide and followed by a polymerization reaction between aniline monomers. Initially, semi-IPN based on acrylamide and gum ghatti was prepared by free-radical copolymerization in aqueous media with optimized process parameters, using N,N'-methylenebis-acrylamide, as cross-linker and ammonium persulfate, as an initiator system. Optimum reaction conditions affording maximum percentage swelling were: solvent [mL] =12, Acrylamide (AAm [mol•L–1] = 1.971, Ammonium peroxydisulfate (APS [mol•L–1] = 0.131•10–1, N,N'-methylene-bis-acrylamide (MBA [mol•L–1] = 0.162•10–1, reaction time [min] = 210, temperature [°C] = 100 and pH = 7.0. The resulting IPN was doped with different protonic acids. The effect of the doping has been investigated on the conductivity and surface morphology of the IPN hydrogel. The maximum conductivity was observed with 1.5N HClO4 concentration. The morphological, structural and electrical properties of the candidate polymers were studied using scanning electron micrscopy (SEM, Fourier transform infrared spectroscopy FTIR and two-probe method, respectively.

  20. Method and apparatus for conducting structural health monitoring in a cryogenic, high vibration environment

    Science.gov (United States)

    Qing, Xinlin (Inventor); Beard, Shawn J. (Inventor); Li, Irene (Inventor)

    2013-01-01

    Sensors affixed to various such structures, where the sensors can withstand, remain affixed, and operate while undergoing both cryogenic temperatures and high vibrations. In particular, piezoelectric single crystal transducers are utilized, and these sensors are coupled to the structure via a low temperature, heat cured epoxy. This allows the transducers to monitor the structure while the engine is operating, even despite the harsh operating conditions. Aspects of the invention thus allow for real time monitoring and analysis of structures that operate in conditions that previously did not permit such analysis. A further aspect of the invention relates to use of piezoelectric single crystal transducers. In particular, use of such transducers allows the same elements to be used as both sensors and actuators.

  1. Low thermal conductivity of graphyne nanotubes from molecular dynamics study

    Science.gov (United States)

    Hu, Ming; Jing, Yuhang; Zhang, Xiaoliang

    2015-04-01

    It is well known that carbon nanotubes (CNTs) possess ultrahigh thermal conductivity that is comparable to bulk diamond. However, no research has studied the possible low thermal conductivity of different CNTs so far. By performing nonequilibrium molecular dynamic simulations, we reveal that the perfect graphyne nanotube (GNT) exhibits an unprecedentedly low thermal conductivity (below 10 W/mK at room temperature), which is generally two orders of magnitude lower than that of ordinary CNTs and even lower than the values reported for defected, doped, and chemically functionalized CNTs. By performing phonon polarization and spectral energy density analysis, we observe that the ultralow thermal conductivity stems from the unique atomic structure of the GNT, consisting of the weak acetylenic linkage (s p C-C bonds) and the strong hexagonal ring (s p2 C-C bonds), which results in a large vibrational mismatch between these two components, and thus induces significantly inefficient heat transfer. Moreover, the thermal transport in GNT with a large number of acetylenic linkages is dominated by the low frequency longitudinal modes in the linkage. Such strong confinement of the low frequency thermal energy results in the extremely low thermal conductivity due to the flattened phonon dispersion curves (low phonon group velocities). The exploration of the abnormal thermal transport of GNTs paves the way for design and application of the relevant devices that could benefit from the ultralow thermal conductivity, such as thermoelectrics for energy conversion.

  2. On-line monitoring of milk electrical conductivity by fuzzy logic technology to characterise health status in dairy goats

    Directory of Open Access Journals (Sweden)

    Mauro Zaninelli

    2014-04-01

    Full Text Available Intramammary infection affects the quality and quantity of dairy goat milk. Health status (HS and milk quality can be monitored by electrical conductivity (EC. The aim of the study was to determine the detection potential of EC when measured on-line on a daily basis and compared with readings from previous milkings. Milk yields (MYs were investigated with the same approach. To evaluate these relative traits, a multivariate model based on fuzzy logic technology – which provided interesting results in cows – was used. Two foremilk samples from 8 healthy Saanen goats were measured daily over the course of six months. Bacteriological tests and somatic cells counts were used to define the HS. On-line EC measurements for each gland and MYs were also considered. Predicted deviations of EC and MY were calculated using a moving-average model and entered in the fuzzy logic model. The reported accuracy has a sensitivity of 81% and a specificity of 69%. Conclusions show that fuzzy logic is an interesting approach for dairy goats, since it offered better accuracy than other methods previously published. Nevertheless, specificity was lower than in dairy cows, probably due to the lack of a significant decrease of MY in diseased glands. Still, results show that the detection of the HS characteristics with EC is improved, when measured on-line, daily and compared with the readings from previous milkings.

  3. Geochemical responses of forested catchments to bark beetle infestation: Evidence from high frequency in-stream electrical conductivity monitoring

    Science.gov (United States)

    Su, Ye; Langhammer, Jakub; Jarsjö, Jerker

    2017-07-01

    Under the present conditions of climate warming, there has been an increased frequency of bark beetle-induced tree mortality in Asia, Europe, and North America. This study analyzed seven years of high frequency monitoring of in-stream electrical conductivity (EC), hydro-climatic conditions, and vegetation dynamics in four experimental catchments located in headwaters of the Sumava Mountains, Central Europe. The aim was to determine the effects of insect-induced forest disturbance on in-stream EC at multiple timescales, including annual and seasonal average conditions, daily variability, and responses to individual rainfall events. Results showed increased annual average in-stream EC values in the bark beetle-infected catchments, with particularly elevated EC values during baseflow conditions. This is likely caused by the cumulative loading of soil water and groundwater that discharge excess amounts of substances such as nitrogen and carbon, which are released via the decomposition of the needles, branches, and trunks of dead trees, into streams. Furthermore, we concluded that infestation-induced changes in event-scale dynamics may be largely responsible for the observed shifts in annual average conditions. For example, systematic EC differences between baseflow conditions and event flow conditions in relatively undisturbed catchments were essentially eliminated in catchments that were highly disturbed by bark beetles. These changes developed relatively rapidly after infestation and have long-lasting (decadal-scale) effects, implying that cumulative impacts of increasingly frequent bark beetle outbreaks may contribute to alterations of the hydrogeochemical conditions in more vulnerable mountain regions.

  4. Cyanobacteria, Toxins and Indicators: Field Monitoring,Treatment Facility Monitoring and Treatment Studies

    Science.gov (United States)

    This presentation is a compilation of harmful algal bloom (HAB) related field monitoring data from the 2015 bloom season, treatment plant monitoring data from the 2013 and 2014 bloom seasons, and bench-scale treatment study data from 2015.

  5. Nerve conduction studies after decompression in painful diabetic polyneuropathy

    NARCIS (Netherlands)

    Macare van Maurik, JFM; Franssen, Hessel; Millin, Daniel W.; Peters, Edgar J G; Kon, Moshe

    2015-01-01

    Purpose: To investigate the influence of nerve decompression at potential entrapment sites in the lower extremity in painful diabetic polyneuropathy on nerve conduction study variables. Methods: Forty-two patients with painful diabetic polyneuropathy were included in this prospective randomized cont

  6. FIBULAR MOTOR NERVE CONDUCTION STUDIES AND ANKLE SENSORIMOTOR CAPACITIES*

    Science.gov (United States)

    Richardson, James K.; Allet, Lara; Kim, Hogene; Ashton-Miller, James A.

    2012-01-01

    Introduction Nerve conduction studies provide information regarding the status of the peripheral nerve, but relationships with sensorimotor capacities that influence mobility have not been defined. Methods A secondary analysis was conducted of data from 41 older subjects (20 women, age 69.1 ± 8.3 years), 25 with diabetic neuropathy of varying severity, and 16 without diabetes or neuropathy. Measurements included routine fibular motor nerve conduction studies and laboratory-based determination of ankle inversion/eversion proprioceptive thresholds and ankle inversion/eversion motor function. Results Independent of age, fibular amplitude correlated robustly with ankle inversion/eversion proprioceptive thresholds (R2 = .591, p < .001), moderately with ankle inversion and eversion rates of torque generation (R2 = .216; p = .004 and R2 = .200; p = .006, respectively), and more strongly when fibular motor amplitude was normalized for body mass index (R2 = .350; p < .001 and R2 = .275; p = .001). Discussion Fibular motor amplitude was strongly associated with ankle sensorimotor capacities that influence lateral balance and recovery from perturbations during gait. The results suggest that nerve conduction study measures have potential for an expanded clinical role in evaluating mobility function in the population studied. PMID:23225524

  7. 40 CFR 792.130 - Conduct of a study.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Conduct of a study. 792.130 Section 792.130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT... the specimen in a manner that precludes error in the recording and storage of data. (d) In animal...

  8. Conductivity studies in SnO–NaPO3 glasses

    Indian Academy of Sciences (India)

    M Harish Bhat; Munia Ganguli; K J Rao

    2003-06-01

    Na+ ion conductivity has been studied in SnO.NaPO3 glasses, which have been prepared over a wide range of compositions using a microwave melting technique. D.c. activation barriers seem to reflect the structural changes in system. A.c. conductivity analysis has revealed that while the power law exponent, , seem to bear correlation to the structural changes, the exponent of the stretched exponential function describing the dielectric relaxation is largely insensitive to the structure. Possible importance of the correlation of transport property to the variation of available non-bridging oxygen (NBO) atoms in the structure is discussed.

  9. Conductivity and dielectric studies on LiCeO_2

    Institute of Scientific and Technical Information of China (English)

    M.Prabu; S.Selvasekarapandian; A.R.Kulkarni; G.Hirankumar; C.Sanjeeviraja

    2010-01-01

    LiCeO2 was prepared by a solid-state reaction method using microwave heat treatment and identified by X-ray diffractometry.LiCeO2 has monoclinic crystal structure whose conductivity and dielectric properties were studied over a range of frequency(42 Hz to 1 MHz) and temperatures(30-500 °C) using ac technique of complex impedance analyzer HIOKI 3532.Combined impedance and modulus plots were used as tools to analyze the sample behaviour as a function of frequency at different temperatures.The d.c.conductivity...

  10. FTIR AND IONIC CONDUCTIVITY STUDIES ON BLEND POLYMER ELECTROLYTES

    Directory of Open Access Journals (Sweden)

    J. Senthil

    2011-08-01

    Full Text Available Investigations on structural and conductivity properties of solid polymer complexes have attracted a high degree of attention. The main applications of solid polymer electrolytes (SPEs are found in varioussecondary batteries and energy conversion units. In view of the abundant resources, low costs and relatively low reactivity of magnesium, solid-state batteries using magnesium metal are worthy of investigations. The polymer electrolytes were prepared using poly methyl methacrylate (PMMA, poly vinyl chloride (PVC and magnesium chloride (MgCl2 by solvent casting technique. The complex formation and ionic conductivity were characterized by Fourier Transform Infra Red spectroscopy (FTIR and impedance spectroscopy respectively.The FTIR studies provide the evidence of interaction of cation Mg2+ with the polymers. The maximum conductivity found for PMMA-MgCl2 is 0.57 x 10-7 Scm-1 at room temperature.

  11. Structure-conductivity studies in polymer electrolytes containing multivalent cations

    CERN Document Server

    Aziz, M

    1996-01-01

    force microscopy (AFM). DSC evidences helped to explain the texture of the iron samples during the drying process, and showed transitions between low melting, PEO and high melting spherulites, and VTPM is able to visualise the spherulites present in the samples. AFM has successfully imaged the as cast PEO sub 8 :FeBr sub 2 sample and the surface effect causing extra resistance in the impedance spectra could be seen. Conductivity studies were carried out using a.c. impedance spectra. Fe(ll) samples exhibit the typical semicircle-spike plot but the Fe(lll) samples displayed an extra semicircle before the spike reflecting a surface effect. This is also manifested in the Arrhenius plots of the same samples where a dip was shown at 100 deg C. From the conductivity studies on the iron systems it was found that for the dry samples the optimum conductivity was observed in PEO sub 8 :FeBr sub x irrespective of the valence state of the cation. For the air-cast samples the optimum conductivity composition depends on the...

  12. The electronic behavior of a photosynthetic reaction center monitored by conductive atomic force microscopy.

    Science.gov (United States)

    Mikayama, Takeshi; Iida, Kouji; Suemori, Yoshiharu; Dewa, Takehisa; Miyashita, Tokuji; Nango, Mamoru; Gardiner, Alastair T; Cogdell, Richard J

    2009-01-01

    The conductivity of a photosynthetic reaction center (RC) from Rhodobacter sphaeroides was measured with conductive atomic force microscopy (CAFM) on SAM-modified Au(111) substrates. 2-mercaptoethanol (2ME), 2-mercaptoacetic acid (MAC), 2-mercaptopyridine (2MP) and 4-mercaptopyridine (4MP) were prepared as SAM materials to investigate the stability and morphology of RCs on the substrate by using near-IR absorption spectroscopy and AFM, respectively. The clear presence of the three well known RC near-IR absorption peaks indicates that the RCs were native on the SAM-modified Au(111). Dense grains with various diameters of 5-20 nm, which corresponded to mixtures of single RCs up to aggregates of 10, were observed in topographs of RCs adsorbed on all the different SAM-modified Au(111) substrates. The size of currents obtained from the RC using a bare conductive cantilever were produced in the following order for SAM molecules: 2MP > 2ME > 4MP > MAC. A clear rectification of this current was observed for the modification of the Au(111) substrate with the pi-conjugated thiol, 2MP, indicating that 2MP was effective in both promoting the specific orientation of the RCs on the electrode and electron injection into the RC. Cyclic voltammetry measurements indicate that the 2MP is better mediator for the electron transfer between a quinone and substrate. The current with 2MP-modified cantilever was twice as high as that obtained with the Au-coated one alone, indicating that 2MP has an important role in lowering the electron injection barrier between special pair side of RC and gold electrode.

  13. Studies on conducting polymer and conducting polymerinorganic composite electrodes prepared via a new cathodic polymerization method

    Science.gov (United States)

    Singh, Nikhilendra

    A novel approach for the electrodeposition of conducting polymers and conducting polymer-inorganic composite materials is presented. The approach shows that conducting polymers, such as polypyrrole (PPy) and poly(3,4-ethylenedioxythiophene) (PEDOT) can be electrodeposited by the application of a cathodic bias that generates an oxidizing agent, NO+, via the in-situ reduction of nitrate anions. This new cathodic polymerization method allows for the deposition of PPy and PEDOT as three dimensional, porous films composed of spherical polymer particles. The method is also suitable for the co-deposition of inorganic species producing conducting polymer-inorganic composite electrodes. Such composites are used as high surface area electrodes in Li-ion batteries, electrochemical hydrogen evolution and in the development of various other conducting polymer-inorganic composite electrodes. New Sn-PPy and Sb-PPy composite electrodes where Sn and Sb nanoparticles are well dispersed among the PPy framework are reported. These structures allow for decreased stress during expansion and contraction of the active material (Sn, Sb) during the alloying and de-alloying processes of a Li-ion battery anode, significantly alleviating the loss of active material due to pulverization processes. The new electrochemical synthesis mechanism allows for the fabrication of Sn-PPy and Sb-PPy composite electrodes directly from a conducting substrate and eliminates the use of binding materials and conducting carbon used in modern battery anodes, which significantly simplifies their fabrication procedures. Platinum (Pt) has long been identified as the most efficient catalyst for electrochemical water splitting, while nickel (Ni) is a cheaper, though less efficient alternative to Pt. A new morphology of PPy attained via the aforementioned cathodic deposition method allows for the use of minimal quantities of Pt and Ni dispersed over a very high surface area PPy substrate. These composite electrodes

  14. Monitoring adherence to the international code of conduct: highly hazardous pesticides in central Andean agriculture and farmers' rights to health.

    Science.gov (United States)

    Orozco, Fadya A; Cole, Donald C; Forbes, Greg; Kroschel, Jürgen; Wanigaratne, Susitha; Arica, Denis

    2009-01-01

    The WHO has advocated monitoring adherence to the Food and Agriculture Organization's Code of Conduct to reduce use of highly hazardous pesticides in lower and middle income countries. We re-framed Code articles in terms of farmers' rights and drew on survey data, farmer focus group results, and direct observations of agrochemical stores in Ecuador and Peru to construct indicators reflecting respect for such rights. Use of highly (Ia and Ib) and moderately (II) hazardous pesticides was common. Worse indicators were observed in places with lower education, greater poverty, and more use of indigenous languages. Limited government enforcement capacity, social irresponsibility of the pesticide industry, and lack of farmers' knowledge of the Code were all factors impeding respect for farmers' rights. Addressing the power imbalance among social actors requires informed farmer and farmworker participation in monitoring adherence and active involvement of non-governmental organizations and municipal governments.

  15. Experimental Study on Aero Conductivity of Porous Media

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    To study the variation pattern of aero conductivity of different porous media under low pressure conditions, three kinds of media are selected.These include sandy clay loam, fine sand, and medium sand, and air as fluid to conduct soil column ventilation tests.Pressure at both ends of the columns is measured under different ventilation flow rates during testing.The test results show that the aero conductivity, solved by Darcy's law, is not a constant.It is a variable, which increases first when air flow velocity is less than 0.258 7 cm/ s for sandy clay loam, 0.637 3 cm/s for fine sand and then decreases when air flow velocity is bigger than that with the increase of the ventilation flow rate when the medium is determined.By analyzing various factors that influence the flow resistance, the reasons for variation in aero conductivity are found as follows: first, the change of pore structure results in better ventilation; second, the relationship between pressure head loss and air flow velocity is nonlinear, and it is beyond the condition of the laminar flow domain to which Darcy's law can be applied, when the air flow rate increases to a certain value and the flow velocity is in the transition range to turbulent flow.

  16. The NASA Real Time Mission Monitor - A Situational Awareness Tool for Conducting Tropical Cyclone Field Experiments

    Science.gov (United States)

    Goodman, Michael; Blakeslee, Richard; Hall, John; Parker, Philip; He, Yubin

    2008-01-01

    The NASA Real Time Mission Monitor (RTMM) is a situational awareness tool that integrates satellite, aircraft state information, airborne and surface instruments, and weather state data in to a single visualization package for real time field experiment management. RTMM optimizes science and logistic decision-making during field experiments by presenting timely data and graphics to the users to improve real time situational awareness of the experiment's assets. The RTMM is proven in the field as it supported program managers, scientists, and aircraft personnel during the NASA African Monsoon Multidisciplinary Analyses (investigated African easterly waves and Tropical Storm Debby and Helene) during August-September 2006 in Cape Verde, the Tropical Composition, Cloud and Climate Coupling experiment during July-August 2007 in Costa Rica, and the Hurricane Aerosonde mission into Hurricane Noel in 2-3 November 2007. The integration and delivery of this information is made possible through data acquisition systems, network communication links, and network server resources built and managed by collaborators at NASA Marshall Space Flight Center (MSFC) and Dryden Flight Research Center (DFRC). RTMM is evolving towards a more flexible and dynamic combination of sensor ingest, network computing, and decision-making activities through the use of a service oriented architecture based on community standards and protocols. Each field experiment presents unique challenges and opportunities for advancing the functionality of RTMM. A description of RTMM, the missions it has supported, and its new features that are under development will be presented.

  17. Monitoring gradient profile on-line in micro- and nano-high performance liquid chromatography using conductivity detection.

    Science.gov (United States)

    Zhang, Min; Chen, Apeng; Lu, Joann J; Cao, Chengxi; Liu, Shaorong

    2016-08-19

    In micro- or nano-flow high performance liquid chromatography (HPLC), flow-splitters and gradient elutions are commonly used for reverse phase HPLC separations. When a flow splitter was used at a high split-ratio (e.g., 1000:1 or higher), the actual gradient may deviate away from the programmed gradient. Sometimes, mobile phase concentrations can deviate by as much as 5%. In this work, we noticed that the conductivity (σ) of a gradient decreased with the increasing organic-solvent fraction (φ). Based on the relationship between σ and φ, a method was developed for monitoring gradient profile on-line to record any deviations in these HPLC systems. The conductivity could be measured by a traditional conductivity detector or a capacitively coupled contactless conductivity detector (C(4)D). The method was applied for assessing the performance of an electroosmotic pump (EOP) based nano-HPLC. We also observed that σ value of the gradient changed with system pressure; a=0.0175ΔP (R(2)=0.964), where a is the percentage of the conductivity increase and ΔP is the system pressure in bar. This effect was also investigated.

  18. Studies of Electronic Conduction in Some Small Gallium Arsenic Based.

    Science.gov (United States)

    Whittington, Geoffrey

    Available from UMI in association with The British Library. Requires signed TDF. This thesis describes experimental investigations of the physics involved with low temperature electronic conduction in three different semiconductor systems. The research relies upon technological advances in fabrication of such semiconductor samples. The first work deals with the effects of quantum interference of electrons in some submicron size, heavily doped Gallium Arsenide wire samples. The interesting effect of aperiodic fluctuations in the magnetoresistance of these samples is studied, making use of recently formulated theory on the subject, and with experimental data taken over the magnetic field range 0 to 10 tesla. The results verify the connection between the mean amplitude of the fluctuations and the field correlation period, in terms of the correlation function introduced in the theory. The second work is on the impurity-assisted tunnelling conduction in a magnetic field of three thin rm n^{+}/n^{-}/n^ {+} GaAs sandwich layer structures. The conduction of the system is shown to be determined by impurities lying in the centre of the middle layer. This allows the connection to be made between the conductivity of the system in a magnetic field, and the field-dependent shape of the donor electron wavefunction. The relative variation in resistance with angle to an applied magnetic field was measured, and is shown to be in agreement with predictions based on calculations of the shape of a normalised hydrogenic state wavefunction in high magnetic fields. The third work concerns the tunnelling conduction of a symmetrical GaAs/(AlGa)As/GaAs hetero-barrier system. The current-voltage characteristics at low temperature are fully modelled for applied voltages up to 180mV, using conventional theory of tunnelling and a position-dependent effective mass in the barrier. Low current oscillations in the Fowler-Nordheim tunnelling regime, corresponding to quantum reflection at the

  19. Comparative study of electron conduction in azulene and naphthalene

    Indian Academy of Sciences (India)

    Sudipta Dutta; S Lakshmi; Swapan K Pati

    2008-06-01

    We have studied the feasibility of electron conduction in azulene molecule and compared with that in its isomer naphthalene. We have used non-equilibrium Green’s function formalism to measure the current in our systems as a response of the external electric field. Parallely we have performed the Gaussian calculations with electric field in the same bias window to observe the impact of external bias on the wave functions of the systems. We have found that the conduction of azulene is higher than that of naphthalene inspite of its intrinsic donor–acceptor property, which leads a system to more insulating state. Due to stabilization through charge transfer the azulene system can be fabricated as a very effective molecular wire. Our calculations show the possibility of huge device application of azulene in nano-scale instruments.

  20. Conductivity studies on commercially available proton-conducting membranes with different equivalent weight

    Energy Technology Data Exchange (ETDEWEB)

    Huslage, J.; Buechi, F.N.; Scherer, G.G. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Two perfluorosulfonic acid membranes, Nafion{sup R} 105 and Nafion{sup R} 115 with the same thickness but different equivalent weights (EW = 1000 g/eq. resp. 1100 g/eq.) were characterised by conductivity measurements at different water vapour activities in the temperature range of 25-70{sup o}C. The results demonstrate that a lower membrane equivalent weight opens the possibility to obtain the needed proton conductivity at lower water vapour activity. This is especially important for those fuel cell applications, in which the cell is operated without external humidification of the fuel gases. (author) 5 figs., 5 refs.

  1. Guidelines for Conducting Positivist Case Study Research in Information Systems

    Directory of Open Access Journals (Sweden)

    Graeme Shanks

    2002-11-01

    Full Text Available The case study research approach is widely used in a number of different ways within the information systems community. This paper focuses on positivist, deductive case study research in information systems. It provides clear definitions of important concepts in positivist case study research and illustrates these with an example research study. A critical analysis of the conduct and outcomes of two recently published positivist case studies is reported. One is a multiple case study that validated concepts in a framework for viewpoint development in requirements definition. The other is a single case study that examined the role of social enablers in enterprise resource planning systems implementation. A number of guidelines for successfully undertaking positivist case study research are identified including developing a clear understanding of key concepts and assumptions within the positivist paradigm; providing clear and unambiguous definitions of the units and interactions when using any theory; carefully defining the boundary of the theory used in the case study; using hypotheses rather than propositions in the empirical testing of theory; using fuzzy or probabilistic propositions in recognising that reality can never be perfectly known; selecting case studies carefully, particularly single case studies; and recognising that generalisation from positivist, single case studies is inherently different from generalisation from single experiments. When properly undertaken, positivist, deductive case study research is a valuable research approach for information systems researchers, particularly when used within pluralist research programs that use a number of different research approaches from different paradigms.

  2. A study of oxygen transport in mixed conducting oxides using isotopic exchange and conductivity relaxation

    NARCIS (Netherlands)

    Otter, den Matthijs Willem

    2000-01-01

    Mixed conducting oxygen ion conductors can be applied as membranes for the separation of oxygen from air, as electrodes for both oxygen pumps and solid oxide fuel cells. In these applications, oxygen molecules dissociate on the surface of the material. The atomic oxygen species pick up two electrons

  3. Transport studies of conducting, semiconducting and photoconducting star polymers

    Science.gov (United States)

    Ferguson, John Baker

    Star polymers are studied for their transport properties in the highly conducting state doped with NOPF6 and iodine, the undoped semiconducting state and the photoconducting state. Doped star polymers exhibit variable range hopping of charge carriers. Transport dimensionality and conductivity depend intricately on the processing conditions for doping and casting films. The highest conducting diffusion doped film (room temperature conductivity 50 S/cm) exhibits 2-dimensional variable range for all doping levels. Polymers doped in solution, then cast to form films have 1.4 dimensional variable range hopping for the highest conducting samples with 10 S/cm at room temperature. The hopping dimensionality varies as the conductivity decreases. The doped star polymers remain on the insulator side of the insulator metal transition with localized carriers as revealed with Kramer-Kronig analysis. Optical and near infrared absorbance and photoluminescence reveal the core of the star polymers exist in a solid state solution of the arms with similar absorbance and luminescence for both solution and films. The arms retain the optical properties of their linear analogs indicating the core and arms do not interact quantum mechanically to produce a new state. Excitons created by absorption in the wider band gap cores rapidly migrate to the arms. Photoconductive time of flight mobility measurements reveal an almost field independent mobility at room temperature. This is due to a unique cancellation of on diagonal and off diagonal disorder in the Bassler disorder formalism. The cores introduce heterogeneous regions with a net lower mobility predicted by correlated disorder models. Space charge limited current reveals trap densities several orders of magnitude higher than the carrier density. Photovoltaic performance of star polymer and fullerene blend devices with both 20 nm and 100 nm thick layers are investigated. The thin devices have low open circuit voltages due to space charge

  4. Study of conduction in vertical and lateral nanostructures

    Science.gov (United States)

    Kolagunta, Venkat Ramamurthi

    It is predicted that Quantum devices would be used to develop future high-speed computers. The demonstration of quantum phenomenon in metal and semiconductor devices has been limited to temperatures of 4.2K or lower due to the minimum achievable feature sizes of conventional fabrication techniques. A vertical sidewall gating technique has been developed to study and demonstrate lateral confinement effects in quantum heterostructures. Room temperature pinch-off of the resonant peak in single well resonant devices with minimum widths in the sub-micron regime and an even gating in both positive and negative biasing regimes are presented. The first demonstration of pinch-off of multiple well resonant structures including observation of one-dimensional quantization and sub-band mixing at 77K is reported. A self-assembled structure of nanometer size single crystal metal metal clusters with organic linking between nearest neighbour clusters has been developed at Purdue with possible applications in future single electronic circuits. Activated temperature dependent conduction has been observed in these linked cluster networks (LCN) and is associated to the charging energy of a single charge (soliton) in the array. Changing the linking molecule between the clusters changes the conduction through the array and is associated to the conduction properties of the organic linking molecule. While room-temperature Coulomb blockade is not observed, means to achieve the same using the LCN structures are discussed.

  5. Study of conduction aphasia by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Shoji, Mikio; Harigawa, Yasuo; Kawarabayashi, Takeshi; Hirai, Shunsaku; Tamada, Junpei.

    1988-04-01

    We reported two cases of conduction aphasia with distinctive language disorder from early stage of stroke, as well as their cerebral blood flow and oxygen consumption investigated with PET. The case was a 72-year-old right handed man whose speech disturbance began acutely. On admission, neurological examination revealed hand pronation sign on the right and speech disturbance. Other neurological findings including cortical functions were normal. Brain CT scan showed low density area in the white matter of the left supramarginal gyrus. The diagnosis was cerebral infarction. The case 2 was a 64-year-old right handed man. He suffered right hemiparesis 2 months before. Neurological examination revealed mild right hemiparesis and speech disturbance. Other cortical functions were noncontributory. Brain CT scan showed old subcortical infarction of the left frontal lobe and new cerebral infarction. with supramarginal gyrus. The low density area of the supramarginal cortex extended into the subcortical white matter. The language performances in these two cases were similar. Two patients were definitely fluent, but the verbal output was contaminated by paraphasias which were predominantly literal. They performed poorly when attempting to repeat despite good comprehension. Thus, the primary characteristics of conduction aphasia were present. PET studies resulted as follows. 1) rCBF reduced 36 % in the supramarginal cortex, 50 % in the white matter. 2) rCMRO/sub 2/ reduced 37 % in the supramarginal cortex, 45 % in the white matter. 3) The CBF and the CMRO/sub 2/ images indicated that cerebral blood flow and oxygen consumption reduced in wider range of area than that shown by brain CT. These results indicated that not only the cortex but also the white matter were damaged in conduction aphasia and several methods including PET should be used to determine the locus of abnormality in conduction aphasia.

  6. Study on Application of Mobile Radiological Monitor

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The mobile radiological monitor has been applied for the radiation level of a nuclear facility in 2011. Based on the requirement, the monitor had been improved, it can measure and save the data of gamma-ray and neutron radiation level, the dose rate and the

  7. Electronic conductivity studies on oxyhalide glasses containing TMO

    Energy Technology Data Exchange (ETDEWEB)

    Vijayatha, D. [R& D Center, Bharatiar University, Coimbatore, Tamil Nadu (India); Department of Physics, Gurunanak Institute of Technology, Hyderabad -040 (India); Viswanatha, R. [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012 (India); Sujatha, B. [Department of Electronics and Communcation, MSRIT, Bangalore 560054 (India); Narayana Reddy, C., E-mail: nivetejareddy@gmail.com [Department of Physics, Sree Siddaganga College of Arts, Science and Commerce, Tumkur 572102 (India)

    2016-05-06

    Microwave-assisted synthesis is cleaner, more economical and much faster than conventional methods. The development of new routes for the synthesis of solid materials is an integral part of material science and technology. The electronic conductivity studies on xPbCl{sub 2} – 60 PbO – (40-x) V{sub 2}O{sub 5} (1 ≥ x ≤ 10) glass system has been carried out over a wide range of composition and temperature (300 K to 423 K). X-ray diffraction study confirms the amorphous nature of the samples. The Scanning electron microscopic studies reveal the formation of cluster like morphology in PbCl{sub 2} containing glasses. The d.c conductivity exhibits Arrhenius behaviour and increases with V{sub 2}O{sub 5} concentration. Analysis of the results is interpreted in view Austin-Mott’s small polaron model of electron transport. Activation energies calculated using regression analysis exhibit composition dependent trend and the variation is explained in view of the structure of lead-vanadate glass.

  8. Electrical conduction and dielectric studies of ZnO pellets

    Energy Technology Data Exchange (ETDEWEB)

    Chaari, Mariem, E-mail: m_chaari@yahoo.fr [Laboratory of Composite Ceramic and Polymer Materials (LaMaCoP), Scientific Faculty of Sfax, Route of the Soukra Km 4, Sfax 3038 (Tunisia); Matoussi, Adel [Laboratory of Composite Ceramic and Polymer Materials (LaMaCoP), Scientific Faculty of Sfax, Route of the Soukra Km 4, Sfax 3038 (Tunisia)

    2012-09-01

    A series of Zinc Oxide pellets sintered at different temperatures was studied by means of dielectric spectroscopy in the wide frequency range of 1-10{sup 6} Hz and temperature interval from -100 Degree-Sign C to 30 Degree-Sign C. Electrical conductivity was analysed using Jonsher's universal power law, and the values of s were found to decrease with the increase in temperature, which agrees well with the correlation barrier hopping (CBH) model. As the temperature increased, energy activation E{sub dc} became less than 0.39 eV and dc conductivity ({sigma}{sub dc}) values in the range of 1.9 Multiplication-Sign 10{sup -14}-9.7 Multiplication-Sign 10{sup -10} {Omega} m{sup -1} were observed. The dielectric modulus showed ionic polarisation at the intermediate and high frequencies related to oxygen interstitial O{sub i}, oxygen vacancy V{sub O} and Zinc interstitial Zn{sub i}. At low frequency, it revealed a Maxwell-Wagner-Sillars relaxation with barrier heights of grain boundaries between 0.74 and 0.88 eV for all the studied pellets.

  9. Synthesis of Nano Conducting Polymer Based Polyaniline and it's Composite: Mechanical Properties, Conductivity and Thermal Studies

    Directory of Open Access Journals (Sweden)

    M. Banimahd Keivani

    2010-01-01

    Full Text Available Polyaniline (PAn was prepared chemically in the presence of bronsted acid from aqueous solutions. Polyaniline- nylon 6 composite (termed as PAn/Ny6 prepared via solvent casting method. The preparation conditions were optimized with regard to the mechanical properties of the polymer composite. It was found that the molar ratio of PAn to nylon have the greatest effect in determining the mechanical properties of polymer composite. Electrical conductivity was measured using standard method of four point probe. Spectrophotometric analysis (UV-Vis was used for investigation of the effect of thermal treatment on polyaniline and it’s composite.

  10. Advantages of a cohort study on cardiac arrest conducted by nurses

    Directory of Open Access Journals (Sweden)

    Cássia Regina Vancini Campanharo

    2015-10-01

    Full Text Available AbstractOBJECTIVEIdentifying factors associated to survival after cardiac arrest.METHODAn experience report of a cohort study conducted in a university hospital, with a consecutive sample comprised of 285 patients. Data were collected for a year by trained nurses. The training strategy was conducted through an expository dialogue lecture. Collection monitoring was carried out by nurses via telephone calls, visits to the emergency room and by medical record searches. The neurological status of survivors was evaluated at discharge, after six months and one year.RESULTSOf the 285 patients, 16 survived until hospital discharge, and 13 remained alive after one year, making possible to identify factors associated with survival. There were no losses in the process.CONCLUSIONCohort studies help identify risks and disease outcomes. Considering cardiac arrest, they can subsidize public policies, encourage future studies and training programs for CPR, thereby improving the prognosis of patients.

  11. Conducting Simulation Studies in the R Programming Environment.

    Science.gov (United States)

    Hallgren, Kevin A

    2013-10-12

    Simulation studies allow researchers to answer specific questions about data analysis, statistical power, and best-practices for obtaining accurate results in empirical research. Despite the benefits that simulation research can provide, many researchers are unfamiliar with available tools for conducting their own simulation studies. The use of simulation studies need not be restricted to researchers with advanced skills in statistics and computer programming, and such methods can be implemented by researchers with a variety of abilities and interests. The present paper provides an introduction to methods used for running simulation studies using the R statistical programming environment and is written for individuals with minimal experience running simulation studies or using R. The paper describes the rationale and benefits of using simulations and introduces R functions relevant for many simulation studies. Three examples illustrate different applications for simulation studies, including (a) the use of simulations to answer a novel question about statistical analysis, (b) the use of simulations to estimate statistical power, and (c) the use of simulations to obtain confidence intervals of parameter estimates through bootstrapping. Results and fully annotated syntax from these examples are provided.

  12. Thermally stimulated discharge conductivity study of zinc oxide thermoelectrets

    Indian Academy of Sciences (India)

    Vijaya S Sangawar; Manisha C Golchha

    2014-10-01

    The present work deals with transmission electron microscopy (TEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermally stimulated discharge current (TSDC) study of inorganic metal oxide (ZnO) nanoparticles and its thermoelectrets. The thermoelectrets were prepared by applying different electric polarizing field (P) at constant polarizing temperature (P), for constant polarization time (P). The TSDC study was carried out in the temperature region of 313–473 K. It was observed that the conductivity of ZnO samples increases with the increase in temperature and polarizing field. The dependence of TSDC data on polarizing agents, i.e. field and temperature shows Arrhenius type of behviour and is explained on the basis of variable range hopping mechanism.

  13. Location and social context does matter when conducting consumer studies!

    DEFF Research Database (Denmark)

    Andersen, Barbara Vad; Kraggerud, Hilde; Bruun Brockhoff, Per

    2015-01-01

    an adequate level of research conducted in realistic eating contexts. In the aim to study how location and social context affected consumers’ feeling of food satisfaction and physical well-being a study was set up with, combined yoghurt with muesli products in two settings; a) in a sensory lab facility (n...... = 107), and b) a natural eating context (n = 132). In the natural eating context the consumer could bring the product along and eat it in a context where it felt natural. This further facilitated analysis of effect of eating location, social context and at which meal the product was consumed on feeling......, and food satisfaction, and one hour post intake of satisfaction. Overall the differences indicate that it takes more of a product to reduce appetite and increase food satisfaction in a natural context than it does in a lab context. Analysis of the natural eating context further showed an effect of social...

  14. Conducting a multicentre and multinational qualitative study on patient transitions.

    Science.gov (United States)

    Johnson, Julie K; Barach, Paul; Vernooij-Dassen, Myrra

    2012-12-01

    A multicentre, multinational research study requires careful planning and coordination to accomplish the aims of the study and to ensure systematic and rigorous examination of all project methods and data collected. The aim of this paper is to describe the approach we used during the HANDOVER Project to develop a multicentre, multinational research project for studying transitions of patient care while creating a community of practice for the researchers. We highlight the process used to assure the quality of a multicentre qualitative study and to create a codebook for data analysis as examples of attending to the community of practice while conducting rigorous qualitative research. Essential elements for the success of this multinational, multilanguage research project included recruiting a strong research team, explicit planning for decision-making processes to be used throughout the project, acknowledging the differences among the study settings and planning the protocols to capitalise upon those differences. Although not commonly discussed in reports of large research projects, there is an underlying, concurrent stream of activities to develop a cohesive team that trusts and respects one another's skills and that engage independent researchers in a group process that contributes to achieving study goals. We discuss other lessons learned and offer recommendations for other teams planning multicentre research.

  15. Conducting Simulation Studies in the R Programming Environment

    Directory of Open Access Journals (Sweden)

    Kevin A. Hallgren

    2013-10-01

    Full Text Available Simulation studies allow researchers to answer specific questions about data analysis, statistical power, and best-practices for obtainingaccurate results in empirical research. Despite the benefits that simulation research can provide, many researchers are unfamiliar with available tools for conducting their own simulation studies. The use of simulation studies need not be restricted toresearchers with advanced skills in statistics and computer programming, and such methods can be implemented by researchers with a variety of abilities and interests. The present paper provides an introduction to methods used for running simulationstudies using the R statistical programming environment and is written for individuals with minimal experience running simulation studies or using R. The paper describes the rationale and benefits of using simulations and introduces R functions relevant for many simulation studies. Three examples illustrate different applications for simulation studies, including (a the use of simulations to answer a novel question about statistical analysis, (b the use of simulations to estimate statistical power, and (c the use of simulations to obtain confidence intervals of parameter estimates throughbootstrapping. Results and fully annotated syntax from these examples are provided.

  16. Visual and dynamic conductivity studies of Laponite RTM hydrogels

    Science.gov (United States)

    Henry, Mark L.

    Static hydration of a 3.0 wt. % of LaponiteRTM in deionized (DI) water was investigated at 30oC and 60oC using Electrochemical Impedance Spectrometry (EIS). The results show the transition of the low-density hydrogel to its pure electrostatic repulsion state or Wigner glass within 5 days with a significant reduction in preparation time and without the use of energetic agitation. This was accomplished in real time by placing the fine crystalline powder in a four-probe dynamic conductivity (DC) cell and gently adding DI water under a light vacuum of 17 torr below ambient pressure. Once the hydration began, impedance measurements were taken at regular intervals for several days, while a time-lapse camera recorded the dynamic changes within the DC cell. Combined with the four experimentally determined cell constants and a multi-point calibration curve, this study opens up new insight into the conductive properties of nanocomposite clays during static hydration.

  17. Thermal conductivity and rectification study of restructured Graphene

    Science.gov (United States)

    Arora, Anuj

    Electronics' miniaturization, has led to search for better thermal management techniques and discovery of important transport phenomenon. Thermal rectification, directionally preferential heat transport analogous to electrical diode, is one such technique, garnering tremendous interest. Its possibility has been explored through structural asymmetry, introducing a differential phonon density of states in hot and cold regions. As of now, mass and shape asymmetries have been studied, both experimentally and theoretically. However, strict requirements of material length being shorter than phonon mean free path and phonon coherence preservation at surface, makes connecting two materials with different temperature-dependent thermal conductivities, a more natural approach. To avoid resultant thermal boundary resistance and integration complexities, we achieve the affect in single material, by restructuring a region of Graphene by introducing defects. The asymmetry impedes ballistic phonon transport, modulating temperature dependence of thermal conductivity in the two regions. We perform deviational Monte Carlo simulations based on Energy-based formulation to microscopically investigate phonon transport, possibility and optimal conditions for thermal rectification. The proposed method uses phonon properties obtained from first principle, treat phonon-boundary scattering explicitly with properties drawn from Bose-Einstein Distribution.

  18. Change over Time: Conducting Longitudinal Studies of Children's Cognitive Development.

    Science.gov (United States)

    Grammer, Jennie K; Coffman, Jennifer L; Ornstein, Peter A; Morrison, Frederick J

    2013-10-01

    Developmental scientists have argued that the implementation of longitudinal methods is necessary for obtaining an accurate picture of the nature and sources of developmental change (Magnusson & Cairns, 1996; Morrison & Ornstein, 1996; Magnusson & Stattin, 2006). Developmentalists studying cognition have been relatively slow to embrace longitudinal research, and thus few exemplar studies have tracked individual children's cognitive performance over time and even fewer have examined contexts that are associated with this growth. In this article we first outline some of the benefits of implementing longitudinal designs. Using illustrations from existing studies of children's basic cognitive development and of their school-based academic performance, we discuss when it may be appropriate to employ longitudinal (versus other) methods. We then outline methods for integrating longitudinal data into one's research portfolio, contrasting the leveraging of existing longitudinal data sets with the launching of new longitudinal studies in order to address specific questions concerning cognitive development. Finally, for those who are interested in conducting longitudinal investigations of their own, we provide practical on-the-ground guidelines for designing and carrying out such studies of cognitive development.

  19. Study on Thermo-Conductive Plastic Finned Tube Radiators

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    This paper discusses thermo-conductive plastic finned tube radiators used in water saving type power stations.First,the development of thermo-conductive plastics is introduced.Second,in order to determine the rational geometric dimensions of thermo-conductive plastic finned tubes,an objective function which takes the minimum volume of the consumed material for making finned tubes as an object is introduced.On the basis of the function,the economy comparison between thermo-conductive plastic finned tubes and metal finned tubes is conducted.

  20. A coupled monitoring network to conduct an assessment of mercury transformation and mobilization in floodplain soils: South River, Virginia

    Science.gov (United States)

    Lazareva, O.; Sparks, D. L.; Landis, R.; Ptacek, C. J.; Hicks, S.; Montgomery, D.

    2013-12-01

    Mercury (Hg) was used between 1929 and 1950 by the DuPont plant in the production of rayon acetate fiber in Waynesboro, Virginia and released into the South River. The contamination of Hg was discovered in the 1970s and remained elevated in water, soil, sediments, and biota. The primary goal of this study is to investigate the processes that govern biogeochemical transformation and mobilization of Hg in floodplain soils at South River Mile 3.5, characterize geochemical gradients in soils and how they change over time, and to enable targeted sampling at Hg loading hot spots. The biogeochemical data will play a supporting role and be used to further develop our understanding of the processes controlling the leaching of Hg and our conceptual model. Our over-arching hypothesis is to test if leaching of bank soils is a significant source of dissolved or colloidal inorganic Hg. This effort requires an interdisciplinary geochemical approach and sensor technology to understand the interactions between floodplain soil, groundwater, and river. Our investigation will include 10 months' worth data from a number of state-of-the-art in-situ monitoring sensors, such as custom-designed redox probes, soil moisture, temperature, pressure, and conductivity installed at the site. Our preliminary results showed that the concentration of total Hg in soils was up to 900 mg/kg (wet weight).There is a significant redox gradient across the floodplain soil profile. Within the top 40 -70 cm, major changes in redox conditions from oxidizing (Eh ≈+600 mV) to very reducing (Eh ≈-300 mV) corresponded to heavy rainfall and overbank flooding events. High variations in stream stage may govern the surface water - groundwater exchange facilitating the downward or upward movement of the capillary fringe and saturated zone through the soil horizons, affecting soil redox potential, stability of Hg-bearing minerals and leaching of inorganic Hg into dissolved and colloidal phases. These phases may be

  1. Skin conductance fear conditioning impairments and aggression: a longitudinal study.

    Science.gov (United States)

    Gao, Yu; Tuvblad, Catherine; Schell, Anne; Baker, Laura; Raine, Adrian

    2015-02-01

    Autonomic fear conditioning deficits have been linked to child aggression and adult criminal behavior. However, it is unknown if fear conditioning deficits are specific to certain subtypes of aggression, and longitudinal research is rare. In the current study, reactive and proactive aggression were assessed in a sample of males and females when aged 10, 12, 15, and 18 years old. Skin conductance fear conditioning data were collected when they were 18 years old. Individuals who were persistently high on proactive aggression measures had significantly poorer conditioned responses at 18 years old when compared to others. This association was not found for reactive aggression. Consistent with prior literature, findings suggest that persistent antisocial individuals have unique neurobiological characteristics and that poor autonomic fear conditioning is associated with the presence of increased instrumental aggressive behavior.

  2. Real-Time Electrical Impedimetric Monitoring of Blood Coagulation Process under Temperature and Hematocrit Variations Conducted in a Microfluidic Chip

    OpenAIRE

    Lei, Kin Fong; Chen, Kuan-Hao; Tsui, Po-Hsiang; Tsang, Ngan-Ming

    2013-01-01

    Blood coagulation is an extremely complicated and dynamic physiological process. Monitoring of blood coagulation is essential to predict the risk of hemorrhage and thrombosis during cardiac surgical procedures. In this study, a high throughput microfluidic chip has been developed for the investigation of the blood coagulation process under temperature and hematocrit variations. Electrical impedance of the whole blood was continuously recorded by on-chip electrodes in contact with the blood sa...

  3. Study on Lubricating Oil Monitoring Technology

    Institute of Scientific and Technical Information of China (English)

    LIU Feng-bi

    2006-01-01

    Lubricating oil monitoring has been proven to be an effective method for detecting and diagnosing machinery failures and essential for realizing condition based maintenance. In this paper, mathematical statistics methods for determining the oil parameters featuring machinery failures and the parameters' probability distribution functions and their thresholds are put forward.

  4. A protocol for conducting rainfall simulation to study soil runoff.

    Science.gov (United States)

    Kibet, Leonard C; Saporito, Louis S; Allen, Arthur L; May, Eric B; Kleinman, Peter J A; Hashem, Fawzy M; Bryant, Ray B

    2014-04-03

    Rainfall is a driving force for the transport of environmental contaminants from agricultural soils to surficial water bodies via surface runoff. The objective of this study was to characterize the effects of antecedent soil moisture content on the fate and transport of surface applied commercial urea, a common form of nitrogen (N) fertilizer, following a rainfall event that occurs within 24 hr after fertilizer application. Although urea is assumed to be readily hydrolyzed to ammonium and therefore not often available for transport, recent studies suggest that urea can be transported from agricultural soils to coastal waters where it is implicated in harmful algal blooms. A rainfall simulator was used to apply a consistent rate of uniform rainfall across packed soil boxes that had been prewetted to different soil moisture contents. By controlling rainfall and soil physical characteristics, the effects of antecedent soil moisture on urea loss were isolated. Wetter soils exhibited shorter time from rainfall initiation to runoff initiation, greater total volume of runoff, higher urea concentrations in runoff, and greater mass loadings of urea in runoff. These results also demonstrate the importance of controlling for antecedent soil moisture content in studies designed to isolate other variables, such as soil physical or chemical characteristics, slope, soil cover, management, or rainfall characteristics. Because rainfall simulators are designed to deliver raindrops of similar size and velocity as natural rainfall, studies conducted under a standardized protocol can yield valuable data that, in turn, can be used to develop models for predicting the fate and transport of pollutants in runoff.

  5. A study on the thermal conductivity of compacted bentonites

    CERN Document Server

    Tang, Anh-Minh; Le, Trung Tinh; 10.1016/j.clay.2007.11.001

    2008-01-01

    Thermal conductivity of compacted bentonite is one of the most important properties in the design of high-level radioactive waste repositories where this material is proposed for use as a buffer. In the work described here, a thermal probe based on the hot wire method was used to measure the thermal conductivity of compacted bentonite specimens. The experimental results were analyzed to observe the effects of various factors (i.e. dry density, water content, hysteresis, degree of saturation and volumetric fraction of soil constituents) on the thermal conductivity. A linear correlation was proposed to predict the thermal conductivity of compacted bentonite based on experimentally observed relationship between the volumetric fraction of air and the thermal conductivity. The relevance of this correlation was finally analyzed together with others existing methods using experimental data on several compacted bentonites.

  6. Ionic conductivity and battery characteristic studies of a new PAN-based Na+ ion conducting gel polymer electrolyte system

    Science.gov (United States)

    Krishna Jyothi, N.; Vijaya Kumar, K.; Sunita Sundari, G.; Narayana Murthy, P.

    2016-03-01

    Sodium ion conducting gel polymer electrolytes based on polyacrylonitrile (PAN) with ethylene carbonate and dimethyl formamide as plasticizing solvents are prepared by the solution cast technique. These electrolyte films are free standing, transparent and dimensionally stable. Na+ ions are derived from NaI. The structural properties of pure and complex formations have been examined by X-ray diffraction, Fourier transform infrared spectroscopic studies and differential scanning calorimetric studies. The variation of the conductivity with salt concentration ranging from 10 to 40 wt% is studied. The sample containing 30 wt% of NaI exhibits the highest conductivity of 2.35 × 10-4 S cm-1 at room temperature (303 K) and 1 × 10-3 S cm-1 at 373 K. The conductivity-temperature dependence of polymer electrolyte films obeys Arrhenius behavior with activation energy in the range of 0.25-0.46 eV. The transport numbers both electronic ( t e) and ionic ( t i) are evaluated using Wagner's polarization technique. It is revealed that the conducting species are predominantly due to ions. The ionic transport number of highest conducting film is found to be 0.991. Solid-state battery with configuration Na/(PAN + NaI)/(I2 + C + electrolyte) is developed using the highest conducting gel polymer electrolyte system and the discharge characteristics of the cell are evaluated over the load of 100 KΩ.

  7. Carbonyl mediated conductance through metal bound peptides: a computational study

    Science.gov (United States)

    Perrine, Trilisa M.; Dunietz, Barry D.

    2007-10-01

    Large increases in the conductance of peptides upon binding to metal ions have recently been reported experimentally. The mechanism of the conductance switching is examined computationally. It is suggested that oxidation of the metal ion occurs after binding to the peptide. This is caused by the bias potential placed across the metal-peptide complex. A combination of configurational changes, metal ion involvement and interactions between carbonyl group oxygen atoms and the gold leads are all shown to be necessary for the large improvement in the conductance seen experimentally. Differences in the molecular orbitals of the nickel and copper complexes are noted and serve to explain the variation of the improvement in conductance upon binding to either a nickel or copper ion.

  8. 'Schizoid' personality and antisocial conduct: a retrospective case not study.

    Science.gov (United States)

    Wolff, S; Cull, A

    1986-08-01

    A retrospective case not analysis for 30 boys diagnosed as having a 'schizoid' personality disorder (Asperger's syndrome) in childhood, and for 30 matched clinic attenders (with systematic follow-up data for 19 matched pairs), showed the incidence of antisocial conduct to be the same in the two groups. However, the 'schizoid' boys stole less often and had fewer alcohol problems. In this group antisocial conduct was less related to family disruption and social disadvantage, and more to an unusual fantasy life. Clinical descriptions of a series of 'schizoid' boys and girls with conspicuous antisocial conduct follow. They suggest that characteristic patterns of antisocial conduct in such children are persistent expressions of hostility and, especially in girls, pathological lying, for which environmental circumstances provide no explanation.

  9. Specialist Cohort Event Monitoring studies: a new study method for risk management in pharmacovigilance.

    Science.gov (United States)

    Layton, Deborah; Shakir, Saad A W

    2015-02-01

    The evolving regulatory landscape has heightened the need for innovative, proactive, efficient and more meaningful solutions for 'real-world' post-authorization safety studies (PASS) that not only align with risk management objectives to gather additional safety monitoring information or assess a pattern of drug utilization, but also satisfy key regulatory requirements for marketing authorization holder risk management planning and execution needs. There is a need for data capture across the primary care and secondary care interface, or for exploring use of new medicines in secondary care to support conducting PASS. To fulfil this need, event monitoring has evolved. The Specialist Cohort Event Monitoring (SCEM) study is a new application that enables a cohort of patients prescribed a medicine in the hospital and secondary care settings to be monitored. The method also permits the inclusion of a comparator cohort of patients receiving standard care, or another counterfactual comparator group, to be monitored concurrently, depending on the study question. The approach has been developed in parallel with the new legislative requirement for pharmaceutical companies to undertake a risk management plan as part of post-authorization safety monitoring. SCEM studies recognize that the study population comprises those patients who may have treatment initiated under the care of specialist health care professionals and who are more complex in terms of underlying disease, co-morbidities and concomitant medications than the general disease population treated in primary care. The aims of this paper are to discuss the SCEM new-user study design, rationale and features that aim to address possible bias (such as selection bias) and current applications.

  10. Can saliva offer an advantage in monitoring of diabetes mellitus? – A case control study

    OpenAIRE

    Balan, Preethi; Subhas G Babu; Sucheta, Kumari N.; Shetty, Shishir R.; Rangare, Anusha L.; Castelino, Renita L.; Fazil, Areekat K.

    2014-01-01

    Objectives: Diabetes Mellitus is emerging as a major health problem over these years. Present method of blood glucose monitoring by venepuncture is invasive leading to reduced patient compliance and thereby ineffective judicious monitoring. The need of the hour is to direct research in the direction of establishing painless and more acceptable blood glucose analysis method.The objective of the study is to conduct a comparative analysis of the concentrations of salivary glucose and blood gluco...

  11. Monitoring of nitrite, nitrate, chloride and sulfate in environmental samples using electrophoresis microchips coupled with contactless conductivity detection.

    Science.gov (United States)

    Freitas, Camilla Benevides; Moreira, Roger Cardoso; de Oliveira Tavares, Maria Gizelda; Coltro, Wendell K T

    2016-01-15

    This report describes the development of an analytical methodology on microchip electrophoresis (ME) devices coupled with capacitively coupled contactless conductivity detection (C(4)D) to monitor inorganic anions in environmental samples. The buffer composition as well as detection operating parameters were optimized to achieve the best separation selectivity and detector sensitivity, respectively. Electrophoretic separations of Cl(-), NO3(-), SO4(2-) and NO2(-) were successfully performed within 60s using a running buffer composed of 30mmol L(-1) latic acid and 15mmol L(-1)l-histidine (His). The best detectability levels were found applying a sinusoidal wave with 1100-kHz-frequency and 60-Vpp amplitude. Quantitative analyzes of inorganic anions were carried out in the presence of Cr2O7(2-) ion as internal standard (IS), which ensured great repeatability in terms of migration times (<1%) and peak areas (6.2-7.6%) for thirty consecutive injections. The analytical performance revealed a linear behavior for concentration ranges between 0-120μmol L(-1) (Cl(-), NO2(-) and NO3(-)) and 0-60μmol L(-1) (SO4(2-)) and limits of detection (LODs) varying from 2.0 to 4.9μmol L(-1). The concentration levels of anionic species were determined in aquarium, river and biofertilizer samples with recovery values between 91% and 105%. The nitrification steps associated with conversion of ammonium to nitrite followed by the conversion of nitrite to nitrate were successfully monitored in a simulated environment without fishes during a period of twelve weeks. Lastly, the monitoring of anionic species was carried out during eight weeks in an aquarium environment containing ten fishes from Danio rerio (Ciprynidae). The recorded data revealed the absence of nitrite and a gradual increase on the ammonium and nitrate concentration levels during eight weeks, thus suggesting the direct conversion of ammonium to nitrate. Based on the data herein reported, the proposed analytical methodology

  12. Nerve conduction studies in upper extremities: skin temperature corrections.

    Science.gov (United States)

    Halar, E M; DeLisa, J A; Soine, T L

    1983-09-01

    The relationship of skin to near nerve (NN) temperature and to nerve conduction velocity (NCV) and distal latency (DL) was studied in 34 normal adult subjects before and after cooling both upper extremities. Median and ulnar motor and sensory NCV, DL, and NN temperature were determined at ambient temperature (mean X skin temp = 33 C) and after cooling, at approximately 26, 28, and 30 C of forearm skin temperature. Skin temperatures on the volar side of the forearm, wrist, palm, and fingers and NN temperature at the forearm, midpalm, and thenar or hypothenar eminence were compared with respective NCV and DL. Results showed a significant linear correlation between skin temperature and NN temperature at corresponding sites (r2 range, 0.4-0.84; p less than 0.005). Furthermore, both skin and NN temperatures correlated significantly with respective NCV and DL. Midline wrist skin temperature showed the best correlation to NCV and DL. Median motor and sensory NCV were altered 1.5 and 1.4m/sec/C degree and their DL 0.2 msec/C degree of wrist skin temperature change, respectively. Ulnar motor and sensory NCV were changed 2.1 and 1.6m/sec/C degree respectively, and 0.2 msec/C degree wrist temperature for motor and sensory DL. Average ambient skin temperature at the wrist (33 C) was used as a standard skin temperature in the temperature correction formula: NCV or DL(temp corrected) = CF(Tst degree - Tm degree) + obtained NCV or DL, where Tst = 33 C for wrist, Tm = the measured skin temperature, and CF = correction factor of tested nerve. Use of temperature correction formula for NCV and DL is suggested in patients with changed wrist skin temperature outside 29.6-36.4C temperature range.

  13. Study of new conductive oxyfluorides based on bismuth, vanadium, zinc

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsoone, V. [ENSCL, Villeneuve d' Ascq (France). Lab. de Cristallochimie et Physico-Chimie du Solide; Follet-Houttemane, C. [Lab. de Materiaux Avances Ceramiques (LAMAC), UVHC ISTV, Valenciennes (France)

    2002-07-01

    Syntheses in quartz crucibles realised in the Bi{sub 2}O{sub 3}-V{sub 2}O{sub 5}-ZnF{sub 2} diagram at 700 C have allowed to isolate a glass domain, named G, and a crystallized phase, named C, located near the Bi{sub 2}O{sub 3}-ZnF{sub 2} line. Structural determination by X-ray powder diffraction showed that the C phase is related to Bi{sub 2}MoO{sub 6}. Fluorine ions are mainly located in Bi{sub 2}O{sub 2}{sup 2+} sheets in order to form Bi{sub 2}F{sub 4}{sup 4+} layers, the other F{sup -} ions are located in the perovskite layers. However, the compounds formula in this part of the diagram leads to a ZnO excess in comparison with Bi{sub 2}MoO{sub 6} formula. Study achieved by Raman diffusion spectroscopy allowed to confirm the existence of a vitreous network within the perovskite layer in which the ZnO excess could be inserted. The vitreous compounds corresponding to G phase, recristallized into a isomorphous to C phase and evidenced by conductivity measurements, present glass-ceramic type properties. The glass ceramic {sigma} values are 50 times higher than vitreous compounds ({sigma} = 4.10{sup -4} Scm{sup -1} at 260 C for Bi{sub 0.65}Zn{sub 1.215}V{sub 0.135}O{sub 1.313}F{sub 2.43}). (orig.)

  14. Conductivity Studies of the Plasticized-Poly(methylmethacrylate) Polymer Electrolytes

    Institute of Scientific and Technical Information of China (English)

    A.Ahmad; Z.Osman

    2007-01-01

    1 Results In this work,five systems of polymethylmethacrylate (PMMA)-based polymer electrolytes films have been prepared by the solution casting technique.The five systems are the (PMMA-EC) system,the (PMMA + PC) system,the (PMMA+LiCF3SO3) system,the ([PMMA+EC]+LiCF3SO3) system and the ([PMMA+PC]+LiCF3SO3) system.The conductivity for each system is characterized using impedance spectroscopy.The conductivity of the pure PMMA,the (PMMA+EC) system and the (PMMA+PC) system at room temperature is 2.37×10-9,3...

  15. Online monitoring alcoholic fermentation based on electrical conductivity%基于电导率的酒精发酵过程在线监测

    Institute of Scientific and Technical Information of China (English)

    李冲伟; 宋瑞清; 宋永; 李宏涛; 孙庆申

    2011-01-01

    To test the applicability of electrical conductivity for on-line monitoring alcohol fermentation process. The relationships between conductivity changes and reducing sugar contents, alcohol contents, or pH values were studied respectively. And the impacts of calcium chloride and ammonium sulfate on conductivity during alcoholic fermentation process were further explored. The results showed that there were certain logical relationships between conductivity changes and reducing sugar or alcohol contents respectively. That is, during the decrease stage of electrical conductivity, the electrical conductivity decreased with the decrease of reducing sugar, while increased with the increase of alcohol contents. The results indicated that conductivity could be used to reflect the contents of reducing sugar and alcohol indirectly. Meanwhile, the contents of alcohol and reducing sugar were in line with the parameters of the end of alcoholic fermentation when the conductivity reached its lowest point, then the end of alcoholic fermentation could be determined. There was a certain linear relationship between pH value and conductivity (the variation of pH value and conductivity were the same 60 h before fermentation.). The variation of conductivity could not be affected by calcium chloride and ammonium sulfate within a certain range. Therefore the conductivity could be applied in the on-line monitoring alcoholic fermentation progress and determining the end point of fermentation.%为了探讨电导率在酒精发酵过程在线临测的适用性,对酒精发酵过程中电导率与还原糖、酒精度、pH值的变化规律以及氯化钙和硫酸铵2种盐类对电导率的影响进行了研究.结果表明:电导率与还原糖和酒精度之间存在着一定的逻辑关系,即在电导率下降阶段,电导率随着还原糖的降低而下降,随着酒精度的增加而上升.利用电导率的测量值间接地反映还原糖和酒精度的变化;同时,电导率达到

  16. A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring.

    Science.gov (United States)

    Yi, Fang; Wang, Xiaofeng; Niu, Simiao; Li, Shengming; Yin, Yajiang; Dai, Keren; Zhang, Guangjie; Lin, Long; Wen, Zhen; Guo, Hengyu; Wang, Jie; Yeh, Min-Hsin; Zi, Yunlong; Liao, Qingliang; You, Zheng; Zhang, Yue; Wang, Zhong Lin

    2016-06-01

    The rapid growth of deformable and stretchable electronics calls for a deformable and stretchable power source. We report a scalable approach for energy harvesters and self-powered sensors that can be highly deformable and stretchable. With conductive liquid contained in a polymer cover, a shape-adaptive triboelectric nanogenerator (saTENG) unit can effectively harvest energy in various working modes. The saTENG can maintain its performance under a strain of as large as 300%. The saTENG is so flexible that it can be conformed to any three-dimensional and curvilinear surface. We demonstrate applications of the saTENG as a wearable power source and self-powered sensor to monitor biomechanical motion. A bracelet-like saTENG worn on the wrist can light up more than 80 light-emitting diodes. Owing to the highly scalable manufacturing process, the saTENG can be easily applied for large-area energy harvesting. In addition, the saTENG can be extended to extract energy from mechanical motion using flowing water as the electrode. This approach provides a new prospect for deformable and stretchable power sources, as well as self-powered sensors, and has potential applications in various areas such as robotics, biomechanics, physiology, kinesiology, and entertainment.

  17. Comparative study of thermal conductivity in crystalline and amorphous nanocomposite

    Science.gov (United States)

    Juangsa, Firman Bagja; Muroya, Yoshiki; Ryu, Meguya; Morikawa, Junko; Nozaki, Tomohiro

    2017-06-01

    Silicon nanocrystals (SiNCs)/polystyrene (PS) nanocomposite has been observed to have a significant decrease in thermal conductivity in terms of the SiNC fraction with unspecified factors remained unclear. In this paper, amorphous silicon nanoparticles (a-SiNPs) with a mean diameter of 6 nm and PS nanocomposites were synthesized, and their thermal conductivity, including the density and specific heat, was compared with our previous work which investigated well-crystalized SiNPs (6 nm) and PS nanocomposite. The difference between amorphous and crystalline structure is insignificant, but phonon scattering at SiNPs and PS boundary is the key influencing factor of thermal conductivity reduction. The effective thermal conductivity models for nanocomposite revealed that the thermal boundary resistance, explained by Kapitza principle, is estimated to be 4 × 10-7 m2K/W, showing the significant effect of nanostructured heterogenic surface resistance on overall heat transfer behavior. Preservation of unique properties nanoscale materials and low-cost fabrication by silicon inks process at room temperature give the promising potential of SiNPs based heat transfer management.

  18. Mössbauer study of conductive oxide glass

    Science.gov (United States)

    Matsuda, Koken; Kubuki, Shiro; Nishida, Tetsuaki

    2014-10-01

    Heat treatment of barium iron vanadate glass, BaO - Fe2O3- V2O5, at temperatures higher than crystallization temperature causes a marked decrease in resistivity (ρ) from several MΩcm to several Ωcm. 57Fe Mössbauer spectrum of heat-treated vanadate glass shows a marked decrease in quadrupole splitting (Δ) of FeIII, reflecting a structural relaxation, i.e., an increased symmetry of "distorted" FeO4 and VO4 tetrahedra which are connected to each other by sharing corner oxygen atoms. Structural relaxation of 3D-network of vanadate glass accompanies a decrease in the activation energy for the conduction, reflecting a decreased energy gap between the donor level and conduction band. A marked increase in the conductivity was observed in CuO- or Cu2O -containing barium iron vanadate glass after heat treatment at 450 °C for 30 min or more. "n-type semiconductor model combined with small polaron hopping theory" was proposed in order to explain the high conductivity.

  19. Mössbauer study of conductive oxide glass

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Koken; Kubuki, Shiro [Tokyo Metropolitan University, Hachi-Oji, Tokyo 192-0397 (Japan); Nishida, Tetsuaki, E-mail: nishida@fuk.kindai.ac.jp [Kinki University, Iizuka, Fukuoka 820-8555 (Japan)

    2014-10-27

    Heat treatment of barium iron vanadate glass, BaO‐Fe{sub 2}O{sub 3}‐V{sub 2}O{sub 5}, at temperatures higher than crystallization temperature causes a marked decrease in resistivity (ρ) from several MΩcm to several Ωcm. {sup 57}Fe Mössbauer spectrum of heat-treated vanadate glass shows a marked decrease in quadrupole splitting (Δ) of Fe{sup III}, reflecting a structural relaxation, i.e., an increased symmetry of 'distorted' FeO{sub 4} and VO{sub 4} tetrahedra which are connected to each other by sharing corner oxygen atoms. Structural relaxation of 3D-network of vanadate glass accompanies a decrease in the activation energy for the conduction, reflecting a decreased energy gap between the donor level and conduction band. A marked increase in the conductivity was observed in CuO- or Cu{sub 2}O-containing barium iron vanadate glass after heat treatment at 450 °C for 30 min or more. 'n-type semiconductor model combined with small polaron hopping theory' was proposed in order to explain the high conductivity.

  20. BENEFIT MONITORING AND EVALUATION (BME: A CASE STUDY

    Directory of Open Access Journals (Sweden)

    A. Ridwan Malik

    2012-11-01

    Full Text Available Theoretically, the ultimate benefits of health development projects are reflected as increased incomes or tangible improvements in quality of life. They will only be forth coming if services provided by project have more direct effect for those who use the services. However the effects of health programs might be direct or indirect so that they are difficult to be measured comparing with other sectors. The study team conducted a study on Benefit Monitoring and Evaluation (BME by using The Rural Health and Population Project (ADB Ill-Loan No.1299-lno as objective of the study. The study was conducted in the year 2000, however, the results of this study is relevant to be published due to it is difficult to find the references, which showed the experiences of the BME study in the health sector. The prime objective of the Rural Health and Population Project was to assist the Government in raising the health status of the population and reducing total fertility rates through the improvement of quality, relevance, efficiency and effectiveness of community-based rural health and family planning (FP delivery system. The Project adopted the following three strategic initiatives: (1 to change the role and orientation of the district hospital; (2 to improve community-based rural health, nutrition and FP service delivery and capabilities; and (3 to strengthen the organization and management at district level. To examine the extent, to which these reforms through the project implementation have intended benefits and effects, both individually and collectively, the evaluation team conducted a study to evaluate the progress on the field implementation of these reforms in the area of the project. The evaluation  of benefits of projects will be conducted, whether or not the benchmarks of benefit monitoring was adequately documented when the project is prepared. The study team using a conceptual  model called a Logical Framework (LF a set of cause

  1. Case Study - Monitoring the Photovoltaic Panels

    Directory of Open Access Journals (Sweden)

    PACURAR Ana Talida

    2014-05-01

    Full Text Available The photovoltaic cell represents one of the most dynamic and attractive way to converts renewable energy sources in electricity production. That means to convert solar energy into electricity. In this paper is presented a analogy between two types of photovoltaic panels installed, with educational role for students. Also the objective of this paper is to estimate the performance of photovoltaic panels and to provide the best solution for industry. These two types of photovoltaic panels were monitored at the same time and taking into account the same weather conditions. In introduction of this paper is a short description regarding the silicon, because it is considered to be the most frequently used material for photovoltaic cell production at industrial level. In this context are mentioned below photovoltaic cells: mono-crystalline, polycrystalline, ribbon silicon and amorphous silicon (thin film cells. It is also presented for all these types of cells the structure, the function, the advantages and the disadvantages.

  2. Study of an integrated electronic monitor for neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Barelaud, B.; Nexon-Mokhtari, F.; Barrau, C.; Decossac, J.L.; Vareille, J.C. [Limoges Univ., 87 (France); Sarrabayrouse, G. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France). Lab. d`Automatique et d`Analyse des Systemes

    1994-12-31

    Many neutron beams monitors in 10 keV - 50 keV range are perturbed by gamma radiation impact. This new monitor uses two silicon (junction) diodes operating coincidence detection, combined with an electronic threshold to eliminate gamma background noise. The results and analyses presented here only concern feasibility studies. (D.L.). 11 refs.

  3. Conduction mechanism studies on electron transfer of disordered system

    Institute of Scientific and Technical Information of China (English)

    徐慧; 宋祎璞; 李新梅

    2002-01-01

    Using the negative eigenvalue theory and the infinite order perturbation theory, a new method was developed to solve the eigenvectors of disordered systems. The result shows that eigenvectors change from the extended state to the localized state with the increase of the site points and the disordered degree of the system. When electric field is exerted, the electrons transfer from one localized state to another one. The conductivity is induced by the electron transfer. The authors derive the formula of electron conductivity and find the electron hops between localized states whose energies are close to each other, whereas localized positions differ from each other greatly. At low temperature the disordered system has the character of the negative differential dependence of resistivity and temperature.

  4. Evaluating the potential for quantitative monitoring of in situ chemical oxidation of aqueous-phase TCE using in-phase and quadrature electrical conductivity

    Science.gov (United States)

    Hort, R. D.; Revil, A.; Munakata-Marr, J.; Mao, D.

    2015-07-01

    Electrical resistivity measurements can potentially be used to remotely monitor fate and transport of ionic oxidants such as permanganate (MnO4-) during in situ chemical oxidation (ISCO) of contaminants like trichloroethene (TCE). Time-lapse two-dimensional bulk conductivity and induced polarization surveys conducted during a sand tank ISCO simulation demonstrated that MnO4- plume movement could be monitored in a qualitative manner using bulk conductivity tomograms, although chargeability was below sensitivity limits. We also examined changes to in-phase and quadrature electrical conductivity resulting from ion injection, MnO2 and Cl- production, and pH change during TCE and humate oxidation by MnO4- in homogeneous aqueous solutions and saturated porous media samples. Data from the homogeneous samples demonstrated that inversion of the sand tank resistivity data using a common Tikhonov regularization approach was insufficient to recover an accurate conductivity distribution within the tank. While changes to in-phase conductivity could be successfully modeled, quadrature conductivity values could not be directly related to TCE oxidation product or MnO4- concentrations at frequencies consistent with field induced polarization surveys, limiting the utility of quadrature conductivity for monitoring ISCO.

  5. Ionic conductivity studies of gel polyelectrolyte based on ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Cha, E.H. [The Faculty of Liberal Arts (Chemistry), Hoseo University, Asan Choongnam 336-795 (Korea); Lim, S.A. [Functional Proteomics Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea); Park, J.H. [Department of Herbal Medicine, Hoseo University, Asan Choongnam 336-795 (Korea); Kim, D.W. [Department of Chemical Technology, Han Bat National University, Daejon 305-719 (Korea); Macfarlane, D.R. [School of Chemistry, Monash University, Clayton, Vic. 3800 (Australia)

    2008-04-01

    Novel lithium polyelectrolyte-ionic liquids have been prepared and characterized of their properties. Poly(lithium 2-acrylamido-2-methyl propanesulfonate) (PAMPSLi) and its copolymer with N-vinyl formamide (VF) also has been prepared as a copolymer. 1-Ethyl-3-methylimidazolium tricyanomethanide (emImTCM) and N,N-dimethyl-N-propyl-N-butyl ammonium tricyanomethanide (N{sub 1134}TCM) which are chosen because of the same with the anion of ionic liquid were prepared. The ionic conductivity of copolymer system (PAMPSLi/PVF/emImTCM: 5.43 x 10{sup -3} S cm{sup -1} at 25 C) exhibits about over four times higher than that of homopolymer system (PAMPSLi/emImTCM: 1.28 x 10{sup -3} S cm{sup -1} at 25 C). Introduction of vinyl formamide into the copolymer type can increase the dissociation of the lithium cations from the polymer backbone. The ionic conductivity of copolymer with emImTCM (PAMPSLi/PVF/emImTCM) exhibits the higher conductivity than that of PAMPSLi/PVF/N{sub 1134}TCM (2.48 x 10{sup -3} S cm{sup -1}). Because of using the polymerizable anion it is seen to maintain high flexibility of imidazolium cation effectively to exhibit the higher conductivity. And also the viscosity of emImTCM (19.56 cP) is lower than that of N{sub 1134}TCM (28.61 cP). Low viscosity leads to a fast rate of diffusion of redox species. (author)

  6. Idaho Steelhead Monitoring and Evaluation Studies : Annual Progress Report 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, Timothy; Putnam, Scott

    2008-12-01

    The goal of Idaho Steelhead Monitoring and Evaluation Studies is to collect monitoring data to evaluate wild and natural steelhead populations in the Clearwater and Salmon river drainages. During 2007, intensive population data were collected in Fish Creek (Lochsa River tributary) and Rapid River (Little Salmon River tributary); extensive data were collected in other selected spawning tributaries. Weirs were operated in Fish Creek and Rapid River to estimate adult escapement and to collect samples for age determination and genetic analysis. Snorkel surveys were conducted in Fish Creek, Rapid River, and Boulder Creek (Little Salmon River tributary) to estimate parr density. Screw traps were operated in Fish Creek, Rapid River, Secesh River, and Big Creek to estimate juvenile emigrant abundance, to tag fish for survival estimation, and to collect samples for age determination and genetic analysis. The estimated wild adult steelhead escapement in Fish Creek was 81 fish and in Rapid River was 32 fish. We estimate that juvenile emigration was 24,127 fish from Fish Creek; 5,632 fish from Rapid River; and 43,674 fish from Big Creek. The Secesh trap was pulled for an extended period due to wildfires, so we did not estimate emigrant abundance for that location. In cooperation with Idaho Supplementation Studies, trap tenders PIT tagged 25,618 steelhead juveniles at 18 screw trap sites in the Clearwater and Salmon river drainages. To estimate age composition, 143 adult steelhead and 5,082 juvenile steelhead scale samples were collected. At the time of this report, 114 adult and 1,642 juvenile samples have been aged. Project personnel collected genetic samples from 122 adults and 839 juveniles. We sent 678 genetic samples to the IDFG Eagle Fish Genetics Laboratory for analysis. Water temperature was recorded at 37 locations in the Clearwater and Salmon river drainages.

  7. Awareness during anaesthesia for surgery requiring evoked potential monitoring: A pilot study

    Directory of Open Access Journals (Sweden)

    Pritish J Korula

    2017-01-01

    Full Text Available Background: Evoked potential monitoring such as somatosensory-evoked potential (SSEP or motor-evoked potential (MEP monitoring during surgical procedures in proximity to the spinal cord requires minimising the minimum alveolar concentrations (MACs below the anaesthetic concentrations normally required (1 MAC to prevent interference in amplitude and latency of evoked potentials. This could result in awareness. Our primary objective was to determine the incidence of awareness while administering low MAC inhalational anaesthetics for these unique procedures. The secondary objective was to assess the adequacy of our anaesthetic technique from neurophysiologist′s perspective. Methods: In this prospective observational pilot study, 61 American Society of Anesthesiologists 1 and 2 patients undergoing spinal surgery for whom intraoperative evoked potential monitoring was performed were included; during the maintenance phase, 0.7-0.8 MAC of isoflurane was targeted. We evaluated the intraoperative depth of anaesthesia using a bispectral (BIS index monitor as well as the patients response to surgical stimulus (PRST scoring system. Post-operatively, a modified Bruce questionnaire was used to verify awareness. The adequacy of evoked potential readings was also assessed. Results: Of the 61 patients, no patient had explicit awareness. Intraoperatively, 19 of 61 patients had a BIS value of above sixty at least once, during surgery. There was no correlation with PRST scoring and BIS during surgery. Fifty-four out of 61 patient′s evoked potential readings were deemed ′good′ or ′fair′ for the conduct of electrophysiological monitoring. Conclusions: This pilot study demonstrates that administering low MAC inhalational anaesthetics to facilitate evoked potential monitoring does not result in explicit awareness. However, larger studies are needed to verify this. The conduct of SSEP electrophysiological monitoring was satisfactory with the use of this

  8. Method and results of studying conduction measuring transducers

    Energy Technology Data Exchange (ETDEWEB)

    Dunaevskii, I.G.; Korotkov, B.N.; Povkh, I.L.; Cheplyukov, V.G.

    1977-01-01

    The method and results are given for determining the sensitivity of conduction measuring transducers with a local magnetic field. The results were obtained by frequency-dependent gradation on a model pulsation velocity gauge--a thermoanemometer. The effect of measuring a transducer's diameter, inter-electrode distance and nose line forms on its spatial resolution capacity was estimated. Adjustment functions were obtained for these transducers. A concept was formulated for measuring transducers belonging to the same class. 5 references, 5 figures.

  9. Code of Conduct for wind-power projects - Feasibility study; Code of Conduct fuer windkraftprojekte. Machbarkeitsstudie - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Strub, P. [Pierre Strub, freischaffender Berater, Binningen (Switzerland); Ziegler, Ch. [Inter Act, Basel (Switzerland)

    2009-02-15

    This final report deals with the results of a feasibility study concerning the development of a Code of Conduct for wind-power projects. The aim is to strengthen the acceptance of wind-power by the general public. The necessity of new, voluntary market instruments is discussed. The urgency of development in this area is quoted as being high, and the authors consider the feasibility of the definition of a code of conduct as being proven. The code of conduct can, according to the authors, be of use at various levels but primarily in project development. Further free-enterprise instruments are also suggested that should help support socially compatible and successful market development. It is noted that the predominant portion of those questioned are prepared to co-operate in further work on the subject

  10. Structural and AC conductivity study of CdTe nanomaterials

    Science.gov (United States)

    Das, Sayantani; Banerjee, Sourish; Sinha, T. P.

    2016-04-01

    Cadmium telluride (CdTe) nanomaterials have been synthesized by soft chemical route using mercapto ethanol as a capping agent. Crystallization temperature of the sample is investigated using differential scanning calorimeter. X-ray diffraction and transmission electron microscope measurements show that the prepared sample belongs to cubic structure with the average particle size of 20 nm. Impedance spectroscopy is applied to investigate the dielectric relaxation of the sample in a temperature range from 313 to 593 K and in a frequency range from 42 Hz to 1.1 MHz. The complex impedance plane plot has been analyzed by an equivalent circuit consisting of two serially connected R-CPE units, each containing a resistance (R) and a constant phase element (CPE). Dielectric relaxation peaks are observed in the imaginary parts of the spectra. The frequency dependence of real and imaginary parts of dielectric permittivity is analyzed using modified Cole-Cole equation. The temperature dependence relaxation time is found to obey the Arrhenius law having activation energy ~0.704 eV. The frequency dependent conductivity spectra are found to follow the power law. The frequency dependence ac conductivity is analyzed by power law.

  11. Factors influencing childhood conduct disorders: Study of 43 cases

    Directory of Open Access Journals (Sweden)

    Jalili B

    2000-08-01

    Full Text Available Conduct disorders are a group of behavior disorders in which the basic rights of others or major age appropriate social norms or rules are violated. To evaluate the factors influencing childhood conduct disorders, we reviewed records of 43 cases (84% boys, mean age 11 years referred to Shahid Esmaili psychiatric hospital, Tehran. All patients fulfilled diagnostic criteria of DSMIV. 15 variables were included; Age and sex and step of patient among sibling, parental educational level, social class of the family, medical and psychiatric history of entire family members and the kind of therapy. The most frequent complaints were aggressiveness, stealing and lying. The dominant age group was 10-14 years. The most frequent family members were 5. Most of the children were 2nd child of the family. The most often educational level of the parents were illiteracy followed by primary school educated. Most of the patients were of low to intermediate socioeconomic classes. The most effective therapy was behavior modification along with appropriate medications.

  12. Can pH and electrical conductivity monitoring reveal spatial and temporal patterns in wetland geochemical processes?

    Directory of Open Access Journals (Sweden)

    P. J. Gerla

    2013-01-01

    Full Text Available Carbonate reactions and equilibria play a dominant role in the biogeochemical function of many wetlands. The US Geological Survey PHREEQC computer code was used to model geochemical reactions that may be typical for wetlands with water budgets characterized by: (a input dominated by direct precipitation, (b interaction with groundwater, (c variable degrees of reaction with organic carbon, and (d different rates of evapotranspiration. Rainfall with a typical composition was progressively reacted with calcite and organic carbon at various rates and proportions using PHREEQC. Contrasting patterns of the results suggest that basic water quality data collected in the field can reveal differences in the geochemical processes in wetlands. Given a temporal record, these can signal subtle changes in surrounding land cover and use. To demonstrate this, temperature, pH, and electrical conductivity (EC were monitored for three years in five large wetlands comprising 48 sample sites in northwest Minnesota. EC and pH of samples ranged greatly – from 23 to 1300 μS cm−1 and 5.5 to 9. The largest range in pH was observed in small beach ridge wetlands, where two clusters are apparent: (1 low EC and a wide range of pH and (2 higher pH and EC. Large marshes within a glacial lake – till plain have a broad range of pH and EC, but depend on the specific wetland. Outlying data typically occurred in altered or disturbed areas. The inter-annual and intra-wetland consistency of the results suggests that each wetland system hosts characteristic geochemical conditions.

  13. NAFTA Guidance Document for Conducting Terrestrial Field Dissipation Studies

    Science.gov (United States)

    Harmonized guidance for TFD studies that demonstrate transformation, transport and fate of pesticides under representative actual use conditions. Field studies substantiate physicochemical, mobility and biotransformation data from laboratory studies.

  14. Guidelines for Conducting Positivist Case Study Research in Information Systems

    National Research Council Canada - National Science Library

    Graeme Shanks

    2002-01-01

    .... This paper focuses on positivist, deductive case study research in information systems. It provides clear definitions of important concepts in positivist case study research and illustrates these with an example research study...

  15. Design study of a normal conducting helical snake for AGS

    CERN Document Server

    Takano, Junpei; Okamura, Masahiro; Roser, Thomas; MacKay, William W; Luccio, Alfredo U; Takano, Koji

    2004-01-01

    A new normal conducting snake magnet is being fabricated for the Alternate Gradient Synchrotron (AGS) at Brookhaven National Laboratory (BNL). In the Relativistic Heavy Ion Collider (RHIC) project, a superconducting type helical dipole magnets had been developed and it performed successfully in high-energy polarized proton acceleration. The new AGS helical snake has the same basic magnetic structure but is more complicated. To achieve no beam shift and no beam deflection in one magnetic device, helical pitches and rotating angles were carefully calculated. Compared to a superconducting magnet, a normal warm magnet must have a large cross- sectional area of conductors which make it difficult to design a magnet with large helical pitch. We developed a modified window frame structure to accommodate the large number of conductors. Its three dimensional magnetic field was simulated by using OPERA3D/TOSCA. 3 Refs.

  16. Traffic monitoring using handheld GSM phones. Part B: Simulation study

    NARCIS (Netherlands)

    Catalano, S.; Van der Zijpp, N.J.

    2002-01-01

    Revised version of LVV rapport, VK 2001.004. This report contains the description of a novel map-matching algorithm, and the results of a simulation study into the feasibility of traffic monitoring using handheld mobile phones.

  17. Biological characteristics as a part of pollution monitoring studies

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, V.R.; Govindan, K.

    Ecosystem modifications can be considered as an integral part of any pollution monitoring studies and in such cases community structure/diversity is of prime importance. Considering this advantage of aquatic life, pelagic and benthic communities...

  18. VAMOS: The verification and monitoring options study: Current research options for in-situ monitoring and verification of contaminant remediation and containment within the vadose zone

    Energy Technology Data Exchange (ETDEWEB)

    Betsill, J.D. [Sandia National Labs., Albuquerque, NM (United States); Gruebel, R.D. [Tech Reps., Inc., Albuquerque, NM (United States)

    1995-09-01

    The Verification and Monitoring Options Study Project (VAMOS) was established to identify high-priority options for future vadose-zone environmental research in the areas of in-situ remediation monitoring, post-closure monitoring, and containment emplacement and verification monitoring. VAMOS examined projected needs not currently being met with applied technology in order to develop viable monitoring and verification research options. The study emphasized a compatible systems approach to reinforce the need for utilizing compatible components to provide user friendly site monitoring systems. To identify the needs and research options related to vadose-zone environmental monitoring and verification, a literature search and expert panel forums were conducted. The search included present drivers for environmental monitoring technology, technology applications, and research efforts. The forums included scientific, academic, industry, and regulatory environmental professionals as well as end users of environmental technology. The experts evaluated current and future monitoring and verification needs, methods for meeting these needs, and viable research options and directions. A variety of high-priority technology development, user facility, and technology guidance research options were developed and presented as an outcome of the literature search and expert panel forums.

  19. Nuclear Spin Lattice Relaxation and Conductivity Studies of the Non-Arrhenius Conductivity Behavior in Lithium Fast Ion Conducting Sulfide Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin Michael Meyer

    2003-05-31

    As time progresses, the world is using up more of the planet's natural resources. Without technological advances, the day will eventually arrive when these natural resources will no longer be sufficient to supply all of the energy needs. As a result, society is seeing a push for the development of alternative fuel sources such as wind power, solar power, fuel cells, and etc. These pursuits are even occurring in the state of Iowa with increasing social pressure to incorporate larger percentages of ethanol in gasoline. Consumers are increasingly demanding that energy sources be more powerful, more durable, and, ultimately, more cost efficient. Fast Ionic Conducting (FIC) glasses are a material that offers great potential for the development of new batteries and/or fuel cells to help inspire the energy density of battery power supplies. This dissertation probes the mechanisms by which ions conduct in these glasses. A variety of different experimental techniques give a better understanding of the interesting materials science taking place within these systems. This dissertation discusses Nuclear Magnetic Resonance (NMR) techniques performed on FIC glasses over the past few years. These NMR results have been complimented with other measurement techniques, primarily impedance spectroscopy, to develop models that describe the mechanisms by which ionic conduction takes place and the dependence of the ion dynamics on the local structure of the glass. The aim of these measurements was to probe the cause of a non-Arrhenius behavior of the conductivity which has been seen at high temperatures in the silver thio-borosilicate glasses. One aspect that will be addressed is if this behavior is unique to silver containing fast ion conducting glasses. more specifically, this study will determine if a non-Arrhenius correlation time, {tau}, can be observed in the Nuclear Spin Lattice Relaxation (NSLR) measurements. If so, then can this behavior be modeled with a new single

  20. Nuclear Spin Lattice Relaxation and Conductivity Studies of the Non-Arrhenius Conductivity Behavior in Lithium Fast Ion Conducting Sulfide Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Benjamin Michael [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    As time progresses, the world is using up more of the planet's natural resources. Without technological advances, the day will eventually arrive when these natural resources will no longer be sufficient to supply all of the energy needs. As a result, society is seeing a push for the development of alternative fuel sources such as wind power, solar power, fuel cells, and etc. These pursuits are even occurring in the state of Iowa with increasing social pressure to incorporate larger percentages of ethanol in gasoline. Consumers are increasingly demanding that energy sources be more powerful, more durable, and, ultimately, more cost efficient. Fast Ionic Conducting (FIC) glasses are a material that offers great potential for the development of new batteries and/or fuel cells to help inspire the energy density of battery power supplies. This dissertation probes the mechanisms by which ions conduct in these glasses. A variety of different experimental techniques give a better understanding of the interesting materials science taking place within these systems. This dissertation discusses Nuclear Magnetic Resonance (NMR) techniques performed on FIC glasses over the past few years. These NMR results have been complimented with other measurement techniques, primarily impedance spectroscopy, to develop models that describe the mechanisms by which ionic conduction takes place and the dependence of the ion dynamics on the local structure of the glass. The aim of these measurements was to probe the cause of a non-Arrhenius behavior of the conductivity which has been seen at high temperatures in the silver thio-borosilicate glasses. One aspect that will be addressed is if this behavior is unique to silver containing fast ion conducting glasses. more specifically, this study will determine if a non-Arrhenius correlation time, τ, can be observed in the Nuclear Spin Lattice Relaxation (NSLR) measurements. If so, then can this behavior be modeled with a new single

  1. Reflection in Learning through a Self-monitoring Device: Design Research on EEG Self-Monitoring during a Study Session

    Directory of Open Access Journals (Sweden)

    Eva Durall

    2017-04-01

    Full Text Available The increasing availability of self-monitoring technologies has created opportunities for gaining awareness about one’s own behavior and reflecting on it. In teaching and learning, there is interest in using self-monitoring technologies, but very few studies have explored the possibilities. In this paper, we present a design study that investigates a technology (called Feeler that guides students to follow a specific learning script, monitors changes in their electroencephalogram (EEG while studying, and later provides visualization of the EEG data. The results are two-fold: (1 the hardware/software prototype and (2 the conclusions from the proof-of-concept research conducted with the prototype and six participants. In the research, we collected qualitative data from interviews to identify whether the prototype supported students to develop their reflective skills. The thematic analysis of the interviews showed that the Feeler’s learning script and visualization of the EEG data supported greater levels of reflection by fostering students’ curiosity, puzzlement, and personal inquiry. The proof-of-concept research also provided insights into several factors, such as the value of personal experience, the challenge of assumptions, and the contextualization of the data that trigger reflective thinking. The results validate the design concept and the role of the prototype in supporting awareness of and reflection about students’ mental states when they perform academic tasks.

  2. Conducting event studies on a small stock exchange

    DEFF Research Database (Denmark)

    Bartholdy, Jan; Olson, Dennis; Peare, Paula

    This paper analyses whether it is possible to perform an event study on a small stock exchange with thinly trade stocks. The main conclusion is that event studies can be performed provided that certain adjustments are made. First, a minimum of 25 events appears necessary to obtain acceptable size...

  3. Comparative study of atrial fibrillation and AV conduction in mammals

    NARCIS (Netherlands)

    Meijler, F.L.; Tweel, I. van der

    1987-01-01

    Atrial fibrillation is one ofthe most common cardiac arrhythmias in humans. It a1so occurs quite frequent1y in dogs and horses. Comparative study of this arrhythmia may contribute to better understanding of the pathophysiologica1 mechanisms involved. In this study, we present a quantitative analysis

  4. A study on impact monitoring using a piezoelectric paint sensor

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyung Woo; Kang, Dong Hoon [Korea Railroad Research Institute, Uiwang (Korea, Republic of); Park, Seung Bok; Kang, Lae Hyong [Chonbuk National University, Jeonju (Korea, Republic of)

    2015-10-15

    The piezoelectric paint sensor is a paint type sensor comprising of an epoxy and piezoelectric powder, which is the main component of a piezoelectric material. This sensor can be easily attached to any type of structure as compared to other sensors because it is viable to directly apply it on structures, as in the case with a typical paint. In this study, the capability of piezoelectric paint sensor for impact detection was evaluated. In Particular, the applications of the piezoelectric paint sensor for railroad vehicles were considered. There have been various cases reported about the damages caused by flying gravel to the under-cover of the railroad vehicle during operation. In order to prevent this, real-time monitoring of the large under-cover surface of the railroad vehicle is unavoidable. Under the assumption of vehicle application, sensor sensitivities were measured after multiple and prolonged exposure to thermal cycle environment -20⁓60 degrees Celsius). Sensitivity evaluation of paint sensor under environmental conditions was conducted in an aluminum specimen. In results, despite the small variations in sensitivity, we could confirm the applicability of this paint sensor for impact detection even after a severe environmental exposure test.

  5. Feasibility study of patient motion monitoring using tactile array sensor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Ho; Kang, Seong Hee; Kim, Dong Su; Cho, Min Seok; Kim, Kyeong Hyeon; Suh, Tae Suk [Dept. of Biomedical Engineering, Research Institute of Biomedical Engineering, the Catholic University of Korea, Seoul (Korea, Republic of); Kim, Si Yong [Dept. of Radiation Oncology, Virginia Commonwealth University, Richmond (United States)

    2014-11-15

    The aim of this study is to evaluate patient pretreatment set-up error and intra-fraction motion using the tactile array sensors (Pressure Profile Systems Inc, Los Angeles, CA) which could measure distributed pressure profiles along the contacting surface and to check a feasibility of the sensor (tactile array sensor) in the patient motion monitoring. Laser alignment and optical camera based monitoring system are very useful for reduce patient set-up error but these systems could not monitor the blind area like patient's back position. Actually after patient alignment using laser or optical monitoring system, it was assumed that there is no error in the patient's back position (pressure profile distribution). But if an error occurs in the patient's back position, it will affect the radiation therapy accuracy. In spite of optical motion monitoring or using the immobilization tool, distributed pressure profiles of patient's back position was changed during inter and intra-fraction. For more accurate patient set-up, blind area (patient's back) monitoring was necessary. We expect that the proposed method will be very useful for make up for the weakness of optical monitoring method.

  6. Methodological Considerations in Conducting an Olfactory fMRI Study

    Directory of Open Access Journals (Sweden)

    Faezeh Vedaei

    2013-01-01

    Full Text Available The sense of smell is a complex chemosensory processing in human and animals that allows them to connect with the environment as one of their chief sensory systems. In the field of functional brain imaging, many studies have focused on locating brain regions that are involved during olfactory processing. Despite wealth of literature about brain network in different olfactory tasks, there is a paucity of data regarding task design. Moreover, considering importance of olfactory tasks for patients with variety of neurological diseases, special contemplations should be addressed for patients. In this article, we review current olfaction tasks for behavioral studies and functional neuroimaging assessments, as well as technical principles regarding utilization of these tasks in functional magnetic resonance imaging studies.

  7. Aquatic monitoring programs conducted during environmental impact assessments in Canada: preliminary assessment before and after weakened environmental regulation.

    Science.gov (United States)

    Roach, Brynn; Walker, Tony R

    2017-03-01

    Aquatic monitoring programs are imperative for the functioning of the environmental impact assessment (EIA) process and a cornerstone for industrial compliance in Canada. However, in 2012, several leading pieces of federal environmental legislation (e.g., Canadian Environmental Assessment Act c.19, s. 52, 2012) were drastically altered, effectively weakening levels of environmental protection for aquatic ecosystems during project developments. This paper assesses the impact of CEAA 2012 on aquatic monitoring programs (and subsequent monitoring data reporting) across Canada for ten projects (five completed pre-CEAA 2012 and five completed post-CEAA 2012). Projects included four energy and six mining projects and were selected based on the following criteria: (i) representative of Canada's resource economy; (ii) project information was publicly available; and (iii) strong public interest. Projects pre- and post-CEAA 2012 exhibited few apparent differences before and after environmental regulatory changes. However, wide discrepancies exist in numbers and types of parameters reported, along with a lack of consistency in reporting. Projects pre-CEAA 2012 provided more follow-up monitoring commitments. Although qualitative differences remain inconclusive, this paper highlights requirements for further assessment of aquatic monitoring and follow-up programs in Canada. Recommendations for the government to consider during reviews of the federal environmental assessment processes include (i) improved transparency on the Canadian Environmental Assessment Agency website ( https://www.ceaa-acee.gc.ca/ ); (ii) creation of a legally binding standardized aquatic monitoring program framework to ensure that all Canadian aquatic ecosystems are monitored with equal rigour; and (iii) commitments and justification related to frequency of aquatic monitoring of water quality.

  8. Field emission study of MWCNT/conducting polymer nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Alvi, M.A., E-mail: maalvee@yahoo.co.in [Department of Physics, King Abdulaziz University, Jeddah-21589 (Saudi Arabia); Al-Ghamdi, A.A. [Department of Physics, King Abdulaziz University, Jeddah-21589 (Saudi Arabia); Husain, M. [Department of Physics, Jamia Millia Islamia, New Delhi-110025 (India)

    2014-12-01

    MWCNTs/Polypyrrole nanocomposites were synthesized by solution mixing method. These synthesized nanocomposites were studied carefully by Raman Spectroscopy and Scanning Electron Microscopy measurements. The field emission study of MWCNTs/Polypyrrole nanocomposites were performed in diode arrangement under vacuum of the order of 10{sup −5} Torr. The emission current under exploration depends on applied voltage. The prepared nanocomposites depict low turn-on field at 1.4 V/μm that reaches to a maximum emission current density 0.020 mA/cm{sup 2} at 2.4 V/µm, which is calculated from the graph of current density (J) against the applied electric field (E) and from Fowler–Nordheim (F–N) plot.

  9. ELECTROCHEMICAL STUDIES ON CONDUCTING COMPOSITE FILMS FROM POLYURETHANE AND POLYPYRROLE

    Institute of Scientific and Technical Information of China (English)

    BI Xiantong; PEI Qibing; LI Yongfang

    1988-01-01

    A study on the electrooxidative polymerization of pyrrole onto polyurethane-coated platinum electrodes and the electrochemical properties of the composite polyurethane/polypyrrole films (PU/PPy) as-prepared is presented. It is found that polypyrrole grows layer by layer from the polyurethane/platinum interface through the polyurethane matrix, and ca. 20 wt.% of polypyrrole will fill up the matrix. Cyclic voltammograms show that the composite films are porous, and the reduction-reoxidation (redox) rate of the composite films is limited by the diffusion ofcounteranions through the films. Larger anion size leads to slower diffusion process.The composite films can also act as modified electrodes.

  10. Monitoring success of remediation: seven case studies of moisture and mold damaged buildings.

    Science.gov (United States)

    Haverinen-Shaughnessy, Ulla; Hyvärinen, Anne; Putus, Tuula; Nevalainen, Aino

    2008-07-25

    Based on seven case studies of buildings that underwent different degrees of moisture and mold damage remediation, we aimed to develop methodology for assessment of the success of the remediation process. Methods used in gauging the success included technical monitoring of performance of building structures and heating, ventilation and air conditioning (HVAC) systems, microbial monitoring of indoor air quality (IAQ), and health effects studies of building occupants. The assessment was based on measurable change in the situations before and after remediation. Based on technical monitoring, remediation was successful in three cases, with partial improvement noted in three cases, whereas no remediation was conducted in one case. Based on microbial monitoring, improvement was detected in one, partial improvement in two and no improvement in two cases, whereas no follow-up was conducted in two cases. Health effect studies (mainly self-reported health status) showed improvement in one case, partial improvement in two cases, and no improvement in two cases, whereas no follow-up was conducted in one case, and in one case, follow-up failed due to low response rate. The results illustrate that it is possible to monitor the effects of remediation using various metrics. However, in some cases, no improvement could be observed in IAQ or occupant health, even if the remediation was considered technically successful, i.e. the remediation was fully completed as recommended. This could be due to many reasons, including: 1) all damage may not have been addressed adequately; 2) IAQ or health may not have been perceived improved regardless of remediation; and/or 3) the methods used may not have been sensitive/specific enough to detect such improvement within the 6-12 months follow-up periods after completion of the remediation. There is a need to further develop tools for monitoring and assessment of the success of moisture damage remediation in buildings.

  11. Considerations for conducting imaging studies in support of developmental toxicology studies for regulatory submission.

    Science.gov (United States)

    Johnson, Colena A; Winkelmann, Christopher T; Wise, L David

    2014-09-01

    Preclinical imaging technologies are increasingly being applied to developmental toxicology studies in drug development to determine potential compound toxicity. Although most of these studies are conducted in a non-regulatory setting, there is interest in performing these imaging studies under applicable regulations, for example Good Laboratory Practices (GLP), to support regulatory decisions concerning drug safety. This manuscript will describe regulations and processes to consider when bringing an imaging technology into GLP compliance.

  12. Column flotation monitoring based on electrical capacitance volume tomography: A preliminary study

    Science.gov (United States)

    Haryono, Didied; Harjanto, Sri; Nugraha, Harisma; Huda, Mahfudz Al; Taruno, Warsito Purwo

    2017-01-01

    A preliminary study of column flotation monitoring process using electrical capacitance volume tomography (ECVT) was conducted. ECVT was one of the monitoring systems which based on the capacitance measurement. It was used to understand the phenomenon that occurs inside the column in a three-dimensional (3-D) image. A linear back projection (LBP) algorithm technique was used to reconstruct the 3-D ECVT images from all measurement data obtained in this study. As a preliminary study, the effect of gas injection in the two-phase (liquid and gas) system was conducted. This study is conducted to assess the possibility of ECVT system in the monitoring of column flotation process. The experiments were conducted by using column flotation with 5 cm diameter and 150 cm height in which a sparger was installed at the bottom of column to inject air inside the column. 32-CH rectangular ECVT sensor was installed at 13 cm above the sparger and placed around the column. The gas injection variations used were 2-7 l/min with interval 1 l/min and all experiments were conducted at room temperature. Based on the signal and image analysis, the signals and 3-D ECVT images showed differences when the gas injection was varied. An increase in gas injection will decrease the fluctuation of signal intensity which correlates to the 3-D ECVT images. Average signals obtained by ECVT when given gas injection variations were in the range of 440.09 to 453.62 mV from high to low gas injection. Based on these results, ECVT has a prospect as an imaging tool to monitor the column flotation process. And also, hopefully, based on the analysis of 3-D images generated by ECVT system, the metallurgical performance would be analyzed in the further researches.

  13. Social Studies Progress Monitoring and Intervention for Middle School Students

    Science.gov (United States)

    Beyers, Sarah J.; Lembke, Erica S.; Curs, Bradley

    2013-01-01

    This study examined the technical adequacy of vocabulary-matching curriculum-based measurement (CBM) to identify and monitor the progress of 148 middle school students in social studies. In addition, the effectiveness of a reading comprehension intervention, Collaborative Strategic Reading (Klingner, Vaughn, Dimino, Schumm, & Bryant, 2001),…

  14. Early diagnosis of Carpal Tunnel Syndrome (CTS) in Indian patients by nerve conduction studies

    OpenAIRE

    2010-01-01

    The present study was carried out for early confirmation of clinically diagnosed patients of Carpal Tunnel Syndrome (CTS) by electro-diagnostic tests which included motor conduction, sensory conduction studies and F-wave studies. The aim of the study was early confirmation of clinically suspected patients of CTS by motor and sensory conduction studies of median and ulnar nerves. Eighty subjects of age group 30-50 years (40 clinically suspected patients of CTS, 40 as control group) were studie...

  15. 41 CFR 101-5.104-6 - Conduct of feasibility studies.

    Science.gov (United States)

    2010-07-01

    ... FEDERAL BUILDINGS AND COMPLEXES 5.1-General § 101-5.104-6 Conduct of feasibility studies. An initial... and detailed procedures to be followed in the conduct of each feasibility study. Arrangements will be... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Conduct of...

  16. Outcomes of childhood conduct problem trajectories in early adulthood : findings from the ALSPAC study

    NARCIS (Netherlands)

    Kretschmer, Tina; Hickman, Matthew; Doerner, Rita; Emond, Alan; Lewis, Glyn; Macleod, John; Maughan, Barbara; Munafo, Marcus R.; Heron, Jon

    Although conduct problems in childhood are stably associated with problem outcomes, not every child who presents with conduct problems is at risk. This study extends previous studies by testing whether childhood conduct problem trajectories are predictive of a wide range of other health and behavior

  17. Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix

    Energy Technology Data Exchange (ETDEWEB)

    Mesalhy, O.; Lafdi, K.; Elgafy, A.; Bowman, K. [Dayton University Research Inst., OH (United States)

    2005-04-01

    In this paper, the melting process inside an irregular geometry filled with high thermal conductivity porous matrix saturated with phase change material PCM is investigated numerically. The numerical model is resting on solving the volume averaged conservation equations for mass, momentum and energy with phase change (melting) in the porous medium. The convection motion of the liquid phase inside the porous matrix is solved considering the Darcy, Brinkman and Forchiemer effects. A local thermal non-equilibrium assumption is considered due to the large difference in thermal properties between the solid matrix and PCM by applying a two energy equation model. The numerical code shows good agreement for pure PCM melting with another published numerical work. Through this study it is found that the presence of the porous matrix has a great effect on the heat transfer and melting rate of the PCM energy storage. Decreasing the porosity of the matrix increases the melting rate, but it also damps the convection motion. It is also found that the best technique to enhance the response of the PCM storage is to use a solid matrix with high porosity and high thermal conductivity. (author)

  18. 43 CFR 404.47 - How will a feasibility study be conducted under this program?

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false How will a feasibility study be conducted... Studies § 404.47 How will a feasibility study be conducted under this program? Feasibility studies will be... feasibility study, including the Principles and Guidelines (incorporated by reference at § 404.4). You...

  19. Comparative study of two portable systems for oral anticoagulant monitoring.

    Science.gov (United States)

    Vacas, Marta; Lafuente, Pedro José; Unanue, Iciar; Iriarte, José Antonio

    2004-01-01

    Portable prothrombin time (PT) monitors offer the potential for both simplifying and improving oral anticoagulation management. It is necessary to evaluate their concordance and correlation with other PT systems. Our objective was to evaluate the concordance and clinical correlation of two portable PT determination systems, ProTime (ITC) and CoaguChek S (Roche Diagnostics). In all, 20 healthy individuals and 60 anticoagulated patients stabilized over 3 months in a therapeutic International Normalized Ratio (INR) range between 2-3.5 were studied. A drop of capillary blood was obtained simultaneously from two different fingers of each patient and applied to the monitor's application zone. The mean INR of the patients' blood samples of the two monitors differed by 0.01 units (2.32+/-0.63 for Pro Time and 2.33+/-0.68 for CoaguChek). The percentage of simple concordance and the kappa index were 88.3 and 75.9%, respectively. The coefficient of correlation was 0.922. The mean difference (bias) between the monitors was 0.01. The portable PT monitors evaluated presented a high percentage of concordance in INR results.

  20. Experiment Study of Fiber Optic Sensing in Railway Security Monitoring

    Institute of Scientific and Technical Information of China (English)

    Dian Fan; De-Sheng Jiang; Wei-Lai Li

    2008-01-01

    Aiming at some security problems in railway running and the application condition of existing technology, this paper studies some issues of using fiber optic sensing technology in railway security monitoring. Through field experiment measuring the strain of the rail and analyzing the experiment data, the method of diagnosing the health condition of rail and wheel is investigated.

  1. Monitoring dental erosion by colour measurement : An in vitro study

    NARCIS (Netherlands)

    Krikken, J. B.; Zijp, J. R.; Huysmans, M. C. D. N. J. M.

    2008-01-01

    Objectives: The aim of this study was to develop a method to monitor dental erosion by evaluation of the colour change of teeth as a function of enamel loss, and to evaluate the reproducibility of the method used. Methods: Light reflectance spectra of 12 extracted human incisors were measured using

  2. The experience of family members of ICU patients who require extensive monitoring: a qualitative study.

    Science.gov (United States)

    Smith, Claudia DiSabatino; Custard, Kristi

    2014-09-01

    A mixed methods study using family research with a phenomenological approach (n = 5 families) was conducted to explore family members' perceptions about the extensive monitoring technology used on their critically ill family member after cardiac surgery, as experienced when family members initially visited the patient in the cardiovascular intensive care unit. Five relevant themes emerged: overwhelmed by all of the machines; feelings of uncertainty; methods of coping; meaning of the numbers on the machines; and need for education.

  3. A systematic review of prescription pattern monitoring studies and their effectiveness in promoting rational use of medicines

    OpenAIRE

    Shipra Jain; Prerna Upadhyaya; Jaswant Goyal; Kumar Abhijit; Pushpawati Jain; Vikas Seth; Moghe, Vijay V.

    2015-01-01

    Prescription pattern monitoring studies (PPMS) are a tool for assessing the prescribing, dispensing and distribution of medicines. The main aim of PPMS is to facilitate rational use of medicines (RUM). There is paucity of published data analysing the effectiveness of PPMS. The present review has been done to assess the effectiveness of prescription pattern monitoring studies in promoting RUM. Data search was conducted on internet. A multitude of PPMS done on different classes of drugs were co...

  4. Improving high-altitude emp modeling capabilities by using a non-equilibrium electron swarm model to monitor conduction electron evolution

    Science.gov (United States)

    Pusateri, Elise Noel

    abruptly. The objective of the PhD research is to mitigate this effect by integrating a conduction electron model into CHAP-LA which can calculate the conduction current based on a non-equilibrium electron distribution. We propose to use an electron swarm model to monitor the time evolution of conduction electrons in the EMP environment which is characterized by electric field and pressure. Swarm theory uses various collision frequencies and reaction rates to study how the electron distribution and the resultant transport coefficients change with time, ultimately reaching an equilibrium distribution. Validation of the swarm model we develop is a necessary step for completion of the thesis work. After validation, the swarm model is integrated in the air chemistry model CHAP-LA employs for conduction electron simulations. We test high altitude EMP simulations with the swarm model option in the air chemistry model to show improvements in the computational capability of CHAP-LA. A swarm model has been developed that is based on a previous swarm model developed by Higgins, Longmire and O'Dell 1973, hereinafter HLO. The code used for the swarm model calculation solves a system of coupled differential equations for electric field, electron temperature, electron number density, and drift velocity. Important swarm parameters, including the momentum transfer collision frequency, energy transfer collision frequency, and ionization rate, are recalculated and compared to the previously reported empirical results given by HLO. These swarm parameters are found using BOLSIG+, a two term Boltzmann solver developed by Hagelaar and Pitchford 2005. BOLSIG+ utilizes updated electron scattering cross sections that are defined over an expanded energy range found in the atomic and molecular cross section database published by Phelps in the Phelps Database 2014 on the LXcat website created by Pancheshnyi et al. 2012. The swarm model is also updated from the original HLO model by including

  5. Community pharmacists, medication monitoring, and the routine nature of refills: a qualitative study.

    Science.gov (United States)

    Witry, Matthew J; Doucette, William R

    2014-01-01

    To describe the attitudes, contextual factors, and behaviors associated with medication monitoring in the dispensing process by community pharmacists. Descriptive qualitative research with semistructured interviews. Midwestern community pharmacies or telephone. 12 licensed community pharmacists from chain, independent, and grocery pharmacies. 45-minute, semistructured interviews were conducted to gather detailed live experiences and perspectives pertinent to the study objective. Transcripts were coded descriptively and interpretively, originating with the input and monitoring process domains of the Health Collaboration Model. A thematic dichotomy was interpreted in the analysis. All participants discussed both (1) the technical and routine nature of their work, and (2) the problem-solving and relational aspects of practice. More specifically, medication monitoring was constrained by busyness, lack of patient interest, and the routine nature of refills, although to varying extents. Some predominantly responded to unique circumstances such as patient question-asking, prior memory of a patient interaction or service utilization, or technical issues such as medication cost. Others added unprompted questions of varying specificity when handing off the prescription to understand patient medication experiences. Pharmacists felt challenged by nonadherence monitoring because workflows made this information difficult to access and late refills were prevalent. Community pharmacies seeking to increase medication monitoring in the dispensing process may target the routine nature of refills and the availability of monitoring information.

  6. Auditory brain stem responses of premature infants to bone-conducted stimuli: a feasibility study.

    Science.gov (United States)

    Hooks, R G; Weber, B A

    1984-01-01

    The feasibility of bone conduction auditory brain stem response (ABR) audiometry in intensive care nursery neonates was investigated. Forty premature infants were tested with both air- and bone-conducted stimuli. Bone-conducted stimuli resulted in more identifiable ABRs and a greater number of subjects passing the hearing screening. The findings of this study suggest that bone conduction ABR audiometry is a feasible technique with premature infants. Due to the lower frequency composition of the bone-conducted click, it may be more effective than an air-conducted click when the immature cochlea is being evaluated.

  7. Glycosylated Conductive Polymer: A Multimodal Biointerface for Studying Carbohydrate-Protein Interactions.

    Science.gov (United States)

    Zeng, Xiangqun; Qu, Ke; Rehman, Abdul

    2016-09-20

    Carbohydrate-protein interactions occur through glycoproteins, glycolipids, or polysaccharides displayed on the cell surface with lectins. However, studying these interactions is challenging because of the complexity and heterogeneity of the cell surface, the inherent structural complexity of carbohydrates, and the typically weak affinities of the binding reactions between the lectins and monovalent carbohydrates. The lack of chromophores and fluorophores in carbohydrate structures often drives such investigations toward fluorescence labeling techniques, which usually require tedious and complex synthetic work to conjugate fluorescent tags with additional risk of altering the reaction dynamics. Probing these interactions directly on the cell surface is even more difficult since cells could be too fragile for labeling or labile dynamics could be affected by the labeled molecules that may interfere with the cellular activities, resulting in unwanted cell responses. In contrast, label-free biosensors allow real-time monitoring of carbohydrate-protein interactions in their natural states. A prerequisite, though, for this strategy to work is to mimic the coding information on potential interactions of cell surfaces onto different biosensing platforms, while the complementary binding process can be transduced into a useful signal noninvasively. Through carbohydrate self-assembled monolayers and glycopolymer scaffolds, the multivalency of the naturally existing simple and complex carbohydrates can be mimicked and exploited with label-free readouts (e.g., optical, acoustic, mechanical, electrochemical, and electrical sensors), yet such inquiries reflect only limited aspects of complicated biointeraction processes due to the unimodal transduction. In this Account, we illustrate that functionalized glycosylated conductive polymer scaffolds are the ideal multimodal biointerfaces that not only simplify the immobilization process for surface fabrication via electrochemical

  8. Comparison of equilibrium ohmic and nonequilibrium swarm models for monitoring conduction electron evolution in high-altitude EMP calculations

    Science.gov (United States)

    Pusateri, Elise N.; Morris, Heidi E.; Nelson, Eric; Ji, Wei

    2016-10-01

    Atmospheric electromagnetic pulse (EMP) events are important physical phenomena that occur through both man-made and natural processes. Radiation-induced currents and voltages in EMP can couple with electrical systems, such as those found in satellites, and cause significant damage. Due to the disruptive nature of EMP, it is important to accurately predict EMP evolution and propagation with computational models. CHAP-LA (Compton High Altitude Pulse-Los Alamos) is a state-of-the-art EMP code that solves Maxwell's equations for gamma source-induced electromagnetic fields in the atmosphere. In EMP, low-energy, conduction electrons constitute a conduction current that limits the EMP by opposing the Compton current. CHAP-LA calculates the conduction current using an equilibrium ohmic model. The equilibrium model works well at low altitudes, where the electron energy equilibration time is short compared to the rise time or duration of the EMP. At high altitudes, the equilibration time increases beyond the EMP rise time and the predicted equilibrium ionization rate becomes very large. The ohmic model predicts an unphysically large production of conduction electrons which prematurely and abruptly shorts the EMP in the simulation code. An electron swarm model, which implicitly accounts for the time evolution of the conduction electron energy distribution, can be used to overcome the limitations exhibited by the equilibrium ohmic model. We have developed and validated an electron swarm model previously in Pusateri et al. (2015). Here we demonstrate EMP damping behavior caused by the ohmic model at high altitudes and show improvements on high-altitude, upward EMP modeling obtained by integrating a swarm model into CHAP-LA.

  9. A summary of the test procedures and operational details of an ocean dumping pollution monitoring experiment conducted 7 October 1976

    Science.gov (United States)

    Hypes, W. D.; Wallace, J. W.; Gurganus, E. A.

    1977-01-01

    A remote sensor experiment was conducted at a sewage sludge dump site off the Delaware/Maryland coast. Two aircraft serving as remote sensor platforms flew over the dump site during a sludge dump. One aircraft carried a multispectral scanner and the other aircraft carried a rapid scanning spectrometer. Data from sea-truth stations were collected concurrent with overpasses of the aircraft. All sensors were operational and produced good digital data.

  10. A Collection of Studies Conducted in Education about "Global Warming" Problem

    Science.gov (United States)

    Bozdogan, Aykut Emre

    2011-01-01

    The studies global warming problem conducted in education discipline in the world and in Turkey were analysed for this study. The literature was reviewed extensively especially through the articles in the indexed journals of Ebsco Host, Science Direct, Taylor and Francis and Web of Science databases and this study was conducted according to the…

  11. ERPWS: An Energy Efficient Routing Protocol for Conductive Sensor based Water Level Monitoring and Control System using Zigbee and 74HC14 Inverter

    Directory of Open Access Journals (Sweden)

    Saima Maqbool

    2013-07-01

    Full Text Available In this paper we have shown how to use conductive sensor, Zigbee and 74HC14 Inverter to monitor the water level and to control the working of pump. This project is designed to automatically fill the over head tank when it gets empty and monitor the water level in it. The motor is switched ON when the water level in the overhead tank drops below a pre fixed low level (on point and puts off the motor when water level rises up to pre fixed high level (off point.The motor is also switched off during the following conditions: when the sump water is exhausted before filling overhead tank, pump running dry, mains voltage fluctuations. We also introduce an energy efficient routing protocol for Wireless Sensor Networks (ERPWS for Conductive Sensor based Water Level Monitoring and Control System using Zigbee (XBEE 802.15.4 in terms of energy consumptions, the packet loss ratio, network lifetime and the average delivery delay. The XBEE used here is XBEE Pro Series 1(XBP24-AWI-001 and IC used is 74HC14 Hex Inverting Schmitt trigger. Simulation results have been obtained by using NS2 simulator. The evaluation results show that the energy consumption of routing using ERPWS is significantly lower than LEACH and traditional routing protocols.

  12. A Study of the electronic information monitoring of bruxism

    Institute of Scientific and Technical Information of China (English)

    Jinglu Zhang; Xinmin Yin; Zongxin Yao

    2008-01-01

    Objective:Bruxism is the term used for teeth grinding or jaw clenching. An electronic monitor of bruxism was developed to evaluate bruxism duration and frequency. Methods: Ten cases were selected in the Department of Prosthodontics of Jiangsu Stomatological Hospital to evaluate the monitor. A stabilization occlusal splint was fabricated for each of the 10 cases. The vertical dimension for each splint was 0.5 mm lower than mandibular postural position. Some sensors had been prearranged at each splint which could transfer the variation of the biting force into electronic signals. The data of sleeping duration, grinding duration and grinding frequency were recorded with this new type of bruxism monitor, which had been specifically invented to study bruxism. Results:The data from 10 bruxism cases were collected and the results were considered reliable. Subjects nocturnal duration parameters did not change significantly from night-to-night. Conclusion:The bruxiam monitor can automatically measure and record bruxism data using an occlusal splint. This device is valuable for diagnosis and evaluation of bruxism.

  13. Conductivity study and fourier transform infrared (FTIR) characterization of methyl cellulose solid polymer electrolyte with sodium iodide conducting ion

    Energy Technology Data Exchange (ETDEWEB)

    Abiddin, Jamal Farghali Bin Zainal [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor D.E. (Malaysia); Ahmad, Azizah Hanom [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor D.E. (Malaysia); Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor D.E. (Malaysia)

    2015-08-28

    Sodium ion (Na{sup +}) based solid polymer electrolyte (SPE) has been prepared using solution cast technique with distilled water as solvent and Methylcellulose (MC) as a polymer host. Methylcellulose polymer was chosen as the polymer host due to the abundance of lone pair electrons in the carbonyl and C-O-C constituents, which in turn provide multiple hopping sites for the Na{sup +} conducting ions. Variable compositions of sodium iodide (NaI) salt were prepared to investigate the optimum MC-NaI weight ratio. Results from Electrical Impedance Spectroscopy (EIS) technique show that pure methylcellulose has a low conductivity of 3.61 × 10{sup −11} S/cm.The conductivity increases as NaI content increases up to optimum NaIcomposition of 40 wt%, which yields an average conductivity of 2.70 × 10{sup −5} S/cm.

  14. Experimental and numerical study on thermal conductivity of partially saturated unconsolidated sands

    Science.gov (United States)

    Lee, Youngmin; Keehm, Youngseuk; Kim, Seong-Kyun; Shin, Sang Ho

    2016-04-01

    A class of problems in heat flow applications requires an understanding of how water saturation affects thermal conductivity in the shallow subsurface. We conducted a series of experiments using a sand box to evaluate thermal conductivity (TC) of partially saturated unconsolidated sands under varying water saturation (Sw). We first saturated sands fully with water and varied water saturation by drainage through the bottom of the sand box. Five water-content sensors were integrated vertically into the sand box to monitor water saturation changes and a needle probe was embedded to measure thermal conductivity of partially saturated sands. The experimental result showed that thermal conductivity decreases from 2.5 W/mK for fully saturated sands to 0.7 W/mK when water saturation is 5%. We found that the decreasing trend is quite non-linear: highly sensitive at very high and low water saturations. However, the boundary effects on the top and the bottom of the sand box seemed to be responsible for this high nonlinearity. We also found that the determination of water saturation is quite important: the saturation by averaging values from all five sensors and that from the sensor at the center position, showed quite different trends in the TC-Sw domain. In parallel, we conducted a pore-scale numerical modeling, which consists of the steady-state two-phase Lattice-Boltzmann simulator and FEM thermal conduction simulator on digital pore geometry of sand aggregation. The simulation results showed a monotonous decreasing trend, and are reasonably well matched with experimental data when using average water saturations. We concluded that thermal conductivity would decrease smoothly as water saturation decreases if we can exclude boundary effects. However, in dynamic conditions, i.e. imbibition or drainage, the thermal conductivity might show hysteresis, which can be investigated with pore-scale numerical modeling with unsteady-state two-phase flow simulators in our future work.

  15. Practical Issues of Conducting a Q Methodology Study: Lessons Learned From a Cross-cultural Study.

    Science.gov (United States)

    Stone, Teresa Elizabeth; Maguire, Jane; Kang, Sook Jung; Cha, Chiyoung

    2016-12-06

    This article advances nursing research by presenting the methodological challenges experienced in conducting a multination Q-methodology study. This article critically analyzes the relevance of the methodology for cross-cultural and nursing research and the challenges that led to specific responses by the investigators. The use of focus groups with key stakeholders supplemented the Q-analysis results. The authors discuss practical issues and shared innovative approaches and provide best-practice suggestions on the use of this flexible methodology. Q methodology has the versatility to explore complexities of contemporary nursing practice and cross-cultural health research.

  16. Developing a Model using High School Students for Restoring, Monitoring and Conducting Research in Fresh Water Wetlands

    Science.gov (United States)

    Blueford, J. R.

    2010-12-01

    Tule Ponds at Tyson Lagoon in eastern San Francisco Bay is one of the largest sag ponds created by the Hayward Fault that has not been destroyed by urbanization. In the 1990’s Alameda County Flood Control and Water Conservation District designed a constructed wetland to naturally filter stormwater before it entered Tyson Lagoon on its way to the San Francisco Bay. The Math Science Nucleus, a non profit organization, manages the facility that incorporates high school students through community service, service learning, and research. Students do a variety of tasks from landscaping to scientific monitoring. Through contracts and grants, we create different levels of competency that the students can participate. Engineers and scientists from the two agencies involved, create tasks that are needed to be complete for successful restoration. Every year the students work on different components of restoration. A group of select student interns (usually juniors and seniors) collects and records the data during the year. Some of these students are part of a paid internship to insure their regular attendance. Every year the students compile and discuss with scientists from the Math Science Nucleus what the data set might mean and how problems can be improved. The data collected helps determine other longer term projects. This presentation will go over the journey of the last 10 years to this very successful program and will outline the steps necessary to maintain a restoration project. It will also outline the different groups that do larger projects (scouts) and liaisons with schools that allow teachers to assign projects at our facility. The validity of the data obtained by students and how we standardize our data collection from soil analysis, water chemistry, monitoring faults, and biological observations will be discussed. This joint agency model of cooperation to provide high school students with a real research opportunity has benefits that allow the program to

  17. Comparative study of optical fiber cure-monitoring methods

    Science.gov (United States)

    Crosby, Peter A.; Powell, Graham R.; Fernando, Gerard F.; Waters, David N.; France, Chris M.; Spooncer, Ronald C.

    1997-06-01

    This paper reports on a comparative study undertaken for different types of optical fiber sensor developed to monitor the cure of an epoxy resin system. The optical fiber sensors used to monitor the cure process were based on transmission spectroscopy, evanescent wave spectroscopy and refractive index monitoring. The transmission sensor was prepared by aligning two optical fibers within a specially prepared sleeve with a gap between the optical fiber end-faces. During cure, resin from the specimen flowed into the gap between the optical fibers allowing transmission spectra of the resin to be obtained. The evanescent wave sensor was prepared by stripping the cladding from a high refractive index core optical fiber. The prepared sensor was embedded in the sample and attenuated total reflectance spectra recorded from the resin/core boundary. Refractive index monitoring was undertaken using a high refractive index core optical fiber which had a small portion of its cladding removed. The prepared sensor was embedded in the resin specimen and light from a single wavelength source was launched into the fiber. Changes in the guiding characteristics of the sensor due to refractive index changes at the resin/core boundary were used to monitor the progress of the cure reaction. The transmission and evanescent wave spectroscopy sensors were used to follow changes in characteristic near-infrared absorption bands of the resin over the range 1450 - 1700 nm during the cure reaction. Consequently these techniques required tunable wavelength sources covering specific wavelength ranges. However, the refractive index based sensor used a single wavelength source. Therefore the equipment costs for this type of sensor were considerably less. Additionally, the refractive index sensor did not require a single wavelength source at any particular wavelength and could be applied to any spectral region in which the optical fiber would transmit light. The advantages and disadvantages of these

  18. Early conduct problems, school achievement and later crime: findings from a 30-year longitudinal study

    DEFF Research Database (Denmark)

    Jakobsen, Ida Skytte; Fergusson, David; Horwood, John L.

    2012-01-01

    This study used dato from a 30-year longitudinal study to esamine the associations between early conduct problems, school achievement and later crime. The analysis showed that, even following extensive adjustment for confounding, both early conduct problems and later educational achievement made...

  19. An observational study on patient admission in the anaesthesia gas monitor and minimum alveolar concentration monitoring: A deficiency with huge impact

    Directory of Open Access Journals (Sweden)

    Habib Md Reazaul Karim

    2017-01-01

    Full Text Available Background and Aims: Minimum alveolar concentration (MAC monitoring is an integral part of modern-day anaesthesia. Both MAC and MAC-awake are age dependant, and age of the patient needs to be entered in the monitor. This study was aimed to assess the practice of patient birth year entry in the anaesthesia monitor and its impact on MAC monitoring. Methods: Sixty volatile anaesthetic-based general anaesthetics (GAs were observed silently in two tertiary care teaching hospitals with regard to 'birth year' entry in the patient monitor. The impact on MAC for non-entry of age was assessed. The observed MAC reading and the MAC corrected for age (MACage of the patients were noted. Paired t-test was used to compare the differences in observed MAC and MACagevalues. P <0.05 was significant. Results: Sixty GAs of patients aged between 10 and 68 years were observed; 96.67% anaesthetics were conducted without entering 'birth year'. Thirty-four patients (mean age 35.14 ± 15.38 years were further assessed for impact of non-entry of age. The observed MAC was similar to MACage in patients aged 40 ± 5 years (36–45 years group. Nearly 79.41% of the observed MACs were incorrect; 55.88% patients were potentially underdosed whereas 23.53% were overdosed. Conclusion: Omitting patient age entry in the monitor results in erroneous MAC values, exposing patients <40 years to underdosing and older patients to overdose.

  20. Occupational exposure to pesticides and nerve conduction studies among Korean farmers.

    Science.gov (United States)

    Park, Su Kyeong; Kong, Kyoung Ae; Cha, Eun Shil; Lee, Young Joo; Lee, Gyu Taek; Lee, Won Jin

    2012-01-01

    This study aimed to determine whether occupational exposure to pesticides was associated with decreased nerve conduction studies among farmers. On 2 separate occasions, the authors performed a cross-sectional study of a group of 31 male farmers who periodically applied pesticides. The study included questionnaire interviews and nerve conduction studies on the median, ulnar, posterior tibial, peroneal, and sural nerves. Although all mean values remained within laboratory normal limits, significant differences between the first and second tests were found in sensory conduction velocities on the median and sural nerves, and motor conduction velocities on the posterior tibial nerve. Lifetime days of pesticide application was negatively associated with nerve conduction velocities at most nerves after adjusting for potential confounders. These findings may reflect a link between occupational pesticide exposure and peripheral neurophysiologic abnormality that deserves further evaluation.

  1. Thermal conductivity of sedimentary rocks - selected methodological, mineralogical and textural studies

    Energy Technology Data Exchange (ETDEWEB)

    Midttoemme, Kirsti

    1997-12-31

    The thermal conductivity of sedimentary rocks is an important parameter in basin modelling as the main parameter controlling the temperature within a sedimentary basin. This thesis presents measured thermal conductivities, mainly on clay- and mudstone. The measured values are compared with values obtained by using thermal conductivity models. Some new thermal conductivity models are developed based on the measured values. The values obtained are less than most previously published values. In a study of unconsolidated sediments a constant deviation was found between thermal conductivities measured with a needle probe and a divided bas apparatus. Accepted thermal conductivity models based on the geometric mean model fail to predict the thermal conductivity of clay- and mudstone. Despite this, models based on the geometric mean model, where the effect of porosity is taken account of by the geometric mean equation, seem to be the best. Existing models underestimate the textural influence on the thermal conductivity of clay- and mudstone. The grain size was found to influence the thermal conductivity of artificial quartz samples. The clay mineral content seems to be a point of uncertainty in both measuring and modelling thermal conductivity. A good universal thermal conductivity model must include many mineralogical and textural factors. Since this is difficult, different models restricted to specific sediment types and textures are suggested to be the best solution to obtain realistic estimates applicable in basin modelling. 243 refs., 64 figs., 31 tabs.

  2. Implementing Monitoring Systems in Mobile Applications – a Case Study

    Directory of Open Access Journals (Sweden)

    Octavian DOSPINESCU

    2014-01-01

    Full Text Available During the last years, the evolution of mobile applications allowed the developers to become more and more creative. In this way, we can imagine many applications models with a real impact in the real life. In this article we are trying to present a case study for a monitoring sys-tem using the Android platform and the benefits of computer networks. We use the power of mobile sockets and mobile threads, integrating them in a complex architecture in order to ob-tain a real monitoring system. As an immediate application, we propose a baby monitoring sys-tems so that the children could be remotely supervised by their parents. The case study is based on an Android mobile client-server architecture and also uses the capabilities offered by the phone’s speaker and microphone. We intend to have a robust application and that’s why we in-itially preferred Network Service Discovery and Android P2P, but these functionalities are im-plemented starting with Android 4.1. So, we emulated all these functionalities by using a model based on sockets and server sockets.

  3. Outcomes of childhood conduct problem trajectories in early adulthood: findings from the ALSPAC study.

    Science.gov (United States)

    Kretschmer, Tina; Hickman, Matthew; Doerner, Rita; Emond, Alan; Lewis, Glyn; Macleod, John; Maughan, Barbara; Munafò, Marcus R; Heron, Jon

    2014-07-01

    Although conduct problems in childhood are stably associated with problem outcomes, not every child who presents with conduct problems is at risk. This study extends previous studies by testing whether childhood conduct problem trajectories are predictive of a wide range of other health and behavior problems in early adulthood using a general population sample. Based on 7,218 individuals from the Avon longitudinal study of parents and children, a three-step approach was used to model childhood conduct problem development and identify differences in early adult health and behavior problems. Childhood conduct problems were assessed on six occasions between age 4 and 13 and health and behavior outcomes were measured at age 18. Individuals who displayed early-onset persistent conduct problems throughout childhood were at greater risk for almost all forms of later problems. Individuals on the adolescent-onset conduct problem path consumed more tobacco and illegal drugs and engaged more often in risky sexual behavior than individuals without childhood conduct problems. Levels of health and behavior problems for individuals on the childhood-limited path were in between those for stable low and stable high trajectories. Childhood conduct problems are pervasive and substantially affect adjustment in early adulthood both in at-risk samples as shown in previous studies, but also in a general population sample. Knowing a child's developmental course can help to evaluate the risk for later maladjustment and be indicative of the need for early intervention.

  4. Monitoring antimalarial safety and tolerability in clinical trials: A case study from Uganda

    Directory of Open Access Journals (Sweden)

    Mpimbaza Arthur

    2008-06-01

    Full Text Available Abstract Background New antimalarial regimens, including artemisinin-based combination therapies (ACTs, have been adopted widely as first-line treatment for uncomplicated malaria. Although these drugs appear to be safe and well-tolerated, experience with their use in Africa is limited and continued assessment of safety is a priority. However, no standardized guidelines for evaluating drug safety and tolerability in malaria studies exist. A system for monitoring adverse events in antimalarial trials conducted in Uganda was developed. Here the reporting system is described, and difficulties faced in analysing and interpreting the safety results are illustrated, using data from the trials. Case description Between 2002 and 2007, eleven randomized, controlled clinical trials were conducted to compare the efficacy, safety, and tolerability of different antimalarial regimens for treatment of uncomplicated malaria in Uganda. The approach to adverse event monitoring was similar in all studies. A total of 5,614 treatments were evaluated in 4,876 patients. Differences in baseline characteristics and patterns of adverse event reporting were noted between the sites, which limited the ability to pool and analyse data. Clinical failure following antimalarial treatment confounded associations between treatment and adverse events that were also common symptoms of malaria, particularly in areas of lower transmission intensity. Discussion and evaluation Despite prospectively evaluating for adverse events, limitations in the monitoring system were identified. New standardized guidelines for monitoring safety and tolerability in antimalarial trials are needed, which should address how to detect events of greatest importance, including serious events, those with a causal relationship to the treatment, those which impact on adherence, and events not previously reported. Conclusion Although the World Health Organization has supported the development of

  5. Microchannel conductivity measurements in microchip for on line monitoring of dephosphorylation rates of organic phosphates using paramagnetic-beads linked alkaline phosphatase.

    Science.gov (United States)

    Kechadi, Mohammed; Sotta, Bruno; Gamby, Jean

    2015-01-01

    This paper presents the use of polymer coated microelectrodes for the realtime conductivity monitoring in a microchannel photoablated through the polymer without contact. Based on this strategy, a small conductometry sensor has been developed to record in time conductivity variation when an enzymatic reaction occurs through the channel. The rate constant determination, k2, for the dephosphorylation of organic phosphate-alkaline phosphatase-superparamagnetic beads complex using chemically different substrates such as adenosine monoesterphosphate, adenosine diphosphate and adenosine triphosphate was taken as an example to demonstrate selectivity and sensivity of the detection scheme. The k2 value measured for each adenosine phosphate decreases from 39 to 30 s(-1) in proportion with the number (3, 2 and 1) of attached phosphate moiety, thus emphasizing the steric hindrance effect on kinetics.

  6. Note: Optimization of the numerical data analysis for conductivity percolation studies of drying moist porous systems

    Energy Technology Data Exchange (ETDEWEB)

    Moscicki, J. K.; Sokolowska, D.; Dziob, D.; Nowak, J. [Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow (Poland); Kwiatkowski, L. [Department of Econometrics and Operations Research, Cracow University of Economics, Rakowicka 27, 31-510 Krakow (Poland)

    2014-02-15

    A simplified data analysis protocol, for dielectric spectroscopy use to study conductivity percolation in dehydrating granular media is discussed. To enhance visibility of the protonic conductivity contribution to the dielectric loss spectrum, detrimental effects of either low-frequency dielectric relaxation or electrode polarization are removed. Use of the directly measurable monofrequency dielectric loss factor rather than estimated DC conductivity to parameterize the percolation transition substantially reduces the analysis work and time.

  7. Note: optimization of the numerical data analysis for conductivity percolation studies of drying moist porous systems.

    Science.gov (United States)

    Moscicki, J K; Sokolowska, D; Kwiatkowski, L; Dziob, D; Nowak, J

    2014-02-01

    A simplified data analysis protocol, for dielectric spectroscopy use to study conductivity percolation in dehydrating granular media is discussed. To enhance visibility of the protonic conductivity contribution to the dielectric loss spectrum, detrimental effects of either low-frequency dielectric relaxation or electrode polarization are removed. Use of the directly measurable monofrequency dielectric loss factor rather than estimated DC conductivity to parameterize the percolation transition substantially reduces the analysis work and time.

  8. Multifrequency permittivity measurements enable on-line monitoring of changes in intracellular conductivity due to nutrient limitations during batch cultivations of CHO cells.

    Science.gov (United States)

    Ansorge, Sven; Esteban, Geoffrey; Schmid, Georg

    2010-01-01

    Lab and pilot scale batch cultivations of a CHO K1/dhfr(-) host cell line were conducted to evaluate on-line multifrequency permittivity measurements as a process monitoring tool. The beta-dispersion parameters such as the characteristic frequency (f(C)) and the permittivity increment (Deltaepsilon(max)) were calculated on-line from the permittivity spectra. The dual-frequency permittivity signal correlated well with the off-line measured biovolume and the viable cell density. A significant drop in permittivity was monitored at the transition from exponential growth to a phase with reduced growth rate. Although not reflected in off-line biovolume measurements, this decrease coincided with a drop in OUR and was probably caused by the depletion of glutamine and a metabolic shift occurring at the same time. Sudden changes in cell density, cell size, viability, capacitance per membrane area (C(M)), and effects caused by medium conductivity (sigma(m)) could be excluded as reasons for the decrease in permittivity. After analysis of the process data, a drop in f(C) as a result of a fall in intracellular conductivity (sigma(i)) was identified as responsible for the observed changes in the dual-frequency permittivity signal. It is hypothesized that the beta-dispersion parameter f(C) is indicative of changes in nutrient availability that have an impact on intracellular conductivity sigma(i). On-line permittivity measurements consequently not only reflect the biovolume but also the physiological state of mammalian cell cultures. These findings should pave the way for a better understanding of the intracellular state of cells and render permittivity measurements an important tool in process development and control.

  9. Conducting Real-Time Videofluoroscopic Swallow Study via Telepractice: A Preliminary Feasibility and Reliability Study.

    Science.gov (United States)

    Burns, Clare L; Ward, Elizabeth C; Hill, Anne J; Phillips, Nick; Porter, Linda

    2016-06-01

    A small number of studies have examined the feasibility of conducting videofluoroscopic swallow studies (VFSS) via telepractice. While the results have confirmed this potential, the systems tested to date have either reported issues that impacted the ability to analyze/interpret the VFSS recordings in real time, or they were not designed to enable real-time interpretation. Further system design is needed to establish a telepractice model that enables the VFSS assessment to be both guided and interpreted live in real time. The aim of this study was to test the feasibility and reliability of using a telepractice system to enable live VFSS assessment. Twenty adult patients underwent a VFSS assessment directed by a telepractice SLP with competency in VFSS located in another room of the hospital. The telepractice clinician led the sessions using a C20 Cisco TelePresence System. This was linked in real time via a secure telehealth network (at 4 megabits per second (Mbit/s)) to a C60 Cisco TelePresence System located in a fluoroscopy suite, connected to the digital fluoroscopy system. Levels of agreement were calculated between the telepractice clinician and a face-to-face clinician who simultaneously rated the VFSS in real time. High levels of agreement for swallowing parameters (range = 75-100 %; k = -0.34 to 1.0) and management decisions (range = 70-100 %, k = 0.64-1.0) were found. A post-session questionnaire revealed clinicians agreed that the telepractice system enabled successful remote assessment of VFSS. The findings support the potential to conduct live VFSS assessment via a telepractice model.

  10. Physical Environmental Adversity and the Protective Role of Maternal Monitoring in Relation to Early Child Conduct Problems

    Science.gov (United States)

    Supplee, Lauren H.; Unikel, Emily B.; Shaw, Daniel S.

    2007-01-01

    Research on the development of externalizing behaviors during early childhood has focused on child and parenting factors. Fewer studies have investigated effects of aversive features of the micro-level physical environment, such as overcrowding and chaos in the home, and the macro-level environment, such as neighborhood quality. This study extends…

  11. Physical Environmental Adversity and the Protective Role of Maternal Monitoring in Relation to Early Child Conduct Problems

    Science.gov (United States)

    Supplee, Lauren H.; Unikel, Emily B.; Shaw, Daniel S.

    2007-01-01

    Research on the development of externalizing behaviors during early childhood has focused on child and parenting factors. Fewer studies have investigated effects of aversive features of the micro-level physical environment, such as overcrowding and chaos in the home, and the macro-level environment, such as neighborhood quality. This study extends…

  12. A study of reactor monitoring method with neural network

    Energy Technology Data Exchange (ETDEWEB)

    Nabeshima, Kunihiko [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    The purpose of this study is to investigate the methodology of Nuclear Power Plant (NPP) monitoring with neural networks, which create the plant models by the learning of the past normal operation patterns. The concept of this method is to detect the symptom of small anomalies by monitoring the deviations between the process signals measured from an actual plant and corresponding output signals from the neural network model, which might not be equal if the abnormal operational patterns are presented to the input of the neural network. Auto-associative network, which has same output as inputs, can detect an kind of anomaly condition by using normal operation data only. The monitoring tests of the feedforward neural network with adaptive learning were performed using the PWR plant simulator by which many kinds of anomaly conditions can be easily simulated. The adaptively trained feedforward network could follow the actual plant dynamics and the changes of plant condition, and then find most of the anomalies much earlier than the conventional alarm system during steady state and transient operations. Then the off-line and on-line test results during one year operation at the actual NPP (PWR) showed that the neural network could detect several small anomalies which the operators or the conventional alarm system didn't noticed. Furthermore, the sensitivity analysis suggests that the plant models by neural networks are appropriate. Finally, the simulation results show that the recurrent neural network with feedback connections could successfully model the slow behavior of the reactor dynamics without adaptive learning. Therefore, the recurrent neural network with adaptive learning will be the best choice for the actual reactor monitoring system. (author)

  13. Thermal conductivity of epoxy nanocomposites filled with MWCNT and hydrotalcite clay: A preliminary study

    Science.gov (United States)

    Romano, Vittorio; Naddeo, Carlo; Guadagno, Liberata; Vertuccio, Luigi

    2014-05-01

    Aim of this work is to study the effect clay on the thermal conductivity of epoxy resin filled with CNTs. Experiments and theoretical predictions show that the presence of hydrotalcite clay in a mesh of carbon nanotubes gives rise to aggregates and twisted bundles, resulting in a lower carbon nanotubes length and a lower thermal conductivity of epoxy nanocomposites.

  14. Oxidation of clean silicon surfaces studied by four-point probe surface conductance measurements

    DEFF Research Database (Denmark)

    Petersen, Christian Leth; Grey, Francois; Aono, M.

    1997-01-01

    We have investigated how the conductance of Si(100)-(2 x 1) and Si(111)-(7 x 7) surfaces change during exposure to molecular oxygen. A monotonic decrease in conductance is seen as the (100) surfaces oxidizes. In contract to a prior study, we propose that this change is caused by a decrease in sur...

  15. Conductance of Alkanedithiol Single-Molecule Junctions: A Molecular Dynamics Study

    DEFF Research Database (Denmark)

    Paulsson, Magnus; Krag, Casper; Frederiksen, Thomas;

    2009-01-01

    We study formation and conductance of alkanedithiol junctions using density functional based molecular dynamics. The formation involves straightening of the molecule, migration of thiol end-groups, and pulling out Au atoms. Plateaus are found in the low-bias conductance traces which decrease by 1...

  16. First-Year Students' Expectations of Conduct and Consequence: A Case Study

    Science.gov (United States)

    Crance Gutmann, Gina-Lyn

    2008-01-01

    Research on first-year students' expectations about college has explored areas of academic and social expectations, but not first-year college students' expectations about judicial conduct and consequence. The purpose of this study was to empirically explore two questions: what are first year students' expectations about campus conduct and…

  17. James Bay air quality study : report on the results of field monitoring in 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-02-08

    An air quality study in James Bay was conducted, in order to establish general levels of pollutants in outdoor air in the James Bay area of Victoria, British Columbia. The primary sources of air pollution in the area include light duty and heavy duty vehicle traffic, helicopters, floatplanes, and marine vessels such as cruise ships, passenger ferries, commercial fishing and whale watching boats, and recreation motorboats. Air quality monitoring represented the first phase of the project. The second phase involved a detailed pollutant dispersion model including all emission sources. This report described the use of sampling equipment and the measurement of nitric oxide, nitrogen dioxide, sulfur dioxide, fine particulate matter and contributing sources, and volatile organic compounds, specifically benzene, toluene, ethylbenzene/xylene and naphthalene. Supporting data, including traffic counts, wind speed and direction, precipitation, and cruise ship schedules were collected to assist in the interpretation of the field monitoring results. For each of these pollutants, the report provided responses to several questions, such as defining each pollutant; describing the sources of each pollutant in the James Bay neighbourhood; presenting the results of the field monitoring; discussing the limitations of the monitoring equipment and sampling design; interpreting the results; comparing monitored levels to those measured at other times or locations; and comparing monitored levels to air quality standards or guidelines. Conclusions about each pollutant were presented. It was concluded that phase 2 pollutant dispersion modelling should include estimates of 1-hour, 24-hour, and seasonal average pollutant levels at varying elevations above ground level, with a focus on residential apartment buildings in the study area. 5 tabs., 52 figs., 7 appendices.

  18. Analysis of Industrial Structure, Firm Conduct and Performance – A Case Study of the Textile Industry

    Directory of Open Access Journals (Sweden)

    Lee Yueh-Chiang

    2016-06-01

    Full Text Available With the analysis of the industrial economic theory structure – conduct – performance model, the study investigates the existence of significant relationship among market structure, conduct and performance. Twelve Taiwan companies are studied during the study period from 2006 to 2012 which are analysed with fixed effect and random effect of panel data and ordinary least squares estimation. The empirical result backs the statement by “Structuralism” that market structure (market share, entry barrier and capital intensity directly affects firm conduct (R&D intensity and performance (ROA.

  19. Value of information analysis for groundwater quality monitoring network design Case study: Eocene Aquifer, Palestine

    Science.gov (United States)

    Khader, A.; McKee, M.

    2010-12-01

    Value of information (VOI) analysis evaluates the benefit of collecting additional information to reduce or eliminate uncertainty in a specific decision-making context. It makes explicit any expected potential losses from errors in decision making due to uncertainty and identifies the “best” information collection strategy as one that leads to the greatest expected net benefit to the decision-maker. This study investigates the willingness to pay for groundwater quality monitoring in the Eocene Aquifer, Palestine, which is an unconfined aquifer located in the northern part of the West Bank. The aquifer is being used by 128,000 Palestinians to fulfill domestic and agricultural demands. The study takes into account the consequences of pollution and the options the decision maker might face. Since nitrate is the major pollutant in the aquifer, the consequences of nitrate pollution were analyzed, which mainly consists of the possibility of methemoglobinemia (blue baby syndrome). In this case, the value of monitoring was compared to the costs of treating for methemoglobinemia or the costs of other options like water treatment, using bottled water or importing water from outside the aquifer. And finally, an optimal monitoring network that takes into account the uncertainties in recharge (climate), aquifer properties (hydraulic conductivity), pollutant chemical reaction (decay factor), and the value of monitoring is designed by utilizing a sparse Bayesian modeling algorithm called a relevance vector machine.

  20. Study of thermal conductivity of nanofluids for the application of heat transfer fluids

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Dae-Hwang [Research Center for Dielectric and Advanced Matter Physics, Pusan National University, Busan 609-735 (Korea); Hong, K.S. [Busan Center, Korea Basic Science Institute, Busan 609-735 (Korea); Yang, Ho-Soon [Department of Physics, Pusan National University, Busan 609-735 (Korea)

    2007-04-01

    TiO{sub 2}, Al{sub 2}O{sub 3}, Fe, and WO{sub 3} nanofluids are prepared in a two-step procedure by dispersing nanoparticles in a basefluid. Since nanoparticles form clusters in fluids, a cell disrupter generating high power pulses is used for improving the dispersion of nanoparticles. The transient hot wire method is used for the measurement of thermal conductivity. The thermal conductivities of TiO{sub 2}, Al{sub 2}O{sub 3}, Fe, and WO{sub 3} nanofluids are studied and compared with each other. Nanofluids show a large enhancement of thermal conductivity compared with their basefluids, which exceeds the theoretical expectation of two-component mixture system. We compare thermal conductivities of various nanofluids and discuss the important factors in determining thermal conductivity in this study. (author)

  1. Electrical conductivity studies on CuBr containing Al2O3 particles

    Science.gov (United States)

    Dubec, P. M.; Wagner, J. B., Jr.

    1984-01-01

    The conductivity of CuBr was studied and the role of a second phase, Al2O3, dispersed in CuBr was tested. CuBr melts at 493 C and exhibits three phases in the solid state. CuBr is a good ionic conductor with a transport number for copper ions of virtually unity with weighed proportions of the appropriate chemicals used. The CuBr materials were heated above melting point of CuBr, and the samples were sandwiched between copper electrodes. The ac conductivity, was determined at 1 kHz between 25 and 440 C depending on the sample. It was shown that at low temperatures, the conductivity for CuBr (Al2O3) increased by as much as 100, whereas in the beta phase the conductivity of CuBr containing Al2O3 decreased. The electrical conductivity studies are in agreement with earlier data.

  2. A review of nerve conduction studies in cases of suspected compression neuropathies of the upper limb.

    LENUS (Irish Health Repository)

    Neligan, A

    2010-01-01

    Entrapment neuropathies, particularly those affecting upper limbs, are common reasons for referral for nerve conduction studies (NCS). However, concordance between clinical findings and NCS findings, especially in patients being considered for intervention including decompressive surgery, has not been assessed.

  3. A Preliminary Feasibility Study On Seismic Monitoring Of Polymer Flooding

    Science.gov (United States)

    Nguyen, P. K.; Park, C.; Lim, B.; Nam, M.

    2012-12-01

    Polymer flooding using water with soluble polymers is an enhanced oil recovery technique, which intends to maximize oil-recovery sweep efficiency by minimizing fingering effects and as a result creating a smooth flood front; polymer flooding decreases the flow rates within high permeability zone while enhances those of lower permeabilities. Understanding of fluid fronts and saturations is critical to not only optimizing polymer flooding but also monitoring the efficiency. Polymer flooding monitoring can be made in single well scale with high-resolution wireline logging, in inter-well scale with tomography, and in reservoir scale with surface survey. For reservoir scale monitoring, this study makes a preliminary feasibility study based on constructing rock physics models (RPMs), which can bridge variations in reservoir parameters to the changes in seismic responses. For constructing RPMs, we change reservoir parameters with consideration of polymer flooding to a reservoir. Time-lapse seismic data for corresponding RPMs are simulated using a time-domain staggered-finite-difference modeling with implementation of a boundary condition of conventional perfect match layer. Analysis on time-lapse seismic data with respect to the changes in fluid front and saturation can give an insight on feasibility of surface seismic survey to polymer flooding. Acknowledgements: This work was supported by the Energy Efficiency & Resources of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No. 2012T100201588). Myung Jin Nam was partially supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MEST) (No. 2011-0014684).

  4. Thermal design studies in superconducting rf cavities: Phonon peak and Kapitza conductance

    Directory of Open Access Journals (Sweden)

    A. Aizaz

    2010-09-01

    Full Text Available Thermal design studies of superconducting radio frequency (SRF cavities involve two thermal parameters, namely the temperature dependent thermal conductivity of Nb at low temperatures and the heat transfer coefficient at the Nb-He II interface, commonly known as the Kapitza conductance. During the fabrication process of the SRF cavities, Nb sheet is plastically deformed through a deep drawing process to obtain the desired shape. The effect of plastic deformation on low temperature thermal conductivity as well as Kapitza conductance has been studied experimentally. Strain induced during the plastic deformation process reduces the thermal conductivity in its phonon transmission regime (disappearance of phonon peak by 80%, which may explain the performance limitations of the defect-free SRF cavities during their high field operations. Low temperature annealing of the deformed Nb sample could not recover the phonon peak. However, moderate temperature annealing during the titanification process recovered the phonon peak in the thermal conductivity curve. Kapitza conductance measurements for the Nb-He II interface for various surface topologies have also been carried out before and after the annealing. These measurements reveal consistently increased Kapitza conductance after the annealing process was carried out in the two temperature regimes.

  5. Studies on conductivity and dielectric properties of polyaniline–zinc sulphide composites

    Indian Academy of Sciences (India)

    H C Pant; M K Patra; S C Negi; A Bhatia; S R Vadera; N Kumar

    2006-08-01

    In the present paper, we report electrical conductivity and dielectric studies on the composites of conducting polyaniline (PANI) with crystalline semiconducting ZnS powder, wherein PANI has been taken as inclusion and ZnS crystallites as the host matrix. From the studies, it has been observed that the value of room temperature d.c. conductivity of the composites with volume fraction of PANI > 0.65 shows an unusual behaviour wherein, conductivity values of the composites exceed that of PANI itself with maximum value as high as 6 times that of PANI at the volume fraction of 0.85. A similar trend has also been observed for the real and imaginary parts of complex dielectric constant values of the composites. This unusual behaviour in the d.c. conductivity and dielectric properties has been attributed to the enhancement in the degree of crystallinity of PANI as a consequence of its interfacial interaction with ZnS matrix. The results of optical microscopy show coating of PANI all around the ZnS particles. The temperature dependent conductivity studies suggest the quasi one-dimensional VRH conduction in PANI as well as its composites with ZnS. FTIR and XRD studies have also been reported.

  6. Feasibility study of injection mouldable conductive plastic for the hearing aid applications

    DEFF Research Database (Denmark)

    Merca, Timea D.den; Lindberg, Torbjörn; Islam, Aminul

    2016-01-01

    Electrically conductive polymers can combine the advantage of plastic processing with the unique electrical properties which are usually found in metals. This article presents a feasibility study of an electrically conductive plastic for hearing aid antennas. Focus will be placed to critically...... analyse the electrical properties of the potential conductive plastic in a two component injection moulding process chain. The purpose of this experimental study is to mimic the real scenario in a hearing aid device and conclude the antenna’s efficiency based on the results obtained with OTA (over the air...

  7. Monitoring of sulphites levels in shrimps samples collected in Puglia (Italy) by ion-exchange chromatography with conductivity detection.

    Science.gov (United States)

    Iammarino, Marco; Di Taranto, Aurelia; Ientile, Anna Rita

    2014-01-01

    In shrimps the treatment with sulphiting agents is currently the best option for controlling Melanosis, which is a visual defect of the products that compromises marketability. However, sulphites may cause pseudo-allergic reactions in humans. In this study, 210 samples of shrimps were analysed in order to assess the residual levels of sulphiting agents. A quantifiable sulphites concentration was detected in 76 samples, and these concentrations were higher than the legal limits in eight samples. Considering the important pseudo-allergenic effects caused by these food additives, the non-negligible percentage of 3.8% and the high levels registered in non-compliant samples (up to 1174.1 mg kg(-1)), a strong contrast action based on permanent controls is necessary. Moreover, the levels measured in whole samples were up to four times higher than in the edible parts. These results suggest to consider the introduction of legal limits, related to sulphurous anhydride in the whole product.

  8. Lower Columbia River and Estuary Habitat Monitoring Study, 2011 - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Borde, Amy B.; Kaufmann, Ronald M.; Cullinan, Valerie I.; Zimmerman, Shon A.; Thom, Ronald M.; Wright, Cynthia L.

    2012-03-22

    The Ecosystem Monitoring Program is a collaborative effort between the Lower Columbia River Estuary Partnership (LCREP), University of Washington, Wetland Ecosystem Team (UW), US Geological Survey, Water Science Center (USGS), National Oceanic and Atmospheric Administration, National Marine Fisheries Service (NOAA-Fisheries, hereafter NOAA), and Pacific Northwest National Laboratory, Marine Sciences Laboratory (PNNL). The goal of the program is to conduct emergent wetland monitoring aimed at characterizing salmonid habitats in the lower Columbia River and estuary (LCRE) from the mouth of the estuary to Bonneville Dam (Figure 1). This is an ecosystem based monitoring program focused on evaluating status and trends in habitat and reducing uncertainties regarding these ecosystems to ultimately improve the survival of juvenile salmonids through the LCRE. This project comprehensively assesses habitat, fish, food web, and abiotic conditions in the lower river, focusing on shallow water and vegetated habitats used by juvenile salmonids for feeding, rearing and refugia. The information is intended to be used to guide management actions associated with species recovery, particularly that of threatened and endangered salmonids. PNNL’s role in this multi-year study is to monitor the habitat structure (e.g., vegetation, topography, channel morphology, and sediment type) as well as hydrologic patterns.

  9. Lower Columbia River and Estuary Habitat Monitoring Study, 2011 - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Borde, Amy B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kaufmann, Ronald M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cullinan, Valerie I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zimmerman, Shon A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thom, Ronald M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wright, Cynthia L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2012-03-01

    The Ecosystem Monitoring Program is a collaborative effort between the Lower Columbia River Estuary Partnership (LCREP), University of Washington, Wetland Ecosystem Team (UW), US Geological Survey, Water Science Center (USGS), National Oceanic and Atmospheric Administration, National Marine Fisheries Service (NOAA-Fisheries, hereafter NOAA), and Pacific Northwest National Laboratory, Marine Sciences Laboratory (PNNL). The goal of the program is to conduct emergent wetland monitoring aimed at characterizing salmonid habitats in the lower Columbia River and estuary (LCRE) from the mouth of the estuary to Bonneville Dam (Figure 1). This is an ecosystem based monitoring program focused on evaluating status and trends in habitat and reducing uncertainties regarding these ecosystems to ultimately improve the survival of juvenile salmonids through the LCRE. This project comprehensively assesses habitat, fish, food web, and abiotic conditions in the lower river, focusing on shallow water and vegetated habitats used by juvenile salmonids for feeding, rearing and refugia. The information is intended to be used to guide management actions associated with species recovery, particularly that of threatened and endangered salmonids. PNNL’s role in this multi-year study is to monitor the habitat structure (e.g., vegetation, topography, channel morphology, and sediment type) as well as hydrologic patterns.

  10. A Study on the Estimation Method of Risk Based Area for Jetty Safety Monitoring

    Directory of Open Access Journals (Sweden)

    Byeong-Wook Nam

    2015-09-01

    Full Text Available Recently, the importance of safety-monitoring systems was highlighted by the unprecedented collision between a ship and a jetty in Yeosu. Accordingly, in this study, we introduce the concept of risk based area and develop a methodology for a jetty safety-monitoring system. By calculating the risk based areas for a ship and a jetty, the risk of collision was evaluated. To calculate the risk based areas, we employed an automatic identification system for the ship, stopping-distance equations, and the regulation velocity near the jetty. In this paper, we suggest a risk calculation method for jetty safety monitoring that can determine the collision probability in real time and predict collisions using the amount of overlap between the two calculated risk based areas. A test was conducted at a jetty control center at GS Caltex, and the effectiveness of the proposed risk calculation method was verified. The method is currently applied to the jetty-monitoring system at GS Caltex in Yeosu for the prevention of collisions.

  11. A Study on Electrically Conducting Magnesia—carbon Bricks for DC EAF

    Institute of Scientific and Technical Information of China (English)

    TONGXiaojun; YANLiyi; 等

    1998-01-01

    This paper gives a brief introduction to a kind of special refractories for DC EAF-electrically conducting magnesia-carbon bricks.The application of the conductive magnesia-carbon brick as a hearth electrode is a trend of development in DC arc furnace hearth bootom because of its features of anti corrosion and easy repatching,This is a proven process already available abroad.After a study of teh effect of different amount of graphite added and pretreating temperatures on the eletric-conductivity of magnesia-carbon bricks it has been found that for a balance between electric and thermal conductivities,the proper amount of graphite to be added should be 8%-14% and the pretreatment at temperature of 1300-1500℃ will result in the formation inside the magnesia-carbon bricks of a continuous three-dimensional network of graphite and semi-coke,thus making the brick conductive.

  12. A study on nanocomposites made of a conducting polymer and metallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed Ahmed Khalil, Rania [Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University of Kiel (Germany); Multicomponent Materials, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University of Kiel (Germany); Abdelaziz Mahmoud Abdelaziz, Ramzy [Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University of Kiel (Germany); Strunkus, Thomas; Faupel, Franz [Multicomponent Materials, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University of Kiel (Germany); Elbahri, Mady [Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University of Kiel (Germany); Helmholtz-Zentrum Geesthacht GmbH, Institute of Polymer Research, Nanochemistry and Nanoengineering (Germany)

    2011-07-01

    Conducting polymers offer a unique combination of properties that makes them attractive materials for many electronic applications. PEDOT:PSS is one of the most successful conductive materials which is considered to be highly stable and resisting degradation under typical ambient conditions. In this study, we have prepared two sets of conducting polymer nano-composites. The first set is composed of PEDOT:PSS doped with different aspect ratios of gold nanorod and the other one is PEDOT:PSS doped with different sizes of gold nanosphere. The chemical reduction method was used for preparing the nano-particles. Indeed, gold nanorods and nanosphere which exhibit tunable absorption as a function of their size and aspect ratio, respectively, have tuned the absorption coefficient for PEDOT: PSS. The nature of the dopant as well as the degree of doping has played a significant role in the improvement of the electrical conductivity of conducting polymer.

  13. First-principles study of lattice thermal conductivity of Td-WTe2

    Science.gov (United States)

    Liu, Gang; Sun, Hong Yi; Zhou, Jian; Li, Qing Fang; Wan, Xian-Gang

    2016-03-01

    The structural and thermal properties of bulk Td-WTe2 have been studied by using first-principles calculations based on the simple Klemens model and an iterative self-consistent method. Both methods show that lattice thermal conductivity is anisotropic, with the highest value in the (001) plane, and lowest one along the c-axis at 300 K. The calculated average thermal conductivity of WTe2 is in agreement with the experimental measurement. The size dependent thermal conductivity shows that nanostructuring of WTe2 can possibly further decrease the lattice thermal conductivity, which can improve the thermoelectric efficiency. Such extremely low thermal conductivity, even much lower than WSe2, makes WTe2 having many potential applications in thermal insulation and thermoelectric materials.

  14. Smart garment for trunk posture monitoring: A preliminary study

    Directory of Open Access Journals (Sweden)

    Wong Man

    2008-05-01

    Full Text Available Abstract Background Poor postures of the spine have been considered in association with a number of spinal musculoskeletal disorders, including structural deformity of the spine and back pain. Improper posturing for the patients with spinal disorders may further deteriorate their pain and deformities. Therefore, posture training has been proposed and its rationale is to use the patient's own back muscles to keep the spine within the natural curvature. A posture training device may help to facilitate this therapeutic approach by providing continuous posture monitoring and feedback signals to the patient when "poor" posture is detected. In addition, the users of the device may learn good postural habits that could carry over into their whole life. Methods A smart garment with integrated accelerometers and gyroscopes, which can detect postural changes in terms of curvature variation of the spine in the sagittal and coronal planes, has been developed with intention to facilitate posture training. The smart garment was evaluated in laboratory tests and with 5 normal subjects during their daily activities. Results Laboratory tests verified that the accuracy of the system is Conclusion The smart garment has been developed to be a portable and user-friendly trunk posture monitoring system and it could be used for collection of the trunk posture information and provision of instant feedback to the user if necessary for posture training purpose. The current pilot study demonstrated that the posture of normal subjects could be monitored and trained via this smart garment. With further clinical investigations, this system could be considered in some flexible spinal deformities such as scoliosis and kyphosis.

  15. Macromycetes of oak forests in the Łagiewnicki Forest (Central Poland - monitoring studies

    Directory of Open Access Journals (Sweden)

    Maria Ławrynowicz

    2014-08-01

    Full Text Available Mycological observations were carried out in the years 1994- 1996 in two permanent plots in a ca. 90-year-old oak forest (Calamagrostio-Quercetum petraeae in the Las Łagiewnicki Forest, a large forest complex within the borders of the city of Łódź. The study was conducted in the frame of the international project "Mycological monitoring in European oak forests". During the 3 years (15 observations 124 species of macromycetes were identified: 50 mycorrhizal, 72 saprobic and 2 parasitic species. Among them, 7 species inscribed on the Red List of threatened macromycetes in Poland (Wojewoda and Ławrynowicz 1992 were found.

  16. A systematic review of prescription pattern monitoring studies and their effectiveness in promoting rational use of medicines.

    Science.gov (United States)

    Jain, Shipra; Upadhyaya, Prerna; Goyal, Jaswant; Kumar, Abhijit; Jain, Pushpawati; Seth, Vikas; Moghe, Vijay V

    2015-01-01

    Prescription pattern monitoring studies (PPMS) are a tool for assessing the prescribing, dispensing and distribution of medicines. The main aim of PPMS is to facilitate rational use of medicines (RUM). There is paucity of published data analysing the effectiveness of PPMS. The present review has been done to assess the effectiveness of prescription pattern monitoring studies in promoting RUM. Data search was conducted on internet. A multitude of PPMS done on different classes of drugs were collected and analyzed. PPMS using WHO prescribing indicators were also included. The present article reviews various prescription pattern monitoring studies of drugs conducted all over country and abroad. It was observed in the majority of such studies that physicians do not adhere to the guidelines made by regulatory agencies leading to irrational use of medicines. This in turn leads to increased incidence of treatment failure, antimicrobial resistance and economic burden on the patient and the community as a whole. The treatment of diseases by the use of essential drugs, prescribed by their generic names, has been emphasized by the WHO and the National Health Policy of India. We conclude that the prescription monitoring studies provide a bridge between areas like rational use of drugs, pharmacovigilance, evidence based medicine, pharmacoeconomics, pharmacogenetics and ecopharmacovigilance. In India, this is the need of the hour to utilise the data generated by so many prescription pattern monitoring studies done in every state and on every drug, so that the main aim of promoting rational use of drugs is fulfilled.

  17. A systematic review of prescription pattern monitoring studies and their effectiveness in promoting rational use of medicines

    Directory of Open Access Journals (Sweden)

    Shipra Jain

    2015-01-01

    Full Text Available Prescription pattern monitoring studies (PPMS are a tool for assessing the prescribing, dispensing and distribution of medicines. The main aim of PPMS is to facilitate rational use of medicines (RUM. There is paucity of published data analysing the effectiveness of PPMS. The present review has been done to assess the effectiveness of prescription pattern monitoring studies in promoting RUM. Data search was conducted on internet. A multitude of PPMS done on different classes of drugs were collected and analyzed. PPMS using WHO prescribing indicators were also included. The present article reviews various prescription pattern monitoring studies of drugs conducted all over country and abroad. It was observed in the majority of such studies that physicians do not adhere to the guidelines made by regulatory agencies leading to irrational use of medicines. This in turn leads to increased incidence of treatment failure, antimicrobial resistance and economic burden on the patient and the community as a whole. The treatment of diseases by the use of essential drugs, prescribed by their generic names, has been emphasized by the WHO and the National Health Policy of India. We conclude that the prescription monitoring studies provide a bridge between areas like rational use of drugs, pharmacovigilance, evidence based medicine, pharmacoeconomics, pharmacogenetics and ecopharmacovigilance. In India, this is the need of the hour to utilise the data generated by so many prescription pattern monitoring studies done in every state and on every drug, so that the main aim of promoting rational use of drugs is fulfilled.

  18. Preparation and study of conductivity in lithium salt complexes of mixed MEEP : PEO polymer electrolytes

    Indian Academy of Sciences (India)

    G Saibaba; D Srikanth; A Ramachandra Reddy

    2004-02-01

    Poly(ethylene oxide)–LiX complexes and poly[bis(methoxy ethoxy ethoxide) phosphazene]–LiX complexes of polymer thin films were prepared. Conductivity measurements were carried out and the values were found to lie between 10-8 and 1.7 × 10-5 (S/cm). MEEP : LiX salts showed higher conductivity than PEO–LiX salts despite lower dimensional stability. For enhancing stability and conductivity, MEEP–PEO : (LiX) systems were prepared and conductivity measurements carried out. Further the MEEP/PEO : (LiX) was doped with Al2O3 and TiO2 nanocomposite ceramic fillers and the conductivity was studied. The conductivity vs temperature plots showed the enhancement of conductivity with TiO2 added nanocomposite ceramic fillers. The enhanced conductivity is explained on the basis of the effect of local structural modification-promoting localized amorphous region-for enhancement of the Li+ ion transport.

  19. Acoustics short-term passive monitoring using sonobuoys in the Bering, Chukchi, and Western Beaufort Seas conducted by Alaska Fisheries Scientific Center, National Marine Mammal Laboratory from 2007-08-01 to 2015-09-28 (NCEI Accession 0138863)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Marine Mammal Laboratory (NMML) has conducted passive acoustic monitoring in the Bering, Chukchi, and Western Beaufort Seas to determine spatio-temporal...

  20. An Assessment of Treatment Integrity in Behavioral Intervention Studies Conducted with Persons with Mental Retardation

    Science.gov (United States)

    Wheeler, John J.; Mayton, Michael R.; Carter, Stacy L.; Chitiyo, Morgan; Menendez, Anthony L.; Huang, Ann

    2009-01-01

    The purpose of this study was to assess the degree to which behavioral intervention studies conducted with persons with mental retardation operationally defined the independent variables and evaluated and reported measures of treatment integrity. The study expands the previous work in this area reported by Gresham, Gansle, and Noell (1993) and…

  1. A developmental study of bone conduction auditory brain stem response in infants.

    Science.gov (United States)

    Yang, E Y; Rupert, A L; Moushegian, G

    1987-08-01

    Two studies, vibrator placement and masking, were performed to evaluate the developmental aspect of bone conduction auditory brain stem response (ABR) in human infants. Subject groups included newborns, 1-yr-olds, and adults. In the vibrator studies, ABRs were obtained from placements of the bone conduction vibrator on the frontal, occipital, and temporal bones. Results showed that temporal placements in neonates and 1-yr-olds produce significantly shorter wave V latencies of ABR than frontal or occipital placements. In adults, differences of wave V latencies from various vibrator placements were comparatively small. In the masking studies, ABRs were acquired from vibrator placements at the temporal bone in the presence of ipsilateral air conducted masking noise from the experimental groups. Results showed that interaural attenuations of bone conduction click stimuli are the largest in neonates, somewhat smaller from 1-yr-olds, and the smallest in adults. The findings of this research strongly suggest that temporal placements for bone conduction ABR should be used, in some instances, when testing infants and 1-yr-olds. The results of this study support the proposition that bone conduction ABR is a feasible and reliable diagnostic tool in testing infants.

  2. [Comparative study of two techniques of ciclosporine monitoring].

    Science.gov (United States)

    Charfi, Rim; El Jebari, Hanène; Gaïes, Emna; Charfi, Ons; Jebabli, Nadia; Thouraya, Riahi; Ben Messaouda, Mhamed; Lakhal, Mohamed; Klouz, Anis; Salouage, Issam; Trabelsi, Sameh

    2015-01-01

    Ciclosporine (CsA) is an immunosuppressant drug used in bone marrow transplantation in order to extend allograft survival. Despite its efficiency, CsA can expose to therapeutic failure or to toxicity because of underdosing or overdosage. So, many techniques of monitoring CsA in blood were used, the referance one is the chromatographic technique then, the automated techniques: fluorescence polarization immunoassay (FPIA) and chimiluminescent microparticle immunoassay (CMIA). In this study, we aimed to compare the results of CsA concentrations measured by the two automised techniques. Statistical studies showed that the two techniques were repeatable and reproductible. Results obtained by FPIA were slightly higher than those obtained by CMIA but without a significative difference. In conclusion, FPIA technique could be used to measure CsA blood concentration in replacement of CMIA in case of technical problems.

  3. A study of the electronic conductance in converting a polyacetylene into polystyrene oligomer

    Directory of Open Access Journals (Sweden)

    H Rabani

    2014-11-01

    Full Text Available In this paper, the electronic conductance of a polyacetylene polymer embedded between two simple chains is studied by using transfer matrix method within the tight-binding and first neighbor approach. Also, by adding benzene molecules to polyacetylene we obtain the system conductance in its conversion to polystyrene polymer. The results show that as the number of benzene molecules in the middle of center system increases the conductance in the tunneling area of polyacetylene improves and this area comes close to the resonance area. In contrast, a part of resonance area tends to transform into polystyrene tunneling zone.

  4. Studies on the Dielectric and Transport Properties of PEO/Chitosan Proton Conducting Polymer Electrolyte

    Institute of Scientific and Technical Information of China (English)

    M.F.Z.Abdul; Kadir; A.K.Arof

    2007-01-01

    1 Results The effect of ammonium nitrate (NH4NO3) content in 40 wt.% PEO and 60 wt.% chitosan blend has been analyzed in this study.The sample containing 40 wt.% NH4NO3 exhibited the highest room temperature conductivity.In order to ascertain that water does not influence the conductivity,the samples were dried in a dessicator and the conductivity determined daily until it shows a constant value.Results are as shown in Fig.1.Samples containing other salt concentrations were also kept in the dessicator f...

  5. Study of the Pyrrol/Diphenylamine Copolymer by FT-IR spectroscopy and conductivity

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Perez

    2004-01-01

    Full Text Available The main goal of this study was to analyze the physical properties of the copolymer formed by the electrochemical deposition of the polydiphenylamine (PDPA on polypyrrole (Ppy and Ppy on PDPA, in different conditions, through the characterization of the materials formed by the resonant Raman, FT-IR and conductivity techniques. The interactions among the species which are present in the new copolymer structure and the changes in electronic conductivity, were verified. The copolymer was also synthesized electrochemically in the presence of iodide species and the material was characterized by FT-IR spectroscopy and conductivity. The role of the dopant was studied in the process of charge transfer between the copolymer-dopant, acting in the stabilization of the species in the polymer backbone and the increase of the electronic conductivity.

  6. Early diagnosis of Carpal Tunnel Syndrome (CTS in Indian patients by nerve conduction studies

    Directory of Open Access Journals (Sweden)

    Dr. Geetanjali Sharma MD

    2010-07-01

    Full Text Available The present study was carried out for early confirmation of clinically diagnosed patients of Carpal Tunnel Syndrome (CTS by electro-diagnostic tests which included motor conduction, sensory conduction studies and F-wave studies. The aim of the study was early confirmation of clinically suspected patients of CTS by motor and sensory conduction studies of median and ulnar nerves. Eighty subjects of age group 30-50 years (40 clinically suspected patients of CTS, 40 as control group were studied. Motor and Sensory conduction velocities, distal motor and sensory latencies and F wave latencies of median and ulnar nerves were performed using RMS EMG EP Mark –II. Statistically significant (P < 0.001 slowing of motor conduction velocities for both nerves was seen in the CTS group as compared to control group. Decrease in sensory conduction velocity was more pronounced in CTS group as compared to Control group. Statistically significant (P < 0.001 increase in distal motor and sensory latencies was also observed for both median and ulnar nerves in the CTS group as compared to Control group, with more increase in distal motor latency than sensory latency. Increase in F wave latencies of both nerves was seen in the CTS group. Electrophysiological studies confirmed the early diagnosis of CTS with a high degree of sensitivity. Present results confirm selective slowing of sensory & motor conduction within wrist to palm segment in patients of CTS which is attributable to compression by the transverse carpal ligament or to a disease process of the terminal segment.

  7. Nerve conduction in relation to vibration exposure - a non-positive cohort study

    Directory of Open Access Journals (Sweden)

    Nilsson Tohr

    2010-07-01

    Full Text Available Abstract Background Peripheral neuropathy is one of the principal clinical disorders in workers with hand-arm vibration syndrome. Electrophysiological studies aimed at defining the nature of the injury have provided conflicting results. One reason for this lack of consistency might be the sparsity of published longitudinal etiological studies with both good assessment of exposure and a well-defined measure of disease. Against this background we measured conduction velocities in the hand after having assessed vibration exposure over 21 years in a cohort of manual workers. Methods The study group consisted of 155 male office and manual workers at an engineering plant that manufactured pulp and paper machinery. The study has a longitudinal design regarding exposure assessment and a cross-sectional design regarding the outcome of nerve conduction. Hand-arm vibration dose was calculated as the product of self-reported occupational exposure, collected by questionnaire and interviews, and the measured or estimated hand-arm vibration exposure in 1987, 1992, 1997, 2002, and 2008. Distal motor latencies in median and ulnar nerves and sensory nerve conduction over the carpal tunnel and the finger-palm segments in the median nerve were measured in 2008. Before the nerve conduction measurement, the subjects were systemically warmed by a bicycle ergometer test. Results There were no differences in distal latencies between subjects exposed to hand-arm vibration and unexposed subjects, neither in the sensory conduction latencies of the median nerve, nor in the motor conduction latencies of the median and ulnar nerves. Seven subjects (9% in the exposed group and three subjects (12% in the unexposed group had both pathological sensory nerve conduction at the wrist and symptoms suggestive of carpal tunnel syndrome. Conclusion Nerve conduction measurements of peripheral hand nerves revealed no exposure-response association between hand-arm vibration exposure and

  8. An experimental study of the characteristics of a mock up of a centrifugal conduction magnetohydrodynamic pump

    Energy Technology Data Exchange (ETDEWEB)

    Gorbunov, V.A.; Frolov, V.V.; Kolesnikov, Yu.B.; Kolokolov, V.Ye.; Polyakov, N.N.

    1984-01-01

    The design of a mock up of a centrifugal conduction magnetohydrodynamic (MGD) pump is described. The dependences of the pressure developed by the pump in a locked mode on the magnetic induction and the operational current are cited, along with the flow rate and pressure characteristics of the pump. The dependences of the characteristics of the pump on the dimensions of the operational zone and the conductivity of the facial walls are experimentally studied.

  9. [Study on mobile phone based wireless ECG monitoring technology system realization and performance test].

    Science.gov (United States)

    Yu, Yang; Liu, Jing

    2010-11-01

    This paper introduces a novel mobile phone based wireless real-time ECG monitoring system. And experiments were conducted to demonstrate the reliability and stability of the device. This novel system not only addresses the contradiction between continuous monitoring and device cost, but also represents advanced concepts of low cost medicine and personal health management.

  10. Equilibrium Molecular Dynamics (MD Simulation Study of Thermal Conductivity of Graphene Nanoribbon: A Comparative Study on MD Potentials

    Directory of Open Access Journals (Sweden)

    Asir Intisar Khan

    2015-12-01

    Full Text Available The thermal conductivity of graphene nanoribbons (GNRs has been investigated using equilibrium molecular dynamics (EMD simulation based on Green-Kubo (GK method to compare two interatomic potentials namely optimized Tersoff and 2nd generation Reactive Empirical Bond Order (REBO. Our comparative study includes the estimation of thermal conductivity as a function of temperature, length and width of GNR for both the potentials. The thermal conductivity of graphene nanoribbon decreases with the increase of temperature. Quantum correction has been introduced for thermal conductivity as a function of temperature to include quantum effect below Debye temperature. Our results show that for temperatures up to Debye temperature, thermal conductivity increases, attains its peak and then falls off monotonically. Thermal conductivity is found to decrease with the increasing length for optimized Tersoff potential. However, thermal conductivity has been reported to increase with length using 2nd generation REBO potential for the GNRs of same size. Thermal conductivity, for the specified range of width, demonstrates an increasing trend with the increase of width for both the concerned potentials. In comparison with 2nd generation REBO potential, optimized Tersoff potential demonstrates a better modeling of thermal conductivity as well as provides a more appropriate description of phonon thermal transport in graphene nanoribbon. Such comparative study would provide a good insight for the optimization of the thermal conductivity of graphene nanoribbons under diverse conditions.

  11. Flood Monitoring and Hydrologic Studies Using Retracked Satellite Radar Altimetry

    Science.gov (United States)

    Zhang, M.; Shum, C.; Lee, H.; Alsdorf, D.; Schwartz, F.

    2008-12-01

    Nadir, pulse-limited radar altimetry measurements have been used to monitor large surface-water bodies. In spite of progress, there is a need for a robust and automated procedure, which allows classification and stage measurements in small water bodies, which lying along the orbital path, using multiple radar altimeter measurements. Here we used an algorithm, which is mainly based on radar scatter waveform response and statistical analysis of mean and standard deviation of the resulting water level change to classify surface- waters from other land covers. We tested the algorithm using 10-Hz retracked radar altimetry measurements from TOPEX over regions including the Amazon River basin, the Prairie Pothole Region in North America, and south-western Taiwan. The estimated water-level stages are compared with data from available stage measurements, and altimetry data available from public data centers. We also applied the algorithm to study the 1997 hundred-year Red River flood, and the June 2008 fifty-year flood in the Upper Midwest of the United States. For the1997 flood, it is found that the flooded regions detected by altimetry include the Red River Basin in North Dakota and Minnesota, the Missouri River Basin in North Dakota and South Dakota, the Minnesota River Basin and the Mississippi River Basin in Minnesota and Iowa. The extent of the flood agrees with the USGS record. The observed water height in Grand Forks reaches 6 meters above the normal. The ENVISAT altimetry is shown to be able to track the ebb and recede of the 2008 Iowa City flood. The results of this study could be applied to provide improved accuracy and potentially automated classification of nadir radar altimetry observed small inland water body measurements for hydrologic studies and for flood monitoring.

  12. Experimental and theoretical study of AC electrical conduction mechanisms of semicrystalline parylene C thin films.

    Science.gov (United States)

    Kahouli, Abdelkader; Sylvestre, Alain; Jomni, Fethi; Yangui, Béchir; Legrand, Julien

    2012-01-26

    The electrical conduction mechanisms of semicrystalline thermoplastic parylene C (-H(2)C-C(6)H(3)Cl-CH(2)-)(n) thin films were studied in large temperature and frequency regions. The alternative current (AC) electrical conduction in parylene C is governed by two processes which can be ascribed to a hopping transport mechanism: correlated barrier hopping (CBH) model at low [77-155 K] and high [473-533 K] temperature and the small polaron tunneling mechanism (SPTM) from 193 to 413 K within the framework of the universal law of dielectric response. The conduction mechanism is explained with the help of Elliot's theory, and the Elliot's parameters are determined. From frequency- and temperature-conductivity characteristics, the activation energy is found to be 1.27 eV for direct current (DC) conduction interpreted in terms of ionic conduction mechanism. The power law dependence of AC conductivity is interpreted in terms of electron hopping with a density N(E(F)) (~10(18) eV cm(-3)) over a 0.023-0.03 eV high barrier across a distance of 1.46-1.54 Å.

  13. Formal feasibility studies in palliative care: why they are important and how to conduct them.

    Science.gov (United States)

    Hagen, Neil A; Biondo, Patricia D; Brasher, Penny M A; Stiles, Carla R

    2011-08-01

    The concept of clinical trial feasibility is of great interest to the community of palliative care researchers, clinicians, and granting agencies. Significant allocation of resources is required in the form of funding, time, intellect, and motivation to carry out clinical research, and understandably, clinical investigators, institutions, and granting agencies are disappointed when funded trials are unsuccessfully conducted. We argue that for many trials conducted in palliative care, the feasibility of conducting the proposed trial should be formally explored before implementation. There is substantial information available within the literature on the topic of study feasibility but no singular guide on how one can pragmatically apply this advice in the palliative care setting. We suggest that a Formal Feasibility Study for palliative care trials should be commonly conducted before development of a larger pivotal trial, to prospectively identify barriers to research, develop strategies to address these barriers, and predict whether the larger study is feasible. If a Formal Feasibility Study is not required, elements of feasibility can be specifically tested before launching clinical trials. The purpose of this article is to offer a draft framework for the design and conduct of a Formal Feasibility Study that, if implemented, could concretely support successful completion of high-quality research in a timely fashion. Additionally, we hope to foster dialogue within the palliative care research community regarding the relevance of establishing feasibility before initiation of definitive trials in the palliative care population.

  14. The effect of aging on the specialized conducting system: a telemetry ECG study in rats over a 6 month period.

    Science.gov (United States)

    Rossi, Stefano; Fortunati, Ilaria; Carnevali, Luca; Baruffi, Silvana; Mastorci, Francesca; Trombini, Mimosa; Sgoifo, Andrea; Corradi, Domenico; Callegari, Sergio; Miragoli, Michele; Macchi, Emilio

    2014-01-01

    Advanced age alone appears to be a risk factor for increased susceptibility to cardiac arrhythmias. We previously observed in the aged rat heart that sinus rhythm ventricular activation is delayed and characterized by abnormal epicardial patterns although conduction velocity is normal. While these findings relate to an advanced stage of aging, it is not yet known when and how ventricular electrical impairment originates and which is the underlying substrate. To address these points, we performed continuous telemetry ECG recordings in freely moving rats over a six-month period to monitor ECG waveform changes, heart rate variability and the incidence of cardiac arrhythmias. At the end of the study, we performed in-vivo multiple lead epicardial recordings and histopathology of cardiac tissue. We found that the duration of ECG waves and intervals gradually increased and heart rate variability gradually decreased with age. Moreover, the incidence of cardiac arrhythmias gradually increased, with atrial arrhythmias exceeding ventricular arrhythmias. Epicardial multiple lead recordings confirmed abnormalities in ventricular activation patterns, likely attributable to distal conducting system dysfunctions. Microscopic analysis of aged heart specimens revealed multifocal connective tissue deposition and perinuclear myocytolysis in the atria. Our results demonstrate that aging gradually modifies the terminal part of the specialized cardiac conducting system, creating a substrate for increased arrhythmogenesis. These findings may open new therapeutic options in the management of cardiac arrhythmias in the elderly population.

  15. The effect of aging on the specialized conducting system: a telemetry ECG study in rats over a 6 month period.

    Directory of Open Access Journals (Sweden)

    Stefano Rossi

    Full Text Available Advanced age alone appears to be a risk factor for increased susceptibility to cardiac arrhythmias. We previously observed in the aged rat heart that sinus rhythm ventricular activation is delayed and characterized by abnormal epicardial patterns although conduction velocity is normal. While these findings relate to an advanced stage of aging, it is not yet known when and how ventricular electrical impairment originates and which is the underlying substrate. To address these points, we performed continuous telemetry ECG recordings in freely moving rats over a six-month period to monitor ECG waveform changes, heart rate variability and the incidence of cardiac arrhythmias. At the end of the study, we performed in-vivo multiple lead epicardial recordings and histopathology of cardiac tissue. We found that the duration of ECG waves and intervals gradually increased and heart rate variability gradually decreased with age. Moreover, the incidence of cardiac arrhythmias gradually increased, with atrial arrhythmias exceeding ventricular arrhythmias. Epicardial multiple lead recordings confirmed abnormalities in ventricular activation patterns, likely attributable to distal conducting system dysfunctions. Microscopic analysis of aged heart specimens revealed multifocal connective tissue deposition and perinuclear myocytolysis in the atria. Our results demonstrate that aging gradually modifies the terminal part of the specialized cardiac conducting system, creating a substrate for increased arrhythmogenesis. These findings may open new therapeutic options in the management of cardiac arrhythmias in the elderly population.

  16. Experimental Study on Stress Monitoring of Sand-Filled Steel Tube during Impact Using Piezoceramic Smart Aggregates.

    Science.gov (United States)

    Du, Guofeng; Zhang, Juan; Zhang, Jicheng; Song, Gangbing

    2017-08-22

    The filling of thin-walled steel tubes with quartz sand can help to prevent the premature buckling of the steel tube at a low cost. During an impact, the internal stress of the quartz sand-filled steel tube column is subjected to not only axial force but also lateral confining force, resulting in complicated internal stress. A suitable sensor for monitoring the internal stress of such a structure under an impact is important for structural health monitoring. In this paper, piezoceramic Smart Aggregates (SAs) are embedded into a quartz Sand-Filled Steel Tube Column (SFSTC) to monitor the internal structural stress during impacts. The piezoceramic smart aggregates are first calibrated by an impact hammer. Tests are conducted to study the feasibility of monitoring the internal stress of a structure. The results reflect that the calibration value of the piezoceramic smart aggregate sensitivity test is in good agreement with the theoretical value, and the output voltage value of the piezoceramic smart aggregate has a good linear relationship with external forces. Impact tests are conducted on the sand-filled steel tube with embedded piezoceramic smart aggregates. By analyzing the output signal of the piezoceramic smart aggregates, the internal stress state of the structure can be obtained. Experimental results demonstrated that, under the action of impact loads, the piezoceramic smart aggregates monitor the compressive stress at different locations in the steel tube, which verifies the feasibility of using piezoceramic smart aggregate to monitor the internal stress of a structure.

  17. Comparison of image quality between mammography dedicated monitor and UHD 4K monitor, using standard mammographic phantom: A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Young; Cha, Soon Joo; Hong, Sung Hwan; Kim, Su Young; Kim, Yong Hoon; Kim, You Sung; Kim, Jeong A [Dept. of Radiology, Inje Unveristy Ilsan Paik Hospital, Goyang (Korea, Republic of)

    2017-03-15

    Using standard mammographic phantom images, we compared the image quality obtained between a mammography dedicated 5 megapixel monitor (5M) and a UHD 4K (4K) monitor with digital imaging and communications in medicine display, to investigate the possibility of clinical application of 4K monitors. Three different exposures (autoexposure, overexposure and underexposure) images of mammographic phantom were obtained, and six radiologists independently evaluated the images in 5M and 4K without image modulation, by scoring of fibers, groups of specks and masses within the phantom image. The mean score of each object on both monitors was independently analyzed, using t-test and interobserver reliability by intraclass correlation coefficient (ICC) of SPSS. The overall mean scores of fiber, group of specks, and mass in 5M were 4.25, 3.92, and 3.28 respectively, and scores obtained in 4K monitor were 3.81, 3.58, and 3.14, respectively. No statistical difference was seen in scores of fiber and mass between the two monitors at all exposure conditions, but the score of group of specks in 4K was statistically lower in the overall (p = 0.0492) and in underexposure conditions (p = 0.012). The ICC for interobserver reliability was excellent (0.874). Our study suggests that since the mammographic phantom images are appropriate with no significant difference in image quality observed between the two monitors, the 4K monitor could be used for clinical studies. Since this is a small preliminary study using phantom images, the result may differ in actual mammographic images, and subsequent investigation with clinical mammographic images is required.

  18. Preliminary studies of a new monitor ionization chamber.

    Science.gov (United States)

    Yoshizumi, Maíra T; Vivolo, Vitor; Caldas, Linda V E

    2010-01-01

    A new monitor ionization chamber was developed at Instituto de Pesquisas Energéticas e Nucleares (IPEN) in order to monitor X-ray beams. The main difference of this monitor ionization chamber in relation to other monitor chambers is its geometry, which consists of a ring-shaped sensitive volume. Because of this geometry, the monitor chamber has a central hole through which the direct radiation beam passes. The operational characteristics of the monitor chamber were evaluated: saturation, ion collection efficiency and polarity effect. Besides these tests, the short- and medium-term stabilities of its response were also evaluated. During the tests the leakage current was always negligible. All results showed values within those recommended internationally (IEC, 1997. Medical electrical equipment-dosimeters with ionization chambers and/or semi-conductor detectors as used in X-ray diagnostic imaging. IEC 61674. International Electrotechnical Commission, Genève). Copyright 2009 Elsevier Ltd. All rights reserved.

  19. Study of the Kinetics of an S[subscript N]1 Reaction by Conductivity Measurement

    Science.gov (United States)

    Marzluff, Elaine M.; Crawford, Mary A.; Reynolds, Helen

    2011-01-01

    Substitution reactions, a central part of organic chemistry, provide a model system in physical chemistry to study reaction rates and mechanisms. Here, the use of inexpensive and readily available commercial conductivity probes coupled with computer data acquisition for the study of the temperature and solvent dependence of the solvolysis of…

  20. Comparative study of gas-analyzing systems designed for continuous monitoring of TPP emissions

    Science.gov (United States)

    Kondrat'eva, O. E.; Roslyakov, P. V.

    2017-06-01

    Determining the composition of combustion products is important in terms of both control of emissions into the atmosphere from thermal power plants and optimization of fuel combustion processes in electric power plants. For this purpose, the concentration of oxygen, carbon monoxide, nitrogen, and sulfur oxides in flue gases is monitored; in case of solid fuel combustion, fly ash concentration is monitored as well. According to the new nature conservation law in Russia, all large TPPs shall be equipped with continuous emission monitoring and measurement systems (CEMMS) into the atmosphere. In order to ensure the continuous monitoring of pollutant emissions, direct round-the-clock measurements are conducted with the use of either domestically produced or imported gas analyzers and analysis systems, the operation of which is based on various physicochemical methods and which can be generally used when introducing CEMMS. Depending on the type and purposes of measurement, various kinds of instruments having different features may be used. This article represents a comparative study of gas-analysis systems for measuring the content of polluting substances in exhaust gases based on various physical and physicochemical analysis methods. It lists basic characteristics of the methods commonly applied in the area of gas analysis. It is proven that, considering the necessity of the long-term, continuous operation of gas analyzers for monitoring and measurement of pollutant emissions into the atmosphere, as well as the requirements for reliability and independence from aggressive components and temperature of the gas flow, it is preferable to use optical gas analyzers for the aforementioned purposes. In order to reduce the costs of equipment comprising a CEMMS at a TPP and optimize the combustion processes, electrochemical and thermomagnetic gas analyzers may also be used.

  1. "Ultrasound Monitoring of Temperature Change during Interstitial Laser Thermotherapy of Liver: An In Vitro Study"

    Directory of Open Access Journals (Sweden)

    T. Gorji-Ara

    2007-07-01

    Full Text Available Background/objective: In thermal tissue ablation, it is very important to control the increase in the temperature for having an efficient ablation therapy. We conducted this study to determine the efficacy of measuring pixel shift of ultrasound B-mode images as a function of change in tissue temperature. Materials and Methods: By fixing some microthermocouples in liver tissues, temperature at different points was monitored invasively in vitro during laser-induced thermotherapy. According to our results, optimum power and exposure time were determined for ultrasound temperature monitoring. Simultaneously, noninvasive temperature monitoring was performed with ultrasound B-mode images. These images were saved on computer from 25ºC to 95ºC with 10 ºC steps. The speed of sound changes with each 10°C temperature change that produce virtual shifts in the scatter positions. Using an image processing method, the pixel shift due to 10 °C temperature change was extracted by motion detection. Results: The cubic regression function between the mean pixel shifts on ultrasound B-mode images caused by the change in speed of sound, which in turn was a function of the mean change in temperature, was evaluated. When temperature increased, pixel shift occurs in ultrasound images. The maximum pixel shift was observed between 60 to 70 ºC (temperature changes (ΔT of 35–45 ºC. After 70ºC, the local pixel shift due to change in the speed of sound in liver tissue had an irregular decreasing. Pearson correlation coefficient between invasive and non-invasive measurements for 10°C temperature changes was 0.93 and the non-linear function was suitable for monitoring of temperature. Conclusion: Monitoring of changes in temperature based on pixel shifts observed in ultrasound B-mode images in interstitial laser thermotherapy of liver seems a good modality.

  2. Monitoring Central Venous Catheter Resistance to Predict Imminent Occlusion: A Prospective Pilot Study.

    Science.gov (United States)

    Wolf, Joshua; Tang, Li; Rubnitz, Jeffrey E; Brennan, Rachel C; Shook, David R; Stokes, Dennis C; Monagle, Paul; Curtis, Nigel; Worth, Leon J; Allison, Kim; Sun, Yilun; Flynn, Patricia M

    2015-01-01

    Long-term central venous catheters are essential for the management of chronic medical conditions, including childhood cancer. Catheter occlusion is associated with an increased risk of subsequent complications, including bloodstream infection, venous thrombosis, and catheter fracture. Therefore, predicting and pre-emptively treating occlusions should prevent complications, but no method for predicting such occlusions has been developed. We conducted a prospective trial to determine the feasibility, acceptability, and efficacy of catheter-resistance monitoring, a novel approach to predicting central venous catheter occlusion in pediatric patients. Participants who had tunneled catheters and were receiving treatment for cancer or undergoing hematopoietic stem cell transplantation underwent weekly catheter-resistance monitoring for up to 12 weeks. Resistance was assessed by measuring the inline pressure at multiple flow-rates via a syringe pump system fitted with a pressure-sensing transducer. When turbulent flow through the device was evident, resistance was not estimated, and the result was noted as "non-laminar." Ten patients attended 113 catheter-resistance monitoring visits. Elevated catheter resistance (>8.8% increase) was strongly associated with the subsequent development of acute catheter occlusion within 10 days (odds ratio = 6.2; 95% confidence interval, 1.8-21.5; p change in resistance greater than 8.8% or a non-laminar result predicted subsequent occlusion (odds ratio = 6.8; 95% confidence interval, 2.0-22.8; p = 0.002; sensitivity, 80%; specificity, 63%). Participants rated catheter-resistance monitoring as highly acceptable. In this pediatric hematology and oncology population, catheter-resistance monitoring is feasible, acceptable, and predicts imminent catheter occlusion. Larger studies are required to validate these findings, assess the predictive value for other clinical outcomes, and determine the impact of pre-emptive therapy. Clinicaltrials

  3. Perceptions and experiences of participants in a study of in-vehicle monitoring of teenage drivers.

    Science.gov (United States)

    McCartt, Anne T; Farmer, Charles M; Jenness, James W

    2010-08-01

    To assess the perceptions and experiences of participants in a study of a device that monitored teenagers' driving. A device that continuously monitors and reports risky driving maneuvers was installed in vehicles of 84 newly licensed teenagers. Study groups varied by whether parents had access to a Web site that summarized their teenagers' driving and by whether in-vehicle alerts provided feedback to drivers. Recruitment of subjects and problems with the device were documented. Teenagers and parents were interviewed after removal of the device. Although the study was conducted in a large urban area, recruitment progressed slowly. Parents who declined to participate usually said their teenagers opposed it, or they were concerned about intruding on the privacy of their children or jeopardizing trust with them. Both parents and teenagers thought in-vehicle alerts helped teenagers drive more safely, although two thirds of teenagers tried to drown out the alerts with loud music. Parents found the Web site useful but reported fewer Web site visits over time. Most parents would prefer receiving information through summary report cards rather than through a Web site. Both parents and teenagers thought the overall system was effective in improving teenagers' driving. Most parents said the Web site and/or device helped them talk to their teenagers about their driving. Parents thought the most effective system would be an in-vehicle alert with immediate parental notification; teenagers preferred a system allowing them to correct behavior before parental notification. The difficulties in recruiting families for a study of in-vehicle monitoring and feedback technology suggest that gaining broad acceptance may be challenging. Although many teenagers were annoyed by the technology, most said they drove more safely because of it. Sending report cards to parents and allowing teenagers to correct behavior before parents are notified may increase the usefulness and acceptability of

  4. Authoritarian parenting attitudes as a risk for conduct problems Results from a British national cohort study.

    Science.gov (United States)

    Thompson, Anne; Hollis, Chris; Dagger, David Richards

    2003-04-01

    This study examines the associations, and possible causal relationship, between mothers' authoritarian attitudes to discipline and child behaviour using cross-sectional and prospective data from a large population sample surveyed in the 1970 British Cohort Study. Results show a clear linear relationship between the degree of maternal approval of authoritarian child-rearing attitudes and the rates of conduct problems at age 5 and age 10. This association is independent of the confounding effects of socio-economic status and maternal psychological distress. Maternal authoritarian attitudes independently predicted the development of conduct problems 5 years later at age 10. The results of this longitudinal study suggest that authoritarian parenting attitudes expressed by mothers may be of significance in the development of conduct problems.

  5. Charge Carrier Conduction Mechanism in PbS Quantum Dot Solar Cells: Electrochemical Impedance Spectroscopy Study.

    Science.gov (United States)

    Wang, Haowei; Wang, Yishan; He, Bo; Li, Weile; Sulaman, Muhammad; Xu, Junfeng; Yang, Shengyi; Tang, Yi; Zou, Bingsuo

    2016-07-20

    With its properties of bandgap tunability, low cost, and substrate compatibility, colloidal quantum dots (CQDs) are becoming promising materials for optoelectronic applications. Additionally, solution-processed organic, inorganic, and hybrid ligand-exchange technologies have been widely used in PbS CQDs solar cells, and currently the maximum certified power conversion efficiency of 9.9% has been reported by passivation treatment of molecular iodine. Presently, there are still some challenges, and the basic physical mechanism of charge carriers in CQDs-based solar cells is not clear. Electrochemical impedance spectroscopy is a monitoring technology for current by changing the frequency of applied alternating current voltage, and it provides an insight into its electrical properties that cannot be measured by direct current testing facilities. In this work, we used EIS to analyze the recombination resistance, carrier lifetime, capacitance, and conductivity of two typical PbS CQD solar cells Au/PbS-TBAl/ZnO/ITO and Au/PbS-EDT/PbS-TBAl/ZnO/ITO, in this way, to better understand the charge carriers conduction mechanism behind in PbS CQD solar cells, and it provides a guide to design high-performance quantum-dots solar cells.

  6. Effects of fluid-rock interactions in arkosic sandstones: Long-term direct monitoring of changes in permeability, electrical conductivity, and pore fluid chemistry

    Science.gov (United States)

    Schepers, A.; Milsch, H.

    2009-04-01

    In the context of low enthalpy geothermal energy production from deep sedimentary reservoirs laboratory experiments and simulations in the system quartz-feldspar-water were conducted. To constrain the effect of fluid-rock interactions on permeability under hydrothermal in situ conditions an interdisciplinary approach covering petrophysical, petrological and hydrogeochemical methods was applied. Long-term flow-through experiments were conducted under hydrostatic pressure conditions in a HPT-permeameter. Two arkosic sandstones, one pure quartz arenite (Fontainebleau) as well as one sandwich sample containing a quartz-feldspar powder of defined grain size and composition were investigated. The pore fluid was distilled water. At a maximum temperature of 160°C both permeability and electrical rock conductivity were simultaneously monitored. The maximum run duration was three months. Complementary batch experiments were performed with quartz-feldspar powders to constrain the mechanisms and kinetics of potentially occurring hydrothermal reactions. The resulting fluids were analysed with ICP-OES and the reacted powders were characterised with XRD and SEM. Additionally, the hydrothermal reactions were modelled with PHREEQC. It will be demonstrated that permeability decreases in the course of the experiments. However, compared to similar experiments conducted under deviatoric stress conditions (Tenthorey et al., 1998) the decrease in permeability is low. For both arkosic sandstones and at stagnant flow conditions the electrical rock conductivity showed an asymptotical increase indicating that the respective pore fluid approaches a saturation state. Furthermore, fluid samples taken at the end of the Fontainebleau experiment exhibit supersaturation with respect to quartz. In addition, PHREEQC simulations of the feldspar-quartz-water equilibrium indicate that different clay minerals and gibbsite are supersaturated in the resulting fluid. Consequently and despite the sluggish

  7. Magnetic Metamaterials: A comparative study of resonator geometry and metal conductivity

    Science.gov (United States)

    Rangu, Shashank; Sreekar, Kamireddy; Reddy Annapureddy, Ravinithesh; Basak, Kausik; Bohra, Murtaza; Chowdhury, Dibakar Roy

    2016-10-01

    In this work, split ring resonators based metamaterials are studied for microwave, terahertz and infrared frequency regimes. Two different geometries, circular and rectangular split ring resonators based metamaterials are investigated numerically for different frequency regimes. Our study indicates that the effect of metal conductivity and resonator geometry shows very little impact on the fundamental resonance mode. However the higher order modes go through significant frequency tuning because of the change in resonator geometry. We have further shown that the metal conductivity is an important parameter for the metamaterials employed in infrared domains.

  8. Statistical study of static gasket conductance; Etude statistique de la conductance d'un joint d'etancheite statique

    Energy Technology Data Exchange (ETDEWEB)

    Flukiger, F

    2005-10-15

    This work is motivated by tightness technological problems associated with metallic gasket. The objective is a better understanding of leakage mechanisms, through the development of new computational tools. In this study, the aperture field between two rough surfaces in contact is described by a short correlated isotropic random Gaussian process. The system is studied as a set of independent elementary surfaces. Joint conductances are evaluated from a statistical study on those elementary surfaces. A computational code is developed using a network approach based on lubrication theory estimation of local conductances. The global conductance computation becomes analogous to an electrical problem for which the resistances are distributed on a random network. The network is built from the identification of the aperture field critical points. Maxima are linked through saddle points. Bond conductances are estimated at the aperture field saddle points. First, a purely plastic model of deformations is considered. Near percolation threshold the conductances display a power behaviour. Far from percolation threshold, numerical results are favourably compared with an effective medium approximation. Secondly, we study the impact of elastic deformations. A computational code based on Boussinesq approximation is coupled to the network approach. The results indicate a significant impact of elastic deformations on conductances. Finally, the network approach is adapted to simulate quasi-static drainage thanks to a classical invasion percolation algorithm. A good comparison between previous experiments and numerical predictions is obtained. (author)

  9. A Study of the Preparation and Properties of Antioxidative Copper Inks with High Electrical Conductivity.

    Science.gov (United States)

    Tsai, Chia-Yang; Chang, Wei-Chen; Chen, Guan-Lin; Chung, Cheng-Huan; Liang, Jun-Xiang; Ma, Wei-Yang; Yang, Tsun-Neng

    2015-12-01

    Conductive ink using copper nanoparticles has attracted much attention in the printed electronics industry because of its low cost and high electrical conductivity. However, the problem of easy oxidation under heat and humidity conditions for copper material limits the wide applications. In this study, antioxidative copper inks were prepared by dispersing the nanoparticles in the solution, and then conductive copper films can be obtained after calcining the copper ink at 250 °C in nitrogen atmosphere for 30 min. A low sheet resistance of 47.6 mΩ/□ for the copper film was measured by using the four-point probe method. Importantly, we experimentally demonstrate that the electrical conductivity of copper films can be improved by increasing the calcination temperature. In addition, these highly conductive copper films can be placed in an atmospheric environment for more than 6 months without the oxidation phenomenon, which was verified by energy-dispersive X-ray spectroscopy (EDS). These observations strongly show that our conductive copper ink features high antioxidant properties and long-term stability and has a great potential for many printed electronics applications, such as flexible display systems, sensors, photovoltaic cells, and radio frequency identification.

  10. Electronic and ionic conductivity studies on microwave synthesized glasses containing transition metal ions

    Directory of Open Access Journals (Sweden)

    Basareddy Sujatha

    2017-01-01

    Full Text Available Glasses in the system xV2O5·20Li2O·(80 − x [0.6B2O3:0.4ZnO] (where 10 ≤ x ≤ 50 have been prepared by a simple microwave method. Microwave synthesis of materials offers advantages of efficient transformation of energy throughout the volume in an effectively short time. Conductivity in these glasses was controlled by the concentration of transition metal ion (TMI. The dc conductivity follows Arrhenius law and the activation energies determined by regression analysis varies with the content of V2O5 in a non-linear passion. This non-linearity is due to different conduction mechanisms operating in the investigated glasses. Impedance and electron paramagnetic resonance (EPR spectroscopic studies were performed to elucidate the nature of conduction mechanism. Cole–cole plots of the investigated glasses consist of (i single semicircle with a low frequency spur, (ii two depressed semicircles and (iii single semicircle without spur, which suggests the operation of two conduction mechanisms. EPR spectra reveal the existence of electronic conduction between aliovalent vanadium sites. Further, in highly modified (10V2O5 mol% glasses Li+ ion migration dominates.

  11. Study of lattice thermal conductivity of alpha-zirconium by molecular dynamics simulation

    Institute of Scientific and Technical Information of China (English)

    Wu Tian-Yu; Lai Wen-Sheng; Fu Bao-Qin

    2013-01-01

    The non-equilibrium molecular dynamics method is adapted to calculate the phonon thermal conductivity of alphazirconium.By exchanging velocities of atoms in different regions,the stable heat flux and the temperature gradient are established to calculate the thermal conductivity.The phonon thermal conductivities under different conditions,such as different heat exchange frequencies,different temperatures,different crystallographic orientations,and crossing grain boundary (GB),are studied in detail with considering the finite size effect.It turns out that the phonon thermal conductivity decreases with the increase of temperature,and displays anisotropies along different crystallographic orientations.The phonon thermal conductivity in [0001] direction (close-packed plane) is largest,while the values in other two directions of [2(1)(1)0] and [01 (1)0] are relatively close.In the region near GB,there is a sharp temperature drop,and the phonon thermal conductivity is about one-tenth of that of the single crystal at 550 K,suggesting that the GB may act as a thermal barrier in the crystal.

  12. Molecular dynamics study of the lattice thermal conductivity of Kr/Ar superlattice nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yunfei; Li Deyu; Yang Juekuan; Wu Yonghua; Lukes, J.R.; Majumdar, Arun

    2004-06-15

    The nonequilibrium molecular dynamics (NEMD) method has been used to calculate the lattice thermal conductivities of Ar and Kr/Ar nanostructures in order to study the effects of interface scattering, boundary scattering, and elastic strain on lattice thermal conductivity. Results show that interface scattering poses significant resistance to phonon transport in superlattices and superlattice nanowires. The thermal conductivity of the Kr/Ar superlattice nanowire is only about ((1)/(3)) of that for pure Ar nanowires with the same cross-sectional area and total length due to the additional interfacial thermal resistance. It is found that nanowire boundary scattering provides significant resistance to phonon transport. As the cross-sectional area increases, the nanowire boundary scattering decreases, which leads to increased nanowire thermal conductivity. The ratio of the interfacial thermal resistance to the total effective thermal resistance increases from 30% for the superlattice nanowire to 42% for the superlattice film. Period length is another important factor affecting the effective thermal conductivity of the nanostructures. Increasing the period length will lead to increased acoustic mismatch between the adjacent layers, and hence increased interfacial thermal resistance. However, if the total length of the superlattice nanowire is fixed, reducing the period length will lead to decreased effective thermal conductivity due to the increased number of interfaces. Finally, it is found that the interfacial thermal resistance decreases as the reference temperature increases, which might be due to the inelastic interface scattering.

  13. Risk of Suicide Attempt among Adolescents with Conduct Disorder: A Longitudinal Follow-up Study.

    Science.gov (United States)

    Wei, Han-Ting; Lan, Wen-Hsuan; Hsu, Ju-Wei; Bai, Ya-Mei; Huang, Kai-Lin; Su, Tung-Ping; Li, Cheng-Ta; Lin, Wei-Chen; Chen, Tzeng-Ji; Chen, Mu-Hong

    2016-10-01

    To assess the independent or comorbid effect of conduct and mood disorders on the risk of suicide. The Taiwan National Health Insurance Research Database was used to derive data for 3711 adolescents aged 12-17 years with conduct disorder and 14 844 age- and sex-matched controls between 2001 and 2009. The participants were followed up to the end of 2011, and those who attempted suicide during the follow-up period were identified. Adolescents with conduct disorder had a higher incidence of suicide (0.9% vs 0.1%; P conduct disorder was an independent risk factor for subsequent suicide attempts (hazard ratio, 5.17; 95% CI, 2.29-11.70). The sensitivity after those with other psychiatric comorbidities were excluded revealed a consistent finding (hazard ratio, 10.32; 95% CI, 3.71-28.71). Adolescents with conduct disorder had an increased risk of suicide attempts over the next decade. Future studies are required to clarify the underlying pathophysiology and elucidate whether prompt intervention for conduct disorder could reduce this risk. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Study on delayed cracking of conductive notch under electric field in PZT-5H ferroelectric ceramics

    Institute of Scientific and Technical Information of China (English)

    QIAO Guangli; SU Yanjing; QIAO Lijie; CHU Wuyang

    2006-01-01

    Electric-field-induced delay cracking of conducting notch in PZT-5H ferroelectric ceramics has been studied using a compact specimen with a notch filled in conductive silver paste. The critical electric field that induces instant failure of the PZT-5H specimen is shown to be EF = 14.7(3.2 kV/cm. When an electric field lower than EF, but higher than EDF = 9.9 kV/cm was applied, a micro-crack formed at the conductive notch tip instantly, propagating slowly until the specimen failure. When the electric field was lower than EDF, the micro-crack propagated a short distance, and then stopped. When the electric field was lower than EK=4.9 kV/cm, no cracks formed at the conductive notch tip instantly, however, a delay micro-crack would form and propagate. When the electric field was lower than EDK=2.4 kV/cm, no cracks formed and delay propagation occurred. A model for electric charge emission and concentration at a conductive notch is proposed to explain the delay cracking of conducting notch.

  15. Quantifying the economic benefit of groundwater monitoring: A pilot study

    NARCIS (Netherlands)

    Geer, F. van; Marsman, A.; Janssen, G.M.C.M.

    2007-01-01

    Usually the design of the monitoring system is based on the relation between the monitoring effort and the uncertainty of the information. Often the estimation error standard deviation is used as a criterion for the design. Despite the fact that, for scientists, the standard deviation as a measure o

  16. A feasibility study for conducting unattended night-time operations at WMKO

    Science.gov (United States)

    Stomski, Paul J.; Gajadhar, Sarah; Dahm, Scott; Jordan, Carolyn; Nordin, Tom

    2016-08-01

    In 2015, W. M. Keck Observatory conducted a study of the feasibility of conducting nighttime operations on Maunakea without any staff on the mountain. The study was motivated by the possibility of long term operational costs savings as well as other expected benefits. The goals of the study were to understand the technical feasibility and risk as well as to provide labor and cost estimates for implementation. The results of the study would be used to inform a decision about whether or not to fund and initiate a formal project aimed at the development of this new unattended nighttime operating capability. In this paper we will describe the study process as well as a brief summary of the results including the identified viable design alternative, the risk analysis, and the scope of work. We will also share the decisions made as a result of the study and current status of related follow-on activity.

  17. Synthesis, characterization and conductivity studies of polypyrrole–fly ash composites

    Indian Academy of Sciences (India)

    M V Murugendrappa; Syed Khasim; M V N Ambika Prasad

    2005-10-01

    in situ polymerization of pyrrole was carried out in the presence of fly ash (FA) to synthesize polypyrrole–fly ash composites (PPy/FA) by chemical oxidation method. The PPy/FA composites have been synthesized with various compositions (10, 20, 30, 40 and 50 wt%) of fly ash in pyrrole. The surface morphology of these composites was studied with scanning electron micrograph (SEM). The polypyrrole–fly ash composites were also characterized by employing X-ray diffractometry (XRD) and infrared spectroscopy (IR). The a.c. conductivity behaviour has been investigated in the frequency range 102–106 Hz. The d.c. conductivity was studied in the temperature range from 40–200°C. The dimensions of fly ash in the matrix have a greater influence on the observed conductivity values. The results obtained for these composites are of greater scientific and technological interest.

  18. Dorsal sural nerve conduction study in vitamin B(12) deficiency with megaloblastic anemia.

    Science.gov (United States)

    Turgut, Burhan; Turgut, Nilda; Akpinar, Seval; Balci, Kemal; Pamuk, Gülsüm E; Tekgündüz, Emre; Demir, Muzaffer

    2006-09-01

    Peripheral neuropathy is frequently observed in B(12) deficiency. In spite of this, there is little knowledge about peripheral neuropathy in B(12) deficiency because the severity of clinical involvement of the central nervous system clearly outweighs signs and symptoms due to peripheral nervous system involvement. We primarily investigated peripheral neuropathy with dorsal sural conduction study, which is a new method for detection of early peripheral neuropathy, in B(12) deficiency with megaloblastic anemia. Conventional nerve conduction studies and tibial sensory-evoked potential (SEP) recording were also performed. Twenty-eight B(12)-deficient patients (15 male, 13 female, mean age 65.8 years) with megaloblastic anemia and 18 age- and sex-matched controls were included in the study. Although dorsal sural sensory nerve action potentials (SNAPs) were not recorded in 15 (54%) of 28 patients, only 9 (32%) of them were found to have polyneuropathy by conventional conduction studies. Furthermore, patients with dorsal sural SNAP had mean lower amplitude, mean longer latency, and slower velocity response when compared with controls. Twenty patients (71%) were diagnosed as having myelopathy by the combination of tibial SEP and neurological findings. Two patients whose dorsal sural SNAPs were not recorded had normal tibial SEP responses; therefore, these patients were considered to have isolated peripheral neuropathy. As a result, we conclude that dorsal sural nerve conduction study is a reliable method for detection of early peripheral neuropathy in B(12) deficiency.

  19. Whole-Home Dehumidifiers: Field-Monitoring Study

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Tom; Willem, Henry; Ni, Chun Chun; Stratton, Hannah; Whitehead, Camilla Dunham; Johnson, Russell

    2014-09-23

    Lawrence Berkeley National Laboratory (LBNL) initiated a WHD field-metering study to expand current knowledge of and obtain data on WHD operation and energy consumption in real-world applications. The field study collected real-time data on WHD energy consumption, along with information regarding housing characteristics, consumer behavior, and various outdoor conditions expected to affect WHD performance and efficiency. Although the metering study collected similar data regarding air conditioner operation, this report discusses only WHDs. The primary objectives of the LBNL field-metering study are to (1) expand knowledge of the configurations, energy consumption profiles, consumer patterns of use (e.g., relative humidity [RH] settings), and environmental parameters of whole-home dehumidification systems; and (2) develop distributions of hours of dehumidifier operation in four operating modes: off, standby, fan-only, and compressor (also called dehumidification mode). Profiling energy consumption entails documenting the power consumption, duration of power consumption in different modes, condensate generation, and properties of output air of an installed system under field conditions of varying inlet air temperature and RH, as well as system configuration. This profiling provides a more detailed and deeper understanding of WHD operation and its complexities. This report describes LBNL’s whole-home dehumidification field-metering study conducted at four homes in Wisconsin and Florida. The initial phase of the WHD field-metering study was conducted on one home in Madison, Wisconsin, from June to December of 2013. During a second phase, three Florida homes were metered from June to October of 2014. This report presents and examines data from the Wisconsin site and from the three Florida sites.

  20. Highly Sensitive, Stretchable, and Wash-Durable Strain Sensor Based on Ultrathin Conductive Layer@Polyurethane Yarn for Tiny Motion Monitoring.

    Science.gov (United States)

    Wu, Xiaodong; Han, Yangyang; Zhang, Xinxing; Lu, Canhui

    2016-04-20

    Strain sensors play an important role in the next generation of artificially intelligent products. However, it is difficult to achieve a good balance between the desirable performance and the easy-to-produce requirement of strain sensors. In this work, we proposed a simple, cost-efficient, and large-area compliant strategy for fabricating highly sensitive strain sensor by coating a polyurethane (PU) yarn with an ultrathin, elastic, and robust conductive polymer composite (CPC) layer consisting of carbon black and natural rubber. This CPC@PU yarn strain sensor exhibited high sensitivity with a gauge factor of 39 and detection limit of 0.1% strain. The elasticity and robustness of the CPC layer endowed the sensor with good reproducibility over 10,000 cycles and excellent wash- and corrosion-resistance. We confirmed the applicability of our strain sensor in monitoring tiny human motions. The results indicated that tiny normal physiological activities (including pronunciation, pulse, expression, swallowing, coughing, etc.) could be monitored using this CPC@PU sensor in real time. In particular, the pronunciation could be well parsed from the recorded delicate speech patterns, and the emotions of laughing and crying could be detected and distinguished using this sensor. Moreover, this CPC@PU strain-sensitive yarn could be woven into textiles to produce functional electronic fabrics. The high sensitivity and washing durability of this CPC@PU yarn strain sensor, together with its low-cost, simplicity, and environmental friendliness in fabrication, open up new opportunities for cost-efficient fabrication of high performance strain sensing devices.

  1. Study of electrical conductivity response upon formation of ice and gas hydrates from salt solutions by a second generation high pressure electrical conductivity probe.

    Science.gov (United States)

    Sowa, Barbara; Zhang, Xue Hua; Kozielski, Karen A; Dunstan, Dave E; Hartley, Patrick G; Maeda, Nobuo

    2014-11-01

    We recently reported the development of a high pressure electrical conductivity probe (HP-ECP) for experimental studies of formation of gas hydrates from electrolytes. The onset of the formation of methane-propane mixed gas hydrate from salt solutions was marked by a temporary upward spike in the electrical conductivity. To further understand hydrate formation a second generation of window-less HP-ECP (MkII), which has a much smaller heat capacity than the earlier version and allows access to faster cooling rates, has been constructed. Using the HP-ECP (MkII) the electrical conductivity signal responses of NaCl solutions upon the formation of ice, tetrahydrofuran hydrates, and methane-propane mixed gas hydrate has been measured. The concentration range of the NaCl solutions was from 1 mM to 3M and the driving AC frequency range was from 25 Hz to 5 kHz. This data has been used to construct an "electrical conductivity response phase diagrams" that summarize the electrical conductivity response signal upon solid formation in these systems. The general trend is that gas hydrate formation is marked by an upward spike in the conductivity at high concentrations and by a drop at low concentrations. This work shows that HP-ECP can be applied in automated measurements of hydrate formation probability distributions of optically opaque samples using the conductivity response signals as a trigger.

  2. A COMPARATIVE STUDY OF PERINATAL OUTCOME IN LOW RISK PREGNANCIES WITH CTG MONITORING AND INTERMITTENT AUSCULTATION

    Directory of Open Access Journals (Sweden)

    Velimala Ratna

    2015-12-01

    Full Text Available EFM was introduced into widespread clinical practice in the 1970s to 1980s on the premise that it would facilitate early detection of abnormal FHR patterns thought to be associated with hypoxia thus allowing earlier intervention to prevent foetal neurological damage and/or death. There is a lack of evidence of benefit supporting the use of the admission CTG in low-risk pregnancy. In this study we the aim to evaluate the effects of Cardiotocograph Foetal Monitoring on perinatal outcome in low risk Obstetric population and determine the cost effective and reliable method of fetal monitoring that is applicable to low-risk population. METHODOLOGY A prospective randomized study conducted on 200 low risk pregnant women in labour divided into 2 groups of 100 each. Group A includes those monitored with admission CTG and Group B includes those monitored with intermittent auscultation (IA. OBSERVATION AND RESULTS The demographic features, parity and gestational age in both the groups were comparable; 10 out of the 100 in CTG group had meconium stained liquor whereas 15 of them had meconium in IA group; 71% of the patients in CTG group had normal delivery, whereas it was 84% in IA group. Incidence of LSCS was 23% in CTG group as against 9% in IA group. A ‘P’ value of 0.02, RR of 2 5 for operative deliveries in CTG group was observed which was significant. Incidence of AVD was 6% in CTG group and 7% in IA group with a p value of <0.05, which is statistically significant. The incidence of MSL, APGAR scores at 1, 5 and 10 minutes and NICU admissions were comparable in both the groups. There was no significant difference in babies with low APGAR <7 at 5 min and NICU admissions in both the groups. In our study the sensitivity of CTG was 63.63%, specificity 80.35%, positive predictive value 33.3%, negative predictive value 94.93%. The low sensitivity and high false positives led to the intervention in delivery and increase in operative delivery with no

  3. Reproducibility study of 3D SSFP phase-based brain conductivity imaging

    NARCIS (Netherlands)

    Stehning, C.; Katscher, U.; Keupp, J.

    2012-01-01

    Noninvasive MR-based Electric Properties Tomography (EPT) forms a framework for an accurate determination of local SAR, and may providea diagnostic parameter in oncology. 3D SSFP sequences were found tobe a promising candidate for fast volumetric conductivity imaging. In this work, an in vivo study

  4. Microscopy study of the interface between concrete and conductive coating used as anode for cathodic protection

    NARCIS (Netherlands)

    Polder, R.B.; Peelen, W.H.A.; Schuten, G.

    2003-01-01

    Samples were studied of conductive coatings that had served as anode material in concrete cathodic protection (CP) systems in Norway and The Netherlands for up to about 9 years. Techniques used were light microscopy and scanning electron microscopy (SEM), carried out on thin section samples of about

  5. Qualitative Research and Educational Leadership: Essential Dynamics to Consider When Designing and Conducting Studies

    Science.gov (United States)

    Brooks, Jeffrey S.; Normore, Anthony H.

    2015-01-01

    Purpose: The purpose of this paper is to highlight issues relayed to appropriate design and conduct of qualitative studies in educational leadership. Design/Methodology/Approach: The paper is a conceptual/logical argument that centers around the notion that while scholars in the field have at times paid attention to such dynamics, it is important…

  6. Qualitative Research and Educational Leadership: Essential Dynamics to Consider When Designing and Conducting Studies

    Science.gov (United States)

    Brooks, Jeffrey S.; Normore, Anthony H.

    2015-01-01

    Purpose: The purpose of this paper is to highlight issues relayed to appropriate design and conduct of qualitative studies in educational leadership. Design/Methodology/Approach: The paper is a conceptual/logical argument that centers around the notion that while scholars in the field have at times paid attention to such dynamics, it is important…

  7. A genome-wide association study of upper aerodigestive tract cancers conducted within the INHANCE consortium

    NARCIS (Netherlands)

    McKay, J.D.; Truong, T.; Gaborieau, V.; Chabrier, A.; Chuang, S.C.; Byrnes, G.; Zaridze, D.; Shangina, O.; Szeszenia-Dabrowska, N.; Lissowska, J.; Rudnai, P.; Fabianova, E.; Bucur, A.; Bencko, V.; Holcatova, I.; Janout, V.; Foretova, L.; Lagiou, P.; Trichopoulos, D.; Benhamou, S.; Bouchardy, C.; Ahrens, W.; Merletti, F.; Richiardi, L.; Talamini, R.; Barzan, L.; Kjaerheim, K.; Macfarlane, G.J.; Macfarlane, T.V.; Simonato, L.; Canova, C.; Agudo, A.; Castellsague, X.; Lowry, R.; Conway, D.I.; McKinney, P.A.; Healy, C.M.; Toner, M.E.; Znaor, A.; Curado, M.P.; Koifman, S.; Menezes, A.; Wunsch-Filho, V.; Neto, J.E.; Garrote, L.F.; Boccia, S.; Cadoni, G.; Arzani, D.; Olshan, A.F.; Weissler, M.C.; Funkhouser, W.K.; Luo, J.; Lubinski, J.; Trubicka, J.; Lener, M.; Oszutowska, D.; Schwartz, S.M.; Chen, C.; Fish, S.; Doody, D.R.; Muscat, J.E.; Lazarus, P.; Gallagher, C.J.; Chang, S.C.; Zhang, Z.F.; Wei, Q.; Sturgis, E.M.; Wang, L.E.; Franceschi, S.; Herrero, R.; Kelsey, K.T.; McClean, M.D.; Marsit, C.J.; Nelson, H.H.; Romkes, M.; Buch, S.; Nukui, T.; Zhong, S.; Lacko, M.; Manni, J.J.; Peters, W.H.M.; Hung, R.J.; McLaughlin, J.; Vatten, L.; Njolstad, I.; Goodman, G.E.; Field, J.K.; Liloglou, T.; Vineis, P.; Clavel-Chapelon, F.; Palli, D.; Tumino, R.; Krogh, V.; Panico, S.; Gonzalez, C.A.; Quiros, J.R.; Martinez, C.; Navarro, C.; Ardanaz, E.; Larranaga, N.

    2011-01-01

    Genome-wide association studies (GWAS) have been successful in identifying common genetic variation involved in susceptibility to etiologically complex disease. We conducted a GWAS to identify common genetic variation involved in susceptibility to upper aero-digestive tract (UADT) cancers.

  8. Paychecks: A Guide to Conducting Salary-Equity Studies for Higher Education Faculty. Second Edition.

    Science.gov (United States)

    Haignere, Lois

    This guidebook is designed as a resource for those in the higher education community who want to conduct analyses of bias in faculty salaries or to understand and interpret the results of studies presented to them. This edition will help readers detect gender and face bias in current rank, select a salary-equity consultant, understand different…

  9. 76 FR 70122 - Plan for Conduct of 2012 Electric Transmission Congestion Study

    Science.gov (United States)

    2011-11-10

    ... Regional Entity (TRE), and the Western Electricity Coordinating Council. In preparing the 2009 Congestion... additions. These sources may include, but are not limited to: ] Electricity market analyses, including... for Conduct of 2012 Electric Transmission Congestion Study AGENCY: Office of Electricity Delivery...

  10. Monitoring the Veterinary Medical Student Experience: An Institutional Pilot Study.

    Science.gov (United States)

    Miller, RoseAnn; Mavis, Brian E; Lloyd, James W; Grabill, Chandra M; Henry, Rebecca C; Patterson, Coretta C

    2015-01-01

    Veterinary medical school challenges students academically and personally, and some students report depression and anxiety at rates higher than the general population and other medical students. This study describes changes in veterinary medical student self-esteem (SE) over four years of professional education, attending to differences between high and low SE students and the characteristics specific to low SE veterinary medical students. The study population was students enrolled at the Michigan State University College of Veterinary Medicine from 2006 to 2012. We used data from the annual anonymous survey administered college-wide that is used to monitor the curriculum and learning environment. The survey asked respondents to rate their knowledge and skill development, learning environment, perceptions of stress, skill development, and SE. Participants also provided information on their academic performance and demographics. A contrasting groups design was used: high and low SE students were compared using logistic regression to identify factors associated with low SE. A total of 1,653 respondents met inclusion criteria: 789 low SE and 864 high SE students. The proportion of high and low SE students varied over time, with the greatest proportion of low SE students during the second-year of the program. Perceived stress was associated with low SE, whereas perceived supportive learning environment and skill development were associated with high SE. These data have provided impetus for curricular and learning environment changes to enhance student support. They also provide guidance for additional research to better understand various student academic trajectories and their implications for success.

  11. [Safety study of long-term video-electroencephalogram monitoring].

    Science.gov (United States)

    Ley, M; Vivanco, R; Massot, A; Jiménez, J; Roquer, J; Rocamora, R

    2014-01-01

    The increased morbidity and mortality and poorer quality of life associated with drug-resistant epilepsy justify admitting patients to epilepsy monitoring units (EMU). These units employ methods that promote the occurrence of seizures, which involves a risk of secondary adverse events. The aim of our study is to characterise and quantify these adverse events in a Spanish EMU. A descriptive, longitudinal and retrospective study of patients admitted consecutively to our EMU. Patients admitted due to status epilepticus, clusters of seizures, or as participants in a clinical trial were excluded. We included 175 patients, of whom 92.1% (161) did not suffer any adverse events. Status epilepticus was present in 3.4% (6); 1.7% (3) had traumatic injury, 1.7% (3) had interictal or postictal psychosis, and 1.1% (2) had cardiorespiratory impairment. There were no risk factors associated with these adverse events. The most frequently-identified adverse events were status epilepticus, traumatic injury, interictal or postictal psychosis, and cardiorespiratory disorders. The frequency of these adverse events was similar to that seen in international literature. The complications detected do not contraindicate VEEGM. Copyright © 2012 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  12. Health monitoring studies on composite structures for aerospace applications

    Energy Technology Data Exchange (ETDEWEB)

    James, G.; Roach, D.; Hansche, B.; Meza, R.; Robinson, N.

    1996-02-01

    This paper discusses ongoing work to develop structural health monitoring techniques for composite aerospace structures such as aircraft control surfaces, fuselage sections or repairs, and reusable launch vehicle fuel tanks. The overall project is divided into four tasks: Operational evaluation, diagnostic measurements, information condensation, and damage detection. Five composite plates were constructed to study delaminations, disbonds, and fluid retention issues as the initial step in creating an operational system. These four square feet plates were graphite-epoxy with nomex honeycomb cores. The diagnostic measurements are composed of modal tests with a scanning laser vibrometer at over 500 scan points per plate covering the frequency range up to 2000 Hz. This data has been reduced into experimental dynamics matrices using a generic, software package developed at the University of Colorado at Boulder. The continuing effort will entail performing a series of damage identification studies to detect, localize, and determine the extent of the damage. This work is providing understanding and algorithm development for a global NDE technique for composite aerospace structures.

  13. Study of gap conductance model for thermo mechanical fully coupled finite element model

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo Cha; Yang, Yong Sik; Kim, Dae Ho; Bang, Je Geon; Kim, Sun Ki; Koo, Yang Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    accurately, gap conductance model for thermomechanical fully coupled FE should be developed. However, gap conductance in FE can be difficult issue in terms of convergence because all elements which are positioned in gap have different gap conductance at each iteration step. It is clear that our code should have gap conductance model for thermo-mechanical fully coupled FE in three-dimension. In this paper, gap conductance model for thermomechanical coupled FE has been built using commercial FE code to understand gap conductance model in FE. We coded commercial FE code using APDL because it does not have iterative gap conductance model. Through model, convergence parameter and characteristics were studied.

  14. What do they know about Heat and Heat Conduction? A case study to excavate Pre-service Physics Teachers’ Mental Model in Heat and Heat Conduction

    Science.gov (United States)

    Sari, I. M.

    2017-02-01

    Teacher plays a crucial role in Education. Helping students construct scientifically mental model is one of obligation of Physics Education Department of Teacher Education Institute that produce physics teacher. Excavating students’ mental model is necessary to be done in physics education. This research was first to identify 23 physics students’ mental model of heat and heat conduction. A series of semi-structured interviews was conducted to excavate the students’ understanding of heat and mental models on heat conduction. The students who involved in this study come from different level from sophomore to master degree in Physics Education Department. This study adopted a constant comparison method to obtain the patterns of the participants’ responses through the students’ writing, drawing and verbal utterances. The framework for assessing mental model and the instruments were adopted and adapted from Chiou and Anderson (2010). We also compared the students’ understanding of heat and mental models on heat conduction. The result shows that Heat is treated as Intrinsic property, material substances, and caloric flow. None of students expressed heat as transfer of thermal energy. Moreover, there are two kinds of students’ fundamental component of mental model in heat conduction were found: medium and molecules. Students understanding of heat and fundamental components of mental model in heat conduction are not resulted from running mental model.

  15. Work – Life Balance Practices in Romanian Organisations – A Pilot Study Conducted on HR Professionals

    Directory of Open Access Journals (Sweden)

    Ramona IGREȚ

    2016-06-01

    Full Text Available Work – life balance is becoming a very debated subject in the Romanian business context, especially in multinationals and large Romanian companies. This paper’s main objective is to conduct a pilot study regarding work – life balance practices on human resource professionals from Romania. The study’s main purpose is to validate a research questionnaire in order to conduct a more significant research in the future. The questionnaire was applied on 52 HR specialists from different organisations and is structured on five sections: working hours, WLB practices, holiday and time off, flexible working and information about the employer and the job.

  16. Study of charge transport in highly conducting polymers based on a random resistor network

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Liping [Department of Physics, Suzhou University, Suzhou 215006 (China)]. E-mail: lipichow@hotmail.com; Liu Bo [Department of Physics, Suzhou University, Suzhou 215006 (China); Department of Physics, Jiangsu Teachers University of Technology, Changzhou 213001 (China); Li Zhenya [CCAST (World Laboratory), P.O. Box 8730, Beijing 100080 (China) and Department of Physics, Suzhou University, Suzhou 215006 (China)]. E-mail: zyli@suda.edu.cn

    2004-12-06

    Based on a random resistor network (RRN), we study the unusual ac conductivity {sigma}({omega}) of highly conducting polymer such as PF{sub 6} doped polypyrrole. The system is modeled as a composite medium consisting of metallic regions randomly distributed in the amorphous parts. Within the metallic regions, the polymer chains are regularly and densely packed, outside which the poorly arranged chains form amorphous host. The metallic grains are connected by resonance quantum tunneling, which occurs through the strongly localized states in the amorphous media. {sigma}({omega}), calculated from this model, reproduces the main experimental features associated with the metal-insulator transition in these polymers.

  17. Electrical conductivity of activated carbon-metal oxide nanocomposites under compression: a comparison study.

    Science.gov (United States)

    Barroso-Bogeat, A; Alexandre-Franco, M; Fernández-González, C; Macías-García, A; Gómez-Serrano, V

    2014-12-01

    From a granular commercial activated carbon (AC) and six metal oxide (Al2O3, Fe2O3, SnO2, TiO2, WO3 and ZnO) precursors, two series of AC-metal oxide nanocomposites were prepared by wet impregnation, oven-drying at 120 °C, and subsequent heat treatment at 200 or 850 °C in an inert atmosphere. Here, the electrical conductivity of the resulting products was studied under moderate compression. The influence of the applied pressure, sample volume, mechanical work, and density of the hybrid materials was thoroughly investigated. The DC electrical conductivity of the compressed samples was measured at room temperature by the four-probe method. Compaction assays suggest that the mechanical properties of the nanocomposites are largely determined by the carbon matrix. Both the decrease in volume and the increase in density were relatively small and only significant at pressures lower than 100 kPa for AC and most nanocomposites. In contrast, the bulk electrical conductivity of the hybrid materials was strongly influenced by the intrinsic conductivity, mean crystallite size, content and chemical nature of the supported phases, which ultimately depend on the metal oxide precursor and heat treatment temperature. The supported nanoparticles may be considered to act as electrical switches either hindering or favouring the effective electron transport between the AC cores of neighbouring composite particles in contact under compression. Conductivity values as a rule were lower for the nanocomposites than for the raw AC, all of them falling in the range of semiconductor materials. With the increase in heat treatment temperature, the trend is toward the improvement of conductivity due to the increase in the crystallite size and, in some cases, to the formation of metals in the elemental state and even metal carbides. The patterns of variation of the electrical conductivity with pressure and mechanical work were slightly similar, thus suggesting the predominance of the pressure

  18. Theoretical study of optical conductivity of graphene with magnetic and nonmagnetic adatoms

    Science.gov (United States)

    Majidi, Muhammad Aziz; Siregar, Syahril; Rusydi, Andrivo

    2014-11-01

    We present a theoretical study of the optical conductivity of graphene with magnetic and nonmagnetic adatoms. First, by introducing an alternating potential in a pure graphene, we demonstrate a gap formation in the density of states and the corresponding optical conductivity. We highlight the distinction between such a gap formation and the so-called Pauli blocking effect. Next, we apply this idea to graphene with adatoms by introducing magnetic interactions between the carrier spins and the spins of the adatoms. Exploring various possible ground-state spin configurations of the adatoms, we find that the antiferromagnetic configuration yields the lowest total electronic energy and is the only configuration that forms a gap. Furthermore, we analyze four different circumstances leading to similar gaplike structures and propose a means to interpret the magneticity and the possible orderings of the adatoms on graphene solely from the optical conductivity data. We apply this analysis to the recently reported experimental data of oxygenated graphene.

  19. Capacitance and conductance studies on silicon solar cells subjected to 8 MeV electron irradiations

    Science.gov (United States)

    Sathyanarayana Bhat, P.; Rao, Asha; Sanjeev, Ganesh; Usha, G.; Priya, G. Krishna; Sankaran, M.; Puthanveettil, Suresh E.

    2015-06-01

    The space grade silicon solar cells were irradiated with 8 MeV electrons with doses ranging from 5-100 k Gy. Capacitance and conductance measurements were carried out in order to investigate the anomalous degradation of the cells in the radiation harsh environments and the results are presented in this paper. Detailed and systematic analysis of the frequency-dependent capacitance and conductance measurements were performed to extract the information about the interface trap states. The small increase in density of interface states was observed from the conductance-frequency measurements. The reduction in carrier concentration upon electron irradiation is due to the trapping of charge carriers by the radiation induced trap centres. The Drive Level Capacitance Profiling (DLCP) technique has been applied to study the properties of defects in silicon solar cells. A small variation in responding state densities with measuring frequency was observed and the defect densities are in the range 1015 -1016 cm-3.

  20. CONDUCTIVITY STUDIES OF (PEO +KHCO3 SOLID ELECTROLYTE SYSTEM AND ITS APPLICATION AS AN ELECTROCHEMICAL CELL

    Directory of Open Access Journals (Sweden)

    K. VIJAY KUMAR

    2010-06-01

    Full Text Available Solid polymer electrolyte system, polyethylene oxide (PEO complexed with potassium bicarbonate (KHCO3 salt was prepared by solution-cast technique. Several experimental techniques such as infrared radiation (IR, differential scanning calorimeter (DSC, and composition dependence conductivity, temperature dependence conductivity in the temperature range of 308–368 K and transport number measurements were employed to characterize this polymer electrolyte system. The conductivity of the (PEO+KHCO3 electrolyte was found to be about 3 times larger than that of pure PEO at room temperature. The transference data indicated that the charge transport in these polymer electrolyte systems is predominantly due to K+ ions. Using this polymer electrolyte an electrochemical cell with configuration K+/(PEO+KHCO3/(I2+C+electrolyte was fabricated and its discharge characteristics are studied. A number of other cell parameters associated with the cell were evaluated and are reported in this paper.

  1. Experimental Study to Find Thermal Conductivity Coefficient for Concrete Mixed with Styropor

    Directory of Open Access Journals (Sweden)

    Atalah H. Jassem

    2013-05-01

    Full Text Available Thermal insulation properties of a blend mixture composed of different percentages (50% ,60% ,70% and 80% of styropor with concrete and sand of equal volumetric percentages 15%, 20%, 25%,and 10% respectively. This study includes calibration of instruments for measuring the heat transferred through  samples and investigating the way that used for calculating the proportions of mixing for each sample.            Finally the experiments were conducted in order to determine the correlation of thermal conductivity of each sample with its mean temperature.            It was demonstrated that the new mixture has good rank of thermal properties among the other insulators, with thermal conductivity of 0.3 w/m.oC. This value is lower than the mean value of thermal conductivity values of concrete insulators in the buildings.            Experiments are carried out under a temperature range of (14- 70 oC and under different volumetric proportions of the mixture.63            The experimental results showed that the behavior of the thermal conductivity with the mean temperature on the two faces of the sample is directly proportional like the other insulators.

  2. Thermal conductivity model for powdered materials under vacuum based on experimental studies

    Directory of Open Access Journals (Sweden)

    N. Sakatani

    2017-01-01

    Full Text Available The thermal conductivity of powdered media is characteristically very low in vacuum, and is effectively dependent on many parameters of their constituent particles and packing structure. Understanding of the heat transfer mechanism within powder layers in vacuum and theoretical modeling of their thermal conductivity are of great importance for several scientific and engineering problems. In this paper, we report the results of systematic thermal conductivity measurements of powdered media of varied particle size, porosity, and temperature under vacuum using glass beads as a model material. Based on the obtained experimental data, we investigated the heat transfer mechanism in powdered media in detail, and constructed a new theoretical thermal conductivity model for the vacuum condition. This model enables an absolute thermal conductivity to be calculated for a powder with the input of a set of powder parameters including particle size, porosity, temperature, and compressional stress or gravity, and vice versa. Our model is expected to be a competent tool for several scientific and engineering fields of study related to powders, such as the thermal infrared observation of air-less planetary bodies, thermal evolution of planetesimals, and performance of thermal insulators and heat storage powders.

  3. Hydraulic conductivity study of compacted clay soils used as landfill liners for an acidic waste.

    Science.gov (United States)

    Hamdi, Noureddine; Srasra, Ezzeddine

    2013-01-01

    Three natural clayey soils from Tunisia were studied to assess their suitability for use as a liner for an acid waste disposal site. An investigation of the effect of the mineral composition and mechanical compaction on the hydraulic conductivity and fluoride and phosphate removal of three different soils is presented. The hydraulic conductivity of these three natural soils are 8.5 × 10(-10), 2.08 × 10(-9) and 6.8 × 10(-10)m/s for soil-1, soil-2 and soil-3, respectively. Soil specimens were compacted under various compaction strains in order to obtain three wet densities (1850, 1950 and 2050 kg/m(3)). In this condition, the hydraulic conductivity (k) was reduced with increasing density of sample for all soils. The test results of hydraulic conductivity at long-term (>200 days) using acidic waste solution (pH=2.7, charged with fluoride and phosphate ions) shows a decrease in k with time only for natural soil-1 and soil-2. However, the specimens of soil-2 compressed to the two highest densities (1950 and 2050 kg/m(3)) are cracked after 60 and 20 days, respectively, of hydraulic conductivity testing. This damage is the result of a continued increase in the internal stress due to the swelling and to the effect of aggressive wastewater. The analysis of anions shows that the retention of fluoride is higher compared to phosphate and soil-1 has the highest sorption capacity.

  4. Study on phase stability and ionic conductivity in TiIV-substituted bismuth vanadate

    Science.gov (United States)

    Beg, Saba; Haneef, Sadaf

    2014-09-01

    The solid solutions Bi4TixV2-xO11-(x/2)-δ in the composition range 0.05 ≤ x ≤ 0.30 were obtained by solid state reaction according to the substitution equation: ? The sample characterization and the study of phase transition were performed by using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), alternating current (AC) impedance and electrical conductivity measurements. The solid solutions with composition 0.05 ≤ x ≤ 0.17 are isostructural with the orthorhombic β-phase, and those with x ≥ 0.20 represent tetragonal γ‧-phase as confirmed by the XRD and DSC results. Arrhenius plots of conductivity show that with increase in Ti concentration, the conductivity of solid solutions increase and reaches a maximum value of 4.38 × 10-5 Scm-1 for x = 0.17 at 340 °C. It is seen that the highly conducting tetragonal γ‧-phase is effectively stabilized to room temperature for the composition x ≥ 0.20. AC impedance plots show that the conductivity is mainly due to the grain and the grain boundary contribution which is confirmed by the existence of two semicircles along with an inclined spike.

  5. Single-Molecule Conductance Studies of Organometallic Complexes Bearing 3-Thienyl Contacting Groups.

    Science.gov (United States)

    Bock, Sören; Al-Owaedi, Oday A; Eaves, Samantha G; Milan, David C; Lemmer, Mario; Skelton, Brian W; Osorio, Henrry M; Nichols, Richard J; Higgins, Simon J; Cea, Pilar; Long, Nicholas J; Albrecht, Tim; Martín, Santiago; Lambert, Colin J; Low, Paul J

    2017-02-10

    The compounds and complexes 1,4-C6 H4 (C≡C-cyclo-3-C4 H3 S)2 (2), trans-[Pt(C≡C-cyclo-3-C4 H3 S)2 (PEt3 )2 ] (3), trans-[Ru(C≡C-cyclo-3-C4 H3 S)2 (dppe)2 ] (4; dppe=1,2-bis(diphenylphosphino)ethane) and trans-[Ru(C≡C-cyclo-3-C4 H3 S)2 {P(OEt)3 }4 ] (5) featuring the 3-thienyl moiety as a surface contacting group for gold electrodes have been prepared, crystallographically characterised in the case of 3-5 and studied in metal|molecule|metal junctions by using both scanning tunnelling microscope break-junction (STM-BJ) and STM-I(s) methods (measuring the tunnelling current (I) as a function of distance (s)). The compounds exhibit similar conductance profiles, with a low conductance feature being more readily identified by STM-I(s) methods, and a higher feature by the STM-BJ method. The lower conductance feature was further characterised by analysis using an unsupervised, automated multi-parameter vector classification (MPVC) of the conductance traces. The combination of similarly structured HOMOs and non-resonant tunnelling mechanism accounts for the remarkably similar conductance values across the chemically distinct members of the family 2-5.

  6. LHC Transvers Profile Monitors studies (MD on May 6th, 2011)

    CERN Document Server

    Bravin, E; Dehning, B; Emery, J; Lefevre, T; Gras, JJ; Jeff, A; Rabiller, A; Roncarolo, F; Sapinski, M; Kain, V; Pojer, M; Bartosik, H; Salvant, B

    2011-01-01

    This note contains the preliminary results of the LHC MD that took place on 6-May-2011 (from 2 to 10 a.m.), dedicated to study Wire Scanners (WS), Synchrotron Radiation Monitors (BSRT) and Beam Gas Ionization Monitors (BGI). The MD aimed at performing different studies on the individual monitors as well as at cross calibrating them with beams composed of bunches with different transverse emittances in stable conditions. At the same time, it was possible to perform calibration studies with the Abort Gap Monitor (AGM) and Longitudinal Density Monitor (LDM) that share the extracted light with the BSRT.

  7. Thermal conductivity studies of CdZnTe with varying Te excess

    Science.gov (United States)

    Jackson, Maxx; Bennett, Brittany; Giltnane, Dustin; Babalola, Stephen; Ohmes, Martin F.; Stowe, A. C.

    2016-09-01

    Cadmium Zine Telluride (CZT) has been extensively studied as a room temperature semiconductor gamma radiation detector. CZT continues to show promise as a bulk and pixelated gamma spectrometer with less than one percent energy resolution; however the fabrication costs are high. Improved yields of high quality, large CZT spectroscopy grade crystals must be achieved. CZT is grown by the Traveling Heater Method (THM) with a Te overpressure to account for vaporization losses. This procedure creates Te rich zones. During growth, boules will often cleave limiting the number of harvestable crystals. As a result, crystal growth parameter optimization was evaluated by modeling the heat flow within the system. Interestingly, Cadmium Telluride (CdTe) is used as a thermal conductivity surrogate in the absence of a thorough study of the CZT thermal properties. The current study has measured the thermal conductivity of CZT pressed powders with varying Te concentrations from 50-100% over 25-800°C to understand the variation in this parameter from CdTe. Cd0.9Zn0.1Te1.0 is the base CZT (designated 50%). CZT exhibits a thermal conductivity of nearly 1 W/mK, an order of magnitude greater than CdTe. Further, the thermal conductivity decreased with increasing Te concentration.

  8. Electrical conductivity and dielectric studies of MnO2 doped V2O5

    Science.gov (United States)

    Tan, Foo Khoon; Hassan, Jumiah; Wahab, Zaidan Abd.; Azis, Raba'ah Syahidah

    The investigation on electrical conductivity and dielectric properties of mixed oxide of manganese (Mn) and vanadium (V) was carried out to study the mixed oxides response to different frequencies and different measuring temperatures. The frequency and temperature dependence of AC conductivity, dielectric constant and dielectric loss factor of mixed oxides were studied in the frequency range of 40 Hz-1 MHz and a temperature range of 30-250 °C. Since the mixed oxides are multi phase materials, hence the properties of the pure oxides are also presented in this study to discuss the multi phase behaviour of the mixed oxides. The XRD pattern shows the Mn-V oxide is multiphase and quantitative phase analysis was performed to determine the relative phases. The overall results indicate that with increasing temperature, the AC conductivity, dielectric constant, dielectric loss factor and loss tangent of the Mn-V mixed oxide increases. However, it shows an overlap in the dielectric constant at 225 °C and 250 °C due to the V2O5 phase in the mixed oxide. From the AC activation energy, the mixed oxides underwent conduction mechanism transition from band to hopping in the investigated frequency range. The MnV2O6 has relatively good resistivity, therefore the mixed oxide sintered at 550 °C with the highest composition of MnV2O6 gives the highest dielectric constant of 9845 at 1 kHz, and at 250 °C.

  9. Nerve conduction in relation to vibration exposure - a non-positive cohort study

    OpenAIRE

    2010-01-01

    Abstract Background Peripheral neuropathy is one of the principal clinical disorders in workers with hand-arm vibration syndrome. Electrophysiological studies aimed at defining the nature of the injury have provided conflicting results. One reason for this lack of consistency might be the sparsity of published longitudinal etiological studies with both good assessment of exposure and a well-defined measure of disease. Against this background we measured conduction velocities in the hand after...

  10. The utility of segmental nerve conduction studies in ulnar mononeuropathy at the elbow.

    Science.gov (United States)

    Azrieli, Yevgeny; Weimer, Louis; Lovelace, Robert; Gooch, Clifton

    2003-01-01

    Patients with clinical evidence of ulnar mononeuropathy at the elbow may have normal routine motor and sensory nerve conduction studies, suggesting a low sensitivity for these methods. Other, more specialized techniques may have a higher sensitivity, increasing diagnostic yield, and provide more specific localization of the lesion. We compared the sensitivity and specificity of ulnar segmental nerve conduction studies (SgNCS or "inching") at 2-cm intervals with those of routine ulnar motor and sensory studies. We studied 21 arms with symptoms or signs of ulnar neuropathy and 25 asymptomatic control arms. SgNCS proved significantly more sensitive than more routine studies in diagnosing ulnar neuropathy at the elbow, with a sensitivity of 81%, whereas motor conduction velocity in a longer (10-14 cm) segment across the elbow was the next most sensitive at 24%. Recording from the first dorsal interosseous muscle did not improve sensitivity when compared with recording from the abductor digiti quinti. Short SgNCS significantly improves detection of ulnar mononeuropathy at the elbow and should be considered when routine studies are negative and clinical suspicion remains high.

  11. Biotelemetric Wireless Intracranial Pressure Monitoring: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    Mohammad H. Behfar

    2015-01-01

    Full Text Available Assessment of intracranial pressure (ICP is of great importance in management of traumatic brain injuries (TBIs. The existing clinically established ICP measurement methods require catheter insertion in the cranial cavity. This increases the risk of infection and hemorrhage. Thus, noninvasive but accurate techniques are attractive. In this paper, we present two wireless, batteryless, and minimally invasive implantable sensors for continuous ICP monitoring. The implants comprise ultrathin (50 μm flexible spiral coils connected in parallel to a capacitive microelectromechanical systems (MEMS pressure sensor. The implantable sensors are inductively coupled to an external on-body reader antenna. The ICP variation can be detected wirelessly through measuring the reader antenna’s input impedance. This paper also proposes novel implant placement to improve the efficiency of the inductive link. In this study, the performance of the proposed telemetry system was evaluated in a hydrostatic pressure measurement setup. The impact of the human tissues on the inductive link was simulated using a 5 mm layer of pig skin. The results from the in vitro measurement proved the capability of our developed sensors to detect ICP variations ranging from 0 to 70 mmHg at 2.5 mmHg intervals.

  12. Synthesis, characterization and molecular weight monitoring of a novel Schiff base polymer containing phenol group: Thermal stability, conductivity and antimicrobial properties

    Science.gov (United States)

    Yılmaz Baran, Nuray; Saçak, Mehmet

    2017-10-01

    A novel Schiff base polymer containing phenol group, Poly(3-[[4-(dimethylamino)benzylidene]amino]phenol) P(3-DBAP), was prepared by oxidative polycondensation reaction of 3-[[4-(dimethylamino)benzylidene]amino]phenol (3-DBAP) using NaOCl, H2O2, O2 oxidants in aqueous alkaline medium. Yield and molecular weight distribution of P(3-DBAP) were monitored depending on oxidant types and concentration, monomer concentration and as well as polymerization temperature and time. UV-Vis, FTIR and 1HNMR techniques were used to identify the structures of Schiff base monomer and polymer. Thermal behavior of P(3-DBAP), which was determined to be thermally stable up to 1200 °C via TG-DTG techniques, was illuminated by Thermo-IR spectra recorded in the temperature range of 25-800 °C. It was determined that the electrical conductivity value of the P(3-DBAP) increased 108 fold after doped with iodine for 24 h at 60 °C according to undoped form and it was measured 4.6 × 10-4 S/cm. Also, antibacterial and antifungal activities of the monomer and polymer were assayed against Sarcina lutea, Enterobacter aerogenes, Escherichia coli, Enterococcus Feacalis, Klebsiella pneumoniae, Bacillus subtilis bacteria, and Candida albicans, Saccharomyces cerevisiae fungi.

  13. The role of the Data and Safety Monitoring Board in a clinical trial: The CRISIS Study

    Science.gov (United States)

    Holubkov, Richard; Casper, T. Charles; Dean, J. Michael; Anand, K. J. S.; Zimmerman, Jerry; Meert, Kathleen L.; Newth, Christopher J. L.; Berger, John; Harrison, Rick; Willson, Douglas F.; Nicholson, Carol

    2012-01-01

    Objective Randomized clinical trials are commonly overseen by a data and safety monitoring board (DSMB) comprised of experts in medicine, ethics, and biostatistics. DSMB responsibilities include protocol approval, interim review of study enrollment, protocol compliance, safety, and efficacy data. DSMB decisions can affect study design and conduct, as well as reported findings. Researchers must incorporate DSMB oversight into the design, monitoring, and reporting of randomized trials. Design Case study, narrative review. Methods The DSMB’s role during the comparative pediatric Critical Illness Stress-Induced Immune Suppression (CRISIS) Prevention Trial is described. Findings The NIH-appointed CRISIS DSMB was charged with monitoring sample size adequacy and feasibility, safety with respect to adverse events and 28-day mortality, and efficacy with respect to the primary nosocomial infection/sepsis outcome. The Federal Drug Administration also requested DSMB interim review before opening CRISIS to children below one year of age. The first interim analysis found higher 28-day mortality in one treatment arm. The DSMB maintained trial closure to younger children, and requested a second interim data review six months later. At this second meeting, mortality was no longer of concern, while a weak efficacy trend of lower infection/sepsis rates in one study arm emerged. As over 40% of total patients had been enrolled, the DSMB elected to examine conditional power, and unmask treatment arm identities. Upon finding somewhat greater efficacy in the placebo arm, the DSMB recommended stopping CRISIS due to futility. Conclusions The design and operating procedures of a multicenter randomized trial must consider a pivotal DSMB role. Maximum study design flexibility must be allowed, and investigators must be prepared for protocol modifications due to interim findings. The DSMB must have sufficient clinical and statistical expertise to assess potential importance of interim

  14. Preliminary Study of UAS Equipped with Thermal Camera for Volcanic Geothermal Monitoring in Taiwan.

    Science.gov (United States)

    Chio, Shih-Hong; Lin, Cheng-Horng

    2017-07-18

    Thermal infrared cameras sense the temperature information of sensed scenes. With the development of UASs (Unmanned Aircraft Systems), thermal infrared cameras can now be carried on a quadcopter UAV (Unmanned Aircraft Vehicle) to appropriately collect high-resolution thermal images for volcanic geothermal monitoring in a local area. Therefore, the quadcopter UAS used to acquire thermal images for volcanic geothermal monitoring has been developed in Taiwan as part of this study to overcome the difficult terrain with highly variable topography and extreme environmental conditions. An XM6 thermal infrared camera was employed in this thermal image collection system. The Trimble BD970 GNSS (Global Navigation Satellite System) OEM (Original Equipment Manufacturer) board was also carried on the quadcopter UAV to gather dual-frequency GNSS observations in order to determine the flying trajectory data by using the Post-Processed Kinematic (PPK) technique; this will be used to establish the position and orientation of collected thermal images with less ground control points (GCPs). The digital surface model (DSM) and thermal orthoimages were then produced from collected thermal images. Tests conducted in the Hsiaoyukeng area of Taiwan's Yangmingshan National Park show that the difference between produced DSM and airborne LIDAR (Light Detection and Ranging) data are about 37% between -1 m and 1 m, and 66% between -2 m and 2 m in the area surrounded by GCPs. As the accuracy of thermal orthoimages is about 1.78 m, it is deemed sufficient for volcanic geothermal monitoring. In addition, the thermal orthoimages show some phenomena not only more globally than do the traditional methods for volcanic geothermal monitoring, but they also show that the developed system can be further employed in Taiwan in the future.

  15. Preliminary Study of UAS Equipped with Thermal Camera for Volcanic Geothermal Monitoring in Taiwan

    Directory of Open Access Journals (Sweden)

    Shih-Hong Chio

    2017-07-01

    Full Text Available Thermal infrared cameras sense the temperature information of sensed scenes. With the development of UASs (Unmanned Aircraft Systems, thermal infrared cameras can now be carried on a quadcopter UAV (Unmanned Aircraft Vehicle to appropriately collect high-resolution thermal images for volcanic geothermal monitoring in a local area. Therefore, the quadcopter UAS used to acquire thermal images for volcanic geothermal monitoring has been developed in Taiwan as part of this study to overcome the difficult terrain with highly variable topography and extreme environmental conditions. An XM6 thermal infrared camera was employed in this thermal image collection system. The Trimble BD970 GNSS (Global Navigation Satellite System OEM (Original Equipment Manufacturer board was also carried on the quadcopter UAV to gather dual-frequency GNSS observations in order to determine the flying trajectory data by using the Post-Processed Kinematic (PPK technique; this will be used to establish the position and orientation of collected thermal images with less ground control points (GCPs. The digital surface model (DSM and thermal orthoimages were then produced from collected thermal images. Tests conducted in the Hsiaoyukeng area of Taiwan’s Yangmingshan National Park show that the difference between produced DSM and airborne LIDAR (Light Detection and Ranging data are about 37% between −1 m and 1 m, and 66% between −2 m and 2 m in the area surrounded by GCPs. As the accuracy of thermal orthoimages is about 1.78 m, it is deemed sufficient for volcanic geothermal monitoring. In addition, the thermal orthoimages show some phenomena not only more globally than do the traditional methods for volcanic geothermal monitoring, but they also show that the developed system can be further employed in Taiwan in the future.

  16. Conducting a Grounded Theory Study in a Language Other Than English

    Directory of Open Access Journals (Sweden)

    Intansari Nurjannah

    2014-03-01

    Full Text Available Translation can be a problem area for researchers conducting qualitative studies in languages other than English who intend to publish the results in an English-language journal. Analyzing the data is also complex when the research team consists of people from different language backgrounds. Translation must be considered as an issue in its own right to maintain the integrity of the research, especially in a grounded theory study. In this article, we offer guidelines for the process of translation for data analysis in a grounded theory study in which the research was conducted in a language other than English (Indonesian. We make recommendations about procedures to choose when, who, and how to translate data. The translation procedure is divided into four steps which are as follows: translation in the process of coding, translation in the process of team discussion, translation in the process of advanced coding, and ensuring the accuracy of translation.

  17. MO-F-CAMPUS-I-01: EIT Imaging to Monitor Human Salivary Gland Functionality: A Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Kohli, K; Karvat, A; Liu, J; Krishnan, K [BC Cancer Agency, Surrey, BC (United Kingdom)

    2015-06-15

    Purpose: Clinically, there exists a need to develop a non-invasive technique for monitoring salivary activity. In this study, we investigate the feasibility of a using the electrical conductivity information from Electrical Impedance Tomography (EIT) to monitor salivary flow activity. Methods: To acquire EIT data, eight Ag/AgCl ECG electrodes were placed around the mandible of the subject. An EIT scan was obtained by injecting current at 50 KHz, 0.4 mA through each pair of electrodes and recording voltage across other electrode pairs. The functional conductivity image was obtained through reconstruction of the voltage data, using Electrical Impedance Tomography and Diffuse Optical Tomography Reconstruction Software (EIDORS) in Matlab. In using EIDORS, forward solution was obtained using a user-defined finite element model shape and inverse solution was obtained using one-step Gaussian solver. EIT scans of volunteer research team members were acquired for three different physiological states: pre-stimulation, stimulation and post-stimulation. For pre-stimulation phase, data were collected in intervals of 5 minutes for 15 minutes. The salivary glands were then stimulated in the subject using lemon and the data were collected immediately. Post-stimulation data were collected at 4 different timings after stimulation. Results: Variations were observed in the electrical conductivity patterns near parotid regions between the pre- and post-stimulation stages. The three images acquired during the 15 minute pre-stimulation phase showed no major changes in the conductivity. Immediately after stimulation, electrical conductivity increased near parotid regions and 15 minutes later slowly returned to pre-stimulation level. Conclusion: In the present study involving human subjects, the change in electrical conductivity pattern shown in the EIT images, acquired at different times with and without stimulation of salivary glands, appeared to be consistent with the change in salivary

  18. Contextualising case studies in entrepreneurship: A tandem approach to conducting a longitudinal cross-country case study

    DEFF Research Database (Denmark)

    Chetty, S. K.; Partanen, J.; Rasmussen, Erik Stavnsager

    2014-01-01

    Using predictive and effectuation logics as a framework, this research note explains how case study research was conducted to demonstrate rigour and relevance. The study involves a longitudinal cross-country case study on small and medium-sized firm growth and networks undertaken by research teams...... in three countries (Finland, Denmark and New Zealand) involving 33 firms. This research note outlines the implications of this research and provides valuable guidance and reflections upon opportunities for future research regarding the conduct of contextual studies in entrepreneurship without compromising...

  19. Thermal conductivity of ordered-disordered material: a case study of superionic Ag2Te.

    Science.gov (United States)

    Ouyang, Tao; Zhang, Xiaoliang; Hu, Ming

    2015-01-16

    Thermoelectric devices, which can generate electricity from waste heat, offer an attractive pathway for addressing an important niche in the globally growing landscape of energy demand. In the past few decades, the search for high-efficiency thermoelectrics has been guided by the concept of 'phonon-glass electron-crystal' (PGEC), i.e. an ideal thermoelectric material should have high carrier mobility and low thermal conductivity. Although remarkable progress has already been made along this line, the efficiency of thermoelectrics is still too poor to compete with other electricity producing methods. Ordered-disordered material, an emerging trend of high performance thermoelectrics under the concept of PGEC, is a new hot topic in the current thermoelectric research community. Taking superionic phase silver telluride (α-Ag2Te) as an example, we performed a comprehensive study of the thermal transport properties and of its physical mechanism by means of equilibrium molecular dynamic simulations. The results show that the thermal conductivity of α-Ag2Te is intrinsically very low. By analyzing the different contributions to the overall thermal conductivity, we revealed for the first time from atomistic simulations that the vibration of the Te(2-) sublattice dominates the thermal transport of α-Ag2Te, while the collision between the randomly diffusing Ag(+) ions and the Te(2-) sublattice yields a significant negative contribution to the thermal transport. We also studied the effect of isotropic compressive stain and carrier concentration on the thermal conductivity of α-Ag2Te. It has been found that the thermal conductivity can be largely reduced by applying compressive strain or with stoichiometric quantity modulation. Our studies shed light on the governing mechanism of thermal transport in ordered-disordered materials and could offer useful guidance for engineering the thermal transport properties of superionic conductors in terms of enhancing their thermoelectric

  20. The Mekong Fish Network: expanding the capacity of the people and institutions of the Mekong River Basin to share information and conduct standardized fisheries monitoring

    Science.gov (United States)

    Patricio, Harmony C.; Ainsley, Shaara M.; Andersen, Matthew E.; Beeman, John W.; Hewitt, David A.

    2012-01-01

    The Mekong River is one of the most biologically diverse rivers in the world, and it supports the most productive freshwater fisheries in the world. Millions of people in the Lower Mekong River Basin (LMB) countries of the Union of Myanmar (Burma), Lao People’s Democratic Republic, the Kingdom of Thailand, the Kingdom of Cambodia, and the Socialist Republic of Vietnam rely on the fisheries of the basin to provide a source of protein. The Mekong Fish Network Workshop was convened in Phnom Penh, Cambodia, in February 2012 to discuss the potential for coordinating fisheries monitoring among nations and the utility of establishing standard methods for short- and long-term monitoring and data sharing throughout the LMB. The concept for this network developed out of a frequently cited need for fisheries researchers in the LMB to share their knowledge with other scientists and decisionmakers. A fish monitoring network could be a valuable forum for researchers to exchange ideas, store data, or access general information regarding fisheries studies in the LMB region. At the workshop, representatives from governments, nongovernmental organizations, and universities, as well as participating foreign technical experts, cited a great need for more international cooperation and technical support among them. Given the limited staff and resources of many institutions in the LMB, the success of the proposed network would depend on whether it could offer tools that would provide benefits to network participants. A potential tool discussed at the workshop was a user-friendly, Web-accessible portal and database that could help streamline data entry and storage at the institutional level, as well as facilitate communication and data sharing among institutions. The workshop provided a consensus to establish pilot standardized data collection and database efforts that will be further reviewed by the workshop participants. Overall, workshop participants agreed that this is the type of

  1. Usability Study of a Wireless Monitoring System among Alzheimer’s Disease Elderly Population

    Directory of Open Access Journals (Sweden)

    Stefano Abbate

    2014-01-01

    Full Text Available Healthcare technologies are slowly entering into our daily lives, replacing old devices and techniques with newer intelligent ones. Although they are meant to help people, the reaction and willingness to use such new devices by the people can be unexpected, especially among the elderly. We conducted a usability study of a fall monitoring system in a long-term nursing home. The subjects were the elderly with advanced Alzheimer’s disease. The study presented here highlights some of the challenges faced in the use of wearable devices and the lessons learned. The results gave us useful insights, leading to ergonomics and aesthetics modifications to our wearable systems that significantly improved their usability and acceptance. New evaluating metrics were designed for the performance evaluation of usability and acceptability.

  2. [Conduction disorders at multiple levels during the acute phase of a myocardial infarct: an electrophysiological study].

    Science.gov (United States)

    García Burgos, A; Rangel Abundis, A; Castaño, R; Ramos, M A; Badui, E

    1993-01-01

    Forty patients with a diagnosis of acute myocardial infarction (anterior 24, and inferior 16) were studied. Of these patients, 37.5% manifested second and third degree atrioventricular (AV) block as a complication; another 30% showed complete right bundle branch and left anterior hemiblock. Right bundle branch and left posterior hemiblock were evidenced in 12.5% of the subjects. There was 20% with complete left bundle branch block. Electrophysiologic studies were performed in all patients to assess the site of block. A direct relation was found between the surface ECG and the His bundle electrogram studies in patients with an inferior myocardial infarction and AV block, both procedures located the conduction disturbances at the AV node (suprahisian block), in contrast to patients with anteroseptal myocardial infarction whose surface ECG only showed bundle branch block or fascicular block. The His bundle electrogram registered multiple levels of AV block, 70% with troncular and infrahisian block that gave way to sudden AV block. The mechanism responsible for this block was considered to be a functional longitudinal dissociation of conduction system due to an acute ischemic injury of the His bundle, more than a sudden and simultaneous failure of all the bundle branch of His. We conclude that electrophysiologic studies are a useful procedure for identification of a group of patients with multiple AV conduction disturbances that have a less favorable prognosis than those with only suprahisian level of block.

  3. Retaining clients in an outcome monitoring evaluation study: HIV prevention efforts in community settings.

    Science.gov (United States)

    Smith, Bryce D; Kalayil, Elizabeth J; Patel-Larson, Alpa; Chen, Brenda; Vaughan, Marla

    2012-02-01

    The Centers for Disease Control and Prevention (CDC), Division of HIV/AIDS Prevention (DHAP) conducted outcome monitoring studies on evidence-based interventions (EBIs) provided by CDC-funded community-based organizations (CBOs). Critical to the success of outcome monitoring was the ability of CBOs to recruit and retain clients in evaluation studies. Two EBIs, Video Opportunities for Innovative Condom Education and Safer Sex (VOICES/VOCES) and Healthy Relationships, were evaluated using repeated measure studies, which require robust follow-up retention rates to increase the validity and usefulness of the findings. The retention rates were high for both VOICES/VOCES CBOs (95.8% at 30 days and 91.1% at 120 days), and Healthy Relationships CBOs (89.5% at 90 days and 83.5% at 180 days). This paper presents an overview of the retention of clients, challenges to follow-up, and strategies developed by CBOs to achieve high retention rates. These strategies and rates are discussed within the context of the CBOs' target populations and communities. Published by Elsevier Ltd.

  4. Study on attribute characterization for reservoir dynamic monitoring by seismic

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Study on characterizing reservoir parameters dynamic variations by time-lapse seismic attributes is the theoretical basis for effectively distinguishing reservoir parameters variations and conducting time-lapse seismic interpretation,and it is also a key step for time-lapse seismic application in real oil fields. Based on the rock physical model of unconsolidated sandstone,the different effects of oil saturation and effective pressure variations on seismic P-wave and S-wave velocities are calculated and analyzed. Using numerical simulation on decoupled wave equations,the responses of seismic amplitude with different offsets to reservoir oil saturation variations are analyzed,pre-stack time-lapse seismic attributes differences for oil saturation and effective pressure variations of P-P wave and P-S converted wave are calculated,and time-lapse seismic AVO (Amplitude Versus Offset) response rules of P-P wave and P-S converted wave to effective pressure and oil saturation variations are compared. The theoretical modeling study shows that it is feasible to distinguish different reservoir parameters dynamic variations by pre-stack time-lapse seismic information,including pre-stack time-lapse seismic attributes and AVO information,which has great potential in improving time-lapse seismic interpreta-tion precision. It also shows that the time-lapse seismic response mechanism study on objective oil fields is especially important in establishing effective time-lapse seismic data process and interpreta-tion scheme.

  5. STUDY OF THE ELECTRICAL CONDUCTIVITY OF GRAPHITE FELT EMPLOYED AS A POROUS ELECTRODE

    Directory of Open Access Journals (Sweden)

    E.O. Vilar

    1998-09-01

    Full Text Available The objective of the present work is to study the variation of the electrode distribution potential under electrical conductivity variation of graphite felt RVG 4000 ( Le Carbone Lorraine when submitted to a mechanical compression. Experimental and theoretical studies show that this electrical conductivity variation can changes the electrode potential distribution E(x working under limiting current conditions. This may occur when graphite felt is confined in an electrochemical reactor compartment or simply when it is submitted to a force performed by an electrolyte percolation in a turbulent flow. This investigation can contribute to the improvement of electrochemical cells that may use this material as an electrode. Finally, one modification is suggested in the equation that gives the electrode potential distribution E(x - E(0. In this case the parameter L (thickness in metal porous electrodes is substituted for Lf = Li (1-j, where j corresponds to the reduction factor of the initial thickness Li.

  6. Techniques for Conducting Effective Concept Design and Design-to-Cost Trade Studies

    Science.gov (United States)

    Di Pietro, David A.

    2015-01-01

    Concept design plays a central role in project success as its product effectively locks the majority of system life cycle cost. Such extraordinary leverage presents a business case for conducting concept design in a credible fashion, particularly for first-of-a-kind systems that advance the state of the art and that have high design uncertainty. A key challenge, however, is to know when credible design convergence has been achieved in such systems. Using a space system example, this paper characterizes the level of convergence needed for concept design in the context of technical and programmatic resource margins available in preliminary design and highlights the importance of design and cost evaluation learning curves in determining credible convergence. It also provides techniques for selecting trade study cases that promote objective concept evaluation, help reveal unknowns, and expedite convergence within the trade space and conveys general practices for conducting effective concept design-to-cost studies.

  7. A phase-field study on the oxidation behavior of Ni considering heat conduction

    Institute of Scientific and Technical Information of China (English)

    Chao Wang; Shigang Ai; Daining Fang

    2016-01-01

    Phase-field modeling approach has been used to study the oxidation behavior of pure Ni when considering heat conduction. In this calculation, the dependence of the coefficient of the Cahn–Hilliard equation Lc on the tem-perature T was considered. To this end, high-temperature oxidation experiments and phase-field modeling for pure Ni were performed in air under atmospheric pressure at 600, 700, and 800◦C. The oxidation rate was measured by ther-mogravimetry and Lc at these temperatures was determined via interactive algorithm. With the Lc−T relationship con-structed, oxidation behavior of Ni when considering heat conduction was investigated. The influence of temperature boundaries on the oxidation degree, oxide film thickness, and specific weight gain were discussed. The phase-field model-ing approach proposed in this study will give some highlights of the oxidation resistance analysis and cooling measures design of thermal protection materials.

  8. In situ studies of strain dependent transport properties of conducting polymers on elastomeric substrates

    Science.gov (United States)

    Vijay, Venugopalan; Rao, Arun D.; Narayan, K. S.

    2011-04-01

    We report the changes in the surface electrical resistance, R, of conducting polymer, Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) films coated on appropriate flexible substrates in stretched conditions. These studies are important in the context of flexible organic electronic applications. In situ conductivity measurements on pristine PEDOT:PSS thin films on elastomeric substrates upon stretching reveal a minima in R as a function of strain, x, prior to the expected increase at higher strain levels. The studies emphasize (i) role of substrates, (ii) stress-induced anisotropic features, and temperature dependence of R (iii) in comparison of R(x) in polymer films to that of conventional metal films. The stress induced changes is modeled in terms of effective medium approximation.

  9. An experimental study on thermal conductivity and viscosity of nanofluids containing carbon nanotubes

    Science.gov (United States)

    Sadri, Rad; Ahmadi, Goodarz; Togun, Hussein; Dahari, Mahidzal; Kazi, Salim Newaz; Sadeghinezhad, Emad; Zubir, Nashrul

    2014-03-01

    Recently, there has been considerable interest in the use of nanofluids for enhancing thermal performance. It has been shown that carbon nanotubes (CNTs) are capable of enhancing the thermal performance of conventional working liquids. Although much work has been devoted on the impact of CNT concentrations on the thermo-physical properties of nanofluids, the effects of preparation methods on the stability, thermal conductivity and viscosity of CNT suspensions are not well understood. This study is focused on providing experimental data on the effects of ultrasonication, temperature and surfactant on the thermo-physical properties of multi-walled carbon nanotube (MWCNT) nanofluids. Three types of surfactants were used in the experiments, namely, gum arabic (GA), sodium dodecylbenzene sulfonate (SDBS) and sodium dodecyl sulfate (SDS). The thermal conductivity and viscosity of the nanofluid suspensions were measured at various temperatures. The results showed that the use of GA in the nanofluid leads to superior thermal conductivity compared to the use of SDBS and SDS. With distilled water as the base liquid, the samples were prepared with 0.5 wt.% MWCNTs and 0.25% GA and sonicated at various times. The results showed that the sonication time influences the thermal conductivity, viscosity and dispersion of nanofluids. The thermal conductivity of nanofluids was typically enhanced with an increase in temperature and sonication time. In the present study, the maximum thermal conductivity enhancement was found to be 22.31% (the ratio of 1.22) at temperature of 45°C and sonication time of 40 min. The viscosity of nanofluids exhibited non-Newtonian shear-thinning behaviour. It was found that the viscosity of MWCNT nanofluids increases to a maximum value at a sonication time of 7 min and subsequently decreases with a further increase in sonication time. The presented data clearly indicated that the viscosity and thermal conductivity of nanofluids are influenced by the

  10. An experimental study on thermal conductivity and viscosity of nanofluids containing carbon nanotubes.

    Science.gov (United States)

    Sadri, Rad; Ahmadi, Goodarz; Togun, Hussein; Dahari, Mahidzal; Kazi, Salim Newaz; Sadeghinezhad, Emad; Zubir, Nashrul

    2014-01-01

    Recently, there has been considerable interest in the use of nanofluids for enhancing thermal performance. It has been shown that carbon nanotubes (CNTs) are capable of enhancing the thermal performance of conventional working liquids. Although much work has been devoted on the impact of CNT concentrations on the thermo-physical properties of nanofluids, the effects of preparation methods on the stability, thermal conductivity and viscosity of CNT suspensions are not well understood. This study is focused on providing experimental data on the effects of ultrasonication, temperature and surfactant on the thermo-physical properties of multi-walled carbon nanotube (MWCNT) nanofluids. Three types of surfactants were used in the experiments, namely, gum arabic (GA), sodium dodecylbenzene sulfonate (SDBS) and sodium dodecyl sulfate (SDS). The thermal conductivity and viscosity of the nanofluid suspensions were measured at various temperatures. The results showed that the use of GA in the nanofluid leads to superior thermal conductivity compared to the use of SDBS and SDS. With distilled water as the base liquid, the samples were prepared with 0.5 wt.% MWCNTs and 0.25% GA and sonicated at various times. The results showed that the sonication time influences the thermal conductivity, viscosity and dispersion of nanofluids. The thermal conductivity of nanofluids was typically enhanced with an increase in temperature and sonication time. In the present study, the maximum thermal conductivity enhancement was found to be 22.31% (the ratio of 1.22) at temperature of 45°C and sonication time of 40 min. The viscosity of nanofluids exhibited non-Newtonian shear-thinning behaviour. It was found that the viscosity of MWCNT nanofluids increases to a maximum value at a sonication time of 7 min and subsequently decreases with a further increase in sonication time. The presented data clearly indicated that the viscosity and thermal conductivity of nanofluids are influenced by the

  11. Conductivity ageing studies on 1M10ScSZ (M4+=Ce, Hf)

    DEFF Research Database (Denmark)

    Omar, Shobit; Bin Najib, Waqas; Bonanos, Nikolaos

    2011-01-01

    The long-term conductivity stability is tested on zirconia based electrolyte materials for solid oxide fuel cell applications. The ageing studies have been performed on the samples of ZrO2 co-doped with 10mol% of Sc2O3 and 1mol% MO2, where M = Ce or Hf (denoted respectively 1Ce10ScSZ and 1Hf10Sc......SZ) in oxidising and reducing atmospheres, at 600°C for 3000h. At 600°C, these compositions show initial conductivity of around 9–12mS∙cm−1 in air. After 3000h of ageing, no phase transitions are observed in any of the samples. For the first 1000h, the degradation rate is higher than in the subsequent 2000h......; thereafter, conductivity degrades linearly with time for all samples. In air, the loss in the conductivity is lower than in reducing conditions. The 1Ce10ScSZ shows the highest degradation rate of 3.8%/1000h in wet H2/N2 after the first 1000h of ageing. A colour change of the 1Ce10ScSZ sample from white...

  12. Experimental and theoretical study of AC electrical conduction mechanisms of Bis (4-acetylanilinium) tetrachloridozincate

    Energy Technology Data Exchange (ETDEWEB)

    Amine Fersi, M., E-mail: fersi_amine@yahoo.fr; Chaabane, I.; Gargouri, M.

    2014-07-01

    The Bis (4-acetylanilinium) tetrachloridozincate [C{sub 8}H{sub 10}NO]{sub 2}[ZnCl{sub 4}] compound was obtained by slow evaporation at room temperature and characterized by XRD. It is crystallized in an orthorhombic system (Cmca space group). The material was characterized by impedance spectroscopy technique measured in the 209 Hz–5 MHz frequency range from 423 to 498 K. Besides, the Cole–Cole (Z″ versus Z′) plots were well fitted to an equivalent circuit built up by a parallel combination of resistance (R), fractal capacitance (CPE) and capacitance (C). Furthermore, the AC conductivity was investigated as a function of temperature and frequency in the same range. The experimental results indicated that AC conductivity (σ{sub ac}) was proportional to Aω{sup S1}+Bω{sup S2}(0conductivity behavior of [C{sub 8}H{sub 10}NO]{sub 2}[ZnCl{sub 4}] can be explained by CBH model. The contribution of single polaron hopping to AC conductivity in a present alloy was also studied.

  13. Conductivity studies of lithium zinc silicate glasses with varying lithium contents

    Indian Academy of Sciences (India)

    S K Deshpande; V K Shrikhande; M S Jogad; P S Goyal; G P Kothiyal

    2007-10-01

    The electrical conductivity of lithium zinc silicate (LZS) glasses with composition, (SiO2)0.527 (Na2O)0.054(B2O3)0.05(P2O5)0.029(ZnO)0.34–(Li2O) ( = 0.05, 0.08, 0.11, 0.18, 0.21, 0.24 and 0.27), was studied as a function of frequency in the range 100 Hz–15 MHz, over a temperature range from 546–637 K. The a.c. conductivity is found to obey Jonscher’s relation. The d.c. conductivity ($\\sigma_{d.c.}$) and the hopping frequency($\\omega_{h}$), inferred from the a.c. conductivity data, exhibit Arrhenius-type behaviour with temperature. The electrical modulus spectra show a single peak, indicating a single electrical relaxation time, , which also exhibits Arrhenius-type behaviour. Values of activation energy derived from $\\sigma_{d.c.}, \\omega_{h}$ and are almost equal within the experimental error. It is seen that $\\sigma_{d.c.}$ and $\\omega_{h}$ increase systematically with Li2O content up to 21 mol% and then decrease for higher Li2O content, indicating a mixed alkali effect caused by mobile Li+ and Na+ ions. The scaling behaviour of the modulus suggests that the relaxation process is independent of temperature but depends upon Li+ concentration.

  14. STRUCTURAL, THERMAL AND CONDUCTIVITY STUDIES OF PAN-LIBF4 POLYMER ELECTROLYTES

    Directory of Open Access Journals (Sweden)

    S. K. NIPPANI

    2016-11-01

    Full Text Available The polymer electrolytes with various compositions of Polyacrylonitrile/N-N Dimethylformamide (DMF/Lithiumtetrafluoroborate (LiBF4 are synthesized by solution casting technique. The free standing, clear and transparent 60-80 micron thick films are formed. The promising structural and complexation changes in polymer electrolytes have been explored by X-ray diffraction (XRD and Fourier transform infra-red (FTIR techniques. The thermal properties of all solid polymer electrolytes (SPE were studied by Thermo gravimetric Analyzer (TGA and Differential Thermal Analyzer (DTA. The electrical properties, i.e., ionic conductivity of solid polymer electrolytes has been measured as a function of temperature and composition. A Polymer membrane for 3 wt. % of salt has a conductivity of 3.06x10-4 mScm-1 at room temperature and 1.53x10-3 mScm-1 at 358K. The conductivity values increased with increase in temperature and offered an ionic conductivity of the order of 10-3 mScm-1 at temperatures 358K. Activation energy, enthalpy and entropy values are determined for all polymer complexes.

  15. Metal oxalate complexes as novel inorganic dopants: Studies on their effect on conducting polyaniline

    Indian Academy of Sciences (India)

    R Murugesan; E Subramanian

    2002-12-01

    Doped polyaniline materials with metal oxalate complexes of Cr, Fe, Mn, Co and Al were synthesized by in situ chemical oxidative polymerization of aniline using potassium perdisulphate as oxidant in aqueous sulphuric acid medium. These polymer materials were characterized by chemical analyses, spectral studies (UV-visible and IR), X-ray diffraction and thermal techniques and also by conductivity measurements by four-probe technique. The presence of complex anion in polyaniline material was confirmed by chemical and spectral analyses. The yield and conductivity of metal oxalate doped polyanilines were found to be high when compared to the simple sulphate ion doped polyaniline prepared under similar condition. UV-visible and IR spectral features not only confirmed the polyaniline doping by complex anions but also substantiated their facilitating effect on conductivity. The X-ray diffraction patterns indicated some crystalline nature in metal oxalate doped polyaniline and amorphous in polyaniline sulphate salt. The conductivity of the polymer samples strongly depended on the degree of crystallinity induced by complex counter anions as dopant. All the polymer materials, as evident from TGA curves, were observed to undergo three-step degradation of water loss, de-doping and decomposition of polymer. Further, the thermal stability of polyaniline was found to improve on doping with metal oxalate complex.

  16. Computer Simulation Study of Thermal Conduction in 1D Chains of Anharmonic Oscillators

    Institute of Scientific and Technical Information of China (English)

    Tejal N.Shah; P.N.Gajjar

    2013-01-01

    In this work thermal conduction in one-dimensional (1D) chains of anharmonic oscillators are studied using computer simulation.The temperature profile,heat flux and thermal conductivity are investigated for chain length N =100,200,400,800 and 1600.In the computer simulation anharmonicity is introduced due to Fermi-Pasta-Ulam-β (FPU-β) model For substrate interaction,an onsite potential due to Frenkel-Kontorova (FK) model has been used.Numerical simulations demonstrate that temperature gradient scales behave as N-1 linearly with the relation J =0.1765/N.For the thermal conductivity K,KN to N obey the linear relation of the type KN =0.8805N.It is shown that thermal transport is dependent on phonon-phonon interaction as well as phonon-lattice interaction.The thermal conductivity increaseslinearly with increase inanharmonicity and predicts relation κ =0.133 + 0.804β.It is also concluded that for higher value of the strength of the onsite potential system tends to a thermal insulator.

  17. Identifying the barriers to conducting outcomes research in integrative health care clinic settings - a qualitative study

    Directory of Open Access Journals (Sweden)

    Findlay-Reece Barbara

    2010-01-01

    Full Text Available Abstract Background Integrative health care (IHC is an interdisciplinary blending of conventional medicine and complementary and alternative medicine (CAM with the purpose of enhancing patients' health. In 2006, we designed a study to assess outcomes that are relevant to people using such care. However, we faced major challenges in conducting this study and hypothesized that this might be due to the lack of a research climate in these clinics. To investigate these challenges, we initiated a further study in 2008, to explore the reasons why IHC clinics are not conducting outcomes research and to identify strategies for conducting successful in-house outcomes research programs. The results of the latter study are reported here. Methods A total of 25 qualitative interviews were conducted with key participants from 19 IHC clinics across Canada. Basic content analysis was used to identify key themes from the transcribed interviews. Results Barriers identified by participants fell into four categories: organizational culture, organizational resources, organizational environment and logistical challenges. Cultural challenges relate to the philosophy of IHC, organizational leadership and practitioner attitudes and beliefs. Participants also identified significant issues relating to their organization's lack of resources such as funding, compensation, infrastructure and partnerships/linkages. Environmental challenges such as the nature of a clinic's patient population and logistical issues such as the actual implementation of a research program and the applicability of research data also posed challenges to the conduct of research. Embedded research leadership, integration of personal and professional values about research, alignment of research activities and clinical workflow processes are some of the factors identified by participants that support IHC clinics' ability to conduct outcomes research. Conclusions Assessing and enhancing the broader

  18. Structural characterization and thermally stimulated discharge conductivity (TSDC) study in polymer thin films

    Indian Academy of Sciences (India)

    V S Sangawar; R J Dhokne; A U Ubale; P S Chikhalikar; S D Meshram

    2007-04-01

    The electrical conductivity of naphthalene doped polystyrene (PS) films (≈ 61.58 m thick) was studied as a function of dopant concentration and temperature. The formation of charge transfer (CT) complexes and strong concentration dependence of carrier mobility point out that the current carriers are transported through doped polymer system via hopping among sites associated with the dopant molecules. The activation energy, a, was calculated from the graph of logvs 103/ plot within low and high temperature regions.

  19. A Comparison Study of the Eigenvalue Method for the Solution of the Transient Heat Conduction Equation.

    Science.gov (United States)

    1986-01-01

    1966). 3. Canale, R.P. and S.C. Chapra . Numerical Methods for Engineers with Personnel Computer Applications. New York: McGraw-Hill 509-533, ( 1985...This study looks at numerical % methods from an engineer’s view, a tool to be used in solving problems. This paper has given me much needed experience... numerical method in solving the transient heat conduction equation. The eigenvalue method was compared to five other numerical methods : Runge-Kutta

  20. A Study on Properties of Electrical Conductive Bricks for Direct Current Electrical Arc Furnace

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    In this expeiment,the effects of temperature and graphite content on the electricl conductivity of MgO-C materials are studied,Experimental results indicated:the proper ontent of graphite is 10%-12%,The specific electrical resistance of MgO-C materials tends to decrease as the preheat treatment temerature rises.After heat treatment,the specific electrical resistance of MgO-C materials is nearly independent of temperature.

  1. Continuous mine environmental monitoring system - a case study

    Energy Technology Data Exchange (ETDEWEB)

    Tripathy, D.P.; Sahu, H.B. [Regional Engineering College, Rourkela (India)

    2001-07-01

    The introduction of continuous remote environmental monitoring and control systems in modern coal mines is a great step forward in achieving increased mine safety, higher productivity and effective utilization of manpower. They provide alarms and displays of early warnings and impending dangerous conditions in the mine. They also provide facilities to monitor and control air quality, differential pressure, noise etc. Telemetry systems have distinct advantages over the old tube bundle techniques and are being increasingly used. This article discusses in detail the basic components and the functioning of telemonitoring systems in use with special reference to Colliery A, a degree-1 gassy coal mine worked by the bord and pillar method. The system monitors and processes data on temperature, methane and carbon monoxide. 1 figs., 3 tabs.

  2. Fibroblast proliferation alters cardiac excitation conduction and contraction: a computational study.

    Science.gov (United States)

    Zhan, He-qing; Xia, Ling; Shou, Guo-fa; Zang, Yun-liang; Liu, Feng; Crozier, Stuart

    2014-03-01

    In this study, the effects of cardiac fibroblast proliferation on cardiac electric excitation conduction and mechanical contraction were investigated using a proposed integrated myocardial-fibroblastic electromechanical model. At the cellular level, models of the human ventricular myocyte and fibroblast were modified to incorporate a model of cardiac mechanical contraction and cooperativity mechanisms. Cellular electromechanical coupling was realized with a calcium buffer. At the tissue level, electrical excitation conduction was coupled to an elastic mechanics model in which the finite difference method (FDM) was used to solve electrical excitation equations, and the finite element method (FEM) was used to solve mechanics equations. The electromechanical properties of the proposed integrated model were investigated in one or two dimensions under normal and ischemic pathological conditions. Fibroblast proliferation slowed wave propagation, induced a conduction block, decreased strains in the fibroblast proliferous tissue, and increased dispersions in depolarization, repolarization, and action potential duration (APD). It also distorted the wave-front, leading to the initiation and maintenance of re-entry, and resulted in a sustained contraction in the proliferous areas. This study demonstrated the important role that fibroblast proliferation plays in modulating cardiac electromechanical behaviour and which should be considered in planning future heart-modeling studies.

  3. Electrical conductivity studies on Ammonium bromide incorporated with Zwitterionic polymer blend electrolyte for battery application

    Science.gov (United States)

    Parameswaran, V.; Nallamuthu, N.; Devendran, P.; Nagarajan, E. R.; Manikandan, A.

    2017-06-01

    Solid polymer blend electrolytes are widely studied due to their extensive applications particularly in electrochemical devices. Blending polymer makes the thermal stability, higher mechanical strength and inorganic salt provide ionic charge carrier to enhance the conductivity. In these studies, 50% polyvinyl alcohol (PVA), 50% poly (N-vinyl pyrrolidone) (PVP) and 2.5% L-Asparagine mixed with different ratio of the Ammonium bromide (NH4Br), have been synthesized using solution casting technique. The prepared PVA/PVP/L-Asparagine/doped-NH4Br polymer blend electrolyte films have been characterized by various analytical methods such as FT-IR, XRD, impedance spectroscopy, TG-DSC and scanning electron microscopy. FT-IR, XRD and TG/DSC analysis revealed the structural and thermal behavior of the complex formation between PVA/PVP/L-Asparagine/doped-NH4Br. The ionic conductivity and the dielectric properties of PVA/PVP/L-Asparagine/doped-NH4Br polymer blend electrolyte films were examined using impedance analysis. The highest ionic conductivity was found to be 2.34×10-4 S cm-1 for the m.wt. composition of 50%PVA:50%PVP:2.5%L-Asparagine:doped 0.15 g NH4Br at ambient temperature. Solid state proton battery is fabricated and the observed open circuit voltage is 1.1 V and its performance has been studied.

  4. Neurobiological correlates of EMDR monitoring - an EEG study.

    Directory of Open Access Journals (Sweden)

    Marco Pagani

    Full Text Available BACKGROUND: Eye Movement Desensitization and Reprocessing (EMDR is a recognized first-line treatment for psychological trauma. However its neurobiological bases have yet to be fully disclosed. METHODS: Electroencephalography (EEG was used to fully monitor neuronal activation throughout EMDR sessions including the autobiographical script. Ten patients with major psychological trauma were investigated during their first EMDR session (T0 and during the last one performed after processing the index trauma (T1. Neuropsychological tests were administered at the same time. Comparisons were performed between EEGs of patients at T0 and T1 and between EEGs of patients and 10 controls who underwent the same EMDR procedure at T0. Connectivity analyses were carried out by lagged phase synchronization. RESULTS: During bilateral ocular stimulation (BS of EMDR sessions EEG showed a significantly higher activity on the orbito-frontal, prefrontal and anterior cingulate cortex in patients at T0 shifting towards left temporo-occipital regions at T1. A similar trend was found for autobiographical script with a higher firing in fronto-temporal limbic regions at T0 moving to right temporo-occipital cortex at T1. The comparisons between patients and controls confirmed the maximal activation in the limbic cortex of patients occurring before trauma processing. Connectivity analysis showed decreased pair-wise interactions between prefrontal and cingulate cortex during BS in patients as compared to controls and between fusiform gyrus and visual cortex during script listening in patients at T1 as compared to T0. These changes correlated significantly with those occurring in neuropsychological tests. CONCLUSIONS: The ground-breaking methodology enabled our study to image for the first time the specific activations associated with the therapeutic actions typical of EMDR protocol. The findings suggest that traumatic events are processed at cognitive level following successful

  5. Monitoring Levothyroxine Dose during Pregnancy: A Prospective Study

    Directory of Open Access Journals (Sweden)

    Juhi Agarwal

    2011-01-01

    Full Text Available Problem statement: Thyroid dysfunction in pregnant women can influence the outcome for mother and fetus at all stages of pregnancy. As the fetus is entirely dependent on maternal thyroid hormones for its development until about 13 weeks of gestation, it is important to ensure adequate thyroxine substitution in pregnant women during the first trimester. Objective: The aim of this prospective study was to explore whether hypothyroidic pregnant women are adequately levothyroxine (L-T4 substituted in early pregnancy. Approach: During March 2008 to July 2009, 93 pregnant females with thyroid diseases were followed at the outpatient department of INMAS. At the first visit 86 patients were on L-T4 substitution for hypothyroidism. Seven other patients had hyperthyroidism. The patients were regularly followed every 4-8 weeks during pregnancy for dose adjustment. Before each visit serum Free Thyroxine (FT4 and TSH concentrations were determined. Results: Of the 86 patients on thyroxine substitution for hypothyroidism 56 (65.12% had serum TSH values within the reference range at their first TSH test. Thirty (34.9% had TSH values outside the reference range. In 5 patients TSH was 4 increase at the first evaluation during pregnancy was 17.46±30.8µg day1. In the 50 patients who needed to increase L-T4, 26% reached a definitive therapeutic dosage within 12th week of pregnancy, 24% within the 20th week and 50% within the 31st week. Conclusion/Recommendations: In 34.9% of pregnant women on L-T4 substitution for hypothyroidism, serum TSH values were abnormal when first tested and they had increased chances of fetal loss if not treated timely. Thyroid function in pregnant women on thyroxine substitution should be monitored as soon as pregnancy has been confirmed and carefully followed during pregnancy.

  6. A study on drug safety monitoring program in India

    Directory of Open Access Journals (Sweden)

    A Ahmad

    2014-01-01

    Full Text Available Pharmacovigilance is useful in assuring the safety of medicines and protecting the consumers from their harmful effects. A number of single drugs as well as fixed dose combinations have been banned from manufacturing, marketing and distribution in India. An important issue about the availability of banned drugs over the counter in India is that sufficient adverse drug reactions data about these drugs have not been reported. The most common categories of drugs withdrawn in the last decade were nonsteroidal antiinflammatory drugs (28%, antidiabetics (14.28%, antiobesity (14.28%, antihistamines (14.28%, gastroprokinetic drugs (7.14%, breast cancer and infertility drugs (7.14%, irritable bowel syndrome and constipation drugs (7.14% and antibiotics (7.14%. Drug withdrawals from market were made mainly due to safety issues involving cardiovascular events (57.14% and liver damage (14.28%. Majority of drugs have been banned since 3-5 years in other countries but are still available for sale in India. The present study compares the drug safety monitoring systems in the developed countries such as the USA and UK and provides implications for developing a system that can ensure the safety and efficacy of drugs in India. Absence of a gold standard for a drug safety surveillance system, variations in culture and clinical practice across countries makes it difficult for India to completely adopt another country′s practices. There should be a multidisciplinary approach towards drug safety that should be implemented throughout the entire duration spanning from drug discovery to usage by consumers.

  7. Comparing the similarity of responses received from studies in Amazon's Mechanical Turk to studies conducted online and with direct recruitment.

    Directory of Open Access Journals (Sweden)

    Christoph Bartneck

    Full Text Available Computer and internet based questionnaires have become a standard tool in Human-Computer Interaction research and other related fields, such as psychology and sociology. Amazon's Mechanical Turk (AMT service is a new method of recruiting participants and conducting certain types of experiments. This study compares whether participants recruited through AMT give different responses than participants recruited through an online forum or recruited directly on a university campus. Moreover, we compare whether a study conducted within AMT results in different responses compared to a study for which participants are recruited through AMT but which is conducted using an external online questionnaire service. The results of this study show that there is a statistical difference between results obtained from participants recruited through AMT compared to the results from the participant recruited on campus or through online forums. We do, however, argue that this difference is so small that it has no practical consequence. There was no significant difference between running the study within AMT compared to running it with an online questionnaire service. There was no significant difference between results obtained directly from within AMT compared to results obtained in the campus and online forum condition. This may suggest that AMT is a viable and economical option for recruiting participants and for conducting studies as setting up and running a study with AMT generally requires less effort and time compared to other frequently used methods. We discuss our findings as well as limitations of using AMT for empirical studies.

  8. Conduct of a personal radiofrequency electromagnetic field measurement study: proposed study protocol

    Directory of Open Access Journals (Sweden)

    Radon Katja

    2010-05-01

    Full Text Available Abstract Background The development of new wireless communication technologies that emit radio frequency electromagnetic fields (RF-EMF is ongoing, but little is known about the RF-EMF exposure distribution in the general population. Previous attempts to measure personal exposure to RF-EMF have used different measurement protocols and analysis methods making comparisons between exposure situations across different study populations very difficult. As a result, observed differences in exposure levels between study populations may not reflect real exposure differences but may be in part, or wholly due to methodological differences. Methods The aim of this paper is to develop a study protocol for future personal RF-EMF exposure studies based on experience drawn from previous research. Using the current knowledge base, we propose procedures for the measurement of personal exposure to RF-EMF, data collection, data management and analysis, and methods for the selection and instruction of study participants. Results We have identified two basic types of personal RF-EMF measurement studies: population surveys and microenvironmental measurements. In the case of a population survey, the unit of observation is the individual and a randomly selected representative sample of the population is needed to obtain reliable results. For microenvironmental measurements, study participants are selected in order to represent typical behaviours in different microenvironments. These two study types require different methods and procedures. Conclusion Applying our proposed common core procedures in future personal measurement studies will allow direct comparisons of personal RF-EMF exposures in different populations and study areas.

  9. Preliminary Study on the Lesion Location and Prognosis of Cubital Tunnel Syndrome by Motor Nerve Conduction Studies

    Directory of Open Access Journals (Sweden)

    Zhu Liu

    2015-01-01

    Full Text Available Background: To study lesions′ location and prognosis of cubital tunnel syndrome (CubTS by routine motor nerve conduction studies (MNCSs and short-segment nerve conduction studies (SSNCSs, inching test. Methods: Thirty healthy subjects were included and 60 ulnar nerves were studied by inching studies for normal values. Sixty-six patients who diagnosed CubTS clinically were performed bilaterally by routine MNCSs and SSNCSs. Follow-up for 1-year, the information of brief complaints, clinical symptoms, and physical examination were collected. Results: Sixty-six patients were included, 88 of nerves was abnormal by MNCS, while 105 was abnormal by the inching studies. Medial epicondyle to 2 cm above medial epicondyle is the most common segment to be detected abnormally (59.09%, P < 0.01. Twenty-two patients were followed-up, 17 patients′ symptoms were improved. Most of the patients were treated with drugs and modification of bad habits. Conclusions: (1 SSNCSs can detect lesions of compressive neuropathy in CubTS more precisely than the routine motor conduction studies. (2 SSNCSs can diagnose CubTS more sensitively than routine motor conduction studies. (3 In this study, we found that medial epicondyle to 2 cm above the medial epicondyle is the most vulnerable place that the ulnar nerve compressed. (4 The patients had a better prognosis who were abnormal in motor nerve conduction time only, but not amplitude in compressed lesions than those who were abnormal both in velocity and amplitude. Our study suggests that SSNCSs is a practical method in detecting ulnar nerve compressed neuropathy, and sensitive in diagnosing CubTS. The compound muscle action potentials by SSNCSs may predict prognosis of CubTS.

  10. Preliminary Study on the Lesion Location and Prognosis of Cubital Tunnel Syndrome by Motor Nerve Conduction Studies

    Institute of Scientific and Technical Information of China (English)

    Zhu Liu; Zhi-Rong Jia; Ting-Ting Wang; Xin Shi; Wei Liang

    2015-01-01

    Background:To study lesions' location and prognosis of cubital tunnel syndrome (CubTS) by routine motor nerve conduction studies (MNCSs) and short-segment nerve conduction studies (SSNCSs,inching test).Methods:Thirty healthy subjects were included and 60 ulnar nerves were studied by inching studies for normal values.Sixty-six patients who diagnosed CubTS clinically were performed bilaterally by routine MNCSs and SSNCSs.Follow-up for 1-year,the information of brief complaints,clinical symptoms,and physical examination were collected.Results:Sixty-six patients were included,88 of nerves was abnormal by MNCS,while 105 was abnormal by the inching studies.Medial epicondyle to 2 cm above medial epicondyle is the most common segment to be detected abnormally (59.09%),P < 0.01.Twenty-two patients were followed-up,17 patients' symptoms were improved.Most of the patients were treated with drugs and modification of bad habits.Conclusions:(1) SSNCSs can detect lesions of compressive neuropathy in CubTS more precisely than the routine motor conduction studies.(2) SSNCSs can diagnose CubTS more sensitively than routine motor conduction studies.(3) In this study,we found that medial epicondyle to 2 cm above the medial epicondyle is the most vulnerable place that the ulnar nerve compressed.(4) The patients had a better prognosis who were abnormal in motor nerve conduction time only,but not amplitude in compressed lesions than those who were abnormal both in velocity and amplitude.Our study suggests that SSNCSs is a practical method in detecting ulnar nerve compressed neuropathy,and sensitive in diagnosing CubTS.The compound muscle action potentials by SSNCSs may predict prognosis of CubTS.

  11. Modalities of Invasive Arterial Pressure Monitoring in Critically Ill Patients: A Prospective Observational Study

    National Research Council Canada - National Science Library

    Jacq, Gwenaëlle; Gritti, Karine; Carré, Cécile; Fleury, Nadège; Lang, Annie; Courau-Courtois, Josette; Bedos, Jean-Pierre; Legriel, Stephane

    2015-01-01

    Few studies assessed modalities of invasive arterial pressure monitoring (IAPM). We evaluated effects on measured values of various combinations of transducer level, catheter access site, and patient position...

  12. A Comparative Study of Effectiveness of Neurofeedback and Ritalin on Improving Conduct Problems and Hyperactivity

    Directory of Open Access Journals (Sweden)

    K. Khoushabi

    2012-01-01

    Full Text Available Introduction & Objective: There are varieties of interventions to treatment of ADHD, among which drug therapy, behavior therapy, parental management training and neurofeedback can be cited. The present study designed to investigate and compare the effectiveness of neurofeedback and Ritalin on improving conduct problems and hyperactivity. Materials & Methods: Quasi-experimental research method with pretest-post test design has been applied in the research. Statistical population of the study consisted of ADHD children of Tehran. The study samples of the study were patients referred to children psychiatric clinic. Based on the purpose of the study' 20 children were randomly selected and classified into 2 groups according to random assignment. CPRS-48 (parent form was administered by parents before and after the treatments as research tools. Recruited data was analyzed by SPSS-19 in two sections of descriptive and inferential statistics. ANCOVA revealed some differences in the groups. Results: The findings of the study showed that there was a significant difference between Ritalin and neurofeedback on improving conduct problems; in other words, Ritalin was more effective in alleviating the problems. Also there was no significant difference between the interventions on improving hyperactivity index. Conclusion: With respect to more efficiency of Ritalin than neurofeedback on certain continuum of signs/symptoms of ADHD, as a whole, preferences of interventions should be based on type, magnitude and severity of the syndrome(Sci J Hamadan Univ Med Sci 2012;18(4:53-59

  13. AC impedance spectroscopy and conductivity studies of Dy doped Bi4V2O11 ceramics

    Science.gov (United States)

    Bag, Sasmitarani; Das, Parthasarathi; Behera, Banarji

    2017-03-01

    The ac impedance and conductivity properties of Dy doped Bi4V2 - x Dy x O11 (x = 0.05, 0.10, 0.15 and 0.20) ceramics prepared by solid-state reaction technique, in a wide frequency range at different temperatures have been studied. All the samples exhibited β-type phase orthorhombic structure at room temperature. The Nyquist plot confirmed the presence of both grain and grain boundary effects for all Dy doped samples. Double relaxation behavior was also observed. The grain and grain boundary resistance decreases with rise in temperature for all the concentration and exhibits a typical negative temperature co-efficient of resistance (NTCR) behavior. An analysis of the electric modulus suggests the possible hopping mechanism for electrical transport processes of all the materials. The ac conductivity spectrum obeys Jonscher's universal power law. DC conductivity of the materials were also studied and values of the activation energy found to be 0.40, 0.49, 0.73 and 0.78 eV for the compositions x = 0.05, 0.10, 0.15 and 0.20, respectively, at different temperatures (150-375 °C).

  14. Conductive Education as a Method of Stroke Rehabilitation: A Single Blinded Randomised Controlled Feasibility Study

    Directory of Open Access Journals (Sweden)

    Judith Bek

    2016-01-01

    Full Text Available Background. Conductive Education for stroke survivors has shown promise but randomised evidence is unavailable. This study assessed the feasibility of a definitive randomised controlled trial to evaluate efficacy. Methods. Adult stroke survivors were recruited through local community notices. Those completing the baseline assessment were randomised using an online program and group allocation was independent. Intervention group participants received 10 weekly 1.5-hour sessions of Conductive Education at the National Institute of Conductive Education in Birmingham, UK. The control group participants attended two group meetings. The study evaluated the feasibility of recruitment procedures, delivery of the intervention, retention of participants, and appropriateness of outcome measures and data collection methods. Independent assessments included the Barthel Index, the Stroke Impact Scale, the Timed Up and Go test, and the Hospital Anxiety and Depression Scale. Results. Eighty-two patients were enrolled; 77 completed the baseline assessment (46 men, mean age 62.1 yrs. and were randomised. 70 commenced the intervention (n=37 or an equivalent waiting period (n=33. 32/37 completed the 10-week training and 32/33 the waiting period. There were no missing items from completed questionnaires and no adverse events. Discussion. Recruitment, intervention, and assessment methods worked well. Transport issues for intervention and assessment appointments require review. Conclusion. A definitive trial is feasible. This trial is registered with ISRCTN84064492.

  15. A PIC Simulation Study of Electron Viscosity and Thermal Conduction in Collisionless Plasmas

    Science.gov (United States)

    Riquelme, Mario; Quataert, Eliot; Verscharen, Daniel

    2016-10-01

    We use particle-in-cell (PIC) simulations to study the interplay between electron- and ion-scale velocity-space instabilities and their effect on electron pressure anisotropy, viscous heating, and thermal conduction. The adiabatic invariance of the magnetic moment in low-collisionality plasmas gives rise to pressure anisotropy, with p⊥ , j -p∥ , j > 0 ( | grows (decreases), where p⊥ , j and p∥ , j denote the pressure of species j [electron or ion] perpendicular and parallel to B-> . If the resulting anisotropy is large enough, it can trigger small-scale plasma instabilities. By imposing a shear in the plasma we either amplify or decrease the magnetic field | B-> | . When | B-> | is amplified, we explored the nonlinear regime of the mirror, ion-cyclotron, and electron whistler instabilities. When | B-> | is decreased, we studied the nonlinear regime of the ion- and electron-firehose instabilities. We discuss the implications of our results for electron heating and thermal conduction in low-collisionality accretion flows onto black holes, like Sgr A*. We also discuss the possible implications for the thermal conductivity of plasma in the outer parts of massive, hot, galaxy clusters.

  16. GPR monitoring of oil displacement - A laboratory study

    NARCIS (Netherlands)

    Miorali, M.; Slob, E.C.; Arts, R.J.

    2011-01-01

    In this paper we present laboratory experiments where we address the Ground Penetrating Radar (GPR) capability of monitoring oil displacement processes in porous media. This has significant applications in near-subsurface environments where remediation of contaminant such as oil-derived liquids is c

  17. Monitoring consumer confidence in food safety: an exploratory study

    NARCIS (Netherlands)

    Jonge, de J.; Frewer, L.J.; Trijp, van J.C.M.; Renes, R.J.; Wit, de W.; Timmers, J.C.M.

    2004-01-01

    Abstract: In response to the potential for negative economic and societal effects resulting from a low level of consumer confidence in food safety, it is important to know how confidence is potentially influenced by external events. The aim of this article is to describe the development of a monitor

  18. GPR monitoring of oil displacement - A laboratory study

    NARCIS (Netherlands)

    Miorali, M.; Slob, E.C.; Arts, R.J.

    2011-01-01

    In this paper we present laboratory experiments where we address the Ground Penetrating Radar (GPR) capability of monitoring oil displacement processes in porous media. This has significant applications in near-subsurface environments where remediation of contaminant such as oil-derived liquids is

  19. Study on On-line Trace Analysis Technique for SG Tube Leakage Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seban; Park, Jongsuk; Kim, Seungil; Jo, Youngsoo; Kang, Dukwon [HaJI Co. Ltd., Radiation Eng. Center, Shihung (Korea, Republic of)

    2014-05-15

    NPPs steam generator leakage monitoring method is mainly adopted in the world. Since this method is using nuclear fission product of certain radionuclides ({sup 16}N, {sup 3}H, Xe, etc.), it is only available when the reactor power is more than 20%. Therefore, it requires alternative techniques of real-time leakage monitoring under a variety of operation conditions such as start-up, abnormal environment of NPPs, etc. Boron which exists mostly nonionic particle state has been weakly ionized, revealing the lowest anionic tendency in aqueous phase (SO{sub 4}{sup 2-}>Cl{sup -}>F{sup -}>SiO{sub 2}{sup -}>HBO{sub 3}{sup -}). In general, B has been titrated with a NaOH solution into a new compound forming a strong alkaline anion after being dissociated with addition of a polyhydric alcohol. And that has been also measured amplified conductivity that reacting directly polyhydric alcohol by conductivity detector. GE (General Electric Company) has applied monitoring equipment of ultrapure water production by using mannitol reagent as polyhydric alcohol, which is detected less than 20 ppb of boron in the semiconductor company. However, the separation of boron among the secondary water system has been regarded as a critical issue because it contains a lot of impurities and particulate materials which are N{sub 2}H{sub 4}, NH{sub 3}, ETA and component of the iron in the system. This study is a follow-up study concerning the separation of boron peak presented at the 2013 Korean Nuclear Society. This study indicates the possibility of analysis of trace-level boron. The study investigated the separation of boron peak with anion through 3-steps mode. In previous studies, the problem of peaks overlap has been solved through the rinse process completely removing the interfering ions presented on the line. The combination of mannitol and MSA was dissociated from the strong compound between boron and a chelating type resin in the CB column. In particular, the CB column will be able to

  20. Experimental and simulation studies on laser conduction welding of AA5083 aluminium alloys

    Science.gov (United States)

    Tobar, M. J.; Lamas, M. I.; Yáñez, A.; Sánchez-Amaya, J. M.; Boukha, Z.; Botana, F. J.

    In this paper, a three-dimensional numerical model was developed to study laser welding in an aluminium alloy (AA5083). The CFD model was used to solve the governing equations of conservation of mass, momentum and energy, so as to obtain the morphology, velocity field and temperature field of the melted zone in steady state. The predicted dimensions of the weld pool agreed well with experimental results obtained on laser conduction welding with a (CW) high power diode laser. The study allowed to determine the effect of different surface treatment (sandblasting, black painting) on the laser absorptivity of the alloy and analyze the heat transfer mechanism within the weld pool.

  1. Electron thermalization and attachment in pulse-irradiated oxygen studied by time-resolved microwave conductivity

    Science.gov (United States)

    Warman, John M.; Cooper, Ronald

    The microwave conductivity of oxygen gas following nanosecond pulsed irradiation has been studied for pressures from 5 to 50 torr. The conductivity is found to decrease by a factor of approx. 20 in the early stages ( tN < 2 x 10 11 s cm -3) following the pulse. This is attributed to a decrease in the electron collision frequency as the initial excess energy of the electrons becomes degraded. A further decrease found at longer times is due to the three-body attachment of electrons to O 2 with a rate constant of 2.4 x 10 -30 cm 6s -1. Above a pressure of approx. 30 torr significant attachment begins to occur while electrons are still superthermal. The time at which the microwave signal is within 10% of the value corresponding to thermal energies is given by τ thP ≈ 15 μs.torr.

  2. Tuning the thermal conductivity of silicon carbide by twin boundary: a molecular dynamics study

    Science.gov (United States)

    Liu, Qunfeng; Luo, Hao; Wang, Liang; Shen, Shengping

    2017-02-01

    Silicon carbide (SiC) is a semiconductor with excellent mechanical and physical properties. We study the thermal transport in SiC by using non-equilibrium molecular dynamics simulations. The work is focused on the effects of twin boundaries and temperature on the thermal conductivity of 3C-SiC. We find that compared to perfect SiC, twinned SiC has a markedly reduced thermal conductivity when the twin boundary spacing is less than 100 nm. The Si-Si twin boundary is more effective to phonon scattering than the C-C twin boundary. We also find that the phonon scattering effect of twin boundary decreases with increasing temperature. Our findings provide insights into the thermal management of SiC-based electronic devices and thermoelectric applications.

  3. Compensated Arrhenius formalism applied to a conductivity study in poly(propylene glycol) diacrylate monomers

    Science.gov (United States)

    Dubois, F.; Derouiche, Y.; Leblond, J. M.; Maschke, U.; Douali, R.

    2015-09-01

    The temperature dependence of the ionic conductivity is studied in a series of poly(propylene glycol) diacrylate monomers. The experimental data are analyzed by means of the approach recently proposed by Petrowsky et al. [J. Phys. Chem. B. 113, 5996 (2009), 10.1021/jp810095g]. This so-called compensated Arrhenius formalism (CAF) approach takes into account the influence of the dielectric permittivity on the exponential prefactor in the classical Arrhenius equation. The experimental data presented in this paper show a good agreement with the CAF; this means that the exponential prefactor is principally dielectric permittivity dependent. The compensated data revealed two conduction processes with different activation energies; they correspond to low and high temperature ranges, respectively.

  4. Combined ion conductance and fluorescence confocal microscopy for biological cell membrane transport studies

    Science.gov (United States)

    Shevchuk, A. I.; Novak, P.; Velazquez, M. A.; Fleming, T. P.; Korchev, Y. E.

    2013-09-01

    Optical visualization of nanoscale morphological changes taking place in living biological cells during such important processes as endo- and exocytosis is challenging due to the low refractive index of lipid membranes. In this paper we summarize and discuss advances in the powerful combination of two complementary live imaging techniques, ion conductance and fluorescence confocal microscopy, that allows cell membrane topography to be related with molecular-specific fluorescence at high spatial and temporal resolution. We demonstrate the feasibility of the use of ion conductance microscopy to image apical plasma membrane of mouse embryo trophoblast outgrowth cells at a resolution sufficient to depict single endocytic pits. This opens the possibility to study individual endocytic events in embryo trophoblast outgrowth cells where endocytosis plays a crucial role during early stages of embryo development.

  5. 3-D electromagnetic induction studies using the Swarm constellation: Mapping conductivity anomalies in the Earth's mantle

    DEFF Research Database (Denmark)

    Kuvshinov, A.; Sabaka, T.; Olsen, Nils

    2006-01-01

    satellite data that contain contributions from the core and lithosphere, from the rnagnetosphere and ionosphere (and their Earth-induced counterparts), as well as payload noise has been investigated. The model Studies have shown that C-responses obtained oil a regular grid might be used to map regional deep......An approach is presented to detect deep-seated regional conductivity anomalies by analysis of magnetic observations taken by low-Earth-orbiting satellites. The approach deals with recovery of C-responses on a regular grid and starts with a determination of time series of external and internal....... For validation of the approach, 3 years of realistic synthetic data at Simulated orbits of the forthcoming Swarm constellation of 3 satellites have been used. To obtain the synthetic data for a given 3-D conductivity Earth's model a time-domain scheme has been applied which relies oil a Fourier transformation...

  6. Thermal conduction study of warm dense aluminum by proton differential heating

    Science.gov (United States)

    Ping, Y.; Kemp, G.; McKelvey, A.; Fernandez-Panella, A.; Shepherd, R.; Collins, G.; Sio, H.; King, J.; Freeman, R.; Hua, R.; McGuffey, C.; Kim, J.; Beg, F.

    2016-10-01

    A differential heating platform has been developed for thermal conduction study (Ping et al. PoP 2015), where a temperature gradient is induced and subsequent heat flow is probed by time-resolved diagnostics. An experiment using proton differential heating has been carried out at Titan laser for Au/Al targets. Two single-shot time-resolved diagnostics are employed, SOP (streaked optical pyrometry) for surface temperature and FDI (Fourier Domain Interferometry) for surface expansion. Hydrodynamic simulations show that after 15ps, absorption in underdense plasma needs to be taken into account to correctly interpret SOP data. Comparison between simulations with different thermal conductivity models and a set of data with varying target thickness will be presented. This work was performed under DOE contract DE-AC52-07NA27344 with support from OFES Early Career program and LLNL LDRD program.

  7. Biological studies and electrical conductivity of paper sheet based on PANI/PS/Ag-NPs nanocomposite.

    Science.gov (United States)

    Youssef, A M; Mohamed, S A; Abdel-Aziz, M S; Abdel-Aziz, M E; Turky, G; Kamel, S

    2016-08-20

    Polyaniline (PANI) with/without polystyrene (PS), was successfully manufactured in the occurrence of dispersed pulp fibers via the oxidative polymerization reaction of aniline monomer to produce conductive paper sheets containing PANI, PANI/PS composites. Additionally, sliver nitrate (Ag-NO3) was added by varied loadings to the oxidative polymerization of aniline monomer to provide sliver nanoparticles (Ag-NPs) emptied into the prepared paper sheets. The prepared paper sheets were examined using scanning electron microscopy (SEM), X-ray diffraction (XRD) and infrared spectroscopy (IR), the mechanical properties of the prepared paper sheets were evaluated. Moreover, the electrical conductivity and biological studies such as cellulases assay, Microorganism & culture condition and detection of the released of Ag-NPs were evaluated. Furthermore, the prepared paper sheets were displayed good antibacterial properties contrary to gram positive and gram negative bacteria. Consequently, the prepared paper sheet may be used as novel materials for packaging applications.

  8. Compensated Arrhenius formalism applied to a conductivity study in poly(propylene glycol) diacrylate monomers.

    Science.gov (United States)

    Dubois, F; Derouiche, Y; Leblond, J M; Maschke, U; Douali, R

    2015-09-01

    The temperature dependence of the ionic conductivity is studied in a series of poly(propylene glycol) diacrylate monomers. The experimental data are analyzed by means of the approach recently proposed by Petrowsky et al. [J. Phys. Chem. B. 113, 5996 (2009)10.1021/jp810095g]. This so-called compensated Arrhenius formalism (CAF) approach takes into account the influence of the dielectric permittivity on the exponential prefactor in the classical Arrhenius equation. The experimental data presented in this paper show a good agreement with the CAF; this means that the exponential prefactor is principally dielectric permittivity dependent. The compensated data revealed two conduction processes with different activation energies; they correspond to low and high temperature ranges, respectively.

  9. Study on Band Structure of YbB6 and Analysis of Its Optical Conductivity Spectrum

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The electronic structure of YbB6 crystal was studied by means of density functional (GGA+U) method.The calculations were performed by FLAPW method.The high accurate band structure was achieved.The correlation between the feature of the band structure and the Yb-B6 bonding in YbB6 was analyzed.On this basis, some optical constants of YbB6 such as reflectivity, dielectric function, optical conductivity, and energy-loss function were calculated.The results are in good agreement with the experiments.The real part of the optical conductivity spectrum and the energy-loss function spectrum were analyzed in detail.The assignments of the spectra were carried out to correlate the spectral peaks with the interband electronic transitions, which justify the reasonable part of previous empirical assignments and renew the missed or incorrect ones.

  10. Optimising the neutron environment of Radiation Portal Monitors: a computational optimisation study

    CERN Document Server

    Gilbert, Mark R; Packer, Lee W

    2015-01-01

    Efficient and reliable detection of radiological or nuclear threats is a crucial part of national and international efforts to prevent terrorist activities. Radiation Portal Monitors (RPMs), which are deployed worldwide, are intended to interdict smuggled fissile material by detecting emissions of neutrons and gamma rays. However, considering the range and variety of threat sources, vehicular and shielding scenarios, and that only a small signature is present, it is important that the design of the RPMs allows these signatures to be accurately differentiated from the environmental background. Using Monte-Carlo neutron-transport simulations of a model helium-3 detector system we have conducted a parameter study to identify the optimum combination of detector shielding and collimation that maximises the sensitivity of RPMs. These structures, which could be simply and cost-effectively added to existing RPMs, can improve the detector response by more than a factor of two relative to an unmodified, bare design. Fu...

  11. [Study on mobile phone based wireless ECG monitoring technology system typical demonstration applications].

    Science.gov (United States)

    Yu, Yang; Liu, Jing

    2011-01-01

    Based on the mobile phone platform with wireless real-time ECG monitoring system developed in our lab, this article is dedicated to evaluate its practical value in people test. A series of new conceptual experiments were designed and performed. Particularly, ECG characteristics under different age, gender, health and motion conditions are evaluated. Effects of living habits such as drinking wine, coffee including various psychological conditions such as excitation, anxiety etc. to the ECG response are investigated. The human ECG under different time in a day such as morning, afternoon and late-night was evaluated. These conceptual experiments, which are hard to conduct otherwise using conventional devices, demonstrate the pervasive merits of the new system for fundamental study of heart disease as well as daily healthcare.

  12. On the transparent conducting oxide Al doped ZnO: First Principles and Boltzmann equations study

    Energy Technology Data Exchange (ETDEWEB)

    Slassi, A. [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco); Naji, S. [LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco); Department of Physics, Faculty of Science, Ibb University, Ibb (Yemen); Benyoussef, A. [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco); Hamedoun, M., E-mail: hamedoun@hotmail.com [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); El Kenz, A. [LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco)

    2014-08-25

    Highlights: • The incorporation of Al in ZnO increases the optical band edge absorption. • Incorporated Al creates shallow donor states of Al-3s around Fermi level. • Transmittance decreases in the visible and IR regions, while it increases in the UV region. • Electrical conductivity increases and reaches almost the saturation for high concentration of Al. - Abstract: We report, in this work, a theoretical study on the electronic, optical and electrical properties of pure and Al doped ZnO with different concentrations. In fact, we investigate these properties using both First Principles calculations within TB-mBJ approximation and Boltzmann equations under the constant relaxation time approximation for charge carriers. It is found out that, the calculated lattice parameters and the optical band gap of pure ZnO are close to the experimental values and in a good agreement with the other theoretical studies. It is also observed that, the incorporations of Al in ZnO increase the optical band edge absorption which leads to a blue shift and no deep impurities levels are induced in the band gap as well. More precisely, these incorporations create shallow donor states around Fermi level in the conduction band minimum from mainly Al-3s orbital. Beside this, it is found that, the transmittance is decreased in the visible and IR regions, while it is significantly improved in UV region. Finally, our calculations show that the electrical conductivity is enhanced as a result of Al doping and it reaches almost the saturation for high concentration of Al. These features make Al doped ZnO a transparent conducting electrode for optoelectronic device applications.

  13. Recommendations for designing and conducting veterinary clinical pathology biologic variation studies

    DEFF Research Database (Denmark)

    Freeman, Kathleen P; Baral, Randolph M; Dhand, Navneet K

    2017-01-01

    The recent creation of a veterinary clinical pathology biologic variation website has highlighted the need to provide recommendations for future studies of biologic variation in animals in order to help standardize and improve the quality of published information and to facilitate review and sele......). These recommendations provide a valuable resource for clinicians, laboratorians, and researchers interested in conducting studies of biologic variation and in determining the quality of studies of biologic variation in veterinary laboratory testing.......The recent creation of a veterinary clinical pathology biologic variation website has highlighted the need to provide recommendations for future studies of biologic variation in animals in order to help standardize and improve the quality of published information and to facilitate review...... and selection of publications as standard references. The following recommendations are provided in the format and order commonly found in veterinary publications. A checklist is provided to aid in planning, implementing, and evaluating veterinary studies on biologic variation (Appendix S1...

  14. Lessons learnt from the first controlled human malaria infection study conducted in Nairobi, Kenya.

    Science.gov (United States)

    Hodgson, Susanne H; Juma, Elizabeth; Salim, Amina; Magiri, Charles; Njenga, Daniel; Molyneux, Sassy; Njuguna, Patricia; Awuondo, Ken; Lowe, Brett; Billingsley, Peter F; Cole, Andrew O; Ogwang, Caroline; Osier, Faith; Chilengi, Roma; Hoffman, Stephen L; Draper, Simon J; Ogutu, Bernhards; Marsh, Kevin

    2015-04-28

    Controlled human malaria infection (CHMI) studies, in which healthy volunteers are infected with Plasmodium falciparum to assess the efficacy of novel malaria vaccines and drugs, have become a vital tool to accelerate vaccine and drug development. CHMI studies provide a cost-effective and expeditious way to circumvent the use of large-scale field efficacy studies to deselect intervention candidates. However, to date few modern CHMI studies have been performed in malaria-endemic countries. An open-label, randomized pilot CHMI study was conducted using aseptic, purified, cryopreserved, infectious P. falciparum sporozoites (SPZ) (Sanaria® PfSPZ Challenge) administered intramuscularly (IM) to healthy Kenyan adults (n = 28) with varying degrees of prior exposure to P. falciparum. The purpose of the study was to establish the PfSPZ Challenge CHMI model in a Kenyan setting with the aim of increasing the international capacity for efficacy testing of malaria vaccines and drugs, and allowing earlier assessment of efficacy in a population for which interventions are being developed. This was part of the EDCTP-funded capacity development of the CHMI platform in Africa. This paper discusses in detail lessons learnt from conducting the first CHMI study in Kenya. Issues pertinent to the African setting, including community sensitization, consent and recruitment are considered. Detailed reasoning regarding the study design (for example, dose and route of administration of PfSPZ Challenge, criteria for grouping volunteers according to prior exposure to malaria and duration of follow-up post CHMI) are given and changes other centres may want to consider for future studies are suggested. Performing CHMI studies in an African setting presents unique but surmountable challenges and offers great opportunity for acceleration of malaria vaccine and drug development. The reflections in this paper aim to aid other centres and partners intending to use the CHMI model in Africa.

  15. Geothermal characteristics of the molasse basin (pilot study - thermal conductivity); Geothermische Eigenschaften des Molassebeckens (Pilotstudie - Waermeleitfaehigkeit)

    Energy Technology Data Exchange (ETDEWEB)

    Leu, W.; Greber, E. [Geoform, Geologische Beratungen und Studien AG, Winterthur (Switzerland); Hopkirk, R.J. [Polydynamics Engineering, Maennedorf (Switzerland); Keller, B. [Mengis und Lorenz AG, Luzern (Switzerland); Rybach, L. [ETH Hoenggerberg, Zuerich (Switzerland). Inst. fuer Geophysik und Radiometrie

    1997-12-01

    Detailed knowledge of the geothermal properties (thermal conductivity and specific heat capacity) of the undergorund becomes more and more important with increasing exploitation of geothermal resources by deep vertical borehole heat exchangers or by seasonal storage installations. For this pilot study all existing thermal conductivity data of the Swiss Molasse were compiled and supplemented with new laboratory measurements on core and cutting samples from deep wells (2.5 to 3.0 W/mK). In a second step top-to-bottom thermal conductivity profiles were calculated from geophysical well logs. These profiles show a clear dependence on lithology and variations in thermal conductivity of up to 1 W/mK over 50-200 m thick intervals. In clay-rich lithofacies thermal conductivity is only slightly dependent on the sedimentary architecture, whereas, in sandy facies obvious distinctions are possible. The modelling of a theoretical 750 m long vertical borehole heat exchanger shows that the potential quality of extractable heat increases or decreases by up to 20% by varying the thermal conductivity with only {+-}0.5 W/mK. (orig.) [Deutsch] Fuer die Nutzung geothermischer Ressourcen mit tiefen Erdwaermesonden und saisonalen Speicheranlagen werden detaillierte Kenntnisse der geothermischen Eigenschaften (Waermeleitfaehigkeit und Waemekapazitaet) des Untergrundes zunehmend wichtig. Im Rahmen dieser Pilotstudie wurden saemtliche verfuegbaren Waermeleitfaehigkeits-Daten von Schweizer Molassegesteinen kompiliert und mit Neumessungen an Kern- und Cuttingsmaterial von Tiefbohrungen ergaenzt (2.5 bis 3.0 W/mK). In einem zweiten Schritt wurden Waermeleitfaehigkeits-Profile mit geophysikalischen Bohr-Logs berechnet. Diese Profile zeigen eine deutliche Abhaengigkeit von der Lithologie mit einer Variation der Waermeleitfaehigkeit von bis zu 1 W/mK ueber 50-200 m maechtige Intervalle. In den tonigen Lithologien kann nur eine schwache Abhaengigkeit der Waermeleitfaehigkeit von der sedimentaeren

  16. Statistical issues in the design, conduct and analysis of two large safety studies.

    Science.gov (United States)

    Gaffney, Michael

    2016-10-01

    The emergence, post approval, of serious medical events, which may be associated with the use of a particular drug or class of drugs, is an important public health and regulatory issue. The best method to address this issue is through a large, rigorously designed safety study. Therefore, it is important to elucidate the statistical issues involved in these large safety studies. Two such studies are PRECISION and EAGLES. PRECISION is the primary focus of this article. PRECISION is a non-inferiority design with a clinically relevant non-inferiority margin. Statistical issues in the design, conduct and analysis of PRECISION are discussed. Quantitative and clinical aspects of the selection of the composite primary endpoint, the determination and role of the non-inferiority margin in a large safety study and the intent-to-treat and modified intent-to-treat analyses in a non-inferiority safety study are shown. Protocol changes that were necessary during the conduct of PRECISION are discussed from a statistical perspective. Issues regarding the complex analysis and interpretation of the results of PRECISION are outlined. EAGLES is presented as a large, rigorously designed safety study when a non-inferiority margin was not able to be determined by a strong clinical/scientific method. In general, when a non-inferiority margin is not able to be determined, the width of the 95% confidence interval is a way to size the study and to assess the cost-benefit of relative trial size. A non-inferiority margin, when able to be determined by a strong scientific method, should be included in a large safety study. Although these studies could not be called "pragmatic," they are examples of best real-world designs to address safety and regulatory concerns. © The Author(s) 2016.

  17. Study of effect of quenching and deformation on KCl: Gd3+ crystals by using conductivity measurements

    Indian Academy of Sciences (India)

    G Saibabu; A Ramachandra Reddy; D Srikanth

    2004-10-01

    The study of ionic conductivity vs reciprocal temperature of pure KCl and KCl crystal doped with 0.1, 0.3 and 0.5 mole% gadolinium has been carried out in as grown, quenched from elevated temperatures (100, 350 and 500°C) and annealed at various timings i.e. 2–3 h and deformed by different percentages. The plots exhibit three well-known regions, II, III and IV (extrinsic regions). The intrinsic region I was not observed in the plots as the conductivity measurements were taken up to 575°C. From the analysis of these plots, activation energies for the migration of cation vacancy and the association of gadolinium ion with cation vacancy in the lattice of KCl crystals are calculated. These values are compared with previously reported values. Further, an attempt is made to explain the existence of oxidation state of gadolinium ion in + 3 state rather than in + 2 state as reported earlier. The variation in conductivity with effect of concentration of impurity ion, quenching and annealing and deformation with various percentages are explained on the basis of formation of impurity vacancy dipoles, vacancy – vacancy pairs (which appear in the form of precipitation), storage of cation vacancies in the form of defects, introduction of fresh dislocations, etc.

  18. Using rapid reviews: an example from a study conducted to inform policy-making.

    Science.gov (United States)

    O'Leary, Denise F; Casey, Mary; O'Connor, Laserina; Stokes, Diarmuid; Fealy, Gerard M; O'Brien, Denise; Smith, Rita; McNamara, Martin S; Egan, Claire

    2017-03-01

    A discussion of the potential use of rapid review approaches in nursing and midwifery research which presents a worked example from a study conducted to inform policy decision-making. Rapid reviews, which can be defined as outputs of a knowledge synthesis approach that involves modifying or omitting elements of a systematic review process due to limited time or resources, are becoming increasingly popular in health research. This paper provides guidance on how a rapid review can be undertaken and discusses the strengths and challenges of the approach. Data from a rapid review of the literature undertaken in 2015 is used as a worked example to highlight one method of undertaking a rapid review. Seeking evidence to inform health policy-making or evidence based practice is a process that can be limited by time constraints, making it difficult to conduct comprehensive systematic reviews. Rapid reviews provide a solution as they are a systematic method of synthesizing evidence quickly. There is no single best way to conduct a rapid review but researchers can ensure they are adhering to best practice by being systematic, having subject and methodological expertise on the review team, reporting the details of the approach they took, highlighting the limitations of the approach, engaging in good evidence synthesis and communicating regularly with end users, other team members and experts. © 2016 John Wiley & Sons Ltd.

  19. Integrated experimental and modeling study of the ionic conductivity of samaria-doped ceria thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sanghavi, Rahul P.; Devanathan, Ramaswami; Nandasiri, Manjula I.; Kuchibhatla, Satyanarayana V N T; Kovarik, Libor; Thevuthasan, Suntharampillai; Prasad, Shalini

    2011-12-12

    Oxygen diffusion and ionic conductivity of samaria-doped ceria (SDC) thin films have been studied as a function of composition using experiment and atomistic simulation. SDC thin films were grown on Al2O3 (0001) substrates by oxygen plasma-assisted molecular beam epitaxy (OPA-MBE) technique. The experimental results show a peak in electrical conductivity of SDC at 15 mol% Sm2O3. The oxygen diffusion coefficient obtained from molecular dynamics simulation of the same system shows a peak at about 13 mol% Sm2O3. The activation energy for oxygen diffusion was found to be in the range from 0.8 to 1.0 eV by simulations depending on the Sm2O3 content, which compares well with the range from 0.6 to 0.9 eV given by the experimental work. The simulations also show that oxygen vacancies prefer Sm3+ ions as first neighbors over Ce4+ ions. The present results reveal that the optimum samaria content for ionic conductivity in single crystals of SDC is less than that in polycrystals, which can be related to the preferential segregation of dopant cations to grain boundaries in polycrystals.

  20. Synthesis and proton conductivity studies of doped azole functional polymer electrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Ozden, Sehmus [Department of Chemistry, Fatih University, 34500 Bueyuekcekmece-Istanbul (Turkey); Celik, Sevim Unueguer, E-mail: sunugur@fatih.edu.t [Department of Chemistry, Fatih University, 34500 Bueyuekcekmece-Istanbul (Turkey); Bozkurt, Ayhan [Department of Chemistry, Fatih University, 34500 Bueyuekcekmece-Istanbul (Turkey)

    2010-12-01

    The development of anhydrous proton-conducting membranes is important for the operation of polymer electrolyte membrane fuel cell (PEMFC) at intermediate temperature (100-200 {sup o}C). In this work, poly(vinylbenzylchloride), PVBC was produced by free radical polymerization of 4-vinylbenzylchloride and then it was modified with 5-aminotetrazole (ATET) to obtain poly(vinylbenzylaminotetrazole), PVBC-ATET. The composition of the polymer was verified by elemental analysis (EA) and the structure was characterized by FT-IR and {sup 13}C NMR spectra. According to the elemental analysis result, PVBC was modified by ATET with 80% yield. The polymer was doped with trifluoromethanesulfonic acid (TA) at various molar ratios, x = 1.25, 2.5, 3.75 with respect to tetrazole unit. The proton transfer from TA to the tetrazole rings was proved with FT-IR spectroscopy. Thermogravimetry (TG) analysis showed that the samples are thermally stable up to approximately 200 {sup o}C. Differential scanning calorimetry (DSC) results illustrated the homogeneity of the materials. Cyclic voltammetry (CV) study illustrated that the electrochemical stability domain for PVBC-ATET-TA{sub 2.5} extends over 3.0 V. The proton conductivity of these materials increased with dopant concentration and the temperature. Maximum proton conductivity of PVBC-ATET-TA{sub 2.5} was found to be 0.01 S/cm at 150 {sup o}C in the anhydrous state.

  1. Conductivity and Dielectric Studies of Lithium Trifluoromethanesulfonate Doped Polyethylene Oxide-Graphene Oxide Blend Based Electrolytes

    Directory of Open Access Journals (Sweden)

    A. A. Azli

    2015-01-01

    Full Text Available Series of polymer blend consisting of polyethylene oxide (PEO and graphene oxide (GO as co-host polymer were prepared using solution cast method. The most amorphous PEO-GO blend was obtained using 90 wt.% of PEO and 10 wt.% of GO as recorded by X-ray diffraction (XRD. Fourier transform infrared spectroscopy (FTIR analysis proved the interaction between PEO, GO, lithium trifluoromethanesulfonate (LiCF3SO3, and ethylene sulfite (ES. Incorporation of 25 wt.% LiCF3SO3 into the PEO-GO blend increases the conductivity to 3.84±0.83×10-6 S cm−1. The conductivity starts to decrease when more than 25 wt.% salt is doped into the polymer blend. The addition of 1 wt.% ES into the polymer electrolyte has increased the conductivity to 1.73±0.05×10-5 S cm−1. Dielectric studies show that all the electrolytes obey non-Debye behavior.

  2. Computational Study of Subdural Cortical Stimulation: Effects of Simulating Anisotropic Conductivity on Activation of Cortical Neurons.

    Directory of Open Access Journals (Sweden)

    Hyeon Seo

    Full Text Available Subdural cortical stimulation (SuCS is an appealing method in the treatment of neurological disorders, and computational modeling studies of SuCS have been applied to determine the optimal design for electrotherapy. To achieve a better understanding of computational modeling on the stimulation effects of SuCS, the influence of anisotropic white matter conductivity on the activation of cortical neurons was investigated in a realistic head model. In this paper, we constructed pyramidal neuronal models (layers 3 and 5 that showed primary excitation of the corticospinal tract, and an anatomically realistic head model reflecting complex brain geometry. The anisotropic information was acquired from diffusion tensor magnetic resonance imaging (DT-MRI and then applied to the white matter at various ratios of anisotropic conductivity. First, we compared the isotropic and anisotropic models; compared to the isotropic model, the anisotropic model showed that neurons were activated in the deeper bank during cathodal stimulation and in the wider crown during anodal stimulation. Second, several popular anisotropic principles were adapted to investigate the effects of variations in anisotropic information. We observed that excitation thresholds varied with anisotropic principles, especially with anodal stimulation. Overall, incorporating anisotropic conductivity into the anatomically realistic head model is critical for accurate estimation of neuronal responses; however, caution should be used in the selection of anisotropic information.

  3. High-frequency magneto-conductivity studies of low-dimensional organic conductors

    CERN Document Server

    Schrama, J M

    2000-01-01

    Chapter 5 I report two studies of the angle dependence of FTRs in the high-frequency magneto-conductivity. The FTRs in kappa-(BEDT-TTF) sub 2 Cu(NCS) sub 2 and alpha-(BEDT- TTF) sub 2 KHg(SCN) sub 4 show two previously unknown corrugations in the Q1D Fermi-surface sections of the two materials. The FTRs in alpha-(BEDT-TTF) sub 2 KHg(SCN) sub 4 are investigated both in the density-wave state and near its collapse into a high-temperature, high-field state. In Chapter 6 a study of the millimetre-wave properties of (TMTSF) sub 2 ClO sub 4 at low temperatures is described. Finally, in Chapter 7 I present a study of the angle dependence of the superconductor order parameter in kappa-(BEDT-TTF) sub 2 Cu(NCS) sub 2 with a new millimetre-wave technique. In this thesis I present experimental studies of the millimetre-wave magneto-conductivity of the organic charge-transfer salts kappa-(BEDT-TTF) sub 2 Cu(NCS) sub 2 , alpha-(BEDT-TTF sub 2 KHg(SCN) sub 4 and (TMTSF) sub 2 ClO sub 4. A rotating resonant cavity insert was...

  4. Beam Impedance Studies of the PS Beam Gas Ionization Monitor

    CERN Document Server

    Avgidis, Fotios

    2016-01-01

    The Beam Gas Ionization monitor (BGI) is a device for continuous beam size monitoring that is intended to be installed in the CERN Proton Synchrotron (PS) during the extended year-end technical stop from December 2016 to April 2017. With the objective of determining the impedance contribution of the BGI vacuum chamber to the overall beam impedance, we report on RF measurements on the device in a laboratory frame, measurement data analysis, and RF simulations of the structure under investigation. For the impedance contribution characterization of the BGI, the following approach has been followed: First, the EM fields inside a simplified BGI model that doesn’t include any of the internal components of the vacuum chamber have been simulated. RF measurements have been performed on the same empty structure showing great agreement between measurement and simulation and thus verifying the validity of the model. Second, simulations have been executed on a fully assembled BGI model that includes all the internal ele...

  5. Oxygen flux and dielectric response study of Mixed Ionic-Electronic Conducting (MIEC) heterogeneous functional materials

    Science.gov (United States)

    Rabbi, Fazle

    Dense mixed ionic-electronic conducting (MIEC) membranes consisting of ionic conductive perovskite-type and/or fluorite-type oxides and high electronic conductive spinel type oxides, at elevated temperature can play a useful role in a number of energy conversion related systems including the solid oxide fuel cell (SOFC), oxygen separation and permeation membranes, partial oxidization membrane reactors for natural gas processing, high temperature electrolysis cells, and others. This study will investigate the impact of different heterogeneous characteristics of dual phase ionic and electronic conductive oxygen separation membranes on their transport mechanisms, in an attempt to develop a foundation for the rational design of such membranes. The dielectric behavior of a material can be an indicator for MIEC performance and can be incorporated into computational models of MIEC membranes in order to optimize the composition, microstructure, and ultimately predict long term membrane performance. The dielectric behavior of the MIECs can also be an indicator of the transport mechanisms and the parameters they are dependent upon. For this study we chose a dual phase MIEC oxygen separation membrane consisting of an ionic conducting phase: gadolinium doped ceria-Ce0.8 Gd0.2O2 (GDC) and an electronic conductive phase: cobalt ferrite-CoFe2O4 (CFO). The membranes were fabricated from mixtures of Nano-powder of each of the phases for different volume percentages, sintered with various temperatures and sintering time to form systematic micro-structural variations, and characterized by structural analysis (XRD), and micro-structural analysis (SEM-EDS). Performance of the membranes was tested for variable partial pressures of oxygen across the membrane at temperatures from 850°C-1060°C using a Gas Chromatography (GC) system. Permeated oxygen did not directly correlate with change in percent mixture. An intermediate mixture 60%GDC-40%CFO had the highest flux compared to the 50%GDC

  6. Physical chemistry studies of ionic conduction gel electrolytes for lithium batteries; Etudes physico-chimiques d'electrolytes gelifies a conduction ionique pour batteries au lithium

    Energy Technology Data Exchange (ETDEWEB)

    Caillon-Caravanier, M.

    2002-12-01

    With the development of new electronic technologies, the research on gel electrolytes basic properties has been widely increased. The use of these materials, produced under thin plastic films, improves the stored energy - battery volume ratio. The ionic gel conductivity, liquid-type, is ensured by the ion migration in the liquid electrolyte incorporated to the polymer network. Thus a preliminary study of liquid phases to be incorporated has been done before the gel investigation. In order to optimize the conductive properties of liquid electrolytes, a simplified model of ionic conductivity has been established. It is based on the ion pair dissociation equilibrium. The ionic mobility is supposed to be inversely proportional to the macroscopic medium viscosity. The liquid electrolytes are then incorporated in the polymer network, based on di-acrylate monomers (DAC) or fluorinated copolymer (PVdF-HFP/SiO{sub 2}). The conductivity loss of the liquid encapsulated phases, more pronounced in the DAC case, is attributed to ion-polymer network interactions, which lead to a decrease of both the concentration and the mobility of free ions in the system. In the case of gel electrolytes DAC based, these interactions are quantified from an ionic transport model, which relies on the hypothesis of a 3D quasi-cubic reticulation. This hypothesis also allows anticipating the network maximal ability to contain the liquid phase. For gel electrolytes PVdF-HFP/SiO{sub 2} based, the kinetic study of the liquid phase absorption has allowed us to optimize the elaboration conditions. The ion-ion, ion-solvent and ion-polymer interactions have. been qualitatively and quantitatively studied by the mean of Raman spectroscopy. The performance of elaborated gel electrolytes is also estimated in cyclability terms towards commercial electrodes for lithium batteries. So the gel behavior has been studied with half-batteries associating a metal lithium electrode to a carbon anode or a lithiated cobalt

  7. Leak detection, monitoring, and mitigation technology trade study update

    Energy Technology Data Exchange (ETDEWEB)

    HERTZEL, J.S.

    1998-11-10

    This document is a revision and update to the initial report that describes various leak detection, monitoring, and mitigation (LDMM) technologies that can be used to support the retrieval of waste from the single-shell tanks (SST) at the Hanford Site. This revision focuses on the improvements in the technical performance of previously identified and useful technologies, and it introduces new technologies that might prove to be useful.

  8. A study on Geographic National (Urban) Conditions Monitoring of Beijing

    OpenAIRE

    Liu, Q.

    2014-01-01

    This article investigated and surveyed the current situation of the policy of Geographic National (Urban) Conditions Monitoring in Beijing based on the experimental unit over China carried out by National Administration of Surveying, Mapping and Geoinformation. Then analysed the guarantee of the implement considering the characteristics of programming and construction, policy and regulation in Beijing. Finally presented the frame system of Geographic National (Urban) Conditions Monit...

  9. Comparative study on ATR-FTIR calibration models for monitoring solution concentration in cooling crystallization

    Science.gov (United States)

    Zhang, Fangkun; Liu, Tao; Wang, Xue Z.; Liu, Jingxiang; Jiang, Xiaobin

    2017-02-01

    In this paper calibration model building based on using an ATR-FTIR spectroscopy is investigated for in-situ measurement of the solution concentration during a cooling crystallization process. The cooling crystallization of L-glutamic Acid (LGA) as a case is studied here. It was found that using the metastable zone (MSZ) data for model calibration can guarantee the prediction accuracy for monitoring the operating window of cooling crystallization, compared to the usage of undersaturated zone (USZ) spectra for model building as traditionally practiced. Calibration experiments were made for LGA solution under different concentrations. Four candidate calibration models were established using different zone data for comparison, by using a multivariate partial least-squares (PLS) regression algorithm for the collected spectra together with the corresponding temperature values. Experiments under different process conditions including the changes of solution concentration and operating temperature were conducted. The results indicate that using the MSZ spectra for model calibration can give more accurate prediction of the solution concentration during the crystallization process, while maintaining accuracy in changing the operating temperature. The primary reason of prediction error was clarified as spectral nonlinearity for in-situ measurement between USZ and MSZ. In addition, an LGA cooling crystallization experiment was performed to verify the sensitivity of these calibration models for monitoring the crystal growth process.

  10. A study of conductive hydrogel composites of pH-responsive microgels and carbon nanotubes.

    Science.gov (United States)

    Cui, Zhengxing; Zhou, Mi; Greensmith, Paula J; Wang, Wenkai; Hoyland, Judith A; Kinloch, Ian A; Freemont, Tony; Saunders, Brian R

    2016-05-14

    Conductive gel composites are attracting considerable attention because of their interesting electrical and mechanical properties. Here, we report conductive gel composites constructed using only colloidal particles as building blocks. The composites were prepared from mixed dispersions of vinyl-functionalised pH-responsive microgel particles (MGs) and multi-walled carbon nanotubes (CNTs). MGs are crosslinked pH-responsive polymer colloid particles that swell when the pH approaches the pKa of the particles. Two MG systems were used which contained ethyl acrylate (EA) or methyl acrylate (MA) and around 30 mol% of methacrylic acid (MAA). The MA-based MG is a new pH-responsive system. The mixed MG/CNT dispersions formed thixotropic physical gels. Those gels were transformed into covalent interlinked electrically conducting doubly crosslinked microgel/CNT composites (DX MG/CNT) by free-radical reaction. The MGs provided the dual roles of dispersant for the CNTs and macro-crosslinker for the composite. TEM data showed evidence for strong attraction between the MG and the CNTs which facilitated CNT dispersion. An SEM study confirmed CNT dispersion throughout the composites. The mechanical properties of the composites were studied using dynamic rheology and uniaxial compression measurements. Surprisingly, both the ductility and the modulus of the gel composites increased with increasing CNT concentration used for their preparation. Human adipose-derived mesenchymal stem cells (AD-MSCs) exposed to DX MG/CNT maintained over 99% viability with metabolic activity retained over 7 days, which indicated non-cytotoxicity. The results of this study suggest that our approach could be used to prepare other DX MG/CNT gel composites and that these materials may lead to future injectable gels for advanced soft-tissue repair.

  11. NUMERICAL STUDY OF TRANSIENT THREE-DIMENSIONAL HEAT CONDUCTION PROBLEM WITH A MOVING HEAT SOURCE

    Directory of Open Access Journals (Sweden)

    Marko V Miloš

    2011-01-01

    Full Text Available A numerical study of transient three-dimensional heat conduction problem with a moving source is presented. For numerical solution Douglas-Gunn alternating direction implicit method is applied and for the moving heat source flux distribution Gaussian function is used. An influence on numerical solution of input parameters figuring in flux boundary conditions is examined. This include parameters appearing in Gaussian function and heat transfer coefficient from free convection boundaries. Sensitivity of cooling time from 800 to 500 °C with respect to input parameters is also tested.

  12. A study of laser-beam welding conducted at the Centre for Laser Technologies of Metals

    Science.gov (United States)

    Antoszewski, Bogdan; Gradoń, Ryszard; Trela, Paweł; Cendrowicz, Edward

    2013-01-01

    The study reported here is part of a larger research project on laser-beam welding conducted at the Centre for Laser Technologies of Metals. The primary objectives were to compare laser-beam welding with a conventional process when used for longitudinal seams in street lamp posts, to select the process parameters for girth welds in cylindrical high-strength steel machine elements, and to assess whether laser-beam welding can be used for magnesium alloys. The paper includes recommendations for the selection of welding parameters.

  13. The role of international internships conducted during academic studies in development of entrepreneurial skills

    Directory of Open Access Journals (Sweden)

    Alina Simona TECĂU

    2016-07-01

    Full Text Available This study presents the results of a qualitative marketing research conducted among students participating in intensive international practice internships organized in a SOPHRD project. Research objectives are focused on obtaining information on the extent to which participants from these internships have assimilated entrepreneurial skills necessary for employment job skills, adapting to a job, comparing individual professional targets with the real situation on labor market, development of the capacity to decide and act appropriately in relation to his own career, but also familiarity with European requirements of a prospective employer to ensure the prerequisites for participating in future university graduates on a modern and dynamic labor market.

  14. High-frequency magneto-conductivity studies of low-dimensional organic conductors

    Energy Technology Data Exchange (ETDEWEB)

    Schrama, J.M

    2000-07-01

    In this thesis I present experimental studies of the millimetre-wave magneto-conductivity of the organic charge-transfer salts {kappa}-(BEDT-TTF){sub 2}Cu(NCS){sub 2}, {alpha}-(BEDT-TTF){sub 2}KHg(SCN){sub 4} and (TMTSF){sub 2}ClO{sub 4}. A rotating resonant cavity insert was developed to investigate the angle dependence of resonances in the magneto-conductivity. The technique revealed a new kind of magnetic resonance, the Fermi-surface traversal resonance (FTR), which is described by a semiclassical model. The FTRs give information about the topology of the quasi-one-dimensional (Q1D) Fermi-surface sections. The Q1D Fermi-surface sections play an important role in forming the ground states in organic conductors giving rise, for example, to nesting associated with a density-wave. Chapter 1 gives a brief historical overview of the development of organic conductors and provides basic information about crystal structures and Fermi surfaces of BEDT-TTF based systems. Chapter 2 introduces the reader to basic solid state physics used later in the thesis. In Chapter 3 I discuss the operation of the experimental techniques and apparatus, including millimetre-wave techniques. In addition, Chapter 3 contains a description of the design of the FTR rotating cavity insert which is unique of its kind. In Chapter 4 a model of oscillating real-space velocity vectors is presented. The model is used to explain the origin of the FTRs observed in the high-frequency magneto- conductivity data. In Chapter 5 I report two studies of the angle dependence of FTRs in the high-frequency magneto-conductivity. The FTRs in {kappa}-(BEDT-TTF){sub 2}Cu(NCS){sub 2} and {alpha}-(BEDT- TTF){sub 2}KHg(SCN){sub 4} show two previously unknown corrugations in the Q1D Fermi-surface sections of the two materials. The FTRs in {alpha}-(BEDT-TTF){sub 2}KHg(SCN){sub 4} are investigated both in the density-wave state and near its collapse into a high-temperature, high-field state. In Chapter 6 a study of the

  15. Parametric Study of the Absorption Cross-Section for a Moderately Conducting Thin Cylinder.

    Science.gov (United States)

    Gurton, Kristan Peter

    A system has been developed to measure the absorption cross section of a single carbon fiber at 35 GHz as a function of length, orientation, and diameter. Typical lengths considered ranged from 1 to 20 mm, and diameters ranged from 3 to 8 um. The results were compared with the modified integral equation calculations of Waterman and Pedersen that describe the scattering and absorption behavior for a wire of finite length and conductivity. Good agreement was found for all lengths, orientations, and diameters studied.

  16. Parametric study of the absorption cross section for a moderately conducting thin cylinder

    Science.gov (United States)

    Gurton, Kristan P.; Bruce, Charles W.

    1995-05-01

    A system has been developed to measure the absorption cross section for a single carbon fiber at 35 GHz as a function of length, orientation, and diameter. Typical lengths of the fibers considered ranged from 1 to 20 mm, and diameters ranged from 3 to 8 mu m. The results were compared with the modified integral equation calculations of Waterman and Pedersen that describe the scattering and absorption behavior for a wire of finite length and conductivity. Good agreement was found for all lengths, orientations, and diameters studied.

  17. Conduction calorimetric studies of ternary binders based on Portland cement, calcium aluminate cement and calcium sulphate

    OpenAIRE

    Torrens Martín, David; Fernández Carrasco, Lucía; Blanco Varela, M.Teresa

    2013-01-01

    Different binders of Portland cement, calcium aluminate cement and calcium sulphate (PC/CAC/CS) have been investigated to determinate the in¿uence the CAC and CS amount in the reactions mechanism. Several mixtures were studied, ratios of 100, 85/15 and 75/25 of PC/CAC with 0, 3 and 5 % of CS. Conduction calorimetric technique was used to follow the hydration during 100 h. The XRD and FTIR techniques were used as support in the analysis of the hydration products. The results have shown tha...

  18. Experimental study on structural defect detection by monitoring distributed dynamic strain

    Science.gov (United States)

    Liu, R. M.; Babanajad, S. K.; Taylor, T.; Ansari, F.

    2015-11-01

    A defect detection method of civil structures is studied. In order to complete the task, the proposed detection method is based on the analysis of distributed dynamic strains using Brillouin scattering based fiber optic sensors along large span structures. The current challenges in the detection of localized damage fundamentally include monitoring the dynamic strain as well as eliminating the system noise and the distortion of the changing distributed strain. Due to the capability of Brillouin scattering based methods in distributed monitoring of large structures, Brillouin optical time-domain analysis approach is implemented for assessing damage. In order to highlight the singularity at the damage location, Fourier as well as dual tree complex wavelet transform approaches were conducted. During the processing, the dynamic distributed strain in the time domain was transformed into the frequency domain for extraction of natural and forced frequencies. Then, the data was decomposed, filtered for extraction of crack features and reconstructed. The feasibility of the proposed method is evaluated through an experimental program involving the use of pulse-pre-pump Brillouin optical time domain analysis for the distributed measurement of dynamic strain with 13 Hz sampling speed and detection of simulated cracks in a 15 m long steel beam. The beam mimics a bridge girder with two artificial cracks along its length subjected to free and forced vibrations. The results indicate that the method based on the discontinuities in the strain distribution is applicable in the detection of very small damage as small as 40 micro strains. A crack gauge independently monitored the crack opening displacements during the experiments, and the limit of detected crack openings based on the first appearance of strain singularities was 30 μm.

  19. Monitoring daily function in persons with transfemoral amputations using a commercial activity monitor: a feasibility study.

    Science.gov (United States)

    Albert, Mark V; Deeny, Sean; McCarthy, Cliodhna; Valentin, Juliana; Jayaraman, Arun

    2014-12-01

    To assess in a feasibility study the mobility of persons with transfemoral amputations using data collected from a popular, consumer-oriented activity monitor (Fitbit). Observational cohort study. Research hospital outpatient evaluation. Nine subjects with transfemoral amputations (4 women and 5 men, ages 21-64 years) and Medicare functional assessments (K level) of K3 (n = 7), K2 (n = 1), and K4 (n = 1). One-week monitoring of physical activity using the Fitbit One activity monitor. Daily estimates of step counts, distance walked, floors/stairs climbed, calories burned, and proprietary Fitbit activity scores. For each day, the amount of time in each of the following levels of activity was also reported: sedentary, lightly active, fairly active, and highly active. The percentage of movement time above the fairly active level had a predictable relationship to the designated K level. The average activity measures show decreased levels of activity for obese subjects (body mass index >30). Estimated step counts were highly predictive/redundant with estimated miles walked without setting individual stride lengths. Using linear regression prediction models, calorie estimates were found to be highly dependent on subject age, height, and weight, whereas the proprietary activity score was independent of all 3 demographic factors. This feasibility study demonstrates that the Fitbit activity monitor estimates the activity of subjects with transfemoral amputations, producing results that correlate with their K-level functional activity classifications. The Fitbit activity score is independent of individual variations in age, weight, and height compared with estimated calories for this small sample size. These tools may provide useful insights into prosthetic use in an at-home environment. Copyright © 2014 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  20. A feasibility study on using smartphones to conduct short-version verbal autopsies in rural China.

    Science.gov (United States)

    Zhang, Jing; Joshi, Rohina; Sun, Jixin; Rosenthal, Samantha R; Tong, Miao; Li, Cong; Rampatige, Rasika; Mooney, Meghan; Lopez, Alan; Yan, Lijing L

    2016-01-01

    Currently there are two main sources of mortality data with cause of death assignments in China. Both sources-the Ministry of Health-Vital Registration system and the Chinese Disease Surveillance Point system-present their own challenges. A new approach to cause of death assignment is a smartphone-based shortened version of a verbal autopsy survey. This study evaluates the feasibility and acceptability of this new method conducted by township health care providers (THP) and village doctors (VD) in rural China, where a large proportion of deaths occur in homes and cause of death data are inaccurate or lacking. The Population Health Metrics Research Consortium mobile phone-based shortened verbal autopsy questionnaire was made available on an Android system-based application, and cause of death was derived using the Tariff method (Tariff 2.0); we called this set of tools "msVA." msVA was administered to relatives of the deceased by six THPs and six VDs in 24 villages located in six townships of Luquan County, Hebei Province, China. Subsequently, interviews were conducted among 12 interviewers, 12 randomly selected respondents, and five study staff to assess the feasibility and acceptability of using msVA for mortality data collection. Between July 2013 and August 2013, 268 deaths took place in the study villages. Among the 268 deaths, 227 VAs were completed (nine refusals, 31 migrations and one loss of data due to breakdown of the smartphone). The average time for a VA interview was 21.5 ± 3.4 min (20.1 ± 3.5 min for THP and 23.2 ± 4.1 min for VD). Both THPs and VDs could be successful interviewers; the latter needed more training but had more willingness to implement msVA in the future. The interviews revealed that both interviewers and relatives of the deceased found msVA to be feasible, acceptable, and more desirable than traditional methods. The cost of conducting a new VA was $8.87 per death. Conduction of msVA by VDs in their own villages was

  1. Asymptomatic rhythm and conduction abnormalities in children with acute rheumatic fever: 24-hour electrocardiography study.

    Science.gov (United States)

    Karacan, Mehmet; Işıkay, Sedat; Olgun, Haşim; Ceviz, Naci

    2010-12-01

    Some rhythm and conduction abnormalities can occur in children with acute rheumatic fever. These abnormalities have been defined based on standard electrocardiography; however, the real prevalence of these abnormalities has not been investigated previously by the evaluation of long-term electrocardiographic recordings. In this study, we evaluated the asymptomatic rhythm and conduction abnormalities in children with acute rheumatic fever by evaluating the 24-hour electrocardiography. We evaluated the standard electrocardiography and the 24-hour electrocardiography of 64 children with acute rheumatic fever. On standard electrocardiography, the frequency of the first-degree atrioventricular block was found to be 21.9%. Electrocardiography at 24 hours detected three additional and separate patients with a long PR interval. Mobitz type I block and atypical Wenckebach periodicity were determined in one patient (1.56%) on 24-hour electrocardiography. While accelerated junctional rhythm was detected in three patients on standard electrocardiography, it was present in nine patients according to 24-hour electrocardiography. Premature contractions were present in 1.7% of standard electrocardiography, but in 29.7% of 24-hour electrocardiography. Absence of carditis was found to be related to the presence of accelerated junctional rhythm (p > 0.05), and the presence of carditis was found to be related to the presence of premature contractions (p = 0.000). In conclusion, our results suggest that in children with acute rheumatic fever, the prevalence of rhythm and conduction abnormalities may be much higher than determined on standard electrocardiography. Further studies are needed to clarify whether or not these abnormalities are specific to acute rheumatic fever.

  2. Morphology and conductivity studies of a new solid polymer electrolyte: (PEG)LiClO4

    Indian Academy of Sciences (India)

    Th Joykumar Singh; S V Bhat

    2003-12-01

    A new solid polymer electrolyte, (PEG)LiClO4, consisting of poly(ethylene)glycol of molecular weight 2000 and LiClO4 was prepared and characterized using XRD, IR, SEM, DSC, NMR and impedance spectroscopy techniques. XRD and IR results show the formation of the polymer–salt complex. The samples with higher salt concentration are softer, less opaque and less smooth compared to the low salt concentration samples. DSC studies show an increase in the glass transition temperature and a decrease in the degree of crystallinity with increase in the salt concentration. Melting temperature of SPEs is lower than the pure PEG 2000. Room temperature 1H and 7Li NMR studies were also carried out for the (PEG)iClO4 system. The 1H linewidth decreases as salt concentration increases in a similar way to the decrease in the crystalline fraction and reaches a minimum at around = 46 and then increases. 7Li linewidth was found to decrease first and then to slightly increase after reaching a minimum at = 46 signifying the highest mobility of Li ions for this composition. Room temperature conductivity first increases with salt concentration and reaches a maximum value ( = 7.3 × 10-7 S/cm) at = 46 and subsequently decreases. The temperature dependence of the conductivity can be fitted to the Arrhenius and the VTF equations in different temperature ranges. The ionic conductivity reaches a high value of ∼ 10-4 S/cm close to the melting temperature.

  3. TU-CD-304-09: Feasibility Study for Thermoplastic Mask Set Up Monitoring Using Force Sensing Resistor (FSR) Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T; Cho, M; Kang, S; Kim, D; Kim, K; Shin, D; Suh, T [The Catholic University of Korea College of Medicine, Seoul (Korea, Republic of); Kim, S [Virginia Commonwealth University, Richmond, VA (United States)

    2015-06-15

    Purpose: To improve the setup accuracy of thermoplastic mask, we developed a new monitoring method based on force sensing technology and evaluated its feasibility. Methods: The thermoplastic mask setup monitoring system consists of a force sensing resistor sensor unit, a signal transport device, a control PC and an in-house software. The system is designed to monitor pressure variation between the mask and patient in real time. It also provides a warning to the user when there is a possibility of movement. A preliminary study was performed to evaluate the reliability of the sensor unit and developed monitoring system with a head phantom. Then, a simulation study with volunteers was conducted to evaluate the feasibility of the monitoring system. Note that the sensor unit can have multiple end-sensors and every end-sensor was confirmed to be within 2% reliability in pressure reading through a screening test. Results: To evaluate the reproducibility of the proposed monitoring system in practice, we simulated a mask setup with the head phantom. FRS sensors were attached on the face of the head phantom and pressure was monitored. For 3 repeated mask setups on the phantom, the variation of the pressure was less than 3% (only 1% larger than 2% potential uncertainty confirmed in the screening test). In the volunteer study, we intended to verify that the system could detect patient movements within the mask. Thus, volunteers were asked to turn their head or lift their chin. The system was able to detect movements effectively, confirming the clinical feasibility of the monitoring system developed. Conclusion: Through the proposed setup monitoring method, it is possible to monitor patient motion inside a mask in real time, which has never been possible with most commonly used systems using non-radiographic technology such as infrared camera system and surface imaging system. This work was supported by the Radiation Technology R&D program (No. 2013M2A2A7043498) and the Mid

  4. Blackbird Creek Monitoring Program to Study the impact of Climate Change and Land Use

    Science.gov (United States)

    Ozbay, G.; Chintapenta, L. K.; Roeske, K. P.; Stone, M.; Phalen, L.

    2014-12-01

    The Blackbird Creek Monitoring Program at Delaware State University continues to utilize various perspectives to study the dynamics of one of Delaware's most pristine ecosystems. The water quality of Blackbird Creek has been constantly monitored for 3 years and correlated with the rain and storm events. Soil nutrients composition has been studied by extracting the water associated with soil aggregates and analyzing the levels of different nutrients. Soil quality is also assessed for heavy metals to identify potential human impact that may affect the health of ecosystem. Within the Blackbird Creek there is a threat to native plant communities from invasive plant species as they alter the ecosystem dynamics. Saltmarsh cord grass (Spartina alterniflora) and common reed (Phragmites australius) are the common wetland plants. Aerial mapping of the creek has been conducted to determine the area covered by invasive plant species. The microbial community structure plays a key role in soil carbon and nitrogen cycles in the ecosystem. Molecular analysis has been performed to study the microbial diversity with respect to the type of marsh grasses. This program has also incorporated the use of diatoms as biological indicators to assess the health of ecosystem and correlate that data with physical and chemical water quality data. The abundance and diversity of macro fauna such as blue crabs, fish and other significant species has also been studied. Stable isotopic analysis of these macro fauna has also been performed to study the food web. The results from this program will be helpful in addressing environmental challenges and designing management strategies.

  5. The Validity of Graduate Management Admission Test Scores: A Summary of Studies Conducted from 1997 to 2004

    Science.gov (United States)

    Talento-Miller, Eileen; Rudner, Lawrence M.

    2008-01-01

    The validity of Graduate Management Admission Test (GMAT) scores is examined by summarizing 273 studies conducted between 1997 and 2004. Each of the studies was conducted through the Validity Study Service of the test sponsor and contained identical variables and statistical methods. Validity coefficients from each of the studies were corrected…

  6. The Validity of Graduate Management Admission Test Scores: A Summary of Studies Conducted from 1997 to 2004

    Science.gov (United States)

    Talento-Miller, Eileen; Rudner, Lawrence M.

    2008-01-01

    The validity of Graduate Management Admission Test (GMAT) scores is examined by summarizing 273 studies conducted between 1997 and 2004. Each of the studies was conducted through the Validity Study Service of the test sponsor and contained identical variables and statistical methods. Validity coefficients from each of the studies were corrected…

  7. Nerve conduction studies in lower limb of elite Nepalese football players: an insight into neural adaptations.

    Science.gov (United States)

    Sharma, Deepak; Paudel, Bishnu H; Khadka, Rita; Thakur, Dilip; Shah, Dev K; Sapkota, Niraj K; Yadav, Ram L; Yadav, Prakash K

    2017-03-01

    The study was aimed to assess somatic neural alterations in lower limbs of elite Nepalese football players by comparing their nerve conduction parameters with non-athletic controls. Players (N.=27, age 22.74±2.52 yrs.) with excellent cardio-respiratory fitness and presenting no signs of injuries, and sedentary controls (N.=29, age 23.41±2.95 yrs.) were recruited for the study. Standard nerve conduction techniques were applied to evaluate posterior tibial and sural nerves in the dominant and non-dominant limbs of each individual. Conduction velocity, onset latency, amplitude and duration of the motor and sensory evoked responses were recorded. The players had significantly lower resting mean heart rate, systolic and diastolic blood pressure than controls. Tibial compound muscle action potential (CMAP) showed higher amplitude as compared to controls; tibial proximal CMAP amplitude [(13.624±4.57) vs. (10.810±4.62) mV, P=0.035] of dominant leg, tibial proximal [(13.893±4.60) vs. (11.083±4.51) mV, P=0.045] and distal [(16.388±3.62) vs. (13.958±4.65) mV, P=0.049] amplitude of non-dominant leg. Likewise, players had significantly shorter tibial CMAPs duration of each lower limb compared with corresponding limb of controls. Sural nerve of non-dominant leg revealed shortened sensory nerve action potential duration [(1.729±0.25) vs. (1.904±0.289) ms, P=0.018]. Increased tibial CMAP amplitude and decreased CMAP duration in players suggest excitation of more number of motor units and higher synchronicity of muscle fibers' discharge than in controls respectively. Higher amplitude can also be attributed to increase in muscle fiber size and/or efficiency of neuromuscular transmission. Increased synchronicity indirectly reflects narrow range of conduction velocity among tibial neurons. The adaptive changes in somatic nerves need more crucial research for exact identification of sites and the structures responsible.

  8. Suitability of MEMS Accelerometers for Condition Monitoring: An experimental study.

    Science.gov (United States)

    Albarbar, Alhussein; Mekid, Samir; Starr, Andrew; Pietruszkiewicz, Robert

    2008-02-06

    With increasing demands for wireless sensing nodes for assets control and condition monitoring; needs for alternatives to expensive conventional accelerometers in vibration measurements have been arisen. Micro-Electro Mechanical Systems (MEMS) accelerometer is one of the available options. The performances of three of the MEMS accelerometers from different manufacturers are investigated in this paper and compared to a well calibrated commercial accelerometer used as a reference for MEMS sensors performance evaluation. Tests were performed on a real CNC machine in a typical industrial environmental workshop and the achieved results are presented.

  9. The potential influence of Internet-based social networking on the conduct of clinical research studies.

    Science.gov (United States)

    Glickman, Seth W; Galhenage, Sam; McNair, Lindsay; Barber, Zachry; Patel, Keyur; Schulman, Kevin A; McHutchison, John G

    2012-02-01

    The rapid growth of internet usage has led to an explosion of social networking sites for discussion of health issues. This provides a forum for subjects to communicate with one another during the course of the studies. Previous studies have raised concerns about the quality of health information on social networking sites, although none have evaluated content related to ongoing clinical trials. We reviewed material posted in virtual communities by self-identified clinical trial participants. We identified material posted in online health forums that could introduce bias into clinical research studies; we believe that this issue warrants further study and discussion. Physicians and others who conduct clinical trials should be aware of this issue. Study investigators and research teams should also talk to their study subjects about where and how they are obtaining information in order to prevent behaviors and correct misinformation that could put a subject's safety or the study objectives at risk. Given the rapid increase in Internet use for health care, a broader evaluation of both the benefits and potential risks of social networking among research participants during the course of a clinical trial appears warranted.

  10. Behavioral trends in young children with conductive hearing loss: a case-control study.

    Science.gov (United States)

    Gouma, Panagiota; Mallis, Antonios; Daniilidis, Vasilis; Gouveris, Haralambos; Armenakis, Nikolaos; Naxakis, Stephanos

    2011-01-01

    Otitis media with effusion (OME) is a common condition affecting children and a well-known cause of conductive hearing loss that can potentially lead to speech development disorders. Recent studies, however, have demonstrated the influence of OME on development of attention disorders or social adaptation and acceptance. Hence, this study aimed to investigate the behavioral trends of children with OME based on the Achenbach test. A group of 117 patients with episodes of OME at the age of 4-5 was compared with a control group according to the Achenbach system of evaluation, by application of the Child Behavior Checklist questionnaire (CBCL). Patients suffering from OME had more anxiety/depression related disorders and attention disorders as compared with the control group. The psychological effect of OME in children of ages 6-8 is evident with anxiety and depression disorders being especially prominent among these patients.

  11. IN-SERVICE HYDRAULIC CONDUCTIVITY OF GCLS IN LANDFILL COVERS - LABORATORY AND FIELD STUDIES

    Science.gov (United States)

    Laboratory experiments using multi-species inorganic solutions (containing calcium and sodium) were conducted on specimens of a new geosynthetic clay liner (GCL) containing sodium bentonite to determine how cation exchange and desiccation affected the hydraulic conductivity. Calc...

  12. Wind Turbine Gearbox Condition Monitoring Round Robin Study - Vibration Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, S.

    2012-07-01

    The Gearbox Reliability Collaborative (GRC) at the National Wind Technology Center (NWTC) tested two identical gearboxes. One was tested on the NWTCs 2.5 MW dynamometer and the other was field tested in a turbine in a nearby wind plant. In the field, the test gearbox experienced two oil loss events that resulted in damage to its internal bearings and gears. Since the damage was not severe, the test gearbox was removed from the field and retested in the NWTCs dynamometer before it was disassembled. During the dynamometer retest, some vibration data along with testing condition information were collected. These data enabled NREL to launch a Wind Turbine Gearbox Condition Monitoring Round Robin project, as described in this report. The main objective of this project was to evaluate different vibration analysis algorithms used in wind turbine condition monitoring (CM) and find out whether the typical practices are effective. With involvement of both academic researchers and industrial partners, the project sets an example on providing cutting edge research results back to industry.

  13. Study of the dependence the thermal conductivity of nanofluids on different parameters

    Science.gov (United States)

    Pryazhnikov, M. I.; Minakov, A. V.; Guzei, D. V.; Rudyak, V. Ya

    2016-10-01

    The paper presents the results of systematic measurements of the thermal conductivity coefficient of nanofluids at room temperature. It is shown that the thermal conductivity of all considered nanofluids depend on concentration, nanopartical size, as well as the base fluid properties. It was revealed that thermal conductivity coefficient of nanofluids increases with increasing concentration and size of nanoparticles.

  14. Experimental Study on Thermal Conductivity of Self-Compacting Concrete with Recycled Aggregate

    Directory of Open Access Journals (Sweden)

    María Fenollera

    2015-07-01

    Full Text Available The research focuses on the use of recycled aggregate (RA, from waste pieces generated during production in precast plants for self-compacting concrete (SCC manufactured with a double sustainable goal: recycle manufacturing waste (consumption and improvement of the thermal properties of the manufactured product (energy efficiency. For this purpose, a mechanical study to ensure technical feasibility of the concrete obtained has been conducted, as well as a thermal analysis of recycled SCC specimens of 50 N/mm2 resistance, with different RA doses (0%, 20%, 50% and 100%. The main parameters that characterize a SCC in both states, fresh (slump-flow and hard (compressive strength, have been tested; also, a qualitative analysis of the thermal conductivity using infrared thermography (IRT and quantitative analysis with heat flow meter at three temperatures 20 °C, 25 °C and 30 °C have been performed. The results suggest the existence of two different thermal behaviors: concretes with 0% and 20% of RA, and on the other hand concretes with 50% and 100% of RA. It has also demonstrated the validity of the IRT as sampling technique in estimating the thermal behavior of materials having reduced range of variation in parameters.

  15. Third order optical nonlinear studies on highly conducting vertically aligned carbon nanoflakes

    Science.gov (United States)

    Singh, Mukesh; Kumar, Indrajeet; Khare, Alika; Agarwal, Pratima

    2016-12-01

    Third order optical nonlinearity of carbon nanoflakes were studied by modified single beam closed aperture Z-scan technique using a continuous wave He-Ne laser at 632.8 nm. Thin films of vertically aligned carbon nanoflakes were synthesized on corning glass substrate at substrate temperature of 400 °C by hot filament chemical vapor deposition. Films were characterized by scanning electron microscope and atomic force microscopy which confirmed that carbon nanoflakes were vertically aligned on the substrate. Temperature dependent electrical conductivity measurements in temperature range of 300-480 K under high vacuum (˜10-5 mbar) showed that conductivity of the films was increased almost linearly with increasing temperature with a weak temperature dependence. The negative temperature coefficient of resistance indicates semiconducting behavior of the films. Nonlinear refractive index coefficient (n 2) of the films was found to be of the order of 10-5 cm2 W-1, which can be important for the applications in the field of nonlinear photonics.

  16. Environmental studies conducted at the Fenton Hill Hot Dry Rock geothermal development site

    Energy Technology Data Exchange (ETDEWEB)

    Miera, F.R. Jr.; Langhorst, G.; McEllin, S.; Montoya, C.

    1984-05-01

    An environmental investigation of Hot Dry Rock (HDR) geothermal development was conducted at Fenton Hill, New Mexico, during 1976-1979. Activities at the Fenton Hill Site included an evaluation of baseline data for biotic and abiotic ecosystem components. Identification of contaminants produced by HDR processes that had the potential for reaching the surrounding environment is also discussed. Three dominant vegetative communities were identified in the vicinity of the site. These included grass-forb, aspen, and mixed conifer communities. The grass-forb area was identified as having the highest number of species encountered, with Phleum pratense and Dactylis glomerata being the dominant grass species. Frequency of occurrence and mean coverage values are also given for other species in the three main vegetative complexes. Live trapping of small mammals was conducted to determine species composition, densities, population, and diversity estimates for this component of the ecosystem. The data indicate that Peromyscus maniculatus was the dominant species across all trapping sites during the study. Comparisons of relative density of small mammals among the various trapping sites show the grass-forb vegetative community to have had the highest overall density. Comparisons of small mammal diversity for the three main vegetative complexes indicate that the aspen habitat had the highest diversity and the grass-forb habitat had the lowest. Analyses of waste waters from the closed circulation loop indicate that several trace contaminants (e.g., arsenic, cadmium, fluoride, boron, and lithium) were present at concentrations greater than those reported for surface waters of the region.

  17. Electron thermalization and attachment in pulse-irradiated oxygen studied by time-resolved microwave conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Warman, J.M. (Technische Univ., Delft (Netherlands). Dept. of Radiation Chemistry); Cooper, Ronald (Melbourne Univ., Parkville (Australia). Dept. of Physical Chemistry)

    1990-01-01

    The microwave conductivity of oxygen gas following nanosecond pulsed irradiation has been studied for pressures from 5 to 50 torr. The conductivity is found to decrease by a factor of approx. 20 in the early stages (tN < 2 x 10{sup 11} s cm{sup -3}) following the pulse. This is attributed to a decrease in the electron collision frequency as the initial excess energy of the electrons becomes degraded. A further decrease found at longer times is due to the three-body attachment of electrons to O{sub 2} with a rate constant of 2.4 x 10{sup -30} cm{sup 6}s{sup -1}. Above a pressure of approx. 30 torr significant attachment begins to occur while electrons are still superthermal. The time at which the microwave signal is within 10% of the value corresponding to thermal energies is given by {tau}{sub th}P approx = 15 {mu}s.torr. (author).

  18. Application of the thermoelectric phenomena to study the unsteady-state thermal conductivity

    Science.gov (United States)

    Poprawski, W.; Radojewska, E. B.

    2016-09-01

    We present an experimental set-up designed to investigate the unsteady-state thermal conductivity. A sine-shaped thermal wave is produced by a thermoelectric device and the change in temperature at two points in a metal rod is measured. The investigation is carried out for seven thermal wave frequencies. The thermal wave penetration depth and the thermal conductivity are determined by two methods: from the wave amplitude ratio and from the wave phase shift at two locations. The presented system also offers a determination of the thermal wave propagation velocity and the thermal diffusivity coefficient of the medium. The obtained measurement results are discussed. The specification of the measurement system is preceded by a theoretical and comprehensive description of the phenomena taking part in the experiment. With regard to the role of thermoelectric phenomena in contemporary science and technology the presented experiment is suitable for students in university laboratories studying metrology, electronics, space technology, energy harvesting, energo-mechanics, renewable energy science, chemical technology, bio-engineering and other similar courses.

  19. Conductivity and optical studies of plasticized solid polymer electrolytes doped with carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Suriani, E-mail: sue_83@um.edu.my [Advanced Materials Research Laboratory, Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Ahmad, Roslina; Johan, Mohd Rafie [Advanced Materials Research Laboratory, Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2012-01-15

    Solid polymer electrolyte films based on Poly(ethylene oxide) (PEO) complexed with lithium hexafluorophosphate (LiPF{sub 6}), ethylene carbonate (EC) and amorphous carbon nanotube ({alpha}CNTs) were prepared by the solution cast technique. The conductivity increases from 10{sup -10} to 10{sup -5} Scm{sup -1} upon the addition of salt. The incorporation of EC and {alpha}CNTs to the salted polymer enhances the conductivity significantly to 10{sup -4} and 10{sup -3} Scm{sup -1}. The complexation of doping materials with polymer were confirmed by X-ray diffraction and infrared studies. Optical properties like direct band gap and indirect band gap were investigated for pure and doped polymer films in the wavelength range 200-400 nm. It was found that the energy gaps and band edge values shifted to lower energies on doping. - Highlights: > Optical band gap values show the decreasing trend with an increasing dopant concentration. > It is also observed that the absorption edge shifted to longer wavelength on doping. > Results of the optical measurements indicate the presence of a well-defined {pi}{yields}{pi}* transition associated with the formation of a conjugated C=O and/or C=O electronic structure.

  20. Environmental studies conducted at the Fenton Hill Hot Dry Rock geothermal development site

    Energy Technology Data Exchange (ETDEWEB)

    Miera, F.R. Jr.; Langhorst, G.; McEllin, S.; Montoya, C.

    1984-05-01

    An environmental investigation of Hot Dry Rock (HDR) geothermal development was conducted at Fenton Hill, New Mexico, during 1976-1979. Activities at the Fenton Hill Site included an evaluation of baseline data for biotic and abiotic ecosystem components. Identification of contaminants produced by HDR processes that had the potential for reaching the surrounding environment is also discussed. Three dominant vegetative communities were identified in the vicinity of the site. These included grass-forb, aspen, and mixed conifer communities. The grass-forb area was identified as having the highest number of species encountered, with Phleum pratense and Dactylis glomerata being the dominant grass species. Frequency of occurrence and mean coverage values are also given for other species in the three main vegetative complexes. Live trapping of small mammals was conducted to determine species composition, densities, population, and diversity estimates for this component of the ecosystem. The data indicate that Peromyscus maniculatus was the dominant species across all trapping sites during the study. Comparisons of relative density of small mammals among the various trapping sites show the grass-forb vegetative community to have had the highest overall density. Comparisons of small mammal diversity for the three main vegetative complexes indicate that the aspen habitat had the highest diversity and the grass-forb habitat had the lowest. Analyses of waste waters from the closed circulation loop indicate that several trace contaminants (e.g., arsenic, cadmium, fluoride, boron, and lithium) were present at concentrations greater than those reported for surface waters of the region.

  1. Study on phase stability and ionic conductivity in Hf{sup IV}-substituted bismuth vanadate

    Energy Technology Data Exchange (ETDEWEB)

    Beg, Saba [Department of Chemistry, Aligarh Muslim University, Aligarh 202002 (India); Al-Areqi, Niyazi A.S., E-mail: niyazi.alareqi@gmail.com [Department of Chemistry, Aligarh Muslim University, Aligarh 202002 (India)

    2009-11-15

    Influence of dopant concentration on thermal behaviour of Bi{sub 4}Hf{sub x}V{sub 2-x}O{sub 11-(x/2)-{delta} }was studied over composition range 0 {<=} x {<=} 0.40 by combination of data obtained from X-ray powder diffraction, differential scanning calorimetric and conductivity measurements. For very low dopant concentrations, the system was found to mimic the parent compound in exhibiting two consecutive transitions,{alpha} {r_reversible} {beta} {r_reversible} {gamma}, with slightly different onset temperatures compared to that of parent, whereas the existence of {beta} {r_reversible} {gamma} transition was well confirmed in composition range 0.15 {<=} x {<=} 0.20 and typified in Arrhenius plots to two line regions of different activation energy. For composition range 0.25 {<=} x {<=} 0.40, no significant structural changes associated with {gamma}' {r_reversible} {gamma} transition is visible in X-ray powder diffraction data with variable temperature. Despite this, the existence of {gamma}' {r_reversible} {gamma} transition was evident by some complex incommensurate modulations observed in Arrhenius plots and DSC/DTA thermograms. It was surprising to note the appearance of a new destructive {gamma} {r_reversible} {beta}' transition, resulting from distortion of the tetragonal phase structure at higher temperatures. The relationship between phase stability and ionic conductivity was also rationalized.

  2. Diagnostic sensitivity of motor nerve conduction studies in ulnar neuropathy at the elbow.

    Directory of Open Access Journals (Sweden)

    Yokota,Tadaaki

    1995-10-01

    Full Text Available Seventy-six patients with ulnar neuropathy at the elbow were divided into 3 classes (Grades I, II, and III according to their clinical features and the maximal motor nerve conduction velocity (MCV, and the amplitude ratios at the across-elbow segment were retrospectively analyzed. To determine the criteria for abnormality, a control study was conducted on 150 healthy volunteers ranging in age from 20 to 89 years (6 age groups. The normal value for MCV could be set for two age groups: those under 60 and those over 60 years old. The 95% confidence limit was 54m/s for the former and 50m/s for the latter. There was no statistically significant difference in the amplitude ratio among the age groups. The confidence limit was set uniformly at 0.82 (above elbow/below elbow. An abnormality in either MCV or the amplitude ratio was found in 66.7% of Grade I (recent and mild symptoms, 89.7% of Grade II (persistent symptoms, and 100% of Grade III cases (marked intrinsic muscle atrophy. Evaluation using the combination of MCV and the amplitude ratio, considering the age-related normal value, appeared to be useful in establishing a differential diagnosis of ulnar neuropathy at the elbow.

  3. A study on the condition monitoring for safety-related electric cables

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chul Hwan; Ahn, S. P.; Yeo, S. M.; Kang, Y. S.; Ahn, S. M.; Kim, I. S.; Kim, D. S.; Kang, J. S. [Sungkyunkwan Univ., Suwon (Korea, Republic of)

    2002-03-15

    In this report, we have studied compositions and characteristics of various types of insulation material for cables in Nuclear Power Plant. We arrange relationship with condition monitoring methods. Also, we propose new condition monitoring method using third harmonic frequency. We test the proposed method with CV cables. We also describe about feature of condition monitoring such as application, theory, characteristic, thereby other engineer can confirm to advantage and disadvantage for each method, and possibly choice adequate condition monitoring method for various types of cables.

  4. Intensive monitoring of duloxetine : results of a web-based intensive monitoring study

    NARCIS (Netherlands)

    Härmark, Linda; van Puijenbroek, Eugene; van Grootheest, Kees

    2013-01-01

    Duloxetine (Cymbalta(A (R))) is a serotonin (5-HT) and norepinephrine (NE) re-uptake inhibitor indicated for the treatment of depression, diabetic peripheral neuropathic pain and general anxiety disorder. The aim of this study is to gain insight in the user and safety profile of duloxetine in daily

  5. Evaluation of atrophy of foot muscles in diabetic neuropathy -- a comparative study of nerve conduction studies and ultrasonography

    DEFF Research Database (Denmark)

    Severinsen, Kaare; Andersen, Henning

    2007-01-01

    OBJECTIVE: To evaluate the relation between the findings at nerve conduction studies and the size of small foot muscles determined by ultrasonography. METHODS: In 26 diabetic patients the size of the extensor digitorum brevis muscle (EDB) and of the muscles between the first and second metatarsal...... related to the size of the small foot muscles as determined by ultrasonography. SIGNIFICANCE: In diabetic patients motor nerve conduction studies can reliably determine the size of small foot muscles. Udgivelsesdato: 2007-Oct....... RESULTS: Seventeen patients fulfilled the criteria for diabetic neuropathy. The cross-sectional area of the EDB muscle and the thickness of the MIL muscle were 116 +/- 65 mm2 and 29.6 +/- 8.2 mm, respectively. Close relations were established between muscle size and the amplitude of the CMAP...

  6. Theoretical and experimental study of the thermal conductivity of nanoporous media

    Institute of Scientific and Technical Information of China (English)

    JIANG PeiXue; XIANG Heng; XU RuiNa

    2012-01-01

    The nanoparticle thermal conductivity and nanoscale thermal contact resistance were investigated by molecular dynamics (MD) simulations to further understand nanoscale porous media thermal conductivity.Macroscale porous media thermal conductivity models were then revised for nanoporous media.The effective thermal conductivities of two packed beds with nanoscale nickel particles and a packed bed with microscale nickel particles were then measured using the Hot Disk.The measured results show that the nano/microscale porous media thermal conductivities were much less than the thermal conductivities of the solid particles.Comparison of the measured and calculated results shows that the revised combined parallel-series model and the revised Hsu-Cheng model can accurately predict the effective thermal conductivities of micro-and nanoparticle packed beds.

  7. Space Weather Monitoring for ISS Geomagnetic Storm Studies

    Science.gov (United States)

    Minow, Joseph I.; Parker, Linda Neergaard

    2013-01-01

    The International Space Station (ISS) space environments community utilizes near real time space weather data to support a variety of ISS engineering and science activities. The team has operated the Floating Potential Measurement Unit (FPMU) suite of plasma instruments (two Langmuir probes, a floating potential probe, and a plasma impedance probe) on ISS since 2006 to obtain in-situ measurements of plasma density and temperature along the ISS orbit and variations in ISS frame potential due to electrostatic current collection from the plasma environment (spacecraft charging) and inductive (vxB) effects from the vehicle motion across the Earth s magnetic field. An ongoing effort is to use FPMU for measuring the ionospheric response to geomagnetic storms at ISS altitudes and investigate auroral charging of the vehicle as it passes through regions of precipitating auroral electrons. This work is challenged by restrictions on FPMU operations that limit observation time to less than about a third of a year. As a result, FPMU campaigns ranging in length from a few days to a few weeks are typically scheduled weeks in advance for ISS engineering and payload science activities. In order to capture geomagnetic storm data under these terms, we monitor near real time space weather data from NASA, NOAA, and ESA sources to determine solar wind disturbance arrival times at Earth likely to be geoeffective (including coronal mass ejections and high speed streams associated with coronal holes) and activate the FPMU ahead of the storm onset. Using this technique we have successfully captured FPMU data during a number of geomagnetic storm periods including periods with ISS auroral charging. This presentation will describe the strategies and challenges in capturing FPMU data during geomagnetic storms, the near real time space weather resources utilized for monitoring the space weather environment, and provide examples of auroral charging data obtained during storm operations.

  8. Geoelectric Monitoring Studies for the Carbon Dioxide Geological Storage

    Science.gov (United States)

    Tosha, T.; Ishido, T.; Nishi, Y.

    2008-12-01

    Self-potential (SP) anomalies of negative polarity are frequently observed near deep wells. These anomalies appear to be caused by an underground electrochemical mechanism similar to a galvanic cell: the metallic well casing acts as a vertical electronic conductor connecting regions of differing redox potential. Electrons flow upward though the casing from a deeper reducing environment to a shallower oxidizing environment, and simultaneously a compensating vertical flow of ions is induced in the surrounding formation to maintain charge neutrality. If the redox potential in the deeper region is then increased by injecting an oxidizing substance, the difference in redox potential between the shallower and deeper regions will be reduced, resulting in an SP increase near the wellhead. We have been monitoring earth-surface SP during gas injection tests at various sites in Japan. When air was injected into a 100-meter well within a geothermal field, a remarkable simultaneous increase in SP centered on the wellhead was observed. A small but unmistakable SP increase also took place near the wellhead when CO2 was slowly injected, which we believe was caused by local pH reduction at depth resulting from dissolution of the injected CO2 in the aquifer fluid. SP changes were also observed in Yubari, geological sequestration test site in Japan, where one well injected CO2 into a coal bed and the fluid containing CH4 was produced from a nearby well. The CO2 content of the fluid was also monitored. SP increased substantially around the injection wellhead, but no significant SP changes attributable to the injection were observed near the production wellhead. This is consistent with the observation that CO2 did not break through into the production well during the experiment. We believe that SP measurements at the earth surface represent a new and promising technique for sensing the approach of CO2 to well casings deep within the subsurface.

  9. Comparative Studies of the Adsorption of Direct Dye on Activated Carbon and Conducting Polymer Composite

    Directory of Open Access Journals (Sweden)

    J. Raffiea Baseri

    2012-01-01

    Full Text Available This study analyses the feasibility of removing Direct Blue 71 from aqueous solution by different adsorbents such as activated carbon (TPAC and Poly pyrrole polymer composite (PPC prepared from Thevetia Peruviana. Batch mode adsorption was performed to investigate the adsorption capacities of these adsorbents by varying initial dye concentration, temperature, agitation time and pH. The performance of TPAC was compared with PPC. Among the adsorbents, PPC had more adsorption capacity (88.24% than TPAC (58.82% at an initial concentration of 50 mg/L and at 30°C. The experimental data best fitted with pseudo second order kinetic model. The adsorption data fitted well for Langmuir adsorption isotherm. Thermodynamic parameters for the adsorbents were also evaluated. The carbon embedded in conducting polymers matrix show better adsorptive properties than activated carbon.

  10. Synthesis, characterization and conductivity studies of ZnFe{sub 2}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Narsimulu, D.; Satyanarayana, N., E-mail: nallanis2011@gmail.com [Department of Physics, Pondicherry University, Pondicherry 605 014 (India); Venkateswarlu, M. [R& D, Amara Raja batteries, Thirupathi 517 501 (India)

    2015-06-24

    Transition metal ferrites with general formula AB{sub 2}O{sub 4} (A=Co, Cu, Mn, Zn, B=Fe{sup +3}) could be used as an anode materials in lithium ion battery (LIB), because, lithium ion batteries fabricated using ferrite materials show the high capacity than commonly used graphite. The ZnFe{sub 2}O{sub 4} with cubic spinel structured material was prepared by acrylamide assisted citrate combustion process. Phase, structural coordination and thermal behavior of the prepared ZnFe{sub 2}O{sub 4} were confirmed by powder X-ray diffraction, FTIR spectra and TG/DTA thermogram respectively. Morphology and specific surface area of the ZnFe{sub 2}O{sub 4} were identified by SEM and BET surface analyzer respectively and its conductivity studies were made through impedance spectroscopy.

  11. Which motor nerve conduction study is best in ulnar neuropathy at the elbow?

    Science.gov (United States)

    Shakir, Ali; Micklesen, Paula J; Robinson, Lawrence R

    2004-04-01

    There is debate regarding how best to utilize ulnar motor nerve conduction velocity (MNCV) to identify ulnar neuropathy at the elbow (UNE). We used receiver operator characteristic (ROC) curves to compare absolute across-elbow MNCV with MNCV difference between elbow and forearm segments (VDIF) when recording from abductor digiti minimi (ADM) and first dorsal interosseous (FDI) muscles. Also, we determined how their utility was impacted by low amplitudes of compound muscle action potentials (CMAPs). We studied 85 subjects with UNE and 77 subjects with carpal tunnel syndrome but without clinical evidence of UNE. The UNE group was divided into three subgroups based on CMAP amplitude. At 95% specificity, MNCV sensitivities were 80% at ADM and 77% at FDI, and VDIF sensitivities were 51% at ADM and 38% at FDI. The ROC curves showed MNCV to be superior to VDIF across all amplitude subgroups; however, confidence intervals overlapped when amplitude was high.

  12. Utilization and yield of nerve conduction studies and electromyography in older adults

    LENUS (Irish Health Repository)

    Mello, S

    2016-02-01

    Older adults are at increased risk of both central and peripheral neurological disorders. Impaired nerve and muscle deficits contribute to morbidity and reduced quality of life. Our aim was to define the utilization and yield of nerve conduction studies (NCS) and electromyography (EMG) in older adults. We reviewed NCS and EMG records for all patients older than age 65 in the year 2012. Of 1,530 NCS and EMGs performed, 352 (23%) were in patients older than 65 (mean age 73.7, 52% male). Two hundred and eighty-eight (83.7%) of NCS were abnormal as were 102 (71.8%) of EMGs. The likelihood of having an abnormal test result increased with increasing age. The most common diagnosis was peripheral neuropathy 231 (65.4%). The incidence of peripheral neuropathy is particularly high in this age group, and detection is vital to prevent morbidity and improve quality of life.

  13. Phrenic nerve conduction studies as a biomarker of respiratory insufficiency in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Jenkins, J A Liberty; Sakamuri, Sarada; Katz, Jonathan S; Forshew, Dallas A; Guion, Lee; Moore, Dan; Miller, Robert G

    2016-01-01

    Our objective was to examine the value of phrenic nerve conduction studies (PNCS) in quantifying diaphragm dysfunction in ALS, as no ideal test of respiratory insufficiency exists in ALS. We prospectively recorded bilateral PNCS, forced vital capacity (FVC), maximum inspiratory pressure (MIP), sniff nasal inspiratory pressure (SNIP), respiratory rate, ALSFRS-R, and respiratory symptoms in 100 ALS patients attending our clinic over a nine-month period. Survival data were collected for two years. Results showed that PNCS were reproducible and well tolerated. When the Pamp was abnormal (respiratory rate >18 was 7.2 (95% CI 2.2-37.2, p 80%. The median survival was 1.07 years when the Pamp was 2 years when the Pamp was >0.3 mV (p respiratory insufficiency and may prove to be a useful biomarker of respiratory dysfunction in ALS.

  14. Performance monitoring in autism spectrum disorders: A systematic literature review of event-related potential studies.

    Science.gov (United States)

    Hüpen, Philippa; Groen, Yvonne; Gaastra, Geraldina F; Tucha, Lara; Tucha, Oliver

    2016-04-01

    Autism spectrum disorder (ASD) is marked by impairments in social-emotional situations, executive functioning, and behavioral regulation. These symptoms may be related to deficits in performance monitoring, i.e., the ability to observe and evaluate one's own behavior and performance which is necessary for the regulation of future behavior. The present literature review investigated electroencephalic correlates of performance monitoring in ASD. Event-related potentials (ERPs) considered in this review included internal performance monitoring components (error-related negativity, error positivity), external performance monitoring components (feedback-related negativity, feedback-P3), and observational performance monitoring components (observer error-related negativity, observer feedback-related negativity). The majority of studies point to reduced internal performance monitoring in ASD. External performance monitoring in reward-processing paradigms, where rewards are independent of performance, seems to be intact in ASD. So far, no studies have investigated the observer error-related negativity in ASD. Available data on the observer feedback-related negativity are inconclusive, since only two studies with differential study results investigated this construct in ASD. In general, results suggest that individuals with ASD have problems with internal performance monitoring and with learning from external, abstract feedback. In contrast, the processing of external, concrete feedback seems to be largely intact in ASD.

  15. Effect of adverse childhood experiences on physical health in adulthood: Results of a study conducted in Baghdad city

    Directory of Open Access Journals (Sweden)

    Ameel F Al-Shawi

    2015-01-01

    Full Text Available Background: Studies have revealed a powerful relationship between adverse childhood experiences (ACEs and physical and mental health in adulthood. Literature documents the conversion of traumatic emotional experiences in childhood into organic disease later in life. Objective: The aim was to estimate the effect of childhood experiences on the physical health of adults in Baghdad city. Subjects and Methods: A cross-sectional study was conducted from January 2013 to January 2014. The study sample was drawn from Baghdad city. Multistage sampling techniques were used in choosing 13 primary health care centers and eight colleges of three universities in Baghdad. In addition, teachers of seven primary schools and two secondary schools were chosen by a convenient method. Childhood experiences were measured by applying a modified standardized ACEs-International Questionnaire form and with questions for bonding to family and parental monitoring. Physical health assessment was measured by a modified questionnaire derived from Health Appraisal Questionnaire of Centers for Disease Control and Prevention. The questionnaire includes questions on cerebrovascular diseases, diabetes mellitus, tumor, respiratory and gastrointestinal diseases. Results: Logistic regression model showed that a higher level of bonding to family (fourth quartile is expected to reduce the risk of chronic physical diseases by almost the half (odds ratio = 0.57 and exposure to a high level of household dysfunction and abuse (fourth quartile is expected to increase the risk of chronic physical diseases by 81%. Conclusion: Childhood experiences play a major role in the determination of health outcomes in adulthood, and early prevention of ACEs. Encouraging strong family bonding can promote physical health in later life.

  16. Formative study conducted in five countries to adapt the community popular opinion leader intervention.

    Science.gov (United States)

    2007-04-01

    To obtain information about the social and cultural factors related to health behaviors influencing HIV/sexually transmitted disease (STD) transmission in study communities in China, India, Peru, Russia, and Zimbabwe so that the assessment and intervention of the National Institute for Mental Health (NIMH) Collaborative HIV/STD Prevention Trial could be adapted appropriately. Field observations, focus groups, in-depth interviews with key informants, and an observation of community social dynamics were conducted as part of a rapid ethnographic assessment. All five sites reported a power dynamic tilted towards men, which rendered women particularly vulnerable to HIV and other STDs. Women's relative lack of power was exemplified by a double standard for extramarital sex, women's limited ability to negotiate sex or condom use, and sexual and physical violence against women. In all sites except Russia, extramarital sex is tolerated for men but proscribed for women. In Peru, power dynamics between men who have sex with men were tilted towards men who self-identified as heterosexual. Condom use (reported to be low across all sites) was often linked to having sex with only those perceived as high-risk partners. Regardless of site or study population, participants agreed on the following characteristics of an ideal community popular opinion leader (C-POL): respectable, credible, experienced (life and sexual), trustworthy, empathetic, well-spoken, and self-confident. The ethnographic studies provided critical information that enabled the study teams to adapt elements of the Trial in culturally appropriate ways in diverse international settings.

  17. COMT and prenatal maternal smoking in associations with conduct problems and crime: the Pelotas 1993 birth cohort study

    OpenAIRE

    Angélica Salatino-Oliveira; Joseph Murray; Christian Kieling; Júlia Pasqualini Genro; Guilherme Polanczyk; Luciana Anselmi; Fernando Wehrmeister; Barros, Fernando C; Ana Maria Baptista Menezes; Luis Augusto Rohde; Mara Helena Hutz

    2016-01-01

    Conduct problems in childhood and adolescence are significant precursors of crime and violence in young adulthood. The purpose of the current study is to test the interaction between prenatal maternal smoking and COMT Val 158 Met in conduct problems and crime in the 1993 Pelotas Birth Cohort Study. Conduct problems were assessed through the parent version of the Strengths and Difficulties Questionnaire at ages 11 and 15 years. A translated version of a confidential self-report questionnaire w...

  18. [Designing and implementation of a web-based quality monitoring system for plasma glucose measurement in multicenter population study].

    Science.gov (United States)

    Liu, Yong; Wang, Limin; Pang, Richard; Mo, Nanxun; Hu, Yan; Deng, Qian; Hu, Zhaohui

    2015-05-01

    The aim of this paper is to describe the designing and implementation of a web-based plasma glucose measurement quality monitoring system to assess the analytical quality of plasma glucose measurements in multicenter population study and provide evidence for the future studies. In the chronic non-communicable disease and related factor surveillance in China, a web based quality monitoring system for plasma glucose measurement was established to conduct evaluation on plasma glucose monitoring quality and effectiveness in 302 surveillance centers, including quality control data entry, transmission and feedback. The majority of the surveillance centers met the quality requirements and passed the evaluation of reproducibility and precision of plasma glucose measurement, only a few centers required intensive training and re-assessment. In order to ensure the completeness and reliability of plasma glucose measurement in the surveillance centers, the establishment of web-based plasma glucose measurement quality control system can facilitate the identification of the qualified surveillance centers and evaluation of plasma glucose measurement quality in different regions. Communication and training are important in ensuring plasma glucose measurement quality. It is necessary to further improve this web-based plasma glucose measurement quality monitoring system in the future to reduce the method specific plasma glucose measurement bias.

  19. Feasibility study of using smart aggregates as embedded acoustic emission sensors for health monitoring of concrete structures

    Science.gov (United States)

    Li, Weijie; Kong, Qingzhao; Ho, Siu Chun Michael; Lim, Ing; Mo, Y. L.; Song, Gangbing

    2016-11-01

    Acoustic emission (AE) is a nondestructive evaluation technique that is capable of monitoring the damage evolution of concrete structures in real time. Conventionally, AE sensors are surface mounted on the host structures, however, the AE signals attenuate quickly due to the high attenuation properties of concrete structures. This study conducts a feasibility study of using smart aggregates (SAs), which are a type of embedded piezoceramic transducers, as embedded AE sensors for the health monitoring of concrete structures. A plain concrete beam with two surface mounted AE sensors and two embedded SAs was fabricated in laboratory and loaded under a designed three-point-bending test. The performance of embedded SAs were compared with the traditional surface mounted AE sensors in their ability to detect and evaluate the damage to the concrete structure. The results verified the feasibility of using smart aggregates as embedded AE sensors for monitoring structural damage in concrete. Potentially, the low cost smart aggregates could function as embedded AE sensors, providing great sensitivity and high reliability in applications for the structural health monitoring of concrete structures.

  20. Electrochemical studies of ferrocene in a lithium ion conducting organic carbonate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Laoire, Cormac O. [Northeastern University, Department of Chemistry and Chemical Biology, Boston, MA 02115 (United States); Plichta, Edward; Hendrickson, Mary [US Army CERDEC, Army Power Division, Ft. Monmouth, NJ 07703 (United States); Mukerjee, Sanjeev [Northeastern University, Department of Chemistry and Chemical Biology, Boston, MA 02115 (United States); Abraham, K.M. [Northeastern University, Department of Chemistry and Chemical Biology, Boston, MA 02115 (United States)], E-mail: kmabraham@comcast.net

    2009-11-01

    We carried out a detailed study of the kinetics of oxidation of ferrocene (Fc) to ferrocenium ion (Fc{sup +}) in the non-aqueous lithium ion conducting electrolyte composed of a solution of 1 M LiPF{sub 6} in 1:1 EC:EMC solvent mixture. This study using cyclic (CV) and rotating disk electrode (RDE) voltammetry showed that the Fc{sup 0}/Fc{sup +} redox couple is reversible in this highly concentrated electrolyte. The ferrocene and ferrocenium ion diffusion coefficients (D) were calculated from these results. In addition, the electron transfer rate constant (k{sup 0}) and the exchange current density for the oxidation of ferrocene were determined. A comparison of the kinetic data obtained from the two electrochemical techniques appears to show that the data from the RDE experiments are more reliable because they are collected under strict mass transport control. A Tafel slope of c.a. 79 mV/decade and a transfer coefficient {alpha} of 0.3 obtained from analysis of the RDE data for ferrocene oxidation suggest that the structure of the activated complex is closer to that of the oxidized specie due to strong interactions with the carbonate solvents. The experiments reported here are relevant to the study of redox reagents for the chemical overcharge protection of Li-ion batteries.

  1. The REporting of studies Conducted using Observational Routinely-collected health Data (RECORD statement.

    Directory of Open Access Journals (Sweden)

    Eric I Benchimol

    2015-10-01

    Full Text Available Routinely collected health data, obtained for administrative and clinical purposes without specific a priori research goals, are increasingly used for research. The rapid evolution and availability of these data have revealed issues not addressed by existing reporting guidelines, such as Strengthening the Reporting of Observational Studies in Epidemiology (STROBE. The REporting of studies Conducted using Observational Routinely collected health Data (RECORD statement was created to fill these gaps. RECORD was created as an extension to the STROBE statement to address reporting items specific to observational studies using routinely collected health data. RECORD consists of a checklist of 13 items related to the title, abstract, introduction, methods, results, and discussion section of articles, and other information required for inclusion in such research reports. This document contains the checklist and explanatory and elaboration information to enhance the use of the checklist. Examples of good reporting for each RECORD checklist item are also included herein. This document, as well as the accompanying website and message board (http://www.record-statement.org, will enhance the implementation and understanding of RECORD. Through implementation of RECORD, authors, journals editors, and peer reviewers can encourage transparency of research reporting.

  2. Ultrasonic Assessment of Females with Carpal Tunnel Syndrome Proved by Nerve Conduction Study

    Directory of Open Access Journals (Sweden)

    Ihsan M. Ajeena

    2013-01-01

    Full Text Available Introduction. Carpal tunnel syndrome (CTS is the most commonly diagnosed entrapment neuropathy of the upper extremity. The objective of this study was to diagnose CTS and to assess its severity using high resolution ultrasound (HRUS depending on the results of nerve conduction study (NCS. Methods. A prospective cross-sectional study, in which HRUS was performed at 63 wrists of 35 female patients with different severity of CTS (as proved by NCS. Furthermore, 40 healthy volunteers (80 wrists underwent the same tests as the patients and have been chosen to match the patients in gender, age, and body mass index (BMI. The cross section area (CSA of the median nerve (MN was obtained using HRUS at the carpal tunnel inlet by direct tracing method. Results. There was a significant difference in the CSA of the MN at the tunnel inlet in CTS patients when compared with the control group. In fact, the CSA of the control group showed a significant difference from each of patients subgroups. Furthermore, a significant difference in the CSA was seen in between these subgroups. In conclusion, the US examination of the MN seems to be a promising method in diagnosing and grading of carpal tunnel syndrome.

  3. Experimental studies on structural load monitoring using piezoelectric transducer based electromechanical impedance method

    Directory of Open Access Journals (Sweden)

    M.A. Radhika

    2013-02-01

    Full Text Available In general aerospace, civil and mechanical (ACM structures are often subjected to some or the other forms of loading during their service life. It has been reported that about 75% of aerospace structures fail due to fatigue cyclic loading. The civil-structural components are subjected to some form of axial and transverse loading which continuously deteriorates the health of the structure. Mechanical components are also subjected to stresses due to contact pressures between several components. Thus for ACM structures, effective monitoring through-out the entire life is required as these often involve public life and huge investments. Owing to such necessity, researchers around the world are continuously working on the development of smart sensor based effective monitoring techniques. Piezo electric (PZT transducer based electromechanical impedance (EMI is one such technique which was developed for structural health monitoring (SHM. In this technique, PZT transducers are usually attached to the structure to be monitored and are then subjected to unit sinusoidal electric voltage to generate the electromechanical (EM admittance signatures when interrogated to the desired frequency range of excitations. These signatures consist of real (conductance and imaginary (susceptance parts which serve as indicator to predict the structural health. Any deviations in these signatures during the monitoring period indicate disturbance in the structure. However, the EMI technique was not widely explored for structural load monitoring (such as fatigue cyclic load, monotonous load, axial and transverse load compared to damage detection. In this paper, systematic experiments were presented on the specimens for axial load variations, transverse load variations, monotonous and fatigue load variation with discussions on boundary effect and buckling effects. For axial, fatigue, monotonic load, the conductance was found to be effective where as for transverse load

  4. Electrical conductivity studies of nanocrystalline lanthanum silicate synthesized by sol-gel route

    Energy Technology Data Exchange (ETDEWEB)

    Nallamuthu, N.; Prakash, I. [Department of Physics, Pondicherry University, Puducherry 605 014 (India); Satyanarayana, N., E-mail: nallanis2000@yahoo.com [Department of Physics, Pondicherry University, Puducherry 605 014 (India); Venkateswarlu, M. [R and D, Amara Raja Batteries Ltd., Tirupati 517520, AP (India)

    2011-01-28

    Research highlights: > Nanocrystalline La{sub 10}Si{sub 6}O{sub 27} material was synthesized by sol-gel method. > TG/DTA curves predicted the thermal behavior of the material. > FTIR spectra confirmed the formation of SiO{sub 4} and La-O network in the La{sub 10}Si{sub 6}O{sub 27}. > XRD patterns confirmed the formation of pure crystalline La{sub 10}Si{sub 6}O{sub 27} phase. > The grain interior and the grain boundary conductivities are evaluated. - Abstract: Nanocrystalline apatite type structured lanthanum silicate (La{sub 10}Si{sub 6}O{sub 27}) sample was synthesized by sol-gel process. Thermal behavior of the dried gel of lanthanum silicate sample was studied using TG/DTA. The structural coordination of the dried gel of lanthanum silicate, calcined at various temperatures, was identified from the observed FTIR spectral results. The observed XRD patterns of the calcined dried gel were compared with the ICDD data and confirmed the formation of crystalline lanthanum silicate phase. The average crystalline size of La{sub 10}Si{sub 6}O{sub 27} was calculated using the Scherrer formula and it is found to be {approx}80 nm. The observed SEM images of the lanthanum silicate indicate the formation of the spherical particles and the existence of O, Si and La in the lanthanum silicate are confirmed from the SEM-EDX spectrum. The grain and grain boundary conductivities are evaluated by analyzing the measured impedance data, using winfit software, obtained at different temperatures, of La{sub 10}Si{sub 6}O{sub 27} sample. Also, the observed grain and grain boundary conductivity behaviors of the La{sub 10}Si{sub 6}O{sub 27} sample are analysed using brick layer model. The electrical permittivity and electrical modulus were calculated from the measured impedance data and were analyzed by fitting through the Havriliak and Negami function to describe the dielectric relaxation behavior of the nanocrystalline lanthanum silicate.

  5. A study of the conductive properties of nanostructured metal oxide films

    Science.gov (United States)

    D'Olembert, Andre A.

    Fuel cells which were first employed in spacecraft, producing both electricity and water for astronaut consumption during the mid-1960's, are part of the ongoing pursuit for renewable energy sources, and environmentally compatible electric power generation. Recent enhancements in design and materials might establish fuel cells in a sustainable hydrogen energy economy (SHEE) as viable alternatives to the internal combustion engine. In tune with our principal objectives, this study investigates the conductive properties of metal-oxide thin films by developing a new deposition technique called dual channel ultrasonic spray pyrolysis (DC-USP). The DC-USP process has proved to be a reliable and cost-effective method to fabricate thin films. Extending the DC-USP technique, we have created a novel mixed ionic electronic conductor (MIEC) composed of two metal-oxides: lanthanum strontium ferrite and copper-doped bismuth vanadate (LSF.40:BiCuVOx.10). When the two materials are mixed, their grain boundary regions are heavily defected because of the dissimilarity of the two crystal structures, which maintain their integrity in the formed heterogenous composite. Oxygen ion diffusion occurs as it migrates through an ionic crystal, hopping from defect site to defect site. Furthermore, a nanostructured material - with crystallite grains less than 100 nm in diameter - will improve oxygen diffusion by increasing the density of defect sites. The rate of diffusion is increased as well as the quantity of diffusion pathways. Ultimately, as the ionic current density is increased, the total efficiency (nuSOFCtotal) of the solid oxide fuel cell (SOFC) can be improved. Therefore, the LSF-40:BiCuVOx.10 material can contribute to solve the major outstanding problem of the three-phase boundary (TPB) that limits the oxygen reduction reaction to within a microscopic region near the cathode-electrolyte interface in the SOFC device. Materials were tested and analyzed using atomic force microscopy

  6. The FOBIMO (FOraminiferal BIo-MOnitoring) initiative—Towards a standardised protocol for soft-bottom benthic foraminiferal monitoring studies

    Science.gov (United States)

    Schoenfeld, Joachim; Alve, Elisabeth; Geslin, Emmanuelle; Jorissen, Frans; Korsun, Sergei; Spezzaferri, Silva; Abramovich, Sigal; Almogi-Labin, Ahuva; Armynot du Chatelet, Eric; Barras, Christine; Bergamin, Luisa; Bicchi, Erica; Bouchet, Vincent; Cearreta, Alejandro; Di Bella, Letizia; Dijkstra, Noortje; Trevisan Disaro, Sibelle; Ferraro, Luciana; Frontalini, Fabrizio; Gennari, Giordana; Golikova, Elena; Haynert, Kristin; Hess, Silvia; Husum, Katrine; Martins, Virginia; McGann, Mary; Oron, Shai; Romano, Elena; Mello Sousa, Silvia; Tsujimoto, Akira

    2012-01-01

    The European Community Marine Strategy Framework Directive (MSFD) was established to provide guidelines for monitoring the quality of marine ecosystems. Monitoring the status of marine environments is traditionally based on macrofauna surveys, for which standardised methods have been established. Benthic foraminifera are also good indicators of environmental status because of their fast turnover rates, high degree of specialisation, and the preservation of dead assemblages in the fossil record. In spite of the growing interest in foraminiferal bio-monitoring during the last decades, no standardised methodology has been proposed until today. The aim of the FOraminiferal BIo-MOnitoring (FOBIMO) expert workshop, held in June 2011 at Fribourg, Switzerland, which assembled 37 scientists from 24 research groups and 13 countries, was to develop a suite of standard methods. This paper presents the main outcome of the workshop, a list of motivated recommendations with respect to sampling devices, sample storage, treatment, faunal analysis and documentation. Our recommendations fulfil the criteria imposed both by scientific rigour and by the practical limitations of routine studies. Hence, our aim is to standardise methodologies used in bio-monitoring only and not to limit the use of different methods in pure scientific studies. Unless otherwise stated, all recommendations concern living (stained) benthic foraminiferal assemblages. We have chosen to propose two types of recommendations. Mandatory recommendations have to be followed if a study wants to qualify as sound and compatible to the norms. The most important of these recommendations are the interval from 0 to 1 cm below the sediment surface has to be sampled, and an interface corer or box corer that keeps the sediment surface intact is to be used for offshore surveys. A grab sampler must not be deployed in soft sediments. Three replicate samples are to be taken and analysed separately. Samples are to be washed on a

  7. A Study on Potential of Integrating Multimodal Interaction into Musical Conducting Education

    CERN Document Server

    Siang, Gilbert Phuah Leong; Yong, Pang Yee

    2010-01-01

    With the rapid development of computer technology, computer music has begun to appear in the laboratory. Many potential utility of computer music is gradually increasing. The purpose of this paper is attempted to analyze the possibility of integrating multimodal interaction such as vision-based hand gesture and speech interaction into musical conducting education. To achieve this purpose, this paper is focus on discuss some related research and the traditional musical conducting education. To do so, six musical conductors had been interviewed to share their musical conducting learning/ teaching experience. These interviews had been analyzed in this paper to show the syllabus and the focus of musical conducting education for beginners.

  8. Study on the Electric Conductivity of Ag-Doped DNA in Transverse Direction

    Directory of Open Access Journals (Sweden)

    Ban Ge

    2009-01-01

    Full Text Available Abstract In this article, we reported a novel experiment results on Ag-doped DNA conductor in transverse direction.I–Vcharacteristics were measured and the relative conductances were calculated for different silver ions concentrations. With the increase of the concentration of silver ions, the conductive ability of DNA risen rapidly, the relative conductance of DNA enhanced about three magnitudes and reached a stable value when Ag+concentration was up to 0.005 mM. In addition, Raman spectra were carried out to analyse and confirm conduction mechanism.

  9. An experimental study of perovskite-structured mixed ionic- electronic conducting oxides and membranes

    Science.gov (United States)

    Zeng, Pingying

    In recent decades, ceramic membranes based on mixed ionic and electronic conducting (MIEC) perovskite-structured oxides have received many attentions for their applications for air separation, or as a membrane reactor for methane oxidation. While numerous perovskite oxide materials have been explored over the past two decades; there are hardly any materials with sufficient practical economic value and performance for large scale applications, which justifies continuing the search for new materials. The main purposes of this thesis study are: (1) develop several novel SrCoO3-delta based MIEC oxides, SrCoCo1-xMxO3-delta, based on which membranes exhibit excellent oxygen permeability; (2) investigate the significant effects of the species and concentration of the dopants M (metal ions with fixed valences) on the various properties of these membranes; (3) investigate the significant effects of sintering temperature on the microstructures and performance of oxygen permeation membranes; and (4) study the performance of oxygen permeation membranes as a membrane reactor for methane combustion. To stabilize the cubic phase structure of the SrCoO3-delta oxide, various amounts of scandium was doped into the B-site of SrCoO 3-delta to form a series of new perovskite oxides, SrScxCoCo 1-xO3-delta (SSCx, x = 0-0.7). The significant effects of scandium-doping concentration on the phase structure, electrical conductivity, sintering performance, thermal and structural stability, cathode performance, and oxygen permeation performance of the SSCx membranes, were systematically studied. Also for a more in-depth understanding, the rate determination steps for the oxygen transport process through the membranes were clarified by theoretical and experimental investigation. It was found that only a minor amount of scandium (5 mol%) doping into the B-site of SrCoO3-delta can effectively stabilize the cubic phase structure, and thus significantly improve the electrical conductivity and

  10. Landfill monitoring using remote sensing: a case study of Glina, Romania.

    Science.gov (United States)

    Iacoboaea, Cristina; Petrescu, Florian

    2013-10-01

    Landfill monitoring is one of the most important components of waste management. This article presents a case study on landfill monitoring using remote sensing technology. The study area was the Glina landfill, one of the largest municipal waste disposal sites in Romania. The methodology consisted of monitoring the differences of temperature computed for several distinct waste disposal zones with respect to a ground reference area, all of them located within the landfill site. The remote sensing data used were Landsat satellite multi-temporal data. The differences of temperature were computed using Landsat thermal infrared data. The study confirmed the use of multi-temporal Landsat imagery as a complementary data source.

  11. Sage grouse on the Yakima Training Center: A summary of studies conducted during 1989 and 1990

    Energy Technology Data Exchange (ETDEWEB)

    Eberhardt, L.E. (Pacific Northwest Lab., Richland, WA (USA)); Hofmann, L.A. (Yakima Training Center, WA (USA). Coe-Truman Technologies)

    1991-03-01

    A two-year study, sponsored by the U.S. Department of the Army and conducted by Pacific Northwest Laboratory, was initiated in 1989 to study sage grouse on the Yakima Training Center (YTC). The specific objectives of this study were (1) to obtain detailed information on the distribution and relative density of sage grouse on the YTC, (2) to identify movement and habitat use patterns of sage grouse on the YTC, (3) to identify crucial habitat for sage grouse on the YTC, and (4) to provide management recommendations. Sage grouse were selected for study because they are a US Fish and Wildlife Service candidate species for the threatened and endangered list in Washington, and because the YTC probably contains the largest population of sage grouse left on federally owned lands in this state. The locations of 11 sage grouse leks, or breeding grounds, were determined on the YTC during extensive spring helicopter surveys. The maximum number of sage grouse observed during ground surveys of these leks varied from 2 to 55 birds. One lek, located near Range 19, was probably used by 40 to 50% of the YTC sage grouse population. Fifteen years of counts of males on leks indicate that the YTC sage grouse population was most numerous during the early to mid 1980s. Since the mid-1980s, sage grouse numbers appear to have declined on the YTC and in other locations in Washington. Forty-six sage grouse (17 females and 29 males) were captured and fitted with radio transmitters during 1989 and 1990. Movements by these sage grouse were both erratic and large when compared with other studies. We believe that many of the atypical movements were in response to military training activities. Sage grouse appeared to seek out areas on the YTC where human disturbance was low. Recommendations are made for improving the management of grouse habitat.

  12. Study on Electronic Conductivity of CaO-SiO2-Al2O3-FeOx Slag System

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A study on electronic conductivity of CaO-SiO2-Al2O3-FeOx slag system with Wagner polarization technique was carried out. The experimental data show that electronic conductivity is consisted of free electron conductivity and electron hole conductivity and both are related to the content of Fe3+ and Fe2+. Free electron condu ctivity is decreasing and electron hole conductivity is increasing while Fe3 + changes to Fe2+. There is a maximum electronic conductivity at some ratio of ferric ions Fe3+ to totalion content. Under the experimental conditions, the electronic conductivity is in the range of 10-4-10-2 S/cm.

  13. A monitoring study to assess the acute mortality effects of indoxacarb on honey bees (Apis mellifera L.) in flowering apple orchards

    NARCIS (Netherlands)

    Steen, van der J.J.M.; Dinter, A.

    2007-01-01

    To evaluate the effect of the indoxacarb 300 g kg-1 WG, Steward 30WDGTM, on the honey bee (Apis mellifera L.) in apple orchards, a monitoring study was conducted in Dutch apple orchards in April/May 2004. Before apple flowering began, two honey bee colonies were placed in each orchard to investigate

  14. A monitoring study to assess the acute mortality effects of indoxacarb on honey bees (Apis mellifera L.) in flowering apple orchards

    NARCIS (Netherlands)

    Steen, van der J.J.M.; Dinter, A.

    2007-01-01

    To evaluate the effect of the indoxacarb 300 g kg-1 WG, Steward 30WDGTM, on the honey bee (Apis mellifera L.) in apple orchards, a monitoring study was conducted in Dutch apple orchards in April/May 2004. Before apple flowering began, two honey bee colonies were placed in each orchard to investigate

  15. Numerical Implementation of Indicators and Statistical Control Tools in Monitoring and Evaluating CACEI-ISO Indicators of Study Program in Industrial Process by Systematization

    Science.gov (United States)

    Ayala, Gabriela Cota; Real, Francia Angélica Karlos; Ivan, Ramirez Alvarado Edqar

    2016-01-01

    The research was conducted to determine if the study program of the career of industrial processes Technological University of Chihuahua, 1 year after that it was certified by CACEI, continues achieving the established indicators and ISO 9001: 2008, implementing quality tools, monitoring of essential indicators are determined, flow charts are…

  16. Monitorizing nitinol alloy surface reactions for biofouling studies

    Energy Technology Data Exchange (ETDEWEB)

    Dinu, C.Z. [Max Planck Institute of Molecular Cell Biology and Genetics, Photenhauerstrasse 108, Dresden (Germany); Dinca, V.C. [National Institute for Laser, Plasma and Radiation Physics, PO Box MG-16, RO 77125 Bucharest (Romania)]. E-mail: valentina.dinca@inflpr.ro; Soare, S. [UNIBUC-MICROGEN, University of Bucharest, Centre for Research, Education and Consulting in Microbiology, Genetics and Biotechnology (MICROGEN), Splaiul Independentei, 91-95, RO 76201 Bucharest (Romania); Moldovan, A. [Max Planck Institute of Molecular Cell Biology and Genetics, Photenhauerstrasse 108, Dresden (Germany); Smarandache, D. [UNIBUC-MICROGEN, University of Bucharest, Centre for Research, Education and Consulting in Microbiology, Genetics and Biotechnology (MICROGEN), Splaiul Independentei, 91-95, RO 76201 Bucharest (Romania); Scarisoareanu, N. [National Institute for Laser, Plasma and Radiation Physics, PO Box MG-16, RO 77125 Bucharest (Romania); Barbalat, A. [National Institute for Laser, Plasma and Radiation Physics, PO Box MG-16, RO 77125 Bucharest (Romania); Birjega, R. [National Institute for Laser, Plasma and Radiation Physics, PO Box MG-16, RO 77125 Bucharest (Romania); Dinescu, M. [National Institute for Laser, Plasma and Radiation Physics, PO Box MG-16, RO 77125 Bucharest (Romania); DiStefano, V. Ferrari [University of Rome La Sapienza, Department of Electronics, Rome (Italy)

    2007-07-31

    Growth and deposition of unwanted bacteria on implant metal alloys affect their use as biomedical samples. Monitoring any bacterial biofilm accumulation will provide early countermeasures. For a reliable antifouling strategy we prepared nitinol (NiTi) thin films on Ti-derived substrates by using a pulsed laser deposition (PLD) method. As the microstructure of Ti-alloy is dictated by the tensile strength, fatigue and the fracture toughness we tested the use of hydrogen as an alloying element. X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM) investigated the crystalline structure, chemical composition and respectively the surface morphology of the nitinol hydrogen and hydrogen-free samples. Moreover, the alloys were integrated and tested using a cellular metric and their responses were systematic evaluated and quantified. Our attractive approach is meant to select the suitable components for an effective and trustworthy anti-fouling strategy. A greater understanding of such processes should lead to novel and effective control methods that would improve in the future implant stability and capabilities.

  17. Study on Monitoring Rock Burst through Drill Pipe Torque

    Directory of Open Access Journals (Sweden)

    Zhonghua Li

    2015-01-01

    Full Text Available This paper presents a new method to identify the danger of rock burst from the response of drill pipe torque during drilling process to overcome many defects of the conventional volume of drilled coal rubble method. It is based on the relationship of rock burst with coal stress and coal strength. Through theoretic analysis, the change mechanism of drill pipe torque and the relationship of drill pipe torque with coal stress, coal strength, and drilling speed are investigated. In light of the analysis, a new device for testing drill pipe torque is developed and a series of experiments is performed under different conditions; the results show that drill pipe torque linearly increases with the increase of coal stress and coal strength; the faster the drilling speed, the larger the drill pipe torque, and vice versa. When monitoring rock burst by drill pipe torque method, the index of rock burst is regarded as a function in which coal stress index and coal strength index are principal variables. The results are important for the forecast of rock burst in coal mine.

  18. Monitorizing nitinol alloy surface reactions for biofouling studies

    Science.gov (United States)

    Dinu, C. Z.; Dinca, V. C.; Soare, S.; Moldovan, A.; Smarandache, D.; Scarisoareanu, N.; Barbalat, A.; Birjega, R.; Dinescu, M.; DiStefano, V. Ferrari

    2007-07-01

    Growth and deposition of unwanted bacteria on implant metal alloys affect their use as biomedical samples. Monitoring any bacterial biofilm accumulation will provide early countermeasures. For a reliable antifouling strategy we prepared nitinol (NiTi) thin films on Ti-derived substrates by using a pulsed laser deposition (PLD) method. As the microstructure of Ti-alloy is dictated by the tensile strength, fatigue and the fracture toughness we tested the use of hydrogen as an alloying element. X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM) investigated the crystalline structure, chemical composition and respectively the surface morphology of the nitinol hydrogen and hydrogen-free samples. Moreover, the alloys were integrated and tested using a cellular metric and their responses were systematic evaluated and quantified. Our attractive approach is meant to select the suitable components for an effective and trustworthy anti-fouling strategy. A greater understanding of such processes should lead to novel and effective control methods that would improve in the future implant stability and capabilities.

  19. Effect of Elbow Position on Short-segment Nerve Conduction Study in Cubital Tunnel Syndrome

    Institute of Scientific and Technical Information of China (English)

    Zhu Liu; Zhi-Rong Jia; Ting-Ting Wang; Xin Shi; Wei Liang

    2016-01-01

    Background:The appropriate elbow position of short-segment nerve conduction study (SSNCS) to diagnose cubital tunnel syndrome (CubTS) is still controversial.The goal of this study was to determine the effect of different elbow positions at full extension and 70° flexion on SSNCS in CubTS.Methods:In this cross-sectional study,the clinical data of seventy elbows from 59 CubTS patients between September,2011 and December,2014 in the Peking University First Hospital were included as CubTS group.Moreover,thirty healthy volunteers were included as the healthy group.SSNCS were conducted in all subjects at elbow lull extension and 70° elbow flexion.Paired nonparametric test,bivariate correlation,Bland-Altman,and Chi-squared test analysis were used to compare the effectiveness of elbow full extension and 70° flexion elbow positions on SSNCS in CubTS patients.Results:Data of upper limit was calculated from healthy group,and abnormal latency was judged accordingly.CubTS group's latency and compound muscle action potential (CMAP) of each segment at 70° elbow flexion by SSNCS was compared with full extension position,no statistically significant difference were found (all P > 0.05).Latency and CMAP of each segment at elbow full extension and 70° flexion were correlated (all P < 0.01),except the latency of segment of 4 cm to 6 cm above elbow (P =0.43),and the latency (P =0.15) and the CMAP (P =0.06) of segment of 2 cm to 4 cm below elbow.Bivariate correlation and Bland-Altman analysis proved the correlation between elbow full extension and 70° flexion.Especially in segments across the elbow (2 cm above the elbow and 2 cm below it),latency at elbow full extension and 70° flexion were strong direct associated (r =0.83,P < 0.01; r =0.55,P < 0.01),and so did the CMAP (r =0.49,P < 0.01; r =0.72,P < 0.01).There was no statistically significant difference in abnormality of each segment at full extension as measured by SSNCS compared with that at 70° flexion (P > 0

  20. Experimental Studies on CHF of Pool Boiling on Horizontal Conductive Micro Porous Coated Surfaces

    Science.gov (United States)

    Li, Chen; Peterson, G. P.

    2008-01-01

    The critical heat flux (CHF) primarily governs the upper limit of boiling device capability. It is essential to understand how the geometric parameters of porous coatings affect the CHF, in order to optimize two-phase device performance. The objective of the present research is to better understand the CHF mechanism of pool boiling on horizontal conductive micro porous coated surfaces, through a systematic examination of the effects of the principal geometric dimensions on the CHF. In the present study, the test data indicated that the CHF on porous coated surfaces is strongly dependent on the coating thickness, volumetric porosity and mesh size. Test data also demonstrated that the CHF is distinguished by the critical thickness of the porous coatings for a given heating area. An optimal volumetric porosity exists when the mesh size and wick thickness are given. The wire diameter was found to play an important role in determining the CHF during the boiling process. Physical insight of the liquid and vapor flow pattern inside the porous media are revealed in this study.

  1. A genome-wide association study of upper aerodigestive tract cancers conducted within the INHANCE consortium.

    Directory of Open Access Journals (Sweden)

    James D McKay

    2011-03-01

    Full Text Available Genome-wide association studies (GWAS have been successful in identifying common genetic variation involved in susceptibility to etiologically complex disease. We conducted a GWAS to identify common genetic variation involved in susceptibility to upper aero-digestive tract (UADT cancers. Genome-wide genotyping was carried out using the Illumina HumanHap300 beadchips in 2,091 UADT cancer cases and 3,513 controls from two large European multi-centre UADT cancer studies, as well as 4,821 generic controls. The 19 top-ranked variants were investigated further in an additional 6,514 UADT cancer cases and 7,892 controls of European descent from an additional 13 UADT cancer studies participating in the INHANCE consortium. Five common variants presented evidence for significant association in the combined analysis (p ≤ 5 × 10⁻⁷. Two novel variants were identified, a 4q21 variant (rs1494961, p = 1×10⁻⁸ located near DNA repair related genes HEL308 and FAM175A (or Abraxas and a 12q24 variant (rs4767364, p =2 × 10⁻⁸ located in an extended linkage disequilibrium region that contains multiple genes including the aldehyde dehydrogenase 2 (ALDH2 gene. Three remaining variants are located in the ADH gene cluster and were identified previously in a candidate gene study involving some of these samples. The association between these three variants and UADT cancers was independently replicated in 5,092 UADT cancer cases and 6,794 controls non-overlapping samples presented here (rs1573496-ADH7, p = 5 × 10⁻⁸; rs1229984-ADH1B, p = 7 × 10⁻⁹; and rs698-ADH1C, p = 0.02. These results implicate two variants at 4q21 and 12q24 and further highlight three ADH variants in UADT cancer susceptibility.

  2. A genome-wide association study of upper aerodigestive tract cancers conducted within the INHANCE consortium.

    Directory of Open Access Journals (Sweden)

    James D McKay

    2011-03-01

    Full Text Available Genome-wide association studies (GWAS have been successful in identifying common genetic variation involved in susceptibility to etiologically complex disease. We conducted a GWAS to identify common genetic variation involved in susceptibility to upper aero-digestive tract (UADT cancers. Genome-wide genotyping was carried out using the Illumina HumanHap300 beadchips in 2,091 UADT cancer cases and 3,513 controls from two large European multi-centre UADT cancer studies, as well as 4,821 generic controls. The 19 top-ranked variants were investigated further in an additional 6,514 UADT cancer cases and 7,892 controls of European descent from an additional 13 UADT cancer studies participating in the INHANCE consortium. Five common variants presented evidence for significant association in the combined analysis (p ≤ 5 × 10⁻⁷. Two novel variants were identified, a 4q21 variant (rs1494961, p = 1×10⁻⁸ located near DNA repair related genes HEL308 and FAM175A (or Abraxas and a 12q24 variant (rs4767364, p =2 × 10⁻⁸ located in an extended linkage disequilibrium region that contains multiple genes including the aldehyde dehydrogenase 2 (ALDH2 gene. Three remaining variants are located in the ADH gene cluster and were identified previously in a candidate gene study involving some of these samples. The association between these three variants and UADT cancers was independently replicated in 5,092 UADT cancer cases and 6,794 controls non-overlapping samples presented here (rs1573496-ADH7, p = 5 × 10⁻⁸; rs1229984-ADH1B, p = 7 × 10⁻⁹; and rs698-ADH1C, p = 0.02. These results implicate two variants at 4q21 and 12q24 and further highlight three ADH variants in UADT cancer susceptibility.

  3. A genome-wide association study of upper aerodigestive tract cancers conducted within the INHANCE consortium.

    LENUS (Irish Health Repository)

    McKay, James D

    2011-03-01

    Genome-wide association studies (GWAS) have been successful in identifying common genetic variation involved in susceptibility to etiologically complex disease. We conducted a GWAS to identify common genetic variation involved in susceptibility to upper aero-digestive tract (UADT) cancers. Genome-wide genotyping was carried out using the Illumina HumanHap300 beadchips in 2,091 UADT cancer cases and 3,513 controls from two large European multi-centre UADT cancer studies, as well as 4,821 generic controls. The 19 top-ranked variants were investigated further in an additional 6,514 UADT cancer cases and 7,892 controls of European descent from an additional 13 UADT cancer studies participating in the INHANCE consortium. Five common variants presented evidence for significant association in the combined analysis (p ≤ 5 × 10⁻⁷). Two novel variants were identified, a 4q21 variant (rs1494961, p = 1×10⁻⁸) located near DNA repair related genes HEL308 and FAM175A (or Abraxas) and a 12q24 variant (rs4767364, p =2 × 10⁻⁸) located in an extended linkage disequilibrium region that contains multiple genes including the aldehyde dehydrogenase 2 (ALDH2) gene. Three remaining variants are located in the ADH gene cluster and were identified previously in a candidate gene study involving some of these samples. The association between these three variants and UADT cancers was independently replicated in 5,092 UADT cancer cases and 6,794 controls non-overlapping samples presented here (rs1573496-ADH7, p = 5 × 10⁻⁸); rs1229984-ADH1B, p = 7 × 10⁻⁹; and rs698-ADH1C, p = 0.02). These results implicate two variants at 4q21 and 12q24 and further highlight three ADH variants in UADT cancer susceptibility.

  4. Experimental Study on the Electrical Conductivity of Pyroxene Andesite at High Temperature and High Pressure

    Science.gov (United States)

    Hui, KeShi; Dai, LiDong; Li, HePing; Hu, HaiYing; Jiang, JianJun; Sun, WenQing; Zhang, Hui

    2016-09-01

    The electrical conductivity of pyroxene andesite was in situ measured under conditions of 1.0-2.0 GPa and 673-1073 K using a YJ-3000t multi-anvil press and Solartron-1260 Impedance/Gain-phase analyzer. Experimental results indicate that the electrical conductivities of pyroxene andesite increase with increasing temperature, and the electrical conductivities decrease with the rise of pressure, and the relationship between electrical conductivity (σ) and temperature (T) conforms to an Arrhenius relation within a given pressure and temperature range. When temperature rises up to 873-923 K, the electrical conductivities of pyroxene andesite abruptly increase, and the activation enthalpy increases at this range, which demonstrates that pyroxene andesite starts to dehydrate. By the virtue of the activation enthalpy (0.35-0.42 eV) and the activation volume (-6.75 ± 1.67 cm3/mole) which characterizes the electrical properties of sample after dehydration, we consider that the conduction mechanism is the small polaron conduction before and after dehydration, and that the rise of carrier concentration is the most important reason of increased electrical conductivity.

  5. Study of ac hopping conductivity on one-dimensional nanometre systems

    Institute of Scientific and Technical Information of China (English)

    徐慧; 宋祎璞

    2002-01-01

    In this paper, we establish a one-dimensional random nanocrystalline chain model, we derive a new formula of ac electron-phonon-field conductance for electron tunnelling transfer in one-dimensional nanometre systems. By calculating the ac conductivity, the relationship between the electric field, temperature and conductivity is analysed, and the effect of crystalline grain size and distortion of interfacial atoms on the ac conductance is discussed. A characteristic of negative differential dependence of resistance and temperature in the low-temperature region for a nanometre system is found. The ac conductivity increases linearly with rising frequency of the electric field, and it tends to increase as the crystalline grain size increases and to decrease as the distorted degree of interfacial atoms increases.

  6. Molecular dynamics study on thermal conductivity of na-noscale thin films

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A simple and effective model of heat conduction across thin films is set up and molecular dynamics simulations are implemented to explore the thermal conductivity of nanoscale thin dielectric films in the direction perpendicular to the film plane. Solid argon is selected as the model system due to its reliable experimental data and potential function. Size effects of the thermal conductivity across thin films are found by computer simulations: in a film thickness range of 2-10 nm, the conductivity values are remarkably lower than the corresponding bulk experimental data and increase as the thickness increases. The consistency between the approximate solution of the phonon Boltzmann transport equation and the simulation results ascribes the thermal conductivity size effect to the phonon scattering at film boundaries.

  7. An International Round-Robin Study, Part II: Thermal Diffusivity, Specific Heat and Thermal Conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hsin [ORNL; Porter, Wallace D [ORNL; Bottner, Harold [Fraunhofer-Institute, Freiburg, Germany; Konig, Jan [Fraunhofer-Institute, Freiburg, Germany; Chen, Lidong [Chinese Academy of Sciences; Bai, Shengqiang [Chinese Academy of Sciences; Tritt, Terry M. [Clemson University; Mayolett, Alex [Corning, Inc; Senawiratne, Jayantha [Corning, Inc; Smith, Charlene [Corning, Inc; Harris, Fred [ZT-Plus; Gilbert, Partricia [Marlow Industries, Inc; Sharp, J [Marlow Industries, Inc; Lo, Jason [CANMET - Materials Technology Laboratory, Natural Resources of Canada; Keinke, Holger [University of Waterloo, Canada; Kiss, Laszlo I. [University of Quebec at Chicoutimi

    2013-01-01

    For bulk thermoelectrics, figure-of-merit, ZT, still needs to improve from the current value of 1.0 - 1.5 to above 2 to be competitive to other alternative technologies. In recent years, the most significant improvements in ZT were mainly due to successful reduction of thermal conductivity. However, thermal conductivity cannot be measured directly at high temperatures. The combined measurements of thermal diffusivity and specific heat and density are required. It has been shown that thermal conductivity is the property with the greatest uncertainty and has a direct influence on the accuracy of the figure of merit. The International Energy Agency (IEA) group under the implementing agreement for Advanced Materials for Transportation (AMT) has conducted two international round-robins since 2009. This paper is Part II of the international round-robin testing of transport properties of bulk bismuth telluride. The main focuses in Part II are on thermal diffusivity, specific heat and thermal conductivity.

  8. Study on the Electrical Conductivity of Au Nanoparticle/ Chloroform and Toluene Suspensions

    Institute of Scientific and Technical Information of China (English)

    FANG Fang; ZHANG Ya-fei

    2005-01-01

    Au nanoparticles capped by hexadecanethiol and dodecanethiol were chemically synthesized. The characteristics of electrical conductivity for the capped nanoparticles dissolved in chloroform and toluene solvents were investigated. The electrical conductivity of the samples is conspicuously Au nanoparticle concentration dependent.The results show that a rapid conductivity increases when the nanoparticle concentration increases from low value to a moderate value of 5.47 g/L and 11.22 g/L, which is capped by hexadecanethiol and dodecanethiol in chloroform solvent, and 2.77 g/L and 7.88 g/L in toluene solvent. The room-temperature dc conductivity σdc of Au nanoparticle capped by hexadecanethiol is smaller than that capped by dodecanethiol in the whole range of Au nanoparticle concentrations. The conductivity of Au nanoparticle suspensions increases almost linearly in the temperature range in above two solvents.

  9. Study on Unit Cell Models and the Effective Thermal Conductivities of Silica Aerogel.

    Science.gov (United States)

    Liu, He; Li, Zeng-Yao; Zhao, Xin-Peng; Tao, Wen-Quan

    2015-04-01

    In this paper, two modified unit cell models, truncated octahedron and cubic array of intersecting square rods with 45-degree rotation, are developed in consideration of the tortuous path of heat conduction in solid skeleton of silica aerogel. The heat conduction is analyzed for each model and the expressions of effective thermal conductivity of the modified unit cell models are derived. Considering the random microstructure of silica aerogel, the probability model is presented. We also discuss the effect of the thermal conductivity of aerogel backbone. The effective thermal conductivities calculated by the proposed probability model are in good agreement with available experimental data when the density of the aerogel is 110 kg/m3.

  10. A theoretical computerized study for the electrical conductivity of arterial pulsatile blood flow by an elastic tube model.

    Science.gov (United States)

    Shen, Hua; Zhu, Yong; Qin, Kai-Rong

    2016-12-01

    The electrical conductivity of pulsatile blood flow in arteries is an important factor for the application of the electrical impedance measurement system in clinical settings. The electrical conductivity of pulsatile blood flow depends not only on blood-flow-induced red blood cell (RBC) orientation and deformation but also on artery wall motion. Numerous studies have investigated the conductivity of pulsatile blood based on a rigid tube model, in which the effects of wall motion on blood conductivity are not considered. In this study, integrating Ling and Atabek's local flow theory and Maxwell-Fricke theory, we develop an elastic tube model to explore the effects of wall motion as well as blood flow velocity on blood conductivity. The simulation results suggest that wall motion, rather than blood flow velocity, is the primary factor that affects the conductivity of flowing blood in arteries.

  11. Comparison of different sequences of MRI and Ultrasongram with Nerve Conduction Studies in peripheral neuropathies.

    Science.gov (United States)

    Garg, Kanwaljeet; Aggarwal, Ankita; Srivastava, Deep Narayan; Jana, Manisha; Sharma, Raju; Gamanagatti, Shivanand; Kumar, Atin; Kumar, Vijay; Malhotra, Rajesh; Goyal, Vinay; Garg, Kanwaljeet

    2017-08-22

    Peripheral neuropathies refer to a group of disorders in which there is damage to the nerves of the peripheral nervous system. Electrophysiological studies are the main stay for the diagnosis of peripheral neuropathies. However, direct visualization of the nerves is possible with exact localization of site of pathology with high resolution ultrasonogram and 3 Tesla MRI scanner, and newer MR sequences. We did a cross sectional study including a total of 55 patients and 64 nerves with upper limb peripheral neuropathies. All the included patients underwent high resolution focused ultrasound of the nerves and MR neurography. Nerve Conduction Velocity study was done for reference. The diagnostic confidence of TSE T2W MR sequence was seen to be highest with a sensitivity of 95.31% while it was 81.25% for ultrasonogram. Continuity of the nerve in patients with traumatic neuropathy was seen in 65.7% and 62.86% (22/35) nerves on MRI and ultrasonogram respectively. T1W and T2W MR sequences were seen to be equally effective in establishing the continuity of the nerve. Increase in the calibre/ thickening was seen in 77% of cases on MRI, and 73.8% of cases on USG. Neuroma formation was seen equally on both MR & USG in 60.66%. We consistently found low fractional anisotropy (FA) values at the site of pathology. Ultrasound is a sensitive technique to diagnose peripheral neuropathies and it should be used as a screening modality for a focused MR to be performed later. TSE T2W FS has the highest sensitivity to pick nerve pathology and is comparable to NCS. Amongst the newer sequences, DTI should be done to increase the diagnostic confidence. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Monitoring studies of slide system under the action of seismic impacts

    Science.gov (United States)

    Frolov, Anton

    2013-04-01

    The immediate detection of landslide activity that is provided by real-time systems can be crucial in saving human lives and protecting property. Traditional field observations, even if taken regularly, cannot detect changes at the moment they occur. Moreover, active landslides can be hazardous to work on, and large movements often occur during storms when visibility is poor. The continuous data provided by remote real-time monitoring permits a better understanding of dynamic landslide behavior that, in turn, enables engineers to create more effective designs to prevent or halt landslides. Monitoring of the coastal zone involves the following block diagram: input - processing -output - feed-back. We feed the input with data on a studied technogenous loading on the coastal zone, and the input presents the analysis of motion of a geological medium and the subsequent forecast of evolution of its lithodynamic characteristics. The submitted report describes a practical system of monitoring for the Central Livadiya Slide System (CLSSC) of the Crimea, which is intended for the diagnostics of a lithodynamic situation in the real-time mode, conducting the data base on heliogenous and lithogenous parameters, and predicting a future state of the slide-containing system. In the system of monitoring of a state of CLSSC, which is realized on a computer, the registered heliogenous parameters include the level of solar activity, changes in temperature and moisture regimes, changes in the character and intensity of precipitations, the wind velocity, etc. In this case, data are introduced into the computer in the manual mode. Lithogenous parameters are presented by a collection of conditions and factors characterizing the mechanism and dynamics of changes in the equilibrium state of slopes of CLSSC. The control over the evolution of lithogenous parameters is realized in the following way: 1. The control over movement of the control points on the surface of active slides is carried

  13. Evaluation of the Fourier Frequency Spectrum Peaks of Milk Electrical Conductivity Signals as Indexes to Monitor the Dairy Goats’ Health Status by On-Line Sensors

    Science.gov (United States)

    Zaninelli, Mauro; Agazzi, Alessandro; Costa, Annamaria; Tangorra, Francesco Maria; Rossi, Luciana; Savoini, Giovanni

    2015-01-01

    The aim of this study is a further characterization of the electrical conductivity (EC) signal of goat milk, acquired on-line by EC sensors, to identify new indexes representative of the EC variations that can be observed during milking, when considering not healthy (NH) glands. Two foremilk gland samples from 42 Saanen goats, were collected for three consecutive weeks and for three different lactation stages (LS: 0–60 Days In Milking (DIM); 61–120 DIM; 121–180 DIM), for a total amount of 1512 samples. Bacteriological analyses and somatic cells counts (SCC) were used to define the health status of the glands. With negative bacteriological analyses and SCC 1,000,000 cells/mL, glands were classified as NH. For each milk EC signal, acquired on-line and for each gland considered, the Fourier frequency spectrum of the signal was calculated and three representative frequency peaks were identified. To evaluate data acquired a MIXED procedure was used considering the HS, LS and LS × HS as explanatory variables in the statistical model.Results showed that the studied frequency peaks had a significant relationship with the gland’s health status. Results also explained how the milk EC signals’ pattern change in case of NH glands. In fact, it is characterized by slower fluctuations (due to the lower frequencies of the peaks) and by an irregular trend (due to the higher amplitudes of all the main frequency peaks). Therefore, these frequency peaks could be used as new indexes to improve the performances of algorithms based on multivariate models which evaluate the health status of dairy goats through the use of gland milk EC sensors. PMID:26307993

  14. Evaluation of the Fourier Frequency Spectrum Peaks of Milk Electrical Conductivity Signals as Indexes to Monitor the Dairy Goats’ Health Status by On-Line Sensors

    Directory of Open Access Journals (Sweden)

    Mauro Zaninelli

    2015-08-01

    Full Text Available The aim of this study is a further characterization of the electrical conductivity (EC signal of goat milk, acquired on-line by EC sensors, to identify new indexes representative of the EC variations that can be observed during milking, when considering not healthy (NH glands. Two foremilk gland samples from 42 Saanen goats, were collected for three consecutive weeks and for three different lactation stages (LS: 0–60 Days In Milking (DIM; 61–120 DIM; 121–180 DIM, for a total amount of 1512 samples. Bacteriological analyses and somatic cells counts (SCC were used to define the health status of the glands. With negative bacteriological analyses and SCC < 1,000,000 cells/mL, glands were classified as healthy. When bacteriological analyses were positive or showed a SCC > 1,000,000 cells/mL, glands were classified as NH. For each milk EC signal, acquired on-line and for each gland considered, the Fourier frequency spectrum of the signal was calculated and three representative frequency peaks were identified. To evaluate data acquired a MIXED procedure was used considering the HS, LS and LS × HS as explanatory variables in the statistical model.Results showed that the studied frequency peaks had a significant relationship with the gland’s health status. Results also explained how the milk EC signals’ pattern change in case of NH glands. In fact, it is characterized by slower fluctuations (due to the lower frequencies of the peaks and by an irregular trend (due to the higher amplitudes of all the main frequency peaks. Therefore, these frequency peaks could be used as new indexes to improve the performances of algorithms based on multivariate models which evaluate the health status of dairy goats through the use of gland milk EC sensors.

  15. Evaluation of the Fourier Frequency Spectrum Peaks of Milk Electrical Conductivity Signals as Indexes to Monitor the Dairy Goats' Health Status by On-Line Sensors.

    Science.gov (United States)

    Zaninelli, Mauro; Agazzi, Alessandro; Costa, Annamaria; Tangorra, Francesco Maria; Rossi, Luciana; Savoini, Giovanni

    2015-08-21

    The aim of this study is a further characterization of the electrical conductivity (EC) signal of goat milk, acquired on-line by EC sensors, to identify new indexes representative of the EC variations that can be observed during milking, when considering not healthy (NH) glands. Two foremilk gland samples from 42 Saanen goats, were collected for three consecutive weeks and for three different lactation stages (LS: 0-60 Days In Milking (DIM); 61-120 DIM; 121-180 DIM), for a total amount of 1512 samples. Bacteriological analyses and somatic cells counts (SCC) were used to define the health status of the glands. With negative bacteriological analyses and SCC 1,000,000 cells/mL, glands were classified as NH. For each milk EC signal, acquired on-line and for each gland considered, the Fourier frequency spectrum of the signal was calculated and three representative frequency peaks were identified. To evaluate data acquired a MIXED procedure was used considering the HS, LS and LS × HS as explanatory variables in the statistical model.Results showed that the studied frequency peaks had a significant relationship with the gland's health status. Results also explained how the milk EC signals' pattern change in case of NH glands. In fact, it is characterized by slower fluctuations (due to the lower frequencies of the peaks) and by an irregular trend (due to the higher amplitudes of all the main frequency peaks). Therefore, these frequency peaks could be used as new indexes to improve the performances of algorithms based on multivariate models which evaluate the health status of dairy goats through the use of gland milk EC sensors.

  16. Real-time Monitoring and Simulating of Urban Flood, a Case Study in Guangzhou

    Science.gov (United States)

    Huang, H.; Wang, X.; Zhang, S.; Liu, Y.

    2014-12-01

    In recent years urban flood frequently occurred and seriously impacted city's normal operation, particular on transportation. The increase of urban flood could be attributed to many factors, such as the increase of impervious land surface and extreme precipitation, the decrease of surface storage capacity, poor maintenance of drainage utilities, and so on. In order to provide accurate and leading prediction on urban flooding, this study acquires precise urban topographic data via air-borne Lidar system, collects detailed underground drainage pipes, and installs in-situ monitoring networks on precipitation, water level, video record and traffic speed in the downtown area of Panyu District, Guangzhou, China. Based on the above data acquired, a urban flood model with EPA SWMM5 is established to simulate the flooding and inundation processes in the study area of 20 km2. The model is driven by the real-time precipitation data and calibrated by the water level data, which are converted to flooding volume with precise topographic data. After calibration, the model could be employed to conduct sensitivity analysis for investigating primary factors of urban flooding, and to simulate the flooding processes in different scenarios, which are beneficial to assessment of flooding risk and drainage capacity. This model is expected to provide real-time forecasting in emergency management.

  17. Site location optimization of regional air quality monitoring network in China: methodology and case study.

    Science.gov (United States)

    Zheng, Junyu; Feng, Xiaoqiong; Liu, Panwei; Zhong, Liuju; Lai, Senchao

    2011-11-01

    Regional air quality monitoring networks (RAQMN) are urgently needed in China due to increasing regional air pollution in city clusters, arising from rapid economic development in recent decades. This paper proposes a methodological framework for site location optimization in designing a RAQMN adapting to air quality management practice in China. The framework utilizes synthetic assessment concentrations developed from simulated data from a regional air quality model in order to simplify the optimal process and to reduce costs. On the basis of analyzing various constraints such as cost and budget, terrain conditions, administrative district, population density and spatial coverage, the framework takes the maximum approximate degree as an optimization objective to achieve site location optimization of a RAQMN. An expert judgment approach was incorporated into the framework to help adjust initial optimization results in order to make the network more practical and representative. A case study was used to demonstrate the application of the framework, indicating that it is feasible to conduct site optimization for a RAQMN design in China. The effects of different combinations of primary and secondary pollutants on site location optimization were investigated. It is suggested that the network design considering both primary and secondary pollutants could better represent regional pollution characteristics and more extensively reflect temporal and spatial variations of regional air quality. The work shown in this study can be used as a reference to guide site location optimization of a RAQMN design in China or other regions of the world.

  18. An ERP study of conflict monitoring in 4-8-year old children: associations with temperament.

    Science.gov (United States)

    Buss, Kristin A; Dennis, Tracy A; Brooker, Rebecca J; Sippel, Lauren M

    2011-04-01

    Although there is great interest in identifying the neural correlates of cognitive processes that create risk for psychopathology, there is a paucity of research in young children. One event-related potential (ERP), the N2, is thought to index conflict monitoring and has been linked cognitive and affective risk factors for anxiety. Most of this research, however, has been conducted with adults, adolescents, and older children, but not with younger children. To address this gap, the current study examined 26 4-8-year-olds, who completed a cued flanker task while EEG was continuously recorded. We assessed whether the N2 was detectable in this group of young children and examined associations between the N2 and factors reflecting affective risk (e.g., reduced executive attention, temperamental effortful control, and temperamental surgency). We documented an N2 effect (greater N2 amplitude to incongruent versus congruent flankers), but only in children older than 6 years of age. Increases in the N2 effect were associated with less efficient executive attention and lower temperamental effortful control. We discuss the implications of these findings and consider how they may inform future studies on biomarkers for cognitive and affective risk factors for anxiety.

  19. Epilepsy monitoring - The patients' views: A qualitative study based on Kolcaba's Comfort Theory.

    Science.gov (United States)

    Egger-Rainer, Andrea; Trinka, Eugen; Höfler, Julia; Dieplinger, Anna Maria

    2017-03-01

    The aim of this qualitative study was to determine which perception of personal comfort patients name in the context of their hospitalization in an Austrian Epilepsy Monitoring Unit (EMU). Problem-centred interviews with twelve inpatients were conducted. Data analyses were done according to Mayring's qualitative content analyses following the technique of structuring-deductive category assignment. Patients experienced different kinds of comfort along with their hospitalization in the EMU. Comfort-decreasing factors were bed rest, boredom, and waiting for possible seizures. As comfort-increasing factors, hope for enhanced seizure control, support by family and staff, and intelligible information about the necessity of restrictive conditions were identified. The study results should assist health care professionals, enabling them to design comfort enhancing interventions for patients undergoing video-electroencephalography (EEG) investigations in an EMU. Some of these seem to be simple and obtainable without high financial or technical effort. Others are more complex and have to be further assessed for their feasibility. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. A Comparative Study of Genetic and Firefly Algorithms for Sensor Placement in Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Guang-Dong Zhou

    2015-01-01

    Full Text Available Optimal sensor placement (OSP is an important task during the implementation of sophisticated structural health monitoring (SHM systems for large-scale structures. In this paper, a comparative study between the genetic algorithm (GA and the firefly algorithm (FA in solving the OSP problem is conducted. To overcome the drawback related to the inapplicability of the FA in optimization problems with discrete variables, some improvements are proposed, including the one-dimensional binary coding system, the Hamming distance between any two fireflies, and the semioriented movement scheme; also, a simple discrete firefly algorithm (SDFA is developed. The capabilities of the SDFA and the GA in finding the optimal sensor locations are evaluated using two disparate objective functions in a numerical example with a long-span benchmark cable-stayed bridge. The results show that the developed SDFA can find the optimal sensor configuration with high reliability. The comparative study indicates that the SDFA outperforms the GA in terms of algorithm complexity, computational efficiency, and result quality. The optimization mechanism of the FA has the potential to be extended to a wide range of optimization problems.

  1. Influence of foundation settlements in load redistribution on columns in a monitoring construction - Case Study

    Directory of Open Access Journals (Sweden)

    G. Savaris

    Full Text Available The objective of this article is to present the results obtained in a study on the interaction between the behavior of the structure and the foundation settlements and verify the influence of normal load distribution on the columns. In this mechanism, known as structure soil interaction (SSI, as the building is constructed, a transfer of loads occurs from the columns which tend to settle more to those that tend to settle less. The study was conducted in a building which had its settlements monitored from the beginning of construction. For this purpose, a linear tridimensional numerical model was constructed and numerical analysis was performed, using the finite elements method. In these analyses, numerical models corre- sponding to the execution of each floor were used, considering the settlements measured in each stage of the construction. The results of analy- ses showed that the effect of SSI are significant for calculating the normal efforts on the columns, particularly on those located in the first floors.

  2. Coherence of heart rate variability and local physical fields in monitoring studies

    Science.gov (United States)

    Tuzhilkin, D. A.; Borodin, A. S.

    2015-11-01

    Technological advances have led to a substantial modification of the physical fields of the environment, which could affect the status of living organisms under their constant exposure. In this study, the activity of human cardiovascular system under the influence of a complex natural physical environmental factors investigated. The study was conducted on a representative homogeneous sample (44 persons aged 19 to 22 years) by simultaneous monitoring of electrocardiograms and natural physical fields in Tomsk (geomagnetic field, meteorological parameters - temperature, pressure and humidity, surface wind speed, the parameters of the Schumann resonance - amplitude, frequency and quality factor of the first four modes in the range of 6 to 32 Hz, the power spectral density infrasonic background in the range of from 0,5 to 32 Hz). It was shown that among the set of parameters of physical fields present field that can resonate in the functioning of the human organism. The greatest coherence with heart rate variability detect variations eastern component of the geomagnetic field.

  3. Study of thermal conductivity enhancement of aqueous suspensions containing silver nanoparticles

    Science.gov (United States)

    Iyahraja, S.; Rajadurai, J. Selwin

    2015-05-01

    Nanofluids are prepared by dispersing polyvinylpyrrolidone coated silver nanoparticles in distilled water. The thermal conductivity of nanofluids is measured by KD2 Pro thermal analyzer which is based on transient hot wire method. The influence of size and concentration of nanoparticles, surfactant and temperature of suspensions on the enhancement of the thermal conductivity is analyzed. The experimental results show that the thermal conductivity of nanofluids increases with the decrease in the size and increase in the concentration of the nanoparticles. Even with low volume fraction of 0.1 % and 20 nm size of silver nanoparticles, a high thermal conductivity enhancement of 54 % has been achieved. The surfactant and the temperature have a significant effect on the thermal conductivity enhancement of the nanofluids. The increase in temperature of the nanofluid from 30oC to 60oC increases its thermal conductivity up to 69 % whereas the addition of surfactant lessens the thermal conductivity enhancement to 34.2% with polyvinylpyrrolidone and 31.5 % with sodium dodecyl sulfate. The experimental results are compared with the existing theoretical models.

  4. Study of thermal conductivity enhancement of aqueous suspensions containing silver nanoparticles

    Directory of Open Access Journals (Sweden)

    S. Iyahraja

    2015-05-01

    Full Text Available Nanofluids are prepared by dispersing polyvinylpyrrolidone coated silver nanoparticles in distilled water. The thermal conductivity of nanofluids is measured by KD2 Pro thermal analyzer which is based on transient hot wire method. The influence of size and concentration of nanoparticles, surfactant and temperature of suspensions on the enhancement of the thermal conductivity is analyzed. The experimental results show that the thermal conductivity of nanofluids increases with the decrease in the size and increase in the concentration of the nanoparticles. Even with low volume fraction of 0.1 % and 20 nm size of silver nanoparticles, a high thermal conductivity enhancement of 54 % has been achieved. The surfactant and the temperature have a significant effect on the thermal conductivity enhancement of the nanofluids. The increase in temperature of the nanofluid from 30oC to 60oC increases its thermal conductivity up to 69 % whereas the addition of surfactant lessens the thermal conductivity enhancement to 34.2% with polyvinylpyrrolidone and 31.5 % with sodium dodecyl sulfate. The experimental results are compared with the existing theoretical models.

  5. A summary of the test procedures and operational details of a Delaware River and an ocean dumping pollution monitoring experiment conducted 28 August 1975

    Science.gov (United States)

    Hypes, W. D.; Ohlhorst, C. W.

    1977-01-01

    Two remote sensor evaluation experiments are discussed. One experiment was conducted at the DuPont acid-dump site off the Delaware coast. The second was conducted at an organic waste outfall in the Delaware River. The operational objective of obtaining simultaneous sea truth sampling with remote sensors overpasses was met. Descriptions of the test sites, sensors, sensor platforms, flight lines, sea truth data collected, and operational chronology are presented.

  6. Nanostructures and thin films of transparent conductive oxides studied by perturbed angular correlations

    CERN Document Server

    Barbosa, M B; Redondo-Cubero, A; Miranda, S M C; Simon, R; Kessler, P; Brandt, M; Henneberger, F; Nogales, E; Méndez, B; Johnston, K; Alves, E; Vianden, R; Araújo, J P; Lorenz, K; Correia, J G

    2013-01-01

    The versatility of perturbed angular correlations (PAC) in the study of nanostructures and thin films is demonstrated, namely for the specific cases of ZnO/Cd$_x$Zn$_{1-x}$O thin films and Ga$_2$O$_3$ powder pellets and nanowires, examples of transparent conductive oxides. PAC measurements as a function of annealing temperature were performed after implantation of $^{111m}$Cd$/^{111}$Cd (T$_{1/2}$=48$\\,$min.) and later compared to density functional theory simulations. For ZnO, the substitution of Cd probes at Zn sites was observed, as well as the formation of a probe-defect complex. The ternary Cd$_x$Zn$_{1-x}$O (x=0.16) showed good macroscopic crystal quality but revealed some clustering of local defects around the probe Cd atoms, which could not be annealed. In the Ga$_2$O$_3$ samples, the substitution of the Cd probes in the octahedral Ga-site was observed, demonstrating the potential of ion-implantation for the doping of nanowires.

  7. Conductivity Studies and Performance of Chitosan Based Polymer Electrolyteyte in H_2/Air Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    S.R.Majid; A.K.Arof

    2007-01-01

    1 Resalts Four chitosan-based electrolyte systems chitosan-H3PO4, chitosan-H3PO4-NH4NO3, chitosan-H3PO4-NH4NO3-Al2SiO5 and chitosan-H3PO4-Al2SiO5 were studied. The samples (0.62 chitosan-0.38 H3PO4), (0.56 chitosan-0.34 H3PO4-0.10 NH4NO3), (0.557 2 chitosan-0.338 3 H3PO4-0.099 5 NH4NO3-0.005 Al2SiO5) and (0.615 chitosan-0.377 H3PO4-0.008 Al2SiO5), composition in weight fraction, exhibit the highest room temperature electrical conductivity of (5.36±1.32) × 10-5, (1.16±0.35) × 10-4, (1.82±0.10) × 10-4 an...

  8. Electrical Conductivity Studies on Individual Conjugated Polymer Nanowires: Two-Probe and Four-Probe Results

    Directory of Open Access Journals (Sweden)

    Duvail JeanLuc

    2009-01-01

    Full Text Available Abstract Two- and four-probe electrical measurements on individual conjugated polymer nanowires with different diameters ranging from 20 to 190 nm have been performed to study their conductivity and nanocontact resistance. The two-probe results reveal that all the measured polymer nanowires with different diameters are semiconducting. However, the four-probe results show that the measured polymer nanowires with diameters of 190, 95–100, 35–40 and 20–25 nm are lying in the insulating, critical, metallic and insulting regimes of metal–insulator transition, respectively. The 35–40 nm nanowire displays a metal–insulator transition at around 35 K. In addition, it was found that the nanocontact resistance is in the magnitude of 104Ω at room temperature, which is comparable to the intrinsic resistance of the nanowires. These results demonstrate that four-probe electrical measurement is necessary to explore the intrinsic electronic transport properties of isolated nanowires, especially in the case of metallic nanowires, because the metallic nature of the measured nanowires may be coved by the nanocontact resistance that cannot be excluded by a two-probe technique.

  9. Study of the feasible size of a bone conduction implant transducer in the temporal bone.

    Science.gov (United States)

    Reinfeldt, Sabine; Östli, Per; Håkansson, Bo; Taghavi, Hamidreza; Eeg-Olofsson, Måns; Stalfors, Joacim

    2015-04-01

    The aim was to assess the temporal bone volume to determine the suitable size and position of a bone conduction implant (BCI) transducer. A BCI transducer needs to be sufficiently small to fit in the mastoid portion of the temporal bone for a majority of patients. The anatomical geometry limits both the dimension of an implanted transducer and its positions in the temporal bone to provide a safe and simple surgery. Computed tomography (CT) scans of temporal bones from 22 subjects were virtually reconstructed. With an algorithm in MATLAB, the maximum transducer diameter as function of the maximum transducer depth in the temporal bone, and the most suitable position were calculated in all subjects. An implanted transducer diameter of 16 mm inserted at a depth of 4 mm statistically fitted 95% of the subjects. If changing the transducer diameter to 12 mm, a depth of 6 mm would fit in 95% of the subjects. The most suitable position was found to be around 20 mm behind the ear canal. The present BCI transducer casing, used in ongoing clinical trials, was designed from the results in this study, demonstrating that the present BCI transducer casing (largest diameter [diagonal]: 15.5 mm, height: 6.4 mm) will statistically fit more than 95% of the subjects. Hence, the present BCI transducer is concluded to be sufficiently small to fit most normal-sized temporal bones and should be placed approximately 20 mm behind the ear canal.

  10. The heritability of the skin conductance orienting response: a longitudinal twin study.

    Science.gov (United States)

    Tuvblad, Catherine; Gao, Yu; Isen, Joshua; Botwick, Theodore; Raine, Adrian; Baker, Laura A

    2012-01-01

    The orienting response is a widely used experimental paradigm that reflects the association between electrodermal activity and psychological processes. The present study examined the genetic and environmental etiology of skin conductance orienting response (SCOR) magnitude in a sample of twins assessed at ages 9-10, 11-13 and 14-16 years. Structural equation modeling at each visit showed that genetic influences explained 56%, 83%, and 48% of the total variance in SCOR at visits 1, 2, and 3, respectively, with the remaining variance explained by non-shared environmental factors. SCOR was moderately stable across ages, with phenotypic correlations between time points ranging from .35 to .45. A common genetic factor explained 36%, 45% and 49% of the variance in SCOR magnitude across development. Additional age-specific genetic effects were found at ages 9-10 and 11-13 years, explaining 18% and 35% of the variance, respectively. The genetic correlations among the three time points were high, ranging from .55 to .73, indicating a substantial continuity in genetic influences from ages 9 to 16. These findings suggest that genetic factors are important influences in SCOR magnitude during late childhood and adolescence.

  11. Studies on high electronic energy deposition in transparent conducting indium tin oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, N G [Thin Film and Nanotechnology Laboratory, Department of Physics, Dr Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (MS) (India); Gudage, Y G [Thin Film and Nanotechnology Laboratory, Department of Physics, Dr Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (MS) (India); Ghosh, A [Thin Film and Nanotechnology Laboratory, Department of Physics, Dr Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (MS) (India); Vyas, J C [Technical and Prototype Engineering Division, Bhabha Atomic Research Center, Trombay, Mumbai (MS) (India); Singh, F [Inter-University Accelerator Center, Aruna Asaf Ali Marg, Post Box 10502, New Delhi 110067 (India); Tripathi, A [Inter-University Accelerator Center, Aruna Asaf Ali Marg, Post Box 10502, New Delhi 110067 (India); Sharma, Ramphal [Thin Film and Nanotechnology Laboratory, Department of Physics, Dr Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (MS) (India)

    2008-02-07

    We have examined the effect of swift heavy ions using 100 MeV Au{sup 8+} ions on the electrical properties of transparent, conducting indium tin oxide polycrystalline films with resistivity of 0.58 x 10{sup -4} {omega} cm and optical transmission greater than 78% (pristine). We report on the modifications occurring after high electronic energy deposition. With the increase in fluency, x-ray line intensity of the peaks corresponding to the planes (1 1 0), (4 0 0), (4 4 1) increased, while (3 3 1) remained constant. Surface morphological studies showed a pomegranate structure of pristine samples, which was highly disturbed with a high dose of irradiation. For the high dose, there was a formation of small spherical domes uniformly distributed over the entire surface. The transmittance was seen to be decreasing with the increase in ion fluency. At higher doses, the resistivity and photoluminescence intensity was seen to be decreased. In addition, the carrier concentration was seen to be increased, which was in accordance with the decrease in resistivity. The observed modifications after high electronic energy deposition in these films may lead to fruitful device applications.

  12. Study on improvement of conductivity of Cu-Cr-Zr alloys

    Institute of Scientific and Technical Information of China (English)

    LI Huaqing; XIE Shuisheng; WU Pengyue; MI Xujun

    2007-01-01

    The influence of alloying, heat treatment, and plastic working on the performance of Cu-Cr-Zr alloys was investigated. The precipitated phases were characterized as Cr, Cu51Zr14 and Cu5Zr. Cu-Cr-Zr alloys demonstrate combination properties of high strength and high conductivity after solution treatment, aging treatment, and plastic deformation. Precipitation course of Cr is the main factor that influences the conductivity of Cu-Cr-Zr alloys, while adding Zr in the alloys adjusts the orientation relationship between Cr and matrix, and tends to increase the conductivity of aged Cu-Cr-Zr alloys after deformation.

  13. History of electromyography and nerve conduction studies: A tribute to the founding fathers.

    Science.gov (United States)

    Kazamel, Mohamed; Warren, Paula Province

    2017-09-01

    The early development of nerve conduction studies (NCS) and electromyography (EMG) was linked to the discovery of electricity. This relationship had been concluded by observing the effect of applying electricity to the body of an animal and discovering that nerves and muscles themselves could produce electricity. We attempt to review the historical evolution of NCS and EMG over the last three centuries by reviewing the landmark publications of Galvani, Adrian, Denny-Brown, Larrabee, and Lambert. In 1771, Galvani showed that electrical stimulation of animal muscle tissue produced contraction and, thereby, the concept of animal electricity was born. In 1929, Adrian devised a method to record a single motor unit potential by connecting concentric needle electrodes to an amplifier and a loud speaker. In 1938, Denny-Brown described the fasciculation potentials and separated them from fibrillations. Toward the end of World War II, Larrabee began measuring the compound muscle action potential in healthy and injured nerves of war victims. In 1957, Lambert and Eaton described the electrophysiologic features of a new myasthenic syndrome associated with lung carcinoma. Overall, research on this topic was previously undertaken by neurophysiologists and then later by neurologists, with Adrian most likely being the first neurologist to be involved. The field greatly benefited from the invention of equipment that was capable of amplifying small bioelectrical currents by the beginning of the 20th century. Significant scientific and technical advances were later made during and after World War II which provided a large patient population with nerve injuries to study. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Experimental study on the in-plane thermal conductivity of Au nanofilms

    Institute of Scientific and Technical Information of China (English)

    CAO Bingyang; ZHANG Qingguang; ZHANG Xing; TAKAHASHI Koji; IKUTA Tatsuya; QIAO Wenming; FUJII Motoo

    2007-01-01

    The in-plane thermal conductivity of Au nanofilms with thickness of 23 nm, which are fabricated by the electron beamphysical vapor deposition method and a suspension technology, is experimentally measured at 80-300 K by a one-dimensional steady-state electrical heating method. Strong size effects are found on the measured nanofilm thermal conductivity. The Au nanofilm in-plane thermal conductivity is much less than that of the bulk material. With the increasing temperature, the nanofilm thermal conductivity increases.This is opposite to the temperature dependence of the bulk property. The Lorenz number of the Au nanofilms is about three times larger than the bulk value and decreases with the increasing temperature, which indicates the invalidity of the Wiedemann-Franz law for metallic nanofilms.

  15. Benchmark study of the length dependent thermal conductivity of individual suspended, pristine SWCNTs.

    Science.gov (United States)

    Liu, Jinhui; Li, Tianyi; Hu, Yudong; Zhang, Xing

    2017-01-26

    The thermal conductivity of individual suspended single-walled carbon nanotubes (SWCNTs) has been theoretically predicated to increase with length but this has never been verified experimentally. This then leads to the question of whether the thermal conductivity saturates to a finite constant value in ultra-long SWCNTs. This paper reports on experimental measurements of the thermal conductivity of individual suspended SWCNTs as a function of the characteristic thermal transport length using the same individual suspended SWCNT sample. Interestingly, at around 360 K, the thermal conductivity first increases with increasing characteristic length and then saturates to a finite constant value at a characteristic length of ∼10 μm. These experimental results provide a fundamental understanding of the phonon transport characteristics in suspended, pristine SWCNTs.

  16. Modeling High Altitude EMP using a Non-Equilibrium Electron Swarm Model to Monitor Conduction Electron Evolution (LA-UR-15-26151)

    Science.gov (United States)

    Pusateri, E. N.; Morris, H. E.; Nelson, E.; Ji, W.

    2015-12-01

    Electromagnetic pulse (EMP) events in the atmosphere are important physical phenomena that occur through both man-made and natural processes, such as lightning, and can be disruptive to surrounding electrical systems. Due to the disruptive nature of EMP, it is important to accurately predict EMP evolution and propagation with computational models. In EMP, low-energy conduction electrons are produced from Compton electron or photoelectron ionizations with air. These conduction electrons continue to interact with the surrounding air and alter the EMP waveform. Many EMP simulation codes use an equilibrium ohmic model for computing the conduction current. The equilibrium model works well when the equilibration time is short compared to the rise time or duration of the EMP. However, at high altitude, the conduction electron equilibration time can be comparable to or longer than the rise time or duration of the EMP. This matters, for example, when calculating the EMP propagating upward toward a satellite. In these scenarios, the equilibrium ionization rate becomes very large for even a modest electric field. The ohmic model produces an unphysically large number of conduction electrons that prematurely and abruptly short the EMP in the simulation code. An electron swarm model, which simulates the time evolution of conduction electrons, can be used to overcome the limitations exhibited by the equilibrium ohmic model. We have developed and validated an electron swarm model in an environment characterized by electric field and pressure previously in Pusateri et al. (2015). This swarm model has been integrated into CHAP-LA, a state-of-the-art EMP code developed by researchers at Los Alamos National Laboratory, which previously calculated conduction current using an ohmic model. We demonstrate the EMP damping behavior caused by the ohmic model at high altitudes and show improvements on high altitude EMP modeling obtained by employing the swarm model.

  17. Conduct Disorder Symptoms and Subsequent Pregnancy, Child-Birth and Abortion: A Population-Based Longitudinal Study of Adolescents

    Science.gov (United States)

    Pedersen, Willy; Mastekaasa, Arne

    2011-01-01

    Research on teenage pregnancy and abortion has primarily focused on socio-economic disadvantage. However, a few studies suggest that risk of unwanted pregnancy is related to conduct disorder symptoms. We examined the relationship between level of conduct disorder symptoms at age 15 and subsequent pregnancy, child-birth and abortion. A…

  18. Study of Thermal Conductivity of Hydrogen-argon Mixture at Different Temperatures for Thermal Insulation Pipes in Petroleum Industry

    Institute of Scientific and Technical Information of China (English)

    ZHOU Cheng-long; XU Yong-xiang; SHENG Hong-zhi

    2014-01-01

    In this paper, through the study of thermal conductivity of hydrogen- argon mixture at different temperatures for thermal insulation pipes in petroleum industry, a good method for determining the thermal conductivity of other gas mixture at different temperatures has been provided.

  19. Conduct Disorder Symptoms and Subsequent Pregnancy, Child-Birth and Abortion: A Population-Based Longitudinal Study of Adolescents

    Science.gov (United States)

    Pedersen, Willy; Mastekaasa, Arne

    2011-01-01

    Research on teenage pregnancy and abortion has primarily focused on socio-economic disadvantage. However, a few studies suggest that risk of unwanted pregnancy is related to conduct disorder symptoms. We examined the relationship between level of conduct disorder symptoms at age 15 and subsequent pregnancy, child-birth and abortion. A…

  20. Carbon nanotubes filled polymer composites: A comprehensive study on improving dispersion, network formation and electrical conductivity

    Science.gov (United States)

    Chakravarthi, Divya Kannan

    In this dissertation, we determine how the dispersion, network formation and alignment of carbon nanotubes in polymer nanocomposites affect the electrical properties of two different polymer composite systems: high temperature bismaleimide (BMI) and polyethylene. The knowledge gained from this study will facilitate optimization of the above mentioned parameters, which would further enhance the electrical properties of polymer nanocomposites. BMI carbon fiber composites filled with nickel-coated single walled carbon nanotubes (Ni-SWNTs) were processed using high temperature vacuum assisted resin transfer molding (VARTM) to study the effect of lightning strike mitigation. Coating the SWNTs with nickel resulted in enhanced dispersions confirmed by atomic force microscopy (AFM) and dynamic light scattering (DLS). An improved interface between the carbon fiber and Ni-SWNTs resulted in better surface coverage on the carbon plies. These hybrid composites were tested for