WorldWideScience

Sample records for monitoring structural transitions

  1. Structural Health Monitoring of Railway Transition Zones Using Satellite Radar Data.

    Science.gov (United States)

    Wang, Haoyu; Chang, Ling; Markine, Valeri

    2018-01-31

    Transition zones in railway tracks are locations with considerable changes in the rail-supporting structure. Typically, they are located near engineering structures, such as bridges, culverts and tunnels. In such locations, severe differential settlements often occur due to the different material properties and structure behavior. Without timely maintenance, the differential settlement may lead to the damage of track components and loss of passenger's comfort. To ensure the safety of railway operations and reduce the maintenance costs, it is necessary to consecutively monitor the structural health condition of the transition zones in an economical manner and detect the changes at an early stage. However, using the current in situ monitoring of transition zones is hard to achieve this goal, because most in situ techniques (e.g., track-measuring coaches) are labor-consuming and usually not frequently performed (approximately twice a year in the Netherlands). To tackle the limitations of the in situ techniques, a Satellite Synthetic Aperture Radar (InSAR) system is presented in this paper, which provides a potential solution for a consecutive structural health monitoring of transition zones with bi-/tri-weekly data update and mm-level precision. To demonstrate the feasibility of the InSAR system for monitoring transition zones, a transition zone is tested. The results show that the differential settlement in the transition zone and the settlement rate can be observed and detected by the InSAR measurements. Moreover, the InSAR results are cross-validated against measurements obtained using a measuring coach and a Digital Image Correlation (DIC) device. The results of the three measuring techniques show a good correlation, which proves the applicability of InSAR for the structural health monitoring of transition zones in railway track.

  2. Structural Health Monitoring of Railway Transition Zones Using Satellite Radar Data

    Directory of Open Access Journals (Sweden)

    Haoyu Wang

    2018-01-01

    Full Text Available Transition zones in railway tracks are locations with considerable changes in the rail-supporting structure. Typically, they are located near engineering structures, such as bridges, culverts and tunnels. In such locations, severe differential settlements often occur due to the different material properties and structure behavior. Without timely maintenance, the differential settlement may lead to the damage of track components and loss of passenger’s comfort. To ensure the safety of railway operations and reduce the maintenance costs, it is necessary to consecutively monitor the structural health condition of the transition zones in an economical manner and detect the changes at an early stage. However, using the current in situ monitoring of transition zones is hard to achieve this goal, because most in situ techniques (e.g., track-measuring coaches are labor-consuming and usually not frequently performed (approximately twice a year in the Netherlands. To tackle the limitations of the in situ techniques, a Satellite Synthetic Aperture Radar (InSAR system is presented in this paper, which provides a potential solution for a consecutive structural health monitoring of transition zones with bi-/tri-weekly data update and mm-level precision. To demonstrate the feasibility of the InSAR system for monitoring transition zones, a transition zone is tested. The results show that the differential settlement in the transition zone and the settlement rate can be observed and detected by the InSAR measurements. Moreover, the InSAR results are cross-validated against measurements obtained using a measuring coach and a Digital Image Correlation (DIC device. The results of the three measuring techniques show a good correlation, which proves the applicability of InSAR for the structural health monitoring of transition zones in railway track.

  3. Structural health monitoring of railway transition zones using satellite radar data

    NARCIS (Netherlands)

    Wang, Haoyu; Chang, L.; Markine, V.L.

    2018-01-01

    Transition zones in railway tracks are locationswith considerable changes in the rail-supporting structure. Typically, they are located near engineering structures, such as bridges, culverts and tunnels. In such locations, severe differential settlements often occur due to the different material

  4. Evaluation of Fluorescent Analogs of Deoxycytidine for Monitoring DNA Transitions from Duplex to Functional Structures

    Directory of Open Access Journals (Sweden)

    Yogini P. Bhavsar

    2011-01-01

    Full Text Available Topological variants of single-strand DNA (ssDNA structures, referred to as “functional DNA,” have been detected in regulatory regions of many genes and are thought to affect gene expression. Two fluorescent analogs of deoxycytidine, Pyrrolo-dC (PdC and 1,3-diaza-2-oxophenoxazine (tC∘, can be incorporated into DNA. Here, we describe spectroscopic studies of both analogs to determine fluorescent properties that report on structural transitions from double-strand DNA (dsDNA to ssDNA, a common pathway in the transition to functional DNA structures. We obtained fluorescence-detected circular dichroism (FDCD spectra, steady-state fluorescence spectra, and fluorescence lifetimes of the fluorophores in DNA. Our results show that PdC is advantageous in fluorescence lifetime studies because of a distinct ~2 ns change between paired and unpaired bases. However, tC∘ is a better probe for FDCD experiments that report on the helical structure of DNA surrounding the fluorophore. Both fluorophores provide complementary data to measure DNA structural transitions.

  5. Structure function monitor

    Science.gov (United States)

    McGraw, John T [Placitas, NM; Zimmer, Peter C [Albuquerque, NM; Ackermann, Mark R [Albuquerque, NM

    2012-01-24

    Methods and apparatus for a structure function monitor provide for generation of parameters characterizing a refractive medium. In an embodiment, a structure function monitor acquires images of a pupil plane and an image plane and, from these images, retrieves the phase over an aperture, unwraps the retrieved phase, and analyzes the unwrapped retrieved phase. In an embodiment, analysis yields atmospheric parameters measured at spatial scales from zero to the diameter of a telescope used to collect light from a source.

  6. Structural health monitoring for ship structures

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, Charles [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory; Angel, Marian [Los Alamos National Laboratory; Bement, Matthew [Los Alamos National Laboratory; Salvino, Liming [NSWC, CADEROCK

    2009-01-01

    Currently the Office of Naval Research is supporting the development of structural health monitoring (SHM) technology for U.S. Navy ship structures. This application is particularly challenging because of the physical size of these structures, the widely varying and often extreme operational and environmental conditions associated with these ships missions, lack of data from known damage conditions, limited sensing that was not designed specifically for SHM, and the management of the vast amounts of data that can be collected during a mission. This paper will first define a statistical pattern recognition paradigm for SHM by describing the four steps of (1) Operational Evaluation, (2) Data Acquisition, (3) Feature Extraction, and (4) Statistical Classification of Features as they apply to ship structures. Note that inherent in the last three steps of this process are additional tasks of data cleansing, compression, normalization and fusion. The presentation will discuss ship structure SHM challenges in the context of applying various SHM approaches to sea trials data measured on an aluminum multi-hull high-speed ship, the HSV-2 Swift. To conclude, the paper will discuss several outstanding issues that need to be addressed before SHM can make the transition from a research topic to actual field applications on ship structures and suggest approaches for addressing these issues.

  7. Structural transitions in superionic conductors

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, M.; Rahman, A.; Vashishta, P.

    1983-04-04

    The ..cap alpha..arrow-right-left..beta.. phase transition in AgI is studied with use of the new molecular-dynamics technique which allows for a dynamical variation of the shape and size of the cell. In the present model, upon heating of ..beta..-AgI, the iodine ions undergo a hcp..-->..bcc transformation and silver ions become mobile, whereas the reverse transformation is observed on cooling of ..cap alpha..-AgI. The calculated ..cap alpha..arrow-right-left..beta.. transition temperature and structural and dynamical properties are in good agreement with experiments.

  8. Monitoring of transition zones in railways

    NARCIS (Netherlands)

    Coelho, B.; Priest, J.; Holscher, P.; Powrie, W.

    2009-01-01

    Transitions between railway track on embankments or natural ground and fixed structures such as bridges and culverts often require substantial additional maintenance to preserve line, level and ride quality. This extra maintenance not only increases costs but also causes delays. Despite its

  9. Classifying Transition Behaviour in Postural Activity Monitoring

    Directory of Open Access Journals (Sweden)

    James BRUSEY

    2009-10-01

    Full Text Available A few accelerometers positioned on different parts of the body can be used to accurately classify steady state behaviour, such as walking, running, or sitting. Such systems are usually built using supervised learning approaches. Transitions between postures are, however, difficult to deal with using posture classification systems proposed to date, since there is no label set for intermediary postures and also the exact point at which the transition occurs can sometimes be hard to pinpoint. The usual bypass when using supervised learning to train such systems is to discard a section of the dataset around each transition. This leads to poorer classification performance when the systems are deployed out of the laboratory and used on-line, particularly if the regimes monitored involve fast paced activity changes. Time-based filtering that takes advantage of sequential patterns is a potential mechanism to improve posture classification accuracy in such real-life applications. Also, such filtering should reduce the number of event messages needed to be sent across a wireless network to track posture remotely, hence extending the system’s life. To support time-based filtering, understanding transitions, which are the major event generators in a classification system, is a key. This work examines three approaches to post-process the output of a posture classifier using time-based filtering: a naïve voting scheme, an exponentially weighted voting scheme, and a Bayes filter. Best performance is obtained from the exponentially weighted voting scheme although it is suspected that a more sophisticated treatment of the Bayes filter might yield better results.

  10. Transition state structures in solution

    International Nuclear Information System (INIS)

    Bertran, J.; Lluch, J. M.; Gonzalez-Lafont, A.; Dillet, V.; Perez, V.

    1995-01-01

    In the present paper the location of transition state structures for reactions in solution has been studied. Continuum model calculations have been carried out on the Friedel-Crafts alkylation reaction and a proton transfer through a water molecule between two oxygen atoms in formic acid. In this model the separation between the chemical system and the solvent has been introduced. On the other hand, the discrete Monte Carlo methodology has also been used to simulate the solvent effect on dissociative electron transfer processes. In this model, the hypothesis of separability is not assumed. Finally, the validity of both approaches is discussed

  11. Transition-Systems, Event Structures, and Unfoldings

    DEFF Research Database (Denmark)

    Nielsen, Mogens; Rozenberg, Grzegorz; Thiagarajan, P.S.

    1995-01-01

    systems. Here we show that by smoothly strengthening the regional axioms for elementary transition systems, one obtains a subclass called occurrence transition system. We then prove that occurrence transition systems are the transition system model of yet another basic model of concurrency, namely, prime......A subclass of transition systems called elementary transition systems can be identified with the help of axioms based on a structural notion called regions. Elementary transition systems have been shown to be the transition system model of a basic system model of net theory called elementary net...

  12. Tracking and Monitoring Nuclear Materials During Transit

    International Nuclear Information System (INIS)

    Kelly M, Suzanne; Pregent, William

    1999-01-01

    Sandia National Laboratories (SNL) has completed a prototype Cargo Monitoring System (CMS). The system illustrates a method to provide status on nuclear material or waste while in transit during normal and potentially, abnormal scenarios. This accomplishment is tied to a concept to provide ''seamless continuity of knowledge'' for nuclear materials, whether they are being processed, stored, or transported. The system divides the transportation-tracking problem into four domains. Each domain has a well-defined interface that allows each domain to be developed independently. This paper will describe the key technologies employed in the system. Sandia is developing a modular tag that can be affixed to cargo. The tag supports a variety of sensor types. The input can be Boolean or analog. The tag uses RF to communicate with a transportation data unit that manages and monitors the cargo. Any alarm conditions are relayed to a central hub. The hub was developed using the Configurable Transportation Security and Information Management System (CTSS) software library of transportation components, which was designed to facilitate rapid development of new systems. CTSS can develop systems that reside in the vehicle host(s) and in a centralized command center

  13. Music: Creativity and Structure Transitions

    Science.gov (United States)

    Pietrocini, Emanuela

    Music, compared to other complex forms of representation, is fundamentally characterized by constant evolution and a dynamic succession of structure reference models. This is without taking into account historical perspective, the analysis of forms and styles, or questions of a semantic nature; the observation rather refers to the phenomenology of the music system. The more abstract a compositional model, the greater the number and frequency of variables that are not assimilated to the reference structure; this "interference" which happens more often than not in an apparently casual manner, modifies the creative process to varying but always substantial degrees: locally, it produces a disturbance in perceptive, formal and structural parameters, resulting more often than not in a synaesthetic experience; globally, on the other hand, it defines the terms of a transition to a new state, in which the relations between elements and components modify the behavior of the entire system from which they originated. It is possible to find examples of this phenomenon in the whole range of musical production, in particular in improvisations, in the use of the Basso Continuo, and in some contrapuntal works of the baroque period, music whose temporal dimension can depart from the limits of mensurability and symmetry to define an open compositional environment in continuous evolution.

  14. Structural phase transitions and Huang scattering

    International Nuclear Information System (INIS)

    Yamada, Yasusada

    1980-01-01

    The usefulness of the application of the concept of Huang scattering to the understandings of the origin of diffuse scatterings near structural phase transitions are discussed. It is pointed out that in several phase transitions, the observed diffuse scatterings can not be interpreted in terms of critical fluctuations of the order parameters associated with the structural phase transitions, and that they are rather interpreted as Huang scattering due to random distribution of individual order parameter which is 'dressed' by strain fields. Examples to show effective applications of this concept to analyze the experimental X-ray data and whence to understand microscopic mechanisms of structural phase transitions are presented. (author)

  15. Anomalous structural transition of confined hard squares.

    Science.gov (United States)

    Gurin, Péter; Varga, Szabolcs; Odriozola, Gerardo

    2016-11-01

    Structural transitions are examined in quasi-one-dimensional systems of freely rotating hard squares, which are confined between two parallel walls. We find two competing phases: one is a fluid where the squares have two sides parallel to the walls, while the second one is a solidlike structure with a zigzag arrangement of the squares. Using transfer matrix method we show that the configuration space consists of subspaces of fluidlike and solidlike phases, which are connected with low probability microstates of mixed structures. The existence of these connecting states makes the thermodynamic quantities continuous and precludes the possibility of a true phase transition. However, thermodynamic functions indicate strong tendency for the phase transition and our replica exchange Monte Carlo simulation study detects several important markers of the first order phase transition. The distinction of a phase transition from a structural change is practically impossible with simulations and experiments in such systems like the confined hard squares.

  16. Reconstructive structural phase transitions in dense Mg

    International Nuclear Information System (INIS)

    Yao Yansun; Klug, Dennis D

    2012-01-01

    The question raised recently about whether the high-pressure phase transitions of Mg follow a hexagonal close-packed (hcp) → body centered cubic (bcc) or hcp → double hexagonal close-packed (dhcp) → bcc sequence at room temperature is examined by the use of first principles density functional methods. Enthalpy calculations show that the bcc structure replaces the hcp structure to become the most stable structure near 48 GPa, whereas the dhcp structure is never the most stable structure in the pressure range of interest. The characterized phase-transition mechanisms indicate that the hcp → dhcp transition is also associated with a higher enthalpy barrier. At room temperature, the structural sequence hcp → bcc is therefore more energetically favorable for Mg. The same conclusion is also reached from the simulations of the phase transitions using metadynamics methods. At room temperature, the metadynamics simulations predict the onset of a hcp → bcc transition at 40 GPa and the transition becomes more prominent upon further compression. At high temperatures, the metadynamics simulations reveal a structural fluctuation among the hcp, dhcp, and bcc structures at 15 GPa. With increasing pressure, the structural evolution at high temperatures becomes more unambiguous and eventually settles to a bcc structure once sufficient pressure is applied. (paper)

  17. Phase transitions of natural corals monitored by ESR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Vongsavat, V. [Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Rajathevi, Bangkok 10400 (Thailand); Winotai, P. [Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Rajathevi, Bangkok 10400 (Thailand); Meejoo, S. [Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Rajathevi, Bangkok 10400 (Thailand)]. E-mail: scsmj@mahidol.ac.th

    2006-01-15

    The main purpose of this work is to present a systematic study of structure of marine exoskeletons, Acropora coral and its structural transformation upon heat treatments. The coralline sample was ground and characterized as powder throughout this work. Structural identifications of all samples have been confirmed using X-ray diffraction and IR spectroscopy. It was clearly found that the fresh specimen is made of aragonite, a common phase of the mineral CaCO{sub 3}. Thermal analyses, DSC and TGA were used to monitor structural and thermal decompositions and an irreversible solid-state phase transition from aragonite to calcite of the marine carbonate. Next, the coral powder was annealed at specific temperatures over the range 350-900 deg. C, and the effects of heat treatment on the structure of coralline samples were carefully studied by Rietveld refinement method. In addition, we have examined Mn{sup 2+} paramagnetic ions and free radicals present in the coral and changes of those upon heating by using ESR spectroscopy. The local environments of Mn{sup 2+} ions were verified from the calculated ESR spectra using appropriate spin Hamiltonian parameters, i.e. gyromagnetic tensor g , zero-field splitting D and hyperfine tensor A . This work reported structures and compositions as well as physical, chemical and thermal properties of the coralline material upon heat treatments qualitatively and quantitatively.

  18. Phase transitions of natural corals monitored by ESR spectroscopy

    International Nuclear Information System (INIS)

    Vongsavat, V.; Winotai, P.; Meejoo, S.

    2006-01-01

    The main purpose of this work is to present a systematic study of structure of marine exoskeletons, Acropora coral and its structural transformation upon heat treatments. The coralline sample was ground and characterized as powder throughout this work. Structural identifications of all samples have been confirmed using X-ray diffraction and IR spectroscopy. It was clearly found that the fresh specimen is made of aragonite, a common phase of the mineral CaCO 3 . Thermal analyses, DSC and TGA were used to monitor structural and thermal decompositions and an irreversible solid-state phase transition from aragonite to calcite of the marine carbonate. Next, the coral powder was annealed at specific temperatures over the range 350-900 deg. C, and the effects of heat treatment on the structure of coralline samples were carefully studied by Rietveld refinement method. In addition, we have examined Mn 2+ paramagnetic ions and free radicals present in the coral and changes of those upon heating by using ESR spectroscopy. The local environments of Mn 2+ ions were verified from the calculated ESR spectra using appropriate spin Hamiltonian parameters, i.e. gyromagnetic tensor g , zero-field splitting D and hyperfine tensor A . This work reported structures and compositions as well as physical, chemical and thermal properties of the coralline material upon heat treatments qualitatively and quantitatively

  19. Structured Transition Protocol for Children with Cystinosis

    Directory of Open Access Journals (Sweden)

    Rupesh Raina

    2017-08-01

    Full Text Available The transition from pediatric to adult medical services has a greater impact on the care of adolescents or young adults with chronic diseases such as cystinosis. This transition period is a time of psychosocial development and new responsibilities placing these patients at increased risk of non-adherence. This can lead to serious adverse effects such as graft loss and progression of the disease. Our transition protocol will provide patients, families, physicians, and all those involved a structured guide to transitioning cystinosis patients. This structured protocol depends on four areas of competency: Recognition, Insight, Self-reliance, and Establishment of healthy habits (RISE. This protocol has not been tested and therefore challenges not realized. With a focus on medical, social, and educational/vocational aspects, we aim to improve transition for cystinosis patients in all aspects of their lives.

  20. Extending Modal Transition Systems with Structured Labels

    DEFF Research Database (Denmark)

    Bauer, Sebastian S.; Juhl, Line; Larsen, Kim Guldstrand

    2012-01-01

    We introduce a novel formalism of label-structured modal transition systems that combines the classical may/must modalities on transitions with structured labels that represent quantitative aspects of the model. On the one hand, the specification formalism is general enough to include models like...... weighted modal transition systems and allows the system developers to employ more complex label refinement than in the previously studied theories. On the other hand, the formalism maintains the desirable properties required by any specification theory supporting compositional reasoning. In particular, we...

  1. The Physics of Structural Phase Transitions

    CERN Document Server

    Fujimoto, Minoru

    2005-01-01

    Phase transitions in which crystalline solids undergo structural changes present an interesting problem in the interplay between the crystal structure and the ordering process that is typically nonlinear. Intended for readers with prior knowledge of basic condensed-matter physics, this book emphasizes the physics behind spontaneous structural changes in crystals. Starting with the relevant thermodynamic principles, the text discusses the nature of order variables in collective motion in structural phase transitions, where a singularity in such a collective mode is responsible for lattice instability as revealed by soft phonons. In this book, critical anomalies at second-order structural transitions are first analyzed with the condensate model. Discussions on the nonlinear ordering mechanism are followed with the soliton theory, thereby interpreting the role of long-range order. Relevant details for nonlinear mathematics are therefore given for minimum necessity. The text also discusses experimental methods fo...

  2. FINANCIAL SYSTEM STRUCTURE AND STABILITY DURING TRANSITION

    Directory of Open Access Journals (Sweden)

    Firtescu Bogdan

    2012-07-01

    Full Text Available The process of transition from socialist economy to market economy was not considered an end in itself, but a necessity, and standing proof to achieve high levels of sustainable development. All former socialist countries are characterized by an early transition recession transformation result of the restructuring, loss of markets, tough competition from foreign products, best quality, or in other cases cheaper. To express the financial system structure in transition we take into discussion data that reflects representatives mutations and restructuring in Central and Eastern European countries, such Bulgaria, Czech Republic, Hungary, Poland and Romania. For all countries we show some important changes of financial system during transition and construct an image matrix that illustrates important indicators of financial system structure and their adjustment.

  3. Sensor distributions for structural monitoring

    DEFF Research Database (Denmark)

    Ulriksen, Martin Dalgaard; Bernal, Dionisio

    2017-01-01

    Deciding on the spatial distribution of output sensors for vibration-based structural health monitoring (SHM) is a task that has been, and still is, studied extensively. Yet, when referring to the conventional damage characterization hierarchy, composed of detection, localization, and quantificat......Deciding on the spatial distribution of output sensors for vibration-based structural health monitoring (SHM) is a task that has been, and still is, studied extensively. Yet, when referring to the conventional damage characterization hierarchy, composed of detection, localization......, and quantification, it is primarily the first component that has been addressed with regard to optimal sensor placement. In this particular context, a common approach is to distribute sensors, of which the amount is determined a priori, such that some scalar function of the probability of detection for a pre......-defined set of damage patterns is maximized. Obviously, the optimal sensor distribution, in terms of damage detection, is algorithm-dependent, but studies have showed how correlation generally exists between the different strategies. However, it still remains a question how this “optimality” correlates...

  4. The Structural Phase Transition in Solid DCN

    DEFF Research Database (Denmark)

    Dietrich, O. W.; Mackenzie, Gordon A.; Pawley, G. S.

    1975-01-01

    Neutron scattering measurements on deuterated hydrogen cyanide have shown that the structural phase change from a tetragonal to an orthorhombic form at 160K is a first-order transition. A transverse acoustic phonon mode, which has the symmetry of the phase change, was observed at very low energies...

  5. Family Structure Transitions and Maternal Parenting Stress

    Science.gov (United States)

    Cooper, Carey E.; McLanahan, Sara S.; Meadows, Sarah O.; Brooks-Gunn, Jeanne

    2009-01-01

    Data from the Fragile Families and Child Wellbeing Study (N = 4,176) are used to examine family structure transitions and maternal parenting stress. Using multilevel modeling, we found that mothers who exit coresidential relationships with biological fathers or enter coresidential relationships with nonbiological fathers reported higher levels of…

  6. Fine structure transitions in Fe XIV

    Science.gov (United States)

    Nahar, Sultana N.

    2013-07-01

    Results are reported for Fe XIV energy levels and transitions obtained from the ab initio relativistic Breit-Pauli R-matrix (BPRM) method. BPRM method developed under the Iron Project is capable of calculating very large number of fine structure energy levels and corresponding transitions. However, unlike in the atomic structure calculations, where levels are identified spectroscopically based on the leading percentage contributions of configurations, BPRM is incapable of such identification of the levels and hence the transitions. The main reason for it is that the percentage contributions can not be determined exactly from the large number of channels in the R-matrix space. The present report describes an identification method that uses considerations of quantum defects of channels, contributions of channel from outer regions, Hund's rule, and angular momenta algebra for addition and completeness of fine structure components. The present calculations are carried out using a close coupling wave function expansion that included 26 core excitations from configurations 2s22p63s2, 2s22p63s3p,2s22p63p2,2s22p63s3d, and 2s22p63p3d. A total of 1002 fine structure levels with n ⩽ 10, l⩽9, and 0.5 ⩽J⩽ 9.5 with even and odd parities and the corresponding 130,520 electric dipole allowed (E1) fine structure transitions, a most complete set for astrophysical modelings of spectral analysis and opacities, is presented. Large number of new energy levels are found and identified. The energies agree very well, mostly in less than 1% with the highest being 1.9%, with the 68 observed fine structure levels. While the high lying levels may have some uncertainty, an overall accuracy of energy levels should be within 10%. BPRM transitions have been benchmarked with the existing most accurate calculated transition probabilities with very good agreement for most cases. Based on the accuracy of the method and comparisons, most of the transitions can be rated with A (⩽10%) to C (

  7. The Structural Phase Transition in Octaflournaphtalene

    DEFF Research Database (Denmark)

    Mackenzie, Gordon A.; Arthur, J. W.; Pawley, G. S.

    1977-01-01

    The phase transition in octafluoronaphthalene has been investigated by Raman scattering and neutron powder diffraction. The weight of the experimental evidence points to a unit cell doubling in the a direction, but with no change in space group symmetry. Lattice dynamics calculations support...... this evidence and indicate that the mechanism of the phase transition may well be the instability of a zone boundary acoustic mode of librational character. The structure of the low-temperature phase has been refined and the Raman spectra of the upper and lower phases are reported....

  8. About the dynamics of structural phase transitions

    International Nuclear Information System (INIS)

    Medeiros, J.T.N.

    1975-01-01

    The dynamics of structural phase transitions with a fourth order interaction between the soft phonon fields is studied in the 1/n approximation, using many body methods at finite temperatures. Two limits are considered: high transition temperature T sub(c) (classical limit) and T sub(c) = 0 (quantum limit). The dynamical contribution to the critical coefficient eta of the correlation function is calculated in these limits. It is found that there is no dynamical contribution to eta in the classical limit, whereas in the quantum limit eta is non-zero only for dimensions of the system d [pt

  9. Structural Transitions in Cholesteric Liquid Crystal Droplets

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ye; Bukusoglu, Emre; Martínez-González, José A.; Rahimi, Mohammad; Roberts, Tyler F.; Zhang, Rui; Wang, Xiaoguang; Abbott, Nicholas L.; de Pablo, Juan J.

    2016-07-26

    Confinement of cholesteric liquid crystals (ChLC) into droplets leads to a delicate interplay between elasticity, chirality, and surface energy. In this work, we rely on a combination of theory and experiments to understand the rich morphological behavior that arises from that balance. More specifically, a systematic study of micrometer-sized ChLC droplets is presented as a function of chirality and surface energy (or anchoring). With increasing chirality, a continuous transition is observed from a twisted bipolar structure to a radial spherical structure, all within a narrow range of chirality. During such a transition, a bent structure is predicted by simulations and confirmed by experimental observations. Simulations are also able to capture the dynamics of the quenching process observed in experiments. Consistent with published work, it is found that nanoparticles are attracted to defect regions on the surface of the droplets. For weak anchoring conditions at the nanoparticle surface, ChLC droplets adopt a morphology similar to that of the equilibrium helical phase observed for ChLCs in the bulk. As the anchoring strength increases, a planar bipolar structure arises, followed by a morphological transition to a bent structure. The influence of chirality and surface interactions are discussed in the context of the potential use of ChLC droplets as stimuli-responsive materials for reporting molecular adsorbates.

  10. Soft modes and structural phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Venkataraman, G [Reactor Research Centre, Kalpakkam (India)

    1979-12-01

    A survey of soft modes and their relationship to structural phase transitions is presented. After introducing the concept of a soft mode, the origin of softening is considered from a lattice-dynamical point. The Landau theory approach to structural transitions is then discussed, followed by a generalisation of the soft-mode concept through the use of the dynamic order-parameter susceptibility. The relationship of soft modes to broken symmetry is also examined. Experimental results for several classes of crystals are next presented, bringing out various features such as the co-operative Jahn-Teller effect. The survey concludes with a discussion of the central peak, touching upon both the experimental results and the theoretical speculations.

  11. High power beam profile monitor with optical transition radiation

    International Nuclear Information System (INIS)

    Denard, J.C.; Piot, P.; Capek, K.; Feldl, E.

    1997-01-01

    A simple monitor has been built to measure the profile of the high power beam (800 kW) delivered by the CEBAF accelerator at Jefferson Lab. The monitor uses the optical part of the forward transition radiation emitted from a thin carbon foil. The small beam size to be measured, about 100 μm, is challenging not only for the power density involved but also for the resolution the instrument must achieve. An important part of the beam instrumentation community believes the radiation being emitted into a cone of characteristic angle 1/γ is originated from a region of transverse dimension roughly λγ; thus the apparent size of the source of transition radiation would become very large for highly relativistic particles. This monitor measures 100 μm beam sizes that are much smaller than the 3.2 mm λγ limit; it confirms the statement of Rule and Fiorito that optical transition radiation can be used to image small beams at high energy. The present paper describes the instrument and its performance. The authors tested the foil in, up to 180 μA of CW beam without causing noticeable beam loss, even at 800 MeV, the lowest CEBAF energy

  12. Monitoring of structures: review of technologies

    International Nuclear Information System (INIS)

    2013-01-01

    Structural Health Monitoring (SHM) aims at monitoring the integrity of structures either in a continuous way or periodically. SHM is used for the monitoring of big civil works like bridges, dams, railways or critical structures like nuclear power plants or chemical plants. The sensors fixed on the structure allow an in-service monitoring. SHM gathers various technologies like ultrasound, acoustic emission, vibrations, Foucault currents...A technology based on guided ultrasonic waves (Lamb waves) appears promising for monitoring large structures made of composite materials. Another technology based on optical fibers can be used in very harsh environment and the optic fiber does not require any more sensors, the optical fiber itself being the sensor. The optical fiber is generally integrated to the structure during the construction phase. (A.C.)

  13. The atomic structure of transition metal clusters

    International Nuclear Information System (INIS)

    Riley, S.J.

    1995-01-01

    Chemical reactions are used to probe the atomic (geometrical) structure of isolated clusters of transition metal atoms. The number of adsorbate molecules that saturate a cluster, and/or the binding energy of molecules to cluster surfaces, are determined as a function of cluster size. Systematics in these properties often make it possible to propose geometrical structures consistent with the experimental observations. We will describe how studies of the reactions of cobalt and nickel clusters with ammonia, water, and nitrogen provide important and otherwise unavailable structural information. Specifically, small (less than 20 atoms) clusters of cobalt and nickel atoms adopt entirely different structures, the former having packing characteristic of the bulk and the latter having pentagonal symmetry. These observations provide important input for model potentials that attempt to describe the local properties of transition metals. In particular, they point out the importance of a proper treatment of d-orbital binding in these systems, since cobalt and nickel differ so little in their d-orbital occupancy

  14. Phase transitions and structures of methylammonium compounds

    International Nuclear Information System (INIS)

    Yamamuro, Osamu; Onoda-Yamamuro, Noriko; Matsuo, Takasuke; Suga, Hiroshi; Kamiyama, Takashi; Asano, Hajime; Ibberson, R.M.; David, W.I.F.

    1993-01-01

    The structures of CD 3 ND 3 Cl, CD 3 ND 3 I, CD 3 ND 3 BF 4 , (CD 3 ND 3 ) 2 SnCl 6 , and CD 3 ND 3 SnBr 3 crystals were studied with time-of-flight type high-resolution powder diffractometers using spallation pulsed neutron sources. The orientations of the CD 3 ND 3 cations, including the positions of the D atoms, were determined at all the room temperature phases and at the low temperature phases of CD 3 ND 3 I and (CD 3N D 3 ) 2 SnCl 6 . The heat capacity experiments were also performed for both protonated and deuterated analogs of these compounds. From both structural and thermodynamic points of view, it was found that the transitions are mainly associated with the order-disorder change of the orientations of the CD 3 ND 3 cations. (author)

  15. Electronic structure of hcp transition metals

    DEFF Research Database (Denmark)

    Jepsen, O.; Andersen, O. Krogh; Mackintosh, A. R.

    1975-01-01

    Using the linear muffin-tin-orbital method described in the previous paper, we have calculated the electronic structures of the hcp transition metals, Zr, Hf, Ru, and Os. We show how the band structures of these metals may be synthesized from the sp and d bands, and illustrate the effects...... of hybridization, relativistic band shifts, and spin-orbit coupling by the example of Os. By making use of parameters derived from the muffin-tin potential, we discuss trends in the positions and widths of the energy bands, especially the d bands, as a function of the location in the periodic table. The densities...... of states of the four metals are presented, and the calculated heat capacities compared with experiment. The Fermi surfaces of both Ru and Os are found to be in excellent quantitative agreement with de Haas-van Alphen measurements, indicating that the calculated d-band position is misplaced by less than 10...

  16. Monitoring corrosion in reinforced concrete structures

    Science.gov (United States)

    Kung, Peter; Comanici, Maria I.

    2014-06-01

    Many defects can cause deterioration and cracks in concrete; these are results of poor concrete mix, poor workmanship, inadequate design, shrinkage, chemical and environmental attack, physical or mechanical damage, and corrosion of reinforcing steel (RS). We want to develop a suite of sensors and systems that can detect that corrosion is taking place in RS and inform owners how serious the problem is. By understanding the stages of the corrosion process, we can develop special a sensor that detects each transition. First, moisture ingress can be monitored by a fiber optics humidity sensor, then ingress of Chloride, which acts as a catalyst and accelerates the corrosion process by converting iron into ferrous compounds. We need a fiber optics sensor which can quantify Chloride ingress over time. Converting ferric to ferrous causes large volume expansion and cracks. Such pressure build-up can be detected by a fiber optic pressure sensor. Finally, cracks emit acoustic waves, which can be detected by a high frequency sensor made with phase-shifted gratings. This paper will discuss the progress in our development of these special sensors and also our plan for a field test by the end of 2014. We recommend that we deploy these sensors by visually inspecting the affected area and by identifying locations of corrosion; then, work with the designers to identify spots that would compromise the integrity of the structure; finally, drill a small hole in the concrete and insert these sensors. Interrogation can be done at fixed intervals with a portable unit.

  17. Vibration-based structural health monitoring of harbor caisson structure

    Science.gov (United States)

    Lee, So-Young; Lee, So-Ra; Kim, Jeong-Tae

    2011-04-01

    This study presents vibration-based structural health monitoring method in foundation-structure interface of harbor caisson structure. In order to achieve the objective, the following approaches are implemented. Firstly, vibration-based response analysis method is selected and structural health monitoring (SHM) technique is designed for harbor caisson structure. Secondly, the performance of designed SHM technique for harbor structure is examined by FE analysis. Finally, the applicability of designed SHM technique for harbor structure is evaluated by dynamic tests on a lab-scaled caisson structure.

  18. Monitoring of timber structures: Editorial

    OpenAIRE

    Kurz, Jochen Horst

    2015-01-01

    Timber structures have been in use for centuries, with proven durability. In recent years, timber has become particularly important, due to its standing as a truly renewable material for construction and carbon storage purposes. The material behaviour of wood is known and understood. The current design concepts for timber structures are also well developed. Nevertheless, the underlying processes of the ageing and deterioration of wood are complex, and the anisotropic structure of wood require...

  19. Optical Structural Health Monitoring Device

    Science.gov (United States)

    Buckner, Benjamin D.; Markov, Vladimir; Earthman, James C.

    2010-01-01

    This non-destructive, optical fatigue detection and monitoring system relies on a small and unobtrusive light-scattering sensor that is installed on a component at the beginning of its life in order to periodically scan the component in situ. The method involves using a laser beam to scan the surface of the monitored component. The device scans a laser spot over a metal surface to which it is attached. As the laser beam scans the surface, disruptions in the surface cause increases in scattered light intensity. As the disruptions in the surface grow, they will cause the light to scatter more. Over time, the scattering intensities over the scanned line can be compared to detect changes in the metal surface to find cracks, crack precursors, or corrosion. This periodic monitoring of the surface can be used to indicate the degree of fatigue damage on a component and allow one to predict the remaining life and/or incipient mechanical failure of the monitored component. This wireless, compact device can operate for long periods under its own battery power and could one day use harvested power. The prototype device uses the popular open-source TinyOS operating system on an off-the-shelf Mica2 sensor mote, which allows wireless command and control through dynamically reconfigurable multi-node sensor networks. The small size and long life of this device could make it possible for the nodes to be installed and left in place over the course of years, and with wireless communication, data can be extracted from the nodes by operators without physical access to the devices. While a prototype has been demonstrated at the time of this reporting, further work is required in the system s development to take this technology into the field, especially to improve its power management and ruggedness. It should be possible to reduce the size and sensitivity as well. Establishment of better prognostic methods based on these data is also needed. The increase of surface roughness with

  20. Structural phase transitions in niobium oxide nanocrystals

    Science.gov (United States)

    Yuvakkumar, R.; Hong, Sun Ig

    2015-09-01

    Niobium oxide nanocrystals were successfully synthesized employing the green synthesis method. Phase formation, microstructure and compositional properties of 1, 4 and 7 days incubation treated samples after calcinations at 450 °C were examined using X-ray diffraction, Raman, photoluminescence (PL), infrared, X-ray photoelectron spectra and transmission electron microscopic characterizations. It was observed that phase formation of Nb2O5 nanocrystals was dependent upon the incubation period required to form stable metal oxides. The characteristic results clearly revealed that with increasing incubation and aging, the transformation of cubic, orthorhombic and monoclinic phases were observed. The uniform heating at room temperature (32 °C) and the ligation of niobium atoms due to higher phenolic constituents of utilized rambutan during aging processing plays a vital role in structural phase transitions in niobium oxide nanocrystals. The defects over a period of incubation and the intensities of the PL spectra changing over a period of aging were related to the amount of the defects induced by the phase transition.

  1. Assessing the value of structural health monitoring

    DEFF Research Database (Denmark)

    Thöns, S.; Faber, Michael Havbro

    2013-01-01

    Structural Health Monitoring (SHM) systems are designed for assisting owners and operators with information and forecasts concerning the fitness for purpose of structures and building systems. The benefit associated with the implementation of SHM may in some cases be intuitively anticipated...... as their responses and performances over their life-cycle. In addition, the quality of monitoring and the performance of possible remedial actions triggered by monitoring results are modeled probabilistically.The consequences accounted for, in principle include all consequences associated with the performance...

  2. Acoustic Techniques for Structural Health Monitoring

    Science.gov (United States)

    Frankenstein, B.; Augustin, J.; Hentschel, D.; Schubert, F.; Köhler, B.; Meyendorf, N.

    2008-02-01

    Future safety and maintenance strategies for industrial components and vehicles are based on combinations of monitoring systems that are permanently attached to or embedded in the structure, and periodic inspections. The latter belongs to conventional nondestructive evaluation (NDE) and can be enhanced or partially replaced by structural health monitoring systems. However, the main benefit of this technology for the future will consist of systems that can be differently designed based on improved safety philosophies, including continuous monitoring. This approach will increase the efficiency of inspection procedures at reduced inspection times. The Fraunhofer IZFP Dresden Branch has developed network nodes, miniaturized transmitter and receiver systems for active and passive acoustical techniques and sensor systems that can be attached to or embedded into components or structures. These systems have been used to demonstrate intelligent sensor networks for the monitoring of aerospace structures, railway systems, wind energy generators, piping system and other components. Material discontinuities and flaws have been detected and monitored during full scale fatigue testing. This paper will discuss opportunities and future trends in nondestructive evaluation and health monitoring based on new sensor principles and advanced microelectronics. It will outline various application examples of monitoring systems based on acoustic techniques and will indicate further needs for research and development.

  3. Gas phase structure of transition metal dihydrides

    International Nuclear Information System (INIS)

    Demuynck, J.; Schaefer, H.F. III

    1980-01-01

    ESR and infrared spectroscopic measurements on matrix isolated MnH 2 and CrH 2 have recently suggested that these simple molecules may be bent. This result would be the opposite of that found experimentally for the transition metal dihalides MX 2 , known to be linear. Here the geometrical structure of MnH 2 has been investigated by molecular electronic structure theory. A large contracted Gaussian basis set [Mn(14s11p6p/9s8p3d), H(5s1p/3s1p)] was used in conjunction with self-consistent field and configuration interaction methods. These suggest that the 6 A 1 ground state of MnH 2 is linear. Further studies of the 3 A 1 state (one of several low-lying states) of TiH 2 also favor linearity, although this potential energy surface is extremely flat with respect to bending. Thus it appears probable that most MH 2 molecules, like the related MX 2 family, are linear

  4. Structural health monitoring 2012. Proceedings. Vol. 1

    International Nuclear Information System (INIS)

    Boller, Christian

    2012-01-01

    Structural Health Monitoring (SHM) is an emerging technology, dealing with the development and implementation of techniques and systems where monitoring, inspection and damage detection become an integral part of structures and thus a matter of automation. It further merges with a variety of techniques related to diagnostics and prognostics. SHM emerged from the field of smart structures and laterally encompasses disciplines such as structural dynamics, materials and structures, fatigue and fracture, non-destructive testing and evaluation, sensors and actuators, microelectronics, signal processing and much more. To be effective in the development of SHM systems, a multidisciplinary approach is therefore required. Without this global view it will be difficult for engineers to holistically manage the operation of an engineering structure through its life cycle in the future and to generate new breakthroughs in structural engineering. The first volume of the proceedings contains topics dealing with physics, materials and sensors. Five of the contributions are separately analyzed for the ENERGY database.

  5. Formamidinium iodide: crystal structure and phase transitions

    Directory of Open Access Journals (Sweden)

    Andrey A. Petrov

    2017-04-01

    Full Text Available At a temperature of 100 K, CH5N2+·I− (I, crystallizes in the monoclinic space group P21/c. The formamidinium cation adopts a planar symmetrical structure [the r.m.s. deviation is 0.002 Å, and the C—N bond lengths are 1.301 (7 and 1.309 (8 Å]. The iodide anion does not lie within the cation plane, but deviates from it by 0.643 (10 Å. The cation and anion of I form a tight ionic pair by a strong N—H...I hydrogen bond. In the crystal of I, the tight ionic pairs form hydrogen-bonded zigzag-like chains propagating toward [20-1] via strong N—H...I hydrogen bonds. The hydrogen-bonded chains are further packed in stacks along [100]. The thermal behaviour of I was studied by different physicochemical methods (thermogravimetry, differential scanning calorimetry and powder diffraction. Differential scanning calorimetry revealed three narrow endothermic peaks at 346, 387 and 525 K, and one broad endothermic peak at ∼605 K. The first and second peaks are related to solid–solid phase transitions, while the third and fourth peaks are attributed to the melting and decomposition of I. The enthalpies of the phase transitions at 346 and 387 K are estimated as 2.60 and 2.75 kJ mol−1, respectively. The X-ray powder diffraction data collected at different temperatures indicate the existence of I as the monoclinic (100–346 K, orthorhombic (346–387 K and cubic (387–525 K polymorphic modifications.

  6. Structural health monitoring using wireless sensor networks

    Science.gov (United States)

    Sreevallabhan, K.; Nikhil Chand, B.; Ramasamy, Sudha

    2017-11-01

    Monitoring and analysing health of large structures like bridges, dams, buildings and heavy machinery is important for safety, economical, operational, making prior protective measures, and repair and maintenance point of view. In recent years there is growing demand for such larger structures which in turn make people focus more on safety. By using Microelectromechanical Systems (MEMS) Accelerometer we can perform Structural Health Monitoring by studying the dynamic response through measure of ambient vibrations and strong motion of such structures. By using Wireless Sensor Networks (WSN) we can embed these sensors in wireless networks which helps us to transmit data wirelessly thus we can measure the data wirelessly at any remote location. This in turn reduces heavy wiring which is a cost effective as well as time consuming process to lay those wires. In this paper we developed WSN based MEMS-accelerometer for Structural to test the results in the railway bridge near VIT University, Vellore campus.

  7. Structural health monitoring 2012. Proceedings. Vol. 2

    International Nuclear Information System (INIS)

    Boller, Christian

    2012-01-01

    Structural Health Monitoring (SHM) is an emerging technology, dealing with the development and implementation of techniques and systems where monitoring, inspection and damage detection become an integral part of structures and thus a matter of automation. It further merges with a variety of techniques related to diagnostics and prognostics. SHM emerged from the field of smart structures and laterally encompasses disciplines such as structural dynamics, materials and structures, fatigue and fracture, non-destructive testing and evaluation, sensors and actuators, microelectronics, signal processing and much more. To be effective in the development of SHM systems, a multidisciplinary approach is therefore required. Without this global view it will be difficult for engineers to holistically manage the operation of an engineering structure through its life cycle in the future and to generate new breakthroughs in structural engineering. The second volume of the proceedings contains topics dealing with applications in the field of aeronautics, astronautic, civil engineering (bridges), energy (wind power), structural health monitoring (transportation), and poster presentations. Ten of the contributions are separately analyzed for the ENERGY database.

  8. Phase transitions and domain structures in multiferroics

    Science.gov (United States)

    Vlahos, Eftihia

    2011-12-01

    Thin film ferroelectrics and multiferroics are two important classes of materials interesting both from a scientific and a technological prospective. The volatility of lead and bismuth as well as environmental issues regarding the toxicity of lead are two disadvantages of the most commonly used ferroelectric random access memory (FeRAM) materials such as Pb(Zr,Ti)O3 and SrBi2Ta2O9. Therefore lead-free thin film ferroelectrics are promising substitutes as long as (a) they can be grown on technologically important substrates such as silicon, and (b) their T c and Pr become comparable to that of well established ferroelectrics. On the other hand, the development of functional room temperature ferroelectric ferromagnetic multiferroics could lead to very interesting phenomena such as control of magnetism with electric fields and control of electrical polarization with magnetic fields. This thesis focuses on the understanding of material structure-property relations using nonlinear optical spectroscopy. Nonlinear spectroscopy is an excellent tool for probing the onset of ferroelectricity, and domain dynamics in strained ferroelectrics and multiferroics. Second harmonic generation was used to detect ferroelectricity and the antiferrodistortive phase transition in thin film SrTiO3. Incipient ferroelectric CaTiO3 has been shown to become ferroelectric when strained with a combination of SHG and dielectric measurements. The tensorial nature of the induced nonlinear polarization allows for probing of the BaTiO3 and SrTiO3 polarization contributions in nanoscale BaTiO3/SrTiO3 superlattices. In addition, nonlinear optics was used to demonstrate ferroelectricity in multiferroic EuTiO3. Finally, confocal SHG and Raman microscopy were utilized to visualize polar domains in incipient ferroelectric and ferroelastic CaTiO3.

  9. Investigation of nuclear structures using transition probabilities

    International Nuclear Information System (INIS)

    Dewald, A.; Moeller, O.; Peusquens, R.

    2002-01-01

    Magnetic rotation which appears as regular M1 bands in the spectra, is a well established phenomenon in several Pb isotopes. In the A = 130 region where similar M1 bands are known, e.g. in 124 Xe and 128 Ba, it is still not clear whether it does exists. Crucial experimental observables are the B (M1) values which -are expected to decrease with in creasing spin. At Strasbourg a recoil distance measurement (RDM) with the EUROBALL spectrometer at Strasbourg and the Koeln plunger using the reaction 110 Pd( 18 O, 4n) 124 Xe at a beam energy of 86 MeV yielded preliminary lifetimes of ground band states and states of the M1 band. The deduced B(M1) values show the expected behaviour for magnetic rotation. It is also shown that the experimental B(M1) values can be described as well on the basis of a rotational band. The measured B(E2) values are used to investigate the nuclear deformation of 124 Xe as well as the interaction of the ground state band with two s-bands. Spherical deformed shape coexistence is investigated by means of electromagnetic transition probabilities in the case of 188 Pb. Lifetimes were measured in 188 Pb using a novel combination of the Koeln plunger device with the GSFMA set-up at ATLAS. The reaction 40 Ca ( 152 Sm, 4n) 188 Pb at a beam energy of 725 MeV in inverse kinematics is used. It is found that the lowest 2 + state is predominantly of prolate structure

  10. Wakefield monitor development for CLIC accelerating structure

    CERN Document Server

    Peauger, F; Girardot, P; Andersson, A; Riddone, G; Samoshkin, A; Solodko, A; Zennaro, R; Ruber, R

    2010-01-01

    Abstract To achieve high luminosity in CLIC, the accelerating structures must be aligned to an accuracy of 5 μm with respect to the beam trajectory. Position detectors called Wakefield Monitors (WFM) are integrated to the structure for a beam based alignment. This paper describes the requirements of such monitors. Detailed RF design and electromagnetic simulations of the WFM itself are presented. In particular, time domain computations are performed and an evaluation of the resolution is done for two higher order modes at 18 and 24 GHz. The mechanical design of a prototype accelerating structure with WFM is also presented as well as the fabrication status of three complete structures. The objective is to implement two of them in CTF3 at CERN for a feasibility demonstration with beam and high power rf.

  11. Optically induced structural phase transitions in ion Coulomb crystals

    DEFF Research Database (Denmark)

    Horak, Peter; Dantan, Aurelien Romain; Drewsen, Michael

    2012-01-01

    We investigate numerically the structural dynamics of ion Coulomb crystals confined in a three-dimensional harmonic trap when influenced by an additional one-dimensional optically induced periodical potential. We demonstrate that transitions between thermally excited crystal structures, such as b......We investigate numerically the structural dynamics of ion Coulomb crystals confined in a three-dimensional harmonic trap when influenced by an additional one-dimensional optically induced periodical potential. We demonstrate that transitions between thermally excited crystal structures...

  12. New trends in structural health monitoring

    CERN Document Server

    Güemes, J

    2013-01-01

    Experts actively working in structural health monitoring and control techniques present the current research, areas of application and tendencies for the future of this technology, including various design issues involved. Examples using some of the latest hardware and software tools, experimental data from small scale laboratory demonstrators and measurements made on real structures illustrate the book. It will be a reference for professionals and students in the areas of engineering, applied natural sciences and engineering management.

  13. Identification methods for structural health monitoring

    CERN Document Server

    Papadimitriou, Costas

    2016-01-01

    The papers in this volume provide an introduction to well known and established system identification methods for structural health monitoring and to more advanced, state-of-the-art tools, able to tackle the challenges associated with actual implementation. Starting with an overview on fundamental methods, introductory concepts are provided on the general framework of time and frequency domain, parametric and non-parametric methods, input-output or output only techniques. Cutting edge tools are introduced including, nonlinear system identification methods; Bayesian tools; and advanced modal identification techniques (such as the Kalman and particle filters, the fast Bayesian FFT method). Advanced computational tools for uncertainty quantification are discussed to provide a link between monitoring and structural integrity assessment. In addition, full scale applications and field deployments that illustrate the workings and effectiveness of the introduced monitoring schemes are demonstrated.

  14. Detroit regional transit legal structures and governance.

    Science.gov (United States)

    2014-03-01

    Effective governance of transit systems is created through a qualified, representative, informed, diverse, and committed board of : directors that is ultimately accountable for the financial performance and quality of the service in the designated re...

  15. 3D monitoring of active tectonic structures

    Czech Academy of Sciences Publication Activity Database

    Stemberk, Josef; Košťák, Blahoslav; Vilímek, V.

    2003-01-01

    Roč. 36, 1-2 (2003), s. 103-112 ISSN 0264-3707 R&D Projects: GA MŠk OC 625.10 Institutional research plan: CEZ:AV0Z3046908 Keywords : tectonics * monitoring * active structures Subject RIV: DB - Geology ; Mineralogy Impact factor: 0.754, year: 2003

  16. Monitoring metabolic health of dairy cattle in the transition period.

    Science.gov (United States)

    LeBlanc, Stephen

    2010-01-01

    This paper reviews the importance of energy metabolism in transition dairy cows, its associations with disease and reproduction, and strategies for monitoring cows under field conditions during this critical time. Essentially all dairy cattle experience a period of insulin resistance, reduced feed intake, negative energy balance, hypocalcemia, reduced immune function, and bacterial contamination of the uterus soon before, or in the weeks after calving. One-third of dairy cows may be affected by some form of metabolic or infectious disease in early lactation. Routine, proactive actions, observations, or analysis are intended to accurately and efficiently provide early detection of problems, to provide an opportunity for investigation and intervention in order to limit the consequences and costs of health problems and reduced animal performance or welfare. Methods of early detection include monitoring of disease and culling records, feed intake, milk production, body condition, and simple metabolic tests. Methods, strategies, and interpretation of measurement of peripartum concentrations of non-esterified fatty acids (NEFA) and beta-hydroxybutyrate (BHB) as indicators of aspects of energy status and disease risk are reviewed. High NEFA (> 0.4 mmol/l) in the last 7 to 10 days before expected calving is associated with increased risk of displaced abomasum (DA), retained placenta, culling before 60 days in milk, and less milk production in the first 4 months of lactation. Subclinical ketosis (serum BHB >1200 to 1400 micromol/l) in the first or second week after calving is associated with increased risk of DA, metritis, clinical ketosis, endometritis, prolonged postpartum anovulation, increased severity of mastitis, and lower milk production in early lactation. There are several validated and practical tools for cow-side measurement of ketosis.

  17. LCLS-S1 optical transition radiation monitor

    International Nuclear Information System (INIS)

    Berg, W.J.; Yang, B.; Erwin, L.L.; Shoaf, S.E.

    2008-01-01

    Argonne National Laboratory has developed a high- resolution optical transition radiation (OTR) imaging monitor for the Linac Coherent Light Source (LCLS) injection linac at SLAC. The imaging station,OTR-S1, will be located at the S1 spectrometer with a beam energy of 135 MeV. The system will be used to acquire 2-D transverse beam distributions of the accelerated photocathode-gun-generated electron beam. We anticipate an average beam current of 0.2 to 1 nC and nominal beam spot size of 130 mum (sigmax), 100 mum (sigmay). The imaging system was designed for a field of view x/y: 10 times 7.5 mm. The spatial resolution of ∼12 microns was verified over the central 5times4 mm region in the visible. A 12-bit digital camera acquires the image and a Mac-based digital frame-capturing system was employed for the initial lab-based performance testing of the device. We report on system development, testing methods, and data analysis.

  18. Structural Transitions of Solvent-Free Oligomer-Grafted Nanoparticles

    KAUST Repository

    Chremos, Alexandros

    2011-09-01

    Novel structural transitions of solvent-free oligomer-grafted nanoparticles are investigated by using molecular dynamics simulations of a coarse-grained bead-spring model. Variations in core size and grafting density lead to self-assembly of the nanoparticles into a variety of distinct structures. At the boundaries between different structures, the nanoparticle systems undergo thermoreversible transitions. This structural behavior, which has not been previously reported, deviates significantly from that of simple liquids. The reversible nature of these transitions in solvent-free conditions offers new ways to control self-assembly of nanoparticles at experimentally accessible conditions. © 2011 American Physical Society.

  19. Frequency Selective Surface for Structural Health Monitoring

    Science.gov (United States)

    Norlyana Azemi, Saidatul; Mustaffa, Farzana Hazira Wan; Faizal Jamlos, Mohd; Abdullah Al-Hadi, Azremi; Soh, Ping Jack

    2018-03-01

    Structural health monitoring (SHM) technologies have attained attention to monitor civil structures. SHM sensor systems have been used in various civil structures such as bridges, buildings, tunnels and so on. However the previous sensor for SHM is wired and encounter with problem to cover large areas. Therefore, wireless sensor was introduced for SHM to reduce network connecting problem. Wireless sensors for Structural Health monitoring are new technology and have many advantages to overcome the drawback of conventional and wired sensor. This project proposed passive wireless SHM sensor using frequency selective surface (FSS) as an alternative to conventional sensors. The electromagnetic wave characteristic of FSS will change by geometrical changes of FSS due to mechanical strain or structural failure. The changes feature is used as a sensing function without any connecting wires. Two type of design which are circular ring and square loop along with the transmission and reflection characteristics of SHM using FSS were discussed in this project. A simulation process has shown that incident angle characteristics can be use as a data for SHM application.

  20. Integrating structural health and condition monitoring

    DEFF Research Database (Denmark)

    May, Allan; Thöns, Sebastian; McMillan, David

    2015-01-01

    window’ allowing for the possible detection of faults up to 6 months in advance. The SHM system model uses a reduction in the probability of failure factor to account for lower modelling uncertainties. A case study is produced that shows a reduction in operating costs and also a reduction in risk......There is a large financial incentive to minimise operations and maintenance (O&M) costs for offshore wind power by optimising the maintenance plan. The integration of condition monitoring (CM) and structural health monitoring (SHM) may help realise this. There is limited work on the integration...

  1. Metallacyclopentadienes: structural features and coordination in transition metal complexes

    International Nuclear Information System (INIS)

    Dolgushin, Fedor M; Yanovsky, Aleksandr I; Antipin, Mikhail Yu

    2004-01-01

    Results of structural studies of polynuclear transition metal complexes containing the metallacyclopentadiene fragment are overviewed. The structural features of the complexes in relation to the nature of the substituents in the organic moiety of the metallacycles, the nature of the transition metals and their ligand environment are analysed. The main structural characteristics corresponding to different modes of coordination of metallacyclopentadienes to one or two additional metal centres are revealed.

  2. Problem of phase transitions in nuclear structure

    International Nuclear Information System (INIS)

    Scharff-Goldhaber, G.

    1980-01-01

    Phase transitions between rotational and vibrational nuclei are discussed from the point of view of the variable moment of inertia model. A three-dimensional plot of the ground-state moments of inertia of even-even nuclei vs N and Z is shown. 3 figures

  3. Hypersensitive transition spectrum of f-element and coordination structure

    International Nuclear Information System (INIS)

    Cao Xuan; Song Chongli; Zhu Youngjun

    1992-10-01

    Some f-f transitions of Ln(An) metallic ions have particular super-sensitivity to the change of coordination environments. This is called super-sensitive transitions. Based on the irreducible tensor operator method, a computation model and corresponding computer program for calculating the hypersensitive transition spectrum of f-element were developed. By comparing the theoretical spectra of all possible coordination structures with experimental one, the possible coordination structures of complex can be determined. The coordination structures of Nd 3+ , Er 3 + hydrate and their extraction complex with H(DEHP) were successfully determined by this method, and the experimental spectra were also assigned

  4. Influence of magnetic fields on structural martensitic transitions

    Energy Technology Data Exchange (ETDEWEB)

    Lashley, J C [Los Alamos National Laboratory; Cooley, J C [Los Alamos National Laboratory; Smith, J L [Los Alamos National Laboratory; Fisher, R A [NON LANL; Modic, K A [Los Alamos National Laboratory; Yang, X- D [TEMPLE UNIV; Riseborough, P S [TEMPLE UNIV.; Opeil, C P [BOSTON COLLEGE; Finlayson, T R [UNIV OF MELBOURNE; Goddard, P A [UNIV OF OXFORD; Silhanek, A V [INPAC

    2009-01-01

    We show evidence that a structural martensitic transition is related to significant changes in the electronic structure, as revealed in thermodynamic measurements made in high-magnetic fields. The magnetic field dependence is considered unusual as many influential investigations of martensitic transitions have emphasized that the structural transitions are primarily lattice dynamical and are driven by the entropy due to the phonons. We provide a theoretical framework which can be used to describe the effect of magnetic field on the lattice dynamics in which the field dependence originates from the dielectric constant.

  5. Ultrafast photoinduced structure phase transition in antimony single crystals

    NARCIS (Netherlands)

    Fausti, Daniele; Misochko, Oleg V.; van Loosdrecht, Paul H. M.

    2009-01-01

    Picosecond Raman scattering is used to study the photoinduced ultrafast dynamics in Peierls distorted antimony. We find evidence for an ultrafast nonthermal reversible structural phase transition. Most surprisingly, we find evidence that this transition evolves toward a lower symmetry in contrast to

  6. Structure determination at room temperature and phase transition ...

    Indian Academy of Sciences (India)

    Unknown

    Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India. MS received 9 May 2002 ... exhibit a ferroelectric–paraelectric phase transition at ele- ..... The pattern decomposition and peak extraction methods ...

  7. An autonomous structural health monitoring solution

    Science.gov (United States)

    Featherston, Carol A.; Holford, Karen M.; Pullin, Rhys; Lees, Jonathan; Eaton, Mark; Pearson, Matthew

    2013-05-01

    Combining advanced sensor technologies, with optimised data acquisition and diagnostic and prognostic capability, structural health monitoring (SHM) systems provide real-time assessment of the integrity of bridges, buildings, aircraft, wind turbines, oil pipelines and ships, leading to improved safety and reliability and reduced inspection and maintenance costs. The implementation of power harvesting, using energy scavenged from ambient sources such as thermal gradients and sources of vibration in conjunction with wireless transmission enables truly autonomous systems, reducing the need for batteries and associated maintenance in often inaccessible locations, alongside bulky and expensive wiring looms. The design and implementation of such a system however presents numerous challenges. A suitable energy source or multiple sources capable of meeting the power requirements of the system, over the entire monitoring period, in a location close to the sensor must be identified. Efficient power management techniques must be used to condition the power and deliver it, as required, to enable appropriate measurements to be taken. Energy storage may be necessary, to match a continuously changing supply and demand for a range of different monitoring states including sleep, record and transmit. An appropriate monitoring technique, capable of detecting, locating and characterising damage and delivering reliable information, whilst minimising power consumption, must be selected. Finally a wireless protocol capable of transmitting the levels of information generated at the rate needed in the required operating environment must be chosen. This paper considers solutions to some of these challenges, and in particular examines SHM in the context of the aircraft environment.

  8. Discontinuous structural phase transition of liquid metal and alloys (2)

    International Nuclear Information System (INIS)

    Wang, Li; Liu, Jiantong

    2004-01-01

    The diameter (d f ) of diffusion fluid cluster before and after phase transition has been calculated in terms of the paper ''Discontinuous structural phase transition of liquid metal and alloy (1)'' Physics Letters. A 326 (2004) 429-435, to verify quantitatively the discontinuity of structural phase transition; the phenomena of thermal contraction and thermal expansion during the phase transition, together with the evolution model of discontinuous structural phase transition are also discussed in this Letter to explore further the nature of structural transition; In addition, based on the viscosity experimental result mentioned in paper [Y. Waseda, The Structure of Non-Crystalline Materials--Liquids and Amorphous Solids, McGraw-Hill, New York, 1980], we present an approach to draw an embryo of the liquid-liquid (L-L) phase diagram for binary alloys above liquidus in the paper, expecting to guide metallurgy process so as to improve the properties of alloys. The idea that controls amorphous structure and its properties by means of the L-L phase diagram for alloys and by the rapid cooling technique to form the amorphous alloy has been brought forward in the end

  9. The Transit Monitoring in the South (TraMoS project

    Directory of Open Access Journals (Sweden)

    López-Morales Mercedes

    2013-04-01

    Full Text Available We present the Transit Monitoring in the South (TraMoS project. TraMoS has monitored transits of 30 exoplanets with telescopes located in Chile since 2008, whit the following goals: (1 to refine the physical and/or orbital parameters of those exoplanet system, and (2 to search for variations in the mid-times of the transits and in other parameters such as orbital inclination or transit's depth, that could indicate the presence of additional bodies in the system. We highlight here the first results of TraMoS in three selected exoplanets.

  10. Cooperative structural transitions in amyloid-like aggregation

    Science.gov (United States)

    Steckmann, Timothy; Bhandari, Yuba R.; Chapagain, Prem P.; Gerstman, Bernard S.

    2017-04-01

    Amyloid fibril aggregation is associated with several horrific diseases such as Alzheimer's, Creutzfeld-Jacob, diabetes, Parkinson's, and others. Although proteins that undergo aggregation vary widely in their primary structure, they all produce a cross-β motif with the proteins in β-strand conformations perpendicular to the fibril axis. The process of amyloid aggregation involves forming myriad different metastable intermediate aggregates. To better understand the molecular basis of the protein structural transitions and aggregation, we report on molecular dynamics (MD) computational studies on the formation of amyloid protofibrillar structures in the small model protein ccβ, which undergoes many of the structural transitions of the larger, naturally occurring amyloid forming proteins. Two different structural transition processes involving hydrogen bonds are observed for aggregation into fibrils: the breaking of intrachain hydrogen bonds to allow β-hairpin proteins to straighten, and the subsequent formation of interchain H-bonds during aggregation into amyloid fibrils. For our MD simulations, we found that the temperature dependence of these two different structural transition processes results in the existence of a temperature window that the ccβ protein experiences during the process of forming protofibrillar structures. This temperature dependence allows us to investigate the dynamics on a molecular level. We report on the thermodynamics and cooperativity of the transformations. The structural transitions that occurred in a specific temperature window for ccβ in our investigations may also occur in other amyloid forming proteins but with biochemical parameters controlling the dynamics rather than temperature.

  11. Magnetic and Structural Phase Transitions in Thulium under High Pressures and Low Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Vohra, Yogesh K.; Tsoi, Georgiy M.; Samudrala, Gopi K. [UAB

    2017-10-01

    The nature of 4f electrons in many rare earth metals and compounds may be broadly characterized as being either "localized" or "itinerant", and is held responsible for a wide range of physical and chemical properties. The pressure variable has a very dramatic effect on the electronic structure of rare earth metals which in turn drives a sequence of structural and magnetic transitions. We have carried out four-probe electrical resistance measurements on rare earth metal Thulium (Tm) under high pressures to 33 GPa and low temperatures to 10 K to monitor the magnetic ordering transition. These studies are complemented by angle dispersive x-ray diffraction studies to monitor crystallographic phase transitions at high pressures and low temperatures. We observe an abrupt increase in magnetic ordering temperature in Tm at a pressure of 17 GPa on phase transition from ambient pressure hcp-phase to α-Sm phase transition. In addition, measured equation of state (EOS) at low temperatures show anomalously low thermal expansion coefficients likely linked to magnetic transitions.

  12. Structural health monitoring of grandstands: a review

    Directory of Open Access Journals (Sweden)

    Gómez-Casero Fuentes Miguel Ángel

    2015-01-01

    Full Text Available This article is a state of the art about Grandstands. The Grandstands are slender structures designed to accommodate a large number of people, which are specially under the actions of wind and the human-structure interaction. Over the years, it has been discuss of this topic, although still the number of publications still remain low. The human-structure interaction is a complex issue, where the loads may have different behaviours, depending many factors, including: type of audience (active or passive, public behaviour (jumping, walking, running, clapping, vandal loads, type of event (sports, concerts, meeting, position and posture of the individual, even influences the type of seat (with or without back, stiffness. However, the structure will behave differently when empty or fully occupied. Another load to consider is the wind, especially when the structure has a roof, screens, large-scale advertising, etc. These two types of loads can interact together, which implies an increase in the normal number of load combinations to consider. There are biomechanical models of human behaviour, used for design these types of structures. In addition, there are mathematical models to simulate the behaviour of the Grandstands by numerical methods. In recent years, all these models are throwing good results, against laboratory tests performed. It has also been monitored real Grandstands. This paper compiles all existing information on this topic.

  13. Structural health monitoring of wind turbine blades

    Science.gov (United States)

    Rumsey, Mark A.; Paquette, Joshua A.

    2008-03-01

    As electric utility wind turbines increase in size, and correspondingly, increase in initial capital investment cost, there is an increasing need to monitor the health of the structure. Acquiring an early indication of structural or mechanical problems allows operators to better plan for maintenance, possibly operate the machine in a de-rated condition rather than taking the unit off-line, or in the case of an emergency, shut the machine down to avoid further damage. This paper describes several promising structural health monitoring (SHM) techniques that were recently exercised during a fatigue test of a 9 meter glass-epoxy and carbon-epoxy wind turbine blade. The SHM systems were implemented by teams from NASA Kennedy Space Center, Purdue University and Virginia Tech. A commercial off-the-shelf acoustic emission (AE) NDT system gathered blade AE data throughout the test. At a fatigue load cycle rate around 1.2 Hertz, and after more than 4,000,000 fatigue cycles, the blade was diagnostically and visibly failing at the out-board blade spar-cap termination point at 4.5 meters. For safety reasons, the test was stopped just before the blade completely failed. This paper provides an overview of the SHM and NDT system setups and some current test results.

  14. Smart paint sensor for monitoring structural vibrations

    International Nuclear Information System (INIS)

    Al-Saffar, Y; Baz, A; Aldraihem, O

    2012-01-01

    A class of smart paint sensors is proposed for monitoring the structural vibration of beams. The sensor is manufactured from an epoxy resin which is mixed with carbon black nano-particles to make it electrically conducting and sensitive to mechanical vibrations. A comprehensive theoretical and experimental investigation is presented to understand the underlying phenomena governing the operation of this class of paint sensors and evaluate its performance characteristics. A theoretical model is presented to model the electromechanical behavior of the sensor system using molecular theory. The model is integrated with an amplifier circuit in order to predict the current and voltage developed by the paint sensor when subjected to loading. Furthermore, the sensor/amplifier circuit models are coupled with a finite element model of a base beam to which the sensor is bonded. The resulting multi-field model is utilized to predict the behavior of both the sensor and the beam when subjected to a wide variety of vibration excitations. The predictions of the multi-field finite element model are validated experimentally and the behavior of the sensor is evaluated both in the time and the frequency domains. The performance of the sensor is compared with the performance of conventional strain gages to emphasize its potential and merits. The presented techniques are currently being extended to sensors that can monitor the vibration and structural power flow of two-dimensional structures. (paper)

  15. Data driven innovations in structural health monitoring

    Science.gov (United States)

    Rosales, M. J.; Liyanapathirana, R.

    2017-05-01

    At present, substantial investments are being allocated to civil infrastructures also considered as valuable assets at a national or global scale. Structural Health Monitoring (SHM) is an indispensable tool required to ensure the performance and safety of these structures based on measured response parameters. The research to date on damage assessment has tended to focus on the utilization of wireless sensor networks (WSN) as it proves to be the best alternative over the traditional visual inspections and tethered or wired counterparts. Over the last decade, the structural health and behaviour of innumerable infrastructure has been measured and evaluated owing to several successful ventures of implementing these sensor networks. Various monitoring systems have the capability to rapidly transmit, measure, and store large capacities of data. The amount of data collected from these networks have eventually been unmanageable which paved the way to other relevant issues such as data quality, relevance, re-use, and decision support. There is an increasing need to integrate new technologies in order to automate the evaluation processes as well as to enhance the objectivity of data assessment routines. This paper aims to identify feasible methodologies towards the application of time-series analysis techniques to judiciously exploit the vast amount of readily available as well as the upcoming data resources. It continues the momentum of a greater effort to collect and archive SHM approaches that will serve as data-driven innovations for the assessment of damage through efficient algorithms and data analytics.

  16. Structural health monitoring system/method using electroactive polymer fibers

    Science.gov (United States)

    Scott-Carnell, Lisa A. (Inventor); Siochi, Emilie J. (Inventor)

    2013-01-01

    A method for monitoring the structural health of a structure of interest by coupling one or more electroactive polymer fibers to the structure and monitoring the electroactive responses of the polymer fiber(s). Load changes that are experienced by the structure cause changes in the baseline responses of the polymer fiber(s). A system for monitoring the structural health of the structure is also provided.

  17. Crystal-Size-Dependent Structural Transitions in Nanoporous Crystals: Adsorption-Induced Transitions in ZIF-8

    KAUST Repository

    Zhang, Chen

    2014-09-04

    © 2014 American Chemical Society. Understanding the crystal-size dependence of both guest adsorption and structural transitions of nanoporous solids is crucial to the development of these materials. We find that nano-sized metal-organic framework (MOF) crystals have significantly different guest adsorption properties compared to the bulk material. A new methodology is developed to simulate the adsorption and transition behavior of entire MOF nanoparticles. Our simulations predict that the transition pressure significantly increases with decreasing particle size, in agreement with crystal-size-dependent experimental measurements of the N2-ZIF-8 system. We also propose a simple core-shell model to examine this effect on length scales that are inaccessible to simulations and again find good agreement with experiments. This study is the first to examine particle size effects on structural transitions in ZIFs and provides a thermodynamic framework for understanding the underlying mechanism.

  18. Transit of Natural Gas. Monitoring Report on the Implementation of the Transit Provisions of the Energy Charter Treaty

    International Nuclear Information System (INIS)

    2007-03-01

    Natural gas is transported over increasingly large distances from producers to consumers. Most of this transportation takes place by pipelines and often involves crossing multiple national borders. Recent events demonstrated that disputes over energy transit can quickly have multilateral implications for gas supply, demonstrating the need for a framework for reliable cross-border gas flows. The Energy Charter Treaty (ECT) provides a set of binding rules that cover the entire energy chain, including the terms to transport energy across various national jurisdictions. The transit provisions of the Treaty support the reliability of established flows and the creation of new transport capacity, thus contributing to the reliability of gas transit. The Energy Charter's Group on Trade and Transit monitors and assists in the implementation of the ECT and its instruments on trade and transit and suggests improvements of implementation. The present report monitors the implementation of the Energy Charter transit principles for natural gas by giving an analysis of its legislative and practical aspects in selected member countries of the ECT constituency

  19. On the structure of transitively differential algebras

    NARCIS (Netherlands)

    Post, Gerhard F.

    1999-01-01

    We study finite-dimensional Lie algebras of polynomial vector fields in $n$ variables that contain the vector fields ${\\partial}/{\\partial x_i} \\; (i=1,\\ldots, n)$ and $x_1{\\partial}/{\\partial x_1}+ \\dots + x_n{\\partial}/{\\partial x_n}$. We derive some general results on the structure of such Lie

  20. Negative thermal expansion near two structural quantum phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Occhialini, Connor A.; Handunkanda, Sahan U.; Said, Ayman; Trivedi, Sudhir; Guzmán-Verri, G. G.; Hancock, Jason N.

    2017-12-01

    Recent experimental work has revealed that the unusually strong, isotropic structural negative thermal expansion in cubic perovskite ionic insulator ScF3 occurs in excited states above a ground state tuned very near a structural quantum phase transition, posing a question of fundamental interest as to whether this special circumstance is related to the anomalous behavior. To test this hypothesis, we report an elastic and inelastic x-ray scattering study of a second system Hg2I2 also tuned near a structural quantum phase transition while retaining stoichiometric composition and high crystallinity. We find similar behavior and significant negative thermal expansion below 100 K for dimensions along the body-centered-tetragonal c axis, bolstering the connection between negative thermal expansion and zero-temperature structural transitions.We identify the common traits between these systems and propose a set of materials design principles that can guide discovery of newmaterials exhibiting negative thermal expansion

  1. Structural transition models for a class or irreversible aggregates

    International Nuclear Information System (INIS)

    Canessa, E.

    1995-02-01

    A progress report on two recent theoretical approaches proposed to understand the physics of irreversible fractal aggregates showing up a structural transition from a rather dense to a more multibranched growth is presented. In the first approach the transition is understood by solving the Poisson equation on a squared lattice. The second approach is based on the discretization of the Biharmonic equation. Within these models the transition appears when the growth velocity at the fractal surface presents a minimum. The effects of the surrounding medium and geometrical constraints for the seed particles are considered. By using the optical diffraction method, the structural transition is further characterized by a decrease in the fractal dimension for this peculiar class of aggregates. (author). 17 refs, 4 figs

  2. The electric monopole transition: Nuclear structure, and nuclear spectroscopy

    International Nuclear Information System (INIS)

    Zganiar, E.F.

    1992-01-01

    The electric monopole (E0) transition process provides unique information on the structure of nuclei. For example, δI=0 transitions between nuclear configurations of different shape have enhanced EO components. The authors have observed I π→Iπ (I=0) transitions in 185 Pt and 184 Pt which are pure E0. This is unprecedented. Further, they have initiated searches for the location of the superdeformed band in 192 Hg utilizing internal conversion spectroscopy and, for the first time, internal pair spectroscopy. Additionally, the lifetime of the 0 + 2 level in 188 Hg was measured with a newly developed picosecond lifetime system which utilized the 0 + 2 →0 + 1 E0 internal conversion transition as an energy gate and its associated atomic X-ray as a fast trigger. The role of the E0 internal conversion process in the study of nuclear structure and as a tool in nuclear spectroscopy are discussed

  3. Structural Transitions Induced by a Recombinant Methionine-Trigger in Silk Spidroin

    Science.gov (United States)

    Wilson, Donna; Winkler, Stefan; Valluzzi, Regina; Kaplan, David

    2000-03-01

    Control of beta sheet formation is an important factor in the understanding and prediction of structural transitions and protein folding. In genetically engineered silk proteins this control has been achieved using oxidative triggers. A genetically engineered variant of a spider silk protein, and a peptide analog, based on the consensus sequence of Nephila clavipes dragline silk, were modified to include methionines flanking the beta sheet forming polyalanine regions. These methionines could be selectively reduced and oxidized, altering the bulkiness and charge of the sulfhydryl group to control beta sheet formation by steric hindrance. Biophysical characterization and monitoring of structural transitions and intermediates were accomplished through attenuated total reflectance infrared spectroscopy (ATR-IR) for solution state structures in both oxidized and reduced forms. For solid state structural characterization, IR microscopy and reflectance IR experiments were performed. Electron diffraction data as well as circular dichroism studies provide structural corroboration for all experiments in which reproducible sample preparation was achieved.

  4. Adding structure to the transition process to advanced mathematical activity

    Science.gov (United States)

    Engelbrecht, Johann

    2010-03-01

    The transition process to advanced mathematical thinking is experienced as traumatic by many students. Experiences that students had of school mathematics differ greatly to what is expected from them at university. Success in school mathematics meant application of different methods to get an answer. Students are not familiar with logical deductive reasoning, required in advanced mathematics. It is necessary to assist students in this transition process, in moving from general to mathematical thinking. In this article some structure is suggested for this transition period. This essay is an argumentative exposition supported by personal experience and international literature. This makes this study theoretical rather than empirical.

  5. An absorbing phase transition from a structured active particle phase

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Cristobal [Instituto Mediterraneo de Estudios Avanzados IMEDEA (CSIC-UIB), Campus de la Universidad de las Islas Baleares, E-07122 Palma de Mallorca (Spain); Ramos, Francisco [Departamento de Electromagnetismo y Fisica de la Materia and Instituto de Fisica Teorica y Computacional Carlos I, Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain); Hernandez-GarcIa, Emilio [Instituto Mediterraneo de Estudios Avanzados IMEDEA (CSIC-UIB), Campus de la Universidad de las Islas Baleares, E-07122 Palma de Mallorca (Spain)

    2007-02-14

    In this work we study the absorbing state phase transition of a recently introduced model for interacting particles with neighbourhood-dependent reproduction rates. The novelty of the transition is that as soon as the active phase is reached by increasing a control parameter a periodically arranged structure of particle clusters appears. A numerical study in one and two dimensions shows that the system falls into the directed percolation universality class.

  6. Low-temperature structure and the ferroelectric phase transitions in the CdTi O3 perovskite

    Science.gov (United States)

    Kennedy, Brendan J.; Zhou, Qingdi; Zhao, Shipeng; Jia, Fanhao; Ren, Wei; Knight, Kevin S.

    2017-12-01

    The paraelectric-ferroelectric transition in CdTi O3 has been monitored using high-resolution neutron diffraction data. This necessitated preparing a sample enriched in 114Cd. A subtle, but significant, anisotropy in the thermal expansion of the lattice parameters for CdTi O3 associated with the transition to the polar structure was observed. First-principles calculations are presented to understand energies, phonon dispersion, and structures of possible phases with different symmetries.

  7. High-Cadence Transit Timing Variation Monitoring of Extrasolar Planets

    Directory of Open Access Journals (Sweden)

    Naef D.

    2011-02-01

    Full Text Available We report ground-based high-cadence transit timing observations of the extrasolar planet WASP-2b. We achieve a typical timing error of 15-30 sec. The data show no significant deviations from the predicted ephemeris.

  8. Structural phase transitions in boron carbide under stress

    International Nuclear Information System (INIS)

    Korotaev, P; Pokatashkin, P; Yanilkin, A

    2016-01-01

    Structural transitions in boron carbide B 4 C under stress were studied by means of first-principles molecular dynamics in the framework of density functional theory. The behavior depends strongly on degree of non-hydrostatic stress. Under hydrostatic stress continuous bending of the three-atom C–B–C chain was observed up to 70 GPa. The presence of non-hydrostatic stress activates abrupt reversible chain bending, which is displacement of the central boron atom in the chain with the formation of weak bonds between this atom and atoms in the nearby icosahedra. Such structural change can describe a possible reversible phase transition in dynamical loading experiments. High non-hydrostatic stress achieved in uniaxial loading leads to disordering of the initial structure. The formation of carbon chains is observed as one possible transition route. (paper)

  9. Structural Transitions in Supercoiled Stretched DNA

    Science.gov (United States)

    v, Croquette

    1998-03-01

    Using magnetic micromanipulation techniques [Strick 96]( uc(T.R.) Strick, J.-F. Allemand, D. Bensimon, A. Bensimon) and uc(V.) Croquette, "The elasticity of a single supercoiled DNA molecule", Science, 271, 1835 (1996)., we have studied the mechanical properties (force versus extension) of single DNA molecules under a wide range of torsional stresses (supercoiling). We show that unwinding the DNA double helix leads to a phase separation between regular B-DNA and denaturation bubbles. The fraction of denatured molecule increases linearly with the degree of unwinding, beginning at a value of 1% unwinding. We have confirmed this denatured state by hybridization of homologous single-stranded DNA probes and by a chemical attack of the exposed bases. Surprisingly, when we overwind the molecule, the elasticity curves we obtain may also be interpreted by the coexistence of two phases, B-DNA and a new phase which we note P-DNA. The fraction of this new phase increases smoothly with overwinding, beginning at 3 % and continuing up to 300 %. Our results indicate that this new phase is four times more twisted that the standard B-DNA and is 1.75 times longer. Although the structure of this phase is not yet known, such a high twisting can only be attained if the sugar-phosphate backbones of the two strands are twisted closely while the bases are expelled outside of the molecule's core, in a structure reminiscent of the one proposed by Pauling. Indeed we have shown that this new phase is sensitive to chemical attack whereas the B-DNA is not. This new phase begins to appear on a molecule overwound by 3 % and stretched by a force of 5 pN, conditions typically encountered in vivo during gene transcription. This new phase may thus play a biological role (for more details).

  10. Information processing for aerospace structural health monitoring

    Science.gov (United States)

    Lichtenwalner, Peter F.; White, Edward V.; Baumann, Erwin W.

    1998-06-01

    Structural health monitoring (SHM) technology provides a means to significantly reduce life cycle of aerospace vehicles by eliminating unnecessary inspections, minimizing inspection complexity, and providing accurate diagnostics and prognostics to support vehicle life extension. In order to accomplish this, a comprehensive SHM system will need to acquire data from a wide variety of diverse sensors including strain gages, accelerometers, acoustic emission sensors, crack growth gages, corrosion sensors, and piezoelectric transducers. Significant amounts of computer processing will then be required to convert this raw sensor data into meaningful information which indicates both the diagnostics of the current structural integrity as well as the prognostics necessary for planning and managing the future health of the structure in a cost effective manner. This paper provides a description of the key types of information processing technologies required in an effective SHM system. These include artificial intelligence techniques such as neural networks, expert systems, and fuzzy logic for nonlinear modeling, pattern recognition, and complex decision making; signal processing techniques such as Fourier and wavelet transforms for spectral analysis and feature extraction; statistical algorithms for optimal detection, estimation, prediction, and fusion; and a wide variety of other algorithms for data analysis and visualization. The intent of this paper is to provide an overview of the role of information processing for SHM, discuss various technologies which can contribute to accomplishing this role, and present some example applications of information processing for SHM implemented at the Boeing Company.

  11. Monitoring of Concrete Structures Using Ofdr Technique

    Science.gov (United States)

    Henault, J. M.; Salin, J.; Moreau, G.; Delepine-Lesoille, S.; Bertand, J.; Taillade, F.; Quiertant, M.; Benzarti, K.

    2011-06-01

    Structural health monitoring is a key factor in life cycle management of infrastructures. Truly distributed fiber optic sensors are able to provide relevant information on large structures, such as bridges, dikes, nuclear power plants or nuclear waste disposal facilities. The sensing chain includes an optoelectronic unit and a sensing cable made of one or more optical fibers. A new instrument based on Optical Frequency Domain Reflectometry (OFDR), enables to perform temperature and strain measurements with a centimeter scale spatial resolution over hundred of meters and with a level of precision equal to 1 μstrain and 0.1 °C. Several sensing cables are designed with different materials targeting to last for decades in a concrete aggressive environment and to ensure an optimal transfer of temperature and strain from the concrete matrix to the optical fiber. Tests were carried out by embedding various sensing cables into plain concrete specimens and representative-scale reinforced concrete structural elements. Measurements were performed with an OFDR instrument; meanwhile, mechanical solicitations were imposed to the concrete element. Preliminary experiments are very promising since measurements performed with distributed sensing system are comparable to values obtained with conventional sensors used in civil engineering and with the Strength of Materials Modelling. Moreover, the distributed sensing system makes it possible to detect and localize cracks appearing in concrete during the mechanical loading.

  12. FOREWORD: Structural Health Monitoring and Intelligent Infrastructure

    Science.gov (United States)

    Wu, Zhishen; Fujino, Yozo

    2005-06-01

    This special issue collects together 19 papers that were originally presented at the First International Conference on Structural Health Monitoring and Intelligent Infrastructure (SHMII-1'2003), held in Tokyo, Japan, on 13-15 November 2003. This conference was organized by the Japan Society of Civil Engineers (JSCE) with partial financial support from the Japan Society for the Promotion of Science (JSPS) and the Ministry of Education, Culture, Sport, Science and Technology, Japan. Many related organizations supported the conference. A total of 16 keynote papers including six state-of-the-art reports from different counties, six invited papers and 154 contributed papers were presented at the conference. The conference was attended by a diverse group of about 300 people from a variety of disciplines in academia, industry and government from all over the world. Structural health monitoring (SHM) and intelligent materials, structures and systems have been the subject of intense research and development in the last two decades and, in recent years, an increasing range of applications in infrastructure have been discovered both for existing structures and for new constructions. SHMII-1'2003 addressed progress in the development of building, transportation, marine, underground and energy-generating structures, and other civilian infrastructures that are periodically, continuously and/or actively monitored where there is a need to optimize their performance. In order to focus the current needs on SHM and intelligent technologies, the conference theme was set as 'Structures/Infrastructures Sustainability'. We are pleased to have the privilege to edit this special issue on SHM and intelligent infrastructure based on SHMII-1'2003. We invited some of the presenters to submit a revised/extended version of their paper that was included in the SHMII-1'2003 proceedings for possible publication in the special issue. Each paper included in this special issue was edited with the same

  13. Susceptibilities to DNA Structural Transitions within Eukaryotic Genomes

    Science.gov (United States)

    Zhabinskaya, Dina; Benham, Craig; Madden, Sally

    2012-02-01

    We analyze the competitive transitions to alternate secondary DNA structures in a negatively supercoiled DNA molecule of kilobase length and specified base sequence. We use statistical mechanics to calculate the competition among all regions within the sequence that are susceptible to transitions to alternate structures. We use an approximate numerical method since the calculation of an exact partition function is numerically cumbersome for DNA molecules of lengths longer than hundreds of base pairs. This method yields accurate results in reasonable computational times. We implement algorithms that calculate the competition between transitions to denatured states and to Z-form DNA. We analyze these transitions near the transcription start sites (TSS) of a set of eukaryotic genes. We find an enhancement of Z-forming regions upstream of the TSS and a depletion of denatured regions around the start sites. We confirm that these finding are statistically significant by comparing our results to a set of randomized genes with preserved base composition at each position relative to the gene start sites. When we study the correlation of these transitions in orthologous mouse and human genes we find a clear evolutionary conservation of both types of transitions around the TSS.

  14. Towards "Zero" False Positive in Structural Health Monitoring

    National Research Council Canada - National Science Library

    Chiu, Wing K; Chang, F. K; Tian, Daniel T

    2007-01-01

    Structural Health Monitoring (SHM) is one aspect of a revolution based on the use of Smart Materials and Structures technologies that have the potential to provide major gains in structural performance and cost-efficient life management...

  15. Zooplankton community structure and dynamics during the transition ...

    African Journals Online (AJOL)

    This study investigates the zooplankton community structure and dynamics of Kufena Rock Pool during the transition from dry season (March to April) to rainy season (May to June) in Zaria, Nigeria. Physicochemical parameters such as temperature, hydrogen ion concentration, electrical conductivity and total dissolved ...

  16. Structural transition in alcohol–water binary mixtures: A ...

    Indian Academy of Sciences (India)

    WINTEC

    Abstract. The strengthening of the hydrogen bonding (H-bond) network as well as transition from the tetrahedral-like water network to the zigzag chain structure of alcohol upon increasing the alcohol con- centration in ethanol–water and tertiary butanol (TBA) – water mixtures have been studied by using both steady state ...

  17. Financial structure and monetary policy transmission in transition countries

    NARCIS (Netherlands)

    Elbourne, A.; de Haan, J.

    Using the structural vector autoregressive methodology, we present estimates of monetary transmission for the new and future EU member countries in Central and Eastern Europe. Unlike most previous research we include ten transition countries. We examine to what extent monetary transmission in these

  18. Structure of nuclear transition matrix elements for neutrinoless ...

    Indian Academy of Sciences (India)

    Abstract. The structure of nuclear transition matrix elements (NTMEs) required for the study of neutrinoless double- decay within light Majorana neutrino mass mechanism is disassembled in the PHFB model. The NTMEs are calculated using a set of HFB intrinsic wave functions, the reliability of which has been previously ...

  19. Spontaneous phase transitions in magnetic films with a modulated structure

    International Nuclear Information System (INIS)

    Arzamastseva, G. V.; Evtikhov, M. G.; Lisovskii, F. V.; Mansvetova, E. G.

    2011-01-01

    The influence of monoperiodic and biperiodic bias fields on the nucleation of domain structures in quasi-uniaxial magnetic films near the Curie point has been studied experimentally. The main types of observed nonuniform magnetic moment distributions have been established and chains of a devil’s staircase phase transitions are shown to be realized when the films are slowly cooled.

  20. Mantle transition zone structure beneath the Canadian Shield

    Science.gov (United States)

    Thompson, D. A.; Helffrich, G. R.; Bastow, I. D.; Kendall, J. M.; Wookey, J.; Eaton, D. W.; Snyder, D. B.

    2010-12-01

    The Canadian Shield is underlain by one of the deepest and most laterally extensive continental roots on the planet. Seismological constraints on the mantle structure beneath the region are presently lacking due to the paucity of stations in this remote area. Presented here is a receiver function study on transition zone structure using data from recently deployed seismic networks from the Hudson Bay region. High resolution images based on high signal-to-noise ratio data show clear arrivals from the 410 km and 660 km discontinuities, revealing remarkably little variation in transition zone structure. Transition zone thickness is close to the global average (averaging 245 km across the study area), and any deviations in Pds arrival time from reference Earth models can be readily explained by upper-mantle velocity structure. The 520 km discontinuity is not a ubiquitous feature, and is only weakly observed in localised areas. These results imply that the Laurentian root is likely confined to the upper-mantle and if any mantle downwelling exists, possibly explaining the existence of Hudson Bay, it is also confined to the upper 400 km. Any thermal perturbations at transition zone depths associated with the existence of the root, whether they be cold downwellings or elevated temperatures due to the insulating effect of the root, are thus either non-existent or below the resolution of the study.

  1. Structure of nuclear transition matrix elements for neutrinoless ...

    Indian Academy of Sciences (India)

    Abstract. The structure of nuclear transition matrix elements (NTMEs) required for the study of neutrinoless double-β decay within light Majorana neutrino mass mechanism is disassembled in the PHFB model. The NTMEs are calculated using a set of HFB intrinsic wave functions, the reliability of which has been previously ...

  2. Opportunities and challenges for structural health monitoring of radioactive waste systems and structures

    Energy Technology Data Exchange (ETDEWEB)

    Giurgiutiu, Victor [University of South Carolina, Columbia, SC 29208 (United States); Mendez Torres, Adrian E. [Savannah River National Laboratory, Aiken, SC 29808 (United States)

    2013-07-01

    Radioactive waste systems and structures (RWSS) are safety-critical facilities in need of monitoring over prolonged periods of time. Structural health monitoring (SHM) is an emerging technology that aims at monitoring the state of a structure through the use of networks of permanently mounted sensors. SHM technologies have been developed primarily within the aerospace and civil engineering communities. This paper addresses the issue of transitioning the SHM concept to the monitoring of RWSS and evaluates the opportunities and challenges associated with this process. Guided wave SHM technologies utilizing structurally-mounted piezoelectric wafer active sensors (PWAS) have a wide range of applications based on both propagating-wave and standing-wave methodologies. Hence, opportunities exist for transitioning these SHM technologies into RWSS monitoring. However, there exist certain special operational conditions specific to RWSS such as: radiation field, caustic environments, marine environments, and chemical, mechanical and thermal stressors. In order to address the high discharge of used nuclear fuel (UNF) and the limited space in the storage pools the U.S. the Department of Energy (DOE) has adopted a 'Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste' (January 2013). This strategy endorses the key principles that underpin the Blue Ribbon Commission's on America's Nuclear Future recommendations to develop a sustainable program for deploying an integrated system capable of transporting, storing, and disposing of UNF and high-level radioactive waste from civilian nuclear power generation, defense, national security, and other activities. This will require research to develop monitoring, diagnosis, and prognosis tools that can aid to establish a strong technical basis for extended storage and transportation of UNF. Monitoring of such structures is critical for assuring the safety and security of the

  3. Optical diffraction from fractals with a structural transition

    International Nuclear Information System (INIS)

    Perez Rodriguez, F.; Canessa, E.

    1994-04-01

    A macroscopic characterization of fractals showing up a structural transition from dense to multibranched growth is made using optical diffraction theory. Such fractals are generated via the numerical solution of the 2D Poisson and biharmonic equations and are compared to more 'regular' irreversible clusters such as diffusion limited and Laplacian aggregates. The optical diffraction method enables to identify a decrease of the fractal dimension above the structural point. (author). 19 refs, 6 figs

  4. Structural phase transition and electronic properties in samarium chalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Panwar, Y. S., E-mail: yspanwar2011@gmail.com [Department of Physics, Govt. New Science College Dewas-455001 (India); Aynyas, Mahendra [Department of Physics, C.S.A. Govt. P.G. College, Sehore, 466001 (India); Pataiya, J.; Sanyal, Sankar P. [Department of Physics, Barkatullah University, Bhopal, 462026 (India)

    2016-05-06

    The electronic structure and high pressure properties of samarium monochalcogenides SmS, SmSe and SmTe have been reported by using tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA). The total energy as a function of volume is evaluated. It is found that these monochalcogenides are stable in NaCl-type structure under ambient pressure. We predict a structural phase transition from NaCl-type (B{sub 1}-phase) structure to CsCl-type (B{sub 2}-type) structure for these compounds. Phase transition pressures were found to be 1.7, 4.4 and 6.6 GPa, for SmS, SmSe and SmTe respectively. Apart from this, the lattice parameter (a{sub 0}), bulk modulus (B{sub 0}), band structure (BS) and density of states (DOS) are calculated. From energy band diagram we observed that these compounds exhibit metallic character. The calculated values of equilibrium lattice parameter and phase transition pressure are in general good agreement with available data.

  5. Uncertainty analysis of power monitoring transit time ultrasonic flow meters

    International Nuclear Information System (INIS)

    Orosz, A.; Miller, D. W.; Christensen, R. N.; Arndt, S.

    2006-01-01

    A general uncertainty analysis is applied to chordal, transit time ultrasonic flow meters that are used in nuclear power plant feedwater loops. This investigation focuses on relationships between the major parameters of the flow measurement. For this study, mass flow rate is divided into three components, profile factor, density, and a form of volumetric flow rate. All system parameters are used to calculate values for these three components. Uncertainty is analyzed using a perturbation method. Sensitivity coefficients for major system parameters are shown, and these coefficients are applicable to a range of ultrasonic flow meters used in similar applications. Also shown is the uncertainty to be expected for density along with its relationship to other system uncertainties. One other conclusion is that pipe diameter sensitivity coefficients may be a function of the calibration technique used. (authors)

  6. Active region structures in the transition region and corona

    International Nuclear Information System (INIS)

    Webb, D.F.

    1981-01-01

    Observational aspects of the transition region and coronal structures of the solar active region are reviewed with an emphasis on imaging of the plasma loops which act as tracers of the magnetic flux loops. The study of the basic structure of an active region is discussed in terms of the morphological and thermal classifications of active region loops, including umbral structures, and observational knowledge of the thermal structure of loops is considered in relation to scaling laws, emission measures and the structures of individual loops. The temporal evolution of active region loop structures is reviewed with emphasis on ephemeral regions and the emergence of active regions. Planned future spaceborne observations of active region loop structures in the EUV and soft X-ray regions are also indicated

  7. High pressure structural phase transition of neodymium mono pnictides

    International Nuclear Information System (INIS)

    Pagare, Gitanjali; Ojha, P.; Sanyal, S.P.; Aynyas, Mahendra

    2007-01-01

    We have investigated theoretically the high-pressure structural phase transition of two neodymium mono NdX (X=As, Sb) using an interionic potential theory with necessary modification to include the effect of Coulomb screening by the delocalized f electrons of Nd ion. These compounds exhibits first order crystallographic phase transition from their NaCl (B 1 ) phase to body centered tetragonal (BCT) at 27 GPa and 15.3 GPa respectively. We also calculated the Nd-Nd distance as a function of pressure. (author)

  8. Monitoring and evaluating transition and sustainability of donor-funded programs: Reflections on the Avahan experience.

    Science.gov (United States)

    Bennett, Sara; Ozawa, Sachiko; Rodriguez, Daniela; Paul, Amy; Singh, Kriti; Singh, Suneeta

    2015-10-01

    In low and middle-income countries, programs funded and implemented by international donors frequently transition to local funding and management, yet such processes are rarely evaluated. We reflect upon experience evaluating the transition of a large scale HIV/AIDS prevention program in India, known as Avahan, in order to draw lessons about transition evaluation approaches and implementation challenges. In terms of conceptualizing the transition theory, the evaluation team identified tensions between the idea of institutionalizing key features of the Avahan program, and ensuring program flexibility to promote sustainability. The transition was planned in three rounds allowing for adaptations to transition intervention and program design during the transition period. The assessment team found it important to track these changes in order to understand which strategies and contextual features supported transition. A mixed methods evaluation was employed, combining semi-structured surveys of transitioning entities (conducted pre and post transition), with longitudinal case studies. Qualitative data helped explain quantitative findings. Measures of transition readiness appeared robust, but we were uncertain of the robustness of institutionalization measures. Finally, challenges to the implementation of such an evaluation are discussed. Given the scarceness of transition evaluations, the lessons from this evaluation may have widespread relevance. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Wireless sensor networks for structural health monitoring

    CERN Document Server

    Cao, Jiannong

    2016-01-01

    This brief covers the emerging area of wireless sensor network (WSN)-based structural health monitoring (SHM) systems, and introduces the authors’ WSN-based platform called SenetSHM. It helps the reader differentiate specific requirements of SHM applications from other traditional WSN applications, and demonstrates how these requirements are addressed by using a series of systematic approaches. The brief serves as a practical guide, explaining both the state-of-the-art technologies in domain-specific applications of WSNs, as well as the methodologies used to address the specific requirements for a WSN application. In particular, the brief offers instruction for problem formulation and problem solving based on the authors’ own experiences implementing SenetSHM. Seven concise chapters cover the development of hardware and software design of SenetSHM, as well as in-field experiments conducted while testing the platform. The brief’s exploration of the SenetSHM platform is a valuable feature for civil engine...

  10. Packaging of structural health monitoring components

    Science.gov (United States)

    Kessler, Seth S.; Spearing, S. Mark; Shi, Yong; Dunn, Christopher T.

    2004-07-01

    Structural Health Monitoring (SHM) technologies have the potential to realize economic benefits in a broad range of commercial and defense markets. Previous research conducted by Metis Design and MIT has demonstrated the ability of Lamb waves methods to provide reliable information regarding the presence, location and type of damage in composite specimens. The present NSF funded program was aimed to study manufacturing, packaging and interface concepts for critical SHM components. The intention is to be able to cheaply manufacture robust actuating/sensing devices, and isolate them from harsh operating environments including natural, mechanical, or electrical extremes. Currently the issues related to SHM system durability have remained undressed. During the course of this research several sets of test devices were fabricated and packaged to protect the piezoelectric component assemblies for robust operation. These assemblies were then tested in hot and wet conditions, as well as in electrically noisy environments. Future work will aim to package the other supporting components such as the battery and wireless chip, as well as integrating all of these components together for operation. SHM technology will enable the reduction or complete elimination of scheduled inspections, and will allow condition-based maintenance for increased reliability and reduced overall life-cycle costs.

  11. The crystal structure and the phase transitions of pyridinium trifluoromethanesulfonate

    International Nuclear Information System (INIS)

    Jesariew, Dominik; Ilczyszyn, Maria M; Pietraszko, Adam

    2014-01-01

    The calorimetric and optical studies and the structural properties of pyridinium trifluoromethanesulfonate (abbreviated as PyHOTf) are reported. A sequence of four fully reversible solid–solid phase transitions, at 223.0, 309.0, 359.9 and 394.3 K, has been discovered. The phase transition sequence was confirmed by x-ray diffraction data. The crystal structures of three phases (V, IV and III) have been determined from the single crystal x-ray diffraction data. Structural properties of the high temperature phases are characterized using powder x-ray diffraction data measured in the 290–425 K temperature range. The structural changes triggered by the temperature change are discussed in relation to the phase transitions. Two low temperature phases (V and IV) belong to the P4 3 2 1 2 space group of the tetragonal system. The intermediate phases (III and II) are monoclinic and the prototype high temperature phase (I) is a pseudo-cubic (tetragonal) one. The low temperature phases (V and IV) are well ordered. The crystal structure of intermediate (III and II) and prototype (I) phases are characterized by high disorder of the pyridinium cations and triflate anions. (papers)

  12. A phase transition in energy-filtered RNA secondary structures

    DEFF Research Database (Denmark)

    Han, Hillary Siwei; reidys, Christian

    2012-01-01

    In this paper we study the effect of energy parameters on minimum free energy (mfe) RNA secondary structures. Employing a simplified combinatorial energy model, that is only dependent on the diagram representation and that is not sequence specific, we prove the following dichotomy result. Mfe...... this phase transition from a discrete limit to a central limit distribution and subsequently put our result into the context of quantifying the effect of sparsification of the folding of these respective mfe-structures. We show that the sparsification of realistic mfe-structures leads to a constant time...

  13. Phase stability and electronic structure of transition-metal aluminides

    International Nuclear Information System (INIS)

    Carlsson, A.E.

    1992-01-01

    This paper will describe the interplay between die electronic structure and structural energetics in simple, complex, and quasicrystalline Al-transition metal (T) intermetallics. The first example is the Ll 2 -DO 22 competition in Al 3 T compounds. Ab-initio electronic total-energy calculations reveal surprisingly large structural-energy differences, and show that the phase stability of both stoichiometric and ternary-substituted compounds correlates closely with a quasigap in the electronic density of states (DOS). Secondly, ab-initio calculations for the structural stability of the icosahedrally based Al 12 W structure reveal similar quasigap effects, and provide a simple physical explanation for the stability of the complex aluminide structures. Finally, parametrized tight-binding model calculations for the Al-Mn quasicrystal reveal a large spread in the local Mn DOS behavior, and support a two-site model for the quasicrystal's magnetic behavior

  14. Transitions in Structure in Oil-in-Water Emulsions As Studied by Diffusing Wave Spectroscopy

    NARCIS (Netherlands)

    Ruis, H.G.M.; Gruijthuijsen, van K.; Venema, P.; Linden, van der E.

    2007-01-01

    Transitions in structure of sodium caseinate stabilized emulsions were studied using conventional rheometry as well as diffusing wave spectroscopy (DWS). Structural differences were induced by different amounts of stabilizer, and transitions in structure were induced by acidification. Special

  15. Reducing fatigue damage for ships in transit through structured decision making

    Science.gov (United States)

    Nichols, J.M.; Fackler, P.L.; Pacifici, K.; Murphy, K.D.; Nichols, J.D.

    2014-01-01

    Research in structural monitoring has focused primarily on drawing inference about the health of a structure from the structure’s response to ambient or applied excitation. Knowledge of the current state can then be used to predict structural integrity at a future time and, in principle, allows one to take action to improve safety, minimize ownership costs, and/or increase the operating envelope. While much time and effort has been devoted toward data collection and system identification, research to-date has largely avoided the question of how to choose an optimal maintenance plan. This work describes a structured decision making (SDM) process for taking available information (loading data, model output, etc.) and producing a plan of action for maintaining the structure. SDM allows the practitioner to specify his/her objectives and then solves for the decision that is optimal in the sense that it maximizes those objectives. To demonstrate, we consider the problem of a Naval vessel transiting a fixed distance in varying sea-state conditions. The physics of this problem are such that minimizing transit time increases the probability of fatigue failure in the structural supports. It is shown how SDM produces the optimal trip plan in the sense that it minimizes both transit time and probability of failure in the manner of our choosing (i.e., through a user-defined cost function). The example illustrates the benefit of SDM over heuristic approaches to maintaining the vessel.

  16. A thermally tunable inverse opal photonic crystal for monitoring glass transition.

    Science.gov (United States)

    Sun, Liguo; Xie, Zhuoying; Xu, Hua; Xu, Ming; Han, Guozhi; Wang, Cheng; Bai, Xuduo; Gu, ZhongZe

    2012-03-01

    An optical method was developed to monitor the glass transition of the polymer by taking advantage of reflection spectrum change of the thermally tunable inverse opal photonic crystal. The thermally tunable photonic bands of the polymer inverse opal photonic crystal were traceable to the segmental motion of macromolecules, and the segmental motion was temperature dependent. By observing the reflection spectrum change of the polystyrene inverse opal photonic crystal during thermal treatment, the glass transition temperature of polystyrene was gotten. Both changes of the position and intensity of the reflection peak were observed during the glass transition process of the polystyrene inverse opal photonic crystal. The optical change of inverse opal photonic crystal was so large that the glass transition temperature could even be estimated by naked eyes. The glass transition temperature derived from this method was consistent with the values measured by differential scanning calorimeter.

  17. Characterization of monomeric intermediates during VSV glycoprotein structural transition.

    Directory of Open Access Journals (Sweden)

    Aurélie A Albertini

    2012-02-01

    Full Text Available Entry of enveloped viruses requires fusion of viral and cellular membranes, driven by conformational changes of viral glycoproteins. Crystal structures provide static pictures of pre- and post-fusion conformations of these proteins but the transition pathway remains elusive. Here, using several biophysical techniques, including analytical ultracentrifugation, circular dichroïsm, electron microscopy and small angle X-ray scattering, we have characterized the low-pH-induced fusogenic structural transition of a soluble form of vesicular stomatitis virus (VSV glycoprotein G ectodomain (G(th, aa residues 1-422, the fragment that was previously crystallized. While the post-fusion trimer is the major species detected at low pH, the pre-fusion trimer is not detected in solution. Rather, at high pH, G(th is a flexible monomer that explores a large conformational space. The monomeric population exhibits a marked pH-dependence and adopts more elongated conformations when pH decreases. Furthermore, large relative movements of domains are detected in absence of significant secondary structure modification. Solution studies are complemented by electron micrographs of negatively stained viral particles in which monomeric ectodomains of G are observed at the viral surface at both pH 7.5 and pH 6.7. We propose that the monomers are intermediates during the conformational change and thus that VSV G trimers dissociate at the viral surface during the structural transition.

  18. Interplay of structural transition and superconductivity in cuprates

    International Nuclear Information System (INIS)

    Ghosh, Haranath; Mitra, Manidipa; Behera, S.N.; Ghatak, S.K.

    1997-01-01

    The presence of lattice distortion is known to suppress the superconducting (SC) transition in the cuprates. It is now accepted that electron correlation plays a dominant role in shaping the properties of these undoped and doped systems. Furthermore, since the Fermi level in these systems lies in a degenerate band of Cu : d and O : p orbitals the structural transition can be modeled as a band Jahn-Teller effect. We study the coexistence of superconductivity and band Jahn-Teller (J-T) distortion, taking into account the electron correlation within the slave boson formalism. It is shown that with increasing dopant concentration (δ), the structural transition temperature (T s ) remains constant up to a certain value and then vanishes, while the SC transition temperature (T c ) increases to a maximum value. The highest value of T c corresponds to that value of δ where T s vanishes. Besides with increasing lattice distortion superconductivity is suppressed. These findings are in qualitative agreement with the experimental results. (author)

  19. Dynamic Analysis with Fibre Optic Sensors for Structural Health Monitoring

    National Research Council Canada - National Science Library

    Paolozzi, Antonio; Gasbarri, Paolo

    2006-01-01

    Structural Health Monitoring (SHM) is a new frontier of non destructing testing. Often SHM is associated with fibre optic sensors whose signals can be used to identify the structure and consequently its damage...

  20. Structural models for amorphous transition metal binary alloys

    International Nuclear Information System (INIS)

    Ching, W.Y.; Lin, C.C.

    1976-01-01

    A dense random packing of 445 hard spheres with two different diameters in a concentration ratio of 3 : 1 was hand-built to simulate the structure of amorphous transition metal-metalloid alloys. By introducing appropriate pair potentials of the Lennard-Jones type, the structure is dynamically relaxed by minimizing the total energy. The radial distribution functions (RDF) for amorphous Fe 0 . 75 P 0 . 25 , Ni 0 . 75 P 0 . 25 , Co 0 . 75 P 0 . 25 are obtained and compared with the experimental data. The calculated RDF's are resolved into their partial components. The results indicate that such dynamically constructed models are capable of accounting for some subtle features in the RDF of amorphous transition metal-metalloid alloys

  1. Invariant molecular-dynamics approach to structural phase transitions

    International Nuclear Information System (INIS)

    Wentzcovitch, R.M.

    1991-01-01

    Two fictitious Lagrangians to be used in molecular-dynamics simulations with variable cell shape and suitable to study problems like structural phase transitions are introduced. Because they are invariant with respect to the choice of the simulation cell edges and eliminate symmetry breaking associated with the fictitious part of the dynamics, they improve the physical content of numerical simulations that up to now have been done by using Parrinello-Rahman dynamics

  2. Geometric structure and information change in phase transitions

    Science.gov (United States)

    Kim, Eun-jin; Hollerbach, Rainer

    2017-06-01

    We propose a toy model for a cyclic order-disorder transition and introduce a geometric methodology to understand stochastic processes involved in transitions. Specifically, our model consists of a pair of forward and backward processes (FPs and BPs) for the emergence and disappearance of a structure in a stochastic environment. We calculate time-dependent probability density functions (PDFs) and the information length L , which is the total number of different states that a system undergoes during the transition. Time-dependent PDFs during transient relaxation exhibit strikingly different behavior in FPs and BPs. In particular, FPs driven by instability undergo the broadening of the PDF with a large increase in fluctuations before the transition to the ordered state accompanied by narrowing the PDF width. During this stage, we identify an interesting geodesic solution accompanied by the self-regulation between the growth and nonlinear damping where the time scale τ of information change is constant in time, independent of the strength of the stochastic noise. In comparison, BPs are mainly driven by the macroscopic motion due to the movement of the PDF peak. The total information length L between initial and final states is much larger in BPs than in FPs, increasing linearly with the deviation γ of a control parameter from the critical state in BPs while increasing logarithmically with γ in FPs. L scales as |lnD | and D-1 /2 in FPs and BPs, respectively, where D measures the strength of the stochastic forcing. These differing scalings with γ and D suggest a great utility of L in capturing different underlying processes, specifically, diffusion vs advection in phase transition by geometry. We discuss physical origins of these scalings and comment on implications of our results for bistable systems undergoing repeated order-disorder transitions (e.g., fitness).

  3. Structural health monitoring with a wireless vibration sensor network

    NARCIS (Netherlands)

    Basten, T.G.H.; Sas, P; Schiphorst, F.B.A.; Jonckheere, S.; Moens, D.

    2012-01-01

    Advanced maintenance strategies for infrastructure assets such as bridges or off shore wind turbines require actual and reliable information of the maintenance status. Structural health monitoring based on vibration sensing can help in supplying the input needed for structural health monitoring

  4. Monitoring and maintenance of coastal structures

    CSIR Research Space (South Africa)

    Phelp, D

    2005-04-01

    Full Text Available Annual monitoring of a breakwater provides an early warning system to identify any weak spots in the armouring which can then be repaired before the overall stability of the breakwater is threatened....

  5. Microstructure and structural phase transitions in iron-based superconductors

    International Nuclear Information System (INIS)

    Wang Zhen; Cai Yao; Yang Huai-Xin; Tian Huan-Fang; Wang Zhi-Wei; Ma Chao; Chen Zhen; Li Jian-Qi

    2013-01-01

    Crystal structures and microstructural features, such as structural phase transitions, defect structures, and chemical and structural inhomogeneities, are known to have profound effects on the physical properties of superconducting materials. Recently, many studies on the structural properties of Fe-based high-T c superconductors have been published. This review article will mainly focus on the typical microstructural features in samples that have been well characterized by physical measurements. (i) Certain common structural features are discussed, in particular, the crystal structural features for different superconducting families, the local structural distortions in the Fe 2 Pn 2 (Pn = P As, Sb) or Fe 2 Ch 2 (Ch = S, Se, Te) blocks, and the structural transformations in the 122 system. (ii) In FeTe(Se) (11 family), the superconductivity, chemical and structural inhomogeneities are investigated and discussed in correlation with superconductivity. (iii) In the K 0.8 Fe 1.6+x Se 2 system, we focus on the typical compounds with emphasis on the Fe-vacancy order and phase separations. The microstructural features in other superconducting materials are also briefly discussed. (topical review - iron-based high temperature superconductors)

  6. Real-time monitoring of clinical processes using complex event processing and transition systems.

    Science.gov (United States)

    Meinecke, Sebastian

    2014-01-01

    Dependencies between tasks in clinical processes are often complex and error-prone. Our aim is to describe a new approach for the automatic derivation of clinical events identified via the behaviour of IT systems using Complex Event Processing. Furthermore we map these events on transition systems to monitor crucial clinical processes in real-time for preventing and detecting erroneous situations.

  7. Transiting Exoplanet Monitoring Project (TEMP). II. Refined System Parameters and Transit Timing Analysis of HAT-P-33b

    Science.gov (United States)

    Wang, Yong-Hao; Wang, Songhu; Liu, Hui-Gen; Hinse, Tobias C.; Laughlin, Gregory; Wu, Dong-Hong; Zhang, Xiaojia; Zhou, Xu; Wu, Zhenyu; Zhou, Ji-Lin; Wittenmyer, R. A.; Eastman, Jason; Zhang, Hui; Hori, Yasunori; Narita, Norio; Chen, Yuanyuan; Ma, Jun; Peng, Xiyan; Zhang, Tian-Meng; Zou, Hu; Nie, Jun-Dan; Zhou, Zhi-Min

    2017-08-01

    We present 10 R-band photometric observations of eight different transits of the hot Jupiter HAT-P-33b, which has been targeted by our Transiting Exoplanet Monitoring Project. The data were obtained by two telescopes at the Xinglong Station of National Astronomical Observatories of China (NAOC) from 2013 December through 2016 January, and exhibit photometric scatter of 1.6{--}3.0 {mmag}. After jointly analyzing the previously published photometric data, radial-velocity (RV) measurements, and our new light curves, we revisit the system parameters and orbital ephemeris for the HAT-P-33b system. Our results are consistent with the published values except for the planet to star radius ratio ({R}{{P}}/{R}* ), the ingress/egress duration (τ) and the total duration (T 14), which together indicate a slightly shallower and shorter transit shape. Our results are based on more complete light curves, whereas the previously published work had only one complete transit light curve. No significant anomalies in Transit Timing Variations (TTVs) are found, and we place upper mass limits on potential perturbers, largely supplanting the loose constraints provided by the extant RV data. The TTV limits are stronger near mean-motion resonances, especially for the low-order commensurabilities. We can exclude the existence of a perturber with mass larger than 0.6, 0.3, 0.5, 0.5, and 0.3 {M}\\oplus near the 1:3, 1:2, 2:3, 3:2, and 2:1 resonances, respectively.

  8. Structure health monitoring system using internet and database technologies

    International Nuclear Information System (INIS)

    Kwon, Il Bum; Kim, Chi Yeop; Choi, Man Yong; Lee, Seung Seok

    2003-01-01

    Structural health monitoring system should developed to be based on internet and database technology in order to manage efficiently large structures. This system is operated by internet connected with the side of structures. The monitoring system has some functions: self monitoring, self diagnosis, and self control etc. Self monitoring is the function of sensor fault detection. If some sensors are not normally worked, then this system can detect the fault sensors. Also Self diagnosis function repair the abnormal condition of sensors. And self control is the repair function of the monitoring system. Especially, the monitoring system can identify the replacement of sensors. For further study, the real application test will be performed to check some unconvince.

  9. Structural health monitoring system using internet and database technologies

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chi Yeop; Choi, Man Yong; Kwon, Il Bum; Lee, Seung Seok [Nonstructive Measurment Lab., KRISS, Daejeon (Korea, Republic of)

    2003-07-01

    Structure health monitoring system should develope to be based on internet and database technology in order to manage efficiency large structures. This system is operated by internet connected with the side of structures. The monitoring system has some functions: self monitoring, self diagnosis, and self control etc. Self monitoring is the function of sensor fault detection. If some sensors are not normally worked, then this system can detect the fault sensors. Also Self diagnosis function repair the abnormal condition of sensors. And self control is the repair function of the monitoring system. Especially, the monitoring system can identify the replacement of sensors. For further study, the real application test will be performed to check some unconviniences.

  10. Structure health monitoring system using internet and database technologies

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Il Bum; Kim, Chi Yeop; Choi, Man Yong; Lee, Seung Seok [Smart Measurment Group. Korea Resarch Institute of Standards and Science, Saejeon (Korea, Republic of)

    2003-05-15

    Structural health monitoring system should developed to be based on internet and database technology in order to manage efficiently large structures. This system is operated by internet connected with the side of structures. The monitoring system has some functions: self monitoring, self diagnosis, and self control etc. Self monitoring is the function of sensor fault detection. If some sensors are not normally worked, then this system can detect the fault sensors. Also Self diagnosis function repair the abnormal condition of sensors. And self control is the repair function of the monitoring system. Especially, the monitoring system can identify the replacement of sensors. For further study, the real application test will be performed to check some unconvince.

  11. Structural health monitoring system using internet and database technologies

    International Nuclear Information System (INIS)

    Kim, Chi Yeop; Choi, Man Yong; Kwon, Il Bum; Lee, Seung Seok

    2003-01-01

    Structure health monitoring system should develope to be based on internet and database technology in order to manage efficiency large structures. This system is operated by internet connected with the side of structures. The monitoring system has some functions: self monitoring, self diagnosis, and self control etc. Self monitoring is the function of sensor fault detection. If some sensors are not normally worked, then this system can detect the fault sensors. Also Self diagnosis function repair the abnormal condition of sensors. And self control is the repair function of the monitoring system. Especially, the monitoring system can identify the replacement of sensors. For further study, the real application test will be performed to check some unconviniences.

  12. Superconductivity and the structural phase transitions in palladium hydride and palladium deuteride

    International Nuclear Information System (INIS)

    Standley, R.W.

    1980-01-01

    The results of two experimental studies of the superconducting transition temperature, T/sub c/, of palladium hydride, PdH/sub x/, and palladium deuteride, PdD/sub x/, are presented. In the first study, the superconducting transition temperature of PdH/sub x/(D/sub x/) is studied as a function of H(D) concentration, x, in the temperature range from 0.2 K to 4K. The data join smoothly with those reported previously by Miller and Satterthwaite at higher temperatures, and the composite data are described by the empirical relation T/sub c/ = 150.8 (x-x/sub o/) 2 244 , where x/sub o/ = 0.715 for hydride samples and 0.668 for deuteride samples. The results, when compared with the theoretical predictions of Klein and Papaconstantopoulos, et al., raise questions about the validity of their explanation of the reverse isotope effect, which is based solely on a difference in force constants. In the second study, the effect of the order-disorder structural transition associated with the 50 K anomaly on the superconductivity of PdH/sub x/(D/sub x/) is investigated. Samples were quenched to low temperatures in the disordered state, and their transition temperatures measured. The samples were then annealed just below the anomaly temperature, and the ordering process followed by monitoring the change in sample resistance. The transition temperatures in the ordered state were then measured

  13. Childhood obesity in transition zones: an analysis using structuration theory.

    Science.gov (United States)

    Chan, Christine; Deave, Toity; Greenhalgh, Trisha

    2010-07-01

    Childhood obesity is particularly prevalent in areas that have seen rapid economic growth, urbanisation, cultural transition, and commodification of food systems. Structuration theory may illuminate the interaction between population and individual-level causes of obesity. We conducted in-depth ethnographies of six overweight/obese and four non-overweight preschool children in Hong Kong, each followed for 12-18 months. Analysis was informed by Stones' strong structuration theory. Risk factors played out differently for different children as social structures were enacted at the level of family and preschool. The network of caregiving roles and relationships around the overweight/obese child was typically weak and disjointed, and the primary caregiver appeared confused by mixed messages about what is normal, expected and legitimate behaviour. In particular, external social structures created pressure to shift childcare routines from the logic of nurturing to the logic of consumption. Our findings suggest that threats to what Giddens called ontological security in the primary caregiver may underpin the poor parenting, family stress and weak mealtime routines that mediate the relationship between an obesogenic environment and the development of obesity in a particular child. This preliminary study offers a potentially transferable approach for studying emerging epidemics of diseases of modernity in transition societies.

  14. Monitoring Corrosion of Steel Bars in Reinforced Concrete Structures

    Science.gov (United States)

    Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem

    2014-01-01

    Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion. PMID:24558346

  15. Monitoring corrosion of steel bars in reinforced concrete structures.

    Science.gov (United States)

    Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem

    2014-01-01

    Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion.

  16. Monitoring Corrosion of Steel Bars in Reinforced Concrete Structures

    Directory of Open Access Journals (Sweden)

    Sanjeev Kumar Verma

    2014-01-01

    Full Text Available Corrosion of steel bars embedded in reinforced concrete (RC structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP method. This paper also presents few techniques to protect concrete from corrosion.

  17. Crystal structure and phase transitions of sodium potassium niobate perovskites

    Science.gov (United States)

    Tellier, J.; Malic, B.; Dkhil, B.; Jenko, D.; Cilensek, J.; Kosec, M.

    2009-02-01

    This paper presents the crystal structure and the phase transitions of K xNa 1- xNbO 3 (0.4 ≤ x ≤ 0.6). X-ray diffraction measurements were used to follow the change of the unit-cell parameters and the symmetry in the temperature range 100-800 K. At room temperature all the compositions exhibited a monoclinic metric of the unit cell with a small monoclinic distortion (90.32° ≤ β ≤ 90.34°). No major change of symmetry was evidenced in the investigated compositional range, which should be characteristic of the morphotropic phase-boundary region. With increasing temperature, the samples underwent first-order monoclinic-tetragonal and tetragonal-cubic transitions. Only the potassium-rich phases were rhombohedral at 100 K.

  18. AUTOMATED LOW-COST PHOTOGRAMMETRY FOR FLEXIBLE STRUCTURE MONITORING

    Directory of Open Access Journals (Sweden)

    C. H. Wang

    2012-07-01

    Full Text Available Structural monitoring requires instruments which can provide high precision and accuracy, reliable measurements at good temporal resolution and rapid processing speeds. Long-term campaigns and flexible structures are regarded as two of the most challenging subjects in monitoring engineering structures. Long-term monitoring in civil engineering is generally considered to be labourintensive and financially expensive and it can take significant effort to arrange the necessary human resources, transportation and equipment maintenance. When dealing with flexible structure monitoring, it is of paramount importance that any monitoring equipment used is able to carry out rapid sampling. Low cost, automated, photogrammetric techniques therefore have the potential to become routinely viable for monitoring non-rigid structures. This research aims to provide a photogrammetric solution for long-term flexible structural monitoring purposes. The automated approach was achieved using low-cost imaging devices (mobile phones to replace traditional image acquisition stations and substantially reduce the equipment costs. A self-programmed software package was developed to deal with the hardware-software integration and system operation. In order to evaluate the performance of this low-cost monitoring system, a shaking table experiment was undertaken. Different network configurations and target sizes were used to determine the best configuration. A large quantity of image data was captured by four DSLR cameras and four mobile phone cameras respectively. These image data were processed using photogrammetric techniques to calculate the final results for the system evaluation.

  19. Energy Harvesting for Structural Health Monitoring Sensor Networks

    Energy Technology Data Exchange (ETDEWEB)

    Park, G.; Farrar, C. R.; Todd, M. D.; Hodgkiss, T.; Rosing, T.

    2007-02-26

    This report has been developed based on information exchanges at a 2.5-day workshop on energy harvesting for embedded structural health monitoring (SHM) sensing systems that was held June 28-30, 2005, at Los Alamos National Laboratory. The workshop was hosted by the LANL/UCSD Engineering Institute (EI). This Institute is an education- and research-focused collaboration between Los Alamos National Laboratory (LANL) and the University of California, San Diego (UCSD), Jacobs School of Engineering. A Statistical Pattern Recognition paradigm for SHM is first presented and the concept of energy harvesting for embedded sensing systems is addressed with respect to the data acquisition portion of this paradigm. Next, various existing and emerging sensing modalities used for SHM and their respective power requirements are summarized, followed by a discussion of SHM sensor network paradigms, power requirements for these networks and power optimization strategies. Various approaches to energy harvesting and energy storage are discussed and limitations associated with the current technology are addressed. This discussion also addresses current energy harvesting applications and system integration issues. The report concludes by defining some future research directions and possible technology demonstrations that are aimed at transitioning the concept of energy harvesting for embedded SHM sensing systems from laboratory research to field-deployed engineering prototypes.

  20. Modal Based Fatigue Monitoring of Steel Structures

    DEFF Research Database (Denmark)

    Graugaard-Jensen, J.; Brincker, Rune; Hjelm, H. P.

    2005-01-01

    In this paper it is shown how the accumulated fatigue in steel structures can be estimated with high accuracy by continuously measuring the accelerations in a few points of the structure. First step is to obtain a good estimate of the mode shapes by performing a natural input modal analysis. The so...... by applying the mode shapes of the calibrated Finite Element model and strains are obtained using the shape functions for the actual elements. The technique has been applied on a model frame structure in the laboratory and on a wind loaded lattice pylon structure. In both cases the estimated stresses has been...

  1. Unusual structural transition of antimicrobial VP1 peptide.

    Science.gov (United States)

    Shanmugam, Ganesh; Phambu, Nsoki; Polavarapu, Prasad L

    2011-05-01

    VP1 peptide, an active domain of m-calpain enzyme with antimicrobial activity is found to undergo an unusual conformational transition in trifluoroethanol (TFE) solvent. The nature of, and time dependent variations in, circular dichroism associated with the amide I vibrations, suggest that VP1 undergoes self-aggregation forming anti-parallel β-sheet structure in TFE. Transmission electron micrograph (TEM) images revealed that β-sheet aggregates formed by VP1 possess fibril-like assemblies. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Spatial structure of compound dither in L/H transition

    International Nuclear Information System (INIS)

    Toda, Shinichiro; Itoh, Kimitaka; Itoh, Sanae I.; Yagi, Masatoshi; Fukuyama, Atsushi

    2000-03-01

    To study the plasma evolution and spatial structure at the L/H transition, the double hysteresis is examined by use of the 1-dimensional transport model equations. Three mechanisms for the bipolar losses, i.e., the loss cone loss, collisional bulk viscosity loss of ions and the anomalous loss are simultaneously retained. Five-fold multiple bifurcations are found to exist at the plasma edge, similar to the previous 0-dimensional study. Double hysteresis causes a self-generated oscillation, which is attributed to the compound dither, a kind of ELMs. Spatio-temporal evolution of the compound dither is analyzed. (author)

  3. THE COMPLEX NORTH TRANSITION REGION OF CENTAURUS A: RADIO STRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Neff, Susan G. [NASA' s Goddard Space Flight Center, Laboratory for Observational Cosmology, Mail Code 665, Greenbelt, MD 20771 (United States); Eilek, Jean A. [Physics Department, New Mexico Tech, Socorro, NM 87801 (United States); Owen, Frazer N., E-mail: susan.g.neff@nasa.gov [National Radio Astronomy Observatory, P.O. Box O,  Socorro, NM 87801 (United States)

    2015-04-01

    We present deep radio images of the inner ∼50 kpc of Centaurus A, taken with the Karl G. Jansky Very Large Array at 90 cm. We focus on the Transition Regions between the inner galaxy—including the active nucleus, inner radio lobes, and star-forming disk—and the outer radio lobes. We detect previously unknown extended emission around the Inner Lobes, including radio emission from the star-forming disk. We find that the radio-loud part of the North Transition Region (NTR), known as the North Middle Lobe, is significantly overpressured relative to the surrounding interstellar medium. We see no evidence for a collimated flow from the active galactic nucleus through this region. Our images show that the structure identified by Morganti et al. as a possible large-scale jet appears to be part of a narrow ridge of emission within the broader, diffuse, radio-loud region. This knotty radio ridge is coincident with other striking phenomena: compact X-ray knots, ionized gas filaments, and streams of young stars. Several short-lived phenomena in the NTR, as well as the frequent re-energization required by the Outer Lobes, suggest that energy must be flowing through both Transition Regions at the present epoch. We suggest that the energy flow is in the form of a galactic wind.

  4. Reliability updating based on monitoring of structural response parameters

    International Nuclear Information System (INIS)

    Leira, B.J.

    2016-01-01

    Short- and long-term aspects of measuring structural response parameters are addressed. Two specific examples of such measurements are considered for the purpose of illustration and in order to focus the discussion. These examples are taken from the petroleum industry (monitoring of riser response) and from the shipping industry (monitoring of ice-induced strains in a ship hull). Similarities and differences between the two cases are elaborated with respect to which are the most relevant mechanical limit states. Furthermore, main concerns related to reliability levels within a short-term versus long-term time horizon are highlighted. Quantifying the economic benefits of applying monitoring systems is also addressed. - Highlights: • Two examples of structural response monitoring are described. • Application of measurements is discussed in relation to updating of load and structural parameters. • Quantification of the value of response monitoring is made for both of the examples.

  5. Shear-induced structural transitions in Newtonian non-Newtonian two-phase flow

    Science.gov (United States)

    Cristobal, G.; Rouch, J.; Colin, A.; Panizza, P.

    2000-09-01

    We show the existence under shear flow of steady states in a two-phase region of a brine-surfactant system in which lyotropic dilute lamellar (non-Newtonian) and sponge (Newtonian) phases are coexisting. At high shear rates and low sponge phase-volume fractions, we report on the existence of a dynamic transition corresponding to the formation of a colloidal crystal of multilamellar vesicles (or ``onions'') immersed in the sponge matrix. As the sponge phase-volume fraction increases, this transition exhibits a hysteresis loop leading to a structural bistability of the two-phase flow. Contrary to single phase lamellar systems where it is always 100%, the onion volume fraction can be monitored continuously from 0 to 100 %.

  6. Regulatory effects of cotranscriptional RNA structure formation and transitions.

    Science.gov (United States)

    Liu, Sheng-Rui; Hu, Chun-Gen; Zhang, Jin-Zhi

    2016-09-01

    RNAs, which play significant roles in many fundamental biological processes of life, fold into sophisticated and precise structures. RNA folding is a dynamic and intricate process, which conformation transition of coding and noncoding RNAs form the primary elements of genetic regulation. The cellular environment contains various intrinsic and extrinsic factors that potentially affect RNA folding in vivo, and experimental and theoretical evidence increasingly indicates that the highly flexible features of the RNA structure are affected by these factors, which include the flanking sequence context, physiochemical conditions, cis RNA-RNA interactions, and RNA interactions with other molecules. Furthermore, distinct RNA structures have been identified that govern almost all steps of biological processes in cells, including transcriptional activation and termination, transcriptional mutagenesis, 5'-capping, splicing, 3'-polyadenylation, mRNA export and localization, and translation. Here, we briefly summarize the dynamic and complex features of RNA folding along with a wide variety of intrinsic and extrinsic factors that affect RNA folding. We then provide several examples to elaborate RNA structure-mediated regulation at the transcriptional and posttranscriptional levels. Finally, we illustrate the regulatory roles of RNA structure and discuss advances pertaining to RNA structure in plants. WIREs RNA 2016, 7:562-574. doi: 10.1002/wrna.1350 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  7. Gaps in monitoring during oral anticoagulation: insights into care transitions, monitoring barriers, and medication nonadherence.

    Science.gov (United States)

    Rose, Adam J; Miller, Donald R; Ozonoff, Al; Berlowitz, Dan R; Ash, Arlene S; Zhao, Shibei; Reisman, Joel I; Hylek, Elaine M

    2013-03-01

    Among patients receiving oral anticoagulation, a gap of > 56 days between international normalized ratio tests suggests loss to follow-up that could lead to poor anticoagulation control and serious adverse events. We studied long-term oral anticoagulation care for 56,490 patients aged 65 years and older at 100 sites of care in the Veterans Health Administration. We used the rate of gaps in monitoring per patient-year to predict percentage time in therapeutic range (TTR) at the 100 sites. Many patients (45%) had at least one gap in monitoring during an average of 1.6 years of observation; 5% had two or more gaps per year. The median gap duration was 74 days (interquartile range, 62-107). The average TTR for patients with two or more gaps per year was 10 percentage points lower than for patients without gaps (P < .001). Patient-level predictors of gaps included nonwhite race, area poverty, greater distance from care, dementia, and major depression. Site-level gaps per patient-year varied from 0.19 to 1.78; each one-unit increase was associated with a 9.2 percentage point decrease in site-level TTR (P < .001). Site-level gap rates varied widely within an integrated care system. Sites with more gaps per patient-year had worse anticoagulation control. Strategies to address and reduce gaps in monitoring may improve anticoagulation control.

  8. Structural monitoring and smart control of a wind turbine

    DEFF Research Database (Denmark)

    Caterino, Nicola; Trinchillo, Francesco; Georgakis, Christos T.

    2014-01-01

    The remarkable growth in height of wind turbines in the last years - for a higher production of electricity - makes the issues of monitoring and control of such challenging engineering works pressing than ever. The research herein proposed is addressed to monitor the structural demand imposed to ...

  9. Enabling Bus Transit Service Quality Co-Monitoring Through Smartphone-Based Platform

    DEFF Research Database (Denmark)

    Li, Corinna; Zegras, P. Christopher; Zhao, Fang

    2017-01-01

    ’ word, meaning “agencies using public feedback to supplement official monitoring and regulation.”] bus service quality. The pilot project adapted a smartphone-based travel survey system, Future Mobility Sensing, to collect real-time customer feedback and objective operational measurements on specific...... monitoring through a more real-time, customer-centric perspective. The pilot project operated publicly for 3 months on the Silver Line bus rapid transit in Boston, Massachusetts. Seventy-six participants completed the entrance survey; half of them actively participated and completed more than 500...

  10. Composite Structure Monitoring using Direct Write Sensors, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA SBIR Phase II project seeks to develop and demonstrate a suite of sensor products to monitor the health of composite structures. Sensors will be made using...

  11. An online substructure identification method for local structural health monitoring

    International Nuclear Information System (INIS)

    Hou, Jilin; Ou, Jinping; Jankowski, Łukasz

    2013-01-01

    This paper proposes a substructure isolation method, which uses time series of measured local response for online monitoring of substructures. The proposed monitoring process consists of two key steps: construction of the isolated substructure, and its identification. The isolated substructure is an independent virtual structure, which is numerically isolated from the global structure by placing virtual supports on the interface. First, the isolated substructure is constructed by a specific linear combination of time series of its measured local responses. Then, the isolated substructure is identified using its local natural frequencies extracted from the combined responses. The substructure is assumed to be linear; the outside part of the global structure can have any characteristics. The method has no requirements on the initial state of the structure, and so the process can be carried out repetitively for online monitoring. Online isolation and monitoring is illustrated in a numerical example with a frame model, and then verified in a cantilever beam experiment. (paper)

  12. Smart Patches for Monitoring Fatigue Crack Growth in Aircraft Structures

    National Research Council Canada - National Science Library

    Ihn, Jeong-Beom

    2001-01-01

    A built-in cost-effective diagnostic system for monitoring crack growth in aircraft structures was developed, particularly for riveted fuselage joints and cracked aircraft parts with composite bonded patches...

  13. Multi-metric model-based structural health monitoring

    Science.gov (United States)

    Jo, Hongki; Spencer, B. F.

    2014-04-01

    ABSTRACT The inspection and maintenance of bridges of all types is critical to the public safety and often critical to the economy of a region. Recent advanced sensor technologies provide accurate and easy-to-deploy means for structural health monitoring and, if the critical locations are known a priori, can be monitored by direct measurements. However, for today's complex civil infrastructure, the critical locations are numerous and often difficult to identify. This paper presents an innovative framework for structural monitoring at arbitrary locations on the structure combining computational models and limited physical sensor information. The use of multi-metric measurements is advocated to improve the accuracy of the approach. A numerical example is provided to illustrate the proposed hybrid monitoring framework, particularly focusing on fatigue life assessment of steel structures.

  14. Multidisciplinary health monitoring of a steel bridge deck structure

    NARCIS (Netherlands)

    Pahlavan, P.L.; Pijpers, R.J.M.; Paulissen, J.H.; Hakkesteegt, H.C.; Jansen, T.H.

    2013-01-01

    Fatigue cracks in orthotropic bridge decks are an important cause for the necessary renovation of existing bridges. Parallel utilization of various technologies based on different physical sensing principles can potentially maximize the efficiency of structural health monitoring (SHM) systems for

  15. A corrosion monitoring system for existing reinforced concrete structures.

    Science.gov (United States)

    2015-05-01

    This study evaluated a multi-parameter corrosion monitoring system for existing reinforced concrete structures in chloride-laden service environments. The system was fabricated based on a prototype concrete corrosion measurement system that : had bee...

  16. Smart Materials in Structural Health Monitoring, Control and Biomechanics

    CERN Document Server

    Soh, Chee-Kiong; Bhalla, Suresh

    2012-01-01

    "Smart Materials in Structural Health Monitoring, Control and Biomechanics" presents the latest developments in structural health monitoring, vibration control and biomechanics using smart materials. The book mainly focuses on piezoelectric, fibre optic and ionic polymer metal composite materials. It introduces concepts from the very basics and leads to advanced modelling (analytical/ numerical), practical aspects (including software/ hardware issues) and case studies spanning civil, mechanical and aerospace structures, including bridges, rocks and underground structures. This book is intended for practicing engineers, researchers from academic and R&D institutions and postgraduate students in the fields of smart materials and structures, structural health monitoring, vibration control and biomedical engineering. Professor Chee-Kiong Soh and Associate Professor Yaowen Yang both work at the School of Civil and Environmental Engineering, Nanyang Technological University, Singapore. Dr. Suresh Bhalla is an A...

  17. Monitoring of transition. New support for new policy; Transitiemonitoring. Nieuwe ondersteuning voor nieuw beleid

    Energy Technology Data Exchange (ETDEWEB)

    Molendijk, K.G.P.; Draaijers, G.P.J.; Weterings, R.A.P.M. [TNO Milieu Energie en Procesinnovatie TNO-MEP, Apeldoorn (Netherlands); Van Grootveld, G. [VROM-Inspectie, Den Haag (Netherlands); Diepenmaat, H. [Actors Procesmanagement, Zeist (Netherlands); Nooteboom, S. [DHV Management Consultants, Amersfoort (Netherlands); Opdenkamp, A.; Groen, W.; Alkemade, G. [Opdenkamp Adviesgroep, Den Haag (Netherlands)

    2002-09-01

    A theoretical framework of a system for the monitoring of the transition process and policy in the Netherlands towards a sustainable society has been developed. In this article the most important results of a study on this subject and a first set of indicators are discussed. [Dutch] Er is een theoretisch kader ontwikkeld voor een systeem van transitiemonitoring, alsmede een eerste set van indicatoren. De belangrijkste resultaten en een eerste set van indicatoren waarmee transities in de praktijk kunnen worden gevolgd worden besproken.

  18. Kinetics of the main phase transition of hydrated lecithin monitored by real-time x-ray diffraction

    International Nuclear Information System (INIS)

    Caffrey, M.; Bilderback, D.H.

    1984-01-01

    A method is described for observing and recording in real-time x-ray diffraction from an unoriented hydrated membrane lipid, dipalmitoylphosphatidylcholine (DPPC), through its thermotropic gel/liquid crystal phase transition. Synchrotron radiation from the Cornell High Energy Synchrotron Source (Ithaca, New York) was used as an x-ray source of extremely high brilliance and the dynamic display of the diffraction image was effected using a three-stage image intensifier tube coupled to an external fluorescent screen. The image on the output phosphor was sufficiently intense to be recorded cinematographically and to be displayed on a television monitor using a vidicon camera at 30 frames x s -1 . These measurements set an upper limit of 2 s on the DPPC gel → liquid crystal phase transition and indicate that the transition is a two-state process. The real-time method couples the power of x-ray diffraction as a structural probe with the ability to follow kinetics of structural changes. The method does not require an exogenous probe, is relatively nonperturbing, and can be used with membranes in a variety of physical states and with unstable samples. The method has the additional advantage over its static measurement counterpart in that it is more likely to detect transiently stable intermediates if present

  19. Self-learning health monitoring algorithm in composite structures

    Science.gov (United States)

    Grassia, Luigi; Iannone, Michele; Califano, America; D'Amore, Alberto

    2018-02-01

    The paper describes a system that it is able of monitoring the health state of a composite structure in real time. The hardware of the system consists of a wire of strain sensors connected to a control unit. The software of the system elaborates the strain data and in real time is able to detect the presence of an eventual damage of the structures monitored with the strain sensors. The algorithm requires as input only the strains of the monitored structured measured on real time, i.e. those strains coming from the deformations of the composite structure due to the working loads. The health monitoring system does not require any additional device to interrogate the structure as often used in the literature, instead it is based on a self-learning procedure. The strain data acquired when the structure is healthy are used to set up the correlations between the strain in different positions of structure by means of neural network. Once the correlations between the strains in different position have been set up, these correlations act as a fingerprint of the healthy structure. In case of damage the correlation between the strains in the position of the structure near the damage will change due to the change of the stiffness of the structure caused by the damage. The developed software is able to recognize the change of the transfer function between the strains and consequently is able to detect the damage.

  20. Development of structural health monitoring techniques using dynamics testing

    Energy Technology Data Exchange (ETDEWEB)

    James, G.H. III [Sandia National Labs., Albuquerque, NM (United States). Experimental Structural Dynamics Dept.

    1996-03-01

    Today`s society depends upon many structures (such as aircraft, bridges, wind turbines, offshore platforms, buildings, and nuclear weapons) which are nearing the end of their design lifetime. Since these structures cannot be economically replaced, techniques for structural health monitoring must be developed and implemented. Modal and structural dynamics measurements hold promise for the global non-destructive inspection of a variety of structures since surface measurements of a vibrating structure can provide information about the health of the internal members without costly (or impossible) dismantling of the structure. In order to develop structural health monitoring for application to operational structures, developments in four areas have been undertaken within this project: operational evaluation, diagnostic measurements, information condensation, and damage identification. The developments in each of these four aspects of structural health monitoring have been exercised on a broad range of experimental data. This experimental data has been extracted from structures from several application areas which include aging aircraft, wind energy, aging bridges, offshore structures, structural supports, and mechanical parts. As a result of these advances, Sandia National Laboratories is in a position to perform further advanced development, operational implementation, and technical consulting for a broad class of the nation`s aging infrastructure problems.

  1. Structural Health Monitoring: Numerical Damage Predictor for Composite Structures

    National Research Council Canada - National Science Library

    Lannamann, Daniel

    2001-01-01

    .... Wide use of composites is found in aircraft, armored vehicles, ships and civil structures This present research demonstrates the ability to numerically detect damage in a composite sandwich structure...

  2. Structural phase transition and elastic properties of mercury chalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Varshney, Dinesh, E-mail: vdinesh33@rediffmail.com [School of Physics, Vigyan Bhavan, Devi Ahilya University, Khandwa Road Campus, Indore 452001 (India); Shriya, S. [School of Physics, Vigyan Bhavan, Devi Ahilya University, Khandwa Road Campus, Indore 452001 (India); Khenata, R. [Laboratoire de Physique Quantique et de Modelisation Mathematique (LPQ3M), Departement de Technologie, Universite de Mascara, 29000 Mascara (Algeria)

    2012-08-15

    Pressure induced structural transition and elastic properties of ZnS-type (B3) to NaCl-type (B1) structure in mercury chalcogenides (HgX; X = S, Se and Te) are presented. An effective interionic interaction potential (EIOP) with long-range Coulomb, as well charge transfer interactions, Hafemeister and Flygare type short-range overlap repulsion extended up to the second neighbor ions and van der Waals interactions are considered. Emphasis is on the evaluation of the pressure dependent Poisson's ratio {nu}, the ratio R{sub BT/G} of B (bulk modulus) over G (shear modulus), anisotropy parameter, Shear and Young's modulus, Lame constant, Kleinman parameter, elastic wave velocity and thermodynamical property as Debye temperature. The Poisson's ratio behavior infers that Mercury chalcogenides are brittle in nature. To our knowledge this is the first quantitative theoretical prediction of the pressure dependence of elastic and thermodynamical properties explicitly the ductile (brittle) nature of HgX and still awaits experimental confirmations. Highlights: Black-Right-Pointing-Pointer Vast volume discontinuity in phase diagram infers transition from ZnS to NaCl structure. Black-Right-Pointing-Pointer The shear elastic constant C{sub 44} is nonzero confirms the mechanical stability. Black-Right-Pointing-Pointer Pressure dependence of {theta}{sub D} infers the softening of lattice with increasing pressure. Black-Right-Pointing-Pointer Estimated bulk, shear and tetragonal moduli satisfied elastic stability criteria. Black-Right-Pointing-Pointer In both B3 and B1 phases, C{sub 11} and C{sub 12} increase linearly with pressure.

  3. Structural transitions in Cowpea chlorotic mottle virus (CCMV)

    Science.gov (United States)

    Liepold, Lars O.; Revis, Jennifer; Allen, Mark; Oltrogge, Luke; Young, Mark; Douglas, Trevor

    2005-12-01

    Viral capsids act as molecular containers for the encapsulation of genomic nucleic acid. These protein cages can also be used as constrained reaction vessels for packaging and entrapment of synthetic cargos. The icosahedral Cowpea chlorotic mottle virus (CCMV) is an excellent model for understanding the encapsulation and packaging of both genomic and synthetic materials. High-resolution structural information of the CCMV capsid has been invaluable for evaluating structure-function relationships in the assembled capsid but does not allow insight into the capsid dynamics. The dynamic nature of the CCMV capsid might play an important role in the biological function of the virus. The CCMV capsid undergoes a pH and metal ion dependent reversible structural transition where 60 separate pores in the capsid open or close, exposing the interior of the protein cage to the bulk medium. In addition, the highly basic N-terminal domain of the capsid, which is disordered in the crystal structure, plays a significant role in packaging the viral cargo. Interestingly, in limited proteolysis and mass spectrometry experiments the N-terminal domain is the first part of the subunit to be cleaved, confirming its dynamic nature. Based on our fundamental understanding of the capsid dynamics in CCMV, we have utilized these aspects to direct packaging of a range of synthetic materials including drugs and inorganic nanoparticles.

  4. Pressure effect on the structural transition of liquid Au

    International Nuclear Information System (INIS)

    Zhang Yanning; Wang Li; Wang Weimin; Liu Xiangfa; Tian Xuelei; Zhang Peng

    2004-01-01

    We present a molecular dynamics simulation within the framework of empirical tight-binding potential on the liquid structure of Au under different pressures during the rapid cooling process. The pair correlation function (PCF) and the pair analysis (PA) technique are used to reveal the structural characteristics of liquid Au under normal and high pressures. The split of the second peak of g(r) is associated with the glass transition at the cooling rate of 2.06x10 13 K/s under different pressures. The nearest distance is shortened under high pressures. High-pressure is in favor of FCC-type and BCC-type atomic clusters. The number of icosahedral structures increases in the high temperature region as pressure increase, while high-pressure is not preferable for icosahedra at low temperature. With the increase of the pressure, the possibility that the system forms crystalline structure is enhanced. The influence of a higher pressure on the microstructure of liquid metal is much clearer than that of a lower pressure

  5. Monitoring of Building Structure by Tiltsensors

    Directory of Open Access Journals (Sweden)

    Alojz Kopáčik

    2005-06-01

    Full Text Available This paper discusses about the dynamic monitoring of stability (tilt measurement of bearing pillar of high-rise building using the electronic measuring system. The electronic measuring system consists of Libela 2800 tilt sensor, input/output device for the AE 2DN tilt sensor, measuring amplifier and also the Spider8 analog/digital converter and the registration equipment (notebook. The basic part of uniaxial tilt sensor creates a frame, on which is among damping plates hung a pendulum (ferromagnetic kernel. The tilt value is determined on a principle of electromagnetic induction by changing the position of ferromagnetic kernel in the reel. The range of pendulum movement is ± 2,5 mm/m and the accuracy of the tilt determination is 0,001 mm/m. The monitored building represents, from the point of constructional view, a ferro-concrete rectangular sceleton, which consists of vertical bearing pillars, on which are guyed longitudinal and transverse girders. The building ground-plan is rectangular with the dimensions of 75 m (distance and 12 m (width. The building has two underground and six above the ground floors with constructional high of 3,40 m. Whole highth of the above ground part of building is 20,4 m. The pillar tilt was measured in the transverse direction of the building at the level of the second floor using the Libela 2800 electronic sensor. The sensor was situated on the metallic console (L-profile, which was assembled on a lateral side of the circuit bearing pillar at the highth of 8,3 m above the ground level. Together with the tilt monitoring, the outside air temperature in the close area of pillar was measured. The tilt measurement was carried out continuously for 168 hours with the recording frequency of 1 Hz (1 measurement/second. The file of the measured data with 603 950 records was reduced to the file with 1006 records, which corresponds to the record of the every tenth minute. The measured tilt values represent from the

  6. Technical Specifications of Structural Health Monitoring for Highway Bridges: New Chinese Structural Health Monitoring Code

    Directory of Open Access Journals (Sweden)

    Fernando Moreu

    2018-03-01

    Full Text Available Governments and professional groups related to civil engineering write and publish standards and codes to protect the safety of critical infrastructure. In recent decades, countries have developed codes and standards for structural health monitoring (SHM. During this same period, rapid growth in the Chinese economy has led to massive development of civil engineering infrastructure design and construction projects. In 2016, the Ministry of Transportation of the People’s Republic of China published a new design code for SHM systems for large highway bridges. This document is the first technical SHM code by a national government that enforces sensor installation on highway bridges. This paper summarizes the existing international technical SHM codes for various countries and compares them with the new SHM code required by the Chinese Ministry of Transportation. This paper outlines the contents of the new Chinese SHM code and explains its relevance for the safety and management of large bridges in China, introducing key definitions of the Chinese–United States SHM vocabulary and their technical significance. Finally, this paper discusses the implications for the design and implementation of a future SHM codes, with suggestions for similar efforts in United States and other countries.

  7. Atomic structure of non-stoichiometric transition metal carbides

    International Nuclear Information System (INIS)

    Moisy-Maurice, Virginie.

    1981-10-01

    Different kinds of experimental studies of the atomic arrangement in non-stoichiometric transition metal carbides are proposed: the ordering of carbon vacancies and the atomic static displacements are the main subjects studied. Powder neutron diffraction on TiCsub(1-x) allowed us to determine the order-disorder transition critical temperature -Tsub(c) approximately 770 0 C- in the TiCsub(0.52-0.67) range, and to analyze at 300 K the crystal structure of long-range ordered samples. A neutron diffuse scattering quantitative study at 300 K of short-range order in TiCsub(0.76), TiCsub(0.79) and NbCsub(0.73) single crystals is presented: as in Ti 2 Csub(1+x) and Nb 6 C 5 superstructures, vacancies avoid to be on each side of a metal atom. Besides, the mean-square carbon atom displacements from their sites are small, whereas metal atoms move radially about 0.03 A away from vacancies. These results are in qualitative agreement with EXAFS measurements at titanium-K edge of TiCsub(1-x). An interpretation of ordering in term of short-range interaction pair potentials between vacancies is proposed [fr

  8. On the value of structural health monitoring

    DEFF Research Database (Denmark)

    Faber, Michael Havbro; Thöns, Sebastian

    2014-01-01

    in the fields of SHM and the quantification of value of information as well as the identification of typical situations in structural engineering in which SHM has the potential to provide value beyond its costs. Subsequently, the theoretical framework which allows for the quantification of the value...... of information collected through SHM systems is developed and elaborated. It is shown how the value of information can be quantified to support the assessment and optimization of decisions on whether and how to implement SHM. To illustrate the use of the developed theoretical framework for evaluating the benefit...

  9. Control of framed structures using intelligent monitoring networks

    Directory of Open Access Journals (Sweden)

    Foti Dora

    2017-01-01

    Full Text Available The paper proposes the integration of structural monitoring with Building Management Systems for electricity and gas distributions. To assess the state of damage of existing buildings the technics of Structural Health Monitoring (SHM is adopted. SHM as well as to record the occurrence of sudden structural damage resulting from exceptional events (earthquakes, explosions, shocks and collisions with vehicles, etc., allows the monitoring of the progressive damage and structural performance under operating conditions through the extraction of the modal parameters of the structure. This approach requires time to process acquired data that, depending on the size of the building and the number of monitored points, varies from minutes to hours. In this paper, an intelligent system is proposed to immediately communicate during an earthquake the overrun of a certain ground shaking threshold so that gas delivery and selected power loads are interrupted, as suggested by current national regulations on structures. The use of low-cost and reduced size accelerometric sensors integrated with Energy Monitoring Systems is proposed in both highrisk earthquake centers and in all “strategic” buildings that must ensure their operation use immediately after the earthquake. The procedure for calibrating the horizontal and vertical acceleration threshold is also sketched.

  10. Time-frequency Methods for Structural Health Monitoring

    NARCIS (Netherlands)

    Pyayt, A.L.; Kozionov, A.P.; Mokhov, I.I.; Lang, B.; Meijer, R.J.; Krzhizhanovskaya, V.V.; Sloot, P.M.A.

    2014-01-01

    Detection of early warning signals for the imminent failure of large and complex engineered structures is a daunting challenge with many open research questions. In this paper we report on novel ways to perform Structural Health Monitoring (SHM) of flood protection systems (levees, earthen dikes and

  11. Time-frequency methods for structural health monitoring

    NARCIS (Netherlands)

    Pyayt, A.L.; Kozionov, A.P.; Mokhov, I.I.; Lang, B.; Meijer, R.J.; Krzhizhanovskaya, V.V.; Sloot, P.M.A.

    2014-01-01

    Detection of early warning signals for the imminent failure of large and complex engineered structures is a daunting challenge with many open research questions. In this paper we report on novel ways to perform Structural Health Monitoring (SHM) of flood protection systems (levees, earthen dikes and

  12. Transition from glass to graphite in manufacture of composite aircraft structure

    Science.gov (United States)

    Buffum, H. E.; Thompson, V. S.

    1978-01-01

    The transition from fiberglass reinforced plastic composites to graphite reinforced plastic composites is described. Structural fiberglass design and manufacturing background are summarized. How this experience provides a technology base for moving into graphite composite secondary structure and then to composite primary structure is considered. The technical requirements that must be fulfilled in the transition from glass to graphite composite structure are also included.

  13. Damage tolerance and structural monitoring for wind turbine blades.

    Science.gov (United States)

    McGugan, M; Pereira, G; Sørensen, B F; Toftegaard, H; Branner, K

    2015-02-28

    The paper proposes a methodology for reliable design and maintenance of wind turbine rotor blades using a condition monitoring approach and a damage tolerance index coupling the material and structure. By improving the understanding of material properties that control damage propagation it will be possible to combine damage tolerant structural design, monitoring systems, inspection techniques and modelling to manage the life cycle of the structures. This will allow an efficient operation of the wind turbine in terms of load alleviation, limited maintenance and repair leading to a more effective exploitation of offshore wind. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  14. Structural phase transition and precursor phenomena in V3Si

    International Nuclear Information System (INIS)

    Kobayashi, T.; Fukase, T.; Toyota, N.; Muto, Y.

    1982-01-01

    Thermal dilation experiments on the transforming single crystals V 3 Si indicated that the precursor of the structural transformation at Tsub(m) of about 21 K starts at anomalously high temperatures (proportional70 K) and grows drastically near Tsub(m). This anomaly is also accompanied by the critical increment of electrical resistivity showing a sharp peak at Tsub(m). The application of the uniaxial stress suppresses the resistivity anomaly and makes the superconducting transition width narrower. We propose a model for the precursor phenomena in terms of (1) the directional strain fields (non-cubic) pinned near the defects and (2) the memory effect of orientation of the tetragonal domains born by the defects such as dislocations. (orig.)

  15. Structural transition of a homopolymer in solvents mixture

    Energy Technology Data Exchange (ETDEWEB)

    Guettari, Moez [Laboratoire de Physique de la Matiere Molle, Faculte des Sciences de Tunis, Campus Universitaire, 2092 Tunisia (Tunisia)], E-mail: gtarimoez@yahoo.fr; Aschi, Adel; Gomati, Riadh; Gharbi, Abdelhafidh [Laboratoire de Physique de la Matiere Molle, Faculte des Sciences de Tunis, Campus Universitaire, 2092 Tunisia (Tunisia)

    2008-07-01

    The present work is aimed at studying the thermodynamic behaviour of a polymer in solvents mixture. Dynamic light scattering is used to measure the hydrodynamic radius of polyvinylpyrrolidone (M{sub w} = 360,000 g/mol), in water/methanol solvents mixture, versus the mixed solvents composition at 25 deg. C. Then, we show that the polymer conformation adopts the Coil-Globule-Coil structure when the methanol molar fraction X{sub A} is varied. This transition is attributed to solvent quality change which result from water and methanol complex formation. The polymer contraction rate calculated for each composition takes its maximum value at X{sub A} = 0.17. Hildebrand theory assuming the solvents mixture as an equivalent solvent was used to analyze the change in mixed solvents quality. These changes can be attributed to dispersive forces in solvents mixture.

  16. Structural transition of a homopolymer in solvents mixture

    International Nuclear Information System (INIS)

    Guettari, Moez; Aschi, Adel; Gomati, Riadh; Gharbi, Abdelhafidh

    2008-01-01

    The present work is aimed at studying the thermodynamic behaviour of a polymer in solvents mixture. Dynamic light scattering is used to measure the hydrodynamic radius of polyvinylpyrrolidone (M w = 360,000 g/mol), in water/methanol solvents mixture, versus the mixed solvents composition at 25 deg. C. Then, we show that the polymer conformation adopts the Coil-Globule-Coil structure when the methanol molar fraction X A is varied. This transition is attributed to solvent quality change which result from water and methanol complex formation. The polymer contraction rate calculated for each composition takes its maximum value at X A = 0.17. Hildebrand theory assuming the solvents mixture as an equivalent solvent was used to analyze the change in mixed solvents quality. These changes can be attributed to dispersive forces in solvents mixture

  17. Health monitoring of civil structures using fiber optic sensors

    International Nuclear Information System (INIS)

    Varma, Veto; Kumar, Praveen; Charan, J.J.; Reddy, G.R.; Vaze, K.K.; Kushwaha, H.S.

    2003-08-01

    During the lifetime of the reactor, the civil structure is subjected to many operational and environmental loads. Hence it is increasingly important to monitor the conditions of the structure and insure its safety and integrity. The conventional gauges have proved to be not sufficiently catering the problem of long term health monitoring of the structure because of its many limitations. Hence it is mandatory to develop a technique for the above purpose. Present study deals with the application of Fiber optic sensors (EFPI strain Gauges) in the civil structure for its health monitoring. Various experiments were undertaken and suitability of sensors was checked. A technique to embed the optical sensor inside the concrete is successfully developed and tested. (author)

  18. Early-age monitoring of cement structures using FBG sensors

    Science.gov (United States)

    Wang, Chuan; Zhou, Zhi; Zhang, Zhichun; Ou, Jinping

    2006-03-01

    With more and more broad applications of the cement-based structures such as neat cement paste, cement mortar and concrete in civil engineering, people hope to find out what their performances should like. The in-service performances of cement-based structures are highly affected by their hardening process during the early-age. But it is still a big problem for traditional sensors to be used to monitor the early curing of cement-based structures due to such disadvantages as difficulties to install sensors inside the concrete, limited measuring points, poor durability and interference of electromagnetic wave and so on. In this paper, according to the sensing properties of the Fiber Bragg Grating sensors and self-characters of the cement-based structures, we have successfully finished measuring and monitoring the early-age inner-strain and temperature changes of the neat cement paste, concrete with and without restrictions, mass concrete structures and negative concrete, respectively. Three types of FBG-based sensors have been developed to monitor the cement-based structures. Besides, the installation techniques and the embedding requirements of FBG sensors in cement-based structures are also discussed. Moreover, such kind of technique has been used in practical structure, 3rd Nanjing Yangtze Bridge, and the results show that FBG sensors are well proper for measuring and monitoring the temperature and strain changes including self-shrinkage, dry shrinkage, plastic shrinkage, temperature expansion, frost heaving and so on inside different cement-based structures. This technique provides us a new useful measuring method on early curing monitoring of cement-based structures and greater understanding of details of their hardening process.

  19. Applications in bridge structure health monitoring using distributed fiber sensing

    Science.gov (United States)

    Feng, Yafei; Zheng, Huan; Ge, Huiliang

    2017-10-01

    In this paper, Brillouin Optical Time Domain Analysis (BOTDA) is proposed to solve the problem that the traditional point sensor is difficult to realize the comprehensive safety monitoring of bridges and so on. This technology not only breaks through the bottleneck of traditional monitoring point sensor, realize the distributed measurement of temperature and strain on a transmission path; can also be used for bridge and other structures of the damage identification, fracture positioning, settlement monitoring. The effectiveness and frontier of the technology are proved by comparing the test of the indoor model beam and the external field bridge, and the significance of the distributed optical fiber sensing technology to the monitoring of the important structure of the bridge is fully explained.

  20. Structural damage monitoring of harbor caissons with interlocking condition

    Energy Technology Data Exchange (ETDEWEB)

    Huynh, Thanh Canh; Lee, So Young; Nauyen, Khac Duy; Kim, Jeong Tae [Pukyong National Univ., Busan (Korea, Republic of)

    2012-12-15

    The objective of this study is to monitor the health status of harbor caissons which have potential foundation damage. To obtain the objective, the following approaches are performed. Firstly, a structural damage monitoring(SDM) method is designed for interlocked multiple caisson structures. The SDM method utilizes the change in modal strain energy to monitor the foundation damage in a target caisson unit. Secondly, a finite element model of a caisson system which consists of three caisson units is established to verify the feasibility of the proposed method. In the finite element simulation, the caisson units are constrained each other by shear key connections. The health status of the caisson system against various levels of foundation damage is monitored by measuring relative modal displacements between the adjacent caissons.

  1. Structural damage monitoring of harbor caissons with interlocking condition

    International Nuclear Information System (INIS)

    Huynh, Thanh Canh; Lee, So Young; Nauyen, Khac Duy; Kim, Jeong Tae

    2012-01-01

    The objective of this study is to monitor the health status of harbor caissons which have potential foundation damage. To obtain the objective, the following approaches are performed. Firstly, a structural damage monitoring(SDM) method is designed for interlocked multiple caisson structures. The SDM method utilizes the change in modal strain energy to monitor the foundation damage in a target caisson unit. Secondly, a finite element model of a caisson system which consists of three caisson units is established to verify the feasibility of the proposed method. In the finite element simulation, the caisson units are constrained each other by shear key connections. The health status of the caisson system against various levels of foundation damage is monitored by measuring relative modal displacements between the adjacent caissons

  2. System identification and structural health monitoring of bridge structures

    OpenAIRE

    Islami, Kleidi

    2013-01-01

    This research study addresses two issues for the identification of structural characteristics of civil infrastructure systems. The first one is related to the problem of dynamic system identification, by means of experimental and operational modal analysis, applied to a large variety of bridge structures. Based on time and frequency domain techniques and mainly with output-only acceleration, velocity or strain data, modal parameters have been estimated for suspension bridges, masonry arch bri...

  3. (Electronic structure and reactivities of transition metal clusters)

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The following are reported: theoretical calculations (configuration interaction, relativistic effective core potentials, polyatomics, CASSCF); proposed theoretical studies (clusters of Cu, Ag, Au, Ni, Pt, Pd, Rh, Ir, Os, Ru; transition metal cluster ions; transition metal carbide clusters; bimetallic mixed transition metal clusters); reactivity studies on transition metal clusters (reactivity with H{sub 2}, C{sub 2}H{sub 4}, hydrocarbons; NO and CO chemisorption on surfaces). Computer facilities and codes to be used, are described. 192 refs, 13 figs.

  4. Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge

    Science.gov (United States)

    Yap, Keng C.

    2010-01-01

    This viewgraph presentation reviews Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge. The Wing Leading Edge Impact Detection System (WLE IDS) and the Impact Analysis Process are also described to monitor WLE debris threats. The contents include: 1) Risk Management via SHM; 2) Hardware Overview; 3) Instrumentation; 4) Sensor Configuration; 5) Debris Hazard Monitoring; 6) Ascent Response Summary; 7) Response Signal; 8) Distribution of Flight Indications; 9) Probabilistic Risk Analysis (PRA); 10) Model Correlation; 11) Impact Tests; 12) Wing Leading Edge Modeling; 13) Ascent Debris PRA Results; and 14) MM/OD PRA Results.

  5. Effect of structural transition on magnetic susceptibility of tantalum carbide

    International Nuclear Information System (INIS)

    Lipatnikov, V.N.; Gusev, A.I.; Rempel', A.A.; Shvejkin, G.P.

    1987-01-01

    Ordering of carbon atoms and vacancies in nonmetal sublattice of TaC y is investigated for the first time by methods of magnetic susceptibility and structural neutron diffraction analysis. Measurements of magnetic susceptibility were conducted on high-sensitive magnetic scales in temperature interval of 300 - 1300 K with holding at each temperature up to the establishment of constant, nonchanging in the course of time value of susceptibility x. When investigating x-hardened tantalum carbide within the interval of TaC 0.82 - TaC 0.85 compositions under the conditions of slow heating, it was observed nonrecorded earlier irreversible decrease of susceptibility at temperature of 960 - 1000 K. With further temperature increase T>T tr it was observed at first even and than uneven increase of x value at a temperature of T tr equal to 1090, 1130 and 1150 K for TaC 0.82 , TaC 0.83 and TaC 0.85 respectively. The measuring of magnetic susceptibility of the same samples at temperature decrease reveals the presence of susceptibility temperature hysteresis in the interval of 1070 - 1090, 1100 - 1130 and 1120 - 1150 for TaC 0.82 , TaC 0.83 and TaC 0.85 . Reversible susceptibility jump corresponding to the temperature hysteresis range at dependences of x(T), is connected with equilibrium structural phase transition of order-disorder

  6. Chromospheric counterparts of solar transition region unresolved fine structure loops

    Science.gov (United States)

    Pereira, Tiago M. D.; Rouppe van der Voort, Luc; Hansteen, Viggo H.; De Pontieu, Bart

    2018-04-01

    Low-lying loops have been discovered at the solar limb in transition region temperatures by the Interface Region Imaging Spectrograph (IRIS). They do not appear to reach coronal temperatures, and it has been suggested that they are the long-predicted unresolved fine structures (UFS). These loops are dynamic and believed to be visible during both heating and cooling phases. Making use of coordinated observations between IRIS and the Swedish 1-m Solar Telescope, we study how these loops impact the solar chromosphere. We show for the first time that there is indeed a chromospheric signal of these loops, seen mostly in the form of strong Doppler shifts and a conspicuous lack of chromospheric heating. In addition, we find that several instances have a inverse Y-shaped jet just above the loop, suggesting that magnetic reconnection is driving these events. Our observations add several puzzling details to the current knowledge of these newly discovered structures; this new information must be considered in theoretical models. Two movies associated to Fig. 1 are available at http://https://www.aanda.org

  7. Review article : intra-oesophageal impedance monitoring for the assessment of bolus transit and gastro-oesophageal reflux

    NARCIS (Netherlands)

    Conchillo, J. M.; Smout, A. J.

    2009-01-01

    Background Intra-oesophageal impedance monitoring can be used to assess the clearance of a swallowed bolus (oesophageal transit) and to detect gastro-oesophageal reflux independent of its acidity. Aim To discuss the clinical application of the impedance technique for the assessment of bolus transit

  8. Uncertainty Quantification for Monitoring of Civil Structures from Vibration Measurements

    Science.gov (United States)

    Döhler, Michael; Mevel, Laurent

    2014-05-01

    Health Monitoring of civil structures can be performed by detecting changes in the modal parameters of a structure, or more directly in the measured vibration signals. For a continuous monitoring the excitation of a structure is usually ambient, thus unknown and assumed to be noise. Hence, all estimates from the vibration measurements are realizations of random variables with inherent uncertainty due to (unknown) process and measurement noise and finite data length. In this talk, a strategy for quantifying the uncertainties of modal parameter estimates from a subspace-based system identification approach is presented and the importance of uncertainty quantification in monitoring approaches is shown. Furthermore, a damage detection method is presented, which is based on the direct comparison of the measured vibration signals without estimating modal parameters, while taking the statistical uncertainty in the signals correctly into account. The usefulness of both strategies is illustrated on data from a progressive damage action on a prestressed concrete bridge. References E. Carden and P. Fanning. Vibration based condition monitoring: a review. Structural Health Monitoring, 3(4):355-377, 2004. M. Döhler and L. Mevel. Efficient multi-order uncertainty computation for stochastic subspace identification. Mechanical Systems and Signal Processing, 38(2):346-366, 2013. M. Döhler, L. Mevel, and F. Hille. Subspace-based damage detection under changes in the ambient excitation statistics. Mechanical Systems and Signal Processing, 45(1):207-224, 2014.

  9. Direct investigations of deformation and yield induced structure transitions in polyamide 6 below glass transition temperature with WAXS and SAXS

    DEFF Research Database (Denmark)

    Guo, Huilong; Wang, Jiayi; Zhou, Chengbo

    2015-01-01

    Deformation and yield induced structure transitions of polyamide 6 (PA6) were detected with the combination of the wide- and small-angle X-ray scattering (WAXS and SAXS) at 30 degrees C below glass transition temperature (T-g) of PA6. During deformation, gamma-alpha phase transition was found...... at elastic stage. The concentrated stress in crystals at elastic stage provided adequate energy for the direct gamma-alpha phase transition under T-g. The force to promote the gamma-phase into a phase directly is insufficient at the yield stage and a transient phase as a compromise was formed. The transient...... phase was confirmed by DSC measurements and assisted the gamma-alpha phase transition indirectly. The gamma-phase slips into incomplete fragments at yield point, and the parts along tensile direction are responsible for the formation of transient phase. The gamma-fragments after yield is oriented...

  10. Monitoring Freeze Thaw Transitions in Arctic Soils using Complex Resistivity Method

    Science.gov (United States)

    Wu, Y.; Hubbard, S. S.; Ulrich, C.; Dafflon, B.; Wullschleger, S. D.

    2012-12-01

    The Arctic region, which is a sensitive system that has emerged as a focal point for climate change studies, is characterized by a large amount of stored carbon and a rapidly changing landscape. Seasonal freeze-thaw transitions in the Arctic alter subsurface biogeochemical processes that control greenhouse gas fluxes from the subsurface. Our ability to monitor freeze thaw cycles and associated biogeochemical transformations is critical to the development of process rich ecosystem models, which are in turn important for gaining a predictive understanding of Arctic terrestrial system evolution and feedbacks with climate. In this study, we conducted both laboratory and field investigations to explore the use of the complex resistivity method to monitor freeze thaw transitions of arctic soil in Barrow, AK. In the lab studies, freeze thaw transitions were induced on soil samples having different average carbon content through exposing the arctic soil to temperature controlled environments at +4 oC and -20 oC. Complex resistivity and temperature measurements were collected using electrical and temperature sensors installed along the soil columns. During the laboratory experiments, resistivity gradually changed over two orders of magnitude as the temperature was increased or decreased between -20 oC and 0 oC. Electrical phase responses at 1 Hz showed a dramatic and immediate response to the onset of freeze and thaw. Unlike the resistivity response, the phase response was found to be exclusively related to unfrozen water in the soil matrix, suggesting that this geophysical attribute can be used as a proxy for the monitoring of the onset and progression of the freeze-thaw transitions. Spectral electrical responses contained additional information about the controls of soil grain size distribution on the freeze thaw dynamics. Based on the demonstrated sensitivity of complex resistivity signals to the freeze thaw transitions, field complex resistivity data were collected over

  11. Applications of fiber optic sensors in concrete structural health monitoring

    Science.gov (United States)

    Dai, Jingyun; Zhang, Wentao; Sun, Baochen; Du, Yanliang

    2007-11-01

    The research of fiber optic extrinsic Fabry-Perot interferometer (EFPI) sensors and their applications in concrete structural health monitoring are presented in this paper. Different types of fiber optic EFPI sensors are designed and fabricated. Experiments are carried out to test the performance of the sensors. The results show that the sensors have good linearity and stability. The applications of the fiber optic EFPI sensors in concrete structural health monitoring are also introduced. Ten fiber optic sensors are embedded into one section of the Liaohe Bridge in Qinghuangdao-Shenyang Railway. Field test demonstrates that the results of fiber optic sensors agree well with conventional strain gauges.

  12. Structural health monitoring an advanced signal processing perspective

    CERN Document Server

    Chen, Xuefeng; Mukhopadhyay, Subhas

    2017-01-01

    This book highlights the latest advances and trends in advanced signal processing (such as wavelet theory, time-frequency analysis, empirical mode decomposition, compressive sensing and sparse representation, and stochastic resonance) for structural health monitoring (SHM). Its primary focus is on the utilization of advanced signal processing techniques to help monitor the health status of critical structures and machines encountered in our daily lives: wind turbines, gas turbines, machine tools, etc. As such, it offers a key reference guide for researchers, graduate students, and industry professionals who work in the field of SHM.

  13. Damage tolerance and structural monitoring for wind turbine blades

    DEFF Research Database (Denmark)

    McGugan, Malcolm; Pereira, Gilmar Ferreira; Sørensen, Bent F.

    2015-01-01

    The paper proposes a methodology for reliable design and maintenance of wind turbine rotor blades using a condition monitoring approach and a damage tolerance index coupling the material and structure. By improving the understanding of material properties that control damage propagation it will b......The paper proposes a methodology for reliable design and maintenance of wind turbine rotor blades using a condition monitoring approach and a damage tolerance index coupling the material and structure. By improving the understanding of material properties that control damage propagation...

  14. Monovalent cation induced structural transitions in telomeric DNAs: G-DNA folding intermediates

    International Nuclear Information System (INIS)

    Hardin, C.C.; Watson, T.; Henderson, E.; Prosser, J.K.

    1991-01-01

    Telomeric DNA consists of G- and C-rich strands that are always polarized such that the G-rich strand extends past the 3' end of the duplex to form a 12-16-base overhang. These overhanging strands can self-associate in vitro to form intramolecular structures that have several unusual physical properties and at least one common feature, the presence of non-Watson-Crick G·G base pairs. The term G-DNA was coined for this class of structures. On the basis of gel electrophoresis, imino proton NMR, and circular dichroism (CD) results, the authors find that changing the counterions from sodium to potassium specifically induces conformational transitions in the G-rich telomeric DNA from Tetrahymena, d(T 2 G 4 ) 4 (TET4), which results in a change from the intramolecular species to an apparent multistranded structure, accompanied by an increase in the melting temperature of the base pairs of >25 degree, as monitored by loss of the imino proton NMR signals. They infer that the multistranded structure is a quadruplex. The results indicate that specific differences in ionic interactions can result in a switch in telomeric DNAs between intramolecular hairpin-like or quadruplex-containing species and intermolecular quadruplex structures, all of which involve G·G base pairing interaction. They propose a model in which duplex or hairpin forms of G-DNA are folding intermediates in the formation of either 1-, 2-, or 4-stranded quadruplex structures

  15. Structural Health Monitoring for Impact Damage in Composite Structures.

    Energy Technology Data Exchange (ETDEWEB)

    Roach, Dennis P.; Raymond Bond (Purdue); Doug Adams (Purdue)

    2014-08-01

    Composite structures are increasing in prevalence throughout the aerospace, wind, defense, and transportation industries, but the many advantages of these materials come with unique challenges, particularly in inspecting and repairing these structures. Because composites of- ten undergo sub-surface damage mechanisms which compromise the structure without a clear visual indication, inspection of these components is critical to safely deploying composite re- placements to traditionally metallic structures. Impact damage to composites presents one of the most signi fi cant challenges because the area which is vulnerable to impact damage is generally large and sometimes very dif fi cult to access. This work seeks to further evolve iden- ti fi cation technology by developing a system which can detect the impact load location and magnitude in real time, while giving an assessment of the con fi dence in that estimate. Fur- thermore, we identify ways by which impact damage could be more effectively identi fi ed by leveraging impact load identi fi cation information to better characterize damage. The impact load identi fi cation algorithm was applied to a commercial scale wind turbine blade, and results show the capability to detect impact magnitude and location using a single accelerometer, re- gardless of sensor location. A technique for better evaluating the uncertainty of the impact estimates was developed by quantifying how well the impact force estimate meets the assump- tions underlying the force estimation technique. This uncertainty quanti fi cation technique was found to reduce the 95% con fi dence interval by more than a factor of two for impact force estimates showing the least uncertainty, and widening the 95% con fi dence interval by a fac- tor of two for the most uncertain force estimates, avoiding the possibility of understating the uncertainty associated with these estimates. Linear vibration based damage detection tech- niques were investigated in the

  16. Health Monitoring of Composite Material Structures using a Vibrometry Technique

    Science.gov (United States)

    Schulz, Mark J.

    1997-01-01

    Large composite material structures such as aircraft and Reusable Launch Vehicles (RLVS) operate in severe environments comprised of vehicle dynamic loads, aerodynamic loads, engine vibration, foreign object impact, lightning strikes, corrosion, and moisture absorption. These structures are susceptible to damage such as delamination, fiber breaking/pullout, matrix cracking, and hygrothermal strain. To ensure human safety and load-bearing integrity, these structures must be inspected to detect and locate often invisible damage and faults before becoming catastrophic. Moreover, nearly all future structures will need some type of in-service inspection technique to increase their useful life and reduce maintenance and overall costs. Possible techniques for monitoring the health and indicating damage on composite structures include: c-scan, thermography, acoustic emissions using piezoceramic actuators or fiber-optic wires with gratings, laser ultrasound, shearography, holography, x-ray, and others. These techniques have limitations in detecting damage that is beneath the surface of the structure, far away from a sensor location, or during operation of the vehicle. The objective of this project is to develop a more global method for damage detection that is based on structural dynamics principles, and can inspect for damage when the structure is subjected to vibratory loads to expose faults that may not be evident by static inspection. A Transmittance Function Monitoring (TFM) method is being developed in this project for ground-based inspection and operational health monitoring of large composite structures as a RLV. A comparison of the features of existing health monitoring approaches and the proposed TFM method is given.

  17. Structural Health Monitoring for a Z-Type Special Vehicle

    Directory of Open Access Journals (Sweden)

    Chaolin Yuan

    2017-06-01

    Full Text Available Nowadays there exist various kinds of special vehicles designed for some purposes, which are different from regular vehicles in overall dimension and design. In that case, accidents such as overturning will lead to large economical loss and casualties. There are still no technical specifications to follow to ensure the safe operation and driving of these special vehicles. Owing to the poor efficiency of regular maintenance, it is more feasible and effective to apply real-time monitoring during the operation and driving process. In this paper, the fiber Bragg grating (FBG sensors are used to monitor the safety of a z-type special vehicle. Based on the structural features and force distribution, a reasonable structural health monitoring (SHM scheme is presented. Comparing the monitoring results with the finite element simulation results guarantees the accuracy and reliability of the monitoring results. Large amounts of data are collected during the operation and driving progress to evaluate the structural safety condition and provide reference for SHM systems developed for other special vehicles.

  18. Smart Sensing Technologies for Structural Health Monitoring of Civil Engineering Structures

    OpenAIRE

    M. Sun; W. J. Staszewski; R. N. Swamy

    2010-01-01

    Structural Health Monitoring (SHM) aims to develop automated systems for the continuous monitoring, inspection, and damage detection of structures with minimum labour involvement. The first step to set up a SHM system is to incorporate a level of structural sensing capability that is reliable and possesses long term stability. Smart sensing technologies including the applications of fibre optic sensors, piezoelectric sensors, magnetostrictive sensors and self-diagnosing fibre reinforced compo...

  19. The 1s x-ray absorption pre-edge structures in transition metal oxides

    NARCIS (Netherlands)

    de Groot, Frank|info:eu-repo/dai/nl/08747610X; Vanko, Gyoergy; Glatzel, Pieter

    2009-01-01

    We develop a general procedure to analyse the pre-edges in 1s x-ray absorption near edge structure (XANES) of transition metal oxides and coordination complexes. Transition metal coordination complexes can be described from a local model with one metal ion. The 1s 3d quadrupole transitions are

  20. Condition monitoring and maintenance of nuclear power plant concrete structures

    International Nuclear Information System (INIS)

    Orr, R.; Prasad, N.

    1988-01-01

    Nuclear power plant concrete structures are potentially subject to deterioration due to several environmental conditions, including weather exposure, ground water exposure, and sustained high temperature and radiation levels. The nuclear power plant are generally licensed for a term of 40 years. In order to maximize the return from the existing plants, feasibility studies are in progress for continued operation of many of these plants beyond the original licensed life span. This paper describes a study that was performed with an objective to define appropriate condition monitoring and maintenance procedures. A timely implementation of a condition monitoring and maintenance program would provide a valuable database and would provide justification for extension of the plant's design life. The study included concrete structures such as the containment buildings, interior structures, basemats, intake structures and cooling towers. Age-related deterioration at several operating power plants was surveyed and the potential degradation mechanisms have been identified

  1. Configuration management and load monitoring procedures for nuclear plant structures

    International Nuclear Information System (INIS)

    Chu, S.L.; Skaczylo, A.T.

    1990-01-01

    This paper describes a computer-aided engineering tool called the Load Monitoring System (LMS) that was proven effective for monitoring floor framing, loads, and structural integrity. The system links structural analysis, design investigation, and reporting and automated drafting programs with a Data Base Management System (DBMS). It provides design engineers with a powerful tool for quickly incorporating, tracking, and assessing load revisions and determining effects on steel floor framing members and connections, thereby helping to reduce design man-hours, minimize the impact of structural modifications, and maintain and document the design baseline. The major benefit to utilities are the reduction in engineering costs, assistance with plant configuration management, and assurance of structural safety throughout the operating life of a nuclear plant and at evaluation for license renewal. (orig./HP)

  2. Structural Health Monitoring with Fiber Bragg Grating and Piezo Arrays

    Science.gov (United States)

    Black, Richard J.; Faridian, Ferey; Moslehi, Behzad; Sotoudeh, Vahid

    2012-01-01

    Structural health monitoring (SHM) is one of the most important tools available for the maintenance, safety, and integrity of aerospace structural systems. Lightweight, electromagnetic-interference- immune, fiber-optic sensor-based SHM will play an increasing role in more secure air transportation systems. Manufacturers and maintenance personnel have pressing needs for significantly improving safety and reliability while providing for lower inspection and maintenance costs. Undetected or untreated damage may grow and lead to catastrophic structural failure. Damage can originate from the strain/stress history of the material, imperfections of domain boundaries in metals, delamination in multi-layer materials, or the impact of machine tools in the manufacturing process. Damage can likewise develop during service life from wear and tear, or under extraordinary circumstances such as with unusual forces, temperature cycling, or impact of flying objects. Monitoring and early detection are key to preventing a catastrophic failure of structures, especially when these are expected to perform near their limit conditions.

  3. Highly arc-transitive digraphs -- counterexamples and structure

    OpenAIRE

    DeVos, Matt; Mohar, Bojan; Šámal, Robert

    2011-01-01

    We resolve two problems of [Cameron, Praeger, and Wormald -- Infinite highly arc transitive digraphs and universal covering digraphs, Combinatorica 1993]. First, we construct a locally finite highly arc-transitive digraph with universal reachability relation. Second, we provide constructions of 2-ended highly arc transitive digraphs where each `building block' is a finite bipartite graph that is not a disjoint union of complete bipartite graphs. This was conjectured impossible in the above pa...

  4. System Identification of Wind Turbines for Structural Health Monitoring

    DEFF Research Database (Denmark)

    Perisic, Nevena

    Structural health monitoring is a multi-disciplinary engineering field that should allow the actual wind turbine maintenance programmes to evolve to the next level, hence increasing safety and reliability and decreasing turbines downtime. The main idea is to have a sensing system on the structure...... cases are considered, two practical problems from the wind industry are studied, i.e. monitoring of the gearbox shaft torque and the tower root bending moments. The second part of the thesis is focused on the influence of friction on the health of the wind turbine and on the nonlinear identification...... that monitors the system responses and notifies the operator when damages or degradations have been detected. However, some of the response signals that contain important information about the health of the wind turbine components cannot be directly measured, or measuring them is highly complex and costly...

  5. Data-intensive structural health monitoring in the infrawatch project

    NARCIS (Netherlands)

    Veerman, R.P.; Miao, S.; Koenders, E.A.B.; Knobbe, A.

    2013-01-01

    The InfraWatch project is a Dutch research project, aimed at developing novel techniques for large-scale monitoring of concrete infra-structures. The project involves a large bridge, fitted with multiple types of sensors that capture the high-resolution dynamic behavior of the bridge. With 145

  6. A bio-inspired memory model for structural health monitoring

    Science.gov (United States)

    Zheng, Wei; Zhu, Yong

    2009-04-01

    Long-term structural health monitoring (SHM) systems need intelligent management of the monitoring data. By analogy with the way the human brain processes memories, we present a bio-inspired memory model (BIMM) that does not require prior knowledge of the structure parameters. The model contains three time-domain areas: a sensory memory area, a short-term memory area and a long-term memory area. First, the initial parameters of the structural state are specified to establish safety criteria. Then the large amount of monitoring data that falls within the safety limits is filtered while the data outside the safety limits are captured instantly in the sensory memory area. Second, disturbance signals are distinguished from danger signals in the short-term memory area. Finally, the stable data of the structural balance state are preserved in the long-term memory area. A strategy for priority scheduling via fuzzy c-means for the proposed model is then introduced. An experiment on bridge tower deformation demonstrates that the proposed model can be applied for real-time acquisition, limited-space storage and intelligent mining of the monitoring data in a long-term SHM system.

  7. A bio-inspired memory model for structural health monitoring

    International Nuclear Information System (INIS)

    Zheng, Wei; Zhu, Yong

    2009-01-01

    Long-term structural health monitoring (SHM) systems need intelligent management of the monitoring data. By analogy with the way the human brain processes memories, we present a bio-inspired memory model (BIMM) that does not require prior knowledge of the structure parameters. The model contains three time-domain areas: a sensory memory area, a short-term memory area and a long-term memory area. First, the initial parameters of the structural state are specified to establish safety criteria. Then the large amount of monitoring data that falls within the safety limits is filtered while the data outside the safety limits are captured instantly in the sensory memory area. Second, disturbance signals are distinguished from danger signals in the short-term memory area. Finally, the stable data of the structural balance state are preserved in the long-term memory area. A strategy for priority scheduling via fuzzy c-means for the proposed model is then introduced. An experiment on bridge tower deformation demonstrates that the proposed model can be applied for real-time acquisition, limited-space storage and intelligent mining of the monitoring data in a long-term SHM system

  8. Applicability of structured telephone monitoring to follow up heart ...

    African Journals Online (AJOL)

    Over 90% of the contacted patients gave valuable information regarding their clinical status. Conclusion: Majority of HF patients can be contacted and provide valuable clinical information through mobile phones within a month post discharge from the national hospital in Tanzania. Structured telephone monitoring could be ...

  9. Applicability of structured telephone monitoring to follow up heart ...

    African Journals Online (AJOL)

    Pilly Chillo

    Keywords: heart failure, structured telephone, home monitoring, Tanzania ... in a parallel increase in HF admissions and a major impact on health care systems. ... was entered in Statistical Package for Social Sciences (SPSS) version 20 software for analysis. ..... Failure (DIAL): study design and preliminary observations.

  10. Strongly correlated electron systems and neutron scattering. Magnetism, superconductivity, structural phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Katano, Susumu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Neutron scattering experiments in our group on strongly correlated electron systems are reviewed Metal-insulator transitions caused by structural phase transitions in (La{sub 1-x}Sr{sub x}) MnO{sub 3}, a novel magnetic transition in the CeP compound, correlations between antiferromagnetism and superconductivity in UPd{sub 2}Al{sub 3} and so forth are discussed. Here, in this note, the phase transition of Mn-oxides was mainly described. (author)

  11. Improved Satellite Techniques for Monitoring and Forecasting the Transition of Hurricanes to Extratropical Storms

    Science.gov (United States)

    Folmer, Michael; Halverson, Jeffrey; Berndt, Emily; Dunion, Jason; Goodman, Steve; Goldberg, Mitch

    2014-01-01

    The Geostationary Operational Environmental Satellites R-Series (GOES-R) and Joint Polar Satellite System (JPSS) Satellite Proving Grounds have introduced multiple proxy and operational products into operations over the last few years. Some of these products have proven to be useful in current operations at various National Weather Service (NWS) offices and national centers as a first look at future satellite capabilities. Forecasters at the National Hurricane Center (NHC), Ocean Prediction Center (OPC), NESDIS Satellite Analysis Branch (SAB) and the NASA Hurricane and Severe Storms Sentinel (HS3) field campaign have had access to a few of these products to assist in monitoring extratropical transitions of hurricanes. The red, green, blue (RGB) Air Mass product provides forecasters with an enhanced view of various air masses in one complete image to help differentiate between possible stratospheric/tropospheric interactions, moist tropical air masses, and cool, continental/maritime air masses. As a compliment to this product, a new Atmospheric Infrared Sounder (AIRS) and Cross-track Infrared Sounder (CrIS) Ozone product was introduced in the past year to assist in diagnosing the dry air intrusions seen in the RGB Air Mass product. Finally, a lightning density product was introduced to forecasters as a precursor to the new Geostationary Lightning Mapper (GLM) that will be housed on GOES-R, to monitor the most active regions of convection, which might indicate a disruption in the tropical environment and even signal the onset of extratropical transition. This presentation will focus on a few case studies that exhibit extratropical transition and point out the usefulness of these new satellite techniques in aiding forecasters forecast these challenging events.

  12. Wireless Zigbee strain gage sensor system for structural health monitoring

    Science.gov (United States)

    Ide, Hiroshi; Abdi, Frank; Miraj, Rashid; Dang, Chau; Takahashi, Tatsuya; Sauer, Bruce

    2009-05-01

    A compact cell phone size radio frequency (ZigBee) wireless strain measurement sensor system to measure the structural strain deformation was developed. The developed system provides an accurate strain measurement data stream to the Internet for further Diagnostic and Prognostic (DPS) correlation. Existing methods of structural measurement by strain sensors (gauges) do not completely satisfy problems posed by continuous structural health monitoring. The need for efficient health monitoring methods with real-time requirements to bidirectional data flow from sensors and to a commanding device is becoming critical for keeping our daily life safety. The use of full-field strain measurement techniques could reduce costly experimental programs through better understanding of material behavior. Wireless sensor-network technology is a monitoring method that is estimated to grow rapidly providing potential for cost savings over traditional wired sensors. The many of currently available wireless monitoring methods have: the proactive and constant data rate character of the data streams rather than traditional reactive, event-driven data delivery; mostly static node placement on structures with limited number of nodes. Alpha STAR Electronics' wireless sensor network system, ASWN, addresses some of these deficiencies, making the system easier to operate. The ASWN strain measurement system utilizes off-the-shelf sensors, namely strain gauges, with an analog-to-digital converter/amplifier and ZigBee radio chips to keep cost lower. Strain data is captured by the sensor, converted to digital form and delivered to the ZigBee radio chip, which in turn broadcasts the information using wireless protocols to a Personal Data Assistant (PDA) or Laptop/Desktop computers. From here, data is forwarded to remote computers for higher-level analysis and feedback using traditional cellular and satellite communication or the Ethernet infrastructure. This system offers a compact size, lower cost

  13. Crack width monitoring of concrete structures based on smart film

    International Nuclear Information System (INIS)

    Zhang, Benniu; Wang, Shuliang; Li, Xingxing; Zhang, Xu; Yang, Guang; Qiu, Minfeng

    2014-01-01

    Due to its direct link to structural security, crack width is thought to be one of the most important parameters reflecting damage conditions of concrete structures. However, the width problem is difficult to solve with the existing structural health monitoring methods. In this paper, crack width monitoring by means of adhering enameled copper wires with different ultimate strains on the surface of structures is proposed, based on smart film crack monitoring put forward by the present authors. The basic idea of the proposed method is related to a proportional relationship between the crack width and ultimate strain of the broken wire. Namely, when a certain width of crack passes through the wire, some low ultimate strain wires will be broken and higher ultimate strain wires may stay non-broken until the crack extends to a larger scale. Detection of the copper wire condition as broken or non-broken may indicate the width of the structural crack. Thereafter, a multi-layered stress transfer model and specimen experiment are performed to quantify the relationship. A practical smart film is then redesigned with this idea and applied to Chongqing Jiangjin Yangtze River Bridge. (paper)

  14. Crack width monitoring of concrete structures based on smart film

    Science.gov (United States)

    Zhang, Benniu; Wang, Shuliang; Li, Xingxing; Zhang, Xu; Yang, Guang; Qiu, Minfeng

    2014-04-01

    Due to its direct link to structural security, crack width is thought to be one of the most important parameters reflecting damage conditions of concrete structures. However, the width problem is difficult to solve with the existing structural health monitoring methods. In this paper, crack width monitoring by means of adhering enameled copper wires with different ultimate strains on the surface of structures is proposed, based on smart film crack monitoring put forward by the present authors. The basic idea of the proposed method is related to a proportional relationship between the crack width and ultimate strain of the broken wire. Namely, when a certain width of crack passes through the wire, some low ultimate strain wires will be broken and higher ultimate strain wires may stay non-broken until the crack extends to a larger scale. Detection of the copper wire condition as broken or non-broken may indicate the width of the structural crack. Thereafter, a multi-layered stress transfer model and specimen experiment are performed to quantify the relationship. A practical smart film is then redesigned with this idea and applied to Chongqing Jiangjin Yangtze River Bridge.

  15. Integration of structural health monitoring solutions onto commercial aircraft via the Federal Aviation Administration structural health monitoring research program

    Science.gov (United States)

    Swindell, Paul; Doyle, Jon; Roach, Dennis

    2017-02-01

    The Federal Aviation Administration (FAA) started a research program in structural health monitoring (SHM) in 2011. The program's goal was to understand the technical gaps of implementing SHM on commercial aircraft and the potential effects on FAA regulations and guidance. The program evolved into a demonstration program consisting of a team from Sandia National Labs Airworthiness Assurance NDI Center (AANC), the Boeing Corporation, Delta Air Lines, Structural Monitoring Systems (SMS), Anodyne Electronics Manufacturing Corp (AEM) and the FAA. This paper will discuss the program from the selection of the inspection problem, the SHM system (Comparative Vacuum Monitoring-CVM) that was selected as the inspection solution and the testing completed to provide sufficient data to gain the first approved use of an SHM system for routine maintenance on commercial US aircraft.

  16. Sensor Systems for Corrosion Monitoring in Concrete Structures

    Directory of Open Access Journals (Sweden)

    K.Kumar

    2006-05-01

    Full Text Available It is a need of permanently embedded corrosion monitoring devices to monitor the progress of corrosion problems on a new or existing reinforced concrete structures before embarking on repair or rehabilitation of the structures. Numerous devices are available for investigating corrosion problems, because no single technique exists which tells an engineer what he needs to know, namely how much damage there is on a structure now and how rapidly the damage will grow with time. In this investigation the studies on the sensors systems based on the measurements of half cell potential of rebars inside the concrete, resistivity of concrete, corrosion rate of rebars by eddy current measurements and sensing of chloride ions are reported. An integrated system consists of above sensors are fabricated and embedded into concrete. The response from each sensor was acquired and analyzed by NI hardware through LabVIEW software.

  17. Probabilistic Structural Health Monitoring of the Orbiter Wing Leading Edge

    Science.gov (United States)

    Yap, Keng C.; Macias, Jesus; Kaouk, Mohamed; Gafka, Tammy L.; Kerr, Justin H.

    2011-01-01

    A structural health monitoring (SHM) system can contribute to the risk management of a structure operating under hazardous conditions. An example is the Wing Leading Edge Impact Detection System (WLEIDS) that monitors the debris hazards to the Space Shuttle Orbiter s Reinforced Carbon-Carbon (RCC) panels. Since Return-to-Flight (RTF) after the Columbia accident, WLEIDS was developed and subsequently deployed on board the Orbiter to detect ascent and on-orbit debris impacts, so as to support the assessment of wing leading edge structural integrity prior to Orbiter re-entry. As SHM is inherently an inverse problem, the analyses involved, including those performed for WLEIDS, tend to be associated with significant uncertainty. The use of probabilistic approaches to handle the uncertainty has resulted in the successful implementation of many development and application milestones.

  18. Wetting and Dewetting Transitions on Submerged Superhydrophobic Surfaces with Hierarchical Structures.

    Science.gov (United States)

    Wu, Huaping; Yang, Zhe; Cao, Binbin; Zhang, Zheng; Zhu, Kai; Wu, Bingbing; Jiang, Shaofei; Chai, Guozhong

    2017-01-10

    The wetting transition on submersed superhydrophobic surfaces with hierarchical structures and the influence of trapped air on superhydrophobic stability are predicted based on the thermodynamics and mechanical analyses. The dewetting transition on the hierarchically structured surfaces is investigated, and two necessary thermodynamic conditions and a mechanical balance condition for dewetting transition are proposed. The corresponding thermodynamic phase diagram of reversible transition and the critical reversed pressure well explain the experimental results reported previously. Our theory provides a useful guideline for precise controlling of breaking down and recovering of superhydrophobicity by designing superhydrophobic surfaces with hierarchical structures under water.

  19. Low-temperature structural phase transition in deuterated and protonated lithium acetate dihydrate

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, F., E-mail: schroeder@kristall.uni-frankfurt.d [Goethe-Universitaet Frankfurt am Main, Institut fuer Geowissenschaften, Abt. Kristallographie, Altenhoeferallee 1, 60438 Frankfurt am Main (Germany); Winkler, B.; Haussuehl, E. [Goethe-Universitaet Frankfurt am Main, Institut fuer Geowissenschaften, Abt. Kristallographie, Altenhoeferallee 1, 60438 Frankfurt am Main (Germany); Cong, P.T.; Wolf, B. [Goethe-Universitaet Frankfurt am Main, Physikalisches Institut, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main (Germany); Avalos-Borja, M. [Instituto Potosino de Investigacion Cientifica y Tecnologica, A.C. Camino a la Presa San Jose 2055, Col. Lomas 4 seccion CP 78216, San Luis Potosi (Mexico); Quilichini, M.; Hennion, B. [Laboratoire Leon Brillouin, CEN Saclay, 91191 Gif-sur-Yvette (France)

    2010-08-15

    Heat capacity measurements of protonated lithium acetate dihydrate show a structural phase transition at T = 12 K. This finding is in contrast to earlier work, where it was thought that only the deuterated compound undergoes a low temperature structural phase transition. This finding is confirmed by low temperature ultrasound spectroscopy, where the structural phase transition is associated with a velocity decrease of the ultrasonic waves, i.e. with an elastic softening. We compare the thermodynamic properties of the protonated and deuterated compounds and discuss two alternatives for the mechanism of the phase transition based on the thermal expansion measurements.

  20. Monitoring of civil engineering structures using Digital Image Correlation technique

    Science.gov (United States)

    Malesa, M.; Szczepanek, D.; Kujawińska, M.; Świercz, A.; Kołakowski, P.

    2010-06-01

    The Digital Image Correlation (DIC) technique enables full field, noncontact measurements of displacements and strains of a wide variety of objects. An adaptation of the DIC technique for monitoring of civil-engineering structures is presented in the paper. A general concept of the complex, automatic monitoring system, in which the DIC sensor plays an important role is described. Some new software features, which aim to facilitate outdoor measurements and speed up the correlation analysis, is also introduced. As an example of application, measurements of a railway bridge in Nieporet (Poland) are presented. The experimental results are compared with displacements of a FEM model of the bridge.

  1. [Phase transition in polymer blends and structure of ionomers and copolymers

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The main thrust of the program in the past 3 years are summarized: SAXS instrumentation development; structure and dynamics of macro- and supra-molecules, phase transitions in polymer blends and solutions, structure of ionomers, and fractals and anisotropic systems.

  2. Guaranteeing robustness of structural condition monitoring to environmental variability

    Science.gov (United States)

    Van Buren, Kendra; Reilly, Jack; Neal, Kyle; Edwards, Harry; Hemez, François

    2017-01-01

    Advances in sensor deployment and computational modeling have allowed significant strides to be recently made in the field of Structural Health Monitoring (SHM). One widely used SHM strategy is to perform a vibration analysis where a model of the structure's pristine (undamaged) condition is compared with vibration response data collected from the physical structure. Discrepancies between model predictions and monitoring data can be interpreted as structural damage. Unfortunately, multiple sources of uncertainty must also be considered in the analysis, including environmental variability, unknown model functional forms, and unknown values of model parameters. Not accounting for these sources of uncertainty can lead to false-positives or false-negatives in the structural condition assessment. To manage the uncertainty, we propose a robust SHM methodology that combines three technologies. A time series algorithm is trained using "baseline" data to predict the vibration response, compare predictions to actual measurements collected on a potentially damaged structure, and calculate a user-defined damage indicator. The second technology handles the uncertainty present in the problem. An analysis of robustness is performed to propagate this uncertainty through the time series algorithm and obtain the corresponding bounds of variation of the damage indicator. The uncertainty description and robustness analysis are both inspired by the theory of info-gap decision-making. Lastly, an appropriate "size" of the uncertainty space is determined through physical experiments performed in laboratory conditions. Our hypothesis is that examining how the uncertainty space changes throughout time might lead to superior diagnostics of structural damage as compared to only monitoring the damage indicator. This methodology is applied to a portal frame structure to assess if the strategy holds promise for robust SHM. (Publication approved for unlimited, public release on October-28

  3. Structural Transitions of Solvent-Free Oligomer-Grafted Nanoparticles

    KAUST Repository

    Chremos, Alexandros; Panagiotopoulos, Athanassios Z.

    2011-01-01

    that of simple liquids. The reversible nature of these transitions in solvent-free conditions offers new ways to control self-assembly of nanoparticles at experimentally accessible conditions. © 2011 American Physical Society.

  4. A Simple Demonstration of Concrete Structural Health Monitoring Framework

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, Sankaran [Idaho National Lab. (INL), Idaho Falls, ID (United States); Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cai, Guowei [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nath, Paromita [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bao, Yanqing [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bru Brea, Jose Maria [Idaho National Lab. (INL), Idaho Falls, ID (United States); Koester, David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Adams, Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kosson, David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high confidence actionable information regarding structural integrity that supports operational and maintenance decisions. This ongoing research project is seeking to develop a probabilistic framework for health diagnosis and prognosis of aging concrete structures in a nuclear power plant subjected to physical, chemical, environment, and mechanical degradation. The proposed framework consists of four elements—damage modeling, monitoring, data analytics, and uncertainty quantification. This report describes a proof-of-concept example on a small concrete slab subjected to a freeze-thaw experiment that explores techniques in each of the four elements of the framework and their integration. An experimental set-up at Vanderbilt University’s Laboratory for Systems Integrity and Reliability is used to research effective combination of full-field techniques that include infrared thermography, digital image correlation, and ultrasonic measurement. The measured data are linked to the probabilistic framework: the thermography, digital image correlation data, and ultrasonic measurement data are used for Bayesian calibration of model parameters, for diagnosis of damage, and for prognosis of future damage. The proof-of-concept demonstration presented in this report highlights the significance of each element of the framework and their integration.

  5. Structural Health Monitoring of Nuclear Spent Fuel Storage Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Lingyu

    2018-04-10

    Interim storage of spent nuclear fuel from reactor sites has gained additional importance and urgency for resolving waste-management-related technical issues. To ensure that nuclear power remains clean energy, monitoring has been identified by DOE as a high priority cross-cutting need, necessary to determine and predict the degradation state of the systems, structures, and components (SSCs) important to safety (ITS). Therefore, nondestructive structural condition monitoring becomes a need to be installed on existing or to be integrated into future storage system to quantify the state of health or to guarantee the safe operation of nuclear power plants (NPPs) during their extended life span. In this project, the lead university and the collaborating national laboratory teamed to develop a nuclear structural health monitoring (n-SHM) system based on in-situ piezoelectric sensing technologies that can monitor structural degradation and aging for nuclear spent fuel DCSS and similar structures. We also aimed to identify and quantify possible influences of nuclear spent fuel environment (temperature and radiation) to the piezoelectric sensor system and come up with adequate solutions and guidelines therefore. We have therefore developed analytical model for piezoelectric based n-SHM methods, with considerations of temperature and irradiation influence on the model of sensing and algorithms in acoustic emission (AE), guided ultrasonic waves (GUW), and electromechanical impedance spectroscopy (EMIS). On the other side, experimentally the temperature and irradiation influence on the piezoelectric sensors and sensing capabilities were investigated. Both short-term and long-term irradiation investigation with our collaborating national laboratory were performed. Moreover, we developed multi-modal sensing, validated in laboratory setup, and conducted the testing on the We performed multi-modal sensing development, verification and validation tests on very complex structures

  6. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications

    Science.gov (United States)

    Di Sante, Raffaella

    2015-01-01

    In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS) have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques. PMID:26263987

  7. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications

    Directory of Open Access Journals (Sweden)

    Raffaella Di Sante

    2015-07-01

    Full Text Available In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques.

  8. The monitoring of air pollution in France. History, evolution, structures

    International Nuclear Information System (INIS)

    Delandre, J.R.

    1991-01-01

    After a broad description of APPA's (Association for Prevention of Atmospheric Pollution) activities in France since it was created in 1958, the structures of the various types of measuring systems (at July 1, 1991) are presented: urban centers networks, industrial areas networks, including forest acid rain monitoring. A list of the main continuously measured pollutants is given (high acidity, settling dust, sulfur dioxide, black smoke, suspended dust, fluorine, etc.)

  9. Path Planning & Measurement Registration for Robotic Structural Asset Monitoring

    OpenAIRE

    Pierce , Stephen Gareth; Macleod , Charles Norman; Dobie , Gordon; Summan , Rahul

    2014-01-01

    International audience; The move to increased levels of autonomy for robotic delivery of inspection for asset monitoring, demands a structured approach to path planning and measurement data presentation that greatly surpasses the more ad‐,hoc approach typically employed by remotely controlled, but manually driven robotic inspection vehicles. The authors describe a traditional CAD/CAM approach to motion planning (as used in machine tool operation) which has numerous benefits including the...

  10. Damage Detection with Streamlined Structural Health Monitoring Data

    OpenAIRE

    Li, Jian; Deng, Jun; Xie, Weizhi

    2015-01-01

    The huge amounts of sensor data generated by large scale sensor networks in on-line structural health monitoring (SHM) systems often overwhelms the systems’ capacity for data transmission and analysis. This paper presents a new concept for an integrated SHM system in which a streamlined data flow is used as a unifying thread to integrate the individual components of on-line SHM systems. Such an integrated SHM system has a few desirable functionalities including embedded sensor data compressio...

  11. Bayesian Computational Sensor Networks for Aircraft Structural Health Monitoring

    Science.gov (United States)

    2016-02-02

    Virginia 22203 Air Force Research Laboratory Air Force Materiel Command 1 Final Performance Report: AFOSR T.C. Henderson , V.J. Mathews, and D...AFRL-AFOSR-VA-TR-2016-0094 Bayesian Computational Sensor Networks for Aircraft Structural Health Monitoring. Thomas Henderson UNIVERSITY OF UTAH SALT...The people who worked on this project include: Thomas C. Henderson , John Mathews, Jingru Zhou, Daimei Zhij, Ahmad Zoubi, Sabita Nahata, Dan Adams

  12. Structure of ground status in magic nuclei and description of their electric transition probabilities

    International Nuclear Information System (INIS)

    Savane, Y.Sy.

    1996-11-01

    The structure of the low-lying states in the even-even semi-magic nuclei ( 106-114 50 Sn) and the reduced transition probabilities B(E2, 6 + 1 → 4 = 1 ) for E2-transition have been investigated in the frame of the quasiparticle-phonon nuclear model. The model wave function includes a quasiparticle + two phonons components. It is shown that the small values of the transitions are connected with the non collective structure of the states. The calculated values are in agreement with the observed property of decreasing of the transition with increasing of mass number. (author). 16 refs, 6 tabs

  13. Remote monitoring of instrumented structures using the Internet information superhighway

    Science.gov (United States)

    Fuhr, Peter L.; Huston, Dryver R.; Ambrose, Timothy P.

    1994-09-01

    The requirements of sensor monitoring associated with instrumented civil structures poses potential logistical constraints on manpower, training, and costs. The need for frequent or even continuous data monitoring places potentially severe constraints on overall system performance given real-world factors such as available manpower, geographic separation of the instrumented structures, and data archiving as well as the training and cost issues. While the pool of available low wage, moderate skill workers available to the authors is sizable (undergraduate engineering students), the level of performance of such workers is quite variable leading to data acquisition integrity and continuity issues - matters that are not acceptable in the practical field implementation of such developed systems. In the case of acquiring data from the numerous sensors within the civil structures which the authors have instrumented (e.g., a multistory building, roadway/railway bridges, and a hydroelectric dam), we have found that many of these concerns may be alleviated through the use of an automated data acquisition system which archives the acquired information in an electronic location remotely accessible through the Internet global computer network. It is therefore a possible for the data monitoring to be performed at a remote location with the only requirements for data acquisition being Internet accessibility. A description of the developed scheme is presented as well as guiding philosophies.

  14. Historic Bim: a New Repository for Structural Health Monitoring

    Science.gov (United States)

    Banfi, F.; Barazzetti, L.; Previtali, M.; Roncoroni, F.

    2017-05-01

    Recent developments in Building Information Modelling (BIM) technologies are facilitating the management of historic complex structures using new applications. This paper proposes a generative method combining the morphological and typological aspects of the historic buildings (H-BIM), with a set of monitoring information. This combination of 3D digital survey, parametric modelling and monitoring datasets allows for the development of a system for archiving and visualizing structural health monitoring (SHM) data (Fig. 1). The availability of a BIM database allows one to integrate a different kind of data stored in different ways (e.g. reports, tables, graphs, etc.) with a representation directly connected to the 3D model of the structure with appropriate levels of detail (LoD). Data can be interactively accessed by selecting specific objects of the BIM, i.e. connecting the 3D position of the sensors installed with additional digital documentation. Such innovative BIM objects, which form a new BIM family for SHM, can be then reused in other projects, facilitating data archiving and exploitation of data acquired and processed. The application of advanced modeling techniques allows for the reduction of time and costs of the generation process, and support cooperation between different disciplines using a central workspace. However, it also reveals new challenges for parametric software and exchange formats. The case study presented is the medieval bridge Azzone Visconti in Lecco (Italy), in which multi-temporal vertical movements during load testing were integrated into H-BIM.

  15. HISTORIC BIM: A NEW REPOSITORY FOR STRUCTURAL HEALTH MONITORING

    Directory of Open Access Journals (Sweden)

    F. Banfi

    2017-05-01

    Full Text Available Recent developments in Building Information Modelling (BIM technologies are facilitating the management of historic complex structures using new applications. This paper proposes a generative method combining the morphological and typological aspects of the historic buildings (H-BIM, with a set of monitoring information. This combination of 3D digital survey, parametric modelling and monitoring datasets allows for the development of a system for archiving and visualizing structural health monitoring (SHM data (Fig. 1. The availability of a BIM database allows one to integrate a different kind of data stored in different ways (e.g. reports, tables, graphs, etc. with a representation directly connected to the 3D model of the structure with appropriate levels of detail (LoD. Data can be interactively accessed by selecting specific objects of the BIM, i.e. connecting the 3D position of the sensors installed with additional digital documentation. Such innovative BIM objects, which form a new BIM family for SHM, can be then reused in other projects, facilitating data archiving and exploitation of data acquired and processed. The application of advanced modeling techniques allows for the reduction of time and costs of the generation process, and support cooperation between different disciplines using a central workspace. However, it also reveals new challenges for parametric software and exchange formats. The case study presented is the medieval bridge Azzone Visconti in Lecco (Italy, in which multi-temporal vertical movements during load testing were integrated into H-BIM.

  16. Transit productivity program: going on the offensive in productivity-management studies and performance monitoring. Session 2. 1983 APTA (American Public Transit Association) annual meeting, Denver, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Maloney, J.; Kiepper, A.F.; Simonetta, R.J.

    1983-10-01

    The volume examines monitoring and reporting procedures applicable to performance and productivity. The managers of three transit systems of varying sizes discuss how productivity has been increased within their systems. The Pittsburgh discussion reviews a variety of capital projects and management improvement initiatives undertaken by Port Authority Transit, including development of maintenance manuals and an absenteeism reduction project. The Houston discussion describes how the property used a management study to identify needed organizational change and restructuring. The Ann Arbor discussion focuses on a set of service standards and performance indicators adopted to focus the management improvement process.

  17. Fiber Optic Thermal Health Monitoring of Aerospace Structures and Materials

    Science.gov (United States)

    Wu, Meng-Chou; Winfree, William P.; Allison, Sidney G.

    2009-01-01

    A new technique is presented for thermographic detection of flaws in materials and structures by performing temperature measurements with fiber Bragg gratings. Individual optical fibers with multiple Bragg gratings employed as surface temperature sensors were bonded to the surfaces of structures with subsurface defects or thickness variations. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. The data obtained from grating sensors were further analyzed with thermal modeling to reveal particular characteristics of the interested areas. These results were found to be consistent with those from conventional thermography techniques. Limitations of the technique were investigated using both experimental and numerical simulation techniques. Methods for performing in-situ structural health monitoring are discussed.

  18. Quantification of the Value of Structural Health Monitoring Information for Fatigue Deteriorating Structural Systems

    DEFF Research Database (Denmark)

    Thöns, Sebastian; Schneider, Ronald; Faber, Michael Havbro

    2015-01-01

    This paper addresses the quantification of the value of structural health monitoring (SHM) before its implementation for structural systems on the basis of its Value of Information (VoI). The value of SHM is calculated utilizing the Bayesian pre-posterior decision analysis modelling the structural...... life cycle performance, the integrity management and the structural risks. The relevance and precision of SHM information for the reduction of the structural system risks and the expected cost of the structural integrity management throughout the life cycle constitutes the value of SHM...... and is quantified with this framework. The approach is focused on fatigue deteriorating structural steel systems for which a continuous resistance deterioration formulation is introduced. In a case study, the value of SHM for load monitoring is calculated for a Daniels system subjected to fatigue deterioration...

  19. Coloured-noise-induced transitions in nonlinear structures

    International Nuclear Information System (INIS)

    Mankin, R.; Laas, T.; Soika, E.; Sauga, A.; Rekker, A.; Ainsaar, A.; Ugaste, Ue.

    2008-01-01

    In a stochastic framework, macroscopic approaches are sought to describe microscopic interaction between different species. Coloured-noise-induced transitions in stochastic N-species Lotka-Volterra systems are considered analytically as an appropriate model expendable to many natural and nano-technological processes. All the results discussed are computed by means of a dynamical mean-field approximation. It is demonstrated that interplay of coloured noise and interaction intensities of species can generate a variety of cooperation effects, such as discontinuous transitions of the mean population density, noise-induced Hopf bifurcations and relaxation oscillation. The necessary conditions for the cooperation effects are also discussed. Particularly, it is established that, in the case of the Beddington functional response, in certain parameter regions of the model an increase in noise correlation time can cause multiple transitions (more than two) between relaxation oscillatory regimes and equilibrium states. (authors)

  20. Diffusionless phase transitions and related structures in oxides

    International Nuclear Information System (INIS)

    Boulesteix, C.

    1992-01-01

    The relative importance of oxides in the field of materials science has been spectacularly increasing during the last twenty years. First the study of ferroelectrics kept the attention of scientists. Nevertheless this domain is far from being worked out and a lot of new results and of new fields of interest were recently discovered. Other ferroic oxides, especially ferroelastics, have also been the subject of a very great number of new results. In these cases the properties of oxides are at room temperature very tightly related to the phase transition that is generally occurring a few hundred of degrees above this room temperature. In many other cases also properties of oxides can be related to the existence of a phase transition or to a rather similar phenomenon. This book has been specially devoted to the study of the properties of oxides which are in some way related to the existence of a phase transition. The first chapters are focussed on general considerations: the first one is devoted to a general study of phase transitions, the second one to the twinning phenomenon which is of special interest for many oxides. Chapters 3 and 4 are focussed on ferroelectric and ferroelastic materials. These four chapters consitute the first part of the book. Chapters 5 to 8 are devoted to the study of oxides of special interest which have some of their properties related to a phase transition or to a rather similar phenomenon: rare earth oxides, oxides with a diffuse phase transition, zirconia and alumina systems, tungsten oxides and their relatives. These four chapters constitute the second part of the book. (orig.)

  1. Structural Phase Transition Nomenclature, Report of an IUCr Working Group on Phase Transition Nomenclature

    NARCIS (Netherlands)

    Toleddano, J.C.; Glazer, A.M.; Hahn, Th.; Parthe, E.; Roth, R.S.; Berry, R.S.; Metselaar, R.; Abrahams, S.C.

    1998-01-01

    A compact and intuitive nomenclature is recommended for naming each phase formed by a given material in a sequence of phase transitions as a function of temperature and/or pressure. The most commonly used label for each phase in a sequence, such as [alpha], [beta], ..., I, II, ... etc., is included

  2. TRANSIT

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. TRANSIT. SYSTEM: DETERMINE 2D-POSITION GLOBALLY BUT INTERMITTENT (POST-FACTO). IMPROVED ACCURACY. PRINCIPLE: POLAR SATELLITES WITH INNOVATIONS OF: GRAVITY-GRADIENT ATTITUDE CONTROL; DRAG COMPENSATION. WORKS ...

  3. Implementing optical fibres for the structural health monitoring of composite patch repaired structures

    DEFF Research Database (Denmark)

    Karatzas, Vasileios; Kotsidis, Elias A.; Tsouvalis, Nicholas G.

    2017-01-01

    Structural health monitoring is increasingly being implemented to improve the level of safety of structures and to reduce inspection and repair costs by allowing for correct planning of these actions, if needed. Composite patch repairing presents an appealing alternative to traditional repair...... methods as it enables the reduction of closedown time and the mitigation of complications associated with traditional repair methods. As reinforcement with the use of composite patches is predominantly performed at defected structures, the urge to monitor the performance of the repair becomes even greater...

  4. Adding Structure to the Transition Process to Advanced Mathematical Activity

    Science.gov (United States)

    Engelbrecht, Johann

    2010-01-01

    The transition process to advanced mathematical thinking is experienced as traumatic by many students. Experiences that students had of school mathematics differ greatly to what is expected from them at university. Success in school mathematics meant application of different methods to get an answer. Students are not familiar with logical…

  5. Structural health monitoring feature design by genetic programming

    International Nuclear Information System (INIS)

    Harvey, Dustin Y; Todd, Michael D

    2014-01-01

    Structural health monitoring (SHM) systems provide real-time damage and performance information for civil, aerospace, and other high-capital or life-safety critical structures. Conventional data processing involves pre-processing and extraction of low-dimensional features from in situ time series measurements. The features are then input to a statistical pattern recognition algorithm to perform the relevant classification or regression task necessary to facilitate decisions by the SHM system. Traditional design of signal processing and feature extraction algorithms can be an expensive and time-consuming process requiring extensive system knowledge and domain expertise. Genetic programming, a heuristic program search method from evolutionary computation, was recently adapted by the authors to perform automated, data-driven design of signal processing and feature extraction algorithms for statistical pattern recognition applications. The proposed method, called Autofead, is particularly suitable to handle the challenges inherent in algorithm design for SHM problems where the manifestation of damage in structural response measurements is often unclear or unknown. Autofead mines a training database of response measurements to discover information-rich features specific to the problem at hand. This study provides experimental validation on three SHM applications including ultrasonic damage detection, bearing damage classification for rotating machinery, and vibration-based structural health monitoring. Performance comparisons with common feature choices for each problem area are provided demonstrating the versatility of Autofead to produce significant algorithm improvements on a wide range of problems. (paper)

  6. Passive and Active Sensing Technologies for Structural Health Monitoring

    Science.gov (United States)

    Do, Richard

    A combination of passive and active sensing technologies is proposed as a structural health monitoring solution for several applications. Passive sensing is differentiated from active sensing in that with the former, no energy is intentionally imparted into the structure under test; sensors are deployed in a pure detection mode for collecting data mined for structural health monitoring purposes. In this thesis, passive sensing using embedded fiber Bragg grating optical strain gages was used to detect varying degrees of impact damage using two different classes of features drawn from traditional spectral analysis and auto-regressive time series modeling. The two feature classes were compared in detail through receiver operating curve performance analysis. The passive detection problem was then augmented with an active sensing system using ultrasonic guided waves (UGWs). This thesis considered two main challenges associated with UGW SHM including in-situ wave propagation property determination and thermal corruption of data. Regarding determination of wave propagation properties, of which dispersion characteristics are the most important, a new dispersion curve extraction method called sparse wavenumber analysis (SWA) was experimentally validated. Also, because UGWs are extremely sensitive to ambient temperature changes on the structure, it significantly affects the wave propagation properties by causing large errors in the residual error in the processing of the UGWs from an array. This thesis presented a novel method that compensates for uniform temperature change by considering the magnitude and phase of the signal separately and applying a scalable transformation.

  7. Wake-up transceivers for structural health monitoring of bridges

    Science.gov (United States)

    Kumberg, T.; Kokert, J.; Younesi, V.; Koenig, S.; Reindl, L. M.

    2016-04-01

    In this article we present a wireless sensor network to monitor the structural health of a large-scale highway bridge in Germany. The wireless sensor network consists of several sensor nodes that use wake-up receivers to realize latency free and low-power communication. The sensor nodes are either equipped with very accurate tilt sensor developed by Northrop Grumman LITEF GmbH or with a Novatel OEM615 GNSS receiver. Relay nodes are required to forward measurement data to a base station located on the bridge. The base station is a gateway that transmits the local measurement data to a remote server where it can be further analyzed and processed. Further on, we present an energy harvesting system to supply the energy demanding GNSS sensor nodes to realize long term monitoring.

  8. Printing of microstructure strain sensor for structural health monitoring

    Science.gov (United States)

    Le, Minh Quyen; Ganet, Florent; Audigier, David; Capsal, Jean-Fabien; Cottinet, Pierre-Jean

    2017-05-01

    Recent advances in microelectronics and materials should allow the development of integrated sensors with transduction properties compatible with being printed directly onto a 3D substrate, especially metallic and polymer substrates. Inorganic and organic electronic materials in microstructured and nanostructured forms, intimately integrated in ink, offer particularly attractive characteristics, with realistic pathways to sophisticated embodiments. Here, we report on these strategies and demonstrate the potential of 3D-printed microelectronics based on a structural health monitoring (SHM) application for the precision weapon systems. We show that our printed sensors can be employed in non-invasive, high-fidelity and continuous strain monitoring of handguns, making it possible to implement printed sensors on a 3D substrate in either SHM or remote diagnostics. We propose routes to commercialization and novel device opportunities and highlight the remaining challenges for research.

  9. Rate-based structural health monitoring using permanently installed sensors

    Science.gov (United States)

    Corcoran, Joseph

    2017-09-01

    Permanently installed sensors are becoming increasingly ubiquitous, facilitating very frequent in situ measurements and consequently improved monitoring of `trends' in the observed system behaviour. It is proposed that this newly available data may be used to provide prior warning and forecasting of critical events, particularly system failure. Numerous damage mechanisms are examples of positive feedback; they are `self-accelerating' with an increasing rate of damage towards failure. The positive feedback leads to a common time-response behaviour which may be described by an empirical relation allowing prediction of the time to criticality. This study focuses on Structural Health Monitoring of engineering components; failure times are projected well in advance of failure for fatigue, creep crack growth and volumetric creep damage experiments. The proposed methodology provides a widely applicable framework for using newly available near-continuous data from permanently installed sensors to predict time until failure in a range of application areas including engineering, geophysics and medicine.

  10. Investigation of Wireless Sensor Networks for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2012-01-01

    Full Text Available Wireless sensor networks (WSNs are one of the most able technologies in the structural health monitoring (SHM field. Through intelligent, self-organising means, the contents of this paper will test a variety of different objects and different working principles of sensor nodes connected into a network and integrated with data processing functions. In this paper the key issues of WSN applied in SHM are discussed, including the integration of different types of sensors with different operational modalities, sampling frequencies, issues of transmission bandwidth, real-time ability, and wireless transmitter frequency. Furthermore, the topology, data fusion, integration, energy saving, and self-powering nature of different systems will be investigated. In the FP7 project “Health Monitoring of Offshore Wind Farms,” the above issues are explored.

  11. Active sensors for health monitoring of aging aerospace structures

    Science.gov (United States)

    Giurgiutiu, Victor; Redmond, James M.; Roach, Dennis P.; Rackow, Kirk

    2000-06-01

    A project to develop non-intrusive active sensors that can be applied on existing aging aerospace structures for monitoring the onset and progress of structural damage (fatigue cracks and corrosion) is presented. The state of the art in active sensors structural health monitoring and damage detection is reviewed. Methods based on (a) elastic wave propagation and (b) electro-mechanical (E/M) impedance technique are cited and briefly discussed. The instrumentation of these specimens with piezoelectric active sensors is illustrated. The main detection strategies (E/M impedance for local area detection and wave propagation for wide area interrogation) are discussed. The signal processing and damage interpretation algorithms are tuned to the specific structural interrogation method used. In the high frequency E/M impedance approach, pattern recognition methods are used to compare impedance signatures taken at various time intervals and to identify damage presence and progression from the change in these signatures. In the wave propagation approach, the acousto- ultrasonic methods identifying additional reflection generated from the damage site and changes in transmission velocity and phase are used. Both approaches benefit from the use of artificial intelligence neural networks algorithms that can extract damage features based on a learning process. Design and fabrication of a set of structural specimens representative of aging aerospace structures is presented. Three built-up specimens, (pristine, with cracks, and with corrosion damage) are used. The specimen instrumentation with active sensors fabricated at the University of South Carolina is illustrated. Preliminary results obtained with the E/M impedance method on pristine and cracked specimens are presented.

  12. Factor Structure and Basic Psychometric Properties of the "Transition Assessment and Goal Generator"

    Science.gov (United States)

    Hennessey, Maeghan N.; Terry, Robert; Martin, James E.; McConnell, Amber E.; Willis, Donna M.

    2018-01-01

    We examined the theoretical factor structure fit and psychometric properties of the "Transition Assessment and Goal Generator" (TAGG). In the first study, 349 transition-aged students with disabilities, their special educators, and family members completed TAGG assessments, and using exploratory factor analysis (EFA)/confirmatory factor…

  13. Predicted stability, structures, and magnetism of 3d transition metal nitrides: the M4N phases

    NARCIS (Netherlands)

    Fang, C.M.; Koster, R.S.; Li, W.F.; van Huis, M.A.

    2014-01-01

    The 3d transition metal nitrides M4N (Sc4N, Ti4N, V4N, Cr4N, Mn4N, Fe4N, Co4N, Ni4N, and Cu4N) have unique phase relationships, crystal structures, and electronic and magnetic properties. Here we present a systematic density functional theory (DFT) study on these transition metal nitrides, assessing

  14. Structural Health Monitoring of Superconducting Magnets at CERN Using Fiber Bragg Grating Sensors

    CERN Document Server

    Chiuchiolo, A; Perez, J C; Bajas, H; Guinchard, M; Giordano, M; Breglio, G; Consales, M; Cusano, A

    2014-01-01

    The use of Fiber Bragg Grating sensors is becoming particularly challenging for monitoring different parameters in extreme operative conditions such as ultra-low temperatures, high electromagnetic fields and strong mechanical stresses. This work reports the use of the FBG for a new generation of accelerator magnets with the goal to develop an adequate sensing technology able to provide complementary or alternative information to the conventional strain gauges through the whole service life of the magnet. The study is focused on the mechanical performances of the magnet structure, which has to preserve the sensitive coils from any damage during the entire magnet fabrication process preventing even microscopic movements of the winding that can eventually initiate a transition from superconducting to normal conducting state of the material used (called in the specific literature as “quench”). The FBGs have been glued on the aluminium structure of two magnets prototypes by using an adhesive suitable for cryog...

  15. Structural Health Monitoring Based on Combined Structural Global and Local Frequencies

    Directory of Open Access Journals (Sweden)

    Jilin Hou

    2014-01-01

    Full Text Available This paper presents a parameter estimation method for Structural Health Monitoring based on the combined measured structural global frequencies and structural local frequencies. First, the global test is experimented to obtain the low order modes which can reflect the global information of the structure. Secondly, the mass is added on the member of structure to increase the local dynamic characteristic and to make the member have local primary frequency, which belongs to structural local frequency and is sensitive to local parameters. Then the parameters of the structure can be optimized accurately using the combined structural global frequencies and structural local frequencies. The effectiveness and accuracy of the proposed method are verified by the experiment of a space truss.

  16. Monitoring Fires from Space: a case study in transitioning from research to applications

    Science.gov (United States)

    Justice, C. O.; Giglio, L.; Vadrevu, K. P.; Csiszar, I. A.; Schroeder, W.; Davies, D.

    2012-12-01

    This paper discusses the heritage and relationships between science and applications in the context of global satellite-based fire monitoring. The development of algorithms for satellite-based fire detection has been supported primarily by NASA for the polar orbiters with a global focus, and initially by NOAA and more recently by EUMETSAT for the geostationary satellites, with a regional focus. As the feasibility and importance of space-based fire monitoring was recognized, satellite missions were designed to include fire detection capabilities. As a result, the algorithms and accuracy of the detections have improved. Due to the role of fire in the Earth System and its relevance to society, at each step in the development of the sensing capability the research has made a transition into fire-related applications to such an extent that there is now broad use of these data worldwide. The origin of the polar-orbiting satellite fire detection capability was with the AVHRR sensor beginning in the early 1980s, but was transformed with the launch of the EOS MODIS instruments, which included sensor characteristics specifically for fire detection. NASA gave considerable emphasis on the accuracy assessment of the fire detection and the development of fire characterization and burned area products from MODIS. Collaboration between the MODIS Fire Team and the RSAC USFS, initiated in the context of the Montana wildfires of 2001, prompted the development of a Rapid Response System for fire data and eventually led to operational use of MODIS data by the USFS for strategic fire monitoring. Building on this success, the Fire Information for Resource Management Systems (FIRMS) project was funded by NASA Applications to further develop products and services for the fire information community. The FIRMS was developed as a web-based geospatial tool, offering a range of geospatial data services, including SMS text messaging and is now widely used. This system, developed in the research

  17. Sheath structure transition controlled by secondary electron emission

    Science.gov (United States)

    Schweigert, I. V.; Langendorf, S. J.; Walker, M. L. R.; Keidar, M.

    2015-04-01

    In particle-in-cell Monte Carlo collision (PIC MCC) simulations and in an experiment we study sheath formation over an emissive floating Al2O3 plate in a direct current discharge plasma at argon gas pressure 10-4 Torr. The discharge glow is maintained by the beam electrons emitted from a negatively biased hot cathode. We observe three types of sheaths near the floating emissive plate and the transition between them is driven by changing the negative bias. The Debye sheath appears at lower voltages, when secondary electron emission is negligible. With increasing applied voltage, secondary electron emission switches on and a first transition to a new sheath type, beam electron emission (BEE), takes place. For the first time we find this specific regime of sheath operation near the floating emissive surface. In this regime, the potential drop over the plate sheath is about four times larger than the temperature of plasma electrons. The virtual cathode appears near the emissive plate and its modification helps to maintain the BEE regime within some voltage range. Further increase of the applied voltage U initiates the second smooth transition to the plasma electron emission sheath regime and the ratio Δφs/Te tends to unity with increasing U. The oscillatory behavior of the emissive sheath is analyzed in PIC MCC simulations. A plasmoid of slow electrons is formed near the plate and transported to the bulk plasma periodically with a frequency of about 25 kHz.

  18. The european primary care monitor: structure, process and outcome indicators

    Directory of Open Access Journals (Sweden)

    Wilson Andrew

    2010-10-01

    Full Text Available Abstract Background Scientific research has provided evidence on benefits of well developed primary care systems. The relevance of some of this research for the European situation is limited. There is currently a lack of up to date comprehensive and comparable information on variation in development of primary care, and a lack of knowledge of structures and strategies conducive to strengthening primary care in Europe. The EC funded project Primary Health Care Activity Monitor for Europe (PHAMEU aims to fill this gap by developing a Primary Care Monitoring System (PC Monitor for application in 31 European countries. This article describes the development of the indicators of the PC Monitor, which will make it possible to create an alternative model for holistic analyses of primary care. Methods A systematic review of the primary care literature published between 2003 and July 2008 was carried out. This resulted in an overview of: (1 the dimensions of primary care and their relevance to outcomes at (primary health system level; (2 essential features per dimension; (3 applied indicators to measure the features of primary care dimensions. The indicators were evaluated by the project team against criteria of relevance, precision, flexibility, and discriminating power. The resulting indicator set was evaluated on its suitability for Europe-wide comparison of primary care systems by a panel of primary care experts from various European countries (representing a variety of primary care systems. Results The developed PC Monitor approaches primary care in Europe as a multidimensional concept. It describes the key dimensions of primary care systems at three levels: structure, process, and outcome level. On structure level, it includes indicators for governance, economic conditions, and workforce development. On process level, indicators describe access, comprehensiveness, continuity, and coordination of primary care services. On outcome level, indicators

  19. Simultaneous Structural Health Monitoring and Vibration Control of Adaptive Structures Using Smart Materials

    Directory of Open Access Journals (Sweden)

    Myung-Hyun Kim

    2002-01-01

    Full Text Available The integration of actuators and sensors using smart materials enabled various applications including health monitoring and structural vibration control. In this study, a robust control technique is designed and implemented in order to reduce vibration of an active structure. Special attention is given to eliminating the possibility of interaction between the health monitoring system and the control system. Exploiting the disturbance decoupling characteristic of the sliding mode observer, it is demonstrated that the proposed observer can eliminate the possible high frequency excitation from the health monitoring system. At the same time, a damage identification scheme, which tracks the changes of mechanical impedance due to the presence of damage, has been applied to assess the health condition of structures. The main objective of this paper is to examine the potential of combining the two emerging techniques together. Using the collocated piezoelectric sensors/actuators for vibration suppression as well as for health monitoring, this technique enabled to reduce the number of system components, while enhancing the performance of structures. As an initial study, both simulation and experimental investigations were performed for an active beam structure. The results show that this integrated technique can provide substantial vibration reductions, while detecting damage on the structure at the same time.

  20. Monitoring engineering structures by the comparison of similar photographs

    International Nuclear Information System (INIS)

    Jones, A.

    1976-12-01

    A commonly used method of monitoring engineering structures is to compare similar photographs taken at different times. The initial part of this note deals with commercially available equipment, known as a comparascope, which enables differences between photographs to be rapidly (and reliably) detected. A series of practical tests is described in which it is established that a change in dimensions of 0.05mm can be detected between photographs. For typical camera systems, this will usually correspond to detectable displacements of the order of several mm in object space. Perhaps the most serious disadvantages of the technique is that alterations in camera attitude between photographs can cause changes in the recorded image which mask genuine movements in the structure. The changes caused by a given shift in camera attitude are, therefore, investigated theoretically. Since it is desirable that the changes are small enough to go undetected in the comparison, the established detection limit of the comparascope is included in the investigation to specify how accurately the camera attitude must be controlled for a given set of experimental circumstances. As a result, it appears that a special purpose camera mounting will nearly always be required if structural differences as small as several mm are to be reliably detected. Hand-held cameras should only be used for relatively coarse monitoring tasks. (author)

  1. Structural phase transition in monolayer MoTe2 driven by electrostatic doping

    Science.gov (United States)

    Wang, Ying; Xiao, Jun; Zhu, Hanyu; Li, Yao; Alsaid, Yousif; Fong, King Yan; Zhou, Yao; Wang, Siqi; Shi, Wu; Wang, Yuan; Zettl, Alex; Reed, Evan J.; Zhang, Xiang

    2017-10-01

    Monolayers of transition-metal dichalcogenides (TMDs) exhibit numerous crystal phases with distinct structures, symmetries and physical properties. Exploring the physics of transitions between these different structural phases in two dimensions may provide a means of switching material properties, with implications for potential applications. Structural phase transitions in TMDs have so far been induced by thermal or chemical means; purely electrostatic control over crystal phases through electrostatic doping was recently proposed as a theoretical possibility, but has not yet been realized. Here we report the experimental demonstration of an electrostatic-doping-driven phase transition between the hexagonal and monoclinic phases of monolayer molybdenum ditelluride (MoTe2). We find that the phase transition shows a hysteretic loop in Raman spectra, and can be reversed by increasing or decreasing the gate voltage. We also combine second-harmonic generation spectroscopy with polarization-resolved Raman spectroscopy to show that the induced monoclinic phase preserves the crystal orientation of the original hexagonal phase. Moreover, this structural phase transition occurs simultaneously across the whole sample. This electrostatic-doping control of structural phase transition opens up new possibilities for developing phase-change devices based on atomically thin membranes.

  2. Structural Health Monitoring of Bridges with Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    Francisco Navarro-Henríquez

    2014-11-01

    Systems with fiber optic sensors FBG (Fiber Bragg Grating are consolidated in the Structural Health Monitoring (SMH of bridges, Nondestructive Testing (NDT static and dynamic measurements of deformation, displacement, deflection, temperature and vibration. This article provides a brief introduction to the technology and the fundamentals of fiber optic sensors, also present comparative advantages over its traditional counterpart is presented. Their characteristics are described and measurement graphics are presented as an application example of the FBG sensors. Finally, some key aspects to consider for proper use in the field are mentioned.

  3. Structural and electronic phase transitions of ThS2 from first-principles calculations

    International Nuclear Information System (INIS)

    Guo, Yongliang; Wang, Changying; Qiu, Wujie; Ke, Xuezhi

    2016-01-01

    Performed a systematic study using first-principles methods of the pressure-induced structural and electronic phase transitions in ThS_2, which may play an important role in the next generation nuclear energy fuel technology.

  4. Pressure induced structural phase transition in SnS—An ab initio study

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The structural behaviour of SnS under pressure has been investigated by first principle density functional ... tural phase transition from orthorhombic type to monoclinic type structure around 17 GPa which is in good agreement with the ... is achieved by performing the electronic structure and total energy calculation ...

  5. The use of biomarkers as integrative tools for transitional water bodies monitoring in the Water Framework Directive context - A holistic approach in Minho river transitional waters.

    Science.gov (United States)

    Capela, R; Raimundo, J; Santos, M M; Caetano, M; Micaelo, C; Vale, C; Guimarães, L; Reis-Henriques, M A

    2016-01-01

    The Water Framework Directive (WFD) provides an important legislative opportunity to promote and implement an integrated approach for the protection of inland surface waters, transitional waters, coastal waters and groundwaters. The transitional waters constitute a central piece as they are usually under high environmental pressure and by their inherent characteristics present monitoring challenges. Integrating water quality monitoring with biological monitoring can increase the cost-effectiveness of monitoring efforts. One way of doing this is with biomarkers, which effectively integrate physical-chemical status and biological quality elements, dealing holistically with adverse consequences on the health of water bodies. The new Marine Strategy Framework Directive (MSFD) already incorporates the biomarker approach. Given the recent activities of OSPAR and HELCOM to harmonize existing monitoring guidelines between MSFD and WFD the use of similar methodologies should be fostered. To illustrate the potential of the biomarker approach, juveniles of flounder (Platichthys flesus) were used to evaluate the quality of the Minho river-estuary water bodies. The use of juveniles instead of adults eliminates several confounding factors such changes on the biological responses associated with reproduction. Here, a panel of well-established biomarkers, EROD, AChE, SOD, CAT, GST, LPO, ENA and FACs (1-Hydroxyrene) were selected and measured along with a gradient of different physical conditions, and integrated with trace elements characterization on both biota and sediments. In general, a clear profile along the water bodies was found, with low seasonal and spatial variation, consistent with a low impacted area. Overall, the results support the use of both the battery of biomarkers and the use of juvenile flounders in the monitoring of the water quality status within the WFD. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Design and Analysis of Architectures for Structural Health Monitoring Systems

    Science.gov (United States)

    Mukkamala, Ravi; Sixto, S. L. (Technical Monitor)

    2002-01-01

    During the two-year project period, we have worked on several aspects of Health Usage and Monitoring Systems for structural health monitoring. In particular, we have made contributions in the following areas. 1. Reference HUMS architecture: We developed a high-level architecture for health monitoring and usage systems (HUMS). The proposed reference architecture is shown. It is compatible with the Generic Open Architecture (GOA) proposed as a standard for avionics systems. 2. HUMS kernel: One of the critical layers of HUMS reference architecture is the HUMS kernel. We developed a detailed design of a kernel to implement the high level architecture.3. Prototype implementation of HUMS kernel: We have implemented a preliminary version of the HUMS kernel on a Unix platform.We have implemented both a centralized system version and a distributed version. 4. SCRAMNet and HUMS: SCRAMNet (Shared Common Random Access Memory Network) is a system that is found to be suitable to implement HUMS. For this reason, we have conducted a simulation study to determine its stability in handling the input data rates in HUMS. 5. Architectural specification.

  7. Development of Wireless Smart Sensor for Structure and Machine Monitoring

    Directory of Open Access Journals (Sweden)

    Ismoyo Haryanto

    2013-07-01

    Full Text Available Vibration based condition monitoring is a method used for determining the condition of a system. The condition of mechanical or a structural system can be determined from the vibration. The vibration that is produced by the system indicates the condition of a system and possibly used to calculate the lifetime of a system or even used to take early action before fatal failure occurred. This paper explains how the wireless smart sensor can be used to identify the health condition of a system by monitoring the vibration parameters. The wireless smart sensor would continously  senses the vibration parameters of the system in a real-time systems and then data will be transmitted wirelessly  to a base station which is a host PC used for digital signal processing, from there the vibration will be plotted as a graph which used to analyzed the condition of the system. Finally, several tested performed to the real system to verify the accuracy of a smart sensor and the method of condition based monitoring.

  8. Structural Health Monitoring of Transport Aircraft with Fuzzy Logic Modeling

    Directory of Open Access Journals (Sweden)

    Ray C. Chang

    2013-01-01

    Full Text Available A structural health monitoring method based on the concept of static aeroelasticity is presented in this paper. This paper focuses on the estimation of these aeroelastic effects on older transport aircraft, in particular the structural components that are most affected, in severe atmospheric turbulence. Because the structural flexibility properties are mostly unknown to aircraft operators, only the trend, not the magnitude, of these effects is estimated. For this purpose, one useful concept in static aeroelastic effects for conventional aircraft structures is that under aeroelastic deformation the aerodynamic center should move aft. This concept is applied in the present paper by using the fuzzy-logic aerodynamic models. A twin-jet transport aircraft in severe atmospheric turbulence involving plunging motion is examined. It is found that the pitching moment derivatives in cruise with moderate to severe turbulence in transonic flight indicate some degree of abnormality in the stabilizer (i.e., the horizontal tail. Therefore, the horizontal tail is the most severely affected structural component of the aircraft probably caused by vibration under the dynamic loads induced by turbulence.

  9. Structural integrity monitoring of critical components in nuclear facilities

    International Nuclear Information System (INIS)

    Roth, Maria; Constantinescu, Dan Mihai; Brad, Sebastian; Ducu, Catalin; Malinovschi, Viorel

    2007-01-01

    Full text: The paper presents the results obtained as part of the Project 'Integrated Network for Structural Integrity Monitoring of Critical Components in Nuclear Facilities', RIMIS, a research work underway within the framework of the Ministry of Education and Research Programme 'Research of Excellence'. The main objective of the Project is to constitute a network integrating the national R and D institutes with preoccupations in the structural integrity assessment of critical components in the nuclear facilities operating in Romania, in order to elaborate a specific procedure for this field. The degradation mechanisms of the structural materials used in the CANDU type reactors, operated by Unit 1 and Unit 2 at Cernavoda (pressure tubes, fuel elements sheaths, steam generator tubing) and in the nuclear facilities relating to reactors of this type as, for instance, the Hydrogen Isotopes Separation facility, will be investigated. The development of a flexible procedure will offer the opportunity to extend the applications to other structural materials used in the nuclear field and in the non-nuclear fields as well, in cooperation with other institutes involved in the developed network. The expected results of the project will allow the integration of the network developed at national level in the structures of similar networks operating within the EU, the enhancement of the scientific importance of Romanian R and D organizations as well as the increase of our country's contribution in solving the major issues of the nuclear field. (authors)

  10. Improved Stochastic Subspace System Identification for Structural Health Monitoring

    Science.gov (United States)

    Chang, Chia-Ming; Loh, Chin-Hsiung

    2015-07-01

    Structural health monitoring acquires structural information through numerous sensor measurements. Vibrational measurement data render the dynamic characteristics of structures to be extracted, in particular of the modal properties such as natural frequencies, damping, and mode shapes. The stochastic subspace system identification has been recognized as a power tool which can present a structure in the modal coordinates. To obtain qualitative identified data, this tool needs to spend computational expense on a large set of measurements. In study, a stochastic system identification framework is proposed to improve the efficiency and quality of the conventional stochastic subspace system identification. This framework includes 1) measured signal processing, 2) efficient space projection, 3) system order selection, and 4) modal property derivation. The measured signal processing employs the singular spectrum analysis algorithm to lower the noise components as well as to present a data set in a reduced dimension. The subspace is subsequently derived from the data set presented in a delayed coordinate. With the proposed order selection criteria, the number of structural modes is determined, resulting in the modal properties. This system identification framework is applied to a real-world bridge for exploring the feasibility in real-time applications. The results show that this improved system identification method significantly decreases computational time, while qualitative modal parameters are still attained.

  11. The structural origin of the hard-sphere glass transition in granular packing.

    Science.gov (United States)

    Xia, Chengjie; Li, Jindong; Cao, Yixin; Kou, Binquan; Xiao, Xianghui; Fezzaa, Kamel; Xiao, Tiqiao; Wang, Yujie

    2015-09-28

    Glass transition is accompanied by a rapid growth of the structural relaxation time and a concomitant decrease of configurational entropy. It remains unclear whether the transition has a thermodynamic origin, and whether the dynamic arrest is associated with the growth of a certain static order. Using granular packing as a model hard-sphere glass, we show the glass transition as a thermodynamic phase transition with a 'hidden' polytetrahedral order. This polytetrahedral order is spatially correlated with the slow dynamics. It is geometrically frustrated and has a peculiar fractal dimension. Additionally, as the packing fraction increases, its growth follows an entropy-driven nucleation process, similar to that of the random first-order transition theory. Our study essentially identifies a long-sought-after structural glass order in hard-sphere glasses.

  12. Graph-based structural change detection for rotating machinery monitoring

    Science.gov (United States)

    Lu, Guoliang; Liu, Jie; Yan, Peng

    2018-01-01

    Detection of structural changes is critically important in operational monitoring of a rotating machine. This paper presents a novel framework for this purpose, where a graph model for data modeling is adopted to represent/capture statistical dynamics in machine operations. Meanwhile we develop a numerical method for computing temporal anomalies in the constructed graphs. The martingale-test method is employed for the change detection when making decisions on possible structural changes, where excellent performance is demonstrated outperforming exciting results such as the autoregressive-integrated-moving average (ARIMA) model. Comprehensive experimental results indicate good potentials of the proposed algorithm in various engineering applications. This work is an extension of a recent result (Lu et al., 2017).

  13. Review on pressure sensors for structural health monitoring

    Science.gov (United States)

    Sikarwar, Samiksha; Satyendra; Singh, Shakti; Yadav, Bal Chandra

    2017-12-01

    This paper reports the state of art in a variety of pressure and the detailed study of various matrix based pressure sensors. The performances of the bridges, buildings, etc. are threatened by earthquakes, material degradations, and other environmental effects. Structural health monitoring (SHM) is crucial to protect the people and also for assets planning. This study is a contribution in developing the knowledge about self-sensing smart materials and structures for the construction industry. It deals with the study of self-sensing as well as mechanical and electrical properties of different matrices based on pressure sensors. The relationships among the compression, tensile strain, and crack length with electrical resistance change are also reviewed.

  14. Time-Frequency Methods for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Alexander L. Pyayt

    2014-03-01

    Full Text Available Detection of early warning signals for the imminent failure of large and complex engineered structures is a daunting challenge with many open research questions. In this paper we report on novel ways to perform Structural Health Monitoring (SHM of flood protection systems (levees, earthen dikes and concrete dams using sensor data. We present a robust data-driven anomaly detection method that combines time-frequency feature extraction, using wavelet analysis and phase shift, with one-sided classification techniques to identify the onset of failure anomalies in real-time sensor measurements. The methodology has been successfully tested at three operational levees. We detected a dam leakage in the retaining dam (Germany and “strange” behaviour of sensors installed in a Boston levee (UK and a Rhine levee (Germany.

  15. Voltage-Controlled Topotactic Phase Transition in Thin-Film SrCoOx Monitored by In Situ X-ray Diffraction.

    Science.gov (United States)

    Lu, Qiyang; Yildiz, Bilge

    2016-02-10

    Topotactic phase transition of functional oxides induced by changes in oxygen nonstoichiometry can largely alter multiple physical and chemical properties, including electrical conductivity, magnetic state, oxygen diffusivity, and electrocatalytic reactivity. For tuning these properties reversibly, feasible means to control oxygen nonstoichiometry-dependent phase transitions in functional oxides are needed. This paper describes the use of electrochemical potential to induce phase transition in strontium cobaltites, SrCoOx (SCO) between the brownmillerite (BM) phase, SrCoO₂.₅, and the perovskite (P) phase, SrCoO₃₋δ. To monitor the structural evolution of SCO, in situ X-ray diffraction (XRD) was performed on an electrochemical cell having (001) oriented thin-film SrCoOx as the working electrode on a single crystal (001) yttria-stabilized zirconia electrolyte in air. In order to change the effective pO₂ in SCO and trigger the phase transition from BM to P, external electrical biases of up to 200 mV were applied across the SCO film. The phase transition from BM to P phase could be triggered at a bias as low as 30 mV, corresponding to an effective pO₂ of 1 atm at 500 °C. The phase transition was fully reversible and the epitaxial film quality was maintained after reversible phase transitions. These results demonstrate the use of electrical bias to obtain fast and easily accessible switching between different phases as well as distinct physical and chemical properties of functional oxides as exemplified here for SCO.

  16. Nuclear structure and order-to-chaos transition

    International Nuclear Information System (INIS)

    Solov'ev, V.G.

    1995-01-01

    A general scheme of the nuclear many-body problem is presented. Different models for description of low-lying states and giant resonances are discussed. The wave functions of the low-lying states have a single dominating one-quasiparticle or quasiparticle O+ phonon or one-phonon component. They demonstrate the regularity in nuclei. Giant resonances are determined by strongly fragmented one-phonon components of the wave functions. The wave functions at higher excitation energies have two-, three-and many-phonon components. Based on the statement that there is order in the large and chaos in the small components of the nuclear wave functions, the order-to-chaos transition is treated as a transition from the large to the small components of the wave functions. A quasiparticle-phonon interaction is responsible for the fragmentation of one- and many-quasiparticle and phonon states and for the mixing of closely spaced states. Therefore, experimental investigation of the fragmentation of many-quasiparticle and phonon states plays a decisive role. 30 refs

  17. Active structural health monitoring of composite plates and sandwiches

    Directory of Open Access Journals (Sweden)

    Sadílek P.

    2013-12-01

    Full Text Available The aim of presented work is to design, assemble and test a functional system, that is able to reveal damage from impact loading. This is done by monitoring of change of spectral characteristics on a damaged structure that is caused by change of mechanical properties of material or by change of structure’s geometry. Excitation and monitoring of structures was done using piezoelectric patches. Unidirectional composite plate was tested for eigenfrequencies using chirp signal. The eigenfrequencies were compared to results from experiments with an impact hammer and consequently with results from finite element method. Same method of finding eigenfrequencies was used on a different unidirectional composite specimen. Series of impacts were performed. Spectrum of eigenfrequencies was measured on undamaged plate and then after each impact. Measurements of the plate with different level of damage were compared. Following experiments were performed on sandwich materials where more different failures may happen. Set of sandwich beams (cut out from one plate made of two outer composite layers and a foam core was investigated and subjected to several impacts. Several samples were impacted in the same manner to get comparable results. The impacts were performed with growing impact energy.

  18. Telemetered sensors for dynamic activity and structural performance monitoring

    Science.gov (United States)

    Townsend, Christopher P.; Hamel, Michael J.; Arms, Steven W.

    2001-08-01

    The development of improved structures requires knowledge of their dynamic behavior. Minimally intrusive wireless systems, capable of monitoring vibration and impact, are needed in order to provide this knowledge. Our objective was to design, build, and test a high speed data collection and wireless data communications system, including microsensors, and capable of being embedded or externally worn. Our previous transmitter designs were small and could be used to transmit multichannel digital data, but they were not capable of fast data transmission rates. The addition of a remotely triggered datalogger allowed us to overcome the limitations of our earlier designs. A bi-directional RF communications link was used to trigger a sample to be logged (from 30 meters), as well as to request data to be transmitted to the host PC for data acquisition/analysis. Sweep rates of 2000 Hz were successfully demonstrated from a triad of MEMs accelerometers. The remote datalogger and transceiver and accelerometer package measured 12 mm by 24 mm by 6 mm thick; these were mounted to the feet of thoroughbred horses to study their impact levels. These small, fast, wireless data recording systems can be used to monitor rotating/ vibrating machinery and civil/automotive/aerospace structures.

  19. Structural health monitoring of compression connectors for overhead transmission lines

    Science.gov (United States)

    Wang, Hong; Wang, Jy-An John; Swindeman, Joseph P.; Ren, Fei; Chan, John

    2017-04-01

    Two-stage aluminum conductor steel-reinforced (ACSR) compression connectors are extensively used in US overhead transmission lines. The connectors are made by crimping a steel sleeve onto a steel core and an aluminum sleeve over electrical conducting aluminum strands. The connectors are designed to operate at temperatures up to 125°C, but their performance is increasingly degrading because of overloading of lines. Currently, electric utilities conduct routine line inspections using thermal and electrical measurements, but these methods do not provide information about the structural integrity of connectors. In this work, structural health monitoring (SHM) of compression connectors was studied using electromechanical impedance (EMI) analysis. Lead zirconate titanate (PZT)-5A was identified as a smart material for SHM. A flexible high-temperature bonding layer was used to address challenges in PZT integration due to a significant difference in the coefficients of thermal expansion of PZT and the aluminum substrate. The steel joint on the steel core was investigated because it is responsible for the ultimate tensile strength of the connector. Tensile testing was used to induce structural damage to the joint, or steel core pullout, and thermal cycling introduced additional structural perturbations. EMI measurements were conducted between the tests. The root mean square deviation (RMSD) of EMI was identified as a damage index. The use of steel joints has been shown to enable SHM under simulated conditions. The EMI signature is sensitive to variations in structural conditions. RMSD can be correlated to the structural health of a connector and has potential for use in the SHM and structural integrity evaluation.

  20. Structures and Phase Transitions in Ordered Double Perovskites

    International Nuclear Information System (INIS)

    Kennedy, Brendan; Zhou, Qingdi; Cheah, Melina

    2005-01-01

    Full text: The basic perovskite structure is ubiquitous in the study of metal oxides, yet very few oxides actually adopt the archetypal cubic structure. The perovskite structure is based on corner sharing octahedra and in most cases cooperative rotations of successive octahedra lower the symmetry of the perovskite structure. Solid State Chemists have been fascinated by these distortions for many years, not only for their intrinsic interest but also to understand how these distortions control the electronic and magnetic properties of perovskite oxides. In this presentation we will describe the use of high-resolution powder diffraction methods to unravel the temperature and composition dependence of the structures in two series of double perovskites, Sr 1-x A x NiWO 6 (A = Ba, Ca) where there is essentially complete ordering of Ni and W cations and in Sr 1-x Ca x CrNbO 6 where there is extensive disorder of the Cr and Nb cations. (authors)

  1. First-principles calculation of the structural stability of 6d transition metals

    International Nuclear Information System (INIS)

    Oestlin, A.; Vitos, L.

    2011-01-01

    The phase stability of the 6d transition metals (elements 103-111) is investigated using first-principles electronic-structure calculations. Comparison with the lighter transition metals reveals that the structural sequence trend is broken at the end of the 6d series. To account for this anomalous behavior, the effect of relativity on the lattice stability is scrutinized, taking different approximations into consideration. It is found that the mass-velocity and Darwin terms give important contributions to the electronic structure, leading to changes in the interstitial charge density and, thus, in the structural energy difference.

  2. Effect of the coupling between electronic structure and crystalline structure on some properties of transition metals

    International Nuclear Information System (INIS)

    Nastar, M.

    1994-01-01

    The elastic constants, energetic stabilities and vacancy formation energies in transition metals are calculated within a Tight Binding model. In order to outline the effect of the electronic structure, these properties are represented as functions of band filling. The variation of the shear elastic constants of hexagonal close packed (HCP), body centered cubic (BCC) and face centered cubic (FCC) structures, is in contrast with the roughly parabolic behavior of bulk modulus. The general trends are in very good agreement with available experimental and 'ab initio' data. The vacancy formation energy in the BCC structure shows strong deviations from bell shape behavior with a maximum corresponding approximately to the band filling of group 6. This band filling effect contributes to the noticeable decrease of the self diffusion rate between group 4 and group 6. We demonstrate that the abrupt increase of the C' elastic constant, the NT 1 (0.-1.1) phonon frequency, the energy differences between BCC and HCP and between FCC and HCP as well as the vacancy formation energy, that occurs when going from Zr to Mo, is related to the presence of a pseudo-gap in the density of states of the BCC structure. Using the recursion method, we show that the general trends of these properties are correctly reproduced when considering only a few moments of the density of states (about 6). On the other hand, details such as the elastic constant singularities, are displayed only with an exact calculation of the density of states. (Author). 173 refs., 84 figs., 5 tabs

  3. Damage Detection with Streamlined Structural Health Monitoring Data

    Directory of Open Access Journals (Sweden)

    Jian Li

    2015-04-01

    Full Text Available The huge amounts of sensor data generated by large scale sensor networks in on-line structural health monitoring (SHM systems often overwhelms the systems’ capacity for data transmission and analysis. This paper presents a new concept for an integrated SHM system in which a streamlined data flow is used as a unifying thread to integrate the individual components of on-line SHM systems. Such an integrated SHM system has a few desirable functionalities including embedded sensor data compression, interactive sensor data retrieval, and structural knowledge discovery, which aim to enhance the reliability, efficiency, and robustness of on-line SHM systems. Adoption of this new concept will enable the design of an on-line SHM system with more uniform data generation and data handling capacity for its subsystems. To examine this concept in the context of vibration-based SHM systems, real sensor data from an on-line SHM system comprising a scaled steel bridge structure and an on-line data acquisition system with remote data access was used in this study. Vibration test results clearly demonstrated the prominent performance characteristics of the proposed integrated SHM system including rapid data access, interactive data retrieval and knowledge discovery of structural conditions on a global level.

  4. Damage detection with streamlined structural health monitoring data.

    Science.gov (United States)

    Li, Jian; Deng, Jun; Xie, Weizhi

    2015-04-15

    The huge amounts of sensor data generated by large scale sensor networks in on-line structural health monitoring (SHM) systems often overwhelms the systems' capacity for data transmission and analysis. This paper presents a new concept for an integrated SHM system in which a streamlined data flow is used as a unifying thread to integrate the individual components of on-line SHM systems. Such an integrated SHM system has a few desirable functionalities including embedded sensor data compression, interactive sensor data retrieval, and structural knowledge discovery, which aim to enhance the reliability, efficiency, and robustness of on-line SHM systems. Adoption of this new concept will enable the design of an on-line SHM system with more uniform data generation and data handling capacity for its subsystems. To examine this concept in the context of vibration-based SHM systems, real sensor data from an on-line SHM system comprising a scaled steel bridge structure and an on-line data acquisition system with remote data access was used in this study. Vibration test results clearly demonstrated the prominent performance characteristics of the proposed integrated SHM system including rapid data access, interactive data retrieval and knowledge discovery of structural conditions on a global level.

  5. Structural health monitoring methodology for aircraft condition-based maintenance

    Science.gov (United States)

    Saniger, Jordi; Reithler, Livier; Guedra-Degeorges, Didier; Takeda, Nobuo; Dupuis, Jean Pierre

    2001-06-01

    Reducing maintenance costs while keeping a constant level of safety is a major issue for Air Forces and airlines. The long term perspective is to implement condition based maintenance to guarantee a constant safety level while decreasing maintenance costs. On this purpose, the development of a generalized Structural Health Monitoring System (SHMS) is needed. The objective of such a system is to localize the damages and to assess their severity, with enough accuracy to allow low cost corrective actions. The present paper describes a SHMS based on acoustic emission technology. This choice was driven by its reliability and wide use in the aerospace industry. The described SHMS uses a new learning methodology which relies on the generation of artificial acoustic emission events on the structure and an acoustic emission sensor network. The calibrated acoustic emission events picked up by the sensors constitute the knowledge set that the system relies on. With this methodology, the anisotropy of composite structures is taken into account, thus avoiding the major cause of errors of classical localization methods. Moreover, it is adaptive to different structures as it does not rely on any particular model but on measured data. The acquired data is processed and the event's location and corrected amplitude are computed. The methodology has been demonstrated and experimental tests on elementary samples presented a degree of accuracy of 1cm.

  6. NASICON Open Framework Structured Transition Metal Oxides for Lithium Batteries

    OpenAIRE

    Begam, K.M.; Michael, M.S.; Prabaharan, S.R.S.

    2010-01-01

    We identified a group of NASICON open framework structured polyanion materials and examined the materials for rechargeable lithium battery application. We found that the open framework structure of these materials facilitated easy insertion/extraction of lithium into/from their structure. We synthesized the materials in lithium-rich [Li2M2(MoO4)3] and lithium-free [LixM2(MoO4)3] (M= Ni, Co) phases, for the first time, by means of a low temperature soft-combustion technique. The soft-combustio...

  7. Order parameters for symmetry-breaking structural transitions: The tetragonal-monoclinic transition in ZrO2

    Science.gov (United States)

    Thomas, John C.; Van der Ven, Anton

    2017-10-01

    Group/subgroup structural phase transitions are exploited in a wide variety of technologies, including those that rely on shape-memory behavior and on transformation toughening. Here, we introduce an approach to identify symmetry-adapted strain and shuffle order parameters for any group/subgroup structural transition between a high-symmetry parent phase and its symmetrically equivalent low-symmetry product phases. We show that symmetry-adapted atomic shuffle order parameters can be determined by the diagonalization of an orbital covariance matrix, formed by taking the covariance among the atomic displacement vectors of all symmetrically equivalent product phase variants. We use this approach to analyze the technologically important tetragonal to monoclinic structural phase transformation of ZrO2. We explore the energy landscapes, as calculated with density functional theory, along distinct paths that connect m ZrO2 to t ZrO2 and to other m ZrO2 variants. The calculations indicate favorable pairs of variants and reveal intermediate structures likely to exist at coherent twin boundaries and having relatively low deformation energy. We identify crystallographic features of the monoclinic ZrO2 variant that make it very sensitive to shape changing strains.

  8. Simulation tools for guided wave based structural health monitoring

    Science.gov (United States)

    Mesnil, Olivier; Imperiale, Alexandre; Demaldent, Edouard; Baronian, Vahan; Chapuis, Bastien

    2018-04-01

    Structural Health Monitoring (SHM) is a thematic derived from Non Destructive Evaluation (NDE) based on the integration of sensors onto or into a structure in order to monitor its health without disturbing its regular operating cycle. Guided wave based SHM relies on the propagation of guided waves in plate-like or extruded structures. Using piezoelectric transducers to generate and receive guided waves is one of the most widely accepted paradigms due to the low cost and low weight of those sensors. A wide range of techniques for flaw detection based on the aforementioned setup is available in the literature but very few of these techniques have found industrial applications yet. A major difficulty comes from the sensitivity of guided waves to a substantial number of parameters such as the temperature or geometrical singularities, making guided wave measurement difficult to analyze. In order to apply guided wave based SHM techniques to a wider spectrum of applications and to transfer those techniques to the industry, the CEA LIST develops novel numerical methods. These methods facilitate the evaluation of the robustness of SHM techniques for multiple applicative cases and ease the analysis of the influence of various parameters, such as sensors positioning or environmental conditions. The first numerical tool is the guided wave module integrated to the commercial software CIVA, relying on a hybrid modal-finite element formulation to compute the guided wave response of perturbations (cavities, flaws…) in extruded structures of arbitrary cross section such as rails or pipes. The second numerical tool is based on the spectral element method [2] and simulates guided waves in both isotropic (metals) and orthotropic (composites) plate like-structures. This tool is designed to match the widely accepted sparse piezoelectric transducer array SHM configuration in which each embedded sensor acts as both emitter and receiver of guided waves. This tool is under development and

  9. Graphical structure of many-particle transition operators

    International Nuclear Information System (INIS)

    Kowalski, K.L.

    1983-01-01

    A new graphical derivation is given of the nested Rosenberg equations which reveals the simple structural reasons for their validity. The graphical techniques are shown to apply in other contexts in nuclear reaction theory

  10. Energy Harvesting for Aerospace Structural Health Monitoring Systems

    International Nuclear Information System (INIS)

    Pearson, M R; Eaton, M J; Pullin, R; Featherston, C A; Holford, K M

    2012-01-01

    Recent research into damage detection methodologies, embedded sensors, wireless data transmission and energy harvesting in aerospace environments has meant that autonomous structural health monitoring (SHM) systems are becoming a real possibility. The most promising system would utilise wireless sensor nodes that are able to make decisions on damage and communicate this wirelessly to a central base station. Although such a system shows great potential and both passive and active monitoring techniques exist for detecting damage in structures, powering such wireless sensors nodes poses a problem. Two such energy sources that could be harvested in abundance on an aircraft are vibration and thermal gradients. Piezoelectric transducers mounted to the surface of a structure can be utilised to generate power from a dynamic strain whilst thermoelectric generators (TEG) can be used to generate power from thermal gradients. This paper reports on the viability of these two energy sources for powering a wireless SHM system from vibrations ranging from 20 to 400Hz and thermal gradients up to 50°C. Investigations showed that using a single vibrational energy harvester raw power levels of up to 1mW could be generated. Further numerical modelling demonstrated that by optimising the position and orientation of the vibrational harvester greater levels of power could be achieved. However using commercial TEGs average power levels over a flight period between 5 to 30mW could be generated. Both of these energy harvesting techniques show a great potential in powering current wireless SHM systems where depending on the complexity the power requirements range from 1 to 180mW.

  11. Structural insights into the cubic-hexagonal phase transition kinetics of monoolein modulated by sucrose solutions.

    Science.gov (United States)

    Reese, Caleb W; Strango, Zachariah I; Dell, Zachary R; Tristram-Nagle, Stephanie; Harper, Paul E

    2015-04-14

    Using DSC (differential scanning calorimetry), we measure the kinetics of the cubic-HII phase transition of monoolein in bulk sucrose solutions. We find that the transition temperature is dramatically lowered, with each 1 mol kg(-1) of sucrose concentration dropping the transition by 20 °C. The kinetics of this transition also slow greatly with increasing sucrose concentration. For low sucrose concentrations, the kinetics are asymmetric, with the cooling (HII-cubic) transition taking twice as long as the heating (cubic-HII) transition. This asymmetry in transition times is reduced for higher sucrose concentrations. The cooling transition exhibits Avrami exponents in the range of 2 to 2.5 and the heating transition shows Avrami exponents ranging from 1 to 3. A classical Avrami interpretation would be that these processes occur via a one or two dimensional pathway with variable nucleation rates. A non-classical perspective would suggest that these exponents reflect the time dependence of pore formation (cooling) and destruction (heating). New density measurements of monoolein show that the currently accepted value is about 5% too low; this has substantial implications for electron density modeling. Structural calculations indicate that the head group area and lipid length in the cubic-HII transition shrink by about 12% and 4% respectively; this reduction is practically the same as that seen in a lipid with a very different molecular structure (rac-di-12:0 β-GlcDAG) that makes the same transition. Thermodynamic considerations suggest there is a hydration shell about one water molecule thick in front of the lipid head groups in both the cubic and HII phases.

  12. Seismogeodetic monitoring techniques for tsunami and earthquake early warning and rapid assessment of structural damage

    Science.gov (United States)

    Haase, J. S.; Bock, Y.; Saunders, J. K.; Goldberg, D.; Restrepo, J. I.

    2016-12-01

    As part of an effort to promote the use of NASA-sponsored Earth science information for disaster risk reduction, real-time high-rate seismogeodetic data are being incorporated into early warning and structural monitoring systems. Seismogeodesy combines seismic acceleration and GPS displacement measurements using a tightly-coupled Kalman filter to provide absolute estimates of seismic acceleration, velocity and displacement. Traditionally, the monitoring of earthquakes and tsunamis has been based on seismic networks for estimating earthquake magnitude and slip, and tide gauges and deep-ocean buoys for direct measurement of tsunami waves. Real-time seismogeodetic observations at subduction zones allow for more robust and rapid magnitude and slip estimation that increase warning time in the near-source region. A NASA-funded effort to utilize GPS and seismogeodesy in NOAA's Tsunami Warning Centers in Alaska and Hawaii integrates new modules for picking, locating, and estimating magnitudes and moment tensors for earthquakes into the USGS earthworm environment at the TWCs. In a related project, NASA supports the transition of this research to seismogeodetic tools for disaster preparedness, specifically by implementing GPS and low-cost MEMS accelerometers for structural monitoring in partnership with earthquake engineers. Real-time high-rate seismogeodetic structural monitoring has been implemented on two structures. The first is a parking garage at the Autonomous University of Baja California Faculty of Medicine in Mexicali, not far from the rupture of the 2011 Mw 7.2 El Mayor Cucapah earthquake enabled through a UCMexus collaboration. The second is the 8-story Geisel Library at University of California, San Diego (UCSD). The system has also been installed for several proof-of-concept experiments at the UCSD Network for Earthquake Engineering Simulation (NEES) Large High Performance Outdoor Shake Table. We present MEMS-based seismogeodetic observations from the 10 June

  13. Monitoring of temperature-mediated phase transitions of adipose tissue by combined optical coherence tomography and Abbe refractometry.

    Science.gov (United States)

    Yanina, Irina Y; Popov, Alexey P; Bykov, Alexander V; Meglinski, Igor V; Tuchin, Valery V

    2018-01-01

    Observation of temperature-mediated phase transitions between lipid components of the adipose tissues has been performed by combined use of the Abbe refractometry and optical coherence tomography. The phase transitions of the lipid components were clearly observed in the range of temperatures from 24°C to 60°C, and assessed by quantitatively monitoring the changes of the refractive index of 1- to 2-mm-thick porcine fat tissue slices. The developed approach has a great potential as an alternative method for obtaining accurate information on the processes occurring during thermal lipolysis. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  14. Structural phase transition and elastic properties of samarium monopnictides

    International Nuclear Information System (INIS)

    Pagare, Gitanjali; Chouhan, Sunil Singh; Soni, Pooja; Sanyal, Sankar P.

    2011-01-01

    In recent years the monopnictides and monochalcogenides of the rare-earth elements with rocksalt structure (B 1 ) have aroused intensive interest due to the presence of strongly correlated f electrons in them. Under pressure, the nature of f-electrons of these compounds can be changed from localized to itinerant leading to significant changes in physical and chemical properties. These unusual structural, electronic, and high-pressure properties make them candidates for advanced industrial applications. For these applications they provide unique physical properties which cannot be achieved with other materials

  15. High pressure structural phase transitions of TiO2 nanomaterials

    International Nuclear Information System (INIS)

    Li Quan-Jun; Liu Bing-Bing

    2016-01-01

    Recently, the high pressure study on the TiO 2 nanomaterials has attracted considerable attention due to the typical crystal structure and the fascinating properties of TiO 2 with nanoscale sizes. In this paper, we briefly review the recent progress in the high pressure phase transitions of TiO 2 nanomaterials. We discuss the size effects and morphology effects on the high pressure phase transitions of TiO 2 nanomaterials with different particle sizes, morphologies, and microstructures. Several typical pressure-induced structural phase transitions in TiO 2 nanomaterials are presented, including size-dependent phase transition selectivity in nanoparticles, morphology-tuned phase transition in nanowires, nanosheets, and nanoporous materials, and pressure-induced amorphization (PIA) and polyamorphism in ultrafine nanoparticles and TiO 2 -B nanoribbons. Various TiO 2 nanostructural materials with high pressure structures are prepared successfully by high pressure treatment of the corresponding crystal nanomaterials, such as amorphous TiO 2 nanoribbons, α -PbO 2 -type TiO 2 nanowires, nanosheets, and nanoporous materials. These studies suggest that the high pressure phase transitions of TiO 2 nanomaterials depend on the nanosize, morphology, interface energy, and microstructure. The diversity of high pressure behaviors of TiO 2 nanomaterials provides a new insight into the properties of nanomaterials, and paves a way for preparing new nanomaterials with novel high pressure structures and properties for various applications. (topical review)

  16. A wireless laser displacement sensor node for structural health monitoring.

    Science.gov (United States)

    Park, Hyo Seon; Kim, Jong Moon; Choi, Se Woon; Kim, Yousok

    2013-09-30

    This study describes a wireless laser displacement sensor node that measures displacement as a representative damage index for structural health monitoring (SHM). The proposed measurement system consists of a laser displacement sensor (LDS) and a customized wireless sensor node. Wireless communication is enabled by a sensor node that consists of a sensor module, a code division multiple access (CDMA) communication module, a processor, and a power module. An LDS with a long measurement distance is chosen to increase field applicability. For a wireless sensor node driven by a battery, we use a power control module with a low-power processor, which facilitates switching between the sleep and active modes, thus maximizing the power consumption efficiency during non-measurement and non-transfer periods. The CDMA mode is also used to overcome the limitation of communication distance, which is a challenge for wireless sensor networks and wireless communication. To evaluate the reliability and field applicability of the proposed wireless displacement measurement system, the system is tested onsite to obtain the required vertical displacement measurements during the construction of mega-trusses and an edge truss, which are the primary structural members in a large-scale irregular building currently under construction. The measurement values confirm the validity of the proposed wireless displacement measurement system and its potential for use in safety evaluations of structural elements.

  17. Bridges analysis, design, structural health monitoring, and rehabilitation

    CERN Document Server

    Bakht, Baidar

    2015-01-01

    This book offers a valuable guide for practicing bridge engineers and graduate students in structural engineering; its main purpose is to present the latest concepts in bridge engineering in fairly easy-to-follow terms. The book provides details of easy-to-use computer programs for: ·      Analysing slab-on-girder bridges for live load distribution. ·      Analysing slab and other solid bridge components for live load distribution. ·      Analysing and designing concrete deck slab overhangs of girder bridges under vehicular loads. ·      Determining the failure loads of concrete deck slabs of girder bridges under concentrated wheel loads. In addition, the book includes extensive chapters dealing with the design of wood bridges and soil-steel bridges. Further, a unique chapter on structural health monitoring (SHM) will help bridge engineers determine the actual load carrying capacities of bridges, as opposed to their perceived analytical capacities. The chapter addressing structures...

  18. Hemoglobin structural dynamics as monitored by resonance Raman spectroscopy

    International Nuclear Information System (INIS)

    Spiro, T.G.

    1981-01-01

    Resonance Raman spectra of the heme group are now understood at a level sufficient to provide a useful monitor of several heme structural features. Some porphyrin vibrational frequencies are sensitive to Fe oxidation state, or π-electron distribution, and give insight into the electronic structure of O 2 , CO and NO hemes. Others are sensitive to Fe spin-state, via the associated geometry variation, and provide an accurate index of the porphyrin core size. When examined during the photolysis of CO-hemoglobin via short laser pulses, these frequencies indicate that conversion from low- to h+gh-spin Fe 11 takes place within 30 ps of photolysis, presumably via intersystem-crossing in the excited state, but that the subsequent relaxation of the Fe atom out of the heme plane takes longer than 20 ns, probably because of restraint by the protein. Axial ligand modes have been identified for several heme derivatives. The Fe-imidazole frequency in deoxyhemoglobin is appreciably lowered in the T quaternary structure, as determined in both static and kinetic experiments, suggesting molecular tension or proximal imidazole H-bond weakening in the T state. (author)

  19. A Wireless Laser Displacement Sensor Node for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Se Woon Choi

    2013-09-01

    Full Text Available This study describes a wireless laser displacement sensor node that measures displacement as a representative damage index for structural health monitoring (SHM. The proposed measurement system consists of a laser displacement sensor (LDS and a customized wireless sensor node. Wireless communication is enabled by a sensor node that consists of a sensor module, a code division multiple access (CDMA communication module, a processor, and a power module. An LDS with a long measurement distance is chosen to increase field applicability. For a wireless sensor node driven by a battery, we use a power control module with a low-power processor, which facilitates switching between the sleep and active modes, thus maximizing the power consumption efficiency during non-measurement and non-transfer periods. The CDMA mode is also used to overcome the limitation of communication distance, which is a challenge for wireless sensor networks and wireless communication. To evaluate the reliability and field applicability of the proposed wireless displacement measurement system, the system is tested onsite to obtain the required vertical displacement measurements during the construction of mega-trusses and an edge truss, which are the primary structural members in a large-scale irregular building currently under construction. The measurement values confirm the validity of the proposed wireless displacement measurement system and its potential for use in safety evaluations of structural elements.

  20. Direct monitoring of calcium-triggered phase transitions in cubosomes using small-angle X-ray scattering combined with microfluidics

    DEFF Research Database (Denmark)

    Ghazal, Aghiad; Gontsarik, Mark; Kutter, Jörg P.

    2016-01-01

    This article introduces a simple microfluidic device that can be combined with synchrotron small-angle X-ray scattering (SAXS) for monitoring dynamic structural transitions. The microfluidic device is a thiol-ene-based system equipped with 125 µm-thick polystyrene windows, which are suitable for ....... The combination of microfluidics with X-ray techniques can be used for investigating protein unfolding, for monitoring the formation of nanoparticles in real time, and for other biomedical and pharmaceutical investigations.......-ray experiments. The device was prepared by soft lithography using elastomeric molds followed by a simple UV-initiated curing step to polymerize the chip material and simultaneously seal the device with the polystyrene windows. The microfluidic device was successfully used to explore the dynamics...

  1. Structure of the solar transition region and inner corona

    International Nuclear Information System (INIS)

    Mariska, J.T.

    1977-01-01

    Emission gradient curves for extreme ultraviolet (EUV) resonance lines of lithium-like ions were constructed from spectroheliograms of quiet limb regions and a north polar coronal hole observed with the Harvard experiment on Skylab. The observations are interpreted with simple coronal models. Comparison of the theoretical and observed emission gradients for quiet regions indicates that for these areas the temperature rises throughout the inner corona (1.03 less than or equal to r less than or equal to 1.20 R/sub mass/). In the coronal hole the temperature rises in a manner consistent with a constant conductive flux to an isothermal corona at a temperature of 1.1 x 10 6 K at 1.08/sub mass/. The geometry of the coronal hole boundary is also determined. The boundary geometry and density distribution are combined with typical solar wind parameters at the north to determine an outflow velocity of 15 km s -1 at 1.08 R/sub mass/. The energy balance implications of the models are examined. It was found that in the transition region both conduction and radiation are important in determining the energy balance in network regions in both quiet areas and coronal holes. Additional energy sources are required in the network in coronal holes. In the corona it is found that, to within the errors of the determination, the energy losses, and hence the requirements for mechanical heating, are the same in quiet regions and coronal holes

  2. State-Transition Structures in Physics and in Computation

    Science.gov (United States)

    Petri, C. A.

    1982-12-01

    In order to establish close connections between physical and computational processes, it is assumed that the concepts of “state” and of “transition” are acceptable both to physicists and to computer scientists, at least in an informal way. The aim of this paper is to propose formal definitions of state and transition elements on the basis of very low level physical concepts in such a way that (1) all physically possible computations can be described as embedded in physical processes; (2) the computational aspects of physical processes can be described on a well-defined level of abstraction; (3) the gulf between the continuous models of physics and the discrete models of computer science can be bridged by simple mathematical constructs which may be given a physical interpretation; (4) a combinatorial, nonstatistical definition of “information” can be given on low levels of abstraction which may serve as a basis to derive higher-level concepts of information, e.g., by a statistical or probabilistic approach. Conceivable practical consequences are discussed.

  3. STRUCTURAL MONITORING WITH GEODETIC SURVEY OF QUADRIFOGLIO CONDOMINIUM (LECCE

    Directory of Open Access Journals (Sweden)

    D. Costantino

    2014-01-01

    Full Text Available Monitoring buildings for moving elements has been always a problem of great importance for their conservation and preservation, as well as for risk mitigation. In particular, topographic surveying allows, through the use of the principles and instruments of the geodetic survey, to control moving points which have been identified and measured. In this study case, twelve survey campaigns were done for monitoring a building located in the city of Lecce. The condominium was built five years ago on an old quarry filled with debris to allow construction. Later in time, obviously, cracks started to appear on walls within the property, and for this legal actions were taken. The survey schema adopted has been that of triangulation/trilateration, from two vertices with known coordinates. With this methodologies four cornerstones have been identified, established with forced centering on pillars with anchor plates, connected to same number of framework points, considered stable. From these, 23 control points located on the structure with rotating prisms anchored at the same manner have been surveyed. The elaboration has been carried out by generating redundancy of the measures and compensating the values with least mean squares. The results obtained by the activity of survey and elaboration have confirmed the existence of ongoing phenomena. The causes that have generated the phenomenon have been, subsequently, investigated and have been considered attributable to the existence of a sewer pipeline and a water pipeline not properly put in place and consequently broke down due to the geological characteristics of the site.

  4. Guided wave based structural health monitoring: A review

    International Nuclear Information System (INIS)

    Mitra, Mira; Gopalakrishnan, S

    2016-01-01

    The paper provides a state of the art review of guided wave based structural health monitoring (SHM). First, the fundamental concepts of guided wave propagation and its implementation for SHM is explained. Following sections present the different modeling schemes adopted, developments in the area of transducers for generation, and sensing of wave, signal processing and imaging technique, statistical and machine learning schemes for feature extraction. Next, a section is presented on the recent advancements in nonlinear guided wave for SHM. This is followed by section on Rayleigh and SH waves. Next is a section on real-life implementation of guided wave for industrial problems. The paper, though briefly talks about the early development for completeness, is primarily focussed on the recent progress made in the last decade. The paper ends by discussing and highlighting the future directions and open areas of research in guided wave based SHM. (topical review)

  5. Inspection of Piezoceramic Transducers Used for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Inka Mueller

    2017-01-01

    Full Text Available The use of piezoelectric wafer active sensors (PWAS for structural health monitoring (SHM purposes is state of the art for acousto-ultrasonic-based methods. For system reliability, detailed information about the PWAS itself is necessary. This paper gives an overview on frequent PWAS faults and presents the effects of these faults on the wave propagation, used for active acousto-ultrasonics-based SHM. The analysis of the wave field is based on velocity measurements using a laser Doppler vibrometer (LDV. New and established methods of PWAS inspection are explained in detail, listing advantages and disadvantages. The electro-mechanical impedance spectrum as basis for these methods is discussed for different sensor faults. This way this contribution focuses on a detailed analysis of PWAS and the need of their inspection for an increased reliability of SHM systems.

  6. Characterizing structural transitions using localized free energy landscape analysis.

    Directory of Open Access Journals (Sweden)

    Nilesh K Banavali

    Full Text Available Structural changes in molecules are frequently observed during biological processes like replication, transcription and translation. These structural changes can usually be traced to specific distortions in the backbones of the macromolecules involved. Quantitative energetic characterization of such distortions can greatly advance the atomic-level understanding of the dynamic character of these biological processes.Molecular dynamics simulations combined with a variation of the Weighted Histogram Analysis Method for potential of mean force determination are applied to characterize localized structural changes for the test case of cytosine (underlined base flipping in a GTCAGCGCATGG DNA duplex. Free energy landscapes for backbone torsion and sugar pucker degrees of freedom in the DNA are used to understand their behavior in response to the base flipping perturbation. By simplifying the base flipping structural change into a two-state model, a free energy difference of upto 14 kcal/mol can be attributed to the flipped state relative to the stacked Watson-Crick base paired state. This two-state classification allows precise evaluation of the effect of base flipping on local backbone degrees of freedom.The calculated free energy landscapes of individual backbone and sugar degrees of freedom expectedly show the greatest change in the vicinity of the flipping base itself, but specific delocalized effects can be discerned upto four nucleotide positions away in both 5' and 3' directions. Free energy landscape analysis thus provides a quantitative method to pinpoint the determinants of structural change on the atomic scale and also delineate the extent of propagation of the perturbation along the molecule. In addition to nucleic acids, this methodology is anticipated to be useful for studying conformational changes in all macromolecules, including carbohydrates, lipids, and proteins.

  7. Transiting Exoplanet Monitoring Project (TEMP). IV. Refined System Parameters, Transit Timing Variations, and Orbital Stability of the Transiting Planetary System HAT-P-25

    Science.gov (United States)

    Wang, Xian-Yu; Wang, Songhu; Hinse, Tobias C.; Li, Kai; Wang, Yong-Hao; Laughlin, Gregory; Liu, Hui-Gen; Zhang, Hui; Wu, Zhen-Yu; Zhou, Xu; Zhou, Ji-Lin; Hu, Shao-Ming; Wu, Dong-Hong; Peng, Xi-Yan; Chen, Yuan-Yuan

    2018-06-01

    We present eight new light curves of the transiting extra-solar planet HAT-P-25b obtained from 2013 to 2016 with three telescopes at two observatories. We use the new light curves, along with recent literature material, to estimate the physical and orbital parameters of the transiting planet. Specifically, we determine the mid-transit times (T C ) and update the linear ephemeris, T C[0] = 2456418.80996 ± 0.00025 [BJDTDB] and P = 3.65281572 ± 0.00000095 days. We carry out a search for transit timing variations (TTVs), and find no significant TTV signal at the ΔT = 80 s-level, placing a limit on the possible strength of planet–planet interactions (TTVG). In the course of our analysis, we calculate the upper mass-limits of the potential nearby perturbers. Near the 1:2, 2:1, and 3:1 resonances with HAT-P-25b, perturbers with masses greater than 0.5, 0.3, and 0.5 M ⊕ respectively, can be excluded. Furthermore, based on the analysis of TTVs caused by light travel time effect (LTTE) we also eliminate the possibility that a long-period perturber exists with M p > 3000 MJ within a = 11.2 au of the parent star.

  8. Pressure-induced Td to 1T′ structural phase transition in WTe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yonghui [High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031 (China); Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Chen, Xuliang, E-mail: xlchen@hmfl.ac.cn, E-mail: zryang@issp.ac.cn; Zhang, Ranran; Wang, Xuefei; An, Chao; Zhou, Ying [High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031 (China); Li, Nana [Center for High Pressure Science and Technology Advanced Research, Shanghai 201203 (China); Pan, Xingchen [National Laboratory of Solid State Microstructures, College of Physics, Nanjing University, Nanjing 210093 (China); Song, Fengqi; Wang, Baigeng [National Laboratory of Solid State Microstructures, College of Physics, Nanjing University, Nanjing 210093 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Yang, Wenge [Center for High Pressure Science and Technology Advanced Research, Shanghai 201203 (China); High Pressure Synergetic Consortium, Geophysical Laboratory, Carnegie Institution of Washington, Argonne, IL 60439 (United States); Yang, Zhaorong, E-mail: xlchen@hmfl.ac.cn, E-mail: zryang@issp.ac.cn [High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031 (China); Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Zhang, Yuheng [High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)

    2016-07-15

    WTe{sub 2} is provoking immense interest owing to its extraordinary properties, such as large positive magnetoresistance, pressure-driven superconductivity and possible type-II Weyl semimetal state. Here we report results of high-pressure synchrotron X-ray diffraction (XRD), Raman and electrical transport measurements on WTe{sub 2}. Both the XRD and Raman results reveal a structural transition upon compression, starting at 6.0 GPa and completing above 15.5 GPa. We have determined that the high-pressure lattice symmetry is monoclinic 1T′ with space group of P2{sub 1}/m. This transition is related to a lateral sliding of adjacent Te-W-Te layers and results in a collapse of the unit cell volume by ∼20.5%. The structural transition also casts a pressure range with the broadened superconducting transition, where the zero resistance disappears.

  9. Evidence from n=2 fine structure transitions for the production of fast excited state positronium

    International Nuclear Information System (INIS)

    Ley, R.; Niebling, K.D.; Schwarz, R.; Werth, G.

    1990-01-01

    Fine structure transitions in the first excited state of positronium (Ps) have been measured using 'Backscatter Ps' production on a Mo surface by observation of a change in the emitted Lyman-α intensity under resonant microwave irradiation. Production, fine structure transitions and Lyman-α decay of the Ps atoms took place inside a waveguide designed to transmit the microwave frequencies of 8.6, 13.0 and 18.5 GHz for the transitions from the 2 3 S 1 state to the 2 3 P J , J=2, 1, 0, states, respectively. In the presence of a magnetic field, all transitions observed show a shift to higher frequencies, compared with earlier calculations and measurements in zero magnetic field. The deviations exceed the expected Zeeman shift significantly but may be explained by assuming a motional Stark effect for Ps with kinetic energies of several eV. (author)

  10. A wireless sensor network design and evaluation for large structural strain field monitoring

    International Nuclear Information System (INIS)

    Qiu, Zixue; Wu, Jian; Yuan, Shenfang

    2011-01-01

    Structural strain changes under external environmental or mechanical loads are the main monitoring parameters in structural health monitoring or mechanical property tests. This paper presents a wireless sensor network designed for monitoring large structural strain field variation. First of all, a precision strain sensor node is designed for multi-channel strain gauge signal conditioning and wireless monitoring. In order to establish a synchronous strain data acquisition network, the cluster-star network synchronization method is designed in detail. To verify the functionality of the designed wireless network for strain field monitoring capability, a multi-point network evaluation system is developed for an experimental aluminum plate structure for load variation monitoring. Based on the precision wireless strain nodes, the wireless data acquisition network is deployed to synchronously gather, process and transmit strain gauge signals and monitor results under concentrated loads. This paper shows the efficiency of the wireless sensor network for large structural strain field monitoring

  11. Interaction Between Aerothermally Compliant Structures and Boundary-Layer Transition in Hypersonic Flow

    Science.gov (United States)

    Riley, Zachary Bryce

    The use of thin-gauge, light-weight structures in combination with the severe aero-thermodynamic loading makes reusable hypersonic cruise vehicles prone to fluid-thermal-structural interactions. These interactions result in surface perturbations in the form of temperature changes and deformations that alter the stability and eventual transition of the boundary layer. The state of the boundary layer has a significant effect on the aerothermodynamic loads acting on a hypersonic vehicle. The inherent relationship between boundary-layer stability, aerothermodynamic loading, and surface conditions make the interaction between the structural response and boundary-layer transition an important area of study in high-speed flows. The goal of this dissertation is to examine the interaction between boundary layer transition and the response of aerothermally compliant structures. This is carried out by first examining the uncoupled problems of: (1) structural deformation and temperature changes altering boundary-layer stability and (2) the boundary layer state affecting structural response. For the former, the stability of boundary layers developing over geometries that typify the response of surface panels subject to combined aerodynamic and thermal loading is numerically assessed using linear stability theory and the linear parabolized stability equations. Numerous parameters are examined including: deformation direction, deformation location, multiple deformations in series, structural boundary condition, surface temperature, the combined effect of Mach number and altitude, and deformation mode shape. The deformation-induced pressure gradient alters the boundary-layer thickness, which changes the frequency of the most-unstable disturbance. In regions of small boundary-layer growth, the disturbance frequency modulation resulting from a single or multiple panels deformed into the flowfield is found to improve boundary-layer stability and potentially delay transition. For the

  12. Electronic structure of some 3D transition-metal pyrites

    NARCIS (Netherlands)

    Folkerts, W.; Sawatzky, G.A.; Haas, C.; Groot, R.A. de; Hillebrecht, F.U.

    1987-01-01

    Bremsstrahlung Isochromat spectra of FeS2, NiS2, NiS1.2Se0.8 and NiSe2 are reported. These are the first direct experimental evidence for a sharp antibonding p-like state above the Fermi level. A comparison is made with experimental results in the literature. For FeS2, band-structure calculations

  13. The synthesis and structural characterization of novel transition metal fluorides

    Energy Technology Data Exchange (ETDEWEB)

    Casteel, W.J. Jr.

    1992-09-01

    High purity KMF[sub 6] and K[sub 2]MF[sub 6] salts (M = Mo,Re, Ru, Os, Ir, Pt) are obtained from reduction hexafluorides. A rhombohedral unit cell is observed for KReF[sub 6]. Fluoride ion capture by Lewis acids from the hexafluorometallate (IV) salts affords high purity tetrafluorides for M = Mo, Re, Ru, Os, and Pd. The structure of RuF[sub 4] is determined from X-ray synchrotron and neutron powder data. Unit cells based on theorthorhombic PdF[sub 4] type cell are derived from X-ray powder data for ReF[sub 4] and OsF[sub 4]. Fluoride ion capture from KAgF[sub 4] provides the thermally unstable trifluoride as a bright, red, diamagnetic solid. The structure solution of AgF[sub 3] and redetermination of the AuF[sub 3] structure from X-ray synchrotron and neutron powder data demonstrate that the two are isostnictural. Thermal decomposition product of AgF[sub 3] is the mixed valence compound Ag[sup II]Ag[sub 2][sup III]F[sub 8]. Several new salts containing the (Ag - F)[sub n][sup n+] chain cation are prepared. The first linear (Ag - F)[sub n][sup n+] chain is observed in AgF[sup +]BF[sub 4 [sup [minus

  14. Structural phase transition at 205 K in stoichiometric vanadium nitride

    International Nuclear Information System (INIS)

    Kubel, F.; Lengauer, W.; Yvon, K.; Knorr, K.; Junod, A.

    1988-01-01

    Vanadium nitride (NaCl structure, [N]/[V]≥0.99, space group Fm3-barm, a = 4.1328(3) A at 298 K) transforms at 205(5) K into a tetragonal, noncentrosymmetric low-temperature modification [space group P4-bar2m, a = 4.1314(3) A, c = 4.1198(3) A at 45 K]. The low-temperature structure was refined from single-crystal x-ray diffraction data collected at two different temperatures (150 K, R = 2.3% for 301 reflections; 20 K, R = 3.9% for 393 reflections). It is characterized by a clustering of the metal atoms into tetrahedral V 4 units with V-V intracluster distances of 2.8534(9) and 2.8515(7) A, and V-V intercluster distances in the range of 2.9147(9) and 2.9853(7) A at 20 K. High-resolution heat-capacity data are presented (20--330 K). A discontinuity is observed at the onset of structural transformation, 204 +- 1 K

  15. Moessbauer studies of the structural phase transitions in RbFeF4

    International Nuclear Information System (INIS)

    Baumeler, Hp.; Keller, H.; Kuendig, W.; Savic, I.M.; Wanklyn, B.M.

    1984-01-01

    RbFeF 4 exhibits two structural phase transitions (SPT), namely a first-order transition at 381 K and a second-order transition at 417 K. A detailed 57 Fe Moessbauer investigation of these SPT is presented. At pronounced discontinuities in the quadrupole splitting and the recoil-free fraction are observed, whereas at 417 K both quantities vary continuously with temperature. Both SPT are also seen in the area ratio of the single crystal quadrupole lines which reflects the tilting of the FeF 6 octahedra with respect to the c-axis. However, no noticeable indication of the SPT is found in the center shift. (Auth.)

  16. Structural evolution of epitaxial SrCoOx films near topotactic phase transition

    OpenAIRE

    Hyoungjeen Jeen; Ho Nyung Lee

    2015-01-01

    Control of oxygen stoichiometry in complex oxides via topotactic phase transition is an interesting avenue to not only modifying the physical properties, but utilizing in many energy technologies, such as energy storage and catalysts. However, detailed structural evolution in the close proximity of the topotactic phase transition in multivalent oxides has not been much studied. In this work, we used strontium cobaltites (SrCoOx) epitaxially grown by pulsed laser epitaxy (PLE) as a model syste...

  17. A computational study of pressure-induced structural transition in ThSb

    International Nuclear Information System (INIS)

    Trinadh, Ch.U.M.; Rajagopalan, M.; Natarajan, S.

    1997-01-01

    The pressure induced phase transition from NaCl-type to CsCl-type structure in ThSb was studied using total energy calculations by tight-binding linear muffin tin orbital (TBLMTO) method within atomic sphere approximation (ASA). The density of states (DOS) at ambient pressure was compared with resonant photoemission studies (PES). The variation in interatomic distances during the transition was found to be in agreement with high pressure x-ray diffraction (HPXRD) studies. (author)

  18. Assembly of Collagen Matrices as a Phase Transition Revealed by Structural and Rheologic Studies

    OpenAIRE

    Forgacs, Gabor; Newman, Stuart A.; Hinner, Bernhard; Maier, Christian W.; Sackmann, Erich

    2003-01-01

    We have studied the structural and viscoelastic properties of assembling networks of the extracellular matrix protein type-I collagen by means of phase contrast microscopy and rotating disk rheometry. The initial stage of the assembly is a nucleation process of collagen monomers associating to randomly distributed branched clusters with extensions of several microns. Eventually a sol-gel transition takes place, which is due to the interconnection of these clusters. We analyzed this transition...

  19. Characterization of Ti6Al4V for integral transition structures in FRP-aluminum compounds

    Energy Technology Data Exchange (ETDEWEB)

    Schimanski, Kai; Schumacher, Jens; Von Hehl, Axel; Zoch, Hans-Werner [Stiftung Institut fuer Werkstofftechnik, Bremen (Germany); Wottschel, Vitalij; Vollertsen, Frank [Bremer Institut fuer Angewandte Strahltechnik, Bremen (Germany)

    2012-08-15

    Components in hybrid design become more and more important in terms of their lightweight potential. In this context, the demand for weight saving in aerospace industry leads to increase numbers of applications of fiber reinforced composites for primary structural components. In consequence, the use of FRP-metal compounds is necessary. In the context of the investigations of the researcher group named ''Black-Silver'' (''Schwarz Silber'', FOR 1224) founded by the DFG (German Research Foundation) material optimized interface structures for advanced carbon fiber reinforced plastic (CFRP)-aluminum compounds are currently being studied. Within their work the researcher group focussed on three concepts realizing the transition structures: the usage of wires (titanium), foils (titanium), and fibers (glass fiber) as transition elements between CFRP and aluminum. For the connection of the aluminum sheet and the transition element die-casting and laser beam welding are basically used. The paper concentrates on the characterization of suitable materials for transition structures. Due to their high strength and low density (in comparison to steel) and the resulting potential in view on light-weight design Ti-alloys were investigated. Because of the increased availability of Ti-wires compared to Ti-foils in suitable thickness the former were used for the basic investigations on Ti-alloys which are suitable for integral transition structures. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Structurally triggered metal-insulator transition in rare-earth nickelates.

    Science.gov (United States)

    Mercy, Alain; Bieder, Jordan; Íñiguez, Jorge; Ghosez, Philippe

    2017-11-22

    Rare-earth nickelates form an intriguing series of correlated perovskite oxides. Apart from LaNiO 3 , they exhibit on cooling a sharp metal-insulator electronic phase transition, a concurrent structural phase transition, and a magnetic phase transition toward an unusual antiferromagnetic spin order. Appealing for various applications, full exploitation of these compounds is still hampered by the lack of global understanding of the interplay between their electronic, structural, and magnetic properties. Here we show from first-principles calculations that the metal-insulator transition of nickelates arises from the softening of an oxygen-breathing distortion, structurally triggered by oxygen-octahedra rotation motions. The origin of such a rare triggered mechanism is traced back in their electronic and magnetic properties, providing a united picture. We further develop a Landau model accounting for the metal-insulator transition evolution in terms of the rare-earth cations and rationalizing how to tune this transition by acting on oxygen rotation motions.

  1. Effect of Topology Structures on Synchronization Transition in Coupled Neuron Cells System

    International Nuclear Information System (INIS)

    Liang Li-Si; Zhang Ji-Qian; Xu Gui-Xia; Liu Le-Zhu; Huang Shou-Fang

    2013-01-01

    In this paper, by the help of evolutionary algorithm and using Hindmarsh—Rose (HR) neuron model, we investigate the effect of topology structures on synchronization transition between different states in coupled neuron cells system. First, we build different coupling structure with N cells, and found the effect of synchronized transition contact not only closely with the topology of the system, but also with whether there exist the ring structures in the system. In particular, both the size and the number of rings have greater effects on such transition behavior. Secondly, we introduce synchronization error to qualitative analyze the effect of the topology structure. Furthermore, by fitting the simulation results, we find that with the increment of the neurons number, there always exist the optimization structures which have the minimum number of connecting edges in the coupling systems. Above results show that the topology structures have a very crucial role on synchronization transition in coupled neuron system. Biological system may gradually acquire such efficient topology structures through the long-term evolution, thus the systems' information process may be optimized by this scheme. (interdisciplinary physics and related areas of science and technology)

  2. Structural Health Monitoring under Nonlinear Environmental or Operational Influences

    Directory of Open Access Journals (Sweden)

    Jyrki Kullaa

    2014-01-01

    Full Text Available Vibration-based structural health monitoring is based on detecting changes in the dynamic characteristics of the structure. It is well known that environmental or operational variations can also have an influence on the vibration properties. If these effects are not taken into account, they can result in false indications of damage. If the environmental or operational variations cause nonlinear effects, they can be compensated using a Gaussian mixture model (GMM without the measurement of the underlying variables. The number of Gaussian components can also be estimated. For the local linear components, minimum mean square error (MMSE estimation is applied to eliminate the environmental or operational influences. Damage is detected from the residuals after applying principal component analysis (PCA. Control charts are used for novelty detection. The proposed approach is validated using simulated data and the identified lowest natural frequencies of the Z24 Bridge under temperature variation. Nonlinear models are most effective if the data dimensionality is low. On the other hand, linear models often outperform nonlinear models for high-dimensional data.

  3. Phase Space Dissimilarity Measures for Structural Health Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bubacz, Jacob A [ORNL; Chmielewski, Hana T [ORNL; Pape, Alexander E [ORNL; Depersio, Andrew J [ORNL; Hively, Lee M [ORNL; Abercrombie, Robert K [ORNL; Boone, Shane [ORNL

    2011-11-01

    A novel method for structural health monitoring (SHM), known as the Phase Space Dissimilarity Measures (PSDM) approach, is proposed and developed. The patented PSDM approach has already been developed and demonstrated for a variety of equipment and biomedical applications. Here, we investigate SHM of bridges via analysis of time serial accelerometer measurements. This work has four aspects. The first is algorithm scalability, which was found to scale linearly from one processing core to four cores. Second, the same data are analyzed to determine how the use of the PSDM approach affects sensor placement. We found that a relatively low-density placement sufficiently captures the dynamics of the structure. Third, the same data are analyzed by unique combinations of accelerometer axes (vertical, longitudinal, and lateral with respect to the bridge) to determine how the choice of axes affects the analysis. The vertical axis is found to provide satisfactory SHM data. Fourth, statistical methods were investigated to validate the PSDM approach for this application, yielding statistically significant results.

  4. Active Wireless System for Structural Health Monitoring Applications.

    Science.gov (United States)

    Perera, Ricardo; Pérez, Alberto; García-Diéguez, Marta; Zapico-Valle, José Luis

    2017-12-11

    The use of wireless sensors in Structural Health Monitoring (SHM) has increased significantly in the last years. Piezoelectric-based lead zirconium titanate (PZT) sensors have been on the rise in SHM due to their superior sensing abilities. They are applicable in different technologies such as electromechanical impedance (EMI)-based SHM. This work develops a flexible wireless smart sensor (WSS) framework based on the EMI method using active sensors for full-scale and autonomous SHM. In contrast to passive sensors, the self-sensing properties of the PZTs allow interrogating with or exciting a structure when desired. The system integrates the necessary software and hardware within a service-oriented architecture approach able to provide in a modular way the services suitable to satisfy the key requirements of a WSS. The framework developed in this work has been validated on different experimental applications. Initially, the reliability of the EMI method when carried out with the proposed wireless sensor system is evaluated by comparison with the wireless counterpart. Afterwards, the performance of the system is evaluated in terms of software stability and reliability of functioning.

  5. Active Wireless System for Structural Health Monitoring Applications

    Directory of Open Access Journals (Sweden)

    Ricardo Perera

    2017-12-01

    Full Text Available The use of wireless sensors in Structural Health Monitoring (SHM has increased significantly in the last years. Piezoelectric-based lead zirconium titanate (PZT sensors have been on the rise in SHM due to their superior sensing abilities. They are applicable in different technologies such as electromechanical impedance (EMI-based SHM. This work develops a flexible wireless smart sensor (WSS framework based on the EMI method using active sensors for full-scale and autonomous SHM. In contrast to passive sensors, the self-sensing properties of the PZTs allow interrogating with or exciting a structure when desired. The system integrates the necessary software and hardware within a service-oriented architecture approach able to provide in a modular way the services suitable to satisfy the key requirements of a WSS. The framework developed in this work has been validated on different experimental applications. Initially, the reliability of the EMI method when carried out with the proposed wireless sensor system is evaluated by comparison with the wireless counterpart. Afterwards, the performance of the system is evaluated in terms of software stability and reliability of functioning.

  6. Coordinated robotic system for civil structural health monitoring

    Directory of Open Access Journals (Sweden)

    Qidwai Uvais

    2017-01-01

    Full Text Available With the recent advances in sensors, robotics, unmanned aerial vehicles, communication, and information technologies, it is now feasible to move towards the vision of ubiquitous cities, where virtually everything throughout the city is linked to an information system through technologies such as wireless networking and radio-frequency identification (RFID tags, to provide systematic and more efficient management of urban systems, including civil and mechanical infrastructure monitoring, to achieve the goal of resilient and sustainable societies. In this proposed system, unmanned aerial vehicle (UAVs is used to ascertain the coarse defect signature using panoramic imaging. This involves image stitching and registration so that a complete view of the surface is seen with reference to a common reference or origin point. Thereafter, crack verification and localization has been done using the magnetic flux leakage (MFL approach which has been performed with the help of a coordinated robotic system. In which the first robot is placed at the top of the structure whereas the second robot is equipped with the designed MFL sensory system. With the initial findings, the proposed system identifies and localize the crack in the given structure.

  7. Monitoring Seismic Velocity Change to Explore the Earthquake Seismogenic Structures

    Science.gov (United States)

    Liao, C. F.; Wen, S.; Chen, C.

    2017-12-01

    Studying spatial-temporal variations of subsurface velocity structures is still a challenge work, but it can provide important information not only on geometry of a fault, but also the rheology change induced from the strong earthquake. In 1999, a disastrous Chi-Chi earthquake (Mw7.6; Chi-Chi EQ) occurred in central Taiwan and caused great impacts on Taiwan's society. Therefore, the major objective of this research is to investigate whether the rheology change of fault can be associated with seismogenic process before strong earthquake. In addition, after the strike of the Chi-Chi EQ, whether the subsurface velocity structure resumes to its steady state is another issue in this study. Therefore, for the above purpose, we have applied a 3D tomographic technique to obtain P- and S-wave velocity structures in central Taiwan using travel time data provided by the Central Weather Bureau (CWB). One major advantage of this method is that we can include out-of-network data to improve the resolution of velocity structures at deeper depths in our study area. The results show that the temporal variations of Vp are less significant than Vs (or Vp/Vs ratio), and Vp is not prominent perturbed before and after the occurrence of the Chi-Chi EQ. However, the Vs (or Vp/Vs ratio) structure in the source area demonstrates significant spatial-temporal difference before and after the mainshock. From the results, before the mainshock, Vs began to decrease (Vp/Vs ratio was increased as well) at the hanging wall of Chelungpu fault, which may be induced by the increasing density of microcracks and fluid. But in the vicinities of Chi-Chi Earthquake's source area, Vs was increasing (Vp/Vs ratio was also decreased). This phenomenon may be owing to the closing of cracks or migration of fluid. Due to the different physical characteristics around the source area, strong earthquake may be easily nucleated at the junctional zone. Our findings suggest that continuously monitoring the Vp and Vs (or

  8. Structural phase transitions and superconductivity in lanthanum copper oxides

    International Nuclear Information System (INIS)

    Crawford, M.K.; Harlow, R.L.; McCarron, E.M.

    1996-01-01

    Despite the enormous effort expended over the past ten years to determine the mechanism underlying high temperature superconductivity in cuprates there is still no consensus on the physical origin of this fascinating phenomenon. This is a consequence of a number of factors, among which are the intrinsic difficulties in understanding the strong electron correlations in the copper oxides, determining the roles played by antiferromagnetic interactions and low dimensionality, analyzing the complex phonon dispersion relationships, and characterizing the phase diagrams which are functions of the physical parameters of temperature and pressure, as well as the chemical parameters of stoichiometry and hole concentration. In addition to all of these intrinsic difficulties, extrinsic materials issues such as sample quality and homogeneity present additional complications. Within the field of high temperature superconductivity there exists a subfield centered around the material originally reported to exhibit high temperature superconductivity by Bednorz and Mueller, Ba doped La 2 CuO 4 . This is structurally the simplest cuprate superconductor. The authors report on studies of phase differences observed between such base superconductors doped with Ba or Sr. What these studies have revealed is a fascinating interplay of structural, magnetic and superconducting properties which is unique in the field of high temperature superconductivity and is summarized in this paper

  9. Multipodal Structure and Phase Transitions in Large Constrained Graphs

    Science.gov (United States)

    Kenyon, Richard; Radin, Charles; Ren, Kui; Sadun, Lorenzo

    2017-07-01

    We study the asymptotics of large, simple, labeled graphs constrained by the densities of two subgraphs. It was recently conjectured that for all feasible values of the densities most such graphs have a simple structure. Here we prove this in the special case where the densities are those of edges and of k-star subgraphs, k≥2 fixed. We prove that under such constraints graphs are "multipodal": asymptotically in the number of vertices there is a partition of the vertices into M < ∞ subsets V_1, V_2, \\ldots , V_M, and a set of well-defined probabilities g_{ij} of an edge between any v_i \\in V_i and v_j \\in V_j. For 2≤ k≤ 30 we determine the phase space: the combinations of edge and k-star densities achievable asymptotically. For these models there are special points on the boundary of the phase space with nonunique asymptotic (graphon) structure; for the 2-star model we prove that the nonuniqueness extends to entropy maximizers in the interior of the phase space.

  10. Automatic Sensor-Fault Detection System for Comprehensive Structural Health Monitoring System

    National Research Council Canada - National Science Library

    Chan, Hian-Leng; Zhang, Chang; Qing, Peter X; Ooi, Teng K; Marotta, Steve A

    2005-01-01

    Structural health monitoring systems are viewed as viable means to reduce life-cycle costs, increase structural reliability, and extend the operational hours for a wide variety of composite structures...

  11. The synthesis and structural characterization of novel transition metal fluorides

    Energy Technology Data Exchange (ETDEWEB)

    Casteel, Jr., William Jack [Univ. of California, Berkeley, CA (United States)

    1992-09-01

    High purity KMF6 and K2MF6 salts (M = Mo,Re, Ru, Os, Ir, Pt) are obtained from reduction hexafluorides. A rhombohedral unit cell is observed for KReF6. Fluoride ion capture by Lewis acids from the hexafluorometallate (IV) salts affords high purity tetrafluorides for M = Mo, Re, Ru, Os, and Pd. The structure of RuF4 is determined from X-ray synchrotron and neutron powder data. Unit cells based on theorthorhombic PdF4 type cell are derived from X-ray powder data for ReF4 and OsF4. Fluoride ion capture from KAgF4 provides the thermally unstable trifluoride as a bright, red, diamagnetic solid. The structure solution of AgF3 and redetermination of the AuF3 structure from X-ray synchrotron and neutron powder data demonstrate that the two are isostnictural. Thermal decomposition product of AgF3 is the mixed valence compound AgIIAg2IIIF8. Several new salts containing the (Ag - F)$n+\\atop{n}$ chain cation are prepared. The first linear (Ag - F)$n+\\atop{n}$ chain is observed in AgF+BF4- which crystallizes in a tetragonal unit. AgFAuF4 has a triclinic unit cell and is isostructural with CuFAuF4. AgFAuF6 has an orthorhombic unit cell and appears to be isostructural with AgFAsF6. A second mixed valence silver fluoride, AgIIAgIIIF5, is prepared, which magnetic measurements indicate is probably an AgF+ salt. Magnetic data for all of the AgF+ salts exhibit low magnitude, temperature independent paramagnetism characteristic of metallic systems. Cationic AG(II) in acidic AHF solutions is a powerful oxidizer, capable of oxidizing Xe to Xe(II) and O2 to O2+. Reactions with C6F6 and C3F6 suggest an electron capture

  12. Framework for Structural Online Health Monitoring of Aging and Degradation of Secondary Systems due to some Aspects of Erosion

    Energy Technology Data Exchange (ETDEWEB)

    Gribok, Andrei [Idaho National Lab. (INL), Idaho Falls, ID (United States); Patnaik, Sobhan [Idaho National Lab. (INL), Idaho Falls, ID (United States); Williams, Christian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pattanaik, Marut [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kanakala, Raghunath [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    This report describes the current state of research related to critical aspects of erosion and selected aspects of degradation of secondary components in nuclear power plants. The report also proposes a framework for online health monitoring of aging and degradation of secondary components. The framework consists of an integrated multi-sensor modality system which can be used to monitor different piping configurations under different degradation conditions. The report analyses the currently known degradation mechanisms and available predictive models. Based on this analysis, the structural health monitoring framework is proposed. The Light Water Reactor Sustainability Program began to evaluate technologies that could be used to perform online monitoring of piping and other secondary system structural components in commercial NPPs. These online monitoring systems have the potential to identify when a more detailed inspection is needed using real-time measurements, rather than at a pre-determined inspection interval. This transition to condition-based, risk informed automated maintenance will contribute to a significant reduction of operations and maintenance costs that account for the majority of nuclear power generation costs. There is unanimous agreement between industry experts and academic researchers that identifying and prioritizing inspection locations in secondary piping systems (for example, in raw water piping or diesel piping) would eliminate many excessive in-service inspections. The proposed structural health monitoring framework takes aim at answering this challenge by combining long-range guided wave technologies with other monitoring techniques, which can significantly increase the inspection length and pinpoint the locations that degraded the most. More widely, the report suggests research efforts aimed at developing, validating, and deploying online corrosion monitoring techniques for complex geometries, which are pervasive in NPPs.

  13. Framework for Structural Online Health Monitoring of Aging and Degradation of Secondary Systems due to some Aspects of Erosion

    International Nuclear Information System (INIS)

    Gribok, Andrei; Patnaik, Sobhan; Williams, Christian; Pattanaik, Marut; Kanakala, Raghunath

    2016-01-01

    This report describes the current state of research related to critical aspects of erosion and selected aspects of degradation of secondary components in nuclear power plants. The report also proposes a framework for online health monitoring of aging and degradation of secondary components. The framework consists of an integrated multi-sensor modality system which can be used to monitor different piping configurations under different degradation conditions. The report analyses the currently known degradation mechanisms and available predictive models. Based on this analysis, the structural health monitoring framework is proposed. The Light Water Reactor Sustainability Program began to evaluate technologies that could be used to perform online monitoring of piping and other secondary system structural components in commercial NPPs. These online monitoring systems have the potential to identify when a more detailed inspection is needed using real-time measurements, rather than at a pre-determined inspection interval. This transition to condition-based, risk informed automated maintenance will contribute to a significant reduction of operations and maintenance costs that account for the majority of nuclear power generation costs. There is unanimous agreement between industry experts and academic researchers that identifying and prioritizing inspection locations in secondary piping systems (for example, in raw water piping or diesel piping) would eliminate many excessive in-service inspections. The proposed structural health monitoring framework takes aim at answering this challenge by combining long-range guided wave technologies with other monitoring techniques, which can significantly increase the inspection length and pinpoint the locations that degraded the most. More widely, the report suggests research efforts aimed at developing, validating, and deploying online corrosion monitoring techniques for complex geometries, which are pervasive in NPPs.

  14. Prediction of pressure induced structural phase transitions and internal mode frequency changes in solid N2+

    International Nuclear Information System (INIS)

    Etters, R.D.; Kobashi, K.; Chandrasekharan, V.

    1983-01-01

    A rhombohedral distortion of the Pm3n structure is introduced which shows that a low temperature phase transition occurs from P4 2 /mnm into the R3c calcite structure at P approx. = 19.2 kbar with a volume change of 0.125 cm 3 /mole. This transition agrees with recent Raman scattering measurements. Another transition from R3c into R3m is predicted at P approx. = 67.5 kbar, with a volume change of 0.1 cm 3 /mole. The pressure dependence of the intramolecular mode frequencies for the R3c structure is in reasonably good agreement with the two main branches observed experimentally

  15. Conformational transition paths harbor structures useful for aiding drug discovery and understanding enzymatic mechanisms in protein kinases.

    Science.gov (United States)

    Wong, Chung F

    2016-01-01

    This short article examines the usefulness of fast simulations of conformational transition paths in elucidating enzymatic mechanisms and guiding drug discovery for protein kinases. It applies the transition path method in the MOIL software package to simulate the paths of conformational transitions between six pairs of structures from the Protein Data Bank. The structures along the transition paths were found to resemble experimental structures that mimic transient structures believed to form during enzymatic catalysis or conformational transitions, or structures that have drug candidates bound. These findings suggest that such simulations could provide quick initial insights into the enzymatic mechanisms or pathways of conformational transitions of proteins kinases, or could provide structures useful for aiding structure-based drug design. © 2015 The Protein Society.

  16. Electron spin transition causing structure transformations of earth's interiors under high pressure

    Science.gov (United States)

    Yamanaka, T.; Kyono, A.; Kharlamova, S.; Alp, E.; Bi, W.; Mao, H.

    2012-12-01

    To elucidate the correlation between structure transitions and spin state is one of the crucial problems for understanding the geophysical properties of earth interiors under high pressure. High-pressure studies of iron bearing spinels attract extensive attention in order to understand strong electronic correlation such as the charge transfer, electron hopping, electron high-low spin transition, Jahn-Teller distortion and charge disproponation in the lower mantle or subduction zone [1]. Experiment Structure transitions of Fe3-xSixO4, Fe3-xTixO4 Fe3-xCrxO4 spinel solid solution have been investigated at high pressure up to 60 GPa by single crystal and powder diffraction studies using synchrotron radiation with diamond anvil cell. X-ray emission experiment (XES) at high pressure proved the spin transition of Fe-Kβ from high spin (HS) to intermediate spin state (IS) or low spin state (LS). Mössbauer experiment and Raman spectra study have been also conducted for deformation analysis of Fe site and confirmation of the configuration change of Fe atoms. Jahn-Teller effect A cubic-to-tetragonal transition under pressure was induced by Jahn-Teller effect of IVFe2+ (3d6) in the tetrahedral site of Fe2TiO4 and FeCr2O4, providing the transformation from 43m (Td) to 42m (D2d). Tetragonal phase is formed by the degeneracy of e orbital of Fe2+ ion. Their c/a ratios are c/adisordered in the M2 site. At pressures above 53 GPa, Fe2TiO4 structure further transforms to Pmma. This structure change results in the order-disorder transition [2]. New structure of Fe2SiO4 The spin transition exerts an influence to Fe2SiO4 spinel structure and triggers two distinct curves of the lattice constant in the spinel phase. The reversible structure transition from cubic to pseudo-rhombohedral phase was observed at about 45 GPa. This transition is induced by the 20% shrinkage of ionic radius of VIFe2+at the low sin state. Laser heating experiment at 1500 K has confirmed the decomposition from the

  17. Integration of structural health monitoring and asset management.

    Science.gov (United States)

    2012-08-01

    This project investigated the feasibility and potential benefits of the integration of infrastructure monitoring systems into enterprise-scale transportation management systems. An infrastructure monitoring system designed for bridges was implemented...

  18. Magnetic susceptibility of transition metal alloys with a hcp structure

    International Nuclear Information System (INIS)

    Volkenshtejn, N.V.; Galoshina, Eh.V.; Gorina, N.B.; Korenovskij, N.L.; Polyakova, V.P.; Savitskij, E.M.

    1978-01-01

    The angular dependence of the magnetic susceptibility of single crystals of Ru-Nb, Re-W and Os-Re alloys is investigated in the region of the hexagonal closely packed structure. The spin susceptibility is estimated on the basis of available data on the electron specific heat. The principal values of the orbital component of the susceptibility are determined under the assumption of isotopy of the spin contribution to the susceptibility. In Ru-Nb alloys the magnitudes of the orbital contributions and the susceptibility anisotropy are found to increase; in Re-W the spin contribution is noticeably greater whereas the orbital susceptibility is smaller, as is the anistropy. In the Os-Re alloy the orbital contributions increase and the susceptibility anisotropy is constant. It is suggested that the addition of the second component changes the overlapping of the d-electron wave functions

  19. Alpha-decay fine structure versus electromagnetic transitions

    International Nuclear Information System (INIS)

    Peltonen, S.

    2003-01-01

    Alpha decay of even-even Rn isotopes is studied microscopically along the lines of Phys. Rev. C 64, 302 (2001). The results are compared against experimental fine-structure hindrance factors (HFs). We consider problems related to reproducing observed HFs with nuclear models, especially in case of the collective 2 + - excitations. We use the QRPA model with isovector SDI interaction in order to systematically evaluate theoretical HFs. Pairing gaps and the experimental energy of the 2 + - state fix all interaction parameters except the ratio between the isovector and isoscalar interaction strengths that is used as an additional free parameter of the model. Correlation between the electromagnetic E2-strength and HFs is observed, depending both on the isotope and the excitation energy. The choice of the single particle basis appears to affect strongly the theoretical HFs. Further and even more systematical studies are required in order explain this behaviour. (author)

  20. Compressive sensing based wireless sensor for structural health monitoring

    Science.gov (United States)

    Bao, Yuequan; Zou, Zilong; Li, Hui

    2014-03-01

    Data loss is a common problem for monitoring systems based on wireless sensors. Reliable communication protocols, which enhance communication reliability by repetitively transmitting unreceived packets, is one approach to tackle the problem of data loss. An alternative approach allows data loss to some extent and seeks to recover the lost data from an algorithmic point of view. Compressive sensing (CS) provides such a data loss recovery technique. This technique can be embedded into smart wireless sensors and effectively increases wireless communication reliability without retransmitting the data. The basic idea of CS-based approach is that, instead of transmitting the raw signal acquired by the sensor, a transformed signal that is generated by projecting the raw signal onto a random matrix, is transmitted. Some data loss may occur during the transmission of this transformed signal. However, according to the theory of CS, the raw signal can be effectively reconstructed from the received incomplete transformed signal given that the raw signal is compressible in some basis and the data loss ratio is low. This CS-based technique is implemented into the Imote2 smart sensor platform using the foundation of Illinois Structural Health Monitoring Project (ISHMP) Service Tool-suite. To overcome the constraints of limited onboard resources of wireless sensor nodes, a method called random demodulator (RD) is employed to provide memory and power efficient construction of the random sampling matrix. Adaptation of RD sampling matrix is made to accommodate data loss in wireless transmission and meet the objectives of the data recovery. The embedded program is tested in a series of sensing and communication experiments. Examples and parametric study are presented to demonstrate the applicability of the embedded program as well as to show the efficacy of CS-based data loss recovery for real wireless SHM systems.

  1. First-principles assessment of potential ultrafast laser-induced structural transition in Ni

    Energy Technology Data Exchange (ETDEWEB)

    Bévillon, E.; Colombier, J.P., E-mail: jean.philippe.colombier@univ-st-etienne.fr; Stoian, R.

    2016-06-30

    Highlights: • First-principles theory calculations in nonequilibrium conditions. • Electronic temperatures fully and consistently taken into account. • Evaluation of an ultrafast laser-induced solid-to-solid transition in Ni. • Relative energies, phonon spectra and energy path are evaluated. • Discussion on the generation of non-thermal forces in metals. - Abstract: The possibility to trigger ultrafast solid-to-solid transitions in transition metals under femtosecond laser irradiation is investigated by means of first-principles calculations. Electronic heating can drastically modify screening, charge distribution and atomic binding features, potentially determining new structural relaxation paths in the solid phase, before thermodynamic solid-to-liquid transformations set in. Consequently, we evaluate here the effect of electronic excitation on structural stability and conditions for structural transitions. Ni is chosen as a case study for the probability of a solid transition, and the stability of its FCC phase is compared to the non-standard HCP structure while accounting for the heating of the electronic subsystem. From a phonon spectra analysis, we show that the thermodynamic stability order reverses at an electronic temperature of around 10{sup 4} K. Both structures exhibit a dynamic stability, indicating they present a metastability depending on the heating. However, the general hardening of phonon modes with the increase of the electronic temperature points out that no transformation will occur, as confirmed by the study of a typical FCC to HCP diffusionless transformation path, showing an increasing energy barrier. Finally, based on electronic density of states interpretation, the tendency of different metal categories to undergo or not an ultrafast laser-induced structural transition is discussed.

  2. Organizational Structures and Data Use in Volunteer Monitoring Organizations (VMOs)

    Science.gov (United States)

    Laird, Shelby Gull; Nelson, Stacy A. C.; Stubbs, Harriett S.; James, April L.; Menius, Erika

    2012-01-01

    Complex environmental problems call for unique solutions to monitoring efforts alongside developing a more environmentally literate citizenry. Community-based monitoring (CBM) through the use of volunteer monitoring organizations helps to provide a part of the solution, particularly when CBM groups work with research scientists or government…

  3. Fielding a structural health monitoring system on legacy military aircraft: A business perspective

    Energy Technology Data Exchange (ETDEWEB)

    Bos, Marcel J. [Dept. of Gas Turbines and Structural Integrity, National Aerospace Laboratory NLR, Amsterdam (Netherlands)

    2015-12-15

    An important trend in the sustainment of military aircraft is the transition from preventative maintenance to condition based maintenance (CBM). For CBM, it is essential that the actual system condition can be measured and the measured condition can be reliably extrapolated to a convenient moment in the future in order to facilitate the planning process while maintaining flight safety. Much research effort is currently being made for the development of technologies that enable CBM, including structural health monitoring (SHM) systems. Great progress has already been made in sensors, sensor networks, data acquisition, models and algorithms, data fusion/mining techniques, etc. However, the transition of these technologies into service is very slow. This is because business cases are difficult to define and the certification of the SHM systems is very challenging. This paper describes a possibility for fielding a SHM system on legacy military aircraft with a minimum amount of certification issues and with a good prospect of a positive return on investment. For appropriate areas in the airframe the application of SHM will reconcile the fail-safety and slow crack growth damage tolerance approaches that can be used for safeguarding the continuing airworthiness of these areas, combining the benefits of both approaches and eliminating the drawbacks.

  4. Fielding a structural health monitoring system on legacy military aircraft: A business perspective

    International Nuclear Information System (INIS)

    Bos, Marcel J.

    2015-01-01

    An important trend in the sustainment of military aircraft is the transition from preventative maintenance to condition based maintenance (CBM). For CBM, it is essential that the actual system condition can be measured and the measured condition can be reliably extrapolated to a convenient moment in the future in order to facilitate the planning process while maintaining flight safety. Much research effort is currently being made for the development of technologies that enable CBM, including structural health monitoring (SHM) systems. Great progress has already been made in sensors, sensor networks, data acquisition, models and algorithms, data fusion/mining techniques, etc. However, the transition of these technologies into service is very slow. This is because business cases are difficult to define and the certification of the SHM systems is very challenging. This paper describes a possibility for fielding a SHM system on legacy military aircraft with a minimum amount of certification issues and with a good prospect of a positive return on investment. For appropriate areas in the airframe the application of SHM will reconcile the fail-safety and slow crack growth damage tolerance approaches that can be used for safeguarding the continuing airworthiness of these areas, combining the benefits of both approaches and eliminating the drawbacks

  5. Magnetic layering transitions in a polyamidoamine (PAMAM) dendrimer nano-structure: Monte Carlo study

    Science.gov (United States)

    Ziti, S.; Aouini, S.; Labrim, H.; Bahmad, L.

    2017-02-01

    We study the magnetic layering transitions in a polyamidoamine (PAMAM) dendrimer nano-structure, under the effect of an external magnetic field. We examine the magnetic properties, of this model of the spin S=1 Ising ferromagnetic in real nanostructure used in several scientific domains. For T=0, we give and discuss the ground state phase diagrams. At non null temperatures, we applied the Monte Carlo simulations giving important results summarized in the form of the phase diagrams. We also analyzed the effect of varying the external magnetic field, and found the layering transitions in the polyamidoamine (PAMAM) dendrimer nano-structure.

  6. Structural study on cubic-tetragonal transition of CH3NH3PbI3

    International Nuclear Information System (INIS)

    Kawamura, Yukihiko; Mashiyama, Hiroyuki; Hasebe, Katsuhiko

    2002-01-01

    The cubic-tetragonal phase transition of CH 3 NH 3 PbI 3 was investigated by single crystal X-ray diffractometry. The crystal structure was refined at five temperatures in the tetragonal phase. The PbI 6 octahedron rotates around the c-axis alternatively to construct the SrTiO 3 -type tetragonal structure. A methylammonium ion is partially ordered; 24 disordered states in the cubic phase are reduced to 8. With decreasing temperature, the rotation angle of the octahedron increases monotonically, which indicates it is an order parameter of the cubic-tetragonal transition. (author)

  7. Electronic structure, phase transitions and diffusive properties of elemental plutonium

    Science.gov (United States)

    Setty, Arun; Cooper, B. R.

    2003-03-01

    We present a SIC-LDA-LMTO based study of the electronic structure of the delta, alpha and gamma phases of plutonium, and also of the alpha and gamma phases of elemental cerium. We find excellent agreement with the experimental densities and magnetic properties [1]. Furthermore, detailed studies of the computational densities of states for delta plutonium, and comparison with the experimental photoemission spectrum [2], provide evidence for the existence of an unusual fluctuating valence state. Results regarding the vacancy formation and self-diffusion in delta plutonium will be presented. Furthermore, a study of interface diffusion between plutonium and steel (technologically relevant in the storage of spent fuel) or other technologically relevant alloys will be included. Preliminary results regarding gallium stabilization of delta plutonium, and of plutonium alloys will be presented. [1] M. Dormeval et al., private communication (2001). [2] A. J. Arko, J. J. Joyce, L. Morales, J. Wills, and J. Lashley et. al., Phys. Rev. B, 62, 1773 (2000). [3] B. R. Cooper et al, Phil. Mag. B 79, 683 (1999); B.R. Cooper, Los Alamos Science 26, 106 (2000)); B.R. Cooper, A.K. Setty and D.L.Price, to be published.

  8. Reframing measurement for structural health monitoring: a full-field strategy for structural identification

    Science.gov (United States)

    Dizaji, Mehrdad S.; Harris, Devin K.; Alipour, Mohamad; Ozbulut, Osman E.

    2018-03-01

    Structural health monitoring (SHM) describes a decision-making framework that is fundamentally guided by state change detection of structural systems. This framework typically relies on the use of continuous or semi-continuous monitoring of measured response to quantify this state change in structural system behavior, which is often related to the initiation of some form of damage. Measurement approaches used for traditional SHM are numerous, but most are limited to either describing localized or global phenomena, making it challenging to characterize operational structural systems which exhibit both. In addition to these limitations in sensing, SHM has also suffered from the inherent robustness inherent to most full-scale structural systems, making it challenging to identify local damage. These challenges highlight the opportunity for alternative strategies for SHM, strategies that are able to provide data suitable to translate into rich information. This paper describes preliminary results from a refined structural identification (St-ID) approach using fullfield measurements derived from high-speed 3D Digital Image Correlation (HSDIC) to characterize uncertain parameters (i.e. boundary and constitutive properties) of a laboratory scale structural component. The St-ID approach builds from prior work by supplementing full-field deflection and strain response with vibration response derived from HSDIC. Inclusion of the modal characteristics within a hybrid-genetic algorithm optimization scheme allowed for simultaneous integration of mechanical and modal response, thus enabling a more robust St-ID strategy than could be achieved with traditional sensing techniques. The use of full-field data is shown to provide a more comprehensive representation of the global and local behavior, which in turn increases the robustness of the St-Id framework. This work serves as the foundation for a new paradigm in SHM that emphasizes characterizing structural performance using a

  9. Theory of structural phase transition in MgTi{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Talanov, V. M., E-mail: valtalanov@mail.ru [South Russian State Polytechnical University (Russian Federation); Shirokov, V. B. [Russian Academy of Sciences, South Science Centre (Russian Federation); Ivanov, V. V. [South Russian State Polytechnical University (Russian Federation); Talanov, M. V. [South Federal University (Russian Federation)

    2015-01-15

    A theory of phase transition in MgTi{sub 2}O{sub 4} is proposed based on a study of the order-parameter symmetry, thermodynamics, and mechanisms of formation of the atomic and orbital structure of the low-symmetry MgTi{sub 2}O{sub 4} phase. The critical order parameter (which induces a phase transition) is determined. It is shown that the calculated MgTi{sub 2}O{sub 4} tetragonal structure is a result of displacements of magnesium, titanium, and oxygen atoms; ordering of oxygen atoms; and the participation of d{sub xy}, d{sub xz}, and d{sub yz} orbitals. The contribution of noncritical representations to ion displacements is proven to be insignificant. The existence of various metal clusters in the tetragonal phase has been established by calculation in correspondence with experimental data. It is shown (within the Landau theory of phase transitions) that phase states can be changed as a result of both first- and second-order phase transitions: the high-symmetry phase borders two low-symmetry phases by second-order transition lines, while the border between low-symmetry phases is a first-order transition line.

  10. 'Vanishing' structural effects of temperature in polymer glasses close to the glass-transition temperature

    International Nuclear Information System (INIS)

    Shantarovich, V.P.; Suzuki, T.; Ito, Y.; Yu, R.S.; Kondo, K.; Yampolskii, Yu. P.; Alentiev, A.Yu.

    2007-01-01

    Positron annihilation lifetime (PAL) measurements were used for observation of structural effects of temperature in polystyrene (PS), super-cross-linked polystyrene networks (CPS), and in polyimides (PI) below and in the vicinity of glass-transition temperature T g . 'Vanishing' of these structural effects in the repeating cycles of the temperature controlled PAL experiments due to the slow relaxation processes in different conditions and details of chemical structure is demonstrated. Obtained results illustrate complex, dependent on thermal history, inhomogeneous character of the glass structure. In fact, structure of some polymer glasses is changing continuously. Calculations of the number density of free volume holes in these conditions are discussed

  11. Structural phase transition and magnetic properties of Er-doped BiFeO3 nanoparticles

    International Nuclear Information System (INIS)

    Li, Y T; Zhang, H G; Dong, X G; Li, Q; Mao, W W; Dong, C L; Ren, S L; Li, X A; Wei, S Q

    2013-01-01

    The structural phase transition and local structural distortion of Er-doped BiFeO 3 nanoparticles have been discussed in order to understand the variation of magnetic properties in this system. The X-ray diffraction patterns and X-ray absorption fine structure of these samples demonstrate that there is structural phase transition and no obvious local structural distortion with the increasing of doping concentration. Unfortunately, no ferromagnetic properties have been observed even at a lower temperature. And the X-ray absorption spectra of Fe 2p core level of these samples are totally same, especially the energy positions do not shift which means the consistent valence states of Fe ions.

  12. Quantitative image analysis reveals distinct structural transitions during aging in Caenorhabditis elegans tissues.

    Science.gov (United States)

    Johnston, Josiah; Iser, Wendy B; Chow, David K; Goldberg, Ilya G; Wolkow, Catherine A

    2008-07-30

    Aging is associated with functional and structural declines in many body systems, even in the absence of underlying disease. In particular, skeletal muscles experience severe declines during aging, a phenomenon termed sarcopenia. Despite the high incidence and severity of sarcopenia, little is known about contributing factors and development. Many studies focus on functional aspects of aging-related tissue decline, while structural details remain understudied. Traditional approaches for quantifying structural changes have assessed individual markers at discrete intervals. Such approaches are inadequate for the complex changes associated with aging. An alternative is to consider changes in overall morphology rather than in specific markers. We have used this approach to quantitatively track tissue architecture during adulthood and aging in the C. elegans pharynx, the neuromuscular feeding organ. Using pattern recognition to analyze aged-grouped pharynx images, we identified discrete step-wise transitions between distinct morphologies. The morphology state transitions were maintained in mutants with pharynx neurotransmission defects, although the pace of the transitions was altered. Longitudinal measurements of pharynx function identified a predictive relationship between mid-life pharynx morphology and function at later ages. These studies demonstrate for the first time that adult tissues undergo distinct structural transitions reflecting postdevelopmental events. The processes that underlie these architectural changes may contribute to increased disease risk during aging, and may be targets for factors that alter the aging rate. This work further demonstrates that pattern analysis of an image series offers a novel and generally accessible approach for quantifying morphological changes and identifying structural biomarkers.

  13. Indirect phase transition of TiC, ZrC, and HfC crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Abavare, Eric K.K.; Dodoo, Samuel N.A. [Department of Physics, Kwame Nkrumah University of Science and Technology, Kumasi (Ghana); Uchida, Kazuyuki; Oshiyama, Atsushi [Department of Applied Physics, The University of Tokyo, Hongo, Tokyo (Japan); Nkurumah-Buandoh, George K.; Yaya, Abu [Department of Physics, University of Ghana, Legon (Ghana)

    2016-06-15

    We have performed first-principles calculations to analyze the electronic structures, static, and dynamical structural stabilities of the pressure-induced phase transformation of refractory compounds (transition-metal carbides) from NaCl-type (B1) to CsCl-type (B2) via zinc-blende phase using the plane-wave pseudopotential approach in the framework of the generalized gradient approximation (GGA) for the exchange and correlation functional. The ground-state properties, equilibrium lattice constant, bulk moduli, and band structures are determined for the stoichiometry of the compounds and compared with known experimental and theoretical values. We find that the phase-transition pressure for the indirect phase transition from B1→B2 via zinc-blende structure is about 17-fold for TiC, 12-fold for both ZrC and HfC, respectively, when compared with the direct phase transition. Calculated phonon instability exists for the CsCl-B2 phase, which can prevent the structures from forming and contrary to the zinc-blende and the NaCl-B1 phases. The band dispersion and electronic density of states for B1 and B2 crystal phases were explored and found to indicate metallic character in contrast with the zinc-blende phase, which has a pseudogap opening in the bandgap region suggesting a semiconducting property and also a frequency gap in the phonon spectrum. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Simultaneous excitation system for efficient guided wave structural health monitoring

    Science.gov (United States)

    Hua, Jiadong; Michaels, Jennifer E.; Chen, Xin; Lin, Jing

    2017-10-01

    Many structural health monitoring systems utilize guided wave transducer arrays for defect detection and localization. Signals are usually acquired using the ;pitch-catch; method whereby each transducer is excited in turn and the response is received by the remaining transducers. When extensive signal averaging is performed, the data acquisition process can be quite time-consuming, especially for metallic components that require a low repetition rate to allow signals to die out. Such a long data acquisition time is particularly problematic if environmental and operational conditions are changing while data are being acquired. To reduce the total data acquisition time, proposed here is a methodology whereby multiple transmitters are simultaneously triggered, and each transmitter is driven with a unique excitation. The simultaneously transmitted waves are captured by one or more receivers, and their responses are processed by dispersion-compensated filtering to extract the response from each individual transmitter. The excitation sequences are constructed by concatenating a series of chirps whose start and stop frequencies are randomly selected from a specified range. The process is optimized using a Monte-Carlo approach to select sequences with impulse-like autocorrelations and relatively flat cross-correlations. The efficacy of the proposed methodology is evaluated by several metrics and is experimentally demonstrated with sparse array imaging of simulated damage.

  15. A Simple Instrumentation System for Large Structure Vibration Monitoring

    Directory of Open Access Journals (Sweden)

    Didik R. Santoso

    2010-12-01

    Full Text Available Traditional instrumentation systems used for monitoring vibration of large-scale infrastructure building such as bridges, railway, and others structural building, generally have a complex design. Makes it simple would be very useful both in terms of low-cost and easy maintenance. This paper describes how to develop the instrumentation system. The system is built based on distributed network, with field bus topology, using single-master multi-slave architecture. Master is a control unit, built based on a PC equipped with RS-485 interface. Slave is a sensing unit; each slave was built by integrating a 3-axis vibration sensor with a microcontroller based data acquisition system. Vibration sensor is designed using the main components of a MEMS accelerometer. While the software is developed for two functions: as a control system hardware and data processing. To verify performance of the developed instrumentation system, several laboratory tests have been performed. The result shows that the system has good performance.

  16. Structural health monitoring and probability of detection estimation

    Science.gov (United States)

    Forsyth, David S.

    2016-02-01

    Structural health monitoring (SHM) methods are often based on nondestructive testing (NDT) sensors and are often proposed as replacements for NDT to lower cost and/or improve reliability. In order to take advantage of SHM for life cycle management, it is necessary to determine the Probability of Detection (POD) of the SHM system just as for traditional NDT to ensure that the required level of safety is maintained. Many different possibilities exist for SHM systems, but one of the attractive features of SHM versus NDT is the ability to take measurements very simply after the SHM system is installed. Using a simple statistical model of POD, some authors have proposed that very high rates of SHM system data sampling can result in high effective POD even in situations where an individual test has low POD. In this paper, we discuss the theoretical basis for determining the effect of repeated inspections, and examine data from SHM experiments against this framework to show how the effective POD from multiple tests can be estimated.

  17. On-line Bayesian model updating for structural health monitoring

    Science.gov (United States)

    Rocchetta, Roberto; Broggi, Matteo; Huchet, Quentin; Patelli, Edoardo

    2018-03-01

    Fatigue induced cracks is a dangerous failure mechanism which affects mechanical components subject to alternating load cycles. System health monitoring should be adopted to identify cracks which can jeopardise the structure. Real-time damage detection may fail in the identification of the cracks due to different sources of uncertainty which have been poorly assessed or even fully neglected. In this paper, a novel efficient and robust procedure is used for the detection of cracks locations and lengths in mechanical components. A Bayesian model updating framework is employed, which allows accounting for relevant sources of uncertainty. The idea underpinning the approach is to identify the most probable crack consistent with the experimental measurements. To tackle the computational cost of the Bayesian approach an emulator is adopted for replacing the computationally costly Finite Element model. To improve the overall robustness of the procedure, different numerical likelihoods, measurement noises and imprecision in the value of model parameters are analysed and their effects quantified. The accuracy of the stochastic updating and the efficiency of the numerical procedure are discussed. An experimental aluminium frame and on a numerical model of a typical car suspension arm are used to demonstrate the applicability of the approach.

  18. Structural health monitoring (vibration) as a tool for identifying structural alterations of the lumbar spine

    DEFF Research Database (Denmark)

    Kawchuk, Gregory N; Hartvigsen, Jan; Edgecombe, Tiffany

    2016-01-01

    Structural health monitoring (SHM) is an engineering technique used to identify mechanical abnormalities not readily apparent through other means. Recently, SHM has been adapted for use in biological systems, but its invasive nature limits its clinical application. As such, the purpose of this pr......Structural health monitoring (SHM) is an engineering technique used to identify mechanical abnormalities not readily apparent through other means. Recently, SHM has been adapted for use in biological systems, but its invasive nature limits its clinical application. As such, the purpose...... of this project was to determine if a non-invasive form of SHM could identify structural alterations in the spines of living human subjects. Lumbar spines of 10 twin pairs were visualized by magnetic resonance imaging then assessed by a blinded radiologist to determine whether twin pairs were structurally...... concordant or discordant. Vibration was then applied to each subject's spine and the resulting response recorded from sensors overlying lumbar spinous processes. The peak frequency, area under the curve and the root mean square were computed from the frequency response function of each sensor. Statistical...

  19. A gas monitoring facility with a quadrupole mass spectrometer for the ZEUS transition-radiation chambers

    International Nuclear Information System (INIS)

    Kapp, U.

    1988-07-01

    A gas analysis facility for the ZEUS transition-radiation chambers based on a quadrupole mass spectrometer is described. After a description of the spectrometer, the vacuum system, and the software, some test results are presented. (HSI)

  20. Fine-structure energy levels, oscillator strengths and transition probabilities in Ni XVI

    International Nuclear Information System (INIS)

    Deb, N.C.; Msezane, A.Z.

    2001-01-01

    Fine-structure energy levels relative to the ground state, oscillator strengths and transition probabilities for transitions among the lowest 40 fine-structure levels belonging to the configurations 3s 2 3p, 3s3p 2 , 3s 2 3d, 3p 3 and 3s3p3d of Ni XVI are calculated using a large scale CI in program CIV3 of Hibbert. Relativistic effects are included through the Breit-Pauli approximation via spin-orbit, spin-other-orbit, spin-spin, Darwin and mass correction terms. The existing discrepancies between the calculated and measured values for many of the relative energy positions are resolved in the present calculation which yields excellent agreement with measurement. Also, many of our oscillator strengths for allowed and intercombination transitions are in very good agreement with the recommended data by the National Institute of Standard and Technology (NIST). (orig.)

  1. Pressure induced structural phase transition of OsB 2: First-principles calculations

    Science.gov (United States)

    Ren, Fengzhu; Wang, Yuanxu; Lo, V. C.

    2010-04-01

    Orthorhombic OsB 2 was synthesized at 1000 °C and its compressibility was measured by using the high-pressure X-ray diffraction in a Diacell diamond anvil cell from ambient pressure to 32 GPa [R.W. Cumberland, et al. (2005)]. First-principles calculations were performed to study the possibility of the phase transition of OsB 2. An analysis of the calculated enthalpy shows that orthorhombic OsB 2 can transfer to the hexagonal phase at 10.8 GPa. The calculated results with the quasi-harmonic approximation indicate that this phase transition pressure is little affected by the thermal effect. The calculated phonon band structure shows that the hexagonal P 6 3/ mmc structure (high-pressure phase) is stable for OsB 2. We expect the phase transition can be further confirmed by the experimental work.

  2. B1 to B2 structural phase transition in LiF under pressure

    Science.gov (United States)

    Jain, Aayushi; Dixit, R. C.

    2018-05-01

    In the last few decades the alkali halides emerged as crystals with useful applications and their high-pressure behaviour is the most intensively studied subject in high-pressure physics/chemistry, material science, and geosciences. Most alkali halides follow the B1 (NaCl-type)→B2 (CsCl-type) phase-transition route under pressure. In the present paper, we have investigated the characteristics of structural phase transition that occurred in Lithium Florid compound under high pressure. The transition pressure of B1-B2 was calculated using an effective interionic interaction potential (EIOP). The changes of the characteristics of crystals like, Gibbs free energy, cohesive energy, volume collapse, and lattice constant are calculated for the B1 and B2 structures. These data were compared with the available experimental and theoretical data.

  3. Flexible High Energy-Conversion Sensing Materials for Structural Health Monitoring, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The applicant is developing flexible highly-efficient piezoelectric materials for use in structural health monitoring (SHM) as contemplated in the solicitation...

  4. Passively-Coded Embedded Wideband Microwave Sensors for Material Characterization and Structural Health Monitoring (SHM)

    Data.gov (United States)

    National Aeronautics and Space Administration — Materials and structures are constantly subject to fatigue and degradation, and monitoring and maintaining civil, space, and aerospace infrastructure is an ongoing...

  5. Structural Health Monitoring with Fiber Bragg Grating and Piezo Arrays, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — IFOS and its research institute collaborator, Washington State University (WSU), have demonstrated feasibility of a structural health monitoring (SHM) system for...

  6. Highly Reliable Structural Health Monitoring of Smart Composite Vanes for Jet Engine, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Intelligent Fiber Optic Systems and Auburn University propose a Fiber Bragg Grating (FBG) integrated Structural Health Monitoring (SHM) sensor system capable of...

  7. An Ultrasonic Wireless Sensor Network for Data Communication and Structural Health Monitoring, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Typical Structural Health Monitoring (SHM) uses embedded ultrasonic transducers exclusively for non-destructive evaluation (NDE) purposes, whereas data transfer is...

  8. A Review of the Piezoelectric Electromechanical Impedance Based Structural Health Monitoring Technique for Engineering Structures

    Directory of Open Access Journals (Sweden)

    Wongi S. Na

    2018-04-01

    Full Text Available The birth of smart materials such as piezoelectric (PZT transducers has aided in revolutionizing the field of structural health monitoring (SHM based on non-destructive testing (NDT methods. While a relatively new NDT method known as the electromechanical (EMI technique has been investigated for more than two decades, there are still various problems that must be solved before it is applied to real structures. The technique, which has a significant potential to contribute to the creation of one of the most effective SHM systems, involves the use of a single PZT for exciting and sensing of the host structure. In this paper, studies applied for the past decade related to the EMI technique have been reviewed to understand its trend. In addition, new concepts and ideas proposed by various authors are also surveyed, and the paper concludes with a discussion of the potential directions for future works.

  9. Proceedings of the users meeting on structure and phase transition of phospholipid membrane

    International Nuclear Information System (INIS)

    Hatta, Ichiro; Amemiya, Yoshiyuki

    1994-06-01

    On the occasion that the persons of three groups that have carried out the research on the structure and the phase transition of phospholipid membranes have carried out the experiment successively, the users meeting was held on November 1, 1993 at National Laboratory for High Energy Physics. Lectures were given on the L βI structure of DPPC/alcohol system, the self gathering and intermolecular cooperation phenomenon of glycero phospholipid, the phase transition of DEPE/water system, the structure of DMPA/polylysine, the development of X-ray television, the ripple structure of DMPC/cholesterol system and the simultaneous measurement of X-ray diffraction/DSC. To have the chance like this is very meaningful because sufficient discussion can be done among usually busy researchers at the synchrotron radiation experiment facility. (K.I.)

  10. Electronic structure and high pressure phase transition in LaSb and CeSb

    International Nuclear Information System (INIS)

    Mathi Jaya, S.; Sanyal, S.P.

    1992-09-01

    The electronic structure and high pressure structural phase transition in cerium and lanthanum antimonides have been investigated using the tight binding LMTO method. The calculation of total energy reveals that the simple tetragonal structure is found to be stable at high pressures for both the compounds. In the case of LaSb, the calculated value of the equilibrium cell volume and the cell volume at which phase transition occurs are found to have a fairly good agreement with the experimental results. However, in the case of CeSb, the agreement is not as good as in LaSb. We also predicted the most favoured c/a value in the high pressure phase (simple tetragonal) for these compounds. Further we present the calculated results on the electronic structure of these systems at the equilibrium as well as at the reduced cell volumes. (author). 8 refs, 11 figs, 1 tab

  11. Proceedings of the users meeting on structure and phase transition of phospholipid membrane

    Energy Technology Data Exchange (ETDEWEB)

    Hatta, Ichiro [Nagoya Univ. (Japan). School of Engineering; Amemiya, Yoshiyuki [eds.

    1994-06-01

    On the occasion that the persons of three groups that have carried out the research on the structure and the phase transition of phospholipid membranes have carried out the experiment successively, the users meeting was held on November 1, 1993 at National Laboratory for High Energy Physics. Lectures were given on the L{sub {beta}I} structure of DPPC/alcohol system, the self gathering and intermolecular cooperation phenomenon of glycero phospholipid, the phase transition of DEPE/water system, the structure of DMPA/polylysine, the development of X-ray television, the ripple structure of DMPC/cholesterol system and the simultaneous measurement of X-ray diffraction/DSC. To have the chance like this is very meaningful because sufficient discussion can be done among usually busy researchers at the synchrotron radiation experiment facility. (K.I.).

  12. Effect of superconductivity on the cubic to tetragonal structural transition due to a two-fold degenerate electronic band

    International Nuclear Information System (INIS)

    Ghatak, S.K.; Khanra, B.C.; Ray, D.K.

    1978-01-01

    The effect of the BCS superconductivity on the cubic to tetragonal structural transition arising from a two-fold degenerate electronic band is investigated within the mean field approximation. The phase diagram of the two transitions is given for a half filled esub(g)-band. Modification of the two transitions when they are close together is also discussed. (author)

  13. Theorizing power in transition studies: the role of creativity and novel practices in structural change

    NARCIS (Netherlands)

    Hoffman, J.

    2013-01-01

    An important theoretical challenge for theorizing about power dynamics in societal transitions is the transformation of power itself. In this respect, it is especially puzzling how agency at the level of novel practices can extend beyond the habitual, how it can draw on structures and destructure at

  14. Fine structure transition cross sections for several alkali+rare gas systems

    International Nuclear Information System (INIS)

    Olson, R.E.

    1975-01-01

    The energy dependence E(cm) 2 P1/2→ 2 P3/2 fine structure transition of the lowest excited states of the alkali are calculated for the following systems: Na, K, Rb+He, Ne, Ar and Cs+He. Encouraging agreement between theory and experiment is obtained [fr

  15. Diffusion bonding of transition structures for integral aluminium-fibre reinforced polymer (FRP) compounds

    Energy Technology Data Exchange (ETDEWEB)

    Hehl, A. von [IWT - Stiftung Institut fuer Werkstofftechnik, Hauptabteilung Werkstofftechnik, Bremen (Germany); Syassen, F. [Airbus Operations GmbH, Metal Technology, Bremen (Germany); Schimanski, K.

    2012-04-15

    Components in hybrid design become more and more important in terms of their lightweight potential. In this context the demand for weight saving in aerospace leads to increasing numbers of applications of fibre composites for primary structural components. In consequence the use of FRP-metal compounds is necessary. Within the investigations of the researcher group ''Schwarz Silber'' (FOR 1224) founded by the DFG (German Research Foundation) material optimised interface structures for advanced CFRP-aluminium compounds are currently being studied. Within their work the researcher group focussed on three concepts realizing the transition structures: the usage of wires (titanium), foils (titanium) and fibres (glass fibre) as transition elements between CFRP and aluminium. For the connection of the aluminium sheet and the transition element die-casting and laser beam welding are basically used. As a possible alternative to the both liquid phase processes a feasibility study haven been done focussing the solid state processes diffusion bonding. The experimental results show the high potential of this process in view of the transferable loads for integral transition structures. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Structural changes in transition economies: breaking the news or breaking the ice?

    Czech Academy of Sciences Publication Activity Database

    Égert, B.; Jiménez-Rodríguez, R.; Kočenda, Evžen; Morales-Zumaquero, A.

    -, č. 16 (2006), s. 1-15 Institutional research plan: CEZ:AV0Z70850503 Keywords : transition countries * structural break * volatility Subject RIV: AH - Economics http://deepblue.lib.umich.edu/bitstream/2027.42/41234/1/IPC-working-paper-016-Kocenda.pdf

  17. Effect of hydrostatic and uniaxial pressure on structural and magnetic transitions in TbNiAl

    Czech Academy of Sciences Publication Activity Database

    Kaštil, Jiří; Klicpera, M.; Prchal, J.; Míšek, Martin; Prokleška, J.; Javorský, P.

    2014-01-01

    Roč. 585, Feb (2014), s. 98-102 ISSN 0925-8388 Institutional support: RVO:68378271 Keywords : magnetic ordering * electrical resistivity * hydrostatic pressure * structural transition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.999, year: 2014

  18. Pressure induced structural phase transition of OsB2: First-principles calculations

    International Nuclear Information System (INIS)

    Ren Fengzhu; Wang Yuanxu; Lo, V.C.

    2010-01-01

    Orthorhombic OsB 2 was synthesized at 1000 deg. C and its compressibility was measured by using the high-pressure X-ray diffraction in a Diacell diamond anvil cell from ambient pressure to 32 GPa [R.W. Cumberland, et al. (2005)]. First-principles calculations were performed to study the possibility of the phase transition of OsB 2 . An analysis of the calculated enthalpy shows that orthorhombic OsB 2 can transfer to the hexagonal phase at 10.8 GPa. The calculated results with the quasi-harmonic approximation indicate that this phase transition pressure is little affected by the thermal effect. The calculated phonon band structure shows that the hexagonal P 6 3 /mmc structure (high-pressure phase) is stable for OsB 2 . We expect the phase transition can be further confirmed by the experimental work. - Abstract: Graphical Abstract Legend (TOC Figure): Table of Contents Figure Pressure induced structural phase transition from the orthorhombic structure to the hexagonal one for OsB 2 takes place under 10.8 GPa (0 K), 10.35 GPa (300, 1000 K) by the first-principles predictions.

  19. Glassy transition in a disordered model for the RNA secondary structure

    International Nuclear Information System (INIS)

    Pagnani, A.; Parisi, G.; Ricci-Tersenghi, F.

    2000-04-01

    We numerically study a disordered model for the RNA secondary structure and we find that it undergoes a phase transition, with a breaking of the replica symmetry in the low temperature region (like in spin glasses). Our results are based on the exact evaluation of the partition function. (author)

  20. Impedance-based structural health monitoring of additive manufactured structures with embedded piezoelectric wafers

    Science.gov (United States)

    Scheyer, Austin G.; Anton, Steven R.

    2017-04-01

    Embedding sensors within additive manufactured (AM) structures gives the ability to develop smart structures that are capable of monitoring the mechanical health of a system. AM provides an opportunity to embed sensors within a structure during the manufacturing process. One major limitation of AM technology is the ability to verify the geometric and material properties of fabricated structures. Over the past several years, the electromechanical impedance (EMI) method for structural health monitoring (SHM) has been proven to be an effective method for sensing damage in structurers. The EMI method utilizes the coupling between the electrical and mechanical properties of a piezoelectric transducer to detect a change in the dynamic response of a structure. A piezoelectric device, usually a lead zirconate titanate (PZT) ceramic wafer, is bonded to a structure and the electrical impedance is measured across as range of frequencies. A change in the electrical impedance is directly correlated to changes made to the mechanical condition of the structure. In this work, the EMI method is employed on piezoelectric transducers embedded inside AM parts to evaluate the feasibility of performing SHM on parts fabricated using additive manufacturing. The fused deposition modeling (FDM) method is used to print specimens for this feasibility study. The specimens are printed from polylactic acid (PLA) in the shape of a beam with an embedded monolithic piezoelectric ceramic disc. The specimen is mounted as a cantilever while impedance measurements are taken using an HP 4194A impedance analyzer. Both destructive and nondestructive damage is simulated in the specimens by adding an end mass and drilling a hole near the free end of the cantilever, respectively. The Root Mean Square Deviation (RMSD) method is utilized as a metric for quantifying damage to the system. In an effort to determine a threshold for RMSD, the values are calculated for the variation associated with taking multiple

  1. Long-Term Structural Health Monitoring System for a High-Speed Railway Bridge Structure

    Science.gov (United States)

    Wu, Lai-Yi

    2015-01-01

    Nanjing Dashengguan Bridge, which serves as the shared corridor crossing Yangtze River for both Beijing-Shanghai high-speed railway and Shanghai-Wuhan-Chengdu railway, is the first 6-track high-speed railway bridge with the longest span throughout the world. In order to ensure safety and detect the performance deterioration during the long-time service of the bridge, a Structural Health Monitoring (SHM) system has been implemented on this bridge by the application of modern techniques in sensing, testing, computing, and network communication. The SHM system includes various sensors as well as corresponding data acquisition and transmission equipment for automatic data collection. Furthermore, an evaluation system of structural safety has been developed for the real-time condition assessment of this bridge. The mathematical correlation models describing the overall structural behavior of the bridge can be obtained with the support of the health monitoring system, which includes cross-correlation models for accelerations, correlation models between temperature and static strains of steel truss arch, and correlation models between temperature and longitudinal displacements of piers. Some evaluation results using the mean value control chart based on mathematical correlation models are presented in this paper to show the effectiveness of this SHM system in detecting the bridge's abnormal behaviors under the varying environmental conditions such as high-speed trains and environmental temperature. PMID:26451387

  2. Long-Term Structural Health Monitoring System for a High-Speed Railway Bridge Structure

    Directory of Open Access Journals (Sweden)

    You-Liang Ding

    2015-01-01

    Full Text Available Nanjing Dashengguan Bridge, which serves as the shared corridor crossing Yangtze River for both Beijing-Shanghai high-speed railway and Shanghai-Wuhan-Chengdu railway, is the first 6-track high-speed railway bridge with the longest span throughout the world. In order to ensure safety and detect the performance deterioration during the long-time service of the bridge, a Structural Health Monitoring (SHM system has been implemented on this bridge by the application of modern techniques in sensing, testing, computing, and network communication. The SHM system includes various sensors as well as corresponding data acquisition and transmission equipment for automatic data collection. Furthermore, an evaluation system of structural safety has been developed for the real-time condition assessment of this bridge. The mathematical correlation models describing the overall structural behavior of the bridge can be obtained with the support of the health monitoring system, which includes cross-correlation models for accelerations, correlation models between temperature and static strains of steel truss arch, and correlation models between temperature and longitudinal displacements of piers. Some evaluation results using the mean value control chart based on mathematical correlation models are presented in this paper to show the effectiveness of this SHM system in detecting the bridge’s abnormal behaviors under the varying environmental conditions such as high-speed trains and environmental temperature.

  3. First-order character of the displacive structural transition in BaWO4

    International Nuclear Information System (INIS)

    Tan Da-Yong; Xiao Wan-Sheng; Zhou Wei; Chen Ming; Xiong Xiao-Lin; Song Mao-Shuang

    2012-01-01

    Nearly all displacive transitions have been considered to be continuous or second order, and the rigid unit mode (RUM) provides a natural candidate for the soft mode. However, in-situ X-ray diffraction and Raman measurements show clearly the first-order evidences for the scheelite-to-fergusonite displacive transition in BaWO 4 : a 1.6% volume collapse, coexistence of phases, and hysteresis on release of pressure. Such first-order signatures are found to be the same as the soft modes in BaWO 4 , which indicates the scheelite-to-fergusonite displacive phase transition hides a deeper physical mechanism. By the refinement of atomic displacement parameters, we further show that the first-order character of this phase transition stems from a coupling of large compression of soft BaO 8 polyhedrons to the small displacive distortion of rigid WO 4 tetrahedrons. Such a coupling will lead to a deeper physical insight in the phase transition of the common scheelite-structured compounds. (condensed matter: structural, mechanical, and thermal properties)

  4. Rare events in many-body systems: reactive paths and reaction constants for structural transitions

    International Nuclear Information System (INIS)

    Picciani, M.

    2012-01-01

    This PhD thesis deals with the study of fundamental physics phenomena, with applications to nuclear materials of interest. We have developed methods for the study of rare events related to thermally activated structural transitions in many body systems. The first method involves the numerical simulation of the probability current associated with reactive paths. After deriving the evolution equations for the probability current, a Diffusion Monte Carlo algorithm is implemented in order to sample this current. This technique, called Transition Current Sampling was applied to the study of structural transitions in a cluster of 38 atoms with Lennard-Jones potential (LJ-38). A second algorithm, called Transition Path Sampling with local Lyapunov bias (LyTPS), was then developed. LyTPS calculates reaction rates at finite temperature by following the transition state theory. A statistical bias based on the maximum local Lyapunov exponents is introduced to accelerate the sampling of reactive trajectories. To extract the value of the equilibrium reaction constants obtained from LyTPS, we use the Multistate Bennett Acceptance Ratio. We again validate this method on the LJ-38 cluster. LyTPS is then used to calculate migration constants for vacancies and divacancies in the α-Iron, and the associated migration entropy. These constants are used as input parameter for codes modeling the kinetic evolution after irradiation (First Passage Kinetic Monte Carlo) to reproduce numerically resistivity recovery experiments in α-Iron. (author) [fr

  5. Structural transitions and hysteresis in clump- and stripe-forming systems under dynamic compression

    International Nuclear Information System (INIS)

    McDermott, Danielle; Reichhardt, Charles

    2016-01-01

    In using numerical simulations, we study the dynamical evolution of particles interacting via competing long-range repulsion and short-range attraction in two dimensions. The particles are compressed using a time-dependent quasi-one dimensional trough potential that controls the local density, causing the system to undergo a series of structural phase transitions from a low density clump lattice to stripes, voids, and a high density uniform state. The compression proceeds via slow elastic motion that is interrupted with avalanche-like bursts of activity as the system collapses to progressively higher densities via plastic rearrangements. The plastic events vary in magnitude from small rearrangements of particles, including the formation of quadrupole-like defects, to large-scale vorticity and structural phase transitions. In the dense uniform phase, the system compresses through row reduction transitions mediated by a disorder-order process. We also characterize the rearrangement events by measuring changes in the potential energy, the fraction of sixfold coordinated particles, the local density, and the velocity distribution. At high confinements, we find power law scaling of the velocity distribution during row reduction transitions. We observe hysteresis under a reversal of the compression when relatively few plastic rearrangements occur. The decompressing system exhibits distinct phase morphologies, and the phase transitions occur at lower compression forces as the system expands compared to when it is compressed.

  6. Family Structure Transitions and Child Development: Instability, Selection, and Population Heterogeneity.

    Science.gov (United States)

    Lee, Dohoon; McLanahan, Sara

    2015-08-01

    A growing literature documents the importance of family instability for child wellbeing. In this article, we use longitudinal data from the Fragile Families and Child Wellbeing Study to examine the impacts of family instability on children's cognitive and socioemotional development in early and middle childhood. We extend existing research in several ways: (1) by distinguishing between the number and types of family structure changes; (2) by accounting for time-varying as well as time-constant confounding; and (3) by assessing racial/ethnic and gender differences in family instability effects. Our results indicate that family instability has a causal effect on children's development, but the effect depends on the type of change, the outcome assessed, and the population examined. Generally speaking, transitions out of a two-parent family are more negative for children's development than transitions into a two-parent family. The effect of family instability is stronger for children's socioemotional development than for their cognitive achievement. For socioemotional development, transitions out of a two-parent family are more negative for white children, whereas transitions into a two-parent family are more negative for Hispanic children. These findings suggest that future research should pay more attention to the type of family structure transition and to population heterogeneity.

  7. APOSTLE: LONGTERM TRANSIT MONITORING AND STABILITY ANALYSIS OF XO-2b

    Energy Technology Data Exchange (ETDEWEB)

    Kundurthy, P.; Barnes, R.; Becker, A. C.; Agol, E.; Williams, B. F.; Rose, A. [Astronomy Department, University of Washington, Seattle, WA 98195 (United States); Gorelick, N. [Google Inc., Mountain View, CA 94043 (United States)

    2013-06-10

    The Apache Point Survey of Transit Lightcurves of Exoplanets (APOSTLE) observed 10 transits of XO-2b over a period of 3 yr. We present measurements that confirm previous estimates of system parameters like the normalized semi-major axis (a/R{sub *}), stellar density ({rho}{sub *}), impact parameter (b), and orbital inclination (i{sub orb}). Our errors on system parameters like a/R{sub *} and {rho}{sub *} have improved by {approx}40% compared to previous best ground-based measurements. Our study of the transit times show no evidence for transit timing variations (TTVs) and we are able to rule out co-planar companions with masses {>=}0.20 M{sub Circled-Plus} in low order mean motion resonance with XO-2b. We also explored the stability of the XO-2 system given various orbital configurations of a hypothetical planet near the 2:1 mean motion resonance. We find that a wide range of orbits (including Earth-mass perturbers) are both dynamically stable and produce observable TTVs. We find that up to 51% of our stable simulations show TTVs that are smaller than the typical transit timing errors ({approx}20 s) measured for XO-2b, and hence remain undetectable.

  8. Delivery Mode and the Transition of Pioneering Gut-Microbiota Structure, Composition and Predicted Metabolic Function

    Directory of Open Access Journals (Sweden)

    Noel T. Mueller

    2017-12-01

    Full Text Available Cesarean (C-section delivery, recently shown to cause excess weight gain in mice, perturbs human neonatal gut microbiota development due to the lack of natural mother-to-newborn transfer of microbes. Neonates excrete first the in-utero intestinal content (referred to as meconium hours after birth, followed by intestinal contents reflective of extra-uterine exposure (referred to as transition stool 2 to 3 days after birth. It is not clear when the effect of C-section on the neonatal gut microbiota emerges. We examined bacterial DNA in carefully-collected meconium, and the subsequent transitional stool, from 59 neonates [13 born by scheduled C-section and 46 born by vaginal delivery] in a private hospital in Brazil. Bacterial DNA was extracted, and the V4 region of the 16S rRNA gene was sequenced using the Illumina MiSeq (San Diego, CA, USA platform. We found evidence of bacterial DNA in the majority of meconium samples in our study. The bacterial DNA structure (i.e., beta diversity of meconium differed significantly from that of the transitional stool microbiota. There was a significant reduction in bacterial alpha diversity (e.g., number of observed bacterial species and change in bacterial composition (e.g., reduced Proteobacteria in the transition from meconium to stool. However, changes in predicted microbiota metabolic function from meconium to transitional stool were only observed in vaginally-delivered neonates. Within sample comparisons showed that delivery mode was significantly associated with bacterial structure, composition and predicted microbiota metabolic function in transitional-stool samples, but not in meconium samples. Specifically, compared to vaginally delivered neonates, the transitional stool of C-section delivered neonates had lower proportions of the genera Bacteroides, Parabacteroides and Clostridium. These differences led to C-section neonates having lower predicted abundance of microbial genes related to metabolism of

  9. Dual structural transition in small nanoparticles of Cu-Au alloy

    Science.gov (United States)

    Gafner, Yuri; Gafner, Svetlana; Redel, Larisa; Zamulin, Ivan

    2018-02-01

    Cu-Au alloy nanoparticles are known to be widely used in the catalysis of various chemical reactions as it was experimentally defined that in many cases the partial substitution of copper with gold increases catalytic activity. However, providing the reaction capacity of alloy nanoparticles the surface electronic structure strongly depends on their atomic ordering. Therefore, to theoretically determine catalytic properties, one needs to use a most real structural model complying with Cu-Au nanoparticles under various external influences. So, thermal stability limits were studied for the initial L12 phase in Cu3Au nanoalloy clusters up to 8.0 nm and Cu-Au clusters up to 3.0 nm at various degrees of Au atom concentration, with molecular dynamics method using a modified tight-binding TB-SMA potential. Dual structural transition L12 → FCC and further FCC → Ih is shown to be possible under the thermal factor in Cu3Au and Cu-Au clusters with the diameter up to 3.0 nm. The temperature of the structural transition FCC → Ih is established to decrease for small particles of Cu-Au alloy under the increase of Au atom concentration. For clusters with this structural transition, the melting point is found to be a linear increasing function of concentration, and for clusters without FCC → Ih structural transition, the melting point is a linear decreasing function of Au content. Thus, the article shows that doping Cu nanoclusters with Au atoms allows to control the forming structure as well as the melting point.

  10. Application of Structure Monitoring Systems to the Assessment of the Behaviour of Bridges in Mining Areas

    Science.gov (United States)

    Parkasiewicz, Beata; Kadela, Marta; Bętkowski, Piotr; Sieńko, Rafał; Bednarski, Łukasz

    2017-10-01

    Structure monitoring systems are increasingly used to assess the technical condition and improve the safety of structures. Monitoring the structural behaviour becomes necessary in the case of structures located in areas with complicated ground conditions. Due to the risk of failures and the resulting economic and non-material costs, monitoring should be in particular applied to linear structures, including railways, tramlines, motorways and expressways, as well as related facilities (e.g. bridges). Monitoring shall consist in regular observations, measurements and documenting all significant data during construction, after its completion and during usage, and in analysing and evaluating the results. This paper presents the application of structure monitoring systems to the assessment of the behaviour of bridges exposed to the impact of mining operations.

  11. Data Analysis Algorithm Suitable for Structural Health Monitoring Based on Dust Network, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposed project will attempt to develop a data analysis system for structural health monitoring on space structures. The data analysis software will be a key...

  12. Data Analysis Algorithm Suitable for Structural Health Monitoring Based on Dust Network, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposed project will attempt to develop a data analysis system for structural health monitoring on space structures. The data analysis software will be a key...

  13. Role of monitoring within a good corporate governance structure: Evidence from Australia

    Directory of Open Access Journals (Sweden)

    Mohammad Azim

    2009-11-01

    Full Text Available This study investigates the role of monitoring mechanisms within a corporate governance structures, focusing on top 500 publicly-listed companies in Australia. Specifically, it examines whether different monitoring mechanisms affect firm performance. Previous studies have been conducted to examine various monitoring mechanisms and firm performance. However, none of the have consider the interaction among the monitoring mechanisms when examining the relationship. In management and behavioural researches it is well established that Structural Equation Modelling can handle the problem of interaction among the variables. Therefore, we have decided to use Structural equation modelling to identify the complex inter-relations between the corporate governance monitoring mechanisms. We conclude that there is a possibility of having a substitution or complementary links among monitoring mechanisms which explains why there is no consistent empirical evidence between individual monitoring mechanisms and firm performance.

  14. Vertical coupling and transition energies in multilayer InAs/GaAs quantum-dot structures

    Science.gov (United States)

    Taddei, S.; Colocci, M.; Vinattieri, A.; Bogani, F.; Franchi, S.; Frigeri, P.; Lazzarini, L.; Salviati, G.

    2000-10-01

    Vertically ordered quantum dots in multilayer InAs/GaAs structures have attracted large interest in recent years for device application as light emitters. Contradictory claims on the dependence of the fundamental transition energy on the interlayer separation and number of dot layers have been reported in the literature. We show that either a blueshift or a redshift of the fundamental transition energy can be observed in different coupling conditions and straightforwardly explained by including strain, indium segregation, and electron-hole Coulomb interaction, in good agreement with experimental results.

  15. Elastic constants and the structural phase transition in La2-xSrxCuO4

    International Nuclear Information System (INIS)

    Sarrao, J.L.; Lei, Ming; Stekel, A.; Bell, T.M.; Leisure, R.G.; Sham, L.J.; Visscher, W.M.; Migliori, A.; Bussmann-Holder, A.; Tanaka, I.; Kojima, H.

    1991-01-01

    Resonant ultrasound spectroscopy is used to measure the temperature dependence of all six elastic moduli of La 2-x Sr x CuO 4 . A giant softening (> 50% reduction) in the in-plane shear modulus, c 66 , is observed and is attributed to the tetragonal-orthorhombic structural phase transition in this material. This phase transition and the corresponding softening is examined with a simple anharmonic mechanical model and a macroscopic Ginsburg-Landau formalism exploiting the full symmetry of the crystal. 16 refs., 5 figs

  16. Isomorphic Structural Transition in the β-Pyrochlore Oxide Superconductor KOs2O6

    Science.gov (United States)

    Yamaura, Jun-ichi; Takigawa, Masashi; Yamamuro, Osamu; Hiroi, Zenji

    2010-04-01

    A phase transition observed at Tp = 7.65 K in the β-pyrochlore oxide superconductor KOs2O6 is studied by means of heat capacity, 39K-NMR, and X-ray diffraction measurements using high-quality single crystals. We find evidence of an isomorphic structural transition at Tp without the off-center freezing of the K ion even below Tp. It is possibly related to the rattling motion of the K ion in an oversized atomic cage.

  17. Migrants in transit: the importance of monitoring HIV risk among migrant flows at the Mexico-US border.

    Science.gov (United States)

    Martinez-Donate, Ana P; Hovell, Melbourne F; Rangel, Maria Gudelia; Zhang, Xiao; Sipan, Carol L; Magis-Rodriguez, Carlos; Gonzalez-Fagoaga, J Eduardo

    2015-03-01

    We conducted a probability-based survey of migrant flows traveling across the Mexico-US border, and we estimated HIV infection rates, risk behaviors, and contextual factors for migrants representing 5 distinct migration phases. Our results suggest that the influence of migration is not uniform across genders or risk factors. By considering the predeparture, transit, and interception phases of the migration process, our findings complement previous studies on HIV among Mexican migrants conducted at the destination and return phases. Monitoring HIV risk among this vulnerable transnational population is critical for better understanding patterns of risk at different points of the migration process and for informing the development of protection policies and programs.

  18. Rare-earth transition-metal intermetallics: Structure-bonding-property relationships

    Energy Technology Data Exchange (ETDEWEB)

    Han, M. K. [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    The explorations of rare-earth, transition metal intermetallics have resulted in the synthesis and characterization, and electronic structure investigation, as well as understanding the structure-bonding property relationships. The work has presented the following results: (1) Understanding the relationship between compositions and properties in LaFe13-xSix system: A detailed structural and theoretical investigation provided the understanding of the role of a third element on stabilizing the structure and controlling the transformation of cubic NaZn{sub 13}-type structures to the tetragonal derivative, as well as the relationship between the structures and properties. (2) Synthesis of new ternary rare-earth iron silicides Re2-xFe4Si14-y and proposed superstructure: This compound offers complex structural challenges such as fractional occupancies and their ordering in superstructure. (3) Electronic structure calculation of FeSi2: This shows that the metal-semiconductor phase transition depends on the structure. The mechanism of band gap opening is described in terms of bonding and structural distortion. This result shows that the electronic structure calculations are an essential tool for understanding the relationship between structure and chemical bonding in these compounds. (4) Synthesis of new ternary rare-earth Zinc aluminides Tb3Zn3.6Al7.4: Partially ordered structure of Tb3Zn3.6Al7.4 compound provides new insights into the formation, composition and structure of rare-earth transition-metal intermetallics. Electronic structure calculations attribute the observed composition to optimizing metal-metal bonding in the electronegative (Zn, Al) framework, while the specific ordering is strongly influenced by specific orbital interactions. (5) Synthesis of new structure type of Zn39(CrxAl1-x)81

  19. Rare-Earth Transition-Metal Intermetallics: Structure-bonding-Property Relationships

    Energy Technology Data Exchange (ETDEWEB)

    Han, Mi-Kyung [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    Our explorations of rare-earth, transition metal intermetallics have resulted in the synthesis and characterization, and electronic structure investigation, as well as understanding the structure-bonding-property relationships. Our work has presented the following results: (1) Understanding the relationship between compositions and properties in LaFe13-xSix system: A detailed structural and theoretical investigation provided the understanding of the role of a third element on stabilizing the structure and controlling the transformation of cubic NaZn13-type structures to the tetragonal derivative, as well as the relationship between the structures and properties. (2) Synthesis of new ternary rare-earth iron silicides RE2-xFe4Si14-y and proposed superstructure: This compound offers complex structural challenges such as fractional occupancies and their ordering in superstructure. (3) Electronic structure calculation of FeSi2: This shows that the metal-semiconductor phase transition depends on the structure. The mechanism of band gap opening is described in terms of bonding and structural distortion. This result shows that the electronic structure calculations are an essential tool for understanding the relationship between structure and chemical bonding in these compounds. (4) Synthesis of new ternary rare-earth Zinc aluminides Tb3Zn3.6Al7.4: Partially ordered structure of Tb3.6Zn13-xAl7.4 compound provides new insights into the formation, composition and structure of rare-earth transition-metal intermetallics. Electronic structure calculations attribute the observed composition to optimizing metal-metal bonding in the electronegative (Zn, Al) framework, while the specific ordering is strongly influenced by specific orbital interactions. (5) Synthesis of new structure type of Zn39(CrxAl1-x

  20. Correlated structural and electronic phase transformations in transition metal chalcogenide under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chunyu, E-mail: licy@hpstar.ac.cn, E-mail: yanhao@hpstar.ac.cn; Ke, Feng; Yu, Zhenhai; Chen, Zhiqiang; Yan, Hao, E-mail: licy@hpstar.ac.cn, E-mail: yanhao@hpstar.ac.cn [Center for High Pressure Science and Technology Advanced Research, Shanghai 201203 (China); Hu, Qingyang [Center for High Pressure Science and Technology Advanced Research, Shanghai 201203 (China); Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015 (United States); Zhao, Jinggeng [Natural Science Research Center, Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150080 (China)

    2016-04-07

    Here, we report comprehensive studies on the high-pressure structural and electrical transport properties of the layered transition metal chalcogenide (Cr{sub 2}S{sub 3}) up to 36.3 GPa. A structural phase transition was observed in the rhombohedral Cr{sub 2}S{sub 3} near 16.5 GPa by the synchrotron angle dispersive X-ray diffraction measurement using a diamond anvil cell. Through in situ resistance measurement, the electric resistance value was detected to decrease by an order of three over the pressure range of 7–15 GPa coincided with the structural phase transition. Measurements on the temperature dependence of resistivity indicate that it is a semiconductor-to-metal transition in nature. The results were also confirmed by the electronic energy band calculations. Above results may shed a light on optimizing the performance of Cr{sub 2}S{sub 3} based applications under extreme conditions.

  1. Hybrid optical-fibre/geopolymer sensors for structural health monitoring of concrete structures

    Science.gov (United States)

    Perry, M.; Saafi, M.; Fusiek, G.; Niewczas, P.

    2015-04-01

    In this work, we demonstrate hybrid optical-fibre/geopolymer sensors for monitoring temperature, uniaxial strain and biaxial strain in concrete structures. The hybrid sensors detect these measurands via changes in geopolymer electrical impedance, and via optical wavelength measurements of embedded fibre Bragg gratings. Electrical and optical measurements were both facilitated by metal-coated optical fibres, which provided the hybrid sensors with a single, shared physical path for both voltage and wavelength signals. The embedded fibre sensors revealed that geopolymer specimens undergo 2.7 mɛ of shrinkage after one week of curing at 42 °C. After curing, an axial 2 mɛ compression of the uniaxial hybrid sensor led to impedance and wavelength shifts of 7 × 10-2 and -2 × 10-4 respectively. The typical strain resolution in the uniaxial sensor was 100 μ \\varepsilon . The biaxial sensor was applied to the side of a concrete cylinder, which was then placed under 0.6 mɛ of axial, compressive strain. Fractional shifts in impedance and wavelength, used to monitor axial and circumferential strain, were 3 × 10-2 and 4 × 10-5 respectively. The biaxial sensor’s strain resolution was approximately 10 μ \\varepsilon in both directions. Due to several design flaws, the uniaxial hybrid sensor was unable to accurately measure ambient temperature changes. The biaxial sensor, however, successfully monitored local temperature changes with 0.5 °C resolution.

  2. Structure and properties of transition metal-metalloid glasses based on refractory metals

    International Nuclear Information System (INIS)

    Johnson, W.L.; Williams, A.R.

    1979-01-01

    The structure and properties of several new transition metal-metalloid (TM/sub 1-x/M/sub x/) metallic glasses based on refractory transition metals (e.g. Mo, W, Ru etc.) have been systemically investigated as a function of composition. The structure of the alloys has been investigated by x-ray diffraction methods and measurements of superconducting properties, electrical resistivity, density, hardness, and mechanical behavior were made. These data are used in developing a novel description of the structure of TM/sub 1-x/M/sub x/ glasses. The experimental evidence suggests that an ideal amorphous phase forms at a specific composition x/sub c/ and that this phase has a well defined atomic short range order. For metallic glasses having x x/sub c/. This novel picture can explain the variation of many properties of these glasses with metalloid concentration

  3. Liquid-liquid structure transition and nucleation in undercooled Co-B eutectic alloys

    Energy Technology Data Exchange (ETDEWEB)

    He, Yixuan [Northwestern Polytechnical University, State Key Laboratory of Solidification Processing, Xi' an, Shanxi (China); Universite Grenoble Alpes, LNCMI, Grenoble (France); CNRS, LNCMI, Grenoble (France); Li, Jinshan; Wang, Jun; Kou, Hongchao [Northwestern Polytechnical University, State Key Laboratory of Solidification Processing, Xi' an, Shanxi (China); Beagunon, Eric [Universite Grenoble Alpes, LNCMI, Grenoble (France); CNRS, LNCMI, Grenoble (France)

    2017-06-15

    Cyclic superheating and cooling were carried out for the undercooled hypereutectic Co{sub 80}B{sub 20}, eutectic Co{sub 81.5}B{sub 18.5,} and hypoeutectic Co{sub 83}B{sub 17} alloys. For each alloy, there is a critical overheating temperature T{sub c}° at which there is a sharp increase of the mean undercooling, i.e., below (above) T{sub c}°, and the mean undercooling is about 80 °C (200 °C). DSC measurements show that there is a thermal absorption peak in the heating process, the peak temperature of which is nearly equal to the critical overheating temperature, indicating that the temperature-induced liquid-liquid structure transition does occur and should relate highly to nucleation in the undercooled Co-B eutectic melts. The effect of the liquid-liquid structure transition on nucleation was interpreted by the recent nucleation theory that considers the structures of overheated melts, and the composition-dependent overheating temperature was ascribed to the change of local favored structures. The present work provides further evidences for the liquid-liquid structure transition and is helpful for understanding solidification in undercooled melts. (orig.)

  4. Electronic Structure Evolution across the Peierls Metal-Insulator Transition in a Correlated Ferromagnet

    Directory of Open Access Journals (Sweden)

    P. A. Bhobe

    2015-10-01

    Full Text Available Transition metal compounds often undergo spin-charge-orbital ordering due to strong electron-electron correlations. In contrast, low-dimensional materials can exhibit a Peierls transition arising from low-energy electron-phonon-coupling-induced structural instabilities. We study the electronic structure of the tunnel framework compound K_{2}Cr_{8}O_{16}, which exhibits a temperature-dependent (T-dependent paramagnetic-to-ferromagnetic-metal transition at T_{C}=180  K and transforms into a ferromagnetic insulator below T_{MI}=95  K. We observe clear T-dependent dynamic valence (charge fluctuations from above T_{C} to T_{MI}, which effectively get pinned to an average nominal valence of Cr^{+3.75} (Cr^{4+}∶Cr^{3+} states in a 3∶1 ratio in the ferromagnetic-insulating phase. High-resolution laser photoemission shows a T-dependent BCS-type energy gap, with 2G(0∼3.5(k_{B}T_{MI}∼35  meV. First-principles band-structure calculations, using the experimentally estimated on-site Coulomb energy of U∼4  eV, establish the necessity of strong correlations and finite structural distortions for driving the metal-insulator transition. In spite of the strong correlations, the nonintegral occupancy (2.25 d-electrons/Cr and the half-metallic ferromagnetism in the t_{2g} up-spin band favor a low-energy Peierls metal-insulator transition.

  5. Neural Correlates of Performance Monitoring during the Transition to Young Adulthood

    Science.gov (United States)

    Kneževic, Martina; Veroude, Kim; Jolles, Jelle; Krabbendam, Lydia

    2016-01-01

    Cognitive challenges during transition to adulthood are generally high and require particular skills, such as self-control, performance evaluation, and behavioral adjustment for success in everyday living. However, age and sex differences in timing and efficiency of brain maturational processes in the early twenties are not well known. We used a…

  6. Tunable Laser Development for In-flight Fiber Optic Based Structural Health Monitoring Systems

    Science.gov (United States)

    Richards, Lance; Parker, Allen; Chan, Patrick

    2014-01-01

    The objective of this task is to investigate, develop, and demonstrate a low-cost swept lasing light source for NASA DFRC's fiber optics sensing system (FOSS) to perform structural health monitoring on current and future aerospace vehicles. This is the regular update of the Tunable Laser Development for In-flight Fiber Optic Based Structural Health Monitoring Systems website.

  7. Moessbauer studies of the structural phase transitions in RbFeF/sub 4/

    Energy Technology Data Exchange (ETDEWEB)

    Baumeler, Hp.; Keller, H.; Kuendig, W.; Savic, I.M.; Wanklyn, B.M.

    1984-03-20

    RbFeF/sub 4/ exhibits two structural phase transitions (SPT), namely a first-order transition at 381 K and a second-order transition at 417 K. A detailed /sup 57/Fe Moessbauer investigation of these SPT is presented. At pronounced discontinuities in the quadrupole splitting and the recoil-free fraction are observed, whereas at 417 K both quantities vary continuously with temperature. Both SPT are also seen in the area ratio of the single crystal quadrupole lines which reflects the tilting of the FeF/sub 6/ octahedra with respect to the c-axis. However, no noticeable indication of the SPT is found in the center shift.

  8. [Phase transition in polymer blends and structure of ionomers and copolymers]. [Annual report, April 1, 1989--June 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    The main thrust of the program in the past 3 years are summarized: SAXS instrumentation development; structure and dynamics of macro- and supra-molecules, phase transitions in polymer blends and solutions, structure of ionomers, and fractals and anisotropic systems.

  9. Structure and phase transitions at the interface between α-Al2O3 and Pt

    Science.gov (United States)

    Ophus, Colin; Santala, Melissa K.; Asta, Mark; Radmilovic, Velimir

    2013-06-01

    The structure and thermodynamics of interfaces between (111) Pt and the basal plane of α-Al2O3 have been studied through a combination of high-resolution electron microscopy and first-principles calculations. Within the framework of ab initio thermodynamics the structure and excess free energies are calculated as functions of temperature (T) and oxygen partial pressure (PO2), for three competing interface terminations. Comparisons between measurements and calculations establish that the interface is oxygen terminated, and a structural phase transition is predicted in the range of experimentally accessible T and PO2 from the calculated interfacial free energies.

  10. Observation of a structural transition for coulomb crystals in a linear Paul trap

    DEFF Research Database (Denmark)

    Kjærgaard, N.; Drewsen, M.

    2003-01-01

    A structural transition for laser cooled ion Coulomb crystals in a linear Paul trap just above the stability limit of parametrically resonant excitation of bulk plasma modes has been observed. In contrast to the usual spheroidal shell structures present below the stability limit, the ions arrange...... in a "string-of-disks" configuration. The spheroidal envelopes of the string-of-disks structures are in agreement with results from cold fluid theory usually valid for ion Coulomb crystals if the ion systems are assumed to be rotating collectively....

  11. Temperature- and field-induced structural transitions in magnetic colloidal clusters

    Science.gov (United States)

    Hernández-Rojas, J.; Calvo, F.

    2018-02-01

    Magnetic colloidal clusters can form chain, ring, and more compact structures depending on their size. In the present investigation we examine the combined effects of temperature and external magnetic field on these configurations by means of extensive Monte Carlo simulations and a dedicated analysis based on inherent structures. Various thermodynamical, geometric, and magnetic properties are calculated and altogether provide evidence for possibly multiple structural transitions at low external magnetic field. Temperature effects are found to overcome the ordering effect of the external field, the melted stated being associated with low magnetization and a greater compactness. Tentative phase diagrams are proposed for selected sizes.

  12. Observation of a structural transition for Coulomb crystals in a linear Paul trap

    International Nuclear Information System (INIS)

    Kjaergaard, Niels; Drewsen, Michael

    2003-01-01

    A structural transition for laser cooled ion Coulomb crystals in a linear Paul trap just above the stability limit of parametrically resonant excitation of bulk plasma modes has been observed. In contrast to the usual spheroidal shell structures present below the stability limit, the ions arrange in a 'string-of-disks' configuration. The spheroidal envelopes of the string-of-disks structures are in agreement with results from cold fluid theory usually valid for ion Coulomb crystals if the ion systems are assumed to be rotating collectively

  13. An Embedded Wireless Sensor Network with Wireless Power Transmission Capability for the Structural Health Monitoring of Reinforced Concrete Structures.

    Science.gov (United States)

    Gallucci, Luca; Menna, Costantino; Angrisani, Leopoldo; Asprone, Domenico; Moriello, Rosario Schiano Lo; Bonavolontà, Francesco; Fabbrocino, Francesco

    2017-11-07

    Maintenance strategies based on structural health monitoring can provide effective support in the optimization of scheduled repair of existing structures, thus enabling their lifetime to be extended. With specific regard to reinforced concrete (RC) structures, the state of the art seems to still be lacking an efficient and cost-effective technique capable of monitoring material properties continuously over the lifetime of a structure. Current solutions can typically only measure the required mechanical variables in an indirect, but economic, manner, or directly, but expensively. Moreover, most of the proposed solutions can only be implemented by means of manual activation, making the monitoring very inefficient and then poorly supported. This paper proposes a structural health monitoring system based on a wireless sensor network (WSN) that enables the automatic monitoring of a complete structure. The network includes wireless distributed sensors embedded in the structure itself, and follows the monitoring-based maintenance (MBM) approach, with its ABCDE paradigm, namely: accuracy, benefit, compactness, durability, and easiness of operations. The system is structured in a node level and has a network architecture that enables all the node data to converge in a central unit. Human control is completely unnecessary until the periodic evaluation of the collected data. Several tests are conducted in order to characterize the system from a metrological point of view and assess its performance and effectiveness in real RC conditions.

  14. An Embedded Wireless Sensor Network with Wireless Power Transmission Capability for the Structural Health Monitoring of Reinforced Concrete Structures

    Directory of Open Access Journals (Sweden)

    Luca Gallucci

    2017-11-01

    Full Text Available Maintenance strategies based on structural health monitoring can provide effective support in the optimization of scheduled repair of existing structures, thus enabling their lifetime to be extended. With specific regard to reinforced concrete (RC structures, the state of the art seems to still be lacking an efficient and cost-effective technique capable of monitoring material properties continuously over the lifetime of a structure. Current solutions can typically only measure the required mechanical variables in an indirect, but economic, manner, or directly, but expensively. Moreover, most of the proposed solutions can only be implemented by means of manual activation, making the monitoring very inefficient and then poorly supported. This paper proposes a structural health monitoring system based on a wireless sensor network (WSN that enables the automatic monitoring of a complete structure. The network includes wireless distributed sensors embedded in the structure itself, and follows the monitoring-based maintenance (MBM approach, with its ABCDE paradigm, namely: accuracy, benefit, compactness, durability, and easiness of operations. The system is structured in a node level and has a network architecture that enables all the node data to converge in a central unit. Human control is completely unnecessary until the periodic evaluation of the collected data. Several tests are conducted in order to characterize the system from a metrological point of view and assess its performance and effectiveness in real RC conditions.

  15. Structural transition of (InSb)n clusters at n = 6-10

    Science.gov (United States)

    Lu, Qi Liang; Luo, Qi Quan; Huang, Shou Guo; Li, Yi De

    2016-10-01

    An optimization strategy combining global semi-empirical quantum mechanical search with all-electron density functional theory was adopted to determine the lowest energy structure of (InSb)n clusters with n = 6-10. A new structural growth pattern of the clusters was observed. The lowest energy structures of (InSb)6 and (InSb)8 were different from that of previously reported results. Competition existed between core-shell and cage-like structures of (InSb)8. The structural transition of (InSb)n clusters occurred at size n = 8-9. For (InSb)9 and (InSb)10 clusters, core-shell structure were more energetically favorable than the cage. The corresponding electronic properties were investigated.

  16. Pressure-induced structural, magnetic and transport transitions in Sr2FeO3 from first-principles

    Directory of Open Access Journals (Sweden)

    Ting Jia

    2017-05-01

    Full Text Available The serial system Srn+1FenO2n+1(n=1,2,3… with the FeO4 square planar motif exhibits abundant phase transitions under pressure. In this work, we investigate the pressure-induced structural, magnetic and transport transitions in Sr2FeO3 from first-principles. Our results show that the system undergoes a structural transition from Immm to Ammm when the volume decreases by 30%, together with a spin-state transition (SST from high-spin (S = 2 to intermediate-spin (S = 1, an antiferromagnetic-to-ferromagnetic transition and an insulator-to-metal transition (IMT. Besides, the IMT here is a bandwidth controlled transition, but little influenced by the SST.

  17. Transition in occupational radiation exposure monitoring methods in diagnostic and interventional radiology

    International Nuclear Information System (INIS)

    Loennroth, N.; Hirvonen-Kari, M.; Timonen, M.; Savolainen, S.; Kortesniemi, M.

    2008-01-01

    Radiation exposure monitoring is a traditional keystone of occupational radiation safety measures in medical imaging. The aim of this study was to review the data on occupational exposures in a large central university hospital radiology organisation and propose changes in the radiation worker categories and methods of exposure monitoring. An additional objective was to evaluate the development of electronic personal dosimeters and their potential in the digitised radiology environment. The personal equivalent dose of 267 radiation workers (116 radiologists and 151 radiographers) was monitored using personal dosimeters during the years 2006-2010. Accumulated exposure monitoring results exceeding the registration threshold were observed in the personal dosimeters of 73 workers (59 radiologists' doses ranged from 0.1 to 45.1 mSv; 14 radiographers' doses ranged from 0.1 to 1.3 mSv). The accumulated personal equivalent doses are generally very small, only a few angiography radiologists have doses >10 mSv per 5 y. The typical effective doses are -1 and the highest value was 0.3 mSv (single interventional radiologist). A revised categorisation of radiation workers based on the working profile of the radiologist and observed accumulated doses is justified. Occupational monitoring can be implemented mostly with group dosimeters. An active real-time dosimetry system is warranted to support radiation protection strategy where optimisation aspects, including improving working methods, are essential. (authors)

  18. Structural phase transitions in BaMo6S8: Evidence for an incommensurate phase

    International Nuclear Information System (INIS)

    Jorgensen, J.D.; Hinks, D.G.; Hatch, D.M.; Putnam, R.M.

    1986-01-01

    The structure of BaMo 6 S 8 has been studied over the temperature range 19 K to 573 K by time-of-flight neutron powder diffraction. Below 175 K the data can be suitably refined in a triclinic, P1, cell with volume equal to the rhombohedral, R3, cell common to most Chevrel-phase structures. At temperatures immediately above 175 K, the rhombohedral, R3, Bragg peaks are broadened by satellite reflections which appear to be identical to those recently observed at low temperature in PbMo 6 S 8 and SnMo 6 S 8 . An abrupt change in the sign of the temperature dependence of the hexagonal c axis (∂c/∂T) signals the transition to an undistorted rhombohedral, R3, structure at temperatures above about 350 K. An extended Landau theory determines both continuous and discontinuous transitions from R3 induced by a single order parameter. Analysis of the order parameters inducing commensurate transitions imposes symmetry restrictions on the atomic displacements in the lower symmetry phases. The assumption of an R3 commensurate phase is not consistent with the bond lengths obtained for the distortions to the P1 (or P1) phase for any of the possible cells preserving order parameters. Thus the phase immediately above 175 K cannot be a commensurate R3 structure. This is consistent with experimental evidence. 25 refs., 11 figs., 8 tabs

  19. Quantitative image analysis reveals distinct structural transitions during aging in Caenorhabditis elegans tissues.

    Directory of Open Access Journals (Sweden)

    Josiah Johnston

    2008-07-01

    Full Text Available Aging is associated with functional and structural declines in many body systems, even in the absence of underlying disease. In particular, skeletal muscles experience severe declines during aging, a phenomenon termed sarcopenia. Despite the high incidence and severity of sarcopenia, little is known about contributing factors and development. Many studies focus on functional aspects of aging-related tissue decline, while structural details remain understudied. Traditional approaches for quantifying structural changes have assessed individual markers at discrete intervals. Such approaches are inadequate for the complex changes associated with aging. An alternative is to consider changes in overall morphology rather than in specific markers. We have used this approach to quantitatively track tissue architecture during adulthood and aging in the C. elegans pharynx, the neuromuscular feeding organ. Using pattern recognition to analyze aged-grouped pharynx images, we identified discrete step-wise transitions between distinct morphologies. The morphology state transitions were maintained in mutants with pharynx neurotransmission defects, although the pace of the transitions was altered. Longitudinal measurements of pharynx function identified a predictive relationship between mid-life pharynx morphology and function at later ages. These studies demonstrate for the first time that adult tissues undergo distinct structural transitions reflecting postdevelopmental events. The processes that underlie these architectural changes may contribute to increased disease risk during aging, and may be targets for factors that alter the aging rate. This work further demonstrates that pattern analysis of an image series offers a novel and generally accessible approach for quantifying morphological changes and identifying structural biomarkers.

  20. Low-temperature structural phase transition in synthetic libethenite Cu2PO4OH

    International Nuclear Information System (INIS)

    Belik, Alexei A.; Naumov, Pance; Kim, Jungeun; Tsuda, Shunsuke

    2011-01-01

    Low-temperature structural properties of the synthetic mineral libethenite Cu 2 PO 4 OH were investigated by single-crystal X-ray diffraction, synchrotron X-ray powder diffraction, specific heat measurements, and Raman spectroscopy. A second-order structural phase transition from the Pnnm symmetry (a=8.0553(8) A, b=8.3750(9) A, c=5.8818(6) A at 180 K) to the P2 1 /n symmetry (a=8.0545(8) A, b=8.3622(9) A, c=5.8755(6) A, β=90.0012(15) at 120 K) was found at 160 K during cooling. At 120 K, the monoclinic angle is 90.0012(15) from single crystal X-ray data vs 90.083(1) from powder X-ray diffraction data. The P2 1 /n-to-Pnnm transition may be a general feature of the adamite-type compounds, M 2 XO 4 OH. - Graphical Abstract: Fragments of experimental synchrotron X-ray powder diffraction patterns of Cu 2 PO 4 OH between 100 and 280 K. Arrows show additional reflections that appear below 160 K in the monoclinic P2 1 /n phase. Highlights: → A low-temperature phase transition was found in the mineral libethenite Cu 2 PO 4 OH. → No magnetic anomalies and weak specific heat anomalies are detected. → Phase transition is of the second order. → Libethenite may exemplify a general feature of the adamite-type compounds.

  1. Significance of Operating Environment in Condition Monitoring of Large Civil Structures

    Directory of Open Access Journals (Sweden)

    Sreenivas Alampalli

    1999-01-01

    Full Text Available Success of remote long-term condition monitoring of large civil structures and developing calibrated analytical models for damage detection, depend significantly on establishing accurate baseline signatures and their sensitivity. Most studies reported in the literature concentrated on the effect of structural damage on modal parameters without emphasis on reliability of modal parameters. Thus, a field bridge structure was studied for the significance of operating conditions in relation to baseline signatures. Results indicate that in practice, civil structures should be monitored for at least one full cycle of in-service environmental changes before establishing baselines for condition monitoring or calibrating finite-element models. Boundary conditions deserve special attention.

  2. Structural health monitoring for fatigue life prediction of orthotropic brdige decks

    NARCIS (Netherlands)

    Pijpers, R.J.M.; Pahlavan, P.L.; Paulissen, J.H.; Hakkesteegt, H.C.; Jansen, T.H.

    2013-01-01

    Infrastructure asset owners are more and more confronted with structures reaching the end of their structural life. Structural Health Monitoring (SHM) systems should provide up-to-date information about the actual condition, as well predict the structural life and required maintenance of the assets

  3. Temporary streams in temperate zones: recognizing, monitoring and restoring transitional aquatic-terrestrial ecosystems

    OpenAIRE

    Stubbington, Rachel; England, Judy; Wood, Paul J.; Sefton, Catherine E.M.

    2017-01-01

    Temporary streams are defined by periodic flow cessation, and may experience partial or complete loss of surface water. The ecology and hydrology of these transitional aquatic-terrestrial ecosystems have received unprecedented attention in recent years. Research has focussed on the arid, semi-arid, and Mediterranean regions in which temporary systems are the dominant stream type, and those in cooler, wetter temperate regions with an oceanic climate influence are also receiving increasing atte...

  4. Bus Operation Monitoring Oriented Public Transit Travel Index System and Calculation Models

    Directory of Open Access Journals (Sweden)

    Jiancheng Weng

    2013-01-01

    Full Text Available This study proposed a two-dimensional index system which is concerned essentially with urban travel based on travel modes and user satisfaction. First, the public transit was taken as an example to describe the index system establishing process. In consideration of convenience, rapid, reliability, comfort, and safety, a bus service evaluation index system was established. The indicators include the N-minute coverage of bus stops, average travel speed, and fluctuation of travel time between stops and bus load factor which could intuitively describe the characteristics of public transport selected to calculate bus travel indexes. Then, combined with the basic indicators, the calculation models of Convenience Index (CI, Rapid Index (RI, Reliability Index (RBI, and Comfort Index (CTI were established based on the multisource data of public transit including the real-time bus GPS data and passenger IC card data. Finally, a case study of Beijing bus operation evaluation and analysis was conducted by taking real bus operation data including GPS data and passenger transaction recorder (IC card data. The results showed that the operation condition of the public transit was well reflected and scientifically classified by the bus travel index models.

  5. Low temperature phase transition and crystal structure of CsMgPO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Orlova, Maria, E-mail: maria.p.orlova@gmail.com [Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, Innsbruck 6020 (Austria); Khainakov, Sergey [Departamento de Química Física y Analítica, Universidad de Oviedo—CINN, 33006 Oviedo (Spain); Servicios Científico Técnicos, Universidad de Oviedo, 33006 Oviedo (Spain); Michailov, Dmitriy [Department of Chemistry, University of Nizhny Novgorod, 23 Gagarin av., Nizhny Novgorod 603950 (Russian Federation); Perfler, Lukas [Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, Innsbruck 6020 (Austria); Langes, Christoph [Institute of Pharmacy, University of Innsbruck, Innrain 52, Innsbruck 6020 (Austria); Kahlenberg, Volker [Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, Innsbruck 6020 (Austria); Orlova, Albina [Department of Chemistry, University of Nizhny Novgorod, 23 Gagarin av., Nizhny Novgorod 603950 (Russian Federation)

    2015-01-15

    CsMgPO{sub 4} doped with radioisotopes is a promising compound for usage as a radioactive medical source. However, a low temperature phase transition at temperatures close to ambient conditions (∼−40 °C) was observed. Information about such kind of structural changes is important in order to understand whether it can cause any problem for medical use of this compound. The phase transition has been investigated in detail using synchrotron powder diffraction, Raman spectroscopy and DFT calculations. The structure undergoes a transformation from an orthorhombic modification, space group Pnma (RT phase) to a monoclinic polymorph, space group P2{sub 1}/n (LT phase). New LT modification adopts similar to RT but slightly distorted unit cell: a=9.58199(2) Å, b=8.95501(1) Å, c=5.50344(2) Å, β=90.68583(1)°, V=472.198(3) Å{sup 3}. CsMgPO{sub 4} belongs to the group of framework compounds and is made up of strictly alternating MgO{sub 4}- and PO{sub 4}-tetrahedra sharing vertices. The cesium counter cations are located in the resulting channel-like cavities. Upon the transformation a combined tilting of the tetrahedra is observed. A comparison with other phase transitions in ABW-type framework compounds is given. - Graphical abstract: Structural behavior of β-tridymite-type phosphate CsMgPO{sub 4}, considered as potential chemical form for radioactive Cs-source has been studied at near ambient temperatures. A phase transition at (∼−40 °C) has been found and investigated. It has been established that the known orthorhombic RT modification, space group Pnma, adopts a monoclinic cell with space group P2{sub 1}/n at low temperatures. In this paper, we present results of structural analysis of changes accompanying this phase transition and discuss its possible impact on the application properties. - Highlights: • β-Tridymite type phosphate CsMgPO{sub 4} undergoes so called translationengleiche phase transition of index 2 at −40 °C. • The structure

  6. A new approach for structural health monitoring by applying anomaly detection on strain sensor data

    Science.gov (United States)

    Trichias, Konstantinos; Pijpers, Richard; Meeuwissen, Erik

    2014-03-01

    Structural Health Monitoring (SHM) systems help to monitor critical infrastructures (bridges, tunnels, etc.) remotely and provide up-to-date information about their physical condition. In addition, it helps to predict the structure's life and required maintenance in a cost-efficient way. Typically, inspection data gives insight in the structural health. The global structural behavior, and predominantly the structural loading, is generally measured with vibration and strain sensors. Acoustic emission sensors are more and more used for measuring global crack activity near critical locations. In this paper, we present a procedure for local structural health monitoring by applying Anomaly Detection (AD) on strain sensor data for sensors that are applied in expected crack path. Sensor data is analyzed by automatic anomaly detection in order to find crack activity at an early stage. This approach targets the monitoring of critical structural locations, such as welds, near which strain sensors can be applied during construction and/or locations with limited inspection possibilities during structural operation. We investigate several anomaly detection techniques to detect changes in statistical properties, indicating structural degradation. The most effective one is a novel polynomial fitting technique, which tracks slow changes in sensor data. Our approach has been tested on a representative test structure (bridge deck) in a lab environment, under constant and variable amplitude fatigue loading. In both cases, the evolving cracks at the monitored locations were successfully detected, autonomously, by our AD monitoring tool.

  7. Late-Stage Vortical Structures and Eddy Motions in a Transitional Boundary Layer

    International Nuclear Information System (INIS)

    Xiao-Bing, Liu; Zheng-Qing, Chen; Chao-Qun, Liu

    2010-01-01

    A high-order direct numerical simulation of flow transition over a flat-plate at a free stream Mach number 0.5 is carried out. Formation and development of three-dimensional vortical structures, typically shown as A-vortices, hairpin vortices and ring-like vortices, are observed. Numerical results show that there is a strong downdraft motion of fluid excited by every ring-like vortex in the late-stage of the transition process. At two sides of the vortical structure centerline, the downdraft motions induced by the ring-like vortex and the rotating legs superimpose. This is responsible for the appearance of a high-speed streak associated with the positive spike observed in a previous investigation and the appearance of a high-shear layer in the near wall region. (fundamental areas of phenomenology(including applications))

  8. Shear effects on crystallization behaviors and structure transitions of isotactic poly-1-butene

    DEFF Research Database (Denmark)

    Li, Jingqing; Guan, Peipei; Zhang, Yao

    2014-01-01

    Different melt pre-shear conditions were applied to isotactic poly-1-butene (iP-1-B) and the effect on the crystallization behaviors and the crystalline structure transitions of iP-1-B were investigated. The polarized optical microscope observations during isothermal crystallization process...... revealed that the applied melt pre-shear within the experimental range could enhance the nucleation of crystal II and accelerate the diameter growth of the formed spherulites. If the applied melt pre-shear rate was large enough, Shish-Kebabs structure could be formed. After the isothermal crystallization...... was formed in the melt pre-sheared iP-1-B samples. Further investigations were applied with synchrotron radiation instruments. Wide angle X-ray scattering (WAXS) and small angle X-ray scattering (SAXS) after the crystal transition showed that the applied melt pre-shear could result in orientated fine...

  9. Structure of states and reduced probabilities of electromagnetic transitions in 169Yb

    International Nuclear Information System (INIS)

    Bonch-Osmolovskaya, N.A.; Morozov, V.A.; Khudajberdyev, Eh.N.

    1988-01-01

    The effect of accounting the Pauli principle on the structure and energy of nonrotational states of 169 Yb deformed nucleus as well as on reduced probabilities of E2-transitions B(E2) is studied within the framework of the quasiparticle-phonon model (QPM). The amplitudes of states mixing due to Coriolis interaction and reduced probabilities of gamma transition within the framework of nonadiabatic rotation model are also calculated. The results are compared with calculations made within QPM with account of Coriolis interaction but excluding the Pauli principle in the wave state function. It is shown that to describe correctly both the level structure and reduced probabilities B(E2) it is necessary to include all types of interaction : quasiparticle interaction with phonons with account of the Pauli principle in the wave state functions and Coriolis interactions. Now no uniform theoretical approach exists

  10. Bifurcation structure and noise assisted transitions in the Pleistocene glacial cycles

    DEFF Research Database (Denmark)

    Ditlevsen, Peter

    2009-01-01

    history. It indicates the dynamical origin of the mid-Pleistocene transition from the "41 ka world'' to the "100 ka world.'' The dominant forcing in the latter is still the 41 ka obliquity cycle, but the bifurcation structure of the climate system is changed. The model suggests that transitions between......The glacial cycles are attributed to the climatic response of the orbital changes in the irradiance to the Earth. These changes in the forcing are too small to explain the observed climate variations as simple linear responses. Nonlinear amplifications of the orbital forcing are necessary...... to account for the glacial cycles. Here an empirical model of the nonlinear response is presented. From the model it is possible to assess the role of stochastic noise in comparison to the deterministic orbital forcing of the ice ages. The model is based on the bifurcation structure derived from the climate...

  11. Structural Transition in a Fluid of Spheroids: A Low-Density Vestige of Jamming.

    Science.gov (United States)

    Cohen, A P; Dorosz, S; Schofield, A B; Schilling, T; Sloutskin, E

    2016-03-04

    A thermodynamically equilibrated fluid of hard spheroids is a simple model of liquid matter. In this model, the coupling between the rotational degrees of freedom of the constituent particles and their translations may be switched off by a continuous deformation of a spheroid of aspect ratio t into a sphere (t=1). We demonstrate, by experiments, theory, and computer simulations, that dramatic nonanalytic changes in structure and thermodynamics of the fluids take place, as the coupling between rotations and translations is made to vanish. This nonanalyticity, reminiscent of a second-order liquid-liquid phase transition, is not a trivial consequence of the shape of an individual particle. Rather, free volume considerations relate the observed transition to a similar nonanalyticity at t=1 in structural properties of jammed granular ellipsoids. This observation suggests a deep connection to exist between the physics of jamming and the thermodynamics of simple fluids.

  12. Close monitoring as a contextual stimulator : How need for structure affects the relation between close monitoring and work outcomes

    NARCIS (Netherlands)

    Rietzschel, Eric F.; Slijkhuis, Marjette; Van Yperen, Nico W.

    2014-01-01

    In this article, we argue and demonstrate that employees' Personal Need for Structure (PNS) moderates the negative effects of close monitoring on job satisfaction, intrinsic work motivation, and innovative job performance (as rated by their supervisors). In a field study (N=295), we found that

  13. A quaternary lead based perovskite structured materials with diffuse phase transition behavior

    International Nuclear Information System (INIS)

    Puli, Venkata Sreenivas; Martínez, R.; Kumar, Ashok; Scott, J.F.; Katiyar, Ram S.

    2011-01-01

    Graphical abstract: (a) Curie–Weiss plot for the inverse of the relative dielectric permittivity and (b) log (1/ε − 1/ε m ) as function of log (T − T m ) for ceramics at 1 kHz. Highlights: ► Retaining phase pure structure with quaternary complex stoichiometric compositions. ► P–E loops with good saturation polarization (P s ∼ 30.7 μC/cm 2 ). ► Diffused relaxor phase transition behavior with γ estimated is ∼1.65. -- Abstract: A lead based quaternary compound composed of 0.25(PbZr 0.52 Ti 0.48 O 3 ) + 0.25(PbFe 0.5 Ta 0.5 O 3 ) + 0.25 (PbF 0.67 W 0.33 O 3 ) + 0.25(PbFe 0.5 Nb 0.5 O 3 ) – (PZT–PFT–PFW–PFN) was synthesized by conventional solid-state reaction techniques. It showed moderate high dielectric constant, low dielectric loss, and two diffuse phase transitions, one below the room temperature ∼261 K and other above ∼410 K. X-ray diffraction (XRD) patterns revealed a tetragonal crystal structure at room temperature where as scanning electron micrograph (SEM) indicates inhomogeneous surface with an average grain size of 500 nm–3 μm. Well saturated ferroelectric hysteresis loops with good saturation polarization (spontaneous polarization, P s ∼ 30.68 μC/cm 2 ) were observed. Temperature-dependent ac conductivity displayed low conductivity with kink in spectra near the phase transition. In continuing search for developing new ferroelectric materials, in the present study we report stoichiometric compositions of complex perovskite ceramic materials: (PZT–PFT–PFW–PFN) with diffuse phase transition behavior. The crystal structure, dielectric properties, and ferroelectric properties were characterized by XRD, SEM, dielectric spectroscopy, and polarization. 1/ε versus (T) plots revealed diffuse relaxor phase transition (DPT) behavior. The compositional variation on the phase transition temperature, dielectric constant, and ferroelectric to paraelectric phase transitions are discussed.

  14. A quaternary lead based perovskite structured materials with diffuse phase transition behavior

    Energy Technology Data Exchange (ETDEWEB)

    Puli, Venkata Sreenivas, E-mail: pvsri123@gmail.com [Department of Physics and Institute for Functional Nano Materials, University of Puerto Rico, San Juan, PR 00936 (United States); Martinez, R.; Kumar, Ashok [Department of Physics and Institute for Functional Nano Materials, University of Puerto Rico, San Juan, PR 00936 (United States); Scott, J.F. [Department of Physics and Institute for Functional Nano Materials, University of Puerto Rico, San Juan, PR 00936 (United States); Cavendish Laboratory, Dept. Physics, University of Cambridge, Cambridge CB0 3HE (United Kingdom); Katiyar, Ram S., E-mail: rkatiyar@uprrp.edu [Department of Physics and Institute for Functional Nano Materials, University of Puerto Rico, San Juan, PR 00936 (United States)

    2011-12-15

    Graphical abstract: (a) Curie-Weiss plot for the inverse of the relative dielectric permittivity and (b) log (1/{epsilon} - 1/{epsilon}{sub m}) as function of log (T - T{sub m}) for ceramics at 1 kHz. Highlights: Black-Right-Pointing-Pointer Retaining phase pure structure with quaternary complex stoichiometric compositions. Black-Right-Pointing-Pointer P-E loops with good saturation polarization (P{sub s} {approx} 30.7 {mu}C/cm{sup 2}). Black-Right-Pointing-Pointer Diffused relaxor phase transition behavior with {gamma} estimated is {approx}1.65. -- Abstract: A lead based quaternary compound composed of 0.25(PbZr{sub 0.52}Ti{sub 0.48}O{sub 3}) + 0.25(PbFe{sub 0.5}Ta{sub 0.5}O{sub 3}) + 0.25 (PbF{sub 0.67}W{sub 0.33}O{sub 3}) + 0.25(PbFe{sub 0.5}Nb{sub 0.5}O{sub 3}) - (PZT-PFT-PFW-PFN) was synthesized by conventional solid-state reaction techniques. It showed moderate high dielectric constant, low dielectric loss, and two diffuse phase transitions, one below the room temperature {approx}261 K and other above {approx}410 K. X-ray diffraction (XRD) patterns revealed a tetragonal crystal structure at room temperature where as scanning electron micrograph (SEM) indicates inhomogeneous surface with an average grain size of 500 nm-3 {mu}m. Well saturated ferroelectric hysteresis loops with good saturation polarization (spontaneous polarization, P{sub s} {approx} 30.68 {mu}C/cm{sup 2}) were observed. Temperature-dependent ac conductivity displayed low conductivity with kink in spectra near the phase transition. In continuing search for developing new ferroelectric materials, in the present study we report stoichiometric compositions of complex perovskite ceramic materials: (PZT-PFT-PFW-PFN) with diffuse phase transition behavior. The crystal structure, dielectric properties, and ferroelectric properties were characterized by XRD, SEM, dielectric spectroscopy, and polarization. 1/{epsilon} versus (T) plots revealed diffuse relaxor phase transition (DPT) behavior. The

  15. Enabling Bus Transit Service Quality Co-Monitoring Through Smartphone-Based Platform

    DEFF Research Database (Denmark)

    Li, Corinna; Zegras, P. Christopher; Zhao, Fang

    2017-01-01

    ’ word, meaning “agencies using public feedback to supplement official monitoring and regulation.”] bus service quality. The pilot project adapted a smartphone-based travel survey system, Future Mobility Sensing, to collect real-time customer feedback and objective operational measurements on specific...

  16. Psychosocial issues of women with type 1 diabetes transitioning to motherhood: a structured literature review.

    Science.gov (United States)

    Rasmussen, Bodil; Hendrieckx, Christel; Clarke, Brydie; Botti, Mari; Dunning, Trisha; Jenkins, Alicia; Speight, Jane

    2013-11-23

    Life transitions often involve complex decisions, challenges and changes that affect diabetes management. Transition to motherhood is a major life event accompanied by increased risk that the pregnancy will lead to or accelerate existing diabetes-related complications, as well as risk of adverse pregnancy outcomes, all of which inevitably increase anxiety. The frequency of hyperglycaemia and hypoglycaemia often increases during pregnancy, which causes concern for the health and physical well-being of the mother and unborn child. This review aimed to examine the experiences of women with T1DM focusing on the pregnancy and postnatal phases of their transition to motherhood. The structured literature review comprised a comprehensive search strategy identifying primary studies published in English between 1990-2012. Standard literature databases were searched along with the contents of diabetes-specific journals. Reference lists of included studies were checked. Search terms included: 'diabetes', 'type 1', 'pregnancy', 'motherhood', 'transition', 'social support', 'quality of life' and 'psychological well-being'. Of 112 abstracts returned, 62 articles were reviewed in full-text, and 16 met the inclusion criteria. There was a high level of diversity among these studies but three common key themes were identified. They related to physical (maternal and fetal) well-being, psychological well-being and social environment. The results were synthesized narratively. Women with type 1 diabetes experience a variety of psychosocial issues in their transition to motherhood: increased levels of anxiety, diabetes-related distress, guilt, a sense of disconnectedness from health professionals, and a focus on medicalisation of pregnancy rather than the positive transition to motherhood. A trusting relationship with health professionals, sharing experiences with other women with diabetes, active social support, shared decision and responsibilities for diabetes management assisted the

  17. Symmetry analysis in the investigation of the order-disorder phase transition and possible structural deformations

    Energy Technology Data Exchange (ETDEWEB)

    Gurin, O V; Syromyatnikov, V N [AN SSSR, Sverdlovsk. Inst. Fiziki Metallov; Sikora, W [Joint Inst. for Nuclear Research, Dubna (USSR)

    1984-08-01

    Order-disorder phase transitions for the Me-X structures in Nb-H(D) hydrides with hydrogen (deuterium) ordering over the 12d tetrahedral interstices of the GAMMAsub(c)sup(v) lattice and for the Me-X and Me-X/sub 2/ oxides in the Ta-O system with oxygen ordering over octahedral 6b interstices are presented. The concentration of interstitial atoms is assumed to be constant. All possible models of ordered structures with a GAMMAsub(o)sup(b) lattice were determined using symmetry analysis. The possible structural deformations consistent with each variant of the ordering of the interstitial atoms were also considered. The structural deformations include the displacements of the metal atoms and of the centres of the interstices which were deduced using symmetry analysis. The results of the analysis of the final structure symmetry raise the question of understanding the nature of superstructure reflections in neutron diffraction patterns.

  18. A theoretical study of the structure and stability of borohydride on 3d transition metals

    Science.gov (United States)

    Arevalo, Ryan Lacdao; Escaño, Mary Clare Sison; Gyenge, Elod; Kasai, Hideaki

    2012-12-01

    The adsorption of borohydride on 3d transition metals (Cr, Mn, Fe, Co, Ni and Cu) was studied using first principles calculations within spin-polarized density functional theory. Magnetic effect on the stability of borohydride is noted. Molecular adsorption is favorable on Co, Ni and Cu, which is characterized by the strong s-dzz hybridization of the adsorbate-substrate states. Dissociated adsorption structure yielding one or two H adatom fragments on the surface is observed for Cr, Mn and Fe.

  19. Protein structural transition at negatively charged electrode surfaces. Effects of temperature and current density

    Czech Academy of Sciences Publication Activity Database

    Černocká, Hana; Ostatná, Veronika; Paleček, Emil

    2015-01-01

    Roč. 174, AUG 2015 (2015), s. 356-360 ISSN 0013-4686 R&D Projects: GA ČR(CZ) GAP301/11/2055; GA ČR(CZ) GA15-15479S; GA ČR(CZ) GA13-00956S Institutional support: RVO:68081707 Keywords : Bovine serum albumin * sensing of surface-attached protein stability * protein structural transition at Hg Subject RIV: BO - Biophysics Impact factor: 4.803, year: 2015

  20. Higher order Stark effect and transition probabilities on hyperfine structure components of hydrogen like atoms

    Energy Technology Data Exchange (ETDEWEB)

    Pal' chikov, V.G. [National Research Institute for Physical-Technical and Radiotechnical Measurements - VNIIFTRI (Russian Federation)], E-mail: vitpal@mail.ru

    2000-08-15

    A quantum-electrodynamical (QED) perturbation theory is developed for hydrogen and hydrogen-like atomic systems with interaction between bound electrons and radiative field being treated as the perturbation. The dependence of the perturbed energy of levels on hyperfine structure (hfs) effects and on the higher-order Stark effect is investigated. Numerical results have been obtained for the transition probability between the hfs components of hydrogen-like bismuth.

  1. Development of a Wireless Unified-Maintenance System for the Structural Health Monitoring of Civil Structures.

    Science.gov (United States)

    Heo, Gwanghee; Son, Byungjik; Kim, Chunggil; Jeon, Seunggon; Jeon, Joonryong

    2018-05-09

    A disaster preventive structural health monitoring (SHM) system needs to be equipped with the following abilities: First, it should be able to simultaneously measure diverse types of data (e.g., displacement, velocity, acceleration, strain, load, temperature, humidity, etc.) for accurate diagnosis. Second, it also requires standalone power supply to guarantee its immediate response in crisis (e.g., sudden interruption of normal AC power in disaster situations). Furthermore, it should be capable of prompt processing and realtime wireless communication of a huge amount of data. Therefore, this study is aimed at developing a wireless unified-maintenance system (WUMS) that would satisfy all the requirements for a disaster preventive SHM system of civil structures. The WUMS is designed to measure diverse types of structural responses in realtime based on wireless communication, allowing users to selectively use WiFi RF band and finally working in standalone mode by means of the field-programmable gate array (FPGA) technology. To verify its performance, the following tests were performed: (i) A test to see how far communication is possible in open field, (ii) a test on a shaker to see how accurate responses are, (iii) a modal test on a bridge to see how exactly characteristic real-time dynamic responses are of structures. The test results proved that the WUMS was able to secure stable communication far up to nearly 800 m away by acquiring wireless responses in realtime accurately, when compared to the displacement and acceleration responses which were acquired through wired communication. The analysis of dynamic characteristics also showed that the wireless acceleration responses in real-time represented satisfactorily the dynamic properties of structures. Therefore, the WUMS is proved valid as a SHM, and its outstanding performance is also proven.

  2. Fundamental and assessment of concrete structure monitoring by using acoustic emission technique testing: A review

    Science.gov (United States)

    Desa, M. S. M.; Ibrahim, M. H. W.; Shahidan, S.; Ghadzali, N. S.; Misri, Z.

    2018-04-01

    Acoustic emission (AE) technique is one of the non-destructive (NDT) testing, where it can be used to determine the damage of concrete structures such as crack, corrosion, stability, sensitivity, as structure monitoring and energy formed within cracking opening growth in the concrete structure. This article gives a comprehensive review of the acoustic emission (AE) technique testing due to its application in concrete structure for structural health monitoring (SHM). Assessment of AE technique used for structural are reviewed to give the perception of its structural engineering such as dam, bridge and building, where the previous research has been reviewed based on AE application. The assessment of AE technique focusing on basic fundamental of parametric and signal waveform analysis during analysis process and its capability in structural monitoring. Moreover, the assessment and application of AE due to its function have been summarized and highlighted for future references

  3. Electronic and structural aspects of spin transitions observed by optical microscopy. The case of [Fe(ptz)6](BF4)2.

    Science.gov (United States)

    Chong, Christian; Mishra, Haritosh; Boukheddaden, Kamel; Denise, Stéphane; Bouchez, Guillaume; Collet, Eric; Ameline, Jean-Claude; Naik, Anil D; Garcia, Yann; Varret, François

    2010-02-11

    The colorimetric analysis of images recorded with an optical microscope during the onset of the spin crossover transformation allows monitoring separately the involved electronic and structural aspects, through the separation of resonant absorption and scattering effects. Complementary information can also be obtained by using the polarized modes of the microscope. These potentialities are illustrated by the observation of [Fe(ptz)(6)](BF(4))(2) single crystals during the onset of the thermal transitions in the 110-140 K range. We characterized the interplay between the electronic (HS LS) and structural (order disorder) transformations. Elastic stresses and mechanical effects (hopping, self-cleavage) generated by the volume change upon electronic transition are also illustrated, with their impact on the photoswitching properties of the crystals.

  4. Fiber Optics Deliver Real-Time Structural Monitoring

    Science.gov (United States)

    2013-01-01

    To alter the shape of aircraft wings during flight, researchers at Dryden Flight Research Center worked on a fiber optic sensor system with Austin-based 4DSP LLC. The company has since commercialized a new fiber optic system for monitoring applications in health and medicine, oil and gas, and transportation, increasing company revenues by 60 percent.

  5. Structural monitoring of tunnels using terrestrial laser scanning

    NARCIS (Netherlands)

    Lindenbergh, R.C.; Uchanski, L.; Bucksch, A.; Van Gosliga, R.

    2009-01-01

    In recent years terrestrial laser scanning is rapidly evolving as a surveying technique for the monitoring of engineering objects like roof constructions, mines, dams, viaducts and tunnels. The advantage of laser scanning above traditional surveying methods is that it allows for the rapid

  6. Structural characterisation of 1- and 2-dimensional transition metal polymers using powder neutron diffraction

    International Nuclear Information System (INIS)

    James, M.

    1999-01-01

    Powder neutron diffraction provides an alternate technique for the structural study of transition metal polymers and finds utility over standard X-ray methods in two significant ways. Firstly, due to a different instrument geometry, preferred orientation effects are removed from the system. The second advantage gained by utilising neutrons is that H atoms in the sample contribute much more to the nuclear scattering of the diffraction profile - allowing their atomic position to be accurately determined. In X-ray diffraction studies, where H atoms typically account for only ∼3-5% of the scattering from the sample, it is essentially impossible to refine their position in the molecular structure. The structures of several transition metal polymers have been determined using neutrons from the HIFAR reactor at ANSTO and the Powder Diffractometers HRPD and MRPD, along with Rietveld refinement methods. The 1-dimensional polymer dibromobis(thiazole)nickel(II) illustrated in the paper is characteristic of these types of systems which are comprised of transition metal centres bridged by halogen atoms with pendant amine side groups

  7. Metal-Insulator Phase Transition in Quasi-One-Dimensional VO2 Structures

    Directory of Open Access Journals (Sweden)

    Woong-Ki Hong

    2015-01-01

    Full Text Available The metal-insulator transition (MIT in strongly correlated oxides has attracted considerable attention from both theoretical and experimental researchers. Among the strongly correlated oxides, vanadium dioxide (VO2 has been extensively studied in the last decade because of a sharp, reversible change in its optical, electrical, and magnetic properties at approximately 341 K, which would be possible and promising to develop functional devices with advanced technology by utilizing MITs. However, taking the step towards successful commercialization requires the comprehensive understanding of MIT mechanisms, enabling us to manipulate the nature of transitions. In this regard, recently, quasi-one-dimensional (quasi-1D VO2 structures have been intensively investigated due to their attractive geometry and unique physical properties to observe new aspects of transitions compared with their bulk counterparts. Thus, in this review, we will address recent research progress in the development of various approaches for the modification of MITs in quasi-1D VO2 structures. Furthermore, we will review recent studies on realizing novel functional devices based on quasi-1D VO2 structures for a wide range of applications, such as a gas sensor, a flexible strain sensor, an electrical switch, a thermal memory, and a nonvolatile electrical memory with multiple resistance.

  8. Structural Phase Transition and Compressibility of CaF2 Nanocrystals under High Pressure

    Directory of Open Access Journals (Sweden)

    Jingshu Wang

    2018-05-01

    Full Text Available The structural phase transition and compressibility of CaF2 nanocrystals with size of 23 nm under high pressure were investigated by synchrotron X-ray diffraction measurement. A pressure-induced fluorite to α-PbCl2-type phase transition starts at 9.5 GPa and completes at 20.2 GPa. The phase-transition pressure is lower than that of 8 nm CaF2 nanocrystals and closer to bulk CaF2. Upon decompression, the fluorite and α-PbCl2-type structure co-exist at the ambient pressure. The bulk modulus B0 of the 23 nm CaF2 nanocrystals for the fluorite and α-PbCl2-type phase are 103(2 and 78(2 GPa, which are both larger than those of the bulk CaF2. The CaF2 nanocrystals exhibit obviously higher incompressibility compare to bulk CaF2. Further analysis demonstrates that the defect effect in our CaF2 nanocrystals plays a dominant role in the structural stability.

  9. Structural phase transitions in the ordered double perovskite Sr2MnTeO6

    International Nuclear Information System (INIS)

    Ortega-San Martin, L; Chapman, J P; Hernandez-Bocanegra, E; Insausti, M; Arriortua, M I; Rojo, T

    2004-01-01

    The crystal structure of the ordered double perovskite Sr 2 MnTeO 6 has been refined at ambient temperature from high resolution neutron and x-ray powder diffraction data in the monoclinic space group P 12 1 /n 1 with a 5.7009(1) A, b = 5.6770(1) A, c = 8.0334(1) A and β = 90.085(1) deg. This represents a combination of in-phase (+) and out-of-phase (-) rotations of virtually undistorted MnO 6 and TeO 6 octahedra in the (-+) sense about the axes of the ideal cubic perovskite. High temperature x-ray powder diffraction shows three structural phase transitions at approximately 250, 550 and 675 deg. C, each corresponding to the disappearance of rotations about one of these axes. The first transition was analysed by differential scanning calorimetry and showed a thermal hysteresis with an enthalpy of 0.55 J g -1 . We propose the (P12 1 /n1 → I12/m1 → I4/m → Fm3barm) sequence of structural transitions which has not been previously reported for a double perovskite oxide

  10. Vibration-based monitoring for performance evaluation of flexible civil structures in Japan

    Science.gov (United States)

    FUJINO, Yozo

    2018-01-01

    The vibration-based monitoring of flexible civil structures and performance evaluation from this monitoring are reviewed, with an emphasis on research and practice in Japan and the author’s experiences. Some new findings and unexpected vibrations from the monitoring of real bridges and buildings are reported to emphasize the importance of monitoring. Future developments and applications of vibration-based monitoring to civil infrastructure management are also described. Many examples are taken from the author’s past 30 years’ experience of research on bridge dynamics. PMID:29434082

  11. NUSTART: A PC code for NUclear STructure And Radiative Transition analysis and supplementation

    International Nuclear Information System (INIS)

    Larsen, G.L.; Gardner, D.G.; Gardner, M.A.

    1990-10-01

    NUSTART is a computer program for the IBM PC/At. It is designed for use with the nuclear reaction cross-section code STAPLUS, which is a STAPRE-based CRAY computer code that is being developed at Lawrence Livermore National Laboratory. The NUSTART code was developed to handle large sets of discrete nuclear levels and the multipole transitions among these levels; it operates in three modes. The Data File Error Analysis mode analyzes an existing STAPLUS input file containing the levels and their multipole transition branches for a number of physics and/or typographical errors. The Interactive Data File Generation mode allows the user to create input files of discrete levels and their branching fractions in the format required by STAPLUS, even though the user enters the information in the (different) format used by many people in the nuclear structure field. In the Branching Fractions Calculations mode, the discrete nuclear level set is read, and the multipole transitions among the levels are computed under one of two possible assumptions: (1) the levels have no collective character, or (2) the levels are all rotational band heads. Only E1, M1, and E2 transitions are considered, and the respective strength functions may be constants or, in the case of E1 transitions, the strength function may be energy dependent. The first option is used for nuclei closed shells; the bandhead option may be used to vary the E1, M1, and E2 strengths for interband transitions. K-quantum number selection rules may be invoked if desired. 19 refs

  12. Structural phase transition and magnetic properties of double perovskites Ba2CaMO6 (M=W, Re, Os)

    International Nuclear Information System (INIS)

    Yamamura, Kazuhiro; Wakeshima, Makoto; Hinatsu, Yukio

    2006-01-01

    Structures and magnetic properties for double perovskites Ba 2 CaMO 6 (M=W, Re, Os) were investigated. Both Ba 2 CaReO 6 and Ba 2 CaWO 6 show structural phase transitions at low temperatures. For Ba 2 CaReO 6 , the second order transition from cubic Fm3-bar m to tetragonal I4/m has been observed near 120K. For Ba 2 CaWO 6 , the space group of the crystal structure is I4/m at 295K and the transition to monoclinic I2/m has been observed between 220K. Magnetic susceptibility measurements show that Ba 2 CaReO 6 (S=1/2) and Ba 2 CaOsO 6 (S=1) transform to an antiferromagnetic state below 15.4 and 51K, respectively. Anomalies corresponding to their structural phase transition and magnetic transition have been also observed through specific heat measurements

  13. A new solution of measuring thermal response of prestressed concrete bridge girders for structural health monitoring

    International Nuclear Information System (INIS)

    Jiao, Pengcheng; Borchani, Wassim; Hasni, Hassene; Lajnef, Nizar

    2017-01-01

    This study develops a novel buckling-based mechanism to measure the thermal response of prestressed concrete bridge girders under continuous temperature changes for structural health monitoring. The measuring device consists of a bilaterally constrained beam and a piezoelectric polyvinylidene fluoride transducer that is attached to the beam. Under thermally induced displacement, the slender beam is buckled. The post-buckling events are deployed to convert the low-rate and low-frequency excitations into localized high-rate motions and, therefore, the attached piezoelectric transducer is triggered to generate electrical signals. Attaching the measuring device to concrete bridge girders, the electrical signals are used to detect the thermal response of concrete bridges. Finite element simulations are conducted to obtain the displacement of prestressed concrete girders under thermal loads. Using the thermal-induced displacement as input, experiments are carried out on a 3D printed measuring device to investigate the buckling response and corresponding electrical signals. A theoretical model is developed based on the nonlinear Euler–Bernoulli beam theory and large deformation assumptions to predict the buckling mode transitions of the beam. Based on the presented theoretical model, the geometry properties of the measuring device can be designed such that its buckling response is effectively controlled. Consequently, the thermally induced displacement can be designed as limit states to detect excessive thermal loads on concrete bridge girders. The proposed solution sufficiently measures the thermal response of concrete bridges. (paper)

  14. A new solution of measuring thermal response of prestressed concrete bridge girders for structural health monitoring

    Science.gov (United States)

    Jiao, Pengcheng; Borchani, Wassim; Hasni, Hassene; Lajnef, Nizar

    2017-08-01

    This study develops a novel buckling-based mechanism to measure the thermal response of prestressed concrete bridge girders under continuous temperature changes for structural health monitoring. The measuring device consists of a bilaterally constrained beam and a piezoelectric polyvinylidene fluoride transducer that is attached to the beam. Under thermally induced displacement, the slender beam is buckled. The post-buckling events are deployed to convert the low-rate and low-frequency excitations into localized high-rate motions and, therefore, the attached piezoelectric transducer is triggered to generate electrical signals. Attaching the measuring device to concrete bridge girders, the electrical signals are used to detect the thermal response of concrete bridges. Finite element simulations are conducted to obtain the displacement of prestressed concrete girders under thermal loads. Using the thermal-induced displacement as input, experiments are carried out on a 3D printed measuring device to investigate the buckling response and corresponding electrical signals. A theoretical model is developed based on the nonlinear Euler-Bernoulli beam theory and large deformation assumptions to predict the buckling mode transitions of the beam. Based on the presented theoretical model, the geometry properties of the measuring device can be designed such that its buckling response is effectively controlled. Consequently, the thermally induced displacement can be designed as limit states to detect excessive thermal loads on concrete bridge girders. The proposed solution sufficiently measures the thermal response of concrete bridges.

  15. Changing the cubic ferrimagnetic domain structure in temperature region of spin flip transition

    International Nuclear Information System (INIS)

    Djuraev, D.R.; Niyazov, L.N.; Saidov, K.S.; Sokolov, B.Yu.

    2011-01-01

    The transformation of cubic ferrimagnetic Tb 0.2 Y 2.8 Fe 5 O 12 domain structure has been studied by magneto optic method in the temperature region of spontaneous spin flip phase transition (SPT). It has been found that SPT occurs in a finite temperature interval where the coexistence of low- and high- temperature magnetic phase domains has observed. A character of domain structure evolution in temperature region of spin flip essentially depends on the presence of mechanical stresses in crystal. Interpretation of experimental results has been carried out within the framework of SPT theory for a cubic crystal. (authors)

  16. Structure of transition nuclei states in fermion dynamic-symmetry model

    International Nuclear Information System (INIS)

    Baktybaev, K.; Kojlyk, N.O.; Romankulov, K.

    2007-01-01

    In the paper collective structures of osmium heavy isotopes nucleons are studied. Results of diagonalization of SO(6) symmetric Hamiltonian of fermion-dynamical symmetry-model are comparing with results of other phenomenological methods such as Bohr-Mottelson model and interacting bosons model. For heavy osmium isotopes not only collective excitations spectral bands but also for probability of E2-electromagnet transition are which are compared with existing experimental data. It is revealed, that complexity of state structure for examined nuclei is related with competition and interweaving of rotation and vibration states and also more complicated states of γ instable nature

  17. Tetrahedral ↔ octahedral network structure transition in simulated vitreous SiO2

    International Nuclear Information System (INIS)

    Vo Van Hoang; Nguyen Trung Hai; Hoang Zung

    2006-01-01

    By using molecular dynamics (MD) simulations we found a transition from a tetrahedral to an octahedral network structure in an amorphous SiO 2 model under compression from 2.20 to 5.35 g/cm 3 . And on heating of a high density amorphous (hda) model of 5.35 g/cm 3 at zero pressure, the structure transforms to a low density amorphous (lda) form. Simulations were done in a model containing 3000 particles under periodic boundary conditions with interatomic potentials which have a weak Coulomb interaction and a Morse type short-range interaction

  18. India's Proposed Universal Health Coverage Policy: Evidence for Age Structure Transition Effect and Fiscal Sustainability.

    Science.gov (United States)

    Narayana, Muttur Ranganathan

    2016-12-01

    India's High Level Expert Group on Universal Health Coverage in 2011 recommended a universal, public-funded and national health coverage policy. As a plausible forward-looking macroeconomic reform in the health sector, this policy proposal on universal health coverage (UHC) needs to be evaluated for age structure transition effect and fiscal sustainability to strengthen its current design and future implementation. Macroeconomic analyses of the long-term implications of age structure transition and fiscal sustainability on India's proposed UHC policy. A new measure of age-specific UHC is developed by combining the age profile of public and private health consumption expenditure by using the National Transfer Accounts methodology. Different projections of age-specific public health expenditure are calculated over the period 2005-2100 to account for the age structure transition effect. The projections include changes in: (1) levels of the expenditure as gross domestic product grows, (2) levels and shape of the expenditure as gross domestic product grows and expenditure converges to that of developed countries (or convergence scenario) based on the Lee-Carter model of forecasting mortality rates, and (3) levels of the expenditure as India moves toward a UHC policy. Fiscal sustainability under each health expenditure projection is determined by using the measures of generational imbalance and sustainability gap in the Generational Accounting methodology. Public health expenditure is marked by age specificities and the elderly population is costlier to support for their healthcare needs in the future. Given the discount and productivity growth rates, the proposed UHC is not fiscally sustainable under India's current fiscal policies except for the convergence scenario. However, if the income elasticity of public expenditure on social welfare and health expenditure is less than one, fiscal sustainability of the UHC policy is attainable in all scenarios of projected public

  19. High-Resolution Structural Monitoring of Ionospheric Absorption Events

    Science.gov (United States)

    2013-07-01

    7 riometry. Incorporation of an outrigger site, to enable treatment of the unknown structure of the celestial background and the effects of...riometry. Incorporation of an outrigger site, to enable treatment of the unknown structure of the celestial background and the effects of confusion...event captured with this system . Note that, even at this fairly coarse resolution, there is discrete structure that changes in position and strength

  20. Outcome Evidence for Structured Pediatric to Adult Health Care Transition Interventions: A Systematic Review.

    Science.gov (United States)

    Gabriel, Phabinly; McManus, Margaret; Rogers, Katherine; White, Patience

    2017-09-01

    To identify statistically significant positive outcomes in pediatric-to-adult transition studies using the triple aim framework of population health, consumer experience, and utilization and costs of care. Studies published between January 1995 and April 2016 were identified using the CINAHL, Ovid MEDLINE, PubMed, Scopus, and Web of Science databases. Included studies evaluated pre-evaluation and postevaluation data, intervention and comparison groups, and randomized clinic trials. The methodological strength of each study was assessed using the Effective Public Health Practice Project Quality Assessment Tool. Out of a total of 3844 articles, 43 met our inclusion criteria. Statistically significant positive outcomes were found in 28 studies, most often related to population health (20 studies), followed by consumer experience (8 studies), and service utilization (9 studies). Among studies with moderate to strong quality assessment ratings, the most common positive outcomes were adherence to care and utilization of ambulatory care in adult settings. Structured transition interventions often resulted in positive outcomes. Future evaluations should consider aligning with professional transition guidance; incorporating detailed intervention descriptions about transition planning, transfer, and integration into adult care; and measuring the triple aims of population health, experience, and costs of care. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Sandwich structure of plasma edge during transition to improved confinement regime in L-2M stellarator

    International Nuclear Information System (INIS)

    Shchepetov, S V; Kholnov, Yu V; Fedyanin, O I; Kuznetsov, A B; Vasilkov, D G; Akulina, D K; Batanov, G M; Gladkov, G A; Grebenshchikov, S E; Meshcheryakov, A I

    2008-01-01

    Transitions to the regime with better confinement in the L-2M stellarator are presented. Transitions are indicated only at sufficiently high plasma densities, and for a given value of average density they appear only at higher heating powers. Each transition is easily identified by a sudden fast ( e ). In the bulk of the plasma parameters evolve slowly. Drastic changes are observed in the region close to the plasma boundary where two moderate order rational magnetic surfaces are located with the rotational transform μ taking the values 2/3 and 3/4. Relative values of plasma parameters' fluctuations and their spectrum widths decrease significantly in this region. The region has a definite sandwich structure being subdivided by the above-named moderate order rational magnetic surfaces into three smaller zones with different plasma parameter dynamics. Transition is triggered by local disturbances of plasma parameters that are caused by instabilities in the vicinity of magnetic surfaces where μ is equal to 2/3 or 3/4. Different hypotheses on the nature of the phenomenon are discussed

  2. Electronic structure and quantum spin fluctuations at the magnetic phase transition in MnSi

    Science.gov (United States)

    Povzner, A. A.; Volkov, A. G.; Nogovitsyna, T. A.

    2018-05-01

    The effect of spin fluctuations on the heat capacity and homogeneous magnetic susceptibility of the chiral magnetic MnSi in the vicinity of magnetic transition has been investigated by using the free energy functional of the coupled electron and spin subsystems and taking into account the Dzyaloshinsky-Moriya interaction. For helical ferromagnetic ordering, we found that zero-point fluctuations of the spin density are large and comparable with fluctuations of the non-uniform magnetization. The amplitude of zero-point spin fluctuations shows a sharp decrease in the region of the magnetic phase transition. It is shown that sharp decrease of the amplitude of the quantum spin fluctuations results in the lambda-like maxima of the heat capacity and the homogeneous magnetic susceptibility. Above the temperature of the lambda anomaly, the spin correlation radius becomes less than the period of the helical structure and chiral fluctuations of the local magnetization appear. It is shown that formation of a "shoulder" on the temperature dependence of the heat capacity is due to disappearance of the local magnetization. Our finding allows to explain the experimentally observed features of the magnetic phase transition of MnSi as a result of the crossover of quantum and thermodynamic phase transitions.

  3. Structural health monitoring of pipelines rehabilitated with lining technology

    Science.gov (United States)

    Farhidzadeh, Alireza; Dehghan-Niri, Ehsan; Salamone, Salvatore

    2014-03-01

    Damage detection of pipeline systems is a tedious and time consuming job due to digging requirement, accessibility, interference with other facilities, and being extremely wide spread in metropolitans. Therefore, a real-time and automated monitoring system can pervasively reduce labor work, time, and expenditures. This paper presents the results of an experimental study aimed at monitoring the performance of full scale pipe lining systems, subjected to static and dynamic (seismic) loading, using Acoustic Emission (AE) technique and Guided Ultrasonic Waves (GUWs). Particularly, two damage mechanisms are investigated: 1) delamination between pipeline and liner as the early indicator of damage, and 2) onset of nonlinearity and incipient failure of the liner as critical damage state.

  4. Structural health monitoring of bridge cables : An overview

    OpenAIRE

    DRISSI HABTI, Monssef; BETTI, Raimondo; YANEV, Bojidar

    2009-01-01

    Bridges are critical components of the civil infrastructure and are normally designed for a long life span. The life span of suspension bridges depends on the health of their cables, which, in turn, is a function of many factors. Therefore, continuous health monitoring (SHM) and regular condition assessment of cables is highly desirable. In this article, some SHM procedures based on direct, indirect non-destructive techniques NDT, and vibration theory are presented.

  5. Remote Sensing and Monitoring of Earthen Flood-Control Structures

    Science.gov (United States)

    2017-07-01

    windows also provide valuable information about the earth’s surface and are useful for purposes of both land and water mapping or change detection ...spectrum (Figures 2-2 and 2-3) are considered to be useful for detection and monitoring of boil activity as temperature differences in water from seepage...are no breaks, holes, cracks in the discharge pipes/ culverts that would result in significant water leakage . The pipe shape is still essentially

  6. Insights from the structure of a smallpox virus topoisomerase-DNA transition state mimic

    Science.gov (United States)

    Perry, Kay; Hwang, Young; Bushman, Frederic D.; Van Duyne, Gregory D.

    2010-01-01

    Summary Poxviruses encode their own type IB topoisomerases (TopIBs) which release superhelical tension generated by replication and transcription of their genomes. To investigate the reaction catalyzed viral TopIBs, we have determined the structure of a variola virus topoisomerase-DNA complex trapped as a vanadate transition state mimic. The structure reveals how the viral TopIB enzymes are likely to position the DNA duplex for ligation following relaxation of supercoils and identifies the sources of friction observed in single molecule experiments that argue against free rotation. The structure also identifies a conformational change in the leaving group sugar that must occur prior to cleavage and reveals a mechanism for promoting ligation following relaxation of supercoils that involves a novel Asp-minor groove interaction. Overall, the new structural data support a common catalytic mechanism for the TopIB superfamily but indicate distinct methods for controlling duplex rotation in the small vs. large enzyme subfamilies. PMID:20152159

  7. Applications of Piezoelectric Materials in Structural Health Monitoring and Repair: Selected Research Examples.

    Science.gov (United States)

    Duan, Wen Hui; Wang, Quan; Quek, Ser Tong

    2010-12-06

    The paper reviews the recent applications of piezoelectric materials in structural health monitoring and repair conducted by the authors. First, commonly used piezoelectric materials in structural health monitoring and structure repair are introduced. The analysis of plain piezoelectric sensors and actuators and interdigital transducer and their applications in beam, plate and pipe structures for damage detection are reviewed in detail. Second, an overview is presented on the recent advances in the applications of piezoelectric materials in structural repair. In addition, the basic principle and the current development of the technique are examined.

  8. Applications of Piezoelectric Materials in Structural Health Monitoring and Repair: Selected Research Examples

    Directory of Open Access Journals (Sweden)

    Ser Tong Quek

    2010-12-01

    Full Text Available The paper reviews the recent applications of piezoelectric materials in structural health monitoring and repair conducted by the authors. First, commonly used piezoelectric materials in structural health monitoring and structure repair are introduced. The analysis of plain piezoelectric sensors and actuators and interdigital transducer and their applications in beam, plate and pipe structures for damage detection are reviewed in detail. Second, an overview is presented on the recent advances in the applications of piezoelectric materials in structural repair. In addition, the basic principle and the current development of the technique are examined.

  9. A novel HVSR approach on structural heath monitoring for structural vulnerability assesement

    Science.gov (United States)

    Pentaris, Fragkiskos P.; Papadopoulos, Ilias

    2014-05-01

    This work suggests a novel approach for vulnerability assessment in structural health monitoring (SHM) through Horizontal to Vertical Spectral Ratio (HVSR) method. Acceleration recordings of different age concrete buildings [1] are analyzed using the conventional method for estimation of fundamental frequency in SHM (Fast Furrier Transform-FFT method). The results of frequency spectrum are verified theoretically (mass and stiffness matrices models) but also by practical techniques applied in real structure data, for the estimation of structural resonance frequencies [2-4]. The same recordings are analyzed by HVSR method and study the differences and the similarities of both methods (FFT and HVSR) under earthquake excitation. Both methods can reveal resonance frequencies and amplitude of buildings under study, with great detail and efficiency in terms of ease of deployment, computation, cost and time. Furthermore HVSR recordings of strong seismic motion are compared with HVSR recordings of ambient noise for the case study buildings. The similarities of HVSR recordings (between earthquake and ambient noise) reveal the same analogy in HVSR spectrum. This enables a simple HVSR noise recording in a building to present the same information with an earthquake HVSR recording that are much rarer. This study presents a novel index which compute the increase of HVSR between floors and correlates the increasing rate with the structural vulnerability of the specific building. The main idea is that this HVSR rate index is strongly related with the differential acceleration (between floors), a determinant measurement for SHM assessment in concrete buildings. Experimental data verify the above HVSR rise index by presentation of higher HVSR rise in older buildings (with visible cracks in beams, damage and stress in their structure) than other younger buildings without any visible damage. Acknowledgments This work was supported in part by the ARCHEMEDES III Program of the Ministry

  10. Research of diagnosis sensors fault based on correlation analysis of the bridge structural health monitoring system

    Science.gov (United States)

    Hu, Shunren; Chen, Weimin; Liu, Lin; Gao, Xiaoxia

    2010-03-01

    Bridge structural health monitoring system is a typical multi-sensor measurement system due to the multi-parameters of bridge structure collected from the monitoring sites on the river-spanning bridges. Bridge structure monitored by multi-sensors is an entity, when subjected to external action; there will be different performances to different bridge structure parameters. Therefore, the data acquired by each sensor should exist countless correlation relation. However, complexity of the correlation relation is decided by complexity of bridge structure. Traditionally correlation analysis among monitoring sites is mainly considered from physical locations. unfortunately, this method is so simple that it cannot describe the correlation in detail. The paper analyzes the correlation among the bridge monitoring sites according to the bridge structural data, defines the correlation of bridge monitoring sites and describes its several forms, then integrating the correlative theory of data mining and signal system to establish the correlation model to describe the correlation among the bridge monitoring sites quantificationally. Finally, The Chongqing Mashangxi Yangtze river bridge health measurement system is regards as research object to diagnosis sensors fault, and simulation results verify the effectiveness of the designed method and theoretical discussions.

  11. The structure of water quality monitoring in the disaster area

    International Nuclear Information System (INIS)

    Yoshida, Nobuo

    2012-01-01

    Described are monitoring systems of water environment at usual times and after the 2011 Tohoku Earthquake and Tsunami Disaster, and measures taken by the Ministry of the Environment (ME) for radioactive substances in the water environment. At usual times, the monitoring of hazardous substance in water environment is conducted by local governments. At/after the Disaster, ME conducted the monitoring investigation concerning the environmental quality standards and toxicants like dioxins in the river, sea and groundwater from late May to late July, 2011 because undesirable effects on health and life of the residents had been feared due to possible leak of hazardous substances in public water area and underground water of victim prefectures, Aomori, Iwate, Miyagi, Fukushima and Ibaraki. As the results, no high contamination due to the Disaster was found, and a part of regions exhibited the slight chemical contamination, where continuous and additional monitoring was to be kept locally with guidance of drinking the concerned well water. ME measured radioactive iodine and cesium at 29 places of Fukushima rivers to find <65 and <30,000 Bq/kg, respectively, of 4 spots of river bed material alone (late May); then Cs 32 Bq/L in water at 1 spot and <26,000 Bq/kg in bed at all places after rain (early July). In groundwater, no radioactive nuclides above were detected in any of 111 places of Fukushima Prefecture (late June to early August). Cs was not found in sea water of 9 places of concerned prefectures, but was in the sea bottom soil, <1,380 Bq/kg (middle June). As well, local governments measured those two radioactive nuclides in water and ambient dose rate of 551 sea bathing beaches (late May to early Oct.) and found only one beach (Iwaki City, Fukushima) inappropriate for swimming play. Hereafter, ME is still to investigate the bed material of public water area and to continue to monitor the marine environment in cooperation with related authorities. (T.T.)

  12. FRAMEWORK FOR STRUCTURAL ONLINE HEALTH MONITORING OF AGING AND DEGRADATION OF SECONDARY PIPING SYSTEMS DUE TO SOME ASPECTS OF EROSION

    Energy Technology Data Exchange (ETDEWEB)

    Gribok, Andrei V.; Agarwal, Vivek

    2017-06-01

    This paper describes the current state of research related to critical aspects of erosion and selected aspects of degradation of secondary components in nuclear power plants (NPPs). The paper also proposes a framework for online health monitoring of aging and degradation of secondary components. The framework consists of an integrated multi-sensor modality system, which can be used to monitor different piping configurations under different degradation conditions. The report analyses the currently known degradation mechanisms and available predictive models. Based on this analysis, the structural health monitoring framework is proposed. The Light Water Reactor Sustainability Program began to evaluate technologies that could be used to perform online monitoring of piping and other secondary system structural components in commercial NPPs. These online monitoring systems have the potential to identify when a more detailed inspection is needed using real time measurements, rather than at a pre-determined inspection interval. This transition to condition-based, risk-informed automated maintenance will contribute to a significant reduction of operations and maintenance costs that account for the majority of nuclear power generation costs. Furthermore, of the operations and maintenance costs in U.S. plants, approximately 80% are labor costs. To address the issue of rising operating costs and economic viability, in 2017, companies that operate the national nuclear energy fleet started the Delivering the Nuclear Promise Initiative, which is a 3 year program aimed at maintaining operational focus, increasing value, and improving efficiency. There is unanimous agreement between industry experts and academic researchers that identifying and prioritizing inspection locations in secondary piping systems (for example, in raw water piping or diesel piping) would eliminate many excessive in-service inspections. The proposed structural health monitoring framework takes aim at

  13. Monitoring structure development in milk acidification using diffuse reflectance profiles

    DEFF Research Database (Denmark)

    Skytte, Jacob Lercke; Andersen, Ulf; Møller, Flemming

    2012-01-01

    are needed so that the production can be carried out consistently, regardless of day-to-day variations in the raw materials. Casein micelles aggregate during milk acidification, which leads to formation of a gel network. This change of structure is important for the development of a range of dairy products......, protein, and temperature in the acidification process is conducted. The purpose of the experiment is to investigate how the change of these parameters affects the diffuse reflectance properties as well as to demonstrate the relation between the optical parameters and structure formation in milk......The structure of dairy products is important for the consumer, and milk acidification plays a central role for structural development. To ensure the best possible consumer experience, it is important that a product’s structural properties are stable. Therefore process and quality control tools...

  14. Bayesian updating and decision making using correlated structural health monitoring observations

    DEFF Research Database (Denmark)

    Nielsen, Jannie Sønderkær

    2018-01-01

    A Bayesian approach is often applied when updating a deterioration model using observations from expected structural health monitoring or condition monitoring. Usually, observations are assumed to be independent conditioned on the damage size, but this assumption does not always hold, especially ...... is properly modeled. In case of correlated observations, an advanced decision model using all past observations for decision making is needed to make monitoring feasible compared to only using inspections....

  15. Complex band structures of transition metal dichalcogenide monolayers with spin–orbit coupling effects

    International Nuclear Information System (INIS)

    Szczęśniak, Dominik; Ennaoui, Ahmed; Ahzi, Saïd

    2016-01-01

    Recently, the transition metal dichalcogenides have attracted renewed attention due to the potential use of their low-dimensional forms in both nano- and opto-electronics. In such applications, the electronic and transport properties of monolayer transition metal dichalcogenides play a pivotal role. The present paper provides a new insight into these essential properties by studying the complex band structures of popular transition metal dichalcogenide monolayers (MX 2 , where M   =  Mo, W; X   =  S, Se, Te) while including spin–orbit coupling effects. The conducted symmetry-based tight-binding calculations show that the analytical continuation from the real band structures to the complex momentum space leads to nonlinear generalized eigenvalue problems. Herein an efficient method for solving such a class of nonlinear problems is presented and yields a complete set of physically relevant eigenvalues. Solutions obtained by this method are characterized and classified into propagating and evanescent states, where the latter states manifest not only monotonic but also oscillatory decay character. It is observed that some of the oscillatory evanescent states create characteristic complex loops at the direct band gap of MX 2 monolayers, where electrons can directly tunnel between the band gap edges. To describe these tunneling currents, decay behavior of electronic states in the forbidden energy region is elucidated and their importance within the ballistic transport regime is briefly discussed. (paper)

  16. Complex band structures of transition metal dichalcogenide monolayers with spin-orbit coupling effects

    Science.gov (United States)

    Szczęśniak, Dominik; Ennaoui, Ahmed; Ahzi, Saïd

    2016-09-01

    Recently, the transition metal dichalcogenides have attracted renewed attention due to the potential use of their low-dimensional forms in both nano- and opto-electronics. In such applications, the electronic and transport properties of monolayer transition metal dichalcogenides play a pivotal role. The present paper provides a new insight into these essential properties by studying the complex band structures of popular transition metal dichalcogenide monolayers (MX 2, where M  =  Mo, W; X  =  S, Se, Te) while including spin-orbit coupling effects. The conducted symmetry-based tight-binding calculations show that the analytical continuation from the real band structures to the complex momentum space leads to nonlinear generalized eigenvalue problems. Herein an efficient method for solving such a class of nonlinear problems is presented and yields a complete set of physically relevant eigenvalues. Solutions obtained by this method are characterized and classified into propagating and evanescent states, where the latter states manifest not only monotonic but also oscillatory decay character. It is observed that some of the oscillatory evanescent states create characteristic complex loops at the direct band gap of MX 2 monolayers, where electrons can directly tunnel between the band gap edges. To describe these tunneling currents, decay behavior of electronic states in the forbidden energy region is elucidated and their importance within the ballistic transport regime is briefly discussed.

  17. SnTe field effect transistors and the anomalous electrical response of structural phase transition

    International Nuclear Information System (INIS)

    Li, Haitao; Zhu, Hao; Yuan, Hui; Li, Qiliang; You, Lin; Kopanski, Joseph J.; Richter, Curt A.; Zhao, Erhai

    2014-01-01

    SnTe is a conventional thermoelectric material and has been newly found to be a topological crystalline insulator. In this work, back-gate SnTe field-effect transistors have been fabricated and fully characterized. The devices exhibit n-type transistor behaviors with excellent current-voltage characteristics and large on/off ratio (>10 6 ). The device threshold voltage, conductance, mobility, and subthreshold swing have been studied and compared at different temperatures. It is found that the subthreshold swings as a function of temperature have an apparent response to the SnTe phase transition between cubic and rhombohedral structures at 110 K. The abnormal and rapid increase in subthreshold swing around the phase transition temperature may be due to the soft phonon/structure change which causes the large increase in SnTe dielectric constant. Such an interesting and remarkable electrical response to phase transition at different temperatures makes the small SnTe transistor attractive for various electronic devices.

  18. Coherent structure dynamics and identification during the multistage transitions of polymeric turbulent channel flow

    Science.gov (United States)

    Zhu, Lu; Xi, Li

    2018-04-01

    Drag reduction induced by polymer additives in wall-bounded turbulence has been studied for decades. A small dosage of polymer additives can drastically reduce the energy dissipation in turbulent flows and alter the flow structures at the same time. As the polymer-induced fluid elasticity increases, drag reduction goes through several stages of transition with drastically different flow statistics. While much attention in the area of polymer-turbulence interactions has been focused on the onset and the asymptotic stage of maximum drag reduction, the transition between the two intermediate stages – low-extent drag reduction (LDR) and high-extent drag reduction (HDR) – likely reflects a qualitative change in the underlying vortex dynamics according to our recent study [1]. In particular, we proposed that polymers start to suppress the lift-up and bursting of vortices at HDR, leading to the localization of turbulent structures. To test our hypothesis, a statistically robust conditional sampling algorithm, based on Jenong and Hussain [2]’s work, was adopted in this study. The comparison of conditional eddies between the Newtonian and the highly elastic turbulence shows that (i) the lifting “strength” of vortices is suppressed by polymers as reflected by the decreasing lifting angle of the conditional eddy and (ii) the curvature of vortices is also eliminated as the orientation of the head of the conditional eddy changes. In summary, the results of conditional sampling support our hypothesis of polymer-turbulence interactions during the LDR-HDR transition.

  19. Anharmonic behavior and structural phase transition in Yb2O3

    Directory of Open Access Journals (Sweden)

    Sugandha Dogra Pandey

    2013-12-01

    Full Text Available The investigation of structural phase transition and anharmonic behavior of Yb2O3 has been carried out by high-pressure and temperature dependent Raman scattering studies respectively. In situ Raman studies under high pressure were carried out in a diamond anvil cell at room temperature which indicate a structural transition from cubic to hexagonal phase at and above 20.6 GPa. In the decompression cycle, Yb2O3 retained its high pressure phase. We have observed a Stark line in the Raman spectra at 337.5 cm−1 which arises from the electronic transition between 2F5/2 and 2F7/2 multiplates of Yb3+ (4f13 levels. These were followed by temperature dependent Raman studies in the range of 80–440 K, which show an unusual mode hardening with increasing temperature. The hardening of the most dominant mode (Tg + Ag was analyzed in light of the theory of anharmonic phonon-phonon interaction and thermal expansion of the lattice. Using the mode Grüneisen parameter obtained from high pressure Raman measurements; we have calculated total anharmonicity of the Tg + Ag mode from the temperature dependent Raman data.

  20. Migrants in Transit: The Importance of Monitoring HIV Risk Among Migrant Flows at the Mexico–US Border

    Science.gov (United States)

    Martinez-Donate, Ana P.; Hovell, Melbourne F.; Rangel, Maria Gudelia; Zhang, Xiao; Sipan, Carol L.; Magis-Rodriguez, Carlos; Gonzalez-Fagoaga, J. Eduardo

    2015-01-01

    We conducted a probability-based survey of migrant flows traveling across the Mexico–US border, and we estimated HIV infection rates, risk behaviors, and contextual factors for migrants representing 5 distinct migration phases. Our results suggest that the influence of migration is not uniform across genders or risk factors. By considering the predeparture, transit, and interception phases of the migration process, our findings complement previous studies on HIV among Mexican migrants conducted at the destination and return phases. Monitoring HIV risk among this vulnerable transnational population is critical for better understanding patterns of risk at different points of the migration process and for informing the development of protection policies and programs. PMID:25602882

  1. The electronic structure and metal-insulator transitions in vanadium oxides

    International Nuclear Information System (INIS)

    Mossanek, Rodrigo Jose Ochekoski

    2010-01-01

    The electronic structure and metal-insulator transitions in vanadium oxides (SrVO_3, CaVO_3, LaVO_3 and YVO_3) are studied here. The purpose is to show a new interpretation to the spectra which is coherent with the changes across the metal-insulator transition. The main experimental techniques are the X-ray photoemission (PES) and X-ray absorption (XAS) spectroscopies. The spectra are interpreted with cluster model, band structure and atomic multiplet calculations. The presence of charge-transfer satellites in the core-level PES spectra showed that these vanadium oxides cannot be classified in the Mott-Hubbard regime. Further, the valence band and core-level spectra presented a similar behavior across the metal insulator transition. In fact, the structures in the spectra and their changes are determined by the different screening channels present in the metallic or insulating phases. The calculated spectral weight showed that the coherent fluctuations dominate the spectra at the Fermi level and give the metallic character to the SrVO_3 and CaVO_3 compounds. The vanishing of this charge fluctuation and the replacement by the Mott-Hubbard screening in the LaVO_3 and YVO_3 systems is ultimately responsible for the opening of a band gap and the insulating character. Further, the correlation effects are, indeed, important to the occupied electronic structure (coherent and incoherent peaks). On the other hand, the unoccupied electronic structure is dominated by exchange and crystal field effects (t2g and eg sub-bands of majority and minority spins). The optical conductivity spectrum was obtained by convoluting the removal and addition states. It showed that the oxygen states, as well as the crystal field and exchange effects are necessary to correctly compare and interpret the experimental results. Further, a correlation at the charge-transfer region of the core-level and valence band optical spectra was observed, which could be extended to other transition metal oxides

  2. Structural phase transition and opto-electronic properties of NaZnAs

    International Nuclear Information System (INIS)

    Djied, A.; Seddik, T.; Merabiha, O.; Murtaza, G.; Khenata, R.; Ahmed, R.; Bin-Omran, S.; Uğur, Ş.; Bouhemadou, A.

    2015-01-01

    Highlights: • First competent characterizations of NaZnAs at the level of FP-LAPW+lo. • NaZnAs, a potential alternative candidate to III-V for photovoltaic applications. • NaZnAs, a cheaper and abundantly available direct band gap semiconductor. • Potential material for solar radiation absorber from infrared to ultraviolet. - Abstract: In this study, we predict the structural phase transitions as well as opto-electronic properties of the filled-tetrahedral (Nowotny-Juza) NaZnAs compound. Calculations employ the full potential (FP) linearized augmented plane wave (LAPW) plus local orbitals (lo) scheme. The exchange-correlation potential is treated within the generalized gradient approximation of Perdew-Burke and Ernzerhof (GGA-PBE). In addition, Tran and Blaha (TB) modified Becke-Johnson (mBJ) potential is also used to obtain more accurate optoelectronic properties. Geometry optimization is performed to obtain reliable total energies and other structural parameters for each NaZnAs phase. In our study, the sequence of the structural phase transition on compression is Cu 2 Sb-type → β → α phase. NaZnAs is a direct (Γ-Γ) band gap semiconductor for all the structural phases. However, compared to PBE-GGA, the mBJ approximation reproduces better fundamental band gaps. Moreover, for insight into its potential for photovoltaic applications, different optical parameters are studied

  3. Structural phase transition and opto-electronic properties of NaZnAs

    Energy Technology Data Exchange (ETDEWEB)

    Djied, A.; Seddik, T.; Merabiha, O. [Laboratoire de Physique Quantique et de Modélisation Mathématique, Université de Mascara, 29000 (Algeria); Murtaza, G. [Materials Modeling Lab, Department of Physics, Islamia College University, Peshawar (Pakistan); Khenata, R. [Laboratoire de Physique Quantique et de Modélisation Mathématique, Université de Mascara, 29000 (Algeria); Ahmed, R., E-mail: rashidahmed@utm.my [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, UTM Skudai, 81310 Johor (Malaysia); Bin-Omran, S. [Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Uğur, Ş. [Department of Physics, Faculty of Sciences, Gazi University, 06500 Teknikokullar, Ankara (Turkey); Bouhemadou, A. [Laboratory for Developing New Materials and their Characterization, Department of Physics, Faculty of Science, University Setif 1, 19000 Setif (Algeria)

    2015-02-15

    Highlights: • First competent characterizations of NaZnAs at the level of FP-LAPW+lo. • NaZnAs, a potential alternative candidate to III-V for photovoltaic applications. • NaZnAs, a cheaper and abundantly available direct band gap semiconductor. • Potential material for solar radiation absorber from infrared to ultraviolet. - Abstract: In this study, we predict the structural phase transitions as well as opto-electronic properties of the filled-tetrahedral (Nowotny-Juza) NaZnAs compound. Calculations employ the full potential (FP) linearized augmented plane wave (LAPW) plus local orbitals (lo) scheme. The exchange-correlation potential is treated within the generalized gradient approximation of Perdew-Burke and Ernzerhof (GGA-PBE). In addition, Tran and Blaha (TB) modified Becke-Johnson (mBJ) potential is also used to obtain more accurate optoelectronic properties. Geometry optimization is performed to obtain reliable total energies and other structural parameters for each NaZnAs phase. In our study, the sequence of the structural phase transition on compression is Cu{sub 2}Sb-type → β → α phase. NaZnAs is a direct (Γ-Γ) band gap semiconductor for all the structural phases. However, compared to PBE-GGA, the mBJ approximation reproduces better fundamental band gaps. Moreover, for insight into its potential for photovoltaic applications, different optical parameters are studied.

  4. Structural transitions, ion mobility, and conductivity in CsSbF3(H2PO4)

    Science.gov (United States)

    Kavun, V. Ya.; Uvarov, N. F.; Slobodyuk, A. B.; Ulihin, A. S.; Kovaleva, E. V.; Zemnukhova, L. A.

    2018-02-01

    Structural transitions, ion mobility, and conductivity in CsSbF3(H2PO4) (I) have been investigated by the methods of 1H, 19F, 31P NMR (including 1H, 19F, 31P MAS NMR), DSC, X-ray diffraction, and impedance spectroscopy. It was found that the fundamental changes in 1H, 19F, 31P NMR spectra (above 390 K) were associated with the formation of a crystalline disorder phase I with high ionic mobility in the proton and fluoride sublattices, as a result of a phase transition in the 400-420 K range. In the same temperature range, the transition of PO2(OH)2- anions from the "rigid lattice" to fast reorientations takes place. Above 430 K, there occurs a transition from the crystalline disordered phase to the amorphous one. The types of ion mobility in CsSbF3(H2PO4) and its amorphous phase have been established and temperature ranges of their realization have been determined (150-450 K). According to the NMR data, the diffusion in the proton sublattice of the disordered crystalline and amorphous phases is preserved even at room temperature. The ionic conductivity in CsSbF3(H2PO4) reaches the values of 2.6 × 10-4 S/cm in the temperature range 410-425 K and decreases down to 2.0 × 10-5 S/cm upon transition to the amorphous phase (435-445 K).

  5. Crack Monitoring Method for an FRP-Strengthened Steel Structure Based on an Antenna Sensor.

    Science.gov (United States)

    Liu, Zhiping; Chen, Kai; Li, Zongchen; Jiang, Xiaoli

    2017-10-20

    Fiber-reinforced polymer (FRP) has been increasingly applied to steel structures for structural strengthening or crack repair, given its high strength-to-weight ratio and high stiffness-to-weight ratio. Cracks in steel structures are the dominant hidden threats to structural safety. However, it is difficult to monitor structural cracks under FRP coverage and there is little related research. In this paper, a crack monitoring method for an FRP-strengthened steel structure deploying a microstrip antenna sensor is presented. A theoretical model of the dual-substrate antenna sensor with FRP is established and the sensitivity of crack monitoring is studied. The effects of the weak conductivity of carbon fiber reinforced polymers (CFRPs) on the performance of crack monitoring are analyzed via contrast experiments. The effects of FRP thickness on the performance of the antenna sensor are studied. The influence of structural strain on crack detection coupling is studied through strain-crack coupling experiments. The results indicate that the antenna sensor can detect cracks in steel structures covered by FRP (including CFRP). FRP thickness affects the antenna sensor's performance significantly, while the effects of strain can be ignored. The results provide a new approach for crack monitoring of FRP-strengthened steel structures with extensive application prospects.

  6. Crack Monitoring Method for an FRP-Strengthened Steel Structure Based on an Antenna Sensor

    Directory of Open Access Journals (Sweden)

    Zhiping Liu

    2017-10-01

    Full Text Available Fiber-reinforced polymer (FRP has been increasingly applied to steel structures for structural strengthening or crack repair, given its high strength-to-weight ratio and high stiffness-to-weight ratio. Cracks in steel structures are the dominant hidden threats to structural safety. However, it is difficult to monitor structural cracks under FRP coverage and there is little related research. In this paper, a crack monitoring method for an FRP-strengthened steel structure deploying a microstrip antenna sensor is presented. A theoretical model of the dual-substrate antenna sensor with FRP is established and the sensitivity of crack monitoring is studied. The effects of the weak conductivity of carbon fiber reinforced polymers (CFRPs on the performance of crack monitoring are analyzed via contrast experiments. The effects of FRP thickness on the performance of the antenna sensor are studied. The influence of structural strain on crack detection coupling is studied through strain–crack coupling experiments. The results indicate that the antenna sensor can detect cracks in steel structures covered by FRP (including CFRP. FRP thickness affects the antenna sensor’s performance significantly, while the effects of strain can be ignored. The results provide a new approach for crack monitoring of FRP-strengthened steel structures with extensive application prospects.

  7. Effect of Spin Transition onComposition and Seismic Structure of the Lower Mantle

    Science.gov (United States)

    Wu, Z.

    2015-12-01

    Spin transition of iron in ferropericlase (Fp) causes a significant softening in bulk modulus [e.g.,1,2], which leads to unusual dVP/dT>0. Because dVP/dT>0 in Fp cancels out with dVP/dTMao, Z., Marquardt, H., 2013. . Rev Geophys 51, 244-275 (2013). [3] Wu, Z.Q., Wentzcovitch, R.M., 2014. Spin crossover in ferropericlase and velocity heterogeneities in the lower mantle. Proc. Natl. Acad. Sci. U. S. A. 111, 10468-10472. [4] Zhao, D.P., 2007. Seismic images under 60 hotspots: Search for mantle plumes. Gondwana Res 12, 335-355. [5] van der Hilst, R.D., Karason, H., 1999. Science 283, 1885-1888. [6] Huang,C., Leng, W., Wu, Z. Q., 2015. Iron-spin transition controls structure and stability of LLSVPs in the lower mantle, Earth Planet. Sci. Lett. 423, 173-181.

  8. Electronic structures and valence band splittings of transition metals doped GaNs

    International Nuclear Information System (INIS)

    Lee, Seung-Cheol; Lee, Kwang-Ryeol; Lee, Kyu-Hwan

    2007-01-01

    For a practical viewpoint, presence of spin splitting of valence band in host semiconductors by the doping of transition metal (TM) ions is an essential property when designing a diluted magnetic semiconductors (DMS) material. The first principle calculations were performed on the electronic and magnetic structure of 3d transition metal doped GaN. V, Cr, and Mn doped GaNs could not be candidates for DMS materials since most of their magnetic moments is concentrated on the TM ions and the splittings of valence band were negligible. In the cases of Fe, Co, Ni, and Cu doped GaNs, on the contrary, long-ranged spin splitting of valence band was found, which could be candidates for DMS materials

  9. Structural phase transition in lanthanum gallate as studied by Raman and X-ray diffraction measurements

    Energy Technology Data Exchange (ETDEWEB)

    Dhak, P.; Pramanik, P. [Department of Chemistry, Indian Institute of Technology, Kharagpur 721302 (India); Bhattacharya, S.; Roy, Anushree [Department of Physics, Indian Institute of Technology, Kharagpur 721302 (India); Achary, S.N.; Tyagi, A.K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2011-08-15

    Lanthanum gallate (LaGaO{sub 3}) is known to undergo orthorhombic to rhombohedral first order phase transition at 150 C. In this article we have shown that by introducing 2% La deficiency in the system, coexistence of above two phases can be obtained at lower temperature and a complete phase transition occurs at 200 C. The evolution of structural parameters of the system with temperature is reported from X-ray diffraction measurements and Rietveld analysis of the diffraction patterns. The change in local octahedral distortion due to 2% La deficiency is revealed through the shift in the phonon modes of GaO{sub 6} octahedra, in both orthorhombic and rhombohedral phase. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Radiative transitions in InGaN quantum-well structures

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Noad Asaf [Univ. of California, Berkeley, CA (United States)

    2002-01-01

    InGaN based light emitting devices demonstrate excellent luminescence properties and have great potential in lighting applications. Though these devices are already being produced on an industrial scale, the nature of their radiative transition is still not well understood. In particular, the role of the huge (>1MV/cm), built-in electric field in these transitions is still under debate. The luminescence characteristics of InGaN quantum well structures were investigated as a function of excitation power, temperature, and biaxial strain, with an intent of discerning the effects of the electric field and inhomogeneous indium distribution in the QW on the radiative transition. It was found that the luminescence energy did not scale only with the indium concentration but that the QW thickness must also be taken into account. The thickness affects the transition energy due to quantum confinement and carrier separation across a potential drop in the QW. The luminescence peak width was shown to increase with increased indium fraction, due to increased indium inhomogeneity. The carrier lifetime increased exponentially with QW thickness and luminescence wavelength, due to increased carrier separation. Measuring the luminescence energy and carrier lifetime as a function of excitation density showed that the electric field can be screened by strong excitation and, as a consequence, the carrier separation reduced. The temperature dependence of the luminescence showed evidence for bandtails in the density of states, a phenomenon that has been previously related to transition in indium-rich nano-clusters, yet could be accounted for by fluctuations in other parameters that affect the transition energy. Room temperature luminescence efficiency was shown to weakly decrease with increased QW thickness. The application of biaxial strain resulted in either a redshift or blueshift of the luminescence, depending on the sample. The direction and magnitude of the shift in luminescence

  11. Structural transition, subgap states, and carrier transport in anion-engineered zinc oxynitride nanocrystalline films

    International Nuclear Information System (INIS)

    Xian, Fenglin; Ye, Jiandong; Gu, Shulin; Tan, Hark Hoe; Jagadish, Chennupati

    2016-01-01

    In this work, anion alloying is engineered in ZnON nanocrystalline films, and the resultant evolution of the structural transition, subgap states, and carrier transport is investigated. A broad distribution of sub-gap states above the valence band maximum is introduced by nitrogen due to the hybridization of N 2p and O 2p orbitals. The phase transition from partially amorphous states to full crystallinity occurs above a characteristic growth temperature of 100 °C, and the localized states are suppressed greatly due to the reduction of nitrogen composition. The electronic properties are dominated by grain boundary scattering and electron transport across boundary barriers through thermal activation at band edge states at high temperatures. The conductivity below 130 K exhibits a weak temperature dependence, which is a signature of variable-range hopping conduction between localized states introduced by nitrogen incorporation.

  12. Fiber optic monitoring methods for composite steel-concrete structures based on determination of neutral axis and deformed shape.

    Science.gov (United States)

    2014-01-01

    Structural Health Monitoring has great potential to provide valuable information about the actual structural condition and can help optimize the management activities. However, few effective and robust monitoring methods exist which hinders a nationw...

  13. Multi-sensor sheets based on large-area electronics for advanced structural health monitoring of civil infrastructure.

    Science.gov (United States)

    2014-09-01

    Structural Health Monitoring has a great potential to provide valuable information about the actual structural : condition and can help optimize the management activities. However, few eective and robust monitoring technology exist which hinders a...

  14. Low temperature structural transitions in dipolar hard spheres: The influence on magnetic properties

    International Nuclear Information System (INIS)

    Ivanov, A.O.; Kantorovich, S.S.; Rovigatti, L.; Tavares, J.M.; Sciortino, F.

    2015-01-01

    We investigate the structural chain-to-ring transition at low temperature in a gas of dipolar hard spheres (DHS). Due to the weakening of entropic contribution, ring formation becomes noticeable when the effective dipole–dipole magnetic interaction increases. It results in the redistribution of particles from usually observed flexible chains into flexible rings. The concentration (ρ) of DHS plays a crucial part in this transition: at a very low ρ only chains and rings are observed, whereas even a slight increase of the volume fraction leads to the formation of branched or defect structures. As a result, the fraction of DHS aggregated in defect-free rings turns out to be a non-monotonic function of ρ. The average ring size is found to be a slower increasing function of ρ when compared to that of chains. Both theory and computer simulations confirm the dramatic influence of the ring formation on the ρ-dependence of the initial magnetic susceptibility (χ) when the temperature decreases. The rings due to their zero total dipole moment are irresponsive to a weak magnetic field and drive to the strong decrease of the initial magnetic susceptibility. - Highlights: • Found structural chain-to-ring transition at low temperature sheds the light on the no-man's-land of the phase diagram of dipolar hard sphere gas. • Particle concentration plays a crucial part: at high dilution only chains and rings are observed, otherwise different branched structures occur. • The dramatic influence of the ring formation on the concentration dependence of the initial magnetic susceptibility when temperature decreases

  15. In Situ Guided Wave Structural Health Monitoring System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Corrosion and fatigue induced metal-loss and cracks are common problems for missiles and aircraft structures. A wide range of field conditions such as humidity,...

  16. Prognostics Design Solutions in Structural Health Monitoring Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — The chapter describes the application of prognostic techniques to the domain of structural health and demonstrates the efficacy of the methods using fatigue data...

  17. Time Reversal Acoustic Structural Health Monitoring Using Array of Embedded Sensors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Time Reversal Acoustic (TRA) structural health monitoring with an embedded sensor array represents a new approach to in-situ nondestructive evaluation of air-space...

  18. A feasibility study on embedded micro-electromechanical sensors and systems (MEMS) for monitoring highway structures.

    Science.gov (United States)

    2011-06-01

    Micro-electromechanical systems (MEMS) provide vast improvements over existing sensing methods in the context of structural health monitoring (SHM) of highway infrastructure systems, including improved system reliability, improved longevity and enhan...

  19. Passive low-cost inkjet-printed smart skin sensor for structural health monitoring

    KAUST Repository

    Cook, Benjamin Stassen; Shamim, Atif; Tentzeris, Manos

    2012-01-01

    presents a step towards fully integrated, low-cost, conformal and environmentally friendly smart skins for real-time monitoring of large structures. © The Institution of Engineering and Technology 2012.

  20. A pilot study on diagnostic sensor networks for structure health monitoring.

    Science.gov (United States)

    2013-08-01

    The proposal was submitted in an effort to obtain some preliminary results on using sensor networks for real-time structure health : monitoring. The proposed work has twofold: to develop and validate an elective algorithm for the diagnosis of coupled...