WorldWideScience

Sample records for monitoring structural transitions

  1. Evaluation of Fluorescent Analogs of Deoxycytidine for Monitoring DNA Transitions from Duplex to Functional Structures

    Directory of Open Access Journals (Sweden)

    Yogini P. Bhavsar

    2011-01-01

    Full Text Available Topological variants of single-strand DNA (ssDNA structures, referred to as “functional DNA,” have been detected in regulatory regions of many genes and are thought to affect gene expression. Two fluorescent analogs of deoxycytidine, Pyrrolo-dC (PdC and 1,3-diaza-2-oxophenoxazine (tC∘, can be incorporated into DNA. Here, we describe spectroscopic studies of both analogs to determine fluorescent properties that report on structural transitions from double-strand DNA (dsDNA to ssDNA, a common pathway in the transition to functional DNA structures. We obtained fluorescence-detected circular dichroism (FDCD spectra, steady-state fluorescence spectra, and fluorescence lifetimes of the fluorophores in DNA. Our results show that PdC is advantageous in fluorescence lifetime studies because of a distinct ~2 ns change between paired and unpaired bases. However, tC∘ is a better probe for FDCD experiments that report on the helical structure of DNA surrounding the fluorophore. Both fluorophores provide complementary data to measure DNA structural transitions.

  2. Monitoring the thermally induced structural transitions of collagen by use of second-harmonic generation microscopy

    Science.gov (United States)

    Lin, Sung-Jan; Hsiao, Chih-Yuan; Sun, Yen; Lo, Wen; Lin, Wei-Chou; Jan, Gwo-Jen; Jee, Shiou-Hwa; Dong, Chen-Yuan

    2005-03-01

    The thermal disruption of collagen I in rat tail tendon is investigated with second-harmonic generation (SHG) microscopy. We investigate its effects on SHG images and intensity in the temperature range 25°-60°C. We find that the SHG signal decreases rapidly starting at 45°C. However, SHG imaging reveals that breakage of collagen fibers is not evident until 57°C and worsens with increasing temperature. At 57°C, structures of both molten and fibrous collagen exist, and the disruption of collagen appears to be complete at 60°C. Our results suggest that, in addition to intensity measurement, SHG imaging is necessary for monitoring details of thermally induced changes in collagen structures in biomedical applications.

  3. Structure function monitor

    Energy Technology Data Exchange (ETDEWEB)

    McGraw, John T [Placitas, NM; Zimmer, Peter C [Albuquerque, NM; Ackermann, Mark R [Albuquerque, NM

    2012-01-24

    Methods and apparatus for a structure function monitor provide for generation of parameters characterizing a refractive medium. In an embodiment, a structure function monitor acquires images of a pupil plane and an image plane and, from these images, retrieves the phase over an aperture, unwraps the retrieved phase, and analyzes the unwrapped retrieved phase. In an embodiment, analysis yields atmospheric parameters measured at spatial scales from zero to the diameter of a telescope used to collect light from a source.

  4. Structural transition metal chemistry

    CERN Document Server

    Anderson, K M

    2002-01-01

    This thesis is divided up into five chapters as outlined below. Chapter 1 gives the background to the techniques used in this thesis including X-ray structure determination and ab initio methods. An overview of some recent studies using ab initio methods to study transition metal complexes is also given. Chapter 2 investigates structural trans influence in a number of transition metal and p-block complexes. The database and ab initio studies showed that the classical trans influence model based on Pt(II) chemistry does not always hold. For some systems (eg. d sup 1 sup 0 s sup 0 for Sb sup V and Sn sup I sup V) the cis influence is of similar magnitude to the trans influence. For other systems (d sup 0), the trans influence is not as powerful as usually assumed. Chapter 3 is an investigation into the bridging chloride unit. A database study was performed on three systems (M-CI-M', M-CI...H and M-CI...Li/Na/K). Reaction pathway analysis was carried out for the M-CI-M' case and showed that bond order is not con...

  5. Structural Transition in Supercritical Fluids

    Directory of Open Access Journals (Sweden)

    Boris I. Sedunov

    2011-01-01

    Full Text Available The extension of the saturation curve ( on the PT diagram in the supercritical region for a number of monocomponent supercritical fluids by peak values for different thermophysical properties, such as heat capacities and and compressibility has been studied. These peaks signal about some sort of fluid structural transition in the supercritical region. Different methods give similar but progressively diverging curves st( for this transition. The zone of temperatures and pressures near these curves can be named as the zone of the fluid structural transition. The outstanding properties of supercritical fluids in this zone help to understand the physical sense of the fluid structural transition.

  6. Structural transitions in clusters

    Science.gov (United States)

    Ghazali, A.; Lévy, J.-C. S.

    1997-02-01

    Monatomic clusters are studied by Monte Carlo relaxation using generalized Lennard-Jones potentials. A transition from an icosahedral symmetry to a crystalline symmetry with stacking faults is always observed. Bcc-based soft atom clusters are found to have a lower energy than the corresponding hcp and fcc ones below the melting point.

  7. Strain Monitoring of Flexible Structures

    Science.gov (United States)

    Litteken, Douglas A.

    2017-01-01

    One of the biggest challenges facing NASA's deep space exploration goals is structural mass. A long duration transit vehicle on a journey to Mars, for example, requires a large internal volume for cargo, supplies and crew support. As with all space structures, a large pressure vessel is not enough. The vehicle also requires thermal, micro-meteoroid, and radiation protection, a navigation and control system, a propulsion system, and a power system, etc. As vehicles get larger, their associated systems also get larger and more complex. These vehicles require larger lift capacities and force the mission to become extremely costly. In order to build large volume habitable vehicles, with only minimal increases in launch volume and mass, NASA is developing lightweight structures. Lightweight structures are made from non-metallic materials including graphite composites and high strength fabrics and could provide similar or better structural capability than metals, but with significant launch volume and mass savings. Fabric structures specifically, have been worked by NASA off and on since its inception, but most notably in the 1990's with the TransHAB program. These TransHAB developed structures use a layered material approach to form a pressure vessel with integrated thermal and micro-meteoroid and orbital debris (MMOD) protection. The flexible fabrics allow the vessel to be packed in a small volume during launch and expand into a much larger volume once in orbit. NASA and Bigelow Aerospace recently installed the first human-rated inflatable module on the International Space Station (ISS), known as the Bigelow Expandable Activity Module (BEAM) in May of 2016. The module provides a similar internal volume to that of an Orbital ATK Cygnus cargo vehicle, but with a 77% launch volume savings. As lightweight structures are developed, testing methods are vital to understanding their behavior and validating analytical models. Common techniques can be applied to fabric materials

  8. Structural health monitoring for ship structures

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, Charles [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory; Angel, Marian [Los Alamos National Laboratory; Bement, Matthew [Los Alamos National Laboratory; Salvino, Liming [NSWC, CADEROCK

    2009-01-01

    Currently the Office of Naval Research is supporting the development of structural health monitoring (SHM) technology for U.S. Navy ship structures. This application is particularly challenging because of the physical size of these structures, the widely varying and often extreme operational and environmental conditions associated with these ships missions, lack of data from known damage conditions, limited sensing that was not designed specifically for SHM, and the management of the vast amounts of data that can be collected during a mission. This paper will first define a statistical pattern recognition paradigm for SHM by describing the four steps of (1) Operational Evaluation, (2) Data Acquisition, (3) Feature Extraction, and (4) Statistical Classification of Features as they apply to ship structures. Note that inherent in the last three steps of this process are additional tasks of data cleansing, compression, normalization and fusion. The presentation will discuss ship structure SHM challenges in the context of applying various SHM approaches to sea trials data measured on an aluminum multi-hull high-speed ship, the HSV-2 Swift. To conclude, the paper will discuss several outstanding issues that need to be addressed before SHM can make the transition from a research topic to actual field applications on ship structures and suggest approaches for addressing these issues.

  9. Monitoring of transition zones in railways

    NARCIS (Netherlands)

    Coelho, B.; Priest, J.; Holscher, P.; Powrie, W.

    2009-01-01

    Transitions between railway track on embankments or natural ground and fixed structures such as bridges and culverts often require substantial additional maintenance to preserve line, level and ride quality. This extra maintenance not only increases costs but also causes delays. Despite its

  10. Symmetry structure and phase transitions

    Indian Academy of Sciences (India)

    Ashok Goyal; Meenu Dahiya; Deepak Chandra

    2003-05-01

    We study chiral symmetry structure at finite density and temperature in the presence of external magnetic field and gravity, a situation relevant in the early Universe and in the core of compact stars. We then investigate the dynamical evolution of phase transition in the expanding early Universe and possible formation of quark nuggets and their survival.

  11. Transition-Systems, Event Structures, and Unfoldings

    DEFF Research Database (Denmark)

    Nielsen, Mogens; Rozenberg, Grzegorz; Thiagarajan, P.S.

    1995-01-01

    A subclass of transition systems called elementary transition systems can be identified with the help of axioms based on a structural notion called regions. Elementary transition systems have been shown to be the transition system model of a basic system model of net theory called elementary net ...... event structures. We then propose an operation of unfolding elementary transition systems into occurrence transition systems, We prove that it is "correct" in a strong categorical sense....

  12. The Structural Phase Transition in Solid DCN

    DEFF Research Database (Denmark)

    Dietrich, O. W.; Mackenzie, Gordon A.; Pawley, G. S.

    1976-01-01

    Neutron scattering measurements on deuterated hydrogen cyanide have shown that the structural phase transition from a tetragonal to an orthorhombic form at 160 K is a first order transition. A transverse acoustic phonon mode, which has the symmetry of the transition was observed at very low energ...... energies and showed “softening” as the transition was approached from above.......Neutron scattering measurements on deuterated hydrogen cyanide have shown that the structural phase transition from a tetragonal to an orthorhombic form at 160 K is a first order transition. A transverse acoustic phonon mode, which has the symmetry of the transition was observed at very low...

  13. Structural Transitions in Dense Networks

    CERN Document Server

    Lambiotte, R; Bhat, U; Redner, S

    2016-01-01

    We introduce an evolving network model in which a new node attaches to a randomly selected target node and also to each of its neighbors with probability $p$. The resulting network is sparse for $p<\\frac{1}{2}$ and dense (average degree increasing with number of nodes $N$) for $p\\geq \\frac{1}{2}$. In the dense regime, individual networks realizations built by this copying mechanism are disparate and not self-averaging. Further, there is an infinite sequence of structural anomalies at $p=\\frac{2}{3}$, $\\frac{3}{4}$, $\\frac{4}{5}$, etc., where the dependences on $N$ of the number of triangles (3-cliques), 4-cliques, undergo phase transitions. When linking to second neighbors of the target can occur, the probability that the resulting graph is complete---where all nodes are connected---is non-zero as $N\\to\\infty$.

  14. Music: Creativity and Structure Transitions

    Science.gov (United States)

    Pietrocini, Emanuela

    Music, compared to other complex forms of representation, is fundamentally characterized by constant evolution and a dynamic succession of structure reference models. This is without taking into account historical perspective, the analysis of forms and styles, or questions of a semantic nature; the observation rather refers to the phenomenology of the music system. The more abstract a compositional model, the greater the number and frequency of variables that are not assimilated to the reference structure; this "interference" which happens more often than not in an apparently casual manner, modifies the creative process to varying but always substantial degrees: locally, it produces a disturbance in perceptive, formal and structural parameters, resulting more often than not in a synaesthetic experience; globally, on the other hand, it defines the terms of a transition to a new state, in which the relations between elements and components modify the behavior of the entire system from which they originated. It is possible to find examples of this phenomenon in the whole range of musical production, in particular in improvisations, in the use of the Basso Continuo, and in some contrapuntal works of the baroque period, music whose temporal dimension can depart from the limits of mensurability and symmetry to define an open compositional environment in continuous evolution.

  15. Using herd records to monitor transition cow survival, productivity, and health.

    Science.gov (United States)

    Nordlund, Kenneth V; Cook, Nigel B

    2004-11-01

    There is no single monitor that can fully characterize the success of a transition cow management program in a herd. Rather we must rely on a group of key monitors. Table 5 outlines the key indices and targets that we use in herd investigations. By using these monitors, effective transition cow programs can be differentiated from problematic ones, and many of the problems can be resolved for the good of the herd owners, dairy laborers, and most of all, the cows. Development of more sophisticated monitors and software with stronger epidemiologic structure will allow for better analysis of programs in the future.

  16. Extending Modal Transition Systems with Structured Labels

    DEFF Research Database (Denmark)

    Bauer, Sebastian S.; Juhl, Line; Larsen, Kim Guldstrand

    2012-01-01

    We introduce a novel formalism of label-structured modal transition systems that combines the classical may/must modalities on transitions with structured labels that represent quantitative aspects of the model. On the one hand, the specification formalism is general enough to include models like...... study modal and thorough refinement, determinization, parallel composition, conjunction, quotient, and logical characterization of label-structured modal transition systems....

  17. Phase transitions of natural corals monitored by ESR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Vongsavat, V. [Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Rajathevi, Bangkok 10400 (Thailand); Winotai, P. [Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Rajathevi, Bangkok 10400 (Thailand); Meejoo, S. [Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Rajathevi, Bangkok 10400 (Thailand)]. E-mail: scsmj@mahidol.ac.th

    2006-01-15

    The main purpose of this work is to present a systematic study of structure of marine exoskeletons, Acropora coral and its structural transformation upon heat treatments. The coralline sample was ground and characterized as powder throughout this work. Structural identifications of all samples have been confirmed using X-ray diffraction and IR spectroscopy. It was clearly found that the fresh specimen is made of aragonite, a common phase of the mineral CaCO{sub 3}. Thermal analyses, DSC and TGA were used to monitor structural and thermal decompositions and an irreversible solid-state phase transition from aragonite to calcite of the marine carbonate. Next, the coral powder was annealed at specific temperatures over the range 350-900 deg. C, and the effects of heat treatment on the structure of coralline samples were carefully studied by Rietveld refinement method. In addition, we have examined Mn{sup 2+} paramagnetic ions and free radicals present in the coral and changes of those upon heating by using ESR spectroscopy. The local environments of Mn{sup 2+} ions were verified from the calculated ESR spectra using appropriate spin Hamiltonian parameters, i.e. gyromagnetic tensor g , zero-field splitting D and hyperfine tensor A . This work reported structures and compositions as well as physical, chemical and thermal properties of the coralline material upon heat treatments qualitatively and quantitatively.

  18. Structural changes concurrent with ferromagnetic transition

    Institute of Scientific and Technical Information of China (English)

    Yang Sen; Bao Hui-Xin; Zhou Chao; Wang Yu; Ren Xiao-Bing; Song Xiao-Ping; Yoshitaka Matsushita

    2013-01-01

    Ferromagnetic transition has generally been considered to involve only an ordering of magnetic moment with no change in the host crystal structure or symmetry,as evidenced by a wealth of crystal structure data from conventional X-ray diffractometry (XRD).However,the existence of magnetostriction in all known ferromagnetic systems indicates that the magnetic moment is coupled to the crystal lattice; hence there is a possibility that magnetic ordering may cause a change in crystal structure.With the development of high-resolution synchrotron XRD,more and more magnetic transitions have been found to be accompanied by simultaneous structural changes.In this article,we review our recent progress in understanding the structural change at a ferromagnetic transition,including synchrotron XRD evidence of structural changes at the ferromagnetic transition,a phenomenological theory of crystal structure changes accompanying ferromagnetic transitions,new insight into magnetic morphotropic phase boundaries (MPB) and so on.Two intriguing implications of non-centric symmetry in the ferromagnetic phase and the first-order nature of ferromagnetic transition are also discussed here.In short,this review is intended to give a self-consistent and logical account of structural change occurring simultaneously with a ferromagnetic transition,which may provide new insight for developing highly magneto-responsive materials.

  19. Structural changes and relaxations monitored by luminescence.

    Science.gov (United States)

    Wang, Y; Yang, B; Townsend, P D

    2013-01-01

    Luminescence data have often been used to study imperfections and to characterize lattice distortions because the signals are sensitive to changes of structure and composition. Previous studies have included intentionally added probe ions such as rare earth ions to sense distortions in local crystal fields caused by modified structural environments. An under-exploited extension of this approach was to use luminescence to monitor crystalline phase changes. A current overview of this new and powerful technique shows that continuous scanning of the sample temperatures immediately offered at least three types of signatures for phase transitions. Because of high sensitivity, luminescence signals were equally responsive to structural changes from inclusions and nanoparticles. These coupled to the host material via long-range interactions and modified the host signals. Two frequently observed examples that are normally overlooked are from nanoparticle inclusions of water and CO2. Examples also indicated that phase transitions were detected in more diverse materials such as superconductors and fullerenes. Finally, luminescence studies have shown that in some crystalline examples, high dose ion implantation of surface layers could induce relaxations and/or structural changes of the entire underlying bulk material. This was an unexpected result and therefore such a possibility has not previously been explored. However, the implications for ion implication are significant and could be far more general than the examples mentioned here.

  20. Pulse wave transit time for monitoring respiration rate.

    Science.gov (United States)

    Johansson, A; Ahlstrom, C; Lanne, T; Ask, P

    2006-06-01

    In this study, we investigate the beat-to-beat respiratory fluctuations in pulse wave transit time (PTT) and its subcomponents, the cardiac pre-ejection period (PEP) and the vessel transit time (VTT) in ten healthy subjects. The three transit times were found to fluctuate in pace with respiration. When applying a simple breath detecting algorithm, 88% of the breaths seen in a respiration air-flow reference could be detected correctly in PTT. Corresponding numbers for PEP and VTT were 76 and 81%, respectively. The performance during hypo- and hypertension was investigated by invoking blood pressure changes. In these situations, the error rates in breath detection were significantly higher. PTT can be derived from signals already present in most standard monitoring set-ups. The transit time technology thus has prospects to become an interesting alternative for respiration rate monitoring.

  1. Structural Changes in Serbian Industry during Transition

    Directory of Open Access Journals (Sweden)

    Ivan Nikolić

    2013-07-01

    Full Text Available Transition is a complex process whereby a country in transition is stimulating structural changes wishing to achieve economic growth and improved social wellbeing. In this paper the authors aim to show that during transition in Serbia there such changes in the structure of manufacturing industry occurred, which resulted with only modest ​​growth that in fact was slower than in other transitional countries. By the means of theoretical and empirical approach – deductive methods, statistical and mathematical evaluation the authors have come to conclusion that structural changes did not improve industry branches like the hi-tech industry that contribute the most to PPP generation. At the same time, some low productive industries have gained on importance, therefore keeping the standard on the low levels without possibility to rapidly converge towards EU average, which was set as an ultimate goal of transition in Serbia.

  2. The Structural Phase Transition in Solid DCN

    DEFF Research Database (Denmark)

    Dietrich, O. W.; Mackenzie, Gordon A.; Pawley, G. S.

    1975-01-01

    Neutron scattering measurements on deuterated hydrogen cyanide have shown that the structural phase change from a tetragonal to an orthorhombic form at 160K is a first-order transition. A transverse acoustic phonon mode, which has the symmetry of the phase change, was observed at very low energies...... and showed 'softening' as the transition temperature was approached from above....

  3. Local measurement for structural health monitoring

    Institute of Scientific and Technical Information of China (English)

    G.Z.Qi; Guo Xun; Qi Xiaozhai; W. Dong; P.Chang

    2005-01-01

    Localized nature of damage in structures requires local measurements for structural health monitoring. The local measurement means to measure the local, usually higher modes of the vibration in a structure. Three fundamental issues about the local measurement for structural health monitoring including (1) the necessity of making local measurement, (2) the difficulty of making local measurement and (3) how to make local measurement are addressed in this paper. The results from both the analysis and the tests show that the local measurement can successfully monitor the structural health status as long as the local modes are excited. Unfortunately, the results also illustrate that it is difficult to excite local modes in a structure.Therefore, in order to carry structural health monitoring into effect, we must (1) ensure that the local modes are excited, and (2) deploy enough sensors in a structure so that the local modes can be monitored.

  4. Coherent structures in transitional pipe flow

    Science.gov (United States)

    Hellström, Leo H. O.; Ganapathisubramani, Bharathram; Smits, Alexander J.

    2016-06-01

    Transition to turbulence in pipe flow is investigated experimentally using a temporally resolved dual-plane particle image velocimetry approach, at a Reynolds number of 3440. The flow is analyzed using proper orthogonal decomposition and it is shown that the flow can be divided into two regions: a pseudolaminar region governed by the presence of azimuthally steady traveling waves, and turbulent slugs. The evolution of the structures within the slugs is identified by using the temporally resolved data along with the dual-plane velocity field. These structures are shown to be remarkably similar to the large-scale motions found in fully turbulent flows, with a streamwise and spatiotemporal extent about four pipe radii. The transition between structures is characterized by the detachment and decay of an old structure and the initiation of a new structure at the wall.

  5. Structural health monitoring meets data mining

    NARCIS (Netherlands)

    Miao, Shengfa

    2014-01-01

    With the development of sensing and data processing techniques, monitoring physical systems in the field with a sensor network is becoming a feasible option for many domains. Such monitoring systems are referred to as Structural Health Monitoring (SHM) systems. By definition, SHM is the process of i

  6. Transit of Oil. Monitoring Report on the Implementation of the Transit Provisions of the Energy Charter Treaty

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-03-15

    The present study aims at monitoring the implementation of the Energy Charter Treaty provisions for energy transit. The importance of compliance with the Treaty provisions on uninterrupted cross border energy flows were highlighted by recent interruptions of energy transit. The Energy Charter Treaty provides a set of binding rules that cover the entire energy chain, including terms to transport energy across a number of jurisdictions. The transit provisions of the Treaty support the reliability of established flows and the creation of a new transport capacity as core factors for reliable transit flows. The study focuses on the transportation of crude oil by fixed infrastructure within the Energy Charter Constituency. Although the bulk of international crude oil trade is by tanker shipping crude oil via pipelines it is common in landlocked countries. The crude oil transportation systems within Energy Charter Constituency vary from newly developed transit pipelines like the Baku-Tbilisi-Ceyhan pipeline with a more straightforward structure to more complex systems like Druzhba, which now crosses multiple national borders and whose once uniform ownership and operation structure has been split after the dissolution of the Soviet Union. The present report distinguishes between different types of fixed infrastructure ownership across the Energy Charter Constituency, analyses legislative and practical features of such systems in selected member states and suggests ways for improving compliance with the provisions of the Treaty. It is published alongside a corresponding study on natural gas transportation systems.

  7. Structural Transitions in Cholesteric Liquid Crystal Droplets

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ye; Bukusoglu, Emre; Martinez-Gonzalez, Jose A.; Rahimi, Mohammad; Roberts, Tyler F.; Zhang, Rui; Wang, Xiaoguang; Abbott, Nicholas L.; de Pablo, Juan J.

    2016-07-01

    Confinement of cholesteric liquid crystals (ChLC) into droplets leads to a delicate interplay between elasticity, chirality, and surface energy. In this work, we rely on a combination of theory and experiments to understand the rich morphological behavior that arises from that balance. More specifically, a systematic study of micrometer-sized ChLC droplets is presented as a function of chirality and surface energy (or anchoring). With increasing chirality, a continuous transition is observed from a twisted bipolar structure to a radial spherical structure, all within a narrow range of chirality. During such a transition, a bent structure is predicted by simulations and confirmed by experimental observations. Simulations are also able to capture the dynamics of the quenching process observed in experiments. Consistent with published work, it is found that nanoparticles are attracted to defect regions on the surface of the droplets. For weak anchoring conditions at the nanoparticle surface, ChLC droplets adopt a morphology similar to that of the equilibrium helical phase observed for ChLCs in the bulk. As the anchoring strength increases, a planar bipolar structure arises, followed by a morphological transition to a bent structure. The influence of chirality and surface interactions are discussed in the context of the potential use of ChLC droplets as stimuli-responsive materials for reporting molecular adsorbates.

  8. Structural Transitions in Topologically Constrained DNA

    Science.gov (United States)

    Leger, J.; Romano, G.; Sarkar, A.; Robert, J.; Bourdieu, L.; Chatenay, D.; Marko, J. F.

    2000-03-01

    We propose a theoretical explanation for results of recent single molecule micromanipulation experiments (Leger et al, PRL 83, 1066, 1999) on double-stranded DNA with fixed linking number. The topological constraint leads to novel structural transitions, including a shift of the usual 60 pN B-form to S-form transition force plateau up to a force of 100 pN when linking is fixed at zero. Our model needs five distinct states to explain the four different observed transitions. The various constant-force plateaus observed for different fixed values of linking correspond to a mixture of different pairs of states, weighted to satisfy the topological constraint. Our model allows us to conclude that sufficiently overtwisted DNA (positive linkage number) undergoes a transition from B-form DNA to a mixture of S-form and P-form DNA at a force plateau near 45 pN, and then to homogeneous P-form DNA at a force plateau near 110 pN. A similar two-step transition occurs for undertwisted DNA, and by analysing the twisting necessary to produce pure S-form DNA we conclude that the S-state has helix repeat of 38 bp. Support from the Whitaker Foundation, the NSF, the ACS-PRF and Research Corporation is gratefully acknowledged.

  9. Structural Vibration Monitoring Using Cumulative Spectral Analysis

    Directory of Open Access Journals (Sweden)

    Satoru Goto

    2013-01-01

    Full Text Available This paper describes a resonance decay estimation for structural health monitoring in the presence of nonstationary vibrations. In structural health monitoring, the structure's frequency response and resonant decay characteristics are very important for understanding how the structure changes. Cumulative spectral analysis (CSA estimates the frequency decay by using the impulse response. However, measuring the impulse response of buildings is impractical due to the need to shake the building itself. In a previous study, we reported on system damping monitoring using cumulative harmonic analysis (CHA, which is based on CSA. The current study describes scale model experiments on estimating the hidden resonance decay under non-stationary noise conditions by using CSA for structural condition monitoring.

  10. Monitoring corrosion in reinforced concrete structures

    Science.gov (United States)

    Kung, Peter; Comanici, Maria I.

    2014-06-01

    Many defects can cause deterioration and cracks in concrete; these are results of poor concrete mix, poor workmanship, inadequate design, shrinkage, chemical and environmental attack, physical or mechanical damage, and corrosion of reinforcing steel (RS). We want to develop a suite of sensors and systems that can detect that corrosion is taking place in RS and inform owners how serious the problem is. By understanding the stages of the corrosion process, we can develop special a sensor that detects each transition. First, moisture ingress can be monitored by a fiber optics humidity sensor, then ingress of Chloride, which acts as a catalyst and accelerates the corrosion process by converting iron into ferrous compounds. We need a fiber optics sensor which can quantify Chloride ingress over time. Converting ferric to ferrous causes large volume expansion and cracks. Such pressure build-up can be detected by a fiber optic pressure sensor. Finally, cracks emit acoustic waves, which can be detected by a high frequency sensor made with phase-shifted gratings. This paper will discuss the progress in our development of these special sensors and also our plan for a field test by the end of 2014. We recommend that we deploy these sensors by visually inspecting the affected area and by identifying locations of corrosion; then, work with the designers to identify spots that would compromise the integrity of the structure; finally, drill a small hole in the concrete and insert these sensors. Interrogation can be done at fixed intervals with a portable unit.

  11. On the value of structural health monitoring

    DEFF Research Database (Denmark)

    Faber, Michael Havbro; Thöns, Sebastian

    2014-01-01

    Health monitoring has, over the last 2-3 decades, become a topic of significant interest within the structural engineering research community, but also in the broader areas of civil and mechanical engineering. Whereas the merits of Structural Health Monitoring (SHM) are generally appreciated in q...... of SHM an example is provided. The example addresses the life-cycle benefit maximization for offshore jacket structures subject to fatigue crack growth utilizing monitoring of near field fatigue stresses as a means of optimizing risk based inspection and maintenance strategies....

  12. FAMILY STRUCTURE TRANSITIONS AND MATERNAL PARENTING STRESS

    OpenAIRE

    Cooper, Carey E.; McLanahan, Sara S.; Meadows, Sarah O.; Brooks-Gunn, Jeanne

    2009-01-01

    Data from the Fragile Families and Child Wellbeing Study (N = 4,176) are used to examine family structure transitions and maternal parenting stress. Using multilevel modeling, we find that mothers who exit coresidential relationships with biological fathers or enter coresidential relationships with nonbiological fathers report higher levels of parenting stress than mothers in stable coresidential relationships. Mothers who enter coresidential relationships with biological fathers report lower...

  13. Electronic structure of hcp transition metals

    DEFF Research Database (Denmark)

    Jepsen, O.; Andersen, O. Krogh; Mackintosh, A. R.

    1975-01-01

    Using the linear muffin-tin-orbital method described in the previous paper, we have calculated the electronic structures of the hcp transition metals, Zr, Hf, Ru, and Os. We show how the band structures of these metals may be synthesized from the sp and d bands, and illustrate the effects...... mRy. Very small pieces of Fermi surface, which have not yet been observed experimentally, are predicted for Os. The limited amount of experimental information available for Zr can be fairly satisfactorily interpreted if the calculated d bands are raised by about 10-20 mRy relative to the sp bands...

  14. Integrating structural health and condition monitoring

    DEFF Research Database (Denmark)

    May, Allan; Thöns, Sebastian; McMillan, David

    2015-01-01

    There is a large financial incentive to minimise operations and maintenance (O&M) costs for offshore wind power by optimising the maintenance plan. The integration of condition monitoring (CM) and structural health monitoring (SHM) may help realise this. There is limited work on the integration...

  15. Structural phase transitions in monolayer molybdenum dichalcogenides

    Science.gov (United States)

    Choe, Duk-Hyun; Sung, Ha June; Chang, Kee Joo

    2015-03-01

    The recent discovery of two-dimensional materials such as graphene and transition metal dichalcogenides (TMDs) has provided opportunities to develop ultimate thin channel devices. In contrast to graphene, the existence of moderate band gap and strong spin-orbit coupling gives rise to exotic electronic properties which vary with layer thickness, lattice structure, and symmetry. TMDs commonly appear in two structures with distinct symmetries, trigonal prismatic 2H and octahedral 1T phases which are semiconducting and metallic, respectively. In this work, we investigate the structural and electronic properties of monolayer molybdenum dichalcogenides (MoX2, where X = S, Se, Te) through first-principles density functional calculations. We find a tendency that the semiconducting 2H phase is more stable than the metallic 1T phase. We show that a spontaneous symmetry breaking of 1T phase leads to various distorted octahedral (1T') phases, thus inducing a metal-to-semiconductor transition. We discuss the effects of carrier doping on the structural stability and the modification of the electronic structure. This work was supported by the National Research Foundation of Korea (NRF) under Grant No. NRF-2005-0093845 and Samsung Science and Technology Foundation under Grant No. SSTFBA1401-08.

  16. Structural health monitoring using genetic fuzzy systems

    CERN Document Server

    Pawar, Prashant M

    2014-01-01

    The high profile of structural health monitoring (SHM) will add urgency to this detailed treatment of intelligent SHM development and implementation via the evolutionary system, which uses a genetic algorithm to automate the development of the fuzzy system.

  17. Optical Structural Health Monitoring Device

    Science.gov (United States)

    Buckner, Benjamin D.; Markov, Vladimir; Earthman, James C.

    2010-01-01

    This non-destructive, optical fatigue detection and monitoring system relies on a small and unobtrusive light-scattering sensor that is installed on a component at the beginning of its life in order to periodically scan the component in situ. The method involves using a laser beam to scan the surface of the monitored component. The device scans a laser spot over a metal surface to which it is attached. As the laser beam scans the surface, disruptions in the surface cause increases in scattered light intensity. As the disruptions in the surface grow, they will cause the light to scatter more. Over time, the scattering intensities over the scanned line can be compared to detect changes in the metal surface to find cracks, crack precursors, or corrosion. This periodic monitoring of the surface can be used to indicate the degree of fatigue damage on a component and allow one to predict the remaining life and/or incipient mechanical failure of the monitored component. This wireless, compact device can operate for long periods under its own battery power and could one day use harvested power. The prototype device uses the popular open-source TinyOS operating system on an off-the-shelf Mica2 sensor mote, which allows wireless command and control through dynamically reconfigurable multi-node sensor networks. The small size and long life of this device could make it possible for the nodes to be installed and left in place over the course of years, and with wireless communication, data can be extracted from the nodes by operators without physical access to the devices. While a prototype has been demonstrated at the time of this reporting, further work is required in the system s development to take this technology into the field, especially to improve its power management and ruggedness. It should be possible to reduce the size and sensitivity as well. Establishment of better prognostic methods based on these data is also needed. The increase of surface roughness with

  18. Structural health monitoring with fiber optic sensors

    Institute of Scientific and Technical Information of China (English)

    F.ANSARI

    2009-01-01

    Optical fiber sensors have been successfully implemented in aeronautics, mechanical systems, and medical applications. Civil structures pose further challenges in monitoring mainly due to their large dimensions, diversity and heterogeneity of materials involved, and hostile construction environment. This article provides a summary of basic principles pertaining to practical health monitoring of civil engineering structures with optical fiber sensors. The issues discussed include basic sensor principles, strain transfer mechanism, sensor packaging, sensor placement in construction environment, and reliability and survivability of the sensors.

  19. Bank Solvency, Market Structure, and Monitoring Incentives

    OpenAIRE

    Caminal, Ramon; Matutes, Carmen

    1997-01-01

    We analyse the impact of market structure on the probability of banking failure when banks’ loan portfolios are subject to aggregate uncertainty. In our model borrowers are subject to a moral hazard problem, which induces banks to choose between two second-best alternative devices: costly monitoring and credit rationing. We show that investment depends on both the lending rate and the information structure. Since monitoring incentives increase with interest rate margins, the relationship betw...

  20. Acoustic Techniques for Structural Health Monitoring

    Science.gov (United States)

    Frankenstein, B.; Augustin, J.; Hentschel, D.; Schubert, F.; Köhler, B.; Meyendorf, N.

    2008-02-01

    Future safety and maintenance strategies for industrial components and vehicles are based on combinations of monitoring systems that are permanently attached to or embedded in the structure, and periodic inspections. The latter belongs to conventional nondestructive evaluation (NDE) and can be enhanced or partially replaced by structural health monitoring systems. However, the main benefit of this technology for the future will consist of systems that can be differently designed based on improved safety philosophies, including continuous monitoring. This approach will increase the efficiency of inspection procedures at reduced inspection times. The Fraunhofer IZFP Dresden Branch has developed network nodes, miniaturized transmitter and receiver systems for active and passive acoustical techniques and sensor systems that can be attached to or embedded into components or structures. These systems have been used to demonstrate intelligent sensor networks for the monitoring of aerospace structures, railway systems, wind energy generators, piping system and other components. Material discontinuities and flaws have been detected and monitored during full scale fatigue testing. This paper will discuss opportunities and future trends in nondestructive evaluation and health monitoring based on new sensor principles and advanced microelectronics. It will outline various application examples of monitoring systems based on acoustic techniques and will indicate further needs for research and development.

  1. Structure and phase transition of a two-dimensional dusty plasma

    Institute of Scientific and Technical Information of China (English)

    刘斌; 刘艳红; 陈雁萍; 杨思泽; 王龙

    2003-01-01

    The structure and phase transition of a two-dimensional (2D) dusty plasma have been investigated in detail by molecular dynamics simulation. Pair correlation function, static structure factor, mean square displacement, and bond angle correlation function have been calculated to characterize the structural properties. The variation of internal energy, shear modulus, particle trajectories and structural properties with temperature has been monitored to study the phase transition of the 2D dusty plasma system. The simulation results are in favour of a two-step continuous transition for this kind of plasma.

  2. Assessing the value of structural health monitoring

    DEFF Research Database (Denmark)

    Thöns, S.; Faber, Michael Havbro

    2013-01-01

    Structural Health Monitoring (SHM) systems are designed for assisting owners and operators with information and forecasts concerning the fitness for purpose of structures and building systems. The benefit associated with the implementation of SHM may in some cases be intuitively anticipated......-posterior decision analysis. The quantification of the value of SHM builds upon the quantification of the value of information (VoI) or rather the benefit of monitoring. The suggested approach involves a probabilistic representation of the loads and environmental conditions acting on structures as well...

  3. Flexible Structural-Health-Monitoring Sheets

    Science.gov (United States)

    Qing, Xinlin; Kuo, Fuo

    2008-01-01

    A generic design for a type of flexible structural-health-monitoring sheet with multiple sensor/actuator types and a method of manufacturing such sheets has been developed. A sheet of this type contains an array of sensing and/or actuation elements, associated wires, and any other associated circuit elements incorporated into various flexible layers on a thin, flexible substrate. The sheet can be affixed to a structure so that the array of sensing and/or actuation elements can be used to analyze the structure in accordance with structural-health-monitoring techniques. Alternatively, the sheet can be designed to be incorporated into the body of the structure, especially if the structure is made of a composite material. Customarily, structural-health monitoring is accomplished by use of sensors and actuators arrayed at various locations on a structure. In contrast, a sheet of the present type can contain an entire sensor/actuator array, making it unnecessary to install each sensor and actuator individually on or in a structure. Sensors of different types such as piezoelectric and fiber-optic can be embedded in the sheet to form a hybrid sensor network. Similarly, the traces for electric communication can be deposited on one or two layers as required, and an entirely separate layer can be employed to shield the sensor elements and traces.

  4. Wakefield monitor development for CLIC accelerating structure

    CERN Document Server

    Peauger, F; Girardot, P; Andersson, A; Riddone, G; Samoshkin, A; Solodko, A; Zennaro, R; Ruber, R

    2010-01-01

    Abstract To achieve high luminosity in CLIC, the accelerating structures must be aligned to an accuracy of 5 μm with respect to the beam trajectory. Position detectors called Wakefield Monitors (WFM) are integrated to the structure for a beam based alignment. This paper describes the requirements of such monitors. Detailed RF design and electromagnetic simulations of the WFM itself are presented. In particular, time domain computations are performed and an evaluation of the resolution is done for two higher order modes at 18 and 24 GHz. The mechanical design of a prototype accelerating structure with WFM is also presented as well as the fabrication status of three complete structures. The objective is to implement two of them in CTF3 at CERN for a feasibility demonstration with beam and high power rf.

  5. Identification methods for structural health monitoring

    CERN Document Server

    Papadimitriou, Costas

    2016-01-01

    The papers in this volume provide an introduction to well known and established system identification methods for structural health monitoring and to more advanced, state-of-the-art tools, able to tackle the challenges associated with actual implementation. Starting with an overview on fundamental methods, introductory concepts are provided on the general framework of time and frequency domain, parametric and non-parametric methods, input-output or output only techniques. Cutting edge tools are introduced including, nonlinear system identification methods; Bayesian tools; and advanced modal identification techniques (such as the Kalman and particle filters, the fast Bayesian FFT method). Advanced computational tools for uncertainty quantification are discussed to provide a link between monitoring and structural integrity assessment. In addition, full scale applications and field deployments that illustrate the workings and effectiveness of the introduced monitoring schemes are demonstrated.

  6. New trends in structural health monitoring

    CERN Document Server

    Güemes, J

    2013-01-01

    Experts actively working in structural health monitoring and control techniques present the current research, areas of application and tendencies for the future of this technology, including various design issues involved. Examples using some of the latest hardware and software tools, experimental data from small scale laboratory demonstrators and measurements made on real structures illustrate the book. It will be a reference for professionals and students in the areas of engineering, applied natural sciences and engineering management.

  7. Design Optimization of Structural Health Monitoring Systems

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, Eric B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-03-06

    Sensor networks drive decisions. Approach: Design networks to minimize the expected total cost (in a statistical sense, i.e. Bayes Risk) associated with making wrong decisions and with installing maintaining and running the sensor network itself. Search for optimal solutions using Monte-Carlo-Sampling-Adapted Genetic Algorithm. Applications include structural health monitoring and surveillance.

  8. Temperature Triggered Structural Transitions in Surfactant organized Self Assemblies

    Science.gov (United States)

    Rose, J. Linet; Balamurugan, S.; Sajeevan, Ajin C.; Sreejith, Lisa

    2011-10-01

    Preparation & characterization of tunable fluids is an emerging area with potential application in many fields. Surfactants self assemble in aqueous solution to give a rich variety of phase structures, the size and shape of which can be tuned by additives like salts, alcohols, amines, aromatics etc or external stimuli such as light, temperature etc. The addition of long chain aliphatic alcohol has significant influence on the surfactant aggregation, as it promotes morphological growth of micelles. The cationic surfactant, Cetyl Trimethyl Ammonium Bromide (CTAB) with nonanol in presence of potassium bromide (KBr) shows thermo tunable viscosity behaviour and optical switching behaviour. The solution is visually observed to transform from a turbid and less viscous phase at low temperature to clear and considerably viscous phase at high temperature. Temperature induced changes in turbidity and viscosity are consistent with the transition from vesicle to worm like micelle. It is also worth emphasizing that the transition is thermo reversible, so that vesicles that are disrupted into micelles upon heating can be reformed upon cooling. The thermo tunable transition from turbid to transparent state and the concomitant changes in viscosity are promising for the use in smart windows, monitoring of tumor growth or in other stimuli based application.

  9. Assessing the value of structural health monitoring

    DEFF Research Database (Denmark)

    Thöns, S.; Faber, Michael Havbro

    2013-01-01

    or proven by past experiences but in general there appears to be no rational or systematic approach for assessing the value of SHM systems a-priory to their implementation. The present paper addresses the assessment of the value of SHM with basis in structural risk assessments and the Bayesian pre......-posterior decision analysis. The quantification of the value of SHM builds upon the quantification of the value of information (VoI) or rather the benefit of monitoring. The suggested approach involves a probabilistic representation of the loads and environmental conditions acting on structures as well...... of the uncertainty associated with the performance of SHM on the value of SHM. Moreover, in order to illustrate the potential of the application of approach for monitoring of structural systems an optimal strategy for SHM is determined for a system comprised of three welded details. © 2013 Taylor & Francis Group...

  10. Vibration health monitoring for tensegrity structures

    Science.gov (United States)

    Ashwear, Nasseradeen; Eriksson, Anders

    2017-02-01

    Tensegrities are assembly structures, getting their equilibrium from the interaction between tension in cables and compression in bars. During their service life, slacking in their cables and nearness to buckling in their bars need to be monitored to avoid a sudden collapse. This paper discusses how to design the tensegrities to make them feasible for vibrational health monitoring methods. Four topics are discussed; suitable finite elements formulation, pre-measurements analysis to find the locations of excitation and sensors for the interesting modes, the effects from some environmental conditions, and the pre-understanding of the effects from different slacking scenarios.

  11. Pressure-induced structural transition of nonionic micelles

    Indian Academy of Sciences (India)

    V K Aswal; R Vavrin; J Kohlbrecher; A G Wagh

    2008-11-01

    We report dynamic light scattering and small angle neutron scattering studies of the pressure-induced structural transition of nonionic micelles of surfactant polyoxyethylene 10 lauryl ether (C12E10) in the pressure range 0 to 2000 bar. Measurements have been performed on 1 wt% C12E10 in aqueous solution with and without the addition of KF. Micelles undergo sphere to lamellar structural transitions as the pressure is increased. On addition of KF, rod-like micelles exist at ambient pressure, which results in rod-like to lamellar structural transition at a much lower pressure in the presence of KF. Micellar structural transitions have been observed to be reversible.

  12. Fibre-Optic Strain Measurement For Structural Integrity Monitoring

    NARCIS (Netherlands)

    Bruinsma, A.J.A.; Zuylen, P. van; Lamberts, C.W.; Krijger, A.J.T. de

    1984-01-01

    A method is demonstrated for monitoring the structural integrity of large structures, using an optical fibre. The strain distribution along the structure is monitored by measuring the attentuation of light along the length of the fibre.

  13. Monitoring of progressive collapse of skeletal structures

    Science.gov (United States)

    Swiercz, A.; Kolakowski, P.; Holnicki-Szulc, J.

    2011-07-01

    The authors propose an idea of monitoring the state of skeletal structures of high importance (e.g. roof structures over large area buildings) with the aim of identification of slowly-developing plastic zones. This is formulated as an inverse problem within the framework of the Virtual Distortion Method, which was used previously to identify stiffness/mass modifications in similar manner. Permanent plastic strains developed in a truss element can be modeled by an initial strain (virtual distortion) introduced to the structure. The formation of subsequent plastic zones in the structure is assumed to be slow. Consequently, the design variable (plastic strain) is time-independent, which makes the inverse analysis efficient. This article presents problem formulation and numerical algorithm for identification of the plastic strains int russ structures. The identification relies on gradient-based optimization. A numerical example is included to demonstrate the efficiency of th ealgorithm.

  14. Dynamics-based Nondestructive Structural Monitoring Techniques

    Science.gov (United States)

    2012-06-21

    in the practice of non- destructive evaluation ( NDE ) and structural health monitoring (SHM). Guided wave techniques have several advantages over...conventional bulk wave ultrasonic NDE /SHM techniques. Some of these advantages are outlined in Table I. However, in addition to the advantages of...PVDF transducers for SHM applications with controlled guided wave modes and frequencies [7]. Wilcox used EMATs with circular coils in a guided wave

  15. Dynamics-based Nondestructive Structural Monitoring Teclrniques

    Science.gov (United States)

    2012-05-21

    destructive evaluation ( NDE ) and structural health monitoring (SHM). Guided wave techniques have several advantages over conventional bulk wave...ultrasonic NDE /SHM techniques. Some of these advantages are outlined in Table I. However, in addition to the advantages of guided waves comes an...PVDF transducers for SHM applications with controlled guided wave modes and frequencies [7]. Wilcox used EMATs with circular coils in a guided wave

  16. Structural health monitoring apparatus and methodology

    Science.gov (United States)

    Giurgiutiu, Victor (Inventor); Yu, Lingyu (Inventor); Bottai, Giola Santoni (Inventor)

    2011-01-01

    Disclosed is an apparatus and methodology for structural health monitoring (SHM) in which smart devices interrogate structural components to predict failure, expedite needed repairs, and thus increase the useful life of those components. Piezoelectric wafer active sensors (PWAS) are applied to or integrated with structural components and various data collected there from provide the ability to detect and locate cracking, corrosion, and disbanding through use of pitch-catch, pulse-echo, electro/mechanical impedance, and phased array technology. Stand alone hardware and an associated software program are provided that allow selection of multiple types of SHM investigations as well as multiple types of data analysis to perform a wholesome investigation of a structure.

  17. Ultrasonic vibration for structural health monitoring

    Science.gov (United States)

    Liang, Y.; Yan, F.; Borigo, C.; Rose, J. L.

    2013-01-01

    Guided waves and vibration analysis are two useful techniques in Nondestructive Evaluation and Structural Health Monitoring. Bridging the gap between guided waves and vibration, a novel testing method ultrasonic vibration is demonstrated here. Ultrasonic vibration is capable to achieve defect detection sensitivity as ultrasonic guided waves, while maintaining the efficiency of traditional vibration in the way of adopting several sensors to cover the whole structure. In this new method, continuous guided wave energy will impinge into the structure to make the structure vibrate steadily. The steady state vibration is achieved after multiple boundary reflections of the continuous guided wave. In ultrasonic vibration experiments, annual array transducer is used as the actuator. The loading functions are tuned by the frequencies and phase delays among each transducer element. Experiments demonstrate good defect detection ability of by optimally selecting guided wave loadings.

  18. The Transit Monitoring in the South (TraMoS project

    Directory of Open Access Journals (Sweden)

    López-Morales Mercedes

    2013-04-01

    Full Text Available We present the Transit Monitoring in the South (TraMoS project. TraMoS has monitored transits of 30 exoplanets with telescopes located in Chile since 2008, whit the following goals: (1 to refine the physical and/or orbital parameters of those exoplanet system, and (2 to search for variations in the mid-times of the transits and in other parameters such as orbital inclination or transit's depth, that could indicate the presence of additional bodies in the system. We highlight here the first results of TraMoS in three selected exoplanets.

  19. An autonomous structural health monitoring solution

    Science.gov (United States)

    Featherston, Carol A.; Holford, Karen M.; Pullin, Rhys; Lees, Jonathan; Eaton, Mark; Pearson, Matthew

    2013-05-01

    Combining advanced sensor technologies, with optimised data acquisition and diagnostic and prognostic capability, structural health monitoring (SHM) systems provide real-time assessment of the integrity of bridges, buildings, aircraft, wind turbines, oil pipelines and ships, leading to improved safety and reliability and reduced inspection and maintenance costs. The implementation of power harvesting, using energy scavenged from ambient sources such as thermal gradients and sources of vibration in conjunction with wireless transmission enables truly autonomous systems, reducing the need for batteries and associated maintenance in often inaccessible locations, alongside bulky and expensive wiring looms. The design and implementation of such a system however presents numerous challenges. A suitable energy source or multiple sources capable of meeting the power requirements of the system, over the entire monitoring period, in a location close to the sensor must be identified. Efficient power management techniques must be used to condition the power and deliver it, as required, to enable appropriate measurements to be taken. Energy storage may be necessary, to match a continuously changing supply and demand for a range of different monitoring states including sleep, record and transmit. An appropriate monitoring technique, capable of detecting, locating and characterising damage and delivering reliable information, whilst minimising power consumption, must be selected. Finally a wireless protocol capable of transmitting the levels of information generated at the rate needed in the required operating environment must be chosen. This paper considers solutions to some of these challenges, and in particular examines SHM in the context of the aircraft environment.

  20. Structural Transitions of Solvent-Free Oligomer-Grafted Nanoparticles

    KAUST Repository

    Chremos, Alexandros

    2011-09-01

    Novel structural transitions of solvent-free oligomer-grafted nanoparticles are investigated by using molecular dynamics simulations of a coarse-grained bead-spring model. Variations in core size and grafting density lead to self-assembly of the nanoparticles into a variety of distinct structures. At the boundaries between different structures, the nanoparticle systems undergo thermoreversible transitions. This structural behavior, which has not been previously reported, deviates significantly from that of simple liquids. The reversible nature of these transitions in solvent-free conditions offers new ways to control self-assembly of nanoparticles at experimentally accessible conditions. © 2011 American Physical Society.

  1. POSTCLOSURE GROUNDWATER REMEDIATION AND MONITORING AT THE SANITARY LANDFILL, SAVANNAH RIVER SITE TRANSITIONING TO MONITORED NATURAL ATTENUATION

    Energy Technology Data Exchange (ETDEWEB)

    Ross, J; Walt Kubilius, W; Thomas Kmetz, T; D Noffsinger, D; Karen M Adams, K

    2006-11-17

    Resource Conservation and Recovery Act (RCRA) requirements for hazardous waste facilities include 30 years of post-closure monitoring. The use of an objective-based monitoring strategy allows for a significant reduction in the amount of groundwater monitoring required, as the groundwater remediation transitions from an active biosparging system to monitored natural attenuation. The lifecycle of groundwater activities at the landfill has progressed from detection monitoring and plume characterization, to active groundwater remediation, and now to monitored natural attenuation and postclosure monitoring. Thus, the objectives of the groundwater monitoring have changed accordingly. Characterization monitoring evaluated what biogeochemical natural attenuation processes were occurring and determined that elevated levels of radium were naturally occurring. Process monitoring of the biosparging system required comprehensive sampling network up- and down-gradient of the horizontal wells to verify its effectiveness. Currently, the scope of monitoring and reporting can be significantly reduced as the objective is to demonstrate that the alternate concentration limits (ACL) are being met at the point of compliance wells and the maximum contaminant level (MCL) is being met at the surface water point of exposure. The proposed reduction is estimated to save about $2M over the course of the remaining 25 years of postclosure monitoring.

  2. Structural health monitoring of wind turbine blades

    Science.gov (United States)

    Rumsey, Mark A.; Paquette, Joshua A.

    2008-03-01

    As electric utility wind turbines increase in size, and correspondingly, increase in initial capital investment cost, there is an increasing need to monitor the health of the structure. Acquiring an early indication of structural or mechanical problems allows operators to better plan for maintenance, possibly operate the machine in a de-rated condition rather than taking the unit off-line, or in the case of an emergency, shut the machine down to avoid further damage. This paper describes several promising structural health monitoring (SHM) techniques that were recently exercised during a fatigue test of a 9 meter glass-epoxy and carbon-epoxy wind turbine blade. The SHM systems were implemented by teams from NASA Kennedy Space Center, Purdue University and Virginia Tech. A commercial off-the-shelf acoustic emission (AE) NDT system gathered blade AE data throughout the test. At a fatigue load cycle rate around 1.2 Hertz, and after more than 4,000,000 fatigue cycles, the blade was diagnostically and visibly failing at the out-board blade spar-cap termination point at 4.5 meters. For safety reasons, the test was stopped just before the blade completely failed. This paper provides an overview of the SHM and NDT system setups and some current test results.

  3. Data driven innovations in structural health monitoring

    Science.gov (United States)

    Rosales, M. J.; Liyanapathirana, R.

    2017-05-01

    At present, substantial investments are being allocated to civil infrastructures also considered as valuable assets at a national or global scale. Structural Health Monitoring (SHM) is an indispensable tool required to ensure the performance and safety of these structures based on measured response parameters. The research to date on damage assessment has tended to focus on the utilization of wireless sensor networks (WSN) as it proves to be the best alternative over the traditional visual inspections and tethered or wired counterparts. Over the last decade, the structural health and behaviour of innumerable infrastructure has been measured and evaluated owing to several successful ventures of implementing these sensor networks. Various monitoring systems have the capability to rapidly transmit, measure, and store large capacities of data. The amount of data collected from these networks have eventually been unmanageable which paved the way to other relevant issues such as data quality, relevance, re-use, and decision support. There is an increasing need to integrate new technologies in order to automate the evaluation processes as well as to enhance the objectivity of data assessment routines. This paper aims to identify feasible methodologies towards the application of time-series analysis techniques to judiciously exploit the vast amount of readily available as well as the upcoming data resources. It continues the momentum of a greater effort to collect and archive SHM approaches that will serve as data-driven innovations for the assessment of damage through efficient algorithms and data analytics.

  4. Structural health monitoring of grandstands: a review

    Directory of Open Access Journals (Sweden)

    Gómez-Casero Fuentes Miguel Ángel

    2015-01-01

    Full Text Available This article is a state of the art about Grandstands. The Grandstands are slender structures designed to accommodate a large number of people, which are specially under the actions of wind and the human-structure interaction. Over the years, it has been discuss of this topic, although still the number of publications still remain low. The human-structure interaction is a complex issue, where the loads may have different behaviours, depending many factors, including: type of audience (active or passive, public behaviour (jumping, walking, running, clapping, vandal loads, type of event (sports, concerts, meeting, position and posture of the individual, even influences the type of seat (with or without back, stiffness. However, the structure will behave differently when empty or fully occupied. Another load to consider is the wind, especially when the structure has a roof, screens, large-scale advertising, etc. These two types of loads can interact together, which implies an increase in the normal number of load combinations to consider. There are biomechanical models of human behaviour, used for design these types of structures. In addition, there are mathematical models to simulate the behaviour of the Grandstands by numerical methods. In recent years, all these models are throwing good results, against laboratory tests performed. It has also been monitored real Grandstands. This paper compiles all existing information on this topic.

  5. NASA Applications of Structural Health Monitoring Technology

    Science.gov (United States)

    Richards, W Lance; Madaras, Eric I.; Prosser, William H.; Studor, George

    2013-01-01

    This presentation provides examples of research and development that has recently or is currently being conducted at NASA, with a special emphasis on the application of structural health monitoring (SHM) of aerospace vehicles. SHM applications on several vehicle programs are highlighted, including Space Shuttle Orbiter, International Space Station, Uninhabited Aerial Vehicles, and Expandable Launch Vehicles. Examples of current and previous work are presented in the following categories: acoustic emission impact detection, multi-parameter fiber optic strain-based sensing, wireless sensor system development, and distributed leak detection.

  6. Structural health monitoring system/method using electroactive polymer fibers

    Science.gov (United States)

    Scott-Carnell, Lisa A. (Inventor); Siochi, Emilie J. (Inventor)

    2013-01-01

    A method for monitoring the structural health of a structure of interest by coupling one or more electroactive polymer fibers to the structure and monitoring the electroactive responses of the polymer fiber(s). Load changes that are experienced by the structure cause changes in the baseline responses of the polymer fiber(s). A system for monitoring the structural health of the structure is also provided.

  7. Structural Health Monitoring of AN Aircraft Joint

    Science.gov (United States)

    Mickens, T.; Schulz, M.; Sundaresan, M.; Ghoshal, A.; Naser, A. S.; Reichmeider, R.

    2003-03-01

    A major concern with ageing aircraft is the deterioration of structural components in the form of fatigue cracks at fastener holes, loose rivets and debonding of joints. These faults in conjunction with corrosion can lead to multiple-site damage and pose a hazard to flight. Developing a simple vibration-based method of damage detection for monitoring ageing structures is considered in this paper. The method is intended to detect damage during operation of the vehicle before the damage can propagate and cause catastrophic failure of aircraft components. It is typical that only a limited number of sensors could be used on the structure and damage can occur anywhere on the surface or inside the structure. The research performed was to investigate use of the chirp vibration responses of an aircraft wing tip to detect, locate and approximately quantify damage. The technique uses four piezoelectric patches alternatively as actuators and sensors to send and receive vibration diagnostic signals.Loosening of selected screws simulated damage to the wing tip. The results obtained from the testing led to the concept of a sensor tape to detect damage at joints in an aircraft structure.

  8. The Role of Structure in the Protein Dynamical Transition

    CERN Document Server

    He, Yunfen

    2008-01-01

    The protein dynamical transition is investigated as a function of protein structure using terahertz time domain spectroscopy (THz-TDS). Measurements performed for native state and denatured hen egg white lysozyme (HEWL) show that protein structure is not necessary for the dynamical transition. We find the temperature dependence follows activated behavior and there is no evidence of a fragile to strong transition. Measurements of short chain poly alanine show a dynamical transition down to penta-alanine, however no transition is observed for di-alanine or tri-alanine. These measurements demonstrate that the temperature dependence arises strictly from the interaction of the side chains with the solvent. The lack of a transition for shorter chain polypeptides may indicate the temperature dependence arises from a net ordering of the adjacent water which scales with the length of the polypeptide chain.

  9. Structural Health Monitoring of Composite Structures Using Fiber Optic Sensors

    Science.gov (United States)

    Whitaker, Anthony

    Structural health monitoring is the process of detecting damage to a structure, where damage can be characterized as changes to material/mechanical properties including but not limited to plastically deforming the material or the modification of connections. Fiber optic cables with fiber Bragg gratings have emerged as a reliable method of locally measuring strains within a structure. During the manufacturing of composite structures, the fiber optic cables can be embedded between lamina plies, allowing the ability to measure strain at discrete locations within the structure as opposed to electrical strain gauges, which must typically be applied to the surface only. The fiber optic sensors may be used to see if the local strain at the sensor location is beyond desired limits, or the array response may be mined to determine additional information about the loading applied to the structure. The work presented in this thesis is to present novel and potential applications of FBG sensors being used to assess the health of the structure. The first application is the dual application of the FBG sensor as a method to determine the strain around a bolt connection as well as the preload of the fastener using a single fiber optic sensor. The composite material around the bolted connections experience stress concentrations and are often the location of damage to the structure from operational cyclic loading over the lifetime of the structure. The degradation can occur more quickly if the fastener is insufficiently tight to transfer load properly. The second application is the ability to locate the impact location of a projectile with damaging and non-damaging energy. By locating and quantifying the damage, the sensor array provides the basis for a structural health monitoring system that has the potential to determine if the damage is extensive enough to replace, or if the part can be salvaged and retrofitted.

  10. Problem of phase transitions in nuclear structure

    Energy Technology Data Exchange (ETDEWEB)

    Scharff-Goldhaber, G

    1980-01-01

    Phase transitions between rotational and vibrational nuclei are discussed from the point of view of the variable moment of inertia model. A three-dimensional plot of the ground-state moments of inertia of even-even nuclei vs N and Z is shown. 3 figures. (RWR)

  11. The Structural Phase Transition in Octaflournaphtalene

    DEFF Research Database (Denmark)

    Mackenzie, Gordon A.; Arthur, J. W.; Pawley, G. S.

    1977-01-01

    The phase transition in octafluoronaphthalene has been investigated by Raman scattering and neutron powder diffraction. The weight of the experimental evidence points to a unit cell doubling in the a direction, but with no change in space group symmetry. Lattice dynamics calculations support...

  12. Influence of magnetic fields on structural martensitic transitions

    Energy Technology Data Exchange (ETDEWEB)

    Lashley, J C [Los Alamos National Laboratory; Cooley, J C [Los Alamos National Laboratory; Smith, J L [Los Alamos National Laboratory; Fisher, R A [NON LANL; Modic, K A [Los Alamos National Laboratory; Yang, X- D [TEMPLE UNIV; Riseborough, P S [TEMPLE UNIV.; Opeil, C P [BOSTON COLLEGE; Finlayson, T R [UNIV OF MELBOURNE; Goddard, P A [UNIV OF OXFORD; Silhanek, A V [INPAC

    2009-01-01

    We show evidence that a structural martensitic transition is related to significant changes in the electronic structure, as revealed in thermodynamic measurements made in high-magnetic fields. The magnetic field dependence is considered unusual as many influential investigations of martensitic transitions have emphasized that the structural transitions are primarily lattice dynamical and are driven by the entropy due to the phonons. We provide a theoretical framework which can be used to describe the effect of magnetic field on the lattice dynamics in which the field dependence originates from the dielectric constant.

  13. Uniform circular array for structural health monitoring of composite structures

    Science.gov (United States)

    Stepinski, Tadeusz; Engholm, Marcus

    2008-03-01

    Phased array with all-azimuth angle coverage would be extremely useful in structural health monitoring (SHM) of planar structures. One method to achieve the 360° coverage is to use uniform circular arrays (UCAs). In this paper we present the concept of UCA adapted for SHM applications. We start from a brief presentation of UCA beamformers based on the principle of phase mode excitation. UCA performance is illustrated by the results of beamformer simulations performed for the narrowband and wideband ultrasonic signals. Preliminary experimental results obtained with UCA used for the reception of ultrasonic signals propagating in an aluminum plate are also presented.

  14. High-Cadence Transit Timing Variation Monitoring of Extrasolar Planets

    Directory of Open Access Journals (Sweden)

    Naef D.

    2011-02-01

    Full Text Available We report ground-based high-cadence transit timing observations of the extrasolar planet WASP-2b. We achieve a typical timing error of 15-30 sec. The data show no significant deviations from the predicted ephemeris.

  15. Quantum Theory of Hyperfine Structure Transitions in Diatomic Molecules.

    Science.gov (United States)

    Klempt, E.; And Others

    1979-01-01

    Described is an advanced undergraduate laboratory experiment in which radio-frequency transitions between molecular hyperfine structure states may be observed. Aspects of the quantum theory applied to the analysis of this physical system, are discussed. (Authors/BT)

  16. Aircraft fiber optic structural health monitoring

    Science.gov (United States)

    Mrad, Nezih

    2012-06-01

    Structural Health Monitoring (SHM) is a sought after concept that is expected to advance military maintenance programs, increase platform operational safety and reduce its life cycle cost. Such concept is further considered to constitute a major building block of any Integrated Health Management (IHM) capability. Since 65% to 80% of military assets' Life Cycle Cost (LCC) is devoted to operations and support (O&S), the aerospace industry and military sectors continue to look for opportunities to exploit SHM systems, capability and tools. Over the past several years, countless SHM concepts and technologies have emerged. Among those, fiber optic based systems were identified of significant potential. This paper introduces the elements of an SHM system and investigates key issues impeding the commercial implementation of fiber optic based SHM capability. In particular, this paper presents an experimental study of short gauge, intrinsic, spectrometric-based in-fiber Bragg grating sensors, for potential use as a component of an SHM system. Fiber optic Bragg grating sensors are evaluated against resistance strain gauges for strain monitoring, sensitivity, accuracy, reliability, and fatigue durability. Strain field disturbance is also investigated by "embedding" the sensors under a photoelastic coating in order to illustrate sensor intrusiveness in an embedded configuration.

  17. Monitoring of Concrete Structures Using Ofdr Technique

    Science.gov (United States)

    Henault, J. M.; Salin, J.; Moreau, G.; Delepine-Lesoille, S.; Bertand, J.; Taillade, F.; Quiertant, M.; Benzarti, K.

    2011-06-01

    Structural health monitoring is a key factor in life cycle management of infrastructures. Truly distributed fiber optic sensors are able to provide relevant information on large structures, such as bridges, dikes, nuclear power plants or nuclear waste disposal facilities. The sensing chain includes an optoelectronic unit and a sensing cable made of one or more optical fibers. A new instrument based on Optical Frequency Domain Reflectometry (OFDR), enables to perform temperature and strain measurements with a centimeter scale spatial resolution over hundred of meters and with a level of precision equal to 1 μstrain and 0.1 °C. Several sensing cables are designed with different materials targeting to last for decades in a concrete aggressive environment and to ensure an optimal transfer of temperature and strain from the concrete matrix to the optical fiber. Tests were carried out by embedding various sensing cables into plain concrete specimens and representative-scale reinforced concrete structural elements. Measurements were performed with an OFDR instrument; meanwhile, mechanical solicitations were imposed to the concrete element. Preliminary experiments are very promising since measurements performed with distributed sensing system are comparable to values obtained with conventional sensors used in civil engineering and with the Strength of Materials Modelling. Moreover, the distributed sensing system makes it possible to detect and localize cracks appearing in concrete during the mechanical loading.

  18. Towards spacecraft applications of structural health monitoring

    Directory of Open Access Journals (Sweden)

    Adrian TOADER

    2012-12-01

    Full Text Available The first part of the paper presents recent developments in the field of structural health monitoring (SHM with special attention on the piezoelectric wafer active sensors (PWAS technologies utilizing guided waves (GW as propagating waves (pitch-catch, pulse-echo, standing wave (electromechanical impedance, and phased arrays. The second part of the paper describes the challenges of extending the PWAS GW SHM approach to in-space applications. Three major issues are identified, (a cryogenic temperatures; (b high temperatures; and (c space radiation exposure. Preliminary results in which these three issues were address in a series of carefully conducted experiments are presented and discussed. The third part of the paper discusses a new project that is about to start in collaboration between three Romanian institutes to address the issues and challenging of developing space SHM technologies based on PWAS concepts. The paper finishes with conclusions and suggestions for further work.

  19. FOREWORD: Structural Health Monitoring and Intelligent Infrastructure

    Science.gov (United States)

    Wu, Zhishen; Fujino, Yozo

    2005-06-01

    This special issue collects together 19 papers that were originally presented at the First International Conference on Structural Health Monitoring and Intelligent Infrastructure (SHMII-1'2003), held in Tokyo, Japan, on 13-15 November 2003. This conference was organized by the Japan Society of Civil Engineers (JSCE) with partial financial support from the Japan Society for the Promotion of Science (JSPS) and the Ministry of Education, Culture, Sport, Science and Technology, Japan. Many related organizations supported the conference. A total of 16 keynote papers including six state-of-the-art reports from different counties, six invited papers and 154 contributed papers were presented at the conference. The conference was attended by a diverse group of about 300 people from a variety of disciplines in academia, industry and government from all over the world. Structural health monitoring (SHM) and intelligent materials, structures and systems have been the subject of intense research and development in the last two decades and, in recent years, an increasing range of applications in infrastructure have been discovered both for existing structures and for new constructions. SHMII-1'2003 addressed progress in the development of building, transportation, marine, underground and energy-generating structures, and other civilian infrastructures that are periodically, continuously and/or actively monitored where there is a need to optimize their performance. In order to focus the current needs on SHM and intelligent technologies, the conference theme was set as 'Structures/Infrastructures Sustainability'. We are pleased to have the privilege to edit this special issue on SHM and intelligent infrastructure based on SHMII-1'2003. We invited some of the presenters to submit a revised/extended version of their paper that was included in the SHMII-1'2003 proceedings for possible publication in the special issue. Each paper included in this special issue was edited with the same

  20. Structural transition of FeSe under high pressure

    Institute of Scientific and Technical Information of China (English)

    Li Wei; Chen Jun-Fang; He Qin-Yu; Wang Teng; Pan Zhong-Liang

    2011-01-01

    The density functional calculations of the energy band structure and density of state for the tetragonal PbO-type phase α-FeSe and hexagonal NiAs-type phase β-FeSe are reported in this paper. The structural phase transition from tetragonal to hexagonal FeSe under high pressure is investigated, it is found that the calculated transition pressure for the α→β phase transformation is 8.5 GPa. Some fluctuations in the transition pressure maybe occurred by different external factors such as temperature and stress condition. There is about 17% volume collapse accompanying the α→β phase transformation.

  1. Structural Transitions of a Twisted and Stretched DNA Molecule

    Science.gov (United States)

    Léger, J. F.; Romano, G.; Sarkar, A.; Robert, J.; Bourdieu, L.; Chatenay, D.; Marko, J. F.

    1999-08-01

    We report results of a micromanipulation study of single double-helical DNA molecules at forces up to 150 pN. Depending on whether the DNA winding is allowed to relax, or held fixed, qualitatively different structural transitions are observed. By studying the transitions as a function of winding the different DNA structures underlying them are characterized; this allows us to report the first estimate of S-DNA helicity. A model is introduced to describe these transitions; in addition to B-DNA, we find that four DNA states are needed to describe the experiments.

  2. Structural Health Monitoring of Frame Structures Using Piezo-Transducer

    Science.gov (United States)

    Shanker, R.; Bhalla, S.; Gupta, A.

    2008-07-01

    Monitoring of civil structures is crucial for their proper functioning. Any crack in a structure changes its static and dynamic behaviours. To detect the damage/crack at the initiating time itself is challenging task in modern time. This paper describes an experimental study to extract the dynamic characteristics of a frame structure using piezo-electric ceramic (PZT) transducers. Tests are conducted on steel frame to extract the natural frequencies and the experimental mode shapes. Free vibration response is first acquired in the time domain and then transformed into frequency domain using Fast Fourier Transforms (FFT) analyser. Only single PZT patch is sufficient to extract the first nine modes shape of the steel frame .By using numerical model, mode shapes are extracted corresponding to each identified natural frequency. After determining natural frequencies and experimental mode shape, damages can be located by method of Naidu and Soh (2004). This approach can be used for damage/crack detection at very earlier stage.

  3. Cooperative structural transitions in amyloid-like aggregation

    Science.gov (United States)

    Steckmann, Timothy; Bhandari, Yuba R.; Chapagain, Prem P.; Gerstman, Bernard S.

    2017-04-01

    Amyloid fibril aggregation is associated with several horrific diseases such as Alzheimer's, Creutzfeld-Jacob, diabetes, Parkinson's, and others. Although proteins that undergo aggregation vary widely in their primary structure, they all produce a cross-β motif with the proteins in β-strand conformations perpendicular to the fibril axis. The process of amyloid aggregation involves forming myriad different metastable intermediate aggregates. To better understand the molecular basis of the protein structural transitions and aggregation, we report on molecular dynamics (MD) computational studies on the formation of amyloid protofibrillar structures in the small model protein ccβ, which undergoes many of the structural transitions of the larger, naturally occurring amyloid forming proteins. Two different structural transition processes involving hydrogen bonds are observed for aggregation into fibrils: the breaking of intrachain hydrogen bonds to allow β-hairpin proteins to straighten, and the subsequent formation of interchain H-bonds during aggregation into amyloid fibrils. For our MD simulations, we found that the temperature dependence of these two different structural transition processes results in the existence of a temperature window that the ccβ protein experiences during the process of forming protofibrillar structures. This temperature dependence allows us to investigate the dynamics on a molecular level. We report on the thermodynamics and cooperativity of the transformations. The structural transitions that occurred in a specific temperature window for ccβ in our investigations may also occur in other amyloid forming proteins but with biochemical parameters controlling the dynamics rather than temperature.

  4. Phase transitions in antiferromagnets with a NaCl structure

    Energy Technology Data Exchange (ETDEWEB)

    Kassan-Ogly, F.A. [Institute of Metal Physics, Ural Division, Russian Academy of Sciences, ul. S.Kovalevskoi 18, Ekaterinburg 620219 (Russian Federation)]. E-mail: felix.kassan-ogly@imp.uran.ru; Filippov, B.N. [Institute of Metal Physics, Ural Division, Russian Academy of Sciences, ul. S.Kovalevskoi 18, Ekaterinburg 620219 (Russian Federation)

    2006-05-15

    A revised derivation scheme of possible magnetic structures in an FCC lattice with the nearest- and next-nearest-neighbor interactions taken into account is proposed. A model of simultaneous magnetic and structural phase transitions of the first order is developed for antiferromagnets with a NaCl structure and with a strong cubic magnetic anisotropy on the base of synthesis of magnetic modified 6-state Potts model and theoretical models of structural phase transitions in cubic crystals. It is shown that the high-temperature diffuse magnetic scattering of neutrons transforms into magnetic Bragg reflections below Neel point.

  5. Phase transitions in antiferromagnets with a NaCl structure

    Science.gov (United States)

    Kassan-Ogly, F. A.; Filippov, B. N.

    2006-05-01

    A revised derivation scheme of possible magnetic structures in an FCC lattice with the nearest- and next-nearest-neighbor interactions taken into account is proposed. A model of simultaneous magnetic and structural phase transitions of the first order is developed for antiferromagnets with a NaCl structure and with a strong cubic magnetic anisotropy on the base of synthesis of magnetic modified 6-state Potts model and theoretical models of structural phase transitions in cubic crystals. It is shown that the high-temperature diffuse magnetic scattering of neutrons transforms into magnetic Bragg reflections below Néel point.

  6. Influence of Floating Monitoring Platform Structure on the Hydrostatic Characteristics

    Directory of Open Access Journals (Sweden)

    Su Feng

    2015-01-01

    Full Text Available According to the environment and work styles, the underwater monitoring devices can be divided into three type, fixed monitoring device, the floating monitoring device and mobile monitoring device. Floating monitoring platform is a new type of monitoring device of the floating monitoring device, which is mainly used for underwater video monitoring of pool. as the floating platform monitoring in water motion and hydrostatic characteristics are closely related, the influent of counterweight, weight distance and floating body diameter of the structure parameters on its hydrostatic characteristics and the natural periods for roll, pitch and heave should be considered, In this work, the floating body diameter influent most, the counterweight followed, and the structure parameters have different influence on the natural periods for roll, pitch and heave , it need to be analyzed according to the concrete structure parameters.

  7. The local structure of transition metal doped semiconducting boron carbides

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jing; Dowben, P A [Department of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, Behlen Laboratory of Physics, University of Nebraska-Lincoln, PO Box 880111, Lincoln, NE 68588-0111 (United States); Luo Guangfu; Mei Waining [Department of Physics, University of Nebraska at Omaha, Omaha, NE 68182-0266 (United States); Kizilkaya, Orhan [J. Bennett Johnston Sr. Center for Advanced Microstructures and Devices, Louisiana State University, 6980 Jefferson Hwy., Baton Rouge LA 70806 (United States); Shepherd, Eric D; Brand, J I [College of Engineering, and the Nebraska Center for Materials and Nanoscience, N209 Walter Scott Engineering Center, 17th and Vine Streets, University of Nebraska-Lincoln, Lincoln, NE 68588-0511 (United States)

    2010-03-03

    Transition metal doped boron carbides produced by plasma enhanced chemical vapour deposition of orthocarborane (closo-1,2-C{sub 2}B{sub 10}H{sub 12}) and 3d metal metallocenes were investigated by performing K-edge extended x-ray absorption fine structure and x-ray absorption near edge structure measurements. The 3d transition metal atom occupies one of the icosahedral boron or carbon atomic sites within the icosahedral cage. Good agreement was obtained between experiment and models for Mn, Fe and Co doping, based on the model structures of two adjoined vertex sharing carborane cages, each containing a transition metal. The local spin configurations of all the 3d transition metal doped boron carbides, Ti through Cu, are compared using cluster and/or icosahedral chain calculations, where the latter have periodic boundary conditions.

  8. Post-perovskite Transition in Anti-structure.

    Science.gov (United States)

    Wang, Bosen; Ohgushi, Kenya

    2016-11-30

    The discovery of the post-perovskite transition, which is the structural transition from the perovskite to post-perovskite structure in MgSiO3 under pressure, has aroused great interests in geosciences. Despite of previous extensive studies, key factors of the post-perovsktie transition are still under hot debate primarily due to the big difficulty in performing systematic experiments under extreme conditions. Hence, search for new materials showing the post-perovskite transition under ambient pressure has been highly expected. We here report a new-type of materials Cr3AX (A = Ga, Ge; X = C, N), which exhibits the post-perovskite transition as a function of "chemical pressure" at ambient physical pressure. The detailed structural analysis indicates that the tolerance factor, which is the measure of the ionic radius mismatch, plays the key role in the post-perovskite transition. Moreover, we found a tetragonal perovskite structure with loss of inversion symmetry between the cubic perovskite and orthorhombic post-perovskite structures. This finding stimulates a search for a ferroelectric state in MgSiO3.

  9. Post-perovskite Transition in Anti-structure

    Science.gov (United States)

    Wang, Bosen; Ohgushi, Kenya

    2016-11-01

    The discovery of the post-perovskite transition, which is the structural transition from the perovskite to post-perovskite structure in MgSiO3 under pressure, has aroused great interests in geosciences. Despite of previous extensive studies, key factors of the post-perovsktie transition are still under hot debate primarily due to the big difficulty in performing systematic experiments under extreme conditions. Hence, search for new materials showing the post-perovskite transition under ambient pressure has been highly expected. We here report a new-type of materials Cr3AX (A = Ga, Ge; X = C, N), which exhibits the post-perovskite transition as a function of “chemical pressure” at ambient physical pressure. The detailed structural analysis indicates that the tolerance factor, which is the measure of the ionic radius mismatch, plays the key role in the post-perovskite transition. Moreover, we found a tetragonal perovskite structure with loss of inversion symmetry between the cubic perovskite and orthorhombic post-perovskite structures. This finding stimulates a search for a ferroelectric state in MgSiO3.

  10. Insight into Structural Phase Transitions from Density Functional Theory

    Science.gov (United States)

    Ruzsinszky, Adrienn

    2014-03-01

    Structural phase transitions caused by high pressure or temperature are very relevant in materials science. The high pressure transitions are essential to understand the interior of planets. Pressure or temperature induced phase transitions can be relevant to understand other phase transitions in strongly correlated systems or molecular crystals.Phase transitions are important also from the aspect of method development. Lower level density functionals, LSDA and GGAs all fail to predict the lattice parameters of different polymorphs and the phase transition parameters at the same time. At this time only nonlocal density functionals like HSE and RPA have been proved to resolve the geometry-energy dilemma to some extent in structural phase transitions. In this talk I will report new results from the MGGA_MS family of meta-GGAs and give an insight why this type of meta-GGAs can give a systematic improvement of the geometry and phase transition parameters together. I will also present results from the RPA and show a possible way to improve beyond RPA.

  11. Doppler Monitoring of five K2 Transiting Planetary Systems

    CERN Document Server

    Dai, Fei; Albrecht, Simon; Arriagada, Pamela; Bieryla, Allyson; Butler, R Paul; Crane, Jeffrey D; Hirano, Teriyuki; Johnson, John Asher; Kiilerich, Amanda; Latham, David W; Narita, Norio; Nowak, Grzegorz; Palle, Enric; Ribas, Ignasi; Rogers, Leslie A; Sanchis-Ojeda, Roberto; Shectman, Stephen A; Teske, Johanna K; Thompson, Ian B; Van Eylen, Vincent; Vanderburg, Andrew; Wittenmyer, Robert A; Yu, Liang

    2016-01-01

    In an effort to measure the masses of planets discovered by the NASA {\\it K2} mission, we have conducted precise Doppler observations of five stars with transiting planets. We present the results of a joint analysis of these new data and previously published Doppler data. The first star, an M dwarf known as K2-3 or EPIC~201367065, has three transiting planets ("b", with radius $2.1~R_{\\oplus}$; "c", $1.7~R_{\\oplus}$; and "d", $1.5~R_{\\oplus}$). Our analysis leads to the mass constraints: $M_{b}=8.1^{+2.0}_{-1.9}~M_{\\oplus}$ and $M_{c}$ < $ 4.2~M_{\\oplus}$~(95\\%~conf.). The mass of planet d is poorly constrained because its orbital period is close to the stellar rotation period, making it difficult to disentangle the planetary signal from spurious Doppler shifts due to stellar activity. The second star, a G dwarf known as K2-19 or EPIC~201505350, has two planets ("b", $7.7~R_{\\oplus}$; and "c", $4.9~R_{\\oplus}$) in a 3:2 mean-motion resonance, as well as a shorter-period planet ("d", $1.1~R_{\\oplus}$). We f...

  12. Effect of point defects and disorder on structural phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Toulouse, J.

    1997-06-01

    Since the beginning in 1986, the object of this project has been Structural Phase Transitions (SPT) in real as opposed to ideal materials. The first stage of the study has been centered around the role of Point Defects in SPT`s. Our intent was to use the previous knowledge we had acquired in the study of point defects in non-transforming insulators and apply it to the study of point defects in insulators undergoing phase transitions. In non-transforming insulators, point defects, in low concentrations, marginally affect the bulk properties of the host. It is nevertheless possible by resonance or relaxation methods to study the point defects themselves via their local motion. In transforming solids, however, close to a phase transition, atomic motions become correlated over very large distances; there, even point defects far removed from one another can undergo correlated motions which may strongly affect the transition behavior of the host. Near a structural transition, the elastic properties win be most strongly affected so as to either raise or decrease the transition temperature, prevent the transition from taking place altogether, or simply modify its nature and the microstructure or domain structure of the resulting phase. One of the well known practical examples is calcium-stabilized zirconia in which the high temperature cubic phase is stabilized at room temperature with greatly improved mechanical properties.

  13. Transition State Structure of RNA Depurination by Saporin L3.

    Science.gov (United States)

    Yuan, Hongling; Stratton, Christopher F; Schramm, Vern L

    2016-05-20

    Saporin L3 from the leaves of the common soapwort is a catalyst for hydrolytic depurination of adenine from RNA. Saporin L3 is a type 1 ribosome inactivating protein (RIP) composed only of a catalytic domain. Other RIPs have been used in immunotoxin cancer therapy, but off-target effects have limited their development. In the current study, we use transition state theory to understand the chemical mechanism and transition state structure of saporin L3. In favorable cases, transition state structures guide the design of transition state analogues as inhibitors. Kinetic isotope effects (KIEs) were determined for an A14C mutant of saporin L3. To permit KIE measurements, small stem-loop RNAs that contain an AGGG tetraloop structure were enzymatically synthesized with the single adenylate bearing specific isotopic substitutions. KIEs were measured and corrected for forward commitment to obtain intrinsic values. A model of the transition state structure for depurination of stem-loop RNA (5'-GGGAGGGCCC-3') by saporin L3 was determined by matching KIE values predicted via quantum chemical calculations to a family of intrinsic KIEs. This model indicates saporin L3 displays a late transition state with the N-ribosidic bond to the adenine nearly cleaved, and the attacking water nucleophile weakly bonded to the ribosyl anomeric carbon. The transition state retains partial ribocation character, a feature common to most N-ribosyl transferases. However, the transition state geometry for saporin L3 is distinct from ricin A-chain, the only other RIP whose transition state is known.

  14. Crystal-Size-Dependent Structural Transitions in Nanoporous Crystals: Adsorption-Induced Transitions in ZIF-8

    KAUST Repository

    Zhang, Chen

    2014-09-04

    © 2014 American Chemical Society. Understanding the crystal-size dependence of both guest adsorption and structural transitions of nanoporous solids is crucial to the development of these materials. We find that nano-sized metal-organic framework (MOF) crystals have significantly different guest adsorption properties compared to the bulk material. A new methodology is developed to simulate the adsorption and transition behavior of entire MOF nanoparticles. Our simulations predict that the transition pressure significantly increases with decreasing particle size, in agreement with crystal-size-dependent experimental measurements of the N2-ZIF-8 system. We also propose a simple core-shell model to examine this effect on length scales that are inaccessible to simulations and again find good agreement with experiments. This study is the first to examine particle size effects on structural transitions in ZIFs and provides a thermodynamic framework for understanding the underlying mechanism.

  15. Structural Transitions Induced by a Recombinant Methionine-Trigger in Silk Spidroin

    Science.gov (United States)

    Wilson, Donna; Winkler, Stefan; Valluzzi, Regina; Kaplan, David

    2000-03-01

    Control of beta sheet formation is an important factor in the understanding and prediction of structural transitions and protein folding. In genetically engineered silk proteins this control has been achieved using oxidative triggers. A genetically engineered variant of a spider silk protein, and a peptide analog, based on the consensus sequence of Nephila clavipes dragline silk, were modified to include methionines flanking the beta sheet forming polyalanine regions. These methionines could be selectively reduced and oxidized, altering the bulkiness and charge of the sulfhydryl group to control beta sheet formation by steric hindrance. Biophysical characterization and monitoring of structural transitions and intermediates were accomplished through attenuated total reflectance infrared spectroscopy (ATR-IR) for solution state structures in both oxidized and reduced forms. For solid state structural characterization, IR microscopy and reflectance IR experiments were performed. Electron diffraction data as well as circular dichroism studies provide structural corroboration for all experiments in which reproducible sample preparation was achieved.

  16. Structural Transitions and Aggregation in Amyloidogenic Proteins

    Science.gov (United States)

    Steckmann, Timothy; Chapagain, Prem; Gerstman, Bernard; Computational and Theoretical Biophysics Group at Florida International University Team

    2014-03-01

    Amyloid fibrils are a common component in many debilitating human neurological diseases such as Alzheimer's and Parkinson's. A detailed molecular-level understanding of the formation process of amyloid fibrils is crucial for developing methods to slow down or prevent these horrific diseases. Alpha-helix to beta-sheet structural transformation is commonly observed in the process of fibril formation. We performed replica-exchange molecular dynamics simulations of structural transformations in an engineered model peptide cc-beta. Several sets of simulations with different number of cc-beta monomers were considered. Conversion of alpha-helix monomers to beta strands and the aggregation of beta strand monomers into sheets were analyzed as a function of the system size. Hydrogen bond analysis was performed and the beta-aggregate structures were characterized by a nematic order parameter.

  17. Optically induced structural phase transitions in ion Coulomb crystals

    DEFF Research Database (Denmark)

    Horak, Peter; Dantan, Aurelien Romain; Drewsen, Michael

    2012-01-01

    , such as body-centered cubic and face-centered cubic, can be suppressed by a proper choice of the potential depth and periodicity. Furthermore, by varying the harmonic trap parameters and/or the optical potential in time, controlled transitions between crystal structures can be obtained with close to unit......We investigate numerically the structural dynamics of ion Coulomb crystals confined in a three-dimensional harmonic trap when influenced by an additional one-dimensional optically induced periodical potential. We demonstrate that transitions between thermally excited crystal structures...

  18. Structures and transitions in tungsten grain boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Frolov, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zhu, Q. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marian, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rudd, R. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-02-07

    The objective of this study is to develop a computational methodology to predict structure, energies of tungsten grain boundaries as a function of misorientation and inclination. The energies and the mobilities are the necessary input for thermomechanical model of recrystallization of tungsten for magnetic fusion applications being developed by the Marian Group at UCLA.

  19. Study of structural and optical properties of lead borate glasses containing transition metal ion

    Science.gov (United States)

    Sanjay, Kaushik, A.; Kishore, N.; Agarwal, A.; Pal, I.; Dhar, R.

    2012-06-01

    Glasses with compositions xFe2O3.(40-x)PbO.60B2O3: V2O5 (2 mol%) have been prepared by the standard melt-quenching technique. Various properties such as glass transition temperature, density, IR spectra and optical band gap energy have been studied. The structural changes in these glasses have been monitored by IR spectroscopy. The values of optical band gap for indirect allowed and indirect forbidden transitions have been determined using available theories. The Urbach's energy is used to characterize the degree of disorder in amorphous solids.

  20. Fundamental modeling issues on benchmark structure for structural health monitoring

    Institute of Scientific and Technical Information of China (English)

    HU; Sau-Lon; James

    2009-01-01

    The IASC-ASCE Structural Health Monitoring Task Group developed a series of benchmark problems, and participants of the benchmark study were charged with using a 12-degree-of-freedom (DOF) shear building as their identification model. The present article addresses improperness, including the parameter and modeling errors, of using this particular model for the intended purpose of damage detec- tion, while the measurements of damaged structures are synthesized from a full-order finite-element model. In addressing parameter errors, a model calibration procedure is utilized to tune the mass and stiffness matrices of the baseline identification model, and a 12-DOF shear building model that preserves the first three modes of the full-order model is obtained. Sequentially, this calibrated model is employed as the baseline model while performing the damage detection under various damage scenarios. Numerical results indicate that the 12-DOF shear building model is an over-simplified identification model, through which only idealized damage situations for the benchmark structure can be detected. It is suggested that a more sophisticated 3-dimensional frame structure model should be adopted as the identification model, if one intends to detect local member damages correctly.

  1. Fundamental modeling issues on benchmark structure for structural health monitoring

    Institute of Scientific and Technical Information of China (English)

    LI HuaJun; ZHANG Min; WANG JunRong; HU Sau-Lon James

    2009-01-01

    The IASC-ASCE Structural Health Monitoring Task Group developed a series of benchmark problems,and participants of the benchmark study were charged with using a 12-degree-of-freedom (DOF) shear building as their identification model. The present article addresses improperness, including the parameter and modeling errors, of using this particular model for the intended purpose of damage detection, while the measurements of damaged structures are synthesized from a full-order finite-element model. In addressing parameter errors, a model calibration procedure is utilized to tune the mass and stiffness matrices of the baseline identification model, and a 12-DOF shear building model that preserves the first three modes of the full-order model is obtained. Sequentially, this calibrated model is employed as the baseline model while performing the damage detection under various damage scenarios. Numerical results indicate that the 12-DOF shear building model is an over-simplified identification model, through which only idealized damage situations for the benchmark structure can be detected. It is suggested that a more sophisticated 3-dimensional frame structure model should be adopted as the identification model, if one intends to detect local member damages correctly.

  2. An absorbing phase transition from a structured active particle phase

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Cristobal [Instituto Mediterraneo de Estudios Avanzados IMEDEA (CSIC-UIB), Campus de la Universidad de las Islas Baleares, E-07122 Palma de Mallorca (Spain); Ramos, Francisco [Departamento de Electromagnetismo y Fisica de la Materia and Instituto de Fisica Teorica y Computacional Carlos I, Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain); Hernandez-GarcIa, Emilio [Instituto Mediterraneo de Estudios Avanzados IMEDEA (CSIC-UIB), Campus de la Universidad de las Islas Baleares, E-07122 Palma de Mallorca (Spain)

    2007-02-14

    In this work we study the absorbing state phase transition of a recently introduced model for interacting particles with neighbourhood-dependent reproduction rates. The novelty of the transition is that as soon as the active phase is reached by increasing a control parameter a periodically arranged structure of particle clusters appears. A numerical study in one and two dimensions shows that the system falls into the directed percolation universality class.

  3. Wireless sensor networks for structural health monitoring

    CERN Document Server

    Cao, Jiannong

    2016-01-01

    This brief covers the emerging area of wireless sensor network (WSN)-based structural health monitoring (SHM) systems, and introduces the authors’ WSN-based platform called SenetSHM. It helps the reader differentiate specific requirements of SHM applications from other traditional WSN applications, and demonstrates how these requirements are addressed by using a series of systematic approaches. The brief serves as a practical guide, explaining both the state-of-the-art technologies in domain-specific applications of WSNs, as well as the methodologies used to address the specific requirements for a WSN application. In particular, the brief offers instruction for problem formulation and problem solving based on the authors’ own experiences implementing SenetSHM. Seven concise chapters cover the development of hardware and software design of SenetSHM, as well as in-field experiments conducted while testing the platform. The brief’s exploration of the SenetSHM platform is a valuable feature for civil engine...

  4. IATC, DSC, and PPC Analysis of Reversible and Multistate Structural Transition of Cytochrome c.

    Science.gov (United States)

    Kidokoro, Shun-ichi; Nakamura, Shigeyoshi

    2016-01-01

    Development of precise calorimeters has enabled us to monitor the structural transition of biomolecules by calorimetry to characterize the thermodynamic property changes accompanying three-dimensional structure change. We developed isothermal acid-titration calorimetry to evaluate the pH dependence of protein enthalpy, and demonstrated the thermodynamic transition between the native and molten globule (MG) states of cytochrome c with very small enthalpy change (~20 kJ/mol) by this method. The double deconvolution method with precise differential scanning calorimetry has revealed the MG state as an equilibrium intermediate state of the reversible thermal transition of the protein, and pressure perturbation calorimetry has succeeded in determining its volumetric properties. These examples strongly indicate the importance of a precise calorimetry and analysis model in the field of protein research.

  5. Use of FBG sensors for bridge structural monitoring and traffic control

    Science.gov (United States)

    Caponero, Michele A.; Colonna, Danilo; Gruppi, Marco; Pallotta, Massimo; Salvadori, Robert

    2004-06-01

    This paper describes an application of Fiber Bragg Grating sensors devoted to both health monitoring of road bridge structures and traffic load monitoring. The ultimate aim of the application is the remote continuous monitoring of the structures, with real time acquisition of the dynamic and quasi-static deformations inferred by both the road traffic and the daily and seasonal thermal variations. A Fiber Bragg Grating network composed of 24 sensors has been installed on the bridge on the Po river of the 'A21 Torino Brescia' Italian Highway. The bridge is a concrete structure, and sensors are applied on various rebar components. The sensors were installed directly on the rebars, adopting a special technique specifically developed for permanent concrete embedding. An extensive data acquisition program is in progress with the aim of both health monitoring and in transit lorry weighing. Results are discussed and planned future work is presented.

  6. Structural phase transitions in boron carbide under stress

    Science.gov (United States)

    Korotaev, P.; Pokatashkin, P.; Yanilkin, A.

    2016-01-01

    Structural transitions in boron carbide B4C under stress were studied by means of first-principles molecular dynamics in the framework of density functional theory. The behavior depends strongly on degree of non-hydrostatic stress. Under hydrostatic stress continuous bending of the three-atom C-B-C chain was observed up to 70 GPa. The presence of non-hydrostatic stress activates abrupt reversible chain bending, which is displacement of the central boron atom in the chain with the formation of weak bonds between this atom and atoms in the nearby icosahedra. Such structural change can describe a possible reversible phase transition in dynamical loading experiments. High non-hydrostatic stress achieved in uniaxial loading leads to disordering of the initial structure. The formation of carbon chains is observed as one possible transition route.

  7. Structural Transitions in Supercoiled Stretched DNA

    Science.gov (United States)

    v, Croquette

    1998-03-01

    Using magnetic micromanipulation techniques [Strick 96]( uc(T.R.) Strick, J.-F. Allemand, D. Bensimon, A. Bensimon) and uc(V.) Croquette, "The elasticity of a single supercoiled DNA molecule", Science, 271, 1835 (1996)., we have studied the mechanical properties (force versus extension) of single DNA molecules under a wide range of torsional stresses (supercoiling). We show that unwinding the DNA double helix leads to a phase separation between regular B-DNA and denaturation bubbles. The fraction of denatured molecule increases linearly with the degree of unwinding, beginning at a value of 1% unwinding. We have confirmed this denatured state by hybridization of homologous single-stranded DNA probes and by a chemical attack of the exposed bases. Surprisingly, when we overwind the molecule, the elasticity curves we obtain may also be interpreted by the coexistence of two phases, B-DNA and a new phase which we note P-DNA. The fraction of this new phase increases smoothly with overwinding, beginning at 3 % and continuing up to 300 %. Our results indicate that this new phase is four times more twisted that the standard B-DNA and is 1.75 times longer. Although the structure of this phase is not yet known, such a high twisting can only be attained if the sugar-phosphate backbones of the two strands are twisted closely while the bases are expelled outside of the molecule's core, in a structure reminiscent of the one proposed by Pauling. Indeed we have shown that this new phase is sensitive to chemical attack whereas the B-DNA is not. This new phase begins to appear on a molecule overwound by 3 % and stretched by a force of 5 pN, conditions typically encountered in vivo during gene transcription. This new phase may thus play a biological role biophysique-ADN>(for more details).

  8. Susceptibilities to DNA Structural Transitions within Eukaryotic Genomes

    Science.gov (United States)

    Zhabinskaya, Dina; Benham, Craig; Madden, Sally

    2012-02-01

    We analyze the competitive transitions to alternate secondary DNA structures in a negatively supercoiled DNA molecule of kilobase length and specified base sequence. We use statistical mechanics to calculate the competition among all regions within the sequence that are susceptible to transitions to alternate structures. We use an approximate numerical method since the calculation of an exact partition function is numerically cumbersome for DNA molecules of lengths longer than hundreds of base pairs. This method yields accurate results in reasonable computational times. We implement algorithms that calculate the competition between transitions to denatured states and to Z-form DNA. We analyze these transitions near the transcription start sites (TSS) of a set of eukaryotic genes. We find an enhancement of Z-forming regions upstream of the TSS and a depletion of denatured regions around the start sites. We confirm that these finding are statistically significant by comparing our results to a set of randomized genes with preserved base composition at each position relative to the gene start sites. When we study the correlation of these transitions in orthologous mouse and human genes we find a clear evolutionary conservation of both types of transitions around the TSS.

  9. Laboratory monitoring of CO2 migration and phase transition using complex electrical conductivity

    NARCIS (Netherlands)

    Kirichek, O.; Ghose, R.; Heller, H.K.J.

    2013-01-01

    We explore a new monitoring technique for the CO2 front propagation and phase transition processes using complex electrical conductivity measurements. A laboratory facility has been built to conduct coreflood experiments under reservoir conditions. CO2 is injected in both dry and brine-saturated res

  10. Structural health monitoring with a wireless vibration sensor network

    NARCIS (Netherlands)

    Basten, T.G.H.; Sas, P; Schiphorst, F.B.A.; Jonckheere, S.; Moens, D.

    2012-01-01

    Advanced maintenance strategies for infrastructure assets such as bridges or off shore wind turbines require actual and reliable information of the maintenance status. Structural health monitoring based on vibration sensing can help in supplying the input needed for structural health monitoring appl

  11. Structural health monitoring with a wireless vibration sensor network

    NARCIS (Netherlands)

    Basten, T.G.H.; Sas, P; Schiphorst, F.B.A.; Jonckheere, S.; Moens, D.

    2012-01-01

    Advanced maintenance strategies for infrastructure assets such as bridges or off shore wind turbines require actual and reliable information of the maintenance status. Structural health monitoring based on vibration sensing can help in supplying the input needed for structural health monitoring

  12. Structural health monitoring with a wireless vibration sensor network

    NARCIS (Netherlands)

    Basten, T.G.H.; Schiphorst, F.B.A.

    2012-01-01

    Advanced maintenance strategies for infrastructure assets such as bridges or off shore wind turbines require actual and reliable information of the maintenance status. Structural health monitoring based on vibration sensing can help in supplying the input needed for structural health monitoring appl

  13. Competition of superconductivity with the structural transition in M o3S b7

    Science.gov (United States)

    Ye, G. Z.; Cheng, J.-G.; Yan, J.-Q.; Sun, J. P.; Matsubayashi, K.; Yamauchi, T.; Okada, T.; Zhou, Q.; Parker, D. S.; Sales, B. C.; Uwatoko, Y.

    2016-12-01

    Prior to the superconducting transition at Tc≈2.3 K , M o3S b7 undergoes a symmetry-lowering, cubic-to-tetragonal structural transition at Ts=53 K . We have monitored the pressure dependence of these two transitions by measuring the resistivity of M o3S b7 single crystals under various hydrostatic pressures up to 15 GPa. The application of external pressure enhances Tc but suppresses Ts until Pc≈10 GPa , above which a pressure-induced first-order structural transition takes place and is manifested by the phase coexistence in the pressure range 8 ≤P ≤12 GPa . The cubic phase above 12 GPa is also found to be superconducting with a higher Tc≈6 K that decreases slightly with further increasing pressure. The variations with pressure of Tc and Ts satisfy the Bilbro-McMillan equation, i.e. Tc nTs 1 -n= constant, thus suggesting the competition of superconductivity with the structural transition that has been proposed to be accompanied with a spin-gap formation at Ts. Our first-principles calculations suggest the importance of magnetism that competes with the superconductivity in M o3S b7 .

  14. Pressure induced structural phase transition in IB transition metal nitrides compounds

    Energy Technology Data Exchange (ETDEWEB)

    Soni, Shubhangi; Kaurav, Netram, E-mail: netramkaurav@yahoo.co.uk; Jain, A. [Department of Physics, Govt. Holkar Science college, A. B. Road, Indore-452001 India (India); Shah, S. [Department of Physics, P. M. B. Gujarati Science College, Indore-452001 (India); Choudhary, K. K. [Department of Physics, National Defence Academy, Khadakwasla, Pune-411 0231 India (India)

    2015-06-24

    Transition metal mononitrides are known as refractory compounds, and they have, relatively, high hardness, brittleness, melting point, and superconducting transition temperature, and they also have interesting optical, electronic, catalytic, and magnetic properties. Evolution of structural properties would be an important step towards realizing the potential technological scenario of this material of class. In the present study, an effective interionic interaction potential (EIOP) is developed to investigate the pressure induced phase transitions in IB transition metal nitrides TMN [TM = Cu, Ag, and Au] compounds. The long range Coulomb, van der Waals (vdW) interaction and the short-range repulsive interaction upto second-neighbor ions within the Hafemeister and Flygare approach with modified ionic charge are properly incorporated in the EIOP. The vdW coefficients are computed following the Slater-Kirkwood variational method, as both the ions are polarizable. The estimated value of the phase transition pressure (Pt) and the magnitude of the discontinuity in volume at the transition pressure are consistent as compared to the reported data.

  15. Structure-based prediction of protein-folding transition paths

    CERN Document Server

    Jacobs, William M

    2016-01-01

    We propose a general theory to describe the distribution of protein-folding transition paths. We show that transition paths follow a predictable sequence of high-free-energy transient states that are separated by free-energy barriers. Each transient state corresponds to the assembly of one or more discrete, cooperative units, which are determined directly from the native structure. We show that the transition state on a folding pathway is reached when a small number of critical contacts are formed between a specific set of substructures, after which folding proceeds downhill in free energy. This approach suggests a natural resolution for distinguishing parallel folding pathways and provides a simple means to predict the rate-limiting step in a folding reaction. Our theory identifies a common folding mechanism for proteins with diverse native structures and establishes general principles for the self-assembly of polymers with specific interactions.

  16. Pressure dependence of structural phase transition and superconducting transition in CsI

    CERN Document Server

    Nirmala-Louis, C

    2003-01-01

    The self-consistent band structure calculation for CsI performed both in CsCl and HCP structures using the TB-LMTO method is reported. The equilibrium lattice constant, bulk modulus and the phase-transition pressure at which the compound undergoes structural phase transition from CsCl to HCP are predicted from the total-energy calculations. The band structure, density of states (DOS), electronic charge distributions, metallization and superconducting transition temperature (T sub c) of CsI are obtained as a function of pressure for both the CsCl and HCP structures. It is found that the charge transfer from s and p states to d state causes metallization and superconductivity in CsI. The highest T sub c estimated is 2.11 K and the corresponding pressure is 1.8 Mbar. This value is in agreement with the recent experimental observation. The experimental trend - ''metallization and superconductivity is rather insensitive to the crystal structure of CsI'' - is also confirmed in our work. (Abstract Copyright [2003], ...

  17. Direct monitoring of calcium-triggered phase transitions in cubosomes using small-angle X-ray scattering combined with microfluidics

    DEFF Research Database (Denmark)

    Ghazal, Aghiad; Gontsarik, Mark; Kutter, Jörg P.

    2016-01-01

    This article introduces a simple microfluidic device that can be combined with synchrotron small-angle X-ray scattering (SAXS) for monitoring dynamic structural transitions. The microfluidic device is a thiol-ene-based system equipped with 125 µm-thick polystyrene windows, which are suitable for ...

  18. Structural safety monitoring for Nanjing Yangtze River Bridge

    Institute of Scientific and Technical Information of China (English)

    黄方林; 何旭辉; 陈政清; 曾储惠

    2004-01-01

    In order to evaluate objectively and accurately the integrity, safety and operating conditions in real time for the Nanjing Yangtze River Bridge, a large structural safety monitoring system was described. The monitoring system is composed of three parts: sensor system, signal sampling and processing system, and safety monitoring and assessment system. Combining theoretical analysis with measured data analysis, main monitoring contents and layout of measuring points were determined. The vibration response monitoring was significantly investigated. The main contents of safety monitoring on vibration response monitoring are vibration of the main body of the Nanjing Yangtze river bridge, collision avoidance of the bridge piers, vibration of girders on high piers for the bridge approach and earthquake. As a field laboratory, the safety monitorying system also provides information to investigate the unknown and indeterminate problems on bridge structures and specific environment around bridges.

  19. Financial structure and monetary policy transmission in transition countries

    NARCIS (Netherlands)

    Elbourne, A.; de Haan, J.

    2006-01-01

    Using the structural vector autoregressive methodology, we present estimates of monetary transmission for the new and future EU member countries in Central and Eastern Europe. Unlike most previous research we include ten transition countries. We examine to what extent monetary transmission in these

  20. Discovery of Water Structural Transitions near Interfaces of Polarizable Solutes

    Science.gov (United States)

    Dinpajooh, Mohammadhasan; Matyushov, Dmitry

    2015-03-01

    The standard harmonic approximation describing polarization around the solute is expected to break down with increasing solute polarizability. The focus of this study is to investigate the structure of water around dipolar-polarizable solutes by Monte Carlo (MC) simulations in the non-harmonic regime. We observe a structural transition in the water hydration shell and its condensation, which are driven by increasing the solute polarizability. There is also a crossover in the orientational structure near the point of breakdown of the harmonic approximation. At lower polarizabilities, waters in the hydration shell point their hydrogens toward the solute. The dipoles flip their orientations at the transition to the non-harmonic regime. Both the hydration shell compressibility and the electric field susceptibility display maxima in the transition region. Using the water electric field at the center of the polarizable solute as the order parameter, a Landau-type model is formulated. Its predictions are in reasonable agreement with MC simulations performed for hard sphere and Lennard Jones polarizable solutes in a TIP3P water model. The observed structural transition suggests a general crossover phenomenon driven by the stabilization energy required to polarize the solute. This research was supported by the National Science Foundation (CHE-1213288). CPU time was provided by the National Science Foundation through XSEDE resources (TG-MCB080116N).

  1. Optically induced structural phase transitions in ion Coulomb crystals

    DEFF Research Database (Denmark)

    Horak, Peter; Dantan, Aurelien Romain; Drewsen, Michael

    2012-01-01

    , such as body-centered cubic and face-centered cubic, can be suppressed by a proper choice of the potential depth and periodicity. Furthermore, by varying the harmonic trap parameters and/or the optical potential in time, controlled transitions between crystal structures can be obtained with close to unit...

  2. Financial structure and monetary policy transmission in transition countries

    NARCIS (Netherlands)

    Elbourne, A.; de Haan, J.

    Using the structural vector autoregressive methodology, we present estimates of monetary transmission for the new and future EU member countries in Central and Eastern Europe. Unlike most previous research we include ten transition countries. We examine to what extent monetary transmission in these

  3. Transiting Exoplanet Monitoring Project (TEMP). II. Refined System Parameters and Transit Timing Analysis of HAT-P-33b

    Science.gov (United States)

    Wang, Yong-Hao; Wang, Songhu; Liu, Hui-Gen; Hinse, Tobias C.; Laughlin, Gregory; Wu, Dong-Hong; Zhang, Xiaojia; Zhou, Xu; Wu, Zhenyu; Zhou, Ji-Lin; Wittenmyer, R. A.; Eastman, Jason; Zhang, Hui; Hori, Yasunori; Narita, Norio; Chen, Yuanyuan; Ma, Jun; Peng, Xiyan; Zhang, Tian-Meng; Zou, Hu; Nie, Jun-Dan; Zhou, Zhi-Min

    2017-08-01

    We present 10 R-band photometric observations of eight different transits of the hot Jupiter HAT-P-33b, which has been targeted by our Transiting Exoplanet Monitoring Project. The data were obtained by two telescopes at the Xinglong Station of National Astronomical Observatories of China (NAOC) from 2013 December through 2016 January, and exhibit photometric scatter of 1.6{--}3.0 {mmag}. After jointly analyzing the previously published photometric data, radial-velocity (RV) measurements, and our new light curves, we revisit the system parameters and orbital ephemeris for the HAT-P-33b system. Our results are consistent with the published values except for the planet to star radius ratio ({R}{{P}}/{R}* ), the ingress/egress duration (τ) and the total duration (T 14), which together indicate a slightly shallower and shorter transit shape. Our results are based on more complete light curves, whereas the previously published work had only one complete transit light curve. No significant anomalies in Transit Timing Variations (TTVs) are found, and we place upper mass limits on potential perturbers, largely supplanting the loose constraints provided by the extant RV data. The TTV limits are stronger near mean-motion resonances, especially for the low-order commensurabilities. We can exclude the existence of a perturber with mass larger than 0.6, 0.3, 0.5, 0.5, and 0.3 {M}\\oplus near the 1:3, 1:2, 2:3, 3:2, and 2:1 resonances, respectively.

  4. Course Modules on Structural Health Monitoring with Smart Materials

    Science.gov (United States)

    Shih, Hui-Ru; Walters, Wilbur L.; Zheng, Wei; Everett, Jessica

    2009-01-01

    Structural Health Monitoring (SHM) is an emerging technology that has multiple applications. SHM emerged from the wide field of smart structures, and it also encompasses disciplines such as structural dynamics, materials and structures, nondestructive testing, sensors and actuators, data acquisition, signal processing, and possibly much more. To…

  5. MRMaid, the web-based tool for designing multiple reaction monitoring (MRM) transitions.

    Science.gov (United States)

    Mead, Jennifer A; Bianco, Luca; Ottone, Vanessa; Barton, Chris; Kay, Richard G; Lilley, Kathryn S; Bond, Nicholas J; Bessant, Conrad

    2009-04-01

    Multiple reaction monitoring (MRM) of peptides uses tandem mass spectrometry to quantify selected proteins of interest, such as those previously identified in differential studies. Using this technique, the specificity of precursor to product transitions is harnessed for quantitative analysis of multiple proteins in a single sample. The design of transitions is critical for the success of MRM experiments, but predicting signal intensity of peptides and fragmentation patterns ab initio is challenging given existing methods. The tool presented here, MRMaid (pronounced "mermaid") offers a novel alternative for rapid design of MRM transitions for the proteomics researcher. The program uses a combination of knowledge of the properties of optimal MRM transitions taken from expert practitioners and literature with MS/MS evidence derived from interrogation of a database of peptide identifications and their associated mass spectra. The tool also predicts retention time using a published model, allowing ordering of transition candidates. By exploiting available knowledge and resources to generate the most reliable transitions, this approach negates the need for theoretical prediction of fragmentation and the need to undertake prior "discovery" MS studies. MRMaid is a modular tool built around the Genome Annotating Proteomic Pipeline framework, providing a web-based solution with both descriptive and graphical visualizations of transitions. Predicted transition candidates are ranked based on a novel transition scoring system, and users may filter the results by selecting optional stringency criteria, such as omitting frequently modified residues, constraining the length of peptides, or omitting missed cleavages. Comparison with published transitions showed that MRMaid successfully predicted the peptide and product ion pairs in the majority of cases with appropriate retention time estimates. As the data content of the Genome Annotating Proteomic Pipeline repository increases

  6. Monitoring Corrosion of Steel Bars in Reinforced Concrete Structures

    Directory of Open Access Journals (Sweden)

    Sanjeev Kumar Verma

    2014-01-01

    Full Text Available Corrosion of steel bars embedded in reinforced concrete (RC structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP method. This paper also presents few techniques to protect concrete from corrosion.

  7. Monitoring corrosion of steel bars in reinforced concrete structures.

    Science.gov (United States)

    Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem

    2014-01-01

    Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion.

  8. Two Network Structure Indicators for Conventional Public Transit

    Institute of Scientific and Technical Information of China (English)

    Min Fu; Hao Wang; Wei Wang; Sida Luo; De Zhao

    2016-01-01

    The significance of network structure indicators for the planning and management of conventional public transit is widely acknowledged. In order to improve and enrich the conventional public transit assessment system, two network structure indicators are proposed. Firstly, according to the obvious defects lying in the traditional no⁃linear coefficient, the realistic no⁃linear coefficient γRNL , a modified no⁃linear coefficient indicator, is put forward, which takes into account the effects of barriers in a city. Secondly, to cover the gap of an indicator which can reflect the coverage homogeneity of a transit network, the length dimension LD is proposed on the basis of Fractal Theory. Finally, a case study is applied to verify the validity and practicability of the two indicators in problem diagnosis using regression analysis. The results validate thatγRNL can evaluate the detour of bus lines more reasonably than the previous no⁃linear coefficient because it reflects the layout of bus lines, and LD can represent the rate of change of the network density, adding a new member to the scheme of network structure indicators for public transit.

  9. Structural relaxation monitored by instantaneous shear modulus

    DEFF Research Database (Denmark)

    Olsen, Niels Boye; Dyre, Jeppe; Christensen, Tage Emil

    1998-01-01

    This paper reports on aging of the silicone oil MS704 for sudden changes of temperature from 210.5 to 209.0 K and from 207.5 to 209.0 K studied by continuously monitoring the instantaneous shear modulus G [infinity]. The results are interpreted within the Tool-Narayanaswamy formalism with a reduc...

  10. Classical theory of resonant transition radiation in multilayer structures.

    Science.gov (United States)

    Pardo, B; André, J M

    2001-01-01

    A rigorous classical electromagnetic theory of the transition radiation in finite and infinite multilayer structures is presented. It makes the standard results of thin-film optics, such as the matrix formalism, accountable; it allows thus an exact treatment of the propagation of the waves induced by the electron. This method is applied to the particular case of the periodic structures to treat the resonant transition radiation (RTR). It is noted that the present theory gives, in the hard x-ray domain, results previously published. The reason for this approach is to make the numerical calculations rigorous and easy. The numerical results of our theory are compared to experimental RTR data obtained recently by Yamada et al. [Phys. Rev. A 59, 3673 (1999)] with a nickel-carbon multilayer structure.

  11. Reducing fatigue damage for ships in transit through structured decision making

    Science.gov (United States)

    Nichols, J.M.; Fackler, P.L.; Pacifici, K.; Murphy, K.D.; Nichols, J.D.

    2014-01-01

    Research in structural monitoring has focused primarily on drawing inference about the health of a structure from the structure’s response to ambient or applied excitation. Knowledge of the current state can then be used to predict structural integrity at a future time and, in principle, allows one to take action to improve safety, minimize ownership costs, and/or increase the operating envelope. While much time and effort has been devoted toward data collection and system identification, research to-date has largely avoided the question of how to choose an optimal maintenance plan. This work describes a structured decision making (SDM) process for taking available information (loading data, model output, etc.) and producing a plan of action for maintaining the structure. SDM allows the practitioner to specify his/her objectives and then solves for the decision that is optimal in the sense that it maximizes those objectives. To demonstrate, we consider the problem of a Naval vessel transiting a fixed distance in varying sea-state conditions. The physics of this problem are such that minimizing transit time increases the probability of fatigue failure in the structural supports. It is shown how SDM produces the optimal trip plan in the sense that it minimizes both transit time and probability of failure in the manner of our choosing (i.e., through a user-defined cost function). The example illustrates the benefit of SDM over heuristic approaches to maintaining the vessel.

  12. Monitoring of temperature-mediated adipose tissue phase transitions by refractive-index measurements

    Science.gov (United States)

    Yanina, I. Yu.; Popov, A. P.; Bykov, A. V.; Tuchin, V. V.

    2014-10-01

    Monitoring of temperature-mediated adipose tissue phase transitions were studied in vitro using an Abbe refractometer. The 1-2-mm thick porcine fat tissues slices were used in the experiments. The observed change in the tissue was associated with several phase transitions of lipid components of the adipose tissue. It was found that overall heating of a sample from the room to higher temperature led to more pronounced and tissue changes in refractive index if other experimental conditions were kept constant. We observed an abrupt change in the refractive index in the temperature range of 37-60 °C.

  13. High pressure structural phase transitions of PbPo

    Energy Technology Data Exchange (ETDEWEB)

    Bencherif, Y.; Boukra, A. [Departement de Physique, Faculte des Sciences, Universite de Mostaganem (Algeria); Departement de Physique, Universite des Sciences et de la Technologie d' Oran, USTO, Oran (Algeria); Zaoui, A., E-mail: azaoui@polytech-lille.fr [Universite Lille Nord de France, LGCgE (EA 4515) Lille1, Polytech' Lille, Cite Scientifique, Avenue Paul Langevin, 59655 Villeneuve D' Ascq Cedex (France); Ferhat, M. [Departement de Physique, Universite des Sciences et de la Technologie d' Oran, USTO, Oran (Algeria)

    2012-09-01

    First-principles calculations have been performed to investigate the high pressure phase transitions and dynamical properties of the less known lead polonium compound. The calculated ground state parameters for the NaCl phase show good agreement with the experimental data. The obtained results show that the intermediate phase transition for this compound is the orthorhombic Pnma phase. The PbPo undergoes from the rocksalt to Pnma phase at 4.20 GPa. Further structural phase transition from intermediate to CsCl phase has been found at 8.5 GPa. In addition, phonon dispersion spectra were derived from linear-response to density functional theory. In particular, we show that the dynamical properties of PbPo exhibit some peculiar features compared to other III-V compounds. Finally, thermodynamics properties have been also addressed from quasiharmonic approximation.

  14. Energy Harvesting for Structural Health Monitoring Sensor Networks

    Energy Technology Data Exchange (ETDEWEB)

    Park, G.; Farrar, C. R.; Todd, M. D.; Hodgkiss, T.; Rosing, T.

    2007-02-26

    This report has been developed based on information exchanges at a 2.5-day workshop on energy harvesting for embedded structural health monitoring (SHM) sensing systems that was held June 28-30, 2005, at Los Alamos National Laboratory. The workshop was hosted by the LANL/UCSD Engineering Institute (EI). This Institute is an education- and research-focused collaboration between Los Alamos National Laboratory (LANL) and the University of California, San Diego (UCSD), Jacobs School of Engineering. A Statistical Pattern Recognition paradigm for SHM is first presented and the concept of energy harvesting for embedded sensing systems is addressed with respect to the data acquisition portion of this paradigm. Next, various existing and emerging sensing modalities used for SHM and their respective power requirements are summarized, followed by a discussion of SHM sensor network paradigms, power requirements for these networks and power optimization strategies. Various approaches to energy harvesting and energy storage are discussed and limitations associated with the current technology are addressed. This discussion also addresses current energy harvesting applications and system integration issues. The report concludes by defining some future research directions and possible technology demonstrations that are aimed at transitioning the concept of energy harvesting for embedded SHM sensing systems from laboratory research to field-deployed engineering prototypes.

  15. A phase transition in energy-filtered RNA secondary structures

    CERN Document Server

    Han, Hillary S W

    2012-01-01

    In this paper we study the effect of energy parameters on minimum free energy (mfe) RNA secondary structures. Employing a simplified combinatorial energy model, that is only dependent on the diagram representation and that is not sequence specific, we prove the following dichotomy result. Mfe structures derived via the Turner energy parameters contain only finitely many complex irreducible substructures and just minor parameter changes produce a class of mfe-structures that contain a large number of small irreducibles. We localize the exact point where the distribution of irreducibles experiences this phase transition from a discrete limit to a central limit distribution and subsequently put our result into the context of quantifying the effect of sparsification of the folding of these respective mfe-structures. We show that the sparsification of realistic mfe-structures leads to a constant time and space reduction and that the sparsifcation of the folding of structures with modified parameters leads to a lin...

  16. Direct investigations of deformation and yield induced structure transitions in polyamide 6 below glass transition temperature with WAXS and SAXS

    DEFF Research Database (Denmark)

    Guo, Huilong; Wang, Jiayi; Zhou, Chengbo;

    2015-01-01

    Deformation and yield induced structure transitions of polyamide 6 (PA6) were detected with the combination of the wide- and small-angle X-ray scattering (WAXS and SAXS) at 30 degrees C below glass transition temperature (T-g) of PA6. During deformation, gamma-alpha phase transition was found at ...

  17. Family structure and the transition to early parenthood.

    Science.gov (United States)

    Hofferth, Sandra L; Goldscheider, Frances

    2010-05-01

    With the rise in out-of-wedlock childbearing and divorce in the last quarter of the twentieth century, an increasing proportion of children have been exposed to a variety of new family forms. Little research has focused on the consequences of childhood family structure for men's transition to fatherhood or on the family processes that account for the effects of family structure on the likelihood that young women and men become first-time unmarried parents, what we now call "fragile families." The data come from the linked Children and Young Adult samples of the 1979 National Longitudinal Survey of Youth (NLSY79), which provide information on the children of the women of the NLSY79 from birth until they enter young adulthood. Females growing up with a single parent and males experiencing an unstable family transition to parenthood early, particularly to nonresidential fatherhood for males. For males, the effects are strongly mediated by parenting processes and adolescent behaviors and are shaped by economic circumstances. Having experienced multiple transitions as a child is associated with a reduced likelihood that males father their first child within marriage and an increased likelihood that they become fathers within cohabitation, demonstrating how changes in family structure alter family structure patterns over time and generations.

  18. Characterization of monomeric intermediates during VSV glycoprotein structural transition.

    Directory of Open Access Journals (Sweden)

    Aurélie A Albertini

    2012-02-01

    Full Text Available Entry of enveloped viruses requires fusion of viral and cellular membranes, driven by conformational changes of viral glycoproteins. Crystal structures provide static pictures of pre- and post-fusion conformations of these proteins but the transition pathway remains elusive. Here, using several biophysical techniques, including analytical ultracentrifugation, circular dichroïsm, electron microscopy and small angle X-ray scattering, we have characterized the low-pH-induced fusogenic structural transition of a soluble form of vesicular stomatitis virus (VSV glycoprotein G ectodomain (G(th, aa residues 1-422, the fragment that was previously crystallized. While the post-fusion trimer is the major species detected at low pH, the pre-fusion trimer is not detected in solution. Rather, at high pH, G(th is a flexible monomer that explores a large conformational space. The monomeric population exhibits a marked pH-dependence and adopts more elongated conformations when pH decreases. Furthermore, large relative movements of domains are detected in absence of significant secondary structure modification. Solution studies are complemented by electron micrographs of negatively stained viral particles in which monomeric ectodomains of G are observed at the viral surface at both pH 7.5 and pH 6.7. We propose that the monomers are intermediates during the conformational change and thus that VSV G trimers dissociate at the viral surface during the structural transition.

  19. Structure transitions between copper-sulphate and copper-chloride UPD phases on Au(111)

    Indian Academy of Sciences (India)

    Ilya V Pobelov; Gábor Nagy; Thomas Wandlowski

    2009-09-01

    Structure transitions between copper UPD adlayers on Au(111)-(1 × 1) in sulfuric acid and chloride containing electrolyte were investigated by in situ scanning tunnelling microscopy. We demonstrate that co-adsorbed sulphate ions in the (√3 × √3)R30° UPD adlayer are replaced by chloride ions and, depending on the halide coverage, a commensurate (2 × 2) or a slightly distorted (5 × 5)-like Cu-Cl UPD adlayer are formed. The stability ranges of these phases are controlled both by the electrode potential and the Cl- concentration. Phase transitions between the three UPD phases were monitored by time-resolved in situ STM. The observed structure details were attributed to mechanisms based on two-dimensional nucleation and growth processes.

  20. Composite Structure Monitoring using Direct Write Sensors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA SBIR Phase II project seeks to develop and demonstrate a suite of sensor products to monitor the health of composite structures. Sensors will be made using...

  1. An online substructure identification method for local structural health monitoring

    Science.gov (United States)

    Hou, Jilin; Jankowski, Łukasz; Ou, Jinping

    2013-09-01

    This paper proposes a substructure isolation method, which uses time series of measured local response for online monitoring of substructures. The proposed monitoring process consists of two key steps: construction of the isolated substructure, and its identification. The isolated substructure is an independent virtual structure, which is numerically isolated from the global structure by placing virtual supports on the interface. First, the isolated substructure is constructed by a specific linear combination of time series of its measured local responses. Then, the isolated substructure is identified using its local natural frequencies extracted from the combined responses. The substructure is assumed to be linear; the outside part of the global structure can have any characteristics. The method has no requirements on the initial state of the structure, and so the process can be carried out repetitively for online monitoring. Online isolation and monitoring is illustrated in a numerical example with a frame model, and then verified in a cantilever beam experiment.

  2. Passive Wireless Sensor System for Structural Health Monitoring Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Albido proposes to develop a Passive Wireless Sensor System for Structural Health Monitoring capable of measuring high-bandwidth temperature and strain of space and...

  3. Using Activity Monitors to Measure Sit-to-Stand Transitions in Overweight/Obese Youth.

    Science.gov (United States)

    Mitchell, Tarrah; Borner, Kelsey; Finch, Jonathan; Kerr, Jacqueline; Carlson, Jordan A

    2017-08-01

    Reducing sedentary behavior has emerged as an important health intervention strategy. Although hip-worn, and more recently wrist-worn, accelerometers are commonly used for measuring physical activity and sedentary behavior, they may not provide accurate measures of postural changes. The current study examined the validity of commonly used hip- and wrist-worn accelerometer cut points and the thigh-worn activPAL activity monitor for measuring sit-to-stand transitions as compared with direct observation in youth with overweight and obesity. Nine children wore three activity monitors while being directly observed. The monitors included a hip- and wrist-worn ActiGraph and thigh-worn activPAL. The hip-worn ActiGraph was processed with the normal- and low-frequency filters and the inclinometer function. Cut points of ≤25 counts per 15-s epoch for the hip and ≤105 counts per 15-s epoch for the wrist were applied to the vertical axis to identify sit-to-stand transitions. Epoch-level absolute agreement, Bland-Altman plots, mixed-effects linear regression, and intraclass correlation coefficients (ICC) were investigated. The hip and wrist accelerometer cut points and the hip inclinometer function overestimated the number of hourly sit-to-stand transitions by approximately triple as compared with direct observation. ICC values between the ActiGraph methods and the direct observation were all Sit-to-stand transitions assessed from activPAL were within 17% of direct observation; ICC was 0.26. Despite the common use of the 100-count hip-worn accelerometer cut point for assessing sedentary time, these processing decisions should be used with caution for assessing sit-to-stand transitions. Future research should investigate other processing methods for ActiGraph data, and studies investigating postural changes should consider including devices such as activPAL.

  4. Light and phospholipid driven structural transitions in nematic microdroplets

    Energy Technology Data Exchange (ETDEWEB)

    Dubtsov, A. V., E-mail: alexanderdubtsov@gmail.com; Pasechnik, S. V.; Shmeliova, D. V. [Moscow State University of Instrument Engineering and Computer Science, Stromynka 20, Moscow 107996 (Russian Federation); Kralj, Samo [Condensed Matter Physics Department, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); FNM, University of Maribor, Koroska 160, 2000 Maribor (Slovenia)

    2014-10-13

    We studied the UV-irradiation and phospholipid driven bipolar-radial structural transitions within azoxybenzene nematic liquid crystal (LC) droplets dispersed in water. It was found that the UV-irradiation induced trans-cis isomerisation of LC molecules could enable structural transitions into radial-type configurations at a critical UV-irradiation time t{sub c}. In particular, we show that under appropriate conditions, a value of t{sub c} could sensitively fingerprint the concentration of phospholipid molecules present in LC-water dispersions. This demonstrated proof-of-principle mechanism could be exploited for development of sensitive detectors for specific nanoparticles (NPs), where value of t{sub c} reveals concentration of NPs.

  5. Smart Materials in Structural Health Monitoring, Control and Biomechanics

    CERN Document Server

    Soh, Chee-Kiong; Bhalla, Suresh

    2012-01-01

    "Smart Materials in Structural Health Monitoring, Control and Biomechanics" presents the latest developments in structural health monitoring, vibration control and biomechanics using smart materials. The book mainly focuses on piezoelectric, fibre optic and ionic polymer metal composite materials. It introduces concepts from the very basics and leads to advanced modelling (analytical/ numerical), practical aspects (including software/ hardware issues) and case studies spanning civil, mechanical and aerospace structures, including bridges, rocks and underground structures. This book is intended for practicing engineers, researchers from academic and R&D institutions and postgraduate students in the fields of smart materials and structures, structural health monitoring, vibration control and biomedical engineering. Professor Chee-Kiong Soh and Associate Professor Yaowen Yang both work at the School of Civil and Environmental Engineering, Nanyang Technological University, Singapore. Dr. Suresh Bhalla is an A...

  6. A phase transition in energy-filtered RNA secondary structures

    DEFF Research Database (Denmark)

    Han, Hillary Siwei; reidys, Christian

    2012-01-01

    In this paper we study the effect of energy parameters on minimum free energy (mfe) RNA secondary structures. Employing a simplified combinatorial energy model, that is only dependent on the diagram representation and that is not sequence specific, we prove the following dichotomy result. Mfe...... structures derived via the Turner energy parameters contain only finitely many complex irreducible substructures and just minor parameter changes produce a class of mfe-structures that contain a large number of small irreducibles. We localize the exact point where the distribution of irreducibles experiences...... this phase transition from a discrete limit to a central limit distribution and subsequently put our result into the context of quantifying the effect of sparsification of the folding of these respective mfe-structures. We show that the sparsification of realistic mfe-structures leads to a constant time...

  7. A phase transition in energy-filtered RNA secondary structures.

    Science.gov (United States)

    Han, Hillary S W; Reidys, Christian M

    2012-10-01

    In this article we study the effect of energy parameters on minimum free energy (mfe) RNA secondary structures. Employing a simplified combinatorial energy model that is only dependent on the diagram representation and is not sequence-specific, we prove the following dichotomy result. Mfe structures derived via the Turner energy parameters contain only finitely many complex irreducible substructures, and just minor parameter changes produce a class of mfe structures that contain a large number of small irreducibles. We localize the exact point at which the distribution of irreducibles experiences this phase transition from a discrete limit to a central limit distribution and, subsequently, put our result into the context of quantifying the effect of sparsification of the folding of these respective mfe structures. We show that the sparsification of realistic mfe structures leads to a constant time and space reduction, and that the sparsification of the folding of structures with modified parameters leads to a linear time and space reduction. We, furthermore, identify the limit distribution at the phase transition as a Rayleigh distribution.

  8. Application of MCR-ALS to reveal intermediate conformations in the thermally induced α-β transition of poly-L-lysine monitored by FT-IR spectroscopy

    Science.gov (United States)

    Alcaráz, Mirta R.; Schwaighofer, Andreas; Goicoechea, Héctor; Lendl, Bernhard

    2017-10-01

    Temperature-induced conformational transitions of poly-L-lysine were monitored with Fourier-transform infrared (FT-IR) spectroscopy between 10 °C and 70 °C. Chemometric analysis of dynamic IR spectra was performed by multivariate curve analysis-alternating least squares (MCR-ALS) of the amide I‧ and amide II‧ spectral region. With this approach, the pure spectral and concentration profiles of the conformational transition were obtained. Beside the initial α-helical, the intermediate random coil/extended helices and the final β-sheet structure, an additional intermediate PLL conformation was identified and attributed to a transient β-sheet structure.

  9. Integrated electronic system for ultrasonic structural health monitoring

    OpenAIRE

    Ruiz González, Mariano; Monje, Pedro María; Casado, Luciano; Aranguren, Gerardo; Cokonaj, Valerijan; Barrera Lopez de Turiso, Eduardo

    2012-01-01

    A fully integrated on-board electronic system that can perform in-situ structural health monitoring (SHM) of aircraft?s structures using specifically designed equipment for SHM based on guided wave ultrasonic method or Lamb waves? method is introduced. This equipment is called Phased Array Monitoring for Enhanced Life Assessment (PAMELA III) and is an essential part of overall PAMELA SHM? system. PAMELA III can generate any kind of excitation signals, acquire the response signals that propaga...

  10. GBM Monitoring of Cyg X-1 During the Recent State Transition

    CERN Document Server

    Case, G L; Cherry, M L; Camero-Arranz, A; Finger, M; Jenke, P; Wilson-Hodge, C A; Chaplin, V

    2011-01-01

    Cygnus X-1 is a high-mass x-ray binary with a black hole compact object. It is normally extremely bright in hard x-rays and low energy gamma rays and resides in the canonical hard spectral state. Recently, however, Cyg X-1 made a transition to the canonical soft state, with a rise in the soft x-ray flux and a decrease in the flux in the hard x-ray and low energy gamma-ray energy bands. We have been using the Gamma-Ray Burst Monitor on Fermi to monitor the fluxes of a number of sources in the 8--1000 keV energy range, including Cyg X-1. We present light curves of Cyg X-1 showing the flux decrease in hard x-ray and low energy gamma-ray energy bands during the state transition as well as the several long flares observed in these higher energies during the soft state. We also present preliminary spectra from GBM for the pre-transition state, showing the spectral evolution to the soft state, and the post-transition state.

  11. The DEdicated MONitor of EXotransits (DEMONEX): Seven Transits of XO-4b

    CERN Document Server

    Villanueva, S; Gaudi, B S

    2015-01-01

    The DEdicated MONitor of EXotransits (DEMONEX) was a 20 inch robotic and automated telescope to monitor bright stars hosting transiting exoplanets to discover new planets and improve constraints on the properties of known transiting planetary systems. We present results for the misaligned hot Jupiter XO-4b containing 7 new transits from the DEMONEX telescope, including 3 full and 4 partial transits. We combine these data with archival light curves and archival radial velocity measurements to derive the host star mass $M_{*}=1.293_{-0.029}^{+0.030} M_\\odot$ and radius $R_{*}=1.554_{-0.030}^{+0.042} R_\\odot$ as well as the planet mass $M_{P}=1.615_{-0.099}^{+0.10} M_{\\rm J}$ and radius $R_{P}=1.317_{-0.029}^{+0.040} R_{\\rm J}$ and a refined ephemeris of $P=4.1250687\\pm0.0000024$ days and $T_{0}=2454758.18978\\pm0.00024 \\rm {BJD_{TDB}}$. We include archival Rossiter-McLaughlin measurements of XO-4 to infer the stellar spin-planetary orbit alignment $\\lambda=-40.0_{-7.5}^{+8.8}$ degrees. We test the effects of inc...

  12. Noise control for rapid transit cars on elevated structures

    Science.gov (United States)

    Hanson, C. E.

    1983-03-01

    Noise control treatments for the propulsion motor noise of rapid transit cars on concrete elevated structures and the noise reduction from barrier walls were investigated by using acoustical scale models and supplemented by field measurements of noise from trains operated by the Port Authority Transportation Corporation (PATCO) in New Jersey. The results show that vehicle skirts and undercar sound absorption can provide substantial cost-effective reductions in propulsion noise at the wayside of transit systems with concrete elevated guideways. The acoustical scale model noise reductions applied to PATCO vehicles on concrete elevated structures show reductions in the A-weighted noise levels of 5 dB for undercar sound absorption, 5 dB for vehicle skirts, and 10 dB for combined undercar absorption and vehicle skirts. Acoustical scale model results for sound barrier walls lined with absorptive treatment showed reductions from 7 dB to 12 dB of noise from vehicles in the far track, depending on the height of the wall, and reductions from 12 dB to 20 dB of noise from vehicles on the near track. Transit vehicles at high speeds where propulsion system noise dominates are 7 dB(A) noisier at 50 ft on concrete elevated structures than on at-grade on tie and ballast. Of this amount, 3 dB is due to loss of ground effect, and 4 dB is due to the absence of undercar absorption provided by ballast.

  13. Geometric structure and information change in phase transitions

    Science.gov (United States)

    Kim, Eun-jin; Hollerbach, Rainer

    2017-06-01

    We propose a toy model for a cyclic order-disorder transition and introduce a geometric methodology to understand stochastic processes involved in transitions. Specifically, our model consists of a pair of forward and backward processes (FPs and BPs) for the emergence and disappearance of a structure in a stochastic environment. We calculate time-dependent probability density functions (PDFs) and the information length L , which is the total number of different states that a system undergoes during the transition. Time-dependent PDFs during transient relaxation exhibit strikingly different behavior in FPs and BPs. In particular, FPs driven by instability undergo the broadening of the PDF with a large increase in fluctuations before the transition to the ordered state accompanied by narrowing the PDF width. During this stage, we identify an interesting geodesic solution accompanied by the self-regulation between the growth and nonlinear damping where the time scale τ of information change is constant in time, independent of the strength of the stochastic noise. In comparison, BPs are mainly driven by the macroscopic motion due to the movement of the PDF peak. The total information length L between initial and final states is much larger in BPs than in FPs, increasing linearly with the deviation γ of a control parameter from the critical state in BPs while increasing logarithmically with γ in FPs. L scales as |lnD | and D-1 /2 in FPs and BPs, respectively, where D measures the strength of the stochastic forcing. These differing scalings with γ and D suggest a great utility of L in capturing different underlying processes, specifically, diffusion vs advection in phase transition by geometry. We discuss physical origins of these scalings and comment on implications of our results for bistable systems undergoing repeated order-disorder transitions (e.g., fitness).

  14. Structural Integrity Monitoring by Vibration Measurements

    OpenAIRE

    Yan, Ai-Min; De Boe, Pascal; Golinval, Jean-Claude

    2003-01-01

    This paper presents a comparative study on several approaches of structural dam-age diagnosis based on vibration meas-urements. Stochastic subspace identifica-tion method is used to identify modal pa-rameters and to generate a Kalman predic-tion model, which are taken as damage-sensitive features for structural damage detection. A statistical process control technique based on principal component analysis (PCA) is also presented. An im-provement and enhancement of PCA is proposed. It is assum...

  15. Microstructure and structural phase transitions in iron-based superconductors

    Institute of Scientific and Technical Information of China (English)

    Wang Zhen; Cai Yao; Yang Huai-Xin; Tian Huan-Fang; Wang Zhi-Wei; Ma Chao; Chen Zhen

    2013-01-01

    Crystal structures and microstructural features,such as structural phase transitions,defect structures,and chemical and structural inhomogeneities,are known to have profound effects on the physical properties of superconducting materials.Recently,many studies on the structural properties of Fe-based high-Tc superconductors have been published.This review article will mainly focus on the typical microstructural features in samples that have been well characterized by physical measurements.(i) Certain common structural features are discussed,in particular,the crystal structural features for different superconducting families,the local structural distortions in the Fe2Pn2 (Pn =P,As,Sb) or Fe2Ch2 (Ch =S,Se,Te) blocks,and the structural transformations in the 122 system.(ii) In FeTe(Se) (11 family),the superconductivity,chemical and structural inhomogeneities are investigated and discussed in correlation with superconductivity.(iii) In the K0.8Fe1.6+xSe2 system,we focus on the typical compounds with emphasis on the Fe-vacancy order and phase separations.The microstructural features in other superconducting materials are also briefly discussed.

  16. Family Structure and the Transition to Early Parenthood

    OpenAIRE

    Hofferth, Sandra L.; Goldscheider, Frances

    2010-01-01

    With the rise in out-of-wedlock childbearing and divorce in the last quarter of the twentieth century, an increasing proportion of children have been exposed to a variety of new family forms. Little research has focused on the consequences of childhood family structure for men’s transition to fatherhood or on the family processes that account for the effects of family structure on the likelihood that young women and men become first-time unmarried parents, what we now call “fragile families.”...

  17. Monitoring a Silent Phase Transition in CH3NH3PbI3 Solar Cells via Operando X-ray Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Schelhas, Laura T.; Christians, Jeffrey A.; Berry, Joseph J.; Toney, Michael F.; Tassone, Christopher J.; Luther, Joseph M.; Stone, Kevin H.

    2016-11-11

    The relatively modest temperature of the tetragonal-to-cubic phase transition in CH3NH3PbI3 perovskite is likely to occur during real world operation of CH3NH3PbI3 solar cells. In this work, we simultaneously monitor the structural phase transition of the active layer along with solar cell performance as a function of the device operating temperature. The tetragonal to cubic phase transition is observed in the working device to occur reversibly at temperatures between 60.5 and 65.4 degrees C. In these operando measurements, no discontinuity in the device performance is observed, indicating electronic behavior that is insensitive to the structural phase transition. This decoupling of device performance from the change in long-range order across the phase transition suggests that the optoelectronic properties are primarily determined by the local structure in CH3NH3PbI3. That is, while the average crystal structure as probed by X-ray diffraction shows a transition from tetragonal to cubic, the local structure generally remains well characterized by uncorrelated, dynamic octahedral rotations that order at elevated temperatures but are unchanged locally.

  18. Structural Monitoring of Metro Infrastructure during Shield Tunneling Construction

    Directory of Open Access Journals (Sweden)

    L. Ran

    2014-01-01

    Full Text Available Shield tunneling construction of metro infrastructure will continuously disturb the soils. The ground surface will be subjected to uplift or subsidence due to the deep excavation and the extrusion and consolidation of the soils. Implementation of the simultaneous monitoring with the shield tunnel construction will provide an effective reference in controlling the shield driving, while how to design and implement a safe, economic, and effective structural monitoring system for metro infrastructure is of great importance and necessity. This paper presents the general architecture of the shield construction of metro tunnels as well as the procedure of the artificial ground freezing construction of the metro-tunnel cross-passages. The design principles for metro infrastructure monitoring of the shield tunnel intervals in the Hangzhou Metro Line 1 are introduced. The detailed monitoring items and the specified alarming indices for construction monitoring of the shield tunneling are addressed, and the measured settlement variations at different monitoring locations are also presented.

  19. Structural monitoring of metro infrastructure during shield tunneling construction.

    Science.gov (United States)

    Ran, L; Ye, X W; Ming, G; Dong, X B

    2014-01-01

    Shield tunneling construction of metro infrastructure will continuously disturb the soils. The ground surface will be subjected to uplift or subsidence due to the deep excavation and the extrusion and consolidation of the soils. Implementation of the simultaneous monitoring with the shield tunnel construction will provide an effective reference in controlling the shield driving, while how to design and implement a safe, economic, and effective structural monitoring system for metro infrastructure is of great importance and necessity. This paper presents the general architecture of the shield construction of metro tunnels as well as the procedure of the artificial ground freezing construction of the metro-tunnel cross-passages. The design principles for metro infrastructure monitoring of the shield tunnel intervals in the Hangzhou Metro Line 1 are introduced. The detailed monitoring items and the specified alarming indices for construction monitoring of the shield tunneling are addressed, and the measured settlement variations at different monitoring locations are also presented.

  20. Spontaneous structural transition in phospholipid-inspired aromatic phosphopeptide nanostructures.

    Science.gov (United States)

    Pellach, Michal; Atsmon-Raz, Yoav; Simonovsky, Eyal; Gottlieb, Hugo; Jacoby, Guy; Beck, Roy; Adler-Abramovich, Lihi; Miller, Yifat; Gazit, Ehud

    2015-01-01

    Phospholipid membranes could be considered a prime example of the ability of nature to produce complex yet ordered structures, by spontaneous and efficient self-assembly. Inspired by the unique properties and architecture of phospholipids, we designed simple amphiphilic decapeptides, intended to fold in the center of the peptide sequence, with a phosphorylated serine "head" located within a central turn segment, and two hydrophobic "tails". The molecular design also included the integration of the diphenylalanine motif, previously shown to facilitate self-assembly and increase nanostructure stability. Secondary structure analysis of the peptides indeed indicated the presence of stabilized conformations in solution, with a central turn connecting two hydrophobic "tails", and interactions between the hydrophobic strands. The mechanisms of assembly into supramolecular structures involved structural transitions between different morphologies, which occurred over several hours, leading to the formation of distinctive nanostructures, including half-elliptical nanosheets and curved tapes. The phosphopeptide building blocks appear to self-assemble via a particular combination of aromatic, hydrophobic and ionic interactions, as well as hydrogen bonding, as demonstrated by proposed constructed simulated models of the peptides and self-assembled nanostructures. Molecular dynamics simulations also gave insight into mechanisms of structural transitions of the nanostructures at a molecular level. Because of the biocompatibility of peptides, the phosphopeptide assemblies allow for expansion of the library of biomolecular nanostructures available for future design and application of biomedical devices.

  1. Development of structural health monitoring techniques using dynamics testing

    Energy Technology Data Exchange (ETDEWEB)

    James, G.H. III [Sandia National Labs., Albuquerque, NM (United States). Experimental Structural Dynamics Dept.

    1996-03-01

    Today`s society depends upon many structures (such as aircraft, bridges, wind turbines, offshore platforms, buildings, and nuclear weapons) which are nearing the end of their design lifetime. Since these structures cannot be economically replaced, techniques for structural health monitoring must be developed and implemented. Modal and structural dynamics measurements hold promise for the global non-destructive inspection of a variety of structures since surface measurements of a vibrating structure can provide information about the health of the internal members without costly (or impossible) dismantling of the structure. In order to develop structural health monitoring for application to operational structures, developments in four areas have been undertaken within this project: operational evaluation, diagnostic measurements, information condensation, and damage identification. The developments in each of these four aspects of structural health monitoring have been exercised on a broad range of experimental data. This experimental data has been extracted from structures from several application areas which include aging aircraft, wind energy, aging bridges, offshore structures, structural supports, and mechanical parts. As a result of these advances, Sandia National Laboratories is in a position to perform further advanced development, operational implementation, and technical consulting for a broad class of the nation`s aging infrastructure problems.

  2. Toward Ubiquitous Blood Pressure Monitoring via Pulse Transit Time: Theory and Practice.

    Science.gov (United States)

    Mukkamala, Ramakrishna; Hahn, Jin-Oh; Inan, Omer T; Mestha, Lalit K; Kim, Chang-Sei; Töreyin, Hakan; Kyal, Survi

    2015-08-01

    Ubiquitous blood pressure (BP) monitoring is needed to improve hypertension detection and control and is becoming feasible due to recent technological advances such as in wearable sensing. Pulse transit time (PTT) represents a well-known potential approach for ubiquitous BP monitoring. The goal of this review is to facilitate the achievement of reliable ubiquitous BP monitoring via PTT. We explain the conventional BP measurement methods and their limitations; present models to summarize the theory of the PTT-BP relationship; outline the approach while pinpointing the key challenges; overview the previous work toward putting the theory to practice; make suggestions for best practice and future research; and discuss realistic expectations for the approach.

  3. Modal Based Fatigue Monitoring of Steel Structures

    DEFF Research Database (Denmark)

    Graugaard-Jensen, J.; Brincker, Rune; Hjelm, H. P.;

    2005-01-01

    compared with direct strain gauge measurements and it appears that the difference between the strains measured by strain gauges and the strains estimated by the presented technique is quite small. Looking at the fatigue of the lattice pylon it appears that the estimated damage is significantly smaller than...... by applying the mode shapes of the calibrated Finite Element model and strains are obtained using the shape functions for the actual elements. The technique has been applied on a model frame structure in the laboratory and on a wind loaded lattice pylon structure. In both cases the estimated stresses has been...

  4. Wakefield Monitor Experiments with X-Band Accelerating Structures

    CERN Document Server

    Lillestøl, Reidar; Corsini, Roberto; Döbert, Steffen; Farabolini, Wilfrid; Malina, Lukas; Pfingstner, Juergen; Wuensch, Walter

    2015-01-01

    The accelerating structures for CLIC must be aligned with a precision of a few um with respect to the beam trajectory in order to mitigate emittance growth due to transverse wake fields. We report on first results from wake field monitor tests in an X-band structure, with a probe beam at the CLIC Test Facility. The monitors are currently installed in the CLIC Two-Beam Module. In order to fully demonstrate the feasibility of using wakefield monitors for CLIC, the precision of the monitors must be verified using a probe beam while simultaneously filling the structure with high power rf used to drive the accelerating mode. We outline plans to perform such a demonstration in the CLIC Test Facility.

  5. Phase transitions for scaling of structural correlations in directed networks

    CERN Document Server

    van der Hoorn, Pim

    2015-01-01

    Analysis of degree-degree dependencies in complex networks, and their impact on processes on networks requires null models, i.e. models that generate uncorrelated scale-free networks. Most models to date however show structural negative dependencies, caused by finite size effects. We analyze the behavior of these structural negative degree-degree dependencies, using rank based correlation measures, in the directed Erased Configuration Model. We obtain expressions for the scaling as a function of the exponents of the distributions. Moreover, we show that this scaling undergoes a phase transition, where one region exhibits scaling related to the natural cut-off of the network while another region has scaling similar to the structural cut-off for uncorrelated networks. By establishing the speed of convergence of these structural dependencies we are able to asses statistical significance of degree-degree dependencies on finite complex networks when compared to networks generated by the directed Erased Configurati...

  6. Monitoring of Building Structure by Tiltsensors

    Directory of Open Access Journals (Sweden)

    Alojz Kopáčik

    2005-06-01

    Full Text Available This paper discusses about the dynamic monitoring of stability (tilt measurement of bearing pillar of high-rise building using the electronic measuring system. The electronic measuring system consists of Libela 2800 tilt sensor, input/output device for the AE 2DN tilt sensor, measuring amplifier and also the Spider8 analog/digital converter and the registration equipment (notebook. The basic part of uniaxial tilt sensor creates a frame, on which is among damping plates hung a pendulum (ferromagnetic kernel. The tilt value is determined on a principle of electromagnetic induction by changing the position of ferromagnetic kernel in the reel. The range of pendulum movement is ± 2,5 mm/m and the accuracy of the tilt determination is 0,001 mm/m. The monitored building represents, from the point of constructional view, a ferro-concrete rectangular sceleton, which consists of vertical bearing pillars, on which are guyed longitudinal and transverse girders. The building ground-plan is rectangular with the dimensions of 75 m (distance and 12 m (width. The building has two underground and six above the ground floors with constructional high of 3,40 m. Whole highth of the above ground part of building is 20,4 m. The pillar tilt was measured in the transverse direction of the building at the level of the second floor using the Libela 2800 electronic sensor. The sensor was situated on the metallic console (L-profile, which was assembled on a lateral side of the circuit bearing pillar at the highth of 8,3 m above the ground level. Together with the tilt monitoring, the outside air temperature in the close area of pillar was measured. The tilt measurement was carried out continuously for 168 hours with the recording frequency of 1 Hz (1 measurement/second. The file of the measured data with 603 950 records was reduced to the file with 1006 records, which corresponds to the record of the every tenth minute. The measured tilt values represent from the

  7. Electron-phonon coupling and structural phase transitions in early transition metal oxides and chalcogenides

    Science.gov (United States)

    Farley, Katie Elizabeth

    Pronounced nonlinear variation of electrical transport characteristics as a function of applied voltage, temperature, magnetic field, strain, or photo-excitation is usually underpinned by electronic instabilities that originate from the complex interplay of spin, orbital, and lattice degrees of freedom. This dissertation focuses on two canonical materials that show pronounced discontinuities in their temperature-dependent resistivity as a result of electron---phonon and electron---electron correlations: orthorhombic TaS3 and monoclinic VO2. Strong electron-phonon interactions in transition metal oxides and chalcogenides results in interesting structural and electronic phase transitions. The properties of the material can be changed drastically in response to external stimuli such as temperature, voltage, or light. Understanding the influence these interactions have on the electronic structure and ultimately transport characteristics is of utmost importance in order to take these materials from a fundamental aspect to prospective applications such as low-energy interconnects, steep-slope transistors, and synaptic neural networks. This dissertation describes synthetic routes to nanoscale TaS3 and VO2, develops mechanistic understanding of their electronic instabilities, and in the case of the latter system explores modulation of the electronic and structural phase transition via the incorporation of substitutional dopant atoms. We start in chapter 2 with a detailed study of the synthesis and electronic transport properties of TaS3, which undergoes a Peierls' distortion to form a charge density wave. Scaling this material down to the nanometer-sized regime allows for interrogation of single or discrete phase coherent domains. Using electrical transport and broad band noise measurements, the dynamics of pinning/depinning of the charge density wave is investigated. Chapter 3 provides a novel synthetic approach to produce high-edge-density MoS2 nanorods. MoS2 is a

  8. Childhood obesity in transition zones: an analysis using structuration theory.

    Science.gov (United States)

    Chan, Christine; Deave, Toity; Greenhalgh, Trisha

    2010-07-01

    Childhood obesity is particularly prevalent in areas that have seen rapid economic growth, urbanisation, cultural transition, and commodification of food systems. Structuration theory may illuminate the interaction between population and individual-level causes of obesity. We conducted in-depth ethnographies of six overweight/obese and four non-overweight preschool children in Hong Kong, each followed for 12-18 months. Analysis was informed by Stones' strong structuration theory. Risk factors played out differently for different children as social structures were enacted at the level of family and preschool. The network of caregiving roles and relationships around the overweight/obese child was typically weak and disjointed, and the primary caregiver appeared confused by mixed messages about what is normal, expected and legitimate behaviour. In particular, external social structures created pressure to shift childcare routines from the logic of nurturing to the logic of consumption. Our findings suggest that threats to what Giddens called ontological security in the primary caregiver may underpin the poor parenting, family stress and weak mealtime routines that mediate the relationship between an obesogenic environment and the development of obesity in a particular child. This preliminary study offers a potentially transferable approach for studying emerging epidemics of diseases of modernity in transition societies.

  9. The Dedicated Monitor of Exotransits (DEMONEX): Seven Transits of XO-4b

    Science.gov (United States)

    Villanueva, S., Jr.; Eastman, J. D.; Gaudi, B. S.

    2016-04-01

    The DEdicated MONitor of EXotransits (DEMONEX) was a 20-inch robotic and automated telescope to monitor bright stars hosting transiting exoplanets to discover new planets and improve constraints on the properties of known transiting planetary systems. We present results for the misaligned hot Jupiter XO-4b containing seven new transits from the DEMONEX telescope, including three full and four partial transits. We combine these data with archival light curves and archival radial velocity measurements to derive the host star mass {M}*={1.293}-0.029+0.030 {M}⊙ and radius {R}*={1.554}-0.030+0.042 {R}⊙ , the planet mass {M}P={1.615}-0.099+0.10 {M}{{J}} and radius {R}P={1.317}-0.029+0.040\\\\{R}{{J}}, and a refined ephemeris of P=4.1250687+/- 0.0000024 days and {T}0=2,4547,58.18978+/- 0.00024 {{BJD}}{TDB}. We include archival Rossiter-McLaughlin measurements of XO-4 to infer the stellar spin-planetary orbit alignment of λ =-{40.0}-7.5+8.8 degrees. We test the effects of including various detrend parameters, theoretical and empirical mass-radius relations, and Rossiter-McLaughlin models. We infer that detrending against CCD position and time or airmass can improve data quality but can have significant effects on the inferred values of many parameters—most significantly {R}P/{R}* and the observed central transit times TC. In the case of {R}P/{R}* we find that the systematic uncertainty due to detrending can be three times that of the quoted statistical uncertainties. The choice of mass-radius relation has little effect on our inferred values of the system parameters. The choice of Rossiter-McLaughlin models can have significant effects on the inferred values of v{sin}{I}* and the stellar spin-planet orbit angle λ.

  10. Interest rates and structural shocks in European transition economies

    Directory of Open Access Journals (Sweden)

    Rajmund Mirdala

    2014-12-01

    Full Text Available European transition economies are still suffering from negative implications of economic crisis. Significant decrease in the key interest rates was followed by reduced maneuverability of central banks in providing incentives into real economies. Responsiveness of short-term interest rates to the structural shocks provides unique platform to investigate sources of their unexpected volatility and associated effects on monetary policy decision making. Moreover, sources of interest rates volatility may help to reveal side effects of the exchange rate regime choice. In the paper we analyze sources of the short-term nominal interest rates volatility in ten European transition economies by employing SVAR methodology. We observed unique patterns of the short-term interest rates responsiveness in countries with different exchange rate arrangements that contributes to the fixed versus flexible exchange rate dilemma.

  11. Discovery of elusive structures of multifunctional transition-metal borides.

    Science.gov (United States)

    Liang, Yongcheng; Wu, Zhaobing; Yuan, Xun; Zhang, Wenqing; Zhang, Peihong

    2016-01-14

    A definitive determination of crystal structures is an important prerequisite for designing and exploiting new functional materials. Even though tungsten and molybdenum borides (TMBx) are the prototype for transition-metal light-element compounds with multiple functionalities, their elusive crystal structures have puzzled scientists for decades. Here, we discover that the long-assumed TMB2 phases with the simple hP3 structure (hP3-TMB2) are in fact a family of complex TMB3 polytypes with a nanoscale ordering along the axial direction. Compared with the energetically unfavorable and dynamically unstable hP3-TMB2 phase, the energetically more favorable and dynamically stable TMB3 polytypes explain the experimental structural parameters, mechanical properties, and X-ray diffraction (XRD) patterns better. We demonstrate that such a structural and compositional modification from the hP3-TMB2 phases to the TMB3 polytypes originates from the relief of the strong antibonding interaction between d electrons by removing one third of metal atoms systematically. These results resolve the longstanding structural mystery of this class of metal borides and uncover a hidden family of polytypic structures. Moreover, these polytypic structures provide an additional hardening mechanism by forming nanoscale interlocks that may strongly hinder the interlayer sliding movements, which promises to open a new avenue towards designing novel superhard nanocomposite materials by exploiting the coexistence of various polytypes.

  12. The methodical statutes monitoring of activity by innovative structures

    OpenAIRE

    Stoianovskii, Andrii; Baranovska, Sofia; Stoianovska, Iryna

    2012-01-01

    In the article it is suggested to perfect methodical recommendations in relation to monitoring of activity of innovative structures, which, among other, allow to mark off the results of activity of leading organ of management and contractors of innovative projects, registered in her limits an innovative structure.

  13. Time-frequency Methods for Structural Health Monitoring

    NARCIS (Netherlands)

    Pyayt, A.L.; Kozionov, A.P.; Mokhov, I.I.; Lang, B.; Meijer, R.J.; Krzhizhanovskaya, V.V.; Sloot, P.M.A.

    2014-01-01

    Detection of early warning signals for the imminent failure of large and complex engineered structures is a daunting challenge with many open research questions. In this paper we report on novel ways to perform Structural Health Monitoring (SHM) of flood protection systems (levees, earthen dikes and

  14. Time-frequency methods for structural health monitoring

    NARCIS (Netherlands)

    Pyayt, A.L.; Kozionov, A.P.; Mokhov, I.I.; Lang, B.; Meijer, R.J.; Krzhizhanovskaya, V.V.; Sloot, P.M.A.

    2014-01-01

    Detection of early warning signals for the imminent failure of large and complex engineered structures is a daunting challenge with many open research questions. In this paper we report on novel ways to perform Structural Health Monitoring (SHM) of flood protection systems (levees, earthen dikes and

  15. Damage tolerance and structural monitoring for wind turbine blades.

    Science.gov (United States)

    McGugan, M; Pereira, G; Sørensen, B F; Toftegaard, H; Branner, K

    2015-02-28

    The paper proposes a methodology for reliable design and maintenance of wind turbine rotor blades using a condition monitoring approach and a damage tolerance index coupling the material and structure. By improving the understanding of material properties that control damage propagation it will be possible to combine damage tolerant structural design, monitoring systems, inspection techniques and modelling to manage the life cycle of the structures. This will allow an efficient operation of the wind turbine in terms of load alleviation, limited maintenance and repair leading to a more effective exploitation of offshore wind.

  16. Damage tolerance and structural monitoring for wind turbine blades

    Science.gov (United States)

    McGugan, M.; Pereira, G.; Sørensen, B. F.; Toftegaard, H.; Branner, K.

    2015-01-01

    The paper proposes a methodology for reliable design and maintenance of wind turbine rotor blades using a condition monitoring approach and a damage tolerance index coupling the material and structure. By improving the understanding of material properties that control damage propagation it will be possible to combine damage tolerant structural design, monitoring systems, inspection techniques and modelling to manage the life cycle of the structures. This will allow an efficient operation of the wind turbine in terms of load alleviation, limited maintenance and repair leading to a more effective exploitation of offshore wind. PMID:25583858

  17. Damage tolerance and structural monitoring for wind turbine blades

    DEFF Research Database (Denmark)

    McGugan, Malcolm; Pereira, Gilmar Ferreira; Sørensen, Bent F.

    2015-01-01

    The paper proposes a methodology for reliable design and maintenance of wind turbine rotor blades using a condition monitoring approach and a damage tolerance index coupling the material and structure. By improving the understanding of material properties that control damage propagation...... it will be possible to combine damage tolerant structural design, monitoring systems, inspection techniques and modelling to manage the life cycle of the structures. This will allow an efficient operation of the wind turbine in terms of load alleviation, limited maintenance and repair leading to a more effective...

  18. Technology of structure damage monitoring based on multi-agent

    Institute of Scientific and Technical Information of China (English)

    Hongbing Sun; Shenfang Yuan; Xia Zhao; Hengbao Zhou; Dong Liang

    2010-01-01

    The health monitoring for large-scale structures need to resolve a large number of difficulties,such as the data transmission and distributing information handling.To solve these problems,the technology of multi-agent is a good candidate to be used in the field of structural health monitoring.A structural health monitoring system architecture based on multi-agent technology is proposed.The measurement system for aircraft airfoil is designed with FBG,strain gage,and corresponding signal processing circuit.The experiment to determine the location of the concentrate loading on the structure is carried on with the system combined with technologies of pattern recognition and multi-agent.The results show that the system can locate the concentrate loading of the aircraft airfoil at the accuracy of 91.2%.

  19. Monitoring preparation and phase transitions of carburized W(1 1 0) by reflectance difference spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, Magdalena [Institute of Physical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck (Austria); Memmel, Norbert, E-mail: norbert.memmel@uibk.ac.at [Institute of Physical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck (Austria); Bertel, Erminald [Institute of Physical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck (Austria); Denk, Mariella; Hohage, Michael; Zeppenfeld, Peter [Institute of Experimental Physics, Johannes Kepler University Linz, Altenbergerstr. 69, A-4040 Linz (Austria)

    2012-10-01

    Highlights: Black-Right-Pointing-Pointer Real-time in situ monitoring of W(1 1 0) surface cleaning. Black-Right-Pointing-Pointer Real-time in situ monitoring of carburazation kinetics on W(1 1 0) by RDS. Black-Right-Pointing-Pointer Phase transformation R(15 Multiplication-Sign 3)-C/W(1 1 0)-R(15 Multiplication-Sign 12)-C/W(1 1 0) studied by RDS, AES and LEED. - Abstract: Reflectance difference spectroscopy (RDS) is applied to follow in situ the preparation of clean and carburized W(1 1 0) surfaces and to study the temperature-induced transition between the R(15 Multiplication-Sign 3) and R(15 Multiplication-Sign 12) carbon/tungsten surface phases. RDS data for this transition are compared to data obtained from Auger-electron spectroscopy and low-energy electron diffraction. All techniques reveal that this transition, occurring around 1870 K, is reversible with a small hysteresis, indicating a first-order-like behaviour. The present results also prove a high surface sensitivity of RDS, which is attributed to the excitation of electronic p-like surface resonances of W(1 1 0).

  20. Structural phase transitions in high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Tatarenko, H.M. [Toulon Univ., 83 - Le Garde (France). Lab. des Materiaux Multiphases et Interfaces; Nihoul, G.E. [Toulon Univ., 83 - Le Garde (France). Lab. des Materiaux Multiphases et Interfaces

    1995-11-01

    This chapter is devoted to the study of the order-disorder like phase transitions which occur in the high-temperature superconductors (HTS). We mainly consider Lanthanium based compounds like La{sub 2}CuO{sub 4+{delta}} or La{sub 2-x}M{sub x}CuO{sub 4+{delta}} (where M is an alkali atom Ba, Sr, Ca, Na, K, ..) and Yttrium based superconductors like YBa{sub 2}Cu{sub 3}O{sub 6+{delta}}. Different kinds of ordered structures were found in these compounds by X-ray and neutron diffraction, as well as by High Resolution Electron Microscopy imaging and are described. The theoretical models, which describe the structural evolution as temperature and/or concentration of the different components vary, are considered in detail. The relation between structural instabilities and high-temperature superconductivity is discussed. (orig.)

  1. Turbulent transport and structural transition in confined plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Kimitaka; Itoh, Sanae; Fukuyama, Atsushi; Yagi, Masatoshi

    1996-10-01

    Theory of the far-nonequilibrium transport of plasmas is described. Analytic as well as simulation studies are developed. The subcritical nature of turbulence and the mechanism for self-sustaining are discussed. The transport coefficient is obtained. The pressure gradient is introduced as an order parameter, and the bifurcation from the collisional transport to the turbulent one is shown. The generation of the electric field and its influence on the turbulent transport are analyzed. The bifurcation of the radial electric field structure is addressed. The hysteresis appears in the flux-gradient relation. This bifurcation causes the multifold states in the plasma structure, driving the transition in transport coefficient or the self-generating oscillations in the flux. Structural formation and dynamics of plasma profiles are explained. (author)

  2. Turbulent transport and structural transition in confined plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Kimitaka [National Inst. for Fusion Science, Nagoya (Japan); Itoh, Sanae-I; Yagi, Masatoshi [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Fukuyama, Atsushi [Okayama Univ. (Japan). School of Engineering

    1997-05-01

    The theory of far-nonequilibrium transport of plasmas is described. Analytic as well as simulation studies are developed. The subcritical nature coefficient is obtained. The pressure gradient is introduced as an order parameter, and the bifurcation from collisional to turbulent transport is shown. The generation of the electric field and its influence on the turbulent transport are analysed. The bifurcation of the radial electric field structure is addressed. Hysteresis appears in the flux-gradient relation. This bifurcation causes the multifold states in the plasma structure, driving the transition in the transport coefficient or the self-generating oscillations in the flux. The structural formation and dynamics of plasma profiles are explained. (Author).

  3. Structural damage monitoring of harbor caissons with interlocking condition

    Energy Technology Data Exchange (ETDEWEB)

    Huynh, Thanh Canh; Lee, So Young; Nauyen, Khac Duy; Kim, Jeong Tae [Pukyong National Univ., Busan (Korea, Republic of)

    2012-12-15

    The objective of this study is to monitor the health status of harbor caissons which have potential foundation damage. To obtain the objective, the following approaches are performed. Firstly, a structural damage monitoring(SDM) method is designed for interlocked multiple caisson structures. The SDM method utilizes the change in modal strain energy to monitor the foundation damage in a target caisson unit. Secondly, a finite element model of a caisson system which consists of three caisson units is established to verify the feasibility of the proposed method. In the finite element simulation, the caisson units are constrained each other by shear key connections. The health status of the caisson system against various levels of foundation damage is monitored by measuring relative modal displacements between the adjacent caissons.

  4. Nonlinear feature identification of impedance-based structural health monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, A. C. (Amanda C.); Park, G. H. (Gyu Hae); Sohn, H. (Hoon); Farrar, C. R. (Charles R.)

    2004-01-01

    The impedance-based structural health monitoring technique, which utilizes electromechanical coupling properties of piezoelectric materials, has shown feasibility for use in a variety of structural health monitoring applications. Relying on high frequency local excitations (typically > 30 kHz), this technique is very sensitive to minor changes in structural integrity in the near field of piezoelectric sensors. Several damage sensitive features have been identified and used coupled with the impedance methods. Most of these methods are, however, limited to linearity assumptions of a structure. This paper presents the use of experimentally identified nonlinear features, combined with impedance methods, for structural health monitoring. Their applicability to damage detection in various frequency ranges is demonstrated using actual impedance signals measured from a portal frame structure. The performance of the nonlinear feature is compared with those of conventional impedance methods. This paper reinforces the utility of nonlinear features in structural health monitoring and suggests that their varying sensitivity in different frequency ranges may be leveraged for certain applications.

  5. On the value of structural health monitoring

    DEFF Research Database (Denmark)

    Faber, Michael Havbro; Thöns, Sebastian

    2014-01-01

    in qualitative terms there has, as of yet, not been reported much fundamental research on the quantification of the benefit of SHM. The present paper addresses the quantification of SHM with basis in the Bayesian pre-posterior decision analysis. The starting points are historical and recent developments...... in the fields of SHM and the quantification of value of information as well as the identification of typical situations in structural engineering in which SHM has the potential to provide value beyond its costs. Subsequently, the theoretical framework which allows for the quantification of the value...... of information collected through SHM systems is developed and elaborated. It is shown how the value of information can be quantified to support the assessment and optimization of decisions on whether and how to implement SHM. To illustrate the use of the developed theoretical framework for evaluating the benefit...

  6. On the structure of the transition disk around TW Hya

    CERN Document Server

    Menu, J; Henning, T; Chandler, C J; Linz, H; Benisty, M; Lacour, S; Min, M; Waelkens, C; Andrews, S M; Calvet, N; Carpenter, J M; Corder, S A; Deller, A T; Greaves, J S; Harris, R J; Isella, A; Kwon, W; Lazio, J; Bouquin, J -B Le; Ménard, F; Mundy, L G; Pérez, L M; Ricci, L; Sargent, A I; Storm, S; Testi, L; Wilner, D J

    2014-01-01

    For over a decade, the structure of the inner cavity in the transition disk of TW Hydrae has been a subject of debate. Modeling the disk with data obtained at different wavelengths has led to a variety of proposed disk structures. Rather than being inconsistent, the individual models might point to the different faces of physical processes going on in disks, such as dust growth and planet formation. Our aim is to investigate the structure of the transition disk again and to find to what extent we can reconcile apparent model differences. A large set of high-angular-resolution data was collected from near-infrared to centimeter wavelengths. We investigated the existing disk models and established a new self-consistent radiative-transfer model. A genetic fitting algorithm was used to automatize the parameter fitting. Simple disk models with a vertical inner rim and a radially homogeneous dust composition from small to large grains cannot reproduce the combined data set. Two modifications are applied to this sim...

  7. Wireless Structural Sensing for Health Monitoring and Control Applications

    Science.gov (United States)

    Lynch, J. P.

    2003-12-01

    The economic and societal impact of civil structures under-performing during large earthquakes can be significant. While in recent years the structural engineering community has made great strides in advancing knowledge of structural behavior under extreme loads, a need still exists for the rapid assessment of structural performance during seismic events. Numerous options are commercially available to facility owners who wish to install a structural monitoring system within their structures. However, these structural monitoring systems are defined by their use of coaxial cables for the transfer of response measurements from sensors to centralized data servers. The installation and maintenance of cables within a civil structure often drive system costs high thereby preventing widespread industry adoption. In response to these limitations, the integration of information technologies such as wireless communications and microcontrollers have been explored for the creation of alternative structural monitoring systems defined by low installation costs and decentralized computational frameworks. In particular, a novel wireless structural monitoring system assembled from a dense network of inexpensive wireless sensing units has been designed and fabricated. The wireless sensing unit architecture consists of three functional components: a data acquisition interface for the collection of data from attached sensors, a computational core for data interrogation, and a wireless communication channel for the transfer of data to the sensor network. The use of wireless modems drastically reduces the efforts and costs of system installations rendering the technology attractive for widespread adoption in a broad class of civil structures. A second innovation of the system is the inclusion of computational power within each wireless sensing unit allowing for local execution of embedded engineering analyses. In particular, analyses for the detection of damage in structures (structural

  8. Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge

    Science.gov (United States)

    Yap, Keng C.

    2010-01-01

    This viewgraph presentation reviews Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge. The Wing Leading Edge Impact Detection System (WLE IDS) and the Impact Analysis Process are also described to monitor WLE debris threats. The contents include: 1) Risk Management via SHM; 2) Hardware Overview; 3) Instrumentation; 4) Sensor Configuration; 5) Debris Hazard Monitoring; 6) Ascent Response Summary; 7) Response Signal; 8) Distribution of Flight Indications; 9) Probabilistic Risk Analysis (PRA); 10) Model Correlation; 11) Impact Tests; 12) Wing Leading Edge Modeling; 13) Ascent Debris PRA Results; and 14) MM/OD PRA Results.

  9. Using force fields methods for locating transition structures

    Science.gov (United States)

    Jensen, Frank

    2003-11-01

    A previously proposed strategy of using force field methods for generating approximations to the geometry of transition structures is extended to also estimating an approximate Hessian matrix. These two components allow an automated method for locating first order saddle points, which is an essential requisite for studying chemical reactions of systems with many degrees of freedom. The efficiency of using an approximate force field Hessian matrix for initiating the geometry optimization is compared with the use of an exact Hessian. The force field Hessian in general requires more geometry steps to converge, but the additional computational cost is offset by the savings from not calculating the exact Hessian at the initial geometry.

  10. Spatial structure of compound dither in L/H transition

    Energy Technology Data Exchange (ETDEWEB)

    Toda, Shinichiro; Itoh, Kimitaka [National Inst. for Fusion Science, Toki, Gifu (Japan); Itoh, Sanae I.; Yagi, Masatoshi [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Fukuyama, Atsushi [Kyoto Univ. (Japan). Dept. of Nuclear Engineering

    2000-03-01

    To study the plasma evolution and spatial structure at the L/H transition, the double hysteresis is examined by use of the 1-dimensional transport model equations. Three mechanisms for the bipolar losses, i.e., the loss cone loss, collisional bulk viscosity loss of ions and the anomalous loss are simultaneously retained. Five-fold multiple bifurcations are found to exist at the plasma edge, similar to the previous 0-dimensional study. Double hysteresis causes a self-generated oscillation, which is attributed to the compound dither, a kind of ELMs. Spatio-temporal evolution of the compound dither is analyzed. (author)

  11. A microwave tomography strategy for structural monitoring

    Science.gov (United States)

    Catapano, I.; Crocco, L.; Isernia, T.

    2009-04-01

    The capability of the electromagnetic waves to penetrate optical dense regions can be conveniently exploited to provide high informative images of the internal status of manmade structures in a non destructive and minimally invasive way. In this framework, as an alternative to the wide adopted radar techniques, Microwave Tomography approaches are worth to be considered. As a matter of fact, they may accurately reconstruct the permittivity and conductivity distributions of a given region from the knowledge of a set of incident fields and measures of the corresponding scattered fields. As far as cultural heritage conservation is concerned, this allow not only to detect the anomalies, which can possibly damage the integrity and the stability of the structure, but also characterize their morphology and electric features, which are useful information to properly address the repair actions. However, since a non linear and ill-posed inverse scattering problem has to be solved, proper regularization strategies and sophisticated data processing tools have to be adopt to assure the reliability of the results. To pursue this aim, in the last years huge attention has been focused on the advantages introduced by diversity in data acquisition (multi-frequency/static/view data) [1,2] as well as on the analysis of the factors affecting the solution of an inverse scattering problem [3]. Moreover, how the degree of non linearity of the relationship between the scattered field and the electromagnetic parameters of the targets can be changed by properly choosing the mathematical model adopt to formulate the scattering problem has been shown in [4]. Exploiting the above results, in this work we propose an imaging procedure in which the inverse scattering problem is formulated as an optimization problem where the mathematical relationship between data and unknowns is expressed by means of a convenient integral equations model and the sought solution is defined as the global minimum of a

  12. Evaluation of High-Precision Sensors in Structural Monitoring

    Directory of Open Access Journals (Sweden)

    Bihter Erol

    2010-12-01

    Full Text Available One of the most intricate branches of metrology involves the monitoring of displacements and deformations of natural and anthropogenic structures under environmental forces, such as tidal or tectonic phenomena, or ground water level changes. Technological progress has changed the measurement process, and steadily increasing accuracy requirements have led to the continued development of new measuring instruments. The adoption of an appropriate measurement strategy, with proper instruments suited for the characteristics of the observed structure and its environmental conditions, is of high priority in the planning of deformation monitoring processes. This paper describes the use of precise digital inclination sensors in continuous monitoring of structural deformations. The topic is treated from two viewpoints: (i evaluation of the performance of inclination sensors by comparing them to static and continuous GPS observations in deformation monitoring and (ii providing a strategy for analyzing the structural deformations. The movements of two case study objects, a tall building and a geodetic monument in Istanbul, were separately monitored using dual-axes micro-radian precision inclination sensors (inclinometers and GPS. The time series of continuous deformation observations were analyzed using the Least Squares Spectral Analysis Technique (LSSA. Overall, the inclinometers showed good performance for continuous monitoring of structural displacements, even at the sub-millimeter level. Static GPS observations remained insufficient for resolving the deformations to the sub-centimeter level due to the errors that affect GPS signals. With the accuracy advantage of inclination sensors, their use with GPS provides more detailed investigation of deformation phenomena. Using inclinometers and GPS is helpful to be able to identify the components of structural responses to the natural forces as static, quasi-static, or resonant.

  13. Monitoring of electron bunch length by using Terahertz coherent transition radiation

    Science.gov (United States)

    Su, Xiaolu; Yan, Lixin; Du, Yingchao; Zhang, Zhen; Zhou, Zheng; Wang, Dong; Zheng, Lianmin; Tian, Qili; Huang, Wenhui; Tang, Chuanxiang

    2017-07-01

    In this paper, ultrashort bunch length monitoring was demonstrated based on Terahertz (THz) coherent transition radiation (CTR) in Tsinghua Thomson scattering X-ray (TTX) source. The radiation produced by electron bunch is split into three paths: one of them is used to detect the total energy, while the other two paths are filtered with different THz band-pass filters before detection. The bunch length variation can be obtained by calculating the ratio between the filtered energy and the total energy. The bunch is compressed by a chicane and via changing the current of chicane, the ratio of filtered energy and total energy changed correspondingly. It is a simple supplemental approach to monitor the bunch length during beam conditioning and facility operation. Bunch arrival-time jitter and nonlinear effects in chicane are observed in the experiment during the measurement of filtered energy and total energy.

  14. Magnetic and structural transitions in crystals with a structure of the NaCl type

    Science.gov (United States)

    Kassan-Ogly, F. A.; Filippov, B. N.

    2009-04-01

    A model of simultaneous magnetic and structural first-order transitions in antiferromagnets with a strong cubic magnetic anisotropy has been constructed on the basis of a synthesis of magnetic modified 6-state and 8-state Potts models and the theoretical model of structural phase transitions in cubic crystals. A revised scheme has been suggested for the derivation of possible magnetic structures in the fcc lattice with allowance for competing interactions between the nearest and next-nearest neighbors. A calculation of the temperature evolution of high-temperature diffuse magnetic scattering of neutrons has been carried out to show that the mechanism of a magnetic transition at the Néel point is caused by the transformation of diffuse magnetic scattering into magnetic Bragg peaks.

  15. Printed strain sensor array for application to structural health monitoring

    Science.gov (United States)

    Zymelka, Daniel; Togashi, Kazuyoshi; Ohigashi, Ryoichi; Yamashita, Takahiro; Takamatsu, Seiichi; Itoh, Toshihiro; Kobayashi, Takeshi

    2017-10-01

    We demonstrate the development and practical use of low-cost printed strain sensor arrays built for applications in structural health monitoring. Sensors embedded in the array were designed to provide compensation for temperature variations and to enable their use in different seasons. The evaluation was carried out in laboratory tests and with practical application on a highway bridge. Measurements on the bridge were performed 7 months and 1 year after their installation. The developed devices were fully operational and could detect and localize cracks accurately in the monitored bridge structure.

  16. Absolute Measurement Fiber-optic Sensors in Large Structural Monitoring

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The security of civil engineering is an important task due to the economic, social and environmental significance. Compared with conventional sensors, the optical fiber sensors have their unique characteristics.Being durable, stable and insensitive to external perturbations,they are particular interesting for the long-term monitoring of civil structures.Focus is on absolute measurement optical fiber sensors, which are emerging from the monitoring large structural, including SOFO system, F-P optical fiber sensors, and fiber Bragg grating sensors. The principle, characteristic and application of these three kinds of optical fiber sensors are described together with their future prospects.

  17. Structural health monitoring an advanced signal processing perspective

    CERN Document Server

    Chen, Xuefeng; Mukhopadhyay, Subhas

    2017-01-01

    This book highlights the latest advances and trends in advanced signal processing (such as wavelet theory, time-frequency analysis, empirical mode decomposition, compressive sensing and sparse representation, and stochastic resonance) for structural health monitoring (SHM). Its primary focus is on the utilization of advanced signal processing techniques to help monitor the health status of critical structures and machines encountered in our daily lives: wind turbines, gas turbines, machine tools, etc. As such, it offers a key reference guide for researchers, graduate students, and industry professionals who work in the field of SHM.

  18. Structural Transition in Myelin Membrane as Initiator of Multiple Sclerosis.

    Science.gov (United States)

    Shaharabani, Rona; Ram-On, Maor; Avinery, Ram; Aharoni, Rina; Arnon, Ruth; Talmon, Yeshayahu; Beck, Roy

    2016-09-21

    In demyelinating diseases such as multiple sclerosis, disrupted myelin structures impair the functional role of the sheath as an insulating layer for proper nerve conduction. Though the etiology and recovery pathways remain unclear, in vivo studies show alterations in the lipid and the adhesive protein (myelin basic protein, MBP) composition. We find that in vitro cytoplasmic myelin membranes with modified lipid composition and low MBP concentration, as in demyelinating disease, show structural instabilities and pathological phase transition from a lamellar to inverted hexagonal, which involve enhanced local curvature. Similar curvatures are also found in vivo in diseased myelin sheaths. In addition, MBP dimers form a correlated mesh-like network within the inner membrane space, only in the vicinity of native lipid composition. These findings delineate the distinct functional roles of dominant constituents in cytoplasmic myelin sheaths, and shed new light on mechanisms disrupting lipid-protein complexes in the diseased state.

  19. Domain structure and phase transition in Sc-doped zirconia

    Science.gov (United States)

    Brunauer, G.; Boysen, H.; Frey, F.; Ehrenberg, H.

    2002-01-01

    The temperature dependence of the domain structure associated with the ferroelastic phase transition (Fm↔R bar 3 m) in ZrO2 doped with 11% Sc2O3 has been determined from a peak shape analysis of high-resolution synchrotron x-ray powder diffraction data. In the temperature region of coexisting phases the observed characteristic anisotropic broadening and asymmetry of the lines is modelled by three different phases: a main rhombohedral phase, a distorted rhombohedral phase with a smaller c/a ratio, and a cubic phase. The latter two are assigned to the internal structure of the domain walls between two adjacent twin domains. The size and amount of the cubic phase show an initially slow increase with temperature followed by a very steep increase and a slow one after that. The size of the (main) rhombohedral domains remains nearly constant, while (micro-) strain in the distorted regions gradually decreases.

  20. Structural transitions between epitaxially ordered phases in adsorbed submonolayers

    Science.gov (United States)

    Ostlund, S.; Berker, A. N.

    1980-06-01

    The global phase diagram of a triangular lattice-gas model for submonolayers adsorbed epitaxially on basal graphite is studied using a position-space renormalization method. This model has nearest-neighbor exclusion, and accomodates dominant third-neighbor interaction. Each cell of 12 sites is mapped onto a single local degree of freedom with a single-triplet-quadruplet structure. The lattice gas, with up to 20th-neighbor interactions, is thereby transformed into a nearest-neighbor model, which is then analyzed by a Migdal-Kadanoff renormalization transformation. At low temperatures, as coverage is increased from zero, gas, 2 × 2 solid, and 3×3 solid phases can be encountered, separated by first-order transitions. These solids undergo first-or higher-order transitions into fluid phases as temperature is increased at given density. Triple points, multicritical points, and/or critical end-points occur for various relative strengths of interactions. For certain plausible potentials, the 2 × 2 solid occurs at finite temperature, but not at zero temperature. Distinct liquid and gas phases, with a solid-liquid-gas triple point, are found in some cases. Contact is made with the phase diagram of methane physisorbed on basal graphite, suggesting that the effective hard-core radius of methane is increased by adsorption. A phase diagram very similar to that exhibited by oxygen chemisorbed on nickel (111), with both 2 × 2 and 3×3 structures, is also obtained.

  1. High-current CW beam profile monitors using transition radiation at CEBAF

    Science.gov (United States)

    Piot, P.; Denard, J.-C.; Adderley, P.; Capek, K.; Feldl, E.

    1997-01-01

    One way of measuring the profile of CEBAF's low-emittance, high-power beam is to use the optical transition radiation (OTR) emitted from a thin foil surface when the electron beam passes through it. We present the design of a monitor using the forward OTR emitted from a 0.25-μm carbon foil. We believe that the monitor will resolve three main issues: i) whether the maximum temperature of the foil stays below the melting point, ii) whether the beam loss remains below 0.5%, in order not to trigger the machine protection system, and iii) whether the monitor resolution (unlike that of synchrotron radiation monitors) is better than the product λγ. It seems that the most serious limitation for CEBAF is the beam loss due to beam scattering. We present results from Keil's theory and simulations from the computer code GEANT as well as measurements with aluminum foils with a 45-MeV electron beam. We also present a measurement of a 3.2-GeV beam profile that is much smaller than λγ, supporting Rule and Fiorito's calculations of the OTR resolution limit due to diffraction.

  2. Structural Health Monitoring for a Z-Type Special Vehicle

    Directory of Open Access Journals (Sweden)

    Chaolin Yuan

    2017-06-01

    Full Text Available Nowadays there exist various kinds of special vehicles designed for some purposes, which are different from regular vehicles in overall dimension and design. In that case, accidents such as overturning will lead to large economical loss and casualties. There are still no technical specifications to follow to ensure the safe operation and driving of these special vehicles. Owing to the poor efficiency of regular maintenance, it is more feasible and effective to apply real-time monitoring during the operation and driving process. In this paper, the fiber Bragg grating (FBG sensors are used to monitor the safety of a z-type special vehicle. Based on the structural features and force distribution, a reasonable structural health monitoring (SHM scheme is presented. Comparing the monitoring results with the finite element simulation results guarantees the accuracy and reliability of the monitoring results. Large amounts of data are collected during the operation and driving progress to evaluate the structural safety condition and provide reference for SHM systems developed for other special vehicles.

  3. Suppression of Structural Phase Transition in VO2 by Epitaxial Strain in Vicinity of Metal-insulator Transition

    Science.gov (United States)

    Yang, Mengmeng; Yang, Yuanjun; Bin Hong; Wang, Liangxin; Hu, Kai; Dong, Yongqi; Xu, Han; Huang, Haoliang; Zhao, Jiangtao; Chen, Haiping; Song, Li; Ju, Huanxin; Zhu, Junfa; Bao, Jun; Li, Xiaoguang; Gu, Yueliang; Yang, Tieying; Gao, Xingyu; Luo, Zhenlin; Gao, Chen

    2016-03-01

    Mechanism of metal-insulator transition (MIT) in strained VO2 thin films is very complicated and incompletely understood despite three scenarios with potential explanations including electronic correlation (Mott mechanism), structural transformation (Peierls theory) and collaborative Mott-Peierls transition. Herein, we have decoupled coactions of structural and electronic phase transitions across the MIT by implementing epitaxial strain on 13-nm-thick (001)-VO2 films in comparison to thicker films. The structural evolution during MIT characterized by temperature-dependent synchrotron radiation high-resolution X-ray diffraction reciprocal space mapping and Raman spectroscopy suggested that the structural phase transition in the temperature range of vicinity of the MIT is suppressed by epitaxial strain. Furthermore, temperature-dependent Ultraviolet Photoelectron Spectroscopy (UPS) revealed the changes in electron occupancy near the Fermi energy EF of V 3d orbital, implying that the electronic transition triggers the MIT in the strained films. Thus the MIT in the bi-axially strained VO2 thin films should be only driven by electronic transition without assistance of structural phase transition. Density functional theoretical calculations further confirmed that the tetragonal phase across the MIT can be both in insulating and metallic states in the strained (001)-VO2/TiO2 thin films. This work offers a better understanding of the mechanism of MIT in the strained VO2 films.

  4. Optical Fiber Sensors for Aircraft Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Iker García

    2015-06-01

    Full Text Available Aircraft structures require periodic and scheduled inspection and maintenance operations due to their special operating conditions and the principles of design employed to develop them. Therefore, structural health monitoring has a great potential to reduce the costs related to these operations. Optical fiber sensors applied to the monitoring of aircraft structures provide some advantages over traditional sensors. Several practical applications for structures and engines we have been working on are reported in this article. Fiber Bragg gratings have been analyzed in detail, because they have proved to constitute the most promising technology in this field, and two different alternatives for strain measurements are also described. With regard to engine condition evaluation, we present some results obtained with a reflected intensity-modulated optical fiber sensor for tip clearance and tip timing measurements in a turbine assembled in a wind tunnel.

  5. Optical Fiber Sensors for Aircraft Structural Health Monitoring.

    Science.gov (United States)

    García, Iker; Zubia, Joseba; Durana, Gaizka; Aldabaldetreku, Gotzon; Illarramendi, María Asunción; Villatoro, Joel

    2015-06-30

    Aircraft structures require periodic and scheduled inspection and maintenance operations due to their special operating conditions and the principles of design employed to develop them. Therefore, structural health monitoring has a great potential to reduce the costs related to these operations. Optical fiber sensors applied to the monitoring of aircraft structures provide some advantages over traditional sensors. Several practical applications for structures and engines we have been working on are reported in this article. Fiber Bragg gratings have been analyzed in detail, because they have proved to constitute the most promising technology in this field, and two different alternatives for strain measurements are also described. With regard to engine condition evaluation, we present some results obtained with a reflected intensity-modulated optical fiber sensor for tip clearance and tip timing measurements in a turbine assembled in a wind tunnel.

  6. Structural Health Monitoring with Fiber Bragg Grating and Piezo Arrays

    Science.gov (United States)

    Black, Richard J.; Faridian, Ferey; Moslehi, Behzad; Sotoudeh, Vahid

    2012-01-01

    Structural health monitoring (SHM) is one of the most important tools available for the maintenance, safety, and integrity of aerospace structural systems. Lightweight, electromagnetic-interference- immune, fiber-optic sensor-based SHM will play an increasing role in more secure air transportation systems. Manufacturers and maintenance personnel have pressing needs for significantly improving safety and reliability while providing for lower inspection and maintenance costs. Undetected or untreated damage may grow and lead to catastrophic structural failure. Damage can originate from the strain/stress history of the material, imperfections of domain boundaries in metals, delamination in multi-layer materials, or the impact of machine tools in the manufacturing process. Damage can likewise develop during service life from wear and tear, or under extraordinary circumstances such as with unusual forces, temperature cycling, or impact of flying objects. Monitoring and early detection are key to preventing a catastrophic failure of structures, especially when these are expected to perform near their limit conditions.

  7. Structural phase transition and elastic properties of mercury chalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Varshney, Dinesh, E-mail: vdinesh33@rediffmail.com [School of Physics, Vigyan Bhavan, Devi Ahilya University, Khandwa Road Campus, Indore 452001 (India); Shriya, S. [School of Physics, Vigyan Bhavan, Devi Ahilya University, Khandwa Road Campus, Indore 452001 (India); Khenata, R. [Laboratoire de Physique Quantique et de Modelisation Mathematique (LPQ3M), Departement de Technologie, Universite de Mascara, 29000 Mascara (Algeria)

    2012-08-15

    Pressure induced structural transition and elastic properties of ZnS-type (B3) to NaCl-type (B1) structure in mercury chalcogenides (HgX; X = S, Se and Te) are presented. An effective interionic interaction potential (EIOP) with long-range Coulomb, as well charge transfer interactions, Hafemeister and Flygare type short-range overlap repulsion extended up to the second neighbor ions and van der Waals interactions are considered. Emphasis is on the evaluation of the pressure dependent Poisson's ratio {nu}, the ratio R{sub BT/G} of B (bulk modulus) over G (shear modulus), anisotropy parameter, Shear and Young's modulus, Lame constant, Kleinman parameter, elastic wave velocity and thermodynamical property as Debye temperature. The Poisson's ratio behavior infers that Mercury chalcogenides are brittle in nature. To our knowledge this is the first quantitative theoretical prediction of the pressure dependence of elastic and thermodynamical properties explicitly the ductile (brittle) nature of HgX and still awaits experimental confirmations. Highlights: Black-Right-Pointing-Pointer Vast volume discontinuity in phase diagram infers transition from ZnS to NaCl structure. Black-Right-Pointing-Pointer The shear elastic constant C{sub 44} is nonzero confirms the mechanical stability. Black-Right-Pointing-Pointer Pressure dependence of {theta}{sub D} infers the softening of lattice with increasing pressure. Black-Right-Pointing-Pointer Estimated bulk, shear and tetragonal moduli satisfied elastic stability criteria. Black-Right-Pointing-Pointer In both B3 and B1 phases, C{sub 11} and C{sub 12} increase linearly with pressure.

  8. Electronic origin of structural transition in 122 Fe based superconductors

    Science.gov (United States)

    Ghosh, Haranath; Sen, Smritijit; Ghosh, Abyay

    2017-03-01

    Direct quantitative correlations between the orbital order and orthorhombicity is achieved in a number of Fe-based superconductors of 122 family. The former (orbital order) is calculated from first principles simulations using experimentally determined doping and temperature dependent structural parameters while the latter (the orthorhombicity) is taken from already established experimental studies; when normalized, both the above quantities quantitatively corresponds to each other in terms of their doping as well as temperature variations. This proves that the structural transition in Fe-based materials is electronic in nature due to orbital ordering. An universal correlations among various structural parameters and electronic structure are also obtained. Most remarkable among them is the mapping of two Fe-Fe distances in the low temperature orthorhombic phase, with the band energies Edxz, Edyz of Fe at the high symmetry points of the Brillouin zone. The fractional co-ordinate zAs of As which essentially determines anion height is inversely (directly) proportional to Fe-As bond distances (with exceptions of K doped BaFe2As2) for hole (electron) doped materials as a function of doping. On the other hand, Fe-As bond-distance is found to be inversely (directly) proportional to the density of states at the Fermi level for hole (electron) doped systems. Implications of these results to current issues of Fe based superconductivity are discussed.

  9. Structural transitions in Cowpea chlorotic mottle virus (CCMV)

    Science.gov (United States)

    Liepold, Lars O.; Revis, Jennifer; Allen, Mark; Oltrogge, Luke; Young, Mark; Douglas, Trevor

    2005-12-01

    Viral capsids act as molecular containers for the encapsulation of genomic nucleic acid. These protein cages can also be used as constrained reaction vessels for packaging and entrapment of synthetic cargos. The icosahedral Cowpea chlorotic mottle virus (CCMV) is an excellent model for understanding the encapsulation and packaging of both genomic and synthetic materials. High-resolution structural information of the CCMV capsid has been invaluable for evaluating structure-function relationships in the assembled capsid but does not allow insight into the capsid dynamics. The dynamic nature of the CCMV capsid might play an important role in the biological function of the virus. The CCMV capsid undergoes a pH and metal ion dependent reversible structural transition where 60 separate pores in the capsid open or close, exposing the interior of the protein cage to the bulk medium. In addition, the highly basic N-terminal domain of the capsid, which is disordered in the crystal structure, plays a significant role in packaging the viral cargo. Interestingly, in limited proteolysis and mass spectrometry experiments the N-terminal domain is the first part of the subunit to be cleaved, confirming its dynamic nature. Based on our fundamental understanding of the capsid dynamics in CCMV, we have utilized these aspects to direct packaging of a range of synthetic materials including drugs and inorganic nanoparticles.

  10. CFRP Structural Health Monitoring by Ultrasonic Phased Array Technique

    OpenAIRE

    Boychuk, A.S.; Generalov, A.S.; A.V. Stepanov

    2014-01-01

    International audience; The report deals with ultrasonic phased array (PA) application for high-loaded CFRP structural health monitoring in aviation. Principles of phased array technique and most dangerous types of damages are briefly described. High-performance inspection technology suitable for periodic plane structure check is suggested. The results of numerical estimation of detection probability for impact damages and delaminations by PA technique are presented. The experience of PA impl...

  11. On Structural Health Monitoring of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Skov, Jonas falk; Ulriksen, Martin Dalgaard; Dickow, Kristoffer Ahrens

    2013-01-01

    The aim of the present paper is to provide a state-of-the-art outline of structural health monitoring (SHM) techniques, utilizing temperature, noise and vibration, for wind turbine blades, and subsequently perform a typology on the basis of the typical four damage identification levels in SHM....... Before presenting the state-of-the-art outline, descriptions of structural damages typically occurring in wind turbine blades are provided along with a brief description of the four damage identification levels....

  12. Structural health monitoring of bridges in the State of Connecticut

    Institute of Scientific and Technical Information of China (English)

    Chengyin Liu; Joshua Olund; Alan Cardini; Paul D'Attilio; Erie Feldblum; John DeWolf

    2008-01-01

    A joint effort between the Connecticut Department of Transportation and the University of Connecticut has been underway for more than 20 years to utilize various structural monitoring approaches to assess different bridges in Connecticut.This has been done to determine the performance of existing bridges,refine techniques needed to evaluate different bridge components,and develop approaches that can be used to provide a continuous status of a bridge's structural integrity,This paper briefly introduces the background of these studies,with emphasis on recent research and the development of structural health monitoring concepts.This paper presents the results from three different bridge types:a post-tensioned curved concrete box girder bridge,a curved steel box-girder bridge,and a steel multi-girder bridge.The structural health monitoring approaches to be discussed have been successfully tested using field data collected during multi-year monitoring periods,and are based on vibrations,rotations and strains.The goal has been to develop cost-effective strategies to provide critical information needed to manage the State of Connecticut's bridge infrastructure.

  13. Multidisciplinary health monitoring of a steel bridge deck structure

    NARCIS (Netherlands)

    Pahlavan, P.L.; Pijpers, R.J.M.; Paulissen, J.H.; Hakkesteegt, H.C.; Jansen, T.H.

    2013-01-01

    Fatigue cracks in orthotropic bridge decks are an important cause for the necessary renovation of existing bridges. Parallel utilization of various technologies based on different physical sensing principles can potentially maximize the efficiency of structural health monitoring (SHM) systems for th

  14. The Monitor project: the search for transits in the open cluster NGC 2362

    Science.gov (United States)

    Miller, Adam A.; Irwin, Jonathan; Aigrain, Suzanne; Hodgkin, Simon; Hebb, Leslie

    2008-06-01

    We present the results of a systematic search for transiting planets in a ~5 Myr open cluster, NGC 2362. We observed ~1200 candidate cluster members, of which ~475 are believed to be genuine cluster members, for a total of ~100 h. We identify 15 light curves with reductions in flux that pass all our detection criteria, and six of the candidates have occultation depths compatible with a planetary companion. The variability in these six light curves would require very large planets to reproduce the observed transit depth. If we assume that none of our candidates are, in fact, planets then we can place upper limits on the fraction of stars with hot Jupiters (HJs) in NGC 2362. We obtain 99 per cent confidence upper limits of 0.22 and 0.70 on the fraction of stars with HJs (fp) for 1-3 and 3-10 d orbits, respectively, assuming all HJs have a planetary radius of 1.5RJup. These upper limits represent observational constraints on the number of stars with HJs at an age <~10 Myr, when the vast majority of stars are thought to have lost their protoplanetary discs. Finally, we extend our results to the entire Monitor project, a survey searching young, open clusters for planetary transits, and find that the survey as currently designed should be capable of placing upper limits on fp near the observed values of fp in the solar neighbourhood.

  15. Improved Satellite Techniques for Monitoring and Forecasting the Transition of Hurricanes to Extratropical Storms

    Science.gov (United States)

    Folmer, Michael; Halverson, Jeffrey; Berndt, Emily; Dunion, Jason; Goodman, Steve; Goldberg, Mitch

    2014-01-01

    The Geostationary Operational Environmental Satellites R-Series (GOES-R) and Joint Polar Satellite System (JPSS) Satellite Proving Grounds have introduced multiple proxy and operational products into operations over the last few years. Some of these products have proven to be useful in current operations at various National Weather Service (NWS) offices and national centers as a first look at future satellite capabilities. Forecasters at the National Hurricane Center (NHC), Ocean Prediction Center (OPC), NESDIS Satellite Analysis Branch (SAB) and the NASA Hurricane and Severe Storms Sentinel (HS3) field campaign have had access to a few of these products to assist in monitoring extratropical transitions of hurricanes. The red, green, blue (RGB) Air Mass product provides forecasters with an enhanced view of various air masses in one complete image to help differentiate between possible stratospheric/tropospheric interactions, moist tropical air masses, and cool, continental/maritime air masses. As a compliment to this product, a new Atmospheric Infrared Sounder (AIRS) and Cross-track Infrared Sounder (CrIS) Ozone product was introduced in the past year to assist in diagnosing the dry air intrusions seen in the RGB Air Mass product. Finally, a lightning density product was introduced to forecasters as a precursor to the new Geostationary Lightning Mapper (GLM) that will be housed on GOES-R, to monitor the most active regions of convection, which might indicate a disruption in the tropical environment and even signal the onset of extratropical transition. This presentation will focus on a few case studies that exhibit extratropical transition and point out the usefulness of these new satellite techniques in aiding forecasters forecast these challenging events.

  16. Structural Identification and Monitoring based on Uncertain/Limited Information

    Directory of Open Access Journals (Sweden)

    Chatzi Eleni N.

    2015-01-01

    Full Text Available The goal of the present study is to propose a structural identification framework able to exploit both vibrational response and operational condition information in extracting structural models, able to represent the systemspecific structural behavior in its complete operational spectrum. In doing so, a scheme need be derived for the extraction of salient features, which are indicative of structural condition. Such a scheme should account for variations attributed to operational effects, such as environmental and operational load variations, and which likely lie within regular structural condition bounds, versus variations which indicate short- or long-term damage effects. The latter may be achieved via coupling of sparse, yet diverse, monitoring information with appropriate stochastic tools, able to infer the underlying dependences between the monitored input and output data. This in turn allows for extraction of quantities, or features, relating to structural condition, which may further be utilized as performance indicators. The computational tool developed herein for realizing such a framework, termed the PCE-ICA scheme, is based on the use of Polynomial Chaos Expansion (PCE tool, along with an Independent Component Analysis (ICA algorithm. The benefits of additionally fusing a data-driven system model will further be discussed for the case of complex structural response. The method is assessed via implementation on field data acquired from diverse structural systems, namely a benchmark bridge case study and a wind turbine tower structure, revealing a robust condition assessment tool.

  17. Structural Health Monitoring for Impact Damage in Composite Structures.

    Energy Technology Data Exchange (ETDEWEB)

    Roach, Dennis P.; Raymond Bond (Purdue); Doug Adams (Purdue)

    2014-08-01

    Composite structures are increasing in prevalence throughout the aerospace, wind, defense, and transportation industries, but the many advantages of these materials come with unique challenges, particularly in inspecting and repairing these structures. Because composites of- ten undergo sub-surface damage mechanisms which compromise the structure without a clear visual indication, inspection of these components is critical to safely deploying composite re- placements to traditionally metallic structures. Impact damage to composites presents one of the most signi fi cant challenges because the area which is vulnerable to impact damage is generally large and sometimes very dif fi cult to access. This work seeks to further evolve iden- ti fi cation technology by developing a system which can detect the impact load location and magnitude in real time, while giving an assessment of the con fi dence in that estimate. Fur- thermore, we identify ways by which impact damage could be more effectively identi fi ed by leveraging impact load identi fi cation information to better characterize damage. The impact load identi fi cation algorithm was applied to a commercial scale wind turbine blade, and results show the capability to detect impact magnitude and location using a single accelerometer, re- gardless of sensor location. A technique for better evaluating the uncertainty of the impact estimates was developed by quantifying how well the impact force estimate meets the assump- tions underlying the force estimation technique. This uncertainty quanti fi cation technique was found to reduce the 95% con fi dence interval by more than a factor of two for impact force estimates showing the least uncertainty, and widening the 95% con fi dence interval by a fac- tor of two for the most uncertain force estimates, avoiding the possibility of understating the uncertainty associated with these estimates. Linear vibration based damage detection tech- niques were investigated in the

  18. Wireless Zigbee strain gage sensor system for structural health monitoring

    Science.gov (United States)

    Ide, Hiroshi; Abdi, Frank; Miraj, Rashid; Dang, Chau; Takahashi, Tatsuya; Sauer, Bruce

    2009-05-01

    A compact cell phone size radio frequency (ZigBee) wireless strain measurement sensor system to measure the structural strain deformation was developed. The developed system provides an accurate strain measurement data stream to the Internet for further Diagnostic and Prognostic (DPS) correlation. Existing methods of structural measurement by strain sensors (gauges) do not completely satisfy problems posed by continuous structural health monitoring. The need for efficient health monitoring methods with real-time requirements to bidirectional data flow from sensors and to a commanding device is becoming critical for keeping our daily life safety. The use of full-field strain measurement techniques could reduce costly experimental programs through better understanding of material behavior. Wireless sensor-network technology is a monitoring method that is estimated to grow rapidly providing potential for cost savings over traditional wired sensors. The many of currently available wireless monitoring methods have: the proactive and constant data rate character of the data streams rather than traditional reactive, event-driven data delivery; mostly static node placement on structures with limited number of nodes. Alpha STAR Electronics' wireless sensor network system, ASWN, addresses some of these deficiencies, making the system easier to operate. The ASWN strain measurement system utilizes off-the-shelf sensors, namely strain gauges, with an analog-to-digital converter/amplifier and ZigBee radio chips to keep cost lower. Strain data is captured by the sensor, converted to digital form and delivered to the ZigBee radio chip, which in turn broadcasts the information using wireless protocols to a Personal Data Assistant (PDA) or Laptop/Desktop computers. From here, data is forwarded to remote computers for higher-level analysis and feedback using traditional cellular and satellite communication or the Ethernet infrastructure. This system offers a compact size, lower cost

  19. Effects of transition metal oxide doping on the structure of sodium metaphosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Zotov, N.; Kirfel, A.; Beuneu, B.; Delaplane, R.; Hohlwein, D.; Reinauer, F.; Glaum, R

    2004-07-15

    Neutron diffraction measurements of transition metal-oxide-doped sodium metaphosphate glasses and melts show an anomalous increase of the first sharp diffraction peak both with increasing transition metal content and temperature due to progressive increase of the structural disorder.

  20. Monitoring the Geneseo Nuclear Structure Lab with VISION

    Science.gov (United States)

    Nicklaw, R.; Padalino, S.; McLean, J.

    2002-10-01

    VISION (Virtual Instrument System Information) is a LabVIEW based program designed to monitor a 2 MV Van de Graaff accelerator in the Geneseo Nuclear Structure Laboratory (GNSL). The purpose of the system is to monitor and notify the user of potentially critical situations in the lab. Main parameters of interest are the water coolant temperatures in the diffusion pumps, pressures within the vacuum chambers, and Van de Graaff operational parameters. LabVIEW reads these values and then displays them on monitors located throughout the laboratory. The user can set alarm limits on the relevant parameters, and when exceeded notifies the user verbally and visually. Recent additions to the VISION program include the water level sensor, calibration of the pressure readings, a web server application, and data logging. The VISION system is Internet accessible ^1, data from the main screen is displayed over the web for remote monitoring of the accelerator. Another useful monitoring tool is the data logger, which writes acquired data to a formatted text document at specified intervals. A future goal for VISION is to not only monitor, but to control aspects of the GNSL with LabVIEW. ^1 Webpage accessible at: http://s69n144.sci.geneseo.edu/vision.htm * Research funded in part by the United States Department of Energy

  1. Structure of nuclear transition matrix elements for neutrinoless double- decay

    Indian Academy of Sciences (India)

    P K Rath

    2010-08-01

    The structure of nuclear transition matrix elements (NTMEs) required for the study of neutrinoless double- decay within light Majorana neutrino mass mechanism is disassembled in the PHFB model. The NTMEs are calculated using a set of HFB intrinsic wave functions, the reliability of which has been previously established by obtaining an overall agreement between the theoretically calculated spectroscopic properties and the available experimental data. Presently, we study the role of short-range correlations, radial evolution of NTMEs and deformation effects due to quadrupolar correlations. In addition, limits on effective light neutrino mass $\\langle m_{} \\rangle$ are extracted from the observed limits on half-lives $T_{1/2}^{0}$ of neutrinoless double- decay.

  2. Liquid-Liquid Structure Transition in Metallic Melts: Experimental Evidence by Viscosity Measurement

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-Qing; WU Yu-Qin; BIAN Xiu-Fang

    2007-01-01

    Temperature dependence of viscosity for more than ten kinds of metallic melts is analysed based on viscosity measurements. An obvious turning point is observed on the Arrhenius curves. Since viscosity is one of the physical properties sensitive to structure, its discontinuous change with temperature reveals the possible liquidliquid structure transition in the metallic melts. Furthermore, an integrated liquid structure transition diagram of the Sn-Bi system is presented. The universality of liquid-liquid structure transition is also discussed simply.

  3. Integration of structural health monitoring solutions onto commercial aircraft via the Federal Aviation Administration structural health monitoring research program

    Science.gov (United States)

    Swindell, Paul; Doyle, Jon; Roach, Dennis

    2017-02-01

    The Federal Aviation Administration (FAA) started a research program in structural health monitoring (SHM) in 2011. The program's goal was to understand the technical gaps of implementing SHM on commercial aircraft and the potential effects on FAA regulations and guidance. The program evolved into a demonstration program consisting of a team from Sandia National Labs Airworthiness Assurance NDI Center (AANC), the Boeing Corporation, Delta Air Lines, Structural Monitoring Systems (SMS), Anodyne Electronics Manufacturing Corp (AEM) and the FAA. This paper will discuss the program from the selection of the inspection problem, the SHM system (Comparative Vacuum Monitoring-CVM) that was selected as the inspection solution and the testing completed to provide sufficient data to gain the first approved use of an SHM system for routine maintenance on commercial US aircraft.

  4. STRUCTURAL HEALTH MONITORING SYSTEM – AN EMBEDDED SENSOR APPROACH

    Directory of Open Access Journals (Sweden)

    Dhivya. A

    2013-02-01

    Full Text Available Structural Health monitoring system is the implementation of improving the maintenance of any structures like buildings and bridges. It encompasses damage detection, identification and prevention of structures from natural disasters like earth quake and rain. This paper is mainly proposed for three modules. First module constitutes recognizing and alerting of abnormal vibration of the building due to an earth quake. This consists of two types of sensor to predict the abnormal vibration induced by an earth quake. Second module portrays the prediction of damage in the buildings after an earth quake or heavy rain. Damage detection includes identification of crack and the moisture content in wall bricks in real time buildings. Third module presents the smart auditorium which is used to reduce the power consumption. Depending on the number of audience inside the auditorium it can control the electric appliances like fans, lights and speakers. In any real time structural health monitoring system the main issue is the time synchronization. This paper also proposes to overcome the general issue arises in structural health monitoring system. ZigBee based reliable communication is used among the client node and server node. For the secured wireless communication between the nodes ZigBee is used.

  5. A nonlinear cointegration approach with applications to structural health monitoring

    Science.gov (United States)

    Shi, H.; Worden, K.; Cross, E. J.

    2016-09-01

    One major obstacle to the implementation of structural health monitoring (SHM) is the effect of operational and environmental variabilities, which may corrupt the signal of structural degradation. Recently, an approach inspired from the community of econometrics, called cointegration, has been employed to eliminate the adverse influence from operational and environmental changes and still maintain sensitivity to structural damage. However, the linear nature of cointegration may limit its application when confronting nonlinear relations between system responses. This paper proposes a nonlinear cointegration method based on Gaussian process regression (GPR); the method is constructed under the Engle-Granger framework, and tests for unit root processes are conducted both before and after the GPR is applied. The proposed approach is examined with real engineering data from the monitoring of the Z24 Bridge.

  6. Probabilistic Structural Health Monitoring of the Orbiter Wing Leading Edge

    Science.gov (United States)

    Yap, Keng C.; Macias, Jesus; Kaouk, Mohamed; Gafka, Tammy L.; Kerr, Justin H.

    2011-01-01

    A structural health monitoring (SHM) system can contribute to the risk management of a structure operating under hazardous conditions. An example is the Wing Leading Edge Impact Detection System (WLEIDS) that monitors the debris hazards to the Space Shuttle Orbiter s Reinforced Carbon-Carbon (RCC) panels. Since Return-to-Flight (RTF) after the Columbia accident, WLEIDS was developed and subsequently deployed on board the Orbiter to detect ascent and on-orbit debris impacts, so as to support the assessment of wing leading edge structural integrity prior to Orbiter re-entry. As SHM is inherently an inverse problem, the analyses involved, including those performed for WLEIDS, tend to be associated with significant uncertainty. The use of probabilistic approaches to handle the uncertainty has resulted in the successful implementation of many development and application milestones.

  7. Probing Microarcsecond Structure in AGN using Continuous Flux Density Monitoring

    Science.gov (United States)

    Senkbeil, C.; Lovell, J.; Ellingsen, S.; Jauncey, D.; Cimò, G.

    2009-08-01

    Active Galactic Nuclei (AGN) exhibit radio flux density variability on a wide range of time scales from hours to years. The rapid cm-wavelength variability on timescales from hours to days has been shown to be caused by interstellar scintillation. Interstellar scintillation implies the presence of microarcsecond scale structure in the scintillating source. We have quasi-continuously monitored the 6.7 GHz flux density of six interstellar scintillating sources since 2003 using the University of Tasmania Ceduna Radio Telescope. The launch of the VSOP 2 ASTRO-G mission will allow us to compare the microarcsecond AGN structure at 22 and 43 GHz with microarcsecond structure implied by scintillation at 5 GHz using the Hobart Interferometer, which will supersede the Ceduna flux density monitoring program in 2009.

  8. Structural monitoring and smart control of a wind turbine

    DEFF Research Database (Denmark)

    Caterino, Nicola; Trinchillo, Francesco; Georgakis, Christos T.

    2014-01-01

    The remarkable growth in height of wind turbines in the last years - for a higher production of electricity - makes the issues of monitoring and control of such challenging engineering works pressing than ever. The research herein proposed is addressed to monitor the structural demand imposed...... to the tower as well as to bound it within given limits thanks to the presence and automatic remote control of smart devices at the base of the tower. The latter are magnetorheological (MR) dampers, i.e. special dissipative devices able to change, almost in real time, their mechanical behaviour according...

  9. Structural transition in alcohol-water binary mixtures: A spectroscopic study

    Indian Academy of Sciences (India)

    Tuhin Pradhan; Piue Ghoshal; Ranjit Biswas

    2008-03-01

    The strengthening of the hydrogen bonding (H-bond) network as well as transition from the tetrahedral-like water network to the zigzag chain structure of alcohol upon increasing the alcohol concentration in ethanol-water and tertiary butanol (TBA) - water mixtures have been studied by using both steady state and time resolved spectroscopy. Absorption and emission characteristics of coumarin 153 (C153), a widely used non-reactive solvation probe, have been monitored to investigate the structural transition in these binary mixtures. The effects of the hydrogen bond (H-bond) network with alcohol concentration are revealed by a minimum in the peak frequency of the absorption spectrum of C153 which occur at alcohol mole fraction ∼ 0.10 for water-ethanol and at ∼ 0.04 for water-TBA mixtures. These are the mole fractions around which several thermodynamic properties of these mixtures show anomalous change due to the enhancement of H-bonding network. While the strengthening of H-bond network is revealed by the absorption spectra, the emission characteristics show the typical non-ideal alcohol mole fraction dependence at all concentrations. The time resolved anisotropy decay of C153 has been found to be bi-exponential at all alcohol mole fractions. The sharp change in slopes of average rotational correlation time with alcohol mole fraction indicates the structural transition in the environment around the rotating solute. The changes in slopes occur at mole fraction ∼ 0.10 for TBA-water and at ∼ 0.2 for ethanol-water mixtures, which are believed to reflect alcohol mole fraction induced structural changes in these alcohol-water binary mixtures.

  10. Converting signals to knowledge in structural health monitoring systems

    Science.gov (United States)

    Brownjohn, James M. W.; Moyo, Pilate; Omenzetter, Piotr; Chakraboorty, Sushanta

    2005-04-01

    Academic approaches in structural health monitoring (SHM) usually focus on fine detail or on aspects of the technology such as sensors and data collection, and areas that may be less useful to operators than information about the level of performance of their structures. The steps in the process of SHM such as data management, data mining, conversion to knowledge of structural behaviour and integrity are frequently absent, and even the most operationally successful SHM systems may lack the component where deep understanding on the nature of the structure performance is obtained. This paper presents experience gained in a number of SHM exercises where static and dynamic response data have been interpreted, with or without the aid of calibrated structural models, in order to characterise the mechanisms at work and the experiences of the structure.

  11. Guaranteeing robustness of structural condition monitoring to environmental variability

    Science.gov (United States)

    Van Buren, Kendra; Reilly, Jack; Neal, Kyle; Edwards, Harry; Hemez, François

    2017-01-01

    Advances in sensor deployment and computational modeling have allowed significant strides to be recently made in the field of Structural Health Monitoring (SHM). One widely used SHM strategy is to perform a vibration analysis where a model of the structure's pristine (undamaged) condition is compared with vibration response data collected from the physical structure. Discrepancies between model predictions and monitoring data can be interpreted as structural damage. Unfortunately, multiple sources of uncertainty must also be considered in the analysis, including environmental variability, unknown model functional forms, and unknown values of model parameters. Not accounting for these sources of uncertainty can lead to false-positives or false-negatives in the structural condition assessment. To manage the uncertainty, we propose a robust SHM methodology that combines three technologies. A time series algorithm is trained using "baseline" data to predict the vibration response, compare predictions to actual measurements collected on a potentially damaged structure, and calculate a user-defined damage indicator. The second technology handles the uncertainty present in the problem. An analysis of robustness is performed to propagate this uncertainty through the time series algorithm and obtain the corresponding bounds of variation of the damage indicator. The uncertainty description and robustness analysis are both inspired by the theory of info-gap decision-making. Lastly, an appropriate "size" of the uncertainty space is determined through physical experiments performed in laboratory conditions. Our hypothesis is that examining how the uncertainty space changes throughout time might lead to superior diagnostics of structural damage as compared to only monitoring the damage indicator. This methodology is applied to a portal frame structure to assess if the strategy holds promise for robust SHM. (Publication approved for unlimited, public release on October-28

  12. Smart Structures and Intelligent Systems for Health Monitoring and Diagnostics

    Directory of Open Access Journals (Sweden)

    M. A. El-Sherif

    2005-01-01

    Full Text Available “Smart and intelligent” structures are defined as structures capable of monitoring their own “health” condition and structural behavior, such structures are capable of sensing external environmental conditions, making decisions, and sending the information to other locations. Available conventional devices and systems are not technologically mature for such applications. New classes of miniature devices and networking systems are urgently needed for such applications. In this paper, two examples of the successful work achieved so far, in biomedical application of smart structures, are presented. The first one is based on the development of a smart bone fixation device for rehabilitation and treatment. This device includes a smart composite bar that can sense physical stress applied to the fractured bones, and send the information to the patient's physician remotely. The second is on the development of smart fabrics for many applications including health monitoring and diagnostics. Successful development of such smart fabrics with embedded fiber optic sensors and networks is mainly dependent on the development of the proper miniature sensor technology, and on the integration of these sensors into textile structures. The developed smart structures will be discussed and samples of the results will be presented.

  13. Integrated sensor network for monitoring steel corrosion in concrete structures

    Directory of Open Access Journals (Sweden)

    José Enrique Ramón

    2016-06-01

    Full Text Available Corrosion is one of the main triggering factors affecting the service life and durability of structures. Several methods are used for corrosion studies but electrochemical techniques are the most commonly applied. Corrosion processes monitoring and control by means of non-destructive techniques, such as the implementation of embedded sensors, has been the target of many works.  It is possible to obtain relevant information of structural corrosion processes in real time. This document describes a system including specific equipment and which allows obtaining relevant information about these corrosion processes. This system is formed by a sensor network. There are several types of electrodes, which are distributed throughout the structure under study and a specific equipment developed by the research group, which is used to determine pertinent parameters such as the corrosion potential (Ecorr and the corrosion density (icorr by applying sequences of potentiostatic pulses. The system allows to reliably determine the corrosion rate in different areas of the structure. The sensor, due to its configuration, provides information of a specific area of the structure, but on the other hand it is involved in the galvanic events that can occur along the structure by differential aeration, galvanic cells, etc. because the sensor is not isolated from the structure.  This system also procures information of buried and submerged elements. Besides, it is possible to obtain information related to temperature, concrete resistance. The system includes specific potentiometric sensors to monitor chloride access and carbonatation processes.

  14. (Electronic structure and reactivities of transition metal clusters)

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The following are reported: theoretical calculations (configuration interaction, relativistic effective core potentials, polyatomics, CASSCF); proposed theoretical studies (clusters of Cu, Ag, Au, Ni, Pt, Pd, Rh, Ir, Os, Ru; transition metal cluster ions; transition metal carbide clusters; bimetallic mixed transition metal clusters); reactivity studies on transition metal clusters (reactivity with H{sub 2}, C{sub 2}H{sub 4}, hydrocarbons; NO and CO chemisorption on surfaces). Computer facilities and codes to be used, are described. 192 refs, 13 figs.

  15. The role or structural criteria in transition theory

    NARCIS (Netherlands)

    Jagers op Akkerhuis, Gerard A.J.M.

    2016-01-01

    In a recent publication Szathmáry has updated Major Evolutionary Transitions theory to a version 2.0. The major transition theory recognises transitions based on the select use of functional criteria, notably: cooperation, competition reduction and reproduction as part of a larger unit. These

  16. Ultrasonic wave-based structural health monitoring embedded instrument

    Energy Technology Data Exchange (ETDEWEB)

    Aranguren, G.; Monje, P. M., E-mail: pedromaria.monje@ehu.es [Electronic Design Group, Faculty of Engineering of Bilbao, University of the Basque Country, Bilbao (Spain); Cokonaj, Valerijan [AERnnova Engineering Solutions Ibérica S.A., Madrid (Spain); Barrera, Eduardo; Ruiz, Mariano [Instrumentation and Applied Acoustic Research Group of the Technical University of Madrid, Madrid (Spain)

    2013-12-15

    Piezoelectric sensors and actuators are the bridge between electronic and mechanical systems in structures. This type of sensor is a key element in the integrity monitoring of aeronautic structures, bridges, pressure vessels, wind turbine blades, and gas pipelines. In this paper, an all-in-one system for Structural Health Monitoring (SHM) based on ultrasonic waves is presented, called Phased Array Monitoring for Enhanced Life Assessment. This integrated instrument is able to generate excitation signals that are sent through piezoelectric actuators, acquire the received signals in the piezoelectric sensors, and carry out signal processing to check the health of structures. To accomplish this task, the instrument uses a piezoelectric phased-array transducer that performs the actuation and sensing of the signals. The flexibility and strength of the instrument allow the user to develop and implement a substantial part of the SHM technique using Lamb waves. The entire system is controlled using configuration software and has been validated through functional, electrical loading, mechanical loading, and thermal loading resistance tests.

  17. Ultrasonic wave-based structural health monitoring embedded instrument.

    Science.gov (United States)

    Aranguren, G; Monje, P M; Cokonaj, Valerijan; Barrera, Eduardo; Ruiz, Mariano

    2013-12-01

    Piezoelectric sensors and actuators are the bridge between electronic and mechanical systems in structures. This type of sensor is a key element in the integrity monitoring of aeronautic structures, bridges, pressure vessels, wind turbine blades, and gas pipelines. In this paper, an all-in-one system for Structural Health Monitoring (SHM) based on ultrasonic waves is presented, called Phased Array Monitoring for Enhanced Life Assessment. This integrated instrument is able to generate excitation signals that are sent through piezoelectric actuators, acquire the received signals in the piezoelectric sensors, and carry out signal processing to check the health of structures. To accomplish this task, the instrument uses a piezoelectric phased-array transducer that performs the actuation and sensing of the signals. The flexibility and strength of the instrument allow the user to develop and implement a substantial part of the SHM technique using Lamb waves. The entire system is controlled using configuration software and has been validated through functional, electrical loading, mechanical loading, and thermal loading resistance tests.

  18. Piezo impedance sensors to monitor degradation of biological structure

    Science.gov (United States)

    Annamdas, Kiran Kishore Kumar; Annamdas, Venu Gopal Madhav

    2010-04-01

    In some countries it is common to have wooden structures in their homes, especially Japan. However, metals and its alloys are the most widely used engineering materials in construction of any military or civil structure. Re-visiting natural disasters like the recent Haiti earthquake (12 Jan 2010) or Katrina (cyclones) reminds the necessity to have better housing infrastructure with robust monitoring systems. Traditionally wood (green material) was accepted as excellent rehabilitation material, after any disaster. In recent times, the recycling materials extracted from inorganic, biodegradable wastes are converted into blocks or sheets, and are also used to assist public in rehabilitation camps. The key issue which decreases the life of these rehabilitated structure including green materials (like wood) is unnecessary degradation or deterioration over time due to insect or acid attack or rain/ice fall. The recycling material also needs monitoring to protect them against acid or rain/ice attacks. Thus, a few health monitoring techniques have emerged in the recent past. Electromechanical Impedance technique is one such technique, which is simple but robust to detect variations in the integrity of structures. In this paper, impedance based piezoceramic sensor was bonded on wooden sample, which was subjected to degradation in presence of acids. Variations in mass of plank are studied.

  19. Transitional cardiovascular physiology and comprehensive hemodynamic monitoring in the neonate: relevance to research and clinical care.

    Science.gov (United States)

    Azhibekov, Timur; Noori, Shahab; Soleymani, Sadaf; Seri, Istvan

    2014-02-01

    A thorough understanding of developmental cardiovascular physiology is essential for early recognition of cardiovascular compromise, selective screening of at-risk groups of neonates, and individualized management using pathophysiology-targeted interventions. Although we have gained a better understanding of the physiology and pathophysiology of postnatal cardiovascular transition over the past decade with the use of sophisticated methods to study neonatal hemodynamics, most aspects of neonatal hemodynamics remain incompletely understood. In addition, targeted therapeutic interventions of neonatal hemodynamic compromise have not been shown to improve mortality and clinically relevant outcomes. However, the recent development of comprehensive hemodynamic monitoring systems capable of non-invasive, continuous and simultaneous bedside assessment of cardiac output, organ blood flow, microcirculation, and tissue oxygen delivery has made sophisticated analysis of the obtained physiologic data possible and has created new research opportunities with the potential of direct implications to patient care.

  20. Structure transition of nano-titania during calcination

    Institute of Scientific and Technical Information of China (English)

    李国华; 王大伟; 徐铸德; 陈卫祥

    2003-01-01

    In order to study the structure transition during calcination, nano-titania powders prepared by hydrolyzing precipitation approach and calcined at 300, 400, 500, 600 and 700 ℃ were characterized by XRD, TEM and electron diffraction(ED), respectively. The results show that titania powders calcined below 500 ℃ are almost composed of anatase, rutile appears below 500 ℃ and its ratio increases gradually with increase of calcin temperature;nano-titania particles are smaller than 40 nm mostly and the dispersion is related to calcining temperature; the interplanar distances of nano-anatase single crystalline change gradually when calcing temperature increases to 500 ℃; so do that of nano-rutile single crystalline when calcining temperature charges from 600 to 700 ℃. The conclusions can be drawn that the temperature of transformation from anatase to rutile is below 500 ℃ and the process carries on gradually. Both inter-planar distances and the structure of nano-titania transform gradually with increasing calcing temperature.

  1. Domain structure and phase transition in Sc-doped zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Brunauer, G.; Boysen, H.; Frey, F. [Institute for Crystallography und Applied Mineralogy, LMU Muenchen, Munich (Germany); Ehrenberg, H. [Institute for Materials Science, TU Darmstadt, Darmstadt (Germany)

    2002-01-21

    The temperature dependence of the domain structure associated with the ferroelastic phase transition (Fm{sup 3-bar}m{r_reversible}R{sup 3-bar}m) in ZrO{sub 2} doped with 11% Sc{sub 2}O{sub 3} has been determined from a peak shape analysis of high-resolution synchrotron x-ray powder diffraction data. In the temperature region of coexisting phases the observed characteristic anisotropic broadening and asymmetry of the lines is modelled by three different phases: a main rhombohedral phase, a distorted rhombohedral phase with a smaller c/a ratio, and a cubic phase. The latter two are assigned to the internal structure of the domain walls between two adjacent twin domains. The size and amount of the cubic phase show an initially slow increase with temperature followed by a very steep increase and a slow one after that. The size of the (main) rhombohedral domains remains nearly constant, while (micro-) strain in the distorted regions gradually decreases. (author)

  2. A modified golden gate attenuated total reflection (ATR) cell for monitoring phase transitions in multicomponent fluids at high temperatures.

    Science.gov (United States)

    Novitskiy, Alexander A; Ke, Jie; Comak, Gurbuz; Poliakoff, Martyn; George, Michael W

    2011-08-01

    A new continuous flow method using attenuated total reflection infrared (ATR-IR) spectroscopy has been developed for monitoring phase transitions in multicomponent fluids at high pressures and temperatures. Our approach uses Fourier transform infrared (FT-IR) and a modified Golden Gate attenuated total reflection (ATR) cell and exploits the fact that the absorbance of a vapor is much lower than that of the corresponding liquid to monitor the phase transition between vapor and liquid. We demonstrate that this method can provide quantitative measurements on both the dew point and the bubble point. We have validated our approach using three single-component systems (EtOH, MeOH, and H(2)O) and a binary system of EtOH + H(2)O, monitoring phase transitions at temperature up to 300 °C and pressure up to 10 MPa.

  3. Health Monitoring of TPS Structures by Measuring Their Electrical Resistance

    Science.gov (United States)

    Preci, Arianit; Herdrich, Georg; Steinbeck, Andreas; Auweter-Kurtz, Monika

    Health Monitoring in aerospace applications becomes an emerging technology leading to the development of systems capable of continuously monitoring structures for damage with minimal human intervention. A promising sensing method to be applied on hot structures and thermal protection systems is the electrical resistance measurement technique, which is barely investigated up to now. This method benefits from the advantageous characteristics of self-monitoring materials, such as carbon fiber-reinforced materials. By measuring the variation of the electrical resistance of these materials information on possibly present mechanical damage can be derived. In order to set up a database on electric properties of relevant materials under relevant conditions and to perform a proof-of-concept for this health monitoring method a facility has been laid out, which allows for the measurement of the electrical resistance of thermal protection system relevant materials at temperatures up to 2000°C. First preliminary measurements of the surface resistance of a graphite sample have been performed and are presented. It has been proven necessary to make some modifications to the setup. Therefore, the remaining measurements with graphite and C/C-SiC samples are subject of further investigation which will be performed in the future.

  4. Gb-Sar Interferometry for Structure Monitoring during Infrastructure Projects

    Science.gov (United States)

    Serrano Juan, A.; Vázquez-Suñé, E.; Monserrat, O.; Crosetto, M.; Hoffman, C.; Ledesma, A.; Criollo, R.; Pujades, E.; Velasco, V.; García, A.

    2015-12-01

    Monitoring is a necessary task for infrastructure projects. Ground-based synthetic aperture radar (GB-SAR) has been used in a large variety of displacement measurements. However, it has not yet been applied as a monitoring tool during construction projects. This paper aims to demonstrate that GB-SAR can be very helpful for understanding the mechanisms that control structure deformations and for identifying unexpected events and sensitive areas during construction projects. This could be done in a cost-effective way, which complements the traditional displacement measurements. An experiment was performed in the future railway station of La Sagrera, Barcelona (Spain) to demonstrate the utility of GB-SAR on structure monitoring during construction projects. In this experiment, GB-SAR precisely quantified wall displacements induced by dewatering. Manual data and numerical models have been used to confirm the measurements with a correlation analysis and by comparing measurements and deformation patterns, which have produced similar results. These results validate the use of the GB-SAR technique as a monitoring tool during construction projects.

  5. Evaluation of the serum fructosamine test to monitor plasma glucose concentration in the transition dairy cow.

    Science.gov (United States)

    Sorondo, María L; Cirio, Alberto

    2009-05-01

    The usefulness of the serum fructosamine (Fser) to monitor the retrospective glucose concentrations in transitional dairy cows (n=17) was evaluated. In weekly blood samples (3 weeks before to 5 weeks after calving) concentrations of plasma glucose and serum fructosamine, beta-hydroxybutyrate (beta OHB) and total proteins were determined. The observed Fser concentrations (271+/-55 mean value, range 152-423 mumol/l) were within the range reported in the literature, and showed a progressive and significant decrease after calving. Mean plasma glucose concentration was 60.6+/-5.0 (range 39.9-82.2) mg/dl increasing from week 3 before calving to the week of calving and then decreasing during the next 5 weeks of lactation. This decrease was coincident with inverse relationships between plasma glucose and milk yield (P=0.03) and serum beta OHB (P<0.001). Linear regression analysis performed between serum fructosamine and (a) plasma glucose concentration of the same sampling and (b) plasma glucose concentration of 1, 2 and 3 weeks preceding the sampling, did not show significant and systematizing positive correlations. Persistent hypoproteinaemias that could affect the fructosamine concentrations were not found: mean value and range of serum proteins was 6.3+/-1.0 and 4.8-7.8 g/dl, respectively, and no correlation was found between serum proteins and Fser (P=0.26). Results did not support the possibility of retrospective monitoring of the plasma glucose concentration by serum fructosamine in dairy cows in the transition period.

  6. A Simple Demonstration of Concrete Structural Health Monitoring Framework

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, Sankaran [Idaho National Lab. (INL), Idaho Falls, ID (United States); Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cai, Guowei [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nath, Paromita [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bao, Yanqing [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bru Brea, Jose Maria [Idaho National Lab. (INL), Idaho Falls, ID (United States); Koester, David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Adams, Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kosson, David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high confidence actionable information regarding structural integrity that supports operational and maintenance decisions. This ongoing research project is seeking to develop a probabilistic framework for health diagnosis and prognosis of aging concrete structures in a nuclear power plant subjected to physical, chemical, environment, and mechanical degradation. The proposed framework consists of four elements—damage modeling, monitoring, data analytics, and uncertainty quantification. This report describes a proof-of-concept example on a small concrete slab subjected to a freeze-thaw experiment that explores techniques in each of the four elements of the framework and their integration. An experimental set-up at Vanderbilt University’s Laboratory for Systems Integrity and Reliability is used to research effective combination of full-field techniques that include infrared thermography, digital image correlation, and ultrasonic measurement. The measured data are linked to the probabilistic framework: the thermography, digital image correlation data, and ultrasonic measurement data are used for Bayesian calibration of model parameters, for diagnosis of damage, and for prognosis of future damage. The proof-of-concept demonstration presented in this report highlights the significance of each element of the framework and their integration.

  7. Wireless sensor systems and methods, and methods of monitoring structures

    Science.gov (United States)

    Kunerth, Dennis C.; Svoboda, John M.; Johnson, James T.; Harding, L. Dean; Klingler, Kerry M.

    2007-02-20

    A wireless sensor system includes a passive sensor apparatus configured to be embedded within a concrete structure to monitor infiltration of contaminants into the structure. The sensor apparatus includes charging circuitry and a plurality of sensors respectively configured to measure environmental parameters of the structure which include information related to the infiltration of contaminants into the structure. A reader apparatus is communicatively coupled to the sensor apparatus, the reader apparatus being configured to provide power to the charging circuitry during measurements of the environmental parameters by the sensors. The reader apparatus is configured to independently interrogate individual ones of the sensors to obtain information measured by the individual sensors. The reader apparatus is configured to generate an induction field to energize the sensor apparatus. Information measured by the sensor apparatus is transmitted to the reader apparatus via a response signal that is superimposed on a return induction field generated by the sensor apparatus. Methods of monitoring structural integrity of the structure are also provided.

  8. Crystalline structures of poly(L-lactide) formed under pressure and structure transitions with heating

    DEFF Research Database (Denmark)

    Huang, Shaoyong; Li, Hongfei; Yu, Donghong;

    2013-01-01

    The isothermally crystallized poly(L-lactide) (PLLA) samples were obtained at 135 °C under pressures (Pc) ranging from 1 bar to 2.5 kbar. The crystalline structures, the structure transition, and thermal properties of the prepared samples were investigated by wide-angle X-ray diffraction (WAXD...... on the peculiarities of crystalline structure and crystallization behaviors, low and high pressure regions were revealed: disordered α crystal was formed in the high pressure region (>1 kbar). A layer located intermediate between crystalline and melt-like regions was observed, which finally took on crystalline order....... Reformation, disorder to order transformation, and recrystallization during heating completely changed the previous crystalline and stacking structure, a more stable crystalline structure was newly formed. The melting behaviors of samples indicate the crystalline and stacking structure formed under high...

  9. Crystalline structures of poly(L-lactide) formed under pressure and structure transitions with heating

    DEFF Research Database (Denmark)

    Huang, Shaoyong; Li, Hongfei; Yu, Donghong

    2013-01-01

    . Reformation, disorder to order transformation, and recrystallization during heating completely changed the previous crystalline and stacking structure, a more stable crystalline structure was newly formed. The melting behaviors of samples indicate the crystalline and stacking structure formed under high......The isothermally crystallized poly(L-lactide) (PLLA) samples were obtained at 135 °C under pressures (Pc) ranging from 1 bar to 2.5 kbar. The crystalline structures, the structure transition, and thermal properties of the prepared samples were investigated by wide-angle X-ray diffraction (WAXD......), real time synchrotron small-angle X-ray scattering (SR-SAXS) and differential scanning calorimetry (DSC) during this process. The structural parameters, such as the size of crystallites, the inverse spacing, the long periods and lamellae thicknesses decrease with pressure increasing. Based...

  10. Airborne Transducer Integrity under Operational Environment for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Mohammad Saleh Salmanpour

    2016-12-01

    Full Text Available This paper investigates the robustness of permanently mounted transducers used in airborne structural health monitoring systems, when exposed to the operational environment. Typical airliners operate in a range of conditions, hence, structural health monitoring (SHM transducer robustness and integrity must be demonstrated for these environments. A set of extreme temperature, altitude and vibration environment test profiles are developed using the existing Radio Technical Commission for Aeronautics (RTCA/DO-160 test methods. Commercially available transducers and manufactured versions bonded to carbon fibre reinforced polymer (CFRP composite materials are tested. It was found that the DuraAct transducer is robust to environmental conditions tested, while the other transducer types degrade under the same conditions.

  11. Pipelining in structural health monitoring wireless sensor network

    Science.gov (United States)

    Li, Xu; Dorvash, Siavash; Cheng, Liang; Pakzad, Shamim

    2010-04-01

    Application of wireless sensor network (WSN) for structural health monitoring (SHM), is becoming widespread due to its implementation ease and economic advantage over traditional sensor networks. Beside advantages that have made wireless network preferable, there are some concerns regarding their performance in some applications. In long-span Bridge monitoring the need to transfer data over long distance causes some challenges in design of WSN platforms. Due to the geometry of bridge structures, using multi-hop data transfer between remote nodes and base station is essential. This paper focuses on the performances of pipelining algorithms. We summarize several prevent pipelining approaches, discuss their performances, and propose a new pipelining algorithm, which gives consideration to both boosting of channel usage and the simplicity in deployment.

  12. Thermal sensitivity of Lamb waves for structural health monitoring applications.

    Science.gov (United States)

    Dodson, J C; Inman, D J

    2013-03-01

    One of the drawbacks of the current Lamb wave structural health monitoring methods are the false positives due to changing environmental conditions such as temperature. To create an environmental insensitive damage detection scheme, the physics of thermal effects on Lamb waves must be understood. Dispersion and thermal sensitivity curves for an isotropic plate with thermal stress and thermally varying elastic modulus are presented. The thermal sensitivity of dispersion curves is analytically developed and validated by experimental measurements. The group velocity thermal sensitivity highlights temperature insensitive features at two critical frequencies. The thermal sensitivity gives us insight to how temperature affects Lamb wave speeds in different frequency ranges and will help those developing structural health monitoring algorithms.

  13. Bayesian Computational Sensor Networks for Aircraft Structural Health Monitoring

    Science.gov (United States)

    2016-02-02

    emissions as well as delamination-dominated and fiber-dominated damage. The three frequency regions identified were 10 - 100 kHz, 100 - 250 kHz, and 250...the RD patterns can be used for Bayesian model accuracy assessment of the difference between a uniform grid layout of the nodes versus an irregular... grid due to error in node placement. SLAMBOT: Structural Health Monitoring Robot using Lamb Waves We developed the combination of a mobile robot and

  14. HISTORIC BIM: A NEW REPOSITORY FOR STRUCTURAL HEALTH MONITORING

    Directory of Open Access Journals (Sweden)

    F. Banfi

    2017-05-01

    Full Text Available Recent developments in Building Information Modelling (BIM technologies are facilitating the management of historic complex structures using new applications. This paper proposes a generative method combining the morphological and typological aspects of the historic buildings (H-BIM, with a set of monitoring information. This combination of 3D digital survey, parametric modelling and monitoring datasets allows for the development of a system for archiving and visualizing structural health monitoring (SHM data (Fig. 1. The availability of a BIM database allows one to integrate a different kind of data stored in different ways (e.g. reports, tables, graphs, etc. with a representation directly connected to the 3D model of the structure with appropriate levels of detail (LoD. Data can be interactively accessed by selecting specific objects of the BIM, i.e. connecting the 3D position of the sensors installed with additional digital documentation. Such innovative BIM objects, which form a new BIM family for SHM, can be then reused in other projects, facilitating data archiving and exploitation of data acquired and processed. The application of advanced modeling techniques allows for the reduction of time and costs of the generation process, and support cooperation between different disciplines using a central workspace. However, it also reveals new challenges for parametric software and exchange formats. The case study presented is the medieval bridge Azzone Visconti in Lecco (Italy, in which multi-temporal vertical movements during load testing were integrated into H-BIM.

  15. Historic Bim: a New Repository for Structural Health Monitoring

    Science.gov (United States)

    Banfi, F.; Barazzetti, L.; Previtali, M.; Roncoroni, F.

    2017-05-01

    Recent developments in Building Information Modelling (BIM) technologies are facilitating the management of historic complex structures using new applications. This paper proposes a generative method combining the morphological and typological aspects of the historic buildings (H-BIM), with a set of monitoring information. This combination of 3D digital survey, parametric modelling and monitoring datasets allows for the development of a system for archiving and visualizing structural health monitoring (SHM) data (Fig. 1). The availability of a BIM database allows one to integrate a different kind of data stored in different ways (e.g. reports, tables, graphs, etc.) with a representation directly connected to the 3D model of the structure with appropriate levels of detail (LoD). Data can be interactively accessed by selecting specific objects of the BIM, i.e. connecting the 3D position of the sensors installed with additional digital documentation. Such innovative BIM objects, which form a new BIM family for SHM, can be then reused in other projects, facilitating data archiving and exploitation of data acquired and processed. The application of advanced modeling techniques allows for the reduction of time and costs of the generation process, and support cooperation between different disciplines using a central workspace. However, it also reveals new challenges for parametric software and exchange formats. The case study presented is the medieval bridge Azzone Visconti in Lecco (Italy), in which multi-temporal vertical movements during load testing were integrated into H-BIM.

  16. Feature Comparison in Structural Health Monitoring of a Vehicle Crane

    Directory of Open Access Journals (Sweden)

    J. Kullaa

    2008-01-01

    Full Text Available Vibration-based structural health monitoring of a vehicle crane was studied. The performance of different features to detect damage was investigated after eliminating the normal operational variations using factor analysis. Using eight accelerometers, ten AR parameters from each record were identified for damage detection. Also transmissibilities between sensors were estimated. Damage was introduced with additional masses at different locations of the structure. All damage cases could be detected from either features using control charts, but transmissibilities proved to be more sensitive to damage than the AR coefficients.

  17. Structure, Hydrodynamics, and Phase Transition of Freely Suspended Liquid Crystals

    Science.gov (United States)

    Clark, Noel A.

    2000-01-01

    Smectic liquid crystals are phases of rod shaped molecules organized into one dimensionally (1D) periodic arrays of layers, each layer being between one and two molecular lengths thick. In the least ordered smectic phases, the smectics A and C, each layer is a two dimensional (2D) liquid. Additionally there are a variety of more ordered smectic phases having hexatic short range translational order or 2D crystalline quasi long range translational order within the layers. The inherent fluid-layer structure and low vapor pressure of smectic liquid crystals enable the long term stabilization of freely suspended, single component, layered fluid films as thin as 30A, a single molecular layer. The layering forces the films to be an integral number of smectic layers thick, quantizing their thickness in layer units and forcing a film of a particular number of layers to be physically homogeneous with respect to its layer structure over its entire area. Optical reflectivity enables the precise determination of the number of layers. These ultrathin freely suspended liquid crystal films are structures of fundamental interest in condensed matter and fluid physics. They are the thinnest known stable condensed phase fluid structures and have the largest surface-to-volume ratio of any stable fluid preparation, making them ideal for the study of the effects of reduced dimensionality on phase behavior and on fluctuation and interface phenomena. Their low vapor pressure and quantized thickness enable the effective use of microgravity to extend the study of basic capillary phenomena to ultrathin fluid films. Freely suspended films have been a wellspring of new liquid crystal physics. They have been used to provide unique experimental conditions for the study of condensed phase transitions in two dimensions. They are the only system in which the hexatic has been unambiguously identified as a phase of matter, and the only physical system in which fluctuations of a 2D XY system and

  18. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications

    Directory of Open Access Journals (Sweden)

    Raffaella Di Sante

    2015-07-01

    Full Text Available In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques.

  19. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications.

    Science.gov (United States)

    Di Sante, Raffaella

    2015-07-30

    In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS) have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques.

  20. Fiber Optic Thermal Health Monitoring of Aerospace Structures and Materials

    Science.gov (United States)

    Wu, Meng-Chou; Winfree, William P.; Allison, Sidney G.

    2009-01-01

    A new technique is presented for thermographic detection of flaws in materials and structures by performing temperature measurements with fiber Bragg gratings. Individual optical fibers with multiple Bragg gratings employed as surface temperature sensors were bonded to the surfaces of structures with subsurface defects or thickness variations. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. The data obtained from grating sensors were further analyzed with thermal modeling to reveal particular characteristics of the interested areas. These results were found to be consistent with those from conventional thermography techniques. Limitations of the technique were investigated using both experimental and numerical simulation techniques. Methods for performing in-situ structural health monitoring are discussed.

  1. Redirection of Lamb Waves for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    W. H. Ong

    2012-01-01

    Full Text Available Currently, structures are designed without structural health monitoring (SHM in mind. It is proposed that SHM should be addressed at the design stage of new structures. This paper explores the benefit which can be gained from such considerations. The scope encompasses Lamb-wave-based SHM and a given fatigue critical location (FCL. Optimization is performed using specialised ray tracing. A case study is carried out using a specimen that simulates a hard-to-inspect region in a fuel vent hole in wings structures of aircraft. This work will report on the potential use of the focussing of stress wave to improve detectability of defect in this hard-to-inspect location. Following optimization, results are produced numerically and experimentally. The results revealed sensitivity to damage is nearly doubled while minimum detectable damage size is significantly decreased. As a result, this study brings together an assortment of specialised tools to form a workflow ready for implementation.

  2. Wireless sensing experiments for structural vibration monitoring of offshore platform

    Institute of Scientific and Technical Information of China (English)

    Yan YU; Jinping OU

    2008-01-01

    In order to validate the feasibility of applying wireless sensing technique to structural monitoring of offshore platform,the experiment of wireless sensor network on offshore platform is presented in this paper.First,wireless sensor network and its topology structure is put forward,and the design of sensor nodes,base station,communication protocol is discussed according to selfdeveloped wireless sensor network.Second,true offshore platform and its experimental model are introduced.Finally,wireless sensing experiment for offshore platform structure is completed and the analysis of the experimental result is given.The research shows that wireless sensor network applied to offshore platform can reflect the vibration of the structure;the sensor nodes are fixed and removed expediently,which saves the cost of signal line as well as installation time.

  3. Crystal structure and phase transition of thermoelectric SnSe.

    Science.gov (United States)

    Sist, Mattia; Zhang, Jiawei; Brummerstedt Iversen, Bo

    2016-06-01

    Tin selenide-based functional materials are extensively studied in the field of optoelectronic, photovoltaic and thermoelectric devices. Specifically, SnSe has been reported to have an ultrahigh thermoelectric figure of merit of 2.6 ± 0.3 in the high-temperature phase. Here we report the evolution of lattice constants, fractional coordinates, site occupancy factors and atomic displacement factors with temperature by means of high-resolution synchrotron powder X-ray diffraction measured from 100 to 855 K. The structure is shown to be cation defective with a Sn content of 0.982 (4). The anisotropy of the thermal parameters of Sn becomes more pronounced approaching the high-temperature phase transition (∼ 810 K). Anharmonic Gram-Charlier parameters have been refined, but data from single-crystal diffraction appear to be needed to firmly quantify anharmonic features. Based on modelling of the atomic displacement parameters the Debye temperature is found to be 175 (4) K. Conflicting reports concerning the different coordinate system settings in the low-temperature and high-temperature phases are discussed. It is also shown that the high-temperature Cmcm phase is not pseudo-tetragonal as commonly assumed.

  4. Phase Transition and Structure of Silver Azide at High Pressure

    Energy Technology Data Exchange (ETDEWEB)

    D Hou; F Zhang; C Ji; T Hannon; H Zhu; J Wu; V Levitas; Y Ma

    2011-12-31

    Silver azide (AgN{sub 3}) was compressed up to 51.3 GPa. The results reveal a reversible second-order orthorhombic-to-tetragonal phase transformation starting from ambient pressure and completing at 2.7 GPa. The phase transition is accompanied by a proximity of cell parameters a and b, a 3{sup o} rotation of azide anions, and a change of coordination number from 4-4 (four short, four long) to eight fold. The crystal structure of the high pressure phase is determined to be in I4/mcm space group, with Ag at 4a, N{sub 1} at 4d, and N{sub 2} at 8h Wyckoff positions. Both of the two phases have anisotropic compressibility: the orthorhombic phase exhibits an anomalous expansion under compression along a-axis and is more compressive along b-axis than c-axis; the tetragonal phase is more compressive along the interlayer direction than the intralayer directions. The bulk moduli of the orthorhombic and tetragonal phases are determined to be K{sub OT} = 39{+-}5 GPa with K{sub OT'} = 10{+-}7 and K{sub OT} = 57 {+-}2 GPa with K{sub OT'} = 6.6{+-}0.2, respectively.

  5. Monitoring the bending and twist of morphing structures

    Science.gov (United States)

    Smoker, J.; Baz, A.

    2008-03-01

    This paper presents the development of the theoretical basis for the design of sensor networks for determining the 2-dimensioal shape of morphing structures by monitoring simultaneously the bending and twist deflections. The proposed development is based on the non-linear theory of finite elements to extract the transverse linear and angular deflections of a plate-like structure. The sensors outputs are wirelessly transmitted to the command unit to simultaneously compute maps of the linear and angular deflections and maps of the strain distribution of the entire structure. The deflection and shape information are required to ascertain that the structure is properly deployed and that its surfaces are operating wrinkle-free. The strain map ensures that the structure is not loaded excessively to adversely affect its service life. The developed theoretical model is validated experimentally using a prototype of a variable cambered span morphing structure provided with a network of distributed sensors. The structure/sensor network system is tested under various static conditions to determine the response characteristics of the proposed sensor network as compared to other conventional sensor systems. The presented theoretical and experimental techniques can have a great impact on the safe deployment and effective operation of a wide variety of morphing and inflatable structures such as morphing aircraft, solar sails, inflatable wings, and large antennas.

  6. Optoelectronic leak detection system for monitoring subsea structures

    Science.gov (United States)

    Moodie, D.,; Costello, L.; McStay, D.

    2010-04-01

    Leak detection and monitoring on subsea structures is an area of increasing interest for the detection and monitoring of production and control fluids for the oil and gas industry. Current techniques such as capacitive (dielectric) based measurement or passive acoustic systems have limitations and we report here an optoelectronic solution based upon fluorescence spectroscopy to provide a permanent monitoring solution. We report here a new class of optoelectronic subsea sensor for permanent, real time monitoring of hydrocarbon production systems. The system is capable of detecting small leaks of production or hydraulic fluid (ppm levels) over distances of 4-5 meters in a subsea environment. Ideally systems designed for such applications should be capable of working at depths of up to 3000m unattended for periods of 20+ years. The system uses advanced single emitter LED technology to meet the challenges of lifetime, power consumption, spatial coverage and delivery of a cost effective solution. The system is designed for permanent deployment on Christmas tree (XT), subsea processing systems (SPS) and associated equipment to provide enhanced leak detection capability.

  7. Health monitoring of composite structures throughout the life cycle

    Science.gov (United States)

    Chilles, James; Croxford, Anthony; Bond, Ian

    2016-04-01

    This study demonstrates the capability of inductively coupled piezoelectric sensors to monitor the state of health throughout the lifetime of composite structures. A single sensor which generated guided elastic waves was embedded into the stacking sequence of a large glass fiber reinforced plastic plate. The progress of cure was monitored by measuring variations in the amplitude and velocity of the waveforms reflected from the plate's edges. Baseline subtraction techniques were then implemented to detect barely visible impact damage (BVID) created by a 10 Joule impact, at a distance of 350 mm from the sensor embedded in the cured plate. To investigate the influence of mechanical loading on sensor performance, a single sensor was embedded within a glass fiber panel and subjected to tensile load. The panel was loaded up to a maximum strain of 1%, in increments of 0.1% strain. Guided wave measurements were recorded by the embedded sensor before testing, when the panel was under load, and after testing. The ultrasonic measurements showed a strong dependence on the applied load. Upon removal of the mechanical load the guided wave measurements returned to their original values recorded before testing. The results in this work show that embedded piezoelectric sensors can be used to monitor the state of health throughout the life-cycle of composite parts, even when subjected to relatively large strains. However the influence of load on guided wave measurements has implications for online monitoring using embedded piezoelectric transducers.

  8. Crack monitoring capability of plastic optical fibers for concrete structures

    Science.gov (United States)

    Zhao, Jinlei; Bao, Tengfei; Chen, Rui

    2015-08-01

    Optical fibers have been widely used in structural health monitoring. Traditional silica fibers are easy to break in field applications due to their brittleness. Thus, silica fibers are proposed to be replaced by plastic optical fibers (POFs) in crack monitoring in this study. Moreover, considering the uncertainty of crack propagation direction in composite materials, the influence of the angles between fibers and cracks on the monitoring capability of plastic optical fibers is studied. A POF sensing device was designed and the relationship between light intensity loss and crack width under different fiber/crack angles was first measured through the device. Then, three-point bend tests were conducted on concrete beams. POFs were glued to the bottom surfaces of the beams and light intensity loss with crack width was measured. Experimental results showed that light intensity loss in plastic optical fibers increased with crack width increase. Therefore, application of plastic optical fibers in crack monitoring is feasible. Moreover, the results also showed that the sensitivity of the POF crack sensor decreased with the increase of angles between fibers and cracks.

  9. Carbon Nanotube-Based Structural Health Monitoring Sensors

    Science.gov (United States)

    Wincheski, Russell; Jordan, Jeffrey; Oglesby, Donald; Watkins, Anthony; Patry, JoAnne; Smits, Jan; Williams, Phillip

    2011-01-01

    Carbon nanotube (CNT)-based sensors for structural health monitoring (SHM) can be embedded in structures of all geometries to monitor conditions both inside and at the surface of the structure to continuously sense changes. These CNTs can be manipulated into specific orientations to create small, powerful, and flexible sensors. One of the sensors is a highly flexible sensor for crack growth detection and strain field mapping that features a very dense and highly ordered array of single-walled CNTs. CNT structural health sensors can be mass-produced, are inexpensive, can be packaged in small sizes (0.5 micron(sup 2)), require less power than electronic or piezoelectric transducers, and produce less waste heat per square centimeter than electronic or piezoelectric transducers. Chemically functionalized lithographic patterns are used to deposit and align the CNTs onto metallic electrodes. This method consistently produces aligned CNTs in the defined locations. Using photo- and electron-beam lithography, simple Cr/Au thin-film circuits are patterned onto oxidized silicon substrates. The samples are then re-patterned with a CNT-attracting, self-assembled monolayer of 3-aminopropyltriethoxysilane (APTES) to delineate the desired CNT locations between electrodes. During the deposition of the solution-suspended single- wall CNTs, the application of an electric field to the metallic contacts causes alignment of the CNTs along the field direction. This innovation is a prime candidate for smart skin technologies with applications ranging from military, to aerospace, to private industry.

  10. Passive and Active Sensing Technologies for Structural Health Monitoring

    Science.gov (United States)

    Do, Richard

    A combination of passive and active sensing technologies is proposed as a structural health monitoring solution for several applications. Passive sensing is differentiated from active sensing in that with the former, no energy is intentionally imparted into the structure under test; sensors are deployed in a pure detection mode for collecting data mined for structural health monitoring purposes. In this thesis, passive sensing using embedded fiber Bragg grating optical strain gages was used to detect varying degrees of impact damage using two different classes of features drawn from traditional spectral analysis and auto-regressive time series modeling. The two feature classes were compared in detail through receiver operating curve performance analysis. The passive detection problem was then augmented with an active sensing system using ultrasonic guided waves (UGWs). This thesis considered two main challenges associated with UGW SHM including in-situ wave propagation property determination and thermal corruption of data. Regarding determination of wave propagation properties, of which dispersion characteristics are the most important, a new dispersion curve extraction method called sparse wavenumber analysis (SWA) was experimentally validated. Also, because UGWs are extremely sensitive to ambient temperature changes on the structure, it significantly affects the wave propagation properties by causing large errors in the residual error in the processing of the UGWs from an array. This thesis presented a novel method that compensates for uniform temperature change by considering the magnitude and phase of the signal separately and applying a scalable transformation.

  11. Structural health monitoring feature design by genetic programming

    Science.gov (United States)

    Harvey, Dustin Y.; Todd, Michael D.

    2014-09-01

    Structural health monitoring (SHM) systems provide real-time damage and performance information for civil, aerospace, and other high-capital or life-safety critical structures. Conventional data processing involves pre-processing and extraction of low-dimensional features from in situ time series measurements. The features are then input to a statistical pattern recognition algorithm to perform the relevant classification or regression task necessary to facilitate decisions by the SHM system. Traditional design of signal processing and feature extraction algorithms can be an expensive and time-consuming process requiring extensive system knowledge and domain expertise. Genetic programming, a heuristic program search method from evolutionary computation, was recently adapted by the authors to perform automated, data-driven design of signal processing and feature extraction algorithms for statistical pattern recognition applications. The proposed method, called Autofead, is particularly suitable to handle the challenges inherent in algorithm design for SHM problems where the manifestation of damage in structural response measurements is often unclear or unknown. Autofead mines a training database of response measurements to discover information-rich features specific to the problem at hand. This study provides experimental validation on three SHM applications including ultrasonic damage detection, bearing damage classification for rotating machinery, and vibration-based structural health monitoring. Performance comparisons with common feature choices for each problem area are provided demonstrating the versatility of Autofead to produce significant algorithm improvements on a wide range of problems.

  12. Impedance based sensor technology to monitor stiffness of biological structures

    Science.gov (United States)

    Annamdas, Venu Gopal Madhav; Annamdas, Kiran Kishore Kumar

    2010-04-01

    In countries like USA or Japan it is not so uncommon to have wooden structures in their homes. However, metals and its alloys are the most widely used engineering materials in construction of any military or civil structure. Revisiting natural disasters like the recent Haiti earthquake (12 Jan 2010) or Katrina (cyclones) reminds the necessity to have better housing infrastructure with robust monitoring systems. Traditionally wood is accepted as excellent rehabilitation material, after any disaster. The recycling materials extracted from in-organic, biodegradable wastes, also can be used for rehabilitation. The key issue which dampens the life of these rehabilitated structure including green materials (like wood) is unnecessary deposits (nails, screws, bolts etc)/damages due to insect attack. Thus, a few health monitoring techniques have emerged in the recent past. Electromechanical Impedance technique is one such technique, which is simple but robust to detect variations in the integrity of structures. In this paper, impedance based piezoceramic sensor was bonded on wooden sample, which was used to study changes due to metallic (steel nails) deposits at various locations. A study of weight deposits on aluminum plate was used for comparisons.

  13. Automated structural health monitoring based on adaptive kernel spectral clustering

    Science.gov (United States)

    Langone, Rocco; Reynders, Edwin; Mehrkanoon, Siamak; Suykens, Johan A. K.

    2017-06-01

    Structural health monitoring refers to the process of measuring damage-sensitive variables to assess the functionality of a structure. In principle, vibration data can capture the dynamics of the structure and reveal possible failures, but environmental and operational variability can mask this information. Thus, an effective outlier detection algorithm can be applied only after having performed data normalization (i.e. filtering) to eliminate external influences. Instead, in this article we propose a technique which unifies the data normalization and damage detection steps. The proposed algorithm, called adaptive kernel spectral clustering (AKSC), is initialized and calibrated in a phase when the structure is undamaged. The calibration process is crucial to ensure detection of early damage and minimize the number of false alarms. After the calibration, the method can automatically identify new regimes which may be associated with possible faults. These regimes are discovered by means of two complementary damage (i.e. outlier) indicators. The proposed strategy is validated with a simulated example and with real-life natural frequency data from the Z24 pre-stressed concrete bridge, which was progressively damaged at the end of a one-year monitoring period.

  14. Ferroelectric thin-film active sensors for structural health monitoring

    Science.gov (United States)

    Lin, Bin; Giurgiutiu, Victor; Yuan, Zheng; Liu, Jian; Chen, Chonglin; Jiang, Jiechao; Bhalla, Amar S.; Guo, Ruyan

    2007-04-01

    Piezoelectric wafer active sensors (PWAS) have been proven a valuable tool in structural health monitoring. Piezoelectric wafer active sensors are able to send and receive guided Lamb/Rayleigh waves that scan the structure and detect the presence of incipient cracks and structural damage. In-situ thin-film active sensor deposition can eliminate the bonding layer to improve the durability issue and reduce the acoustic impedance mismatch. Ferroelectric thin films have been shown to have piezoelectric properties that are close to those of single-crystal ferroelectrics but the fabrication of ferroelectric thin films on structural materials (steel, aluminum, titanium, etc.) has not been yet attempted. In this work, in-situ fabrication method of piezoelectric thin-film active sensors arrays was developed using the nano technology approach. Specification for the piezoelectric thin-film active sensors arrays was based on electro-mechanical-acoustical model. Ferroelectric BaTiO3 (BTO) thin films were successfully deposited on Ni tapes by pulsed laser deposition under the optimal synthesis conditions. Microstructural studies by X-ray diffractometer and transmission electron microscopy reveal that the as-grown BTO thin films have the nanopillar structures with an average size of approximately 80 nm in diameter and the good interface structures with no inter-diffusion or reaction. The dielectric and ferroelectric property measurements exhibit that the BTO films have a relatively large dielectric constant, a small dielectric loss, and an extremely large piezoelectric response with a symmetric hysteresis loop. The research objective is to develop the fabrication and optimum design of thin-film active sensor arrays for structural health monitoring applications. The short wavelengths of the micro phased arrays will permit the phased-array imaging of smaller parts and smaller damage than is currently not possible with existing technology.

  15. Structural transitions of CTAB micelles in a protic ionic liquid.

    Science.gov (United States)

    López-Barrón, Carlos R; Wagner, Norman J

    2012-09-04

    Micellar solutions of hexadecyltrimethylammonium bromide (CTAB) in a protic ionic liquid, ethylammonium nitrate (EAN), are studied by shear rheology, polarizing optical microscopy (POM), conductivity measurements, and small angle neutron scattering (SANS). Three concentration regimes are examined: A dilute regime (with concentrations [CTAB] concentrated regime (45 wt % conductivity is not sensitive to the L(1)-Hex transition, which corroborates the absence of topological transitions.

  16. The role of structural criteria in transitions theory

    NARCIS (Netherlands)

    Jagers op Akkerhuis, Gerard A.J.M.

    2016-01-01

    The Major Evolutionary Transitions theory of Szathmáry and Maynard Smith is famous for its contribution to the understanding of complex wholes in biology. Typical for Major Evolutionary Transitions theory is the select use of functional criteria, notably, cooperation, competition reduction and re

  17. Statistical Pattern-Based Assessment of Structural Health Monitoring Data

    Directory of Open Access Journals (Sweden)

    Mohammad S. Islam

    2014-01-01

    Full Text Available In structural health monitoring (SHM, various sensors are installed at critical locations of a structure. The signals from sensors are either continuously or periodically analyzed to determine the state and performance of the structure. An objective comparison of the sensor data at different time ranges is essential for assessing the structural condition or excessive load experienced by the structure which leads to potential damage in the structure. The objectives of the current study are to establish a relationship between the data from various sensors to estimate the reliability of the data and potential damage using the statistical pattern matching techniques. In order to achieve these goals, new methodologies based on statistical pattern recognition techniques have been developed. The proposed methodologies have been developed and validated using sensor data obtained from an instrumented bridge and road test data from heavy vehicles. The application of statistical pattern matching techniques are relatively new in SHM data interpretation and current research demonstrates that it has high potential in assessing structural conditions, especially when the data are noisy and susceptible to environmental disturbances.

  18. Printing of microstructure strain sensor for structural health monitoring

    Science.gov (United States)

    Le, Minh Quyen; Ganet, Florent; Audigier, David; Capsal, Jean-Fabien; Cottinet, Pierre-Jean

    2017-05-01

    Recent advances in microelectronics and materials should allow the development of integrated sensors with transduction properties compatible with being printed directly onto a 3D substrate, especially metallic and polymer substrates. Inorganic and organic electronic materials in microstructured and nanostructured forms, intimately integrated in ink, offer particularly attractive characteristics, with realistic pathways to sophisticated embodiments. Here, we report on these strategies and demonstrate the potential of 3D-printed microelectronics based on a structural health monitoring (SHM) application for the precision weapon systems. We show that our printed sensors can be employed in non-invasive, high-fidelity and continuous strain monitoring of handguns, making it possible to implement printed sensors on a 3D substrate in either SHM or remote diagnostics. We propose routes to commercialization and novel device opportunities and highlight the remaining challenges for research.

  19. Investigation of Wireless Sensor Networks for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2012-01-01

    Full Text Available Wireless sensor networks (WSNs are one of the most able technologies in the structural health monitoring (SHM field. Through intelligent, self-organising means, the contents of this paper will test a variety of different objects and different working principles of sensor nodes connected into a network and integrated with data processing functions. In this paper the key issues of WSN applied in SHM are discussed, including the integration of different types of sensors with different operational modalities, sampling frequencies, issues of transmission bandwidth, real-time ability, and wireless transmitter frequency. Furthermore, the topology, data fusion, integration, energy saving, and self-powering nature of different systems will be investigated. In the FP7 project “Health Monitoring of Offshore Wind Farms,” the above issues are explored.

  20. Wake-up transceivers for structural health monitoring of bridges

    Science.gov (United States)

    Kumberg, T.; Kokert, J.; Younesi, V.; Koenig, S.; Reindl, L. M.

    2016-04-01

    In this article we present a wireless sensor network to monitor the structural health of a large-scale highway bridge in Germany. The wireless sensor network consists of several sensor nodes that use wake-up receivers to realize latency free and low-power communication. The sensor nodes are either equipped with very accurate tilt sensor developed by Northrop Grumman LITEF GmbH or with a Novatel OEM615 GNSS receiver. Relay nodes are required to forward measurement data to a base station located on the bridge. The base station is a gateway that transmits the local measurement data to a remote server where it can be further analyzed and processed. Further on, we present an energy harvesting system to supply the energy demanding GNSS sensor nodes to realize long term monitoring.

  1. Fiber Optic Sensors for Structural Health Monitoring of Air Platforms

    Directory of Open Access Journals (Sweden)

    Jianping Yao

    2011-03-01

    Full Text Available Aircraft operators are faced with increasing requirements to extend the service life of air platforms beyond their designed life cycles, resulting in heavy maintenance and inspection burdens as well as economic pressure. Structural health monitoring (SHM based on advanced sensor technology is potentially a cost-effective approach to meet operational requirements, and to reduce maintenance costs. Fiber optic sensor technology is being developed to provide existing and future aircrafts with SHM capability due to its unique superior characteristics. This review paper covers the aerospace SHM requirements and an overview of the fiber optic sensor technologies. In particular, fiber Bragg grating (FBG sensor technology is evaluated as the most promising tool for load monitoring and damage detection, the two critical SHM aspects of air platforms. At last, recommendations on the implementation and integration of FBG sensors into an SHM system are provided.

  2. Low-temperature structural phase transition in deuterated and protonated lithium acetate dihydrate

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, F., E-mail: schroeder@kristall.uni-frankfurt.d [Goethe-Universitaet Frankfurt am Main, Institut fuer Geowissenschaften, Abt. Kristallographie, Altenhoeferallee 1, 60438 Frankfurt am Main (Germany); Winkler, B.; Haussuehl, E. [Goethe-Universitaet Frankfurt am Main, Institut fuer Geowissenschaften, Abt. Kristallographie, Altenhoeferallee 1, 60438 Frankfurt am Main (Germany); Cong, P.T.; Wolf, B. [Goethe-Universitaet Frankfurt am Main, Physikalisches Institut, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main (Germany); Avalos-Borja, M. [Instituto Potosino de Investigacion Cientifica y Tecnologica, A.C. Camino a la Presa San Jose 2055, Col. Lomas 4 seccion CP 78216, San Luis Potosi (Mexico); Quilichini, M.; Hennion, B. [Laboratoire Leon Brillouin, CEN Saclay, 91191 Gif-sur-Yvette (France)

    2010-08-15

    Heat capacity measurements of protonated lithium acetate dihydrate show a structural phase transition at T = 12 K. This finding is in contrast to earlier work, where it was thought that only the deuterated compound undergoes a low temperature structural phase transition. This finding is confirmed by low temperature ultrasound spectroscopy, where the structural phase transition is associated with a velocity decrease of the ultrasonic waves, i.e. with an elastic softening. We compare the thermodynamic properties of the protonated and deuterated compounds and discuss two alternatives for the mechanism of the phase transition based on the thermal expansion measurements.

  3. Networked Computing in Wireless Sensor Networks for Structural Health Monitoring

    CERN Document Server

    Jindal, Apoorva

    2010-01-01

    This paper studies the problem of distributed computation over a network of wireless sensors. While this problem applies to many emerging applications, to keep our discussion concrete we will focus on sensor networks used for structural health monitoring. Within this context, the heaviest computation is to determine the singular value decomposition (SVD) to extract mode shapes (eigenvectors) of a structure. Compared to collecting raw vibration data and performing SVD at a central location, computing SVD within the network can result in significantly lower energy consumption and delay. Using recent results on decomposing SVD, a well-known centralized operation, into components, we seek to determine a near-optimal communication structure that enables the distribution of this computation and the reassembly of the final results, with the objective of minimizing energy consumption subject to a computational delay constraint. We show that this reduces to a generalized clustering problem; a cluster forms a unit on w...

  4. Active sensors for health monitoring of aging aerospace structures

    Energy Technology Data Exchange (ETDEWEB)

    GIURGIUTIU,VICTOR; REDMOND,JAMES M.; ROACH,DENNIS P.; RACKOW,KIRK A.

    2000-02-29

    A project to develop non-intrusive active sensors that can be applied on existing aging aerospace structures for monitoring the onset and progress of structural damage (fatigue cracks and corrosion) is presented. The state of the art in active sensors structural health monitoring and damage detection is reviewed. Methods based on (a) elastic wave propagation and (b) electro-mechanical (E/M) impedance technique are cited and briefly discussed. The instrumentation of these specimens with piezoelectric active sensors is illustrated. The main detection strategies (E/M impedance for local area detection and wave propagation for wide area interrogation) are discussed. The signal processing and damage interpretation algorithms are tuned to the specific structural interrogation method used. In the high-frequency E/M impedance approach, pattern recognition methods are used to compare impedance signatures taken at various time intervals and to identify damage presence and progression from the change in these signatures. In the wave propagation approach, the acousto-ultrasonic methods identifying additional reflection generated from the damage site and changes in transmission velocity and phase are used. Both approaches benefit from the use of artificial intelligence neural networks algorithms that can extract damage features based on a learning process. Design and fabrication of a set of structural specimens representative of aging aerospace structures is presented. Three built-up specimens (pristine, with cracks, and with corrosion damage) are used. The specimen instrumentation with active sensors fabricated at the University of South Carolina is illustrated. Preliminary results obtained with the E/M impedance method on pristine and cracked specimens are presented.

  5. Health monitoring of aeronautical structures based on vibrations measurements

    Science.gov (United States)

    Bovio, Igor; Lecce, Leonardo

    2006-03-01

    Purpose of the paper is to present an innovative application inside the Non Destructive Testing field based on vibrations measurements, developed by the authors during the last three years, and already tested for analysing damage of many structural elements. The proposed new method is based on the acquisition and comparison of Frequency Response Functions (FRFs) of the monitored structure before and after an occurred damage. Structural damage modify the dynamical behaviour of the structure such as mass, stiffened and damping, and consequently the FRFs of the damaged structure in comparison with the FRFs of the sound structure, making possible to identify, to localize and quantify a structural damage. The activities, presented in the paper, mostly focused on a new FRFs processing technique based on the determining of a representative "Damage Index" for identifying and analysing damage both on real scale aeronautical structural components, like large-scale fuselage reinforced panels, and on aeronautical composite panels. Besides it has been carried out a dedicated neural network algorithm aiming at obtaining a "recognition-based learning"; this kind of learning methodology permits to train the neural network in order to let it recognises only "positive" examples discarding as a consequence the "negative" ones. Within the structural NDT a "positive" example means "healthy" state of the analysed structural component and, obviously, a "negative" one means a "damaged" or perturbed state. From an architectural point of view piezoceramic patches have been tested as actuators and sensors. Besides it has been used a laser-scanning vibrometer system to validate the behaviour of the piezoceramic patches.

  6. Smart Sensing Technologies for Structural Health Monitoring of Civil Engineering Structures

    Directory of Open Access Journals (Sweden)

    M. Sun

    2010-01-01

    Full Text Available Structural Health Monitoring (SHM aims to develop automated systems for the continuous monitoring, inspection, and damage detection of structures with minimum labour involvement. The first step to set up a SHM system is to incorporate a level of structural sensing capability that is reliable and possesses long term stability. Smart sensing technologies including the applications of fibre optic sensors, piezoelectric sensors, magnetostrictive sensors and self-diagnosing fibre reinforced composites, possess very important capabilities of monitoring various physical or chemical parameters related to the health and therefore, durable service life of structures. In particular, piezoelectric sensors and magnetorestrictive sensors can serve as both sensors and actuators, which make SHM to be an active monitoring system. Thus, smart sensing technologies are now currently available, and can be utilized to the SHM of civil engineering structures. In this paper, the application of smart materials/sensors for the SHM of civil engineering structures is critically reviewed. The major focus is on the evaluations of laboratory and field studies of smart materials/sensors in civil engineering structures.

  7. The european primary care monitor: structure, process and outcome indicators

    Directory of Open Access Journals (Sweden)

    Wilson Andrew

    2010-10-01

    Full Text Available Abstract Background Scientific research has provided evidence on benefits of well developed primary care systems. The relevance of some of this research for the European situation is limited. There is currently a lack of up to date comprehensive and comparable information on variation in development of primary care, and a lack of knowledge of structures and strategies conducive to strengthening primary care in Europe. The EC funded project Primary Health Care Activity Monitor for Europe (PHAMEU aims to fill this gap by developing a Primary Care Monitoring System (PC Monitor for application in 31 European countries. This article describes the development of the indicators of the PC Monitor, which will make it possible to create an alternative model for holistic analyses of primary care. Methods A systematic review of the primary care literature published between 2003 and July 2008 was carried out. This resulted in an overview of: (1 the dimensions of primary care and their relevance to outcomes at (primary health system level; (2 essential features per dimension; (3 applied indicators to measure the features of primary care dimensions. The indicators were evaluated by the project team against criteria of relevance, precision, flexibility, and discriminating power. The resulting indicator set was evaluated on its suitability for Europe-wide comparison of primary care systems by a panel of primary care experts from various European countries (representing a variety of primary care systems. Results The developed PC Monitor approaches primary care in Europe as a multidimensional concept. It describes the key dimensions of primary care systems at three levels: structure, process, and outcome level. On structure level, it includes indicators for governance, economic conditions, and workforce development. On process level, indicators describe access, comprehensiveness, continuity, and coordination of primary care services. On outcome level, indicators

  8. The single path rotational structure of n-photon transitions in diatomic molecules

    Science.gov (United States)

    Maïnos, C.; Castex, M. C.

    The present work considers the n-photon rovibronic transitions in the case where some predominant molecular path is present. Each molecular path produces a distinct rotational structure. The intensity of any rotational line as well the polarization intensity ratio are derived. A single path, relative weighting tensor is introduced which describes the influence of the molecular transitional path on the rotational structure.

  9. Dynamic monitoring of engineering structures as a key element of its technical security

    Directory of Open Access Journals (Sweden)

    Patrikeev Aleksandr Vladimirovich

    2014-03-01

    Full Text Available On an example of a complex engineering structure with aerodynamically unfavorable constructive form, equipped with mechanisms dampers, the results of long-term observations of the oscillation frequency under the influence of wind loads were reviewed. The experimental dependence of the first tone oscillation frequency on time for this structure is shown. The hypothesis on the causes of frequency oscillations change in engineering structures in time is proposed. The experimental data confirms this hypothesis. The results of a comparison of the experimental data for long-term observations with the oscillation frequency in accordance with the safety criteria of GOST 31937-2011 “Buildings and Constructions. Rules of inspection and monitoring of the technical condition” are shown. It has been shown that the results of comparison indicate technical safety of the whole object. It is offered to use dynamic monitoring systems for technically complex heavy-duty engineering structures for early detection of the transition beginning of the control object to the limited functional or emergency condition.

  10. Structural and Electrochemical Characterization of Lithium Transition Metal Phosphates

    Science.gov (United States)

    Hashambhoy, Ayesha Maria

    The lithium ion battery has emerged as one of the most promising hybrid vehicle energy storage systems of the future. Of the potential cathode chemistries explored, lithium transition metal phosphates have generated a significant amount of interest due to their low-cost precursors, potential ease of synthesis, stability, and their environmentally friendly nature. This is in contrast to layered oxide systems such as LiCoO2, which have long been considered state of the art, but are now being reevaluated due to their structural instability at elevated temperatures, and higher cost. In particular, LiFePO4 has an operating potential comparable to those batteries available on the market (˜3.5V vs. Li/Li+), and higher theoretical specific capacity (170mAh/g vs. that of LiCoO2 which is 140mAh/g). The manganese analog to LiFePO4, LiMnPO4, exhibits a higher operating potential (˜4.1V v Li/Li+), and the same theoretical capacity, however Li-ion diffusion through this structure is much more rate limited and its theoretical capacity cannot be realized at rates suitable for commercial applications. The purpose of this work was threefold: 1) To explore the impact of Fe substitution on Mn sites in LiMnPO 4. 2) To examine the effects of alterations to the particle/electrolyte interface on rate capability. 3) To explore a novel fabrication route for LiMnPO4 using microwaves, and determine an optimal power and time combination for best performance. The coexistence of Fe and Mn on the transition metal site M, of LiMPO 4 resulted in an improved apparent Li-ion diffusivity in both Fe and Mn regimes as compared to that observed for LiFePO4 and LiMnPO 4 respectively. Calculations made from two different analysis methods, cyclic voltammetry (CV) and galvanostatic intermittent titration (GITT) drew this same conclusion. The signature characteristics observed from the CVs pertaining to single and dual phase reactions led to a delithiation model of LiFe0.5Mn0.5PO4 proposing the localization

  11. Multivariate Analysis of Mixed Lipid Aggregate Phase Transitions Monitored Using Raman Spectroscopy.

    Science.gov (United States)

    Neal, Sharon L

    2017-01-01

    The phase behavior of aqueous 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC)/1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) mixtures between 8.0 ℃ and 41.0 ℃ were monitored using Raman spectroscopy. Temperature-dependent Raman matrices were assembled from series of spectra and subjected to multivariate analysis. The consensus of pseudo-rank estimation results is that seven to eight components account for the temperature-dependent changes observed in the spectra. The spectra and temperature response profiles of the mixture components were resolved by applying a variant of the non-negative matrix factorization (NMF) algorithm described by Lee and Seung (1999). The rotational ambiguity of the data matrix was reduced by augmenting the original temperature-dependent spectral matrix with its cumulative counterpart, i.e., the matrix formed by successive integration of the spectra across the temperature index (columns). Successive rounds of constrained NMF were used to isolate component spectra from a significant fluorescence background. Five major components exhibiting varying degrees of gel and liquid crystalline lipid character were resolved. Hydrogen-bonded water networks exhibiting varying degrees of organization are associated with the lipid components. Spectral parameters were computed to compare the chain conformation, packing, and hydration indicated by the resolved spectra. Based on spectral features and relative amounts of the components observed, four components reflect long chain lipid response. The fifth component could reflect the response of the short chain lipid, DHPC, but there were no definitive spectral features confirming this assignment. A minor component of uncertain assignment that exhibits a striking response to the DMPC pre-transition and chain melting transition also was recovered. While none of the spectra resolved exhibit features unequivocally attributable to a specific aggregate morphology or step in the gelation process

  12. Metallic layered composite materials produced by explosion welding: Structure, properties, and structure of the transition zone

    Science.gov (United States)

    Mal'tseva, L. A.; Tyushlyaeva, D. S.; Mal'tseva, T. V.; Pastukhov, M. V.; Lozhkin, N. N.; Inyakin, D. V.; Marshuk, L. A.

    2014-10-01

    The structure, morphology, and microhardness of the transition zone in multilayer metallic composite joints are studied, and the cohesion strength of the plates to be joined, the mechanical properties of the formed composite materials, and fracture surfaces are analyzed. The materials to be joined are plates (0.1-1 mm thick) made of D16 aluminum alloy, high-strength maraging ZI90-VI (03Kh12N9K4M2YuT) steel, BrB2 beryllium bronze, and OT4-1 titanium alloy. Composite materials made of different materials are shown to be produced by explosion welding. The dependence of the interface shape (smooth or wavelike) on the physicomechanical properties of the materials to be joined is found. The formation of a wavelike interface is shown to result in the formation of intense-mixing regions in transition zones. Possible mechanisms of layer adhesion are discussed.

  13. Structural Health Monitoring of Bridges with Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    Francisco Navarro-Henríquez

    2014-11-01

    Systems with fiber optic sensors FBG (Fiber Bragg Grating are consolidated in the Structural Health Monitoring (SMH of bridges, Nondestructive Testing (NDT static and dynamic measurements of deformation, displacement, deflection, temperature and vibration. This article provides a brief introduction to the technology and the fundamentals of fiber optic sensors, also present comparative advantages over its traditional counterpart is presented. Their characteristics are described and measurement graphics are presented as an application example of the FBG sensors. Finally, some key aspects to consider for proper use in the field are mentioned.

  14. Pressure-driven magnetic and structural transitions in the 122-pnictides

    Science.gov (United States)

    Widom, Michael; Quader, Khandker

    2014-03-01

    Pnictides of the family AFe2As2, where A is an alkali earth element, exhibit several phase transitions in their structure and magnetic order as functions of applied pressure. We employ density functional theory total energy calculations at T=0K to model these transitions for the entire set of alkali earths (A=Ca, Sr, Ba, Ra) which form the 122 family. Three distinct types of transition occur: an enthalpic transition in which the striped antiferromagnetic orthorhombic (OR-AFM) phase swaps thermodynamic stability with a competing tetragonal phase; a magnetic transition in which the OR-AFM phase loses its magnetism and orthorhombicity; a lattice parameter anomaly in which the tetragonal c-axis collapses. We identify this last transition as a ``Lifshitz transition'' caused by a change in Fermi surface topology. Depending on the element A, the tetragonal state exhibiting the Lifthitz transition might be metastable (A=Ca) or stable (A=Sr, Ba and Ra).

  15. Structural phase transitions and topological defects in ion Coulomb crystals

    Energy Technology Data Exchange (ETDEWEB)

    Partner, Heather L. [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany); Nigmatullin, Ramil [Institute of Quantum Physics, Albert-Einstein Allee-11, Ulm University, 89069 Ulm (Germany); Burgermeister, Tobias; Keller, Jonas; Pyka, Karsten [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany); Plenio, Martin B. [Center for Integrated Quantum Science and Technology, Albert-Einstein-Allee 11, Ulm University, 89069 Ulm (Germany); Institute for Theoretical Physics, Albert-Einstein-Allee 11, Ulm University, 89069 Ulm (Germany); Retzker, Alex [Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Givat Ram (Israel); Zurek, Wojciech H. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Campo, Adolfo del [Department of Physics, University of Massachusetts Boston, Boston, MA 02125 (United States); Mehlstäubler, Tanja E., E-mail: tanja.mehlstaeubler@ptb.de [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany)

    2015-03-01

    We use laser-cooled ion Coulomb crystals in the well-controlled environment of a harmonic radiofrequency ion trap to investigate phase transitions and defect formation. Topological defects in ion Coulomb crystals (kinks) have been recently proposed for studies of nonlinear physics with solitons and as carriers of quantum information. Defects form when a symmetry breaking phase transition is crossed nonadiabatically. For a second order phase transition, the Kibble–Zurek mechanism predicts that the formation of these defects follows a power law scaling in the rate of the transition. We demonstrate a scaling of defect density and describe kink dynamics and stability. We further discuss the implementation of mass defects and electric fields as first steps toward controlled kink preparation and manipulation.

  16. Structural phase transitions and topological defects in ion Coulomb crystals

    Energy Technology Data Exchange (ETDEWEB)

    Partner, Heather L. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Nigmatullin, Ramil [Institute of Quantum Physics, Ulm Univ., Ulm (Germany); Burgermeister, Tobias [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Keller, Jonas [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Pyka, Karsten [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Plenio, Martin B. [Center for Integrated Quantum Science and Technology, Ulm Univ., Ulm, (Germany):Institute for Theoretical Physics, Ulm Univ.,Ulm, (Germany); Retzker, Alex [Racah Institute of Physics, The Hebrew University of Jerusalem, Givat Ram (Israel); Zurek, Wojciech Hubert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); del Campo, Adolfo [Univ. of Massachusetts, Amherst, MA (United States). Dept. of Physics; Mehlstaubler, Tanja E. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany)

    2014-11-19

    We use laser-cooled ion Coulomb crystals in the well-controlled environment of a harmonic radiofrequency ion trap to investigate phase transitions and defect formation. Topological defects in ion Coulomb crystals (kinks) have been recently proposed for studies of nonlinear physics with solitons and as carriers of quantum information. Defects form when a symmetry breaking phase transition is crossed non-adiabatically. For a second order phase transition, the Kibble-Zurek mechanism predicts that the formation of these defects follows a power law scaling in the rate of the transition. We demonstrate a scaling of defect density and describe kink dynamics and stability. We further discuss the implementation of mass defects and electric fields as first steps toward controlled kink preparation and manipulation.

  17. Implementing optical fibres for the structural health monitoring of composite patch repaired structures

    DEFF Research Database (Denmark)

    Karatzas, Vasileios; Kotsidis, Elias A.; Tsouvalis, Nicholas G.

    2017-01-01

    are reflected to the recorded strain measurements, finite element models have been generated. Results indicate that composite patch repairing drastically increased the load bearing capacity of the plates and that optical fibres constitute an appealing health monitoring system for such applications, being able......Structural health monitoring is increasingly being implemented to improve the level of safety of structures and to reduce inspection and repair costs by allowing for correct planning of these actions, if needed. Composite patch repairing presents an appealing alternative to traditional repair...... methods as it enables the reduction of closedown time and the mitigation of complications associated with traditional repair methods. As reinforcement with the use of composite patches is predominantly performed at defected structures, the urge to monitor the performance of the repair becomes even greater...

  18. Simultaneous Structural Health Monitoring and Vibration Control of Adaptive Structures Using Smart Materials

    Directory of Open Access Journals (Sweden)

    Myung-Hyun Kim

    2002-01-01

    Full Text Available The integration of actuators and sensors using smart materials enabled various applications including health monitoring and structural vibration control. In this study, a robust control technique is designed and implemented in order to reduce vibration of an active structure. Special attention is given to eliminating the possibility of interaction between the health monitoring system and the control system. Exploiting the disturbance decoupling characteristic of the sliding mode observer, it is demonstrated that the proposed observer can eliminate the possible high frequency excitation from the health monitoring system. At the same time, a damage identification scheme, which tracks the changes of mechanical impedance due to the presence of damage, has been applied to assess the health condition of structures. The main objective of this paper is to examine the potential of combining the two emerging techniques together. Using the collocated piezoelectric sensors/actuators for vibration suppression as well as for health monitoring, this technique enabled to reduce the number of system components, while enhancing the performance of structures. As an initial study, both simulation and experimental investigations were performed for an active beam structure. The results show that this integrated technique can provide substantial vibration reductions, while detecting damage on the structure at the same time.

  19. Design and Analysis of Architectures for Structural Health Monitoring Systems

    Science.gov (United States)

    Mukkamala, Ravi; Sixto, S. L. (Technical Monitor)

    2002-01-01

    During the two-year project period, we have worked on several aspects of Health Usage and Monitoring Systems for structural health monitoring. In particular, we have made contributions in the following areas. 1. Reference HUMS architecture: We developed a high-level architecture for health monitoring and usage systems (HUMS). The proposed reference architecture is shown. It is compatible with the Generic Open Architecture (GOA) proposed as a standard for avionics systems. 2. HUMS kernel: One of the critical layers of HUMS reference architecture is the HUMS kernel. We developed a detailed design of a kernel to implement the high level architecture.3. Prototype implementation of HUMS kernel: We have implemented a preliminary version of the HUMS kernel on a Unix platform.We have implemented both a centralized system version and a distributed version. 4. SCRAMNet and HUMS: SCRAMNet (Shared Common Random Access Memory Network) is a system that is found to be suitable to implement HUMS. For this reason, we have conducted a simulation study to determine its stability in handling the input data rates in HUMS. 5. Architectural specification.

  20. Structural Health Monitoring Based on Combined Structural Global and Local Frequencies

    Directory of Open Access Journals (Sweden)

    Jilin Hou

    2014-01-01

    Full Text Available This paper presents a parameter estimation method for Structural Health Monitoring based on the combined measured structural global frequencies and structural local frequencies. First, the global test is experimented to obtain the low order modes which can reflect the global information of the structure. Secondly, the mass is added on the member of structure to increase the local dynamic characteristic and to make the member have local primary frequency, which belongs to structural local frequency and is sensitive to local parameters. Then the parameters of the structure can be optimized accurately using the combined structural global frequencies and structural local frequencies. The effectiveness and accuracy of the proposed method are verified by the experiment of a space truss.

  1. Shear moduli in bcc-fcc structure transition of colloidal crystals.

    Science.gov (United States)

    Zhou, Hongwei; Xu, Shenghua; Sun, Zhiwei; Zhu, Ruzeng

    2015-10-14

    Shear moduli variation in the metastable-stable structure transition of charged colloidal crystals was investigated by the combination techniques of torsional resonance spectroscopy and reflection spectrometer. Modulus of the system increases with the proceeding of the transition process and it finally reaches the maximum value at the end of the transition. For colloidal crystals in stable state, the experimental moduli show good consistence with theoretical expectations. However, in the transition process, the moduli are much smaller than theoretical ones and this can be chalked up to crystalline imperfection in the transition state.

  2. Shear moduli in bcc-fcc structure transition of colloidal crystals

    Science.gov (United States)

    Zhou, Hongwei; Xu, Shenghua; Sun, Zhiwei; Zhu, Ruzeng

    2015-10-01

    Shear moduli variation in the metastable-stable structure transition of charged colloidal crystals was investigated by the combination techniques of torsional resonance spectroscopy and reflection spectrometer. Modulus of the system increases with the proceeding of the transition process and it finally reaches the maximum value at the end of the transition. For colloidal crystals in stable state, the experimental moduli show good consistence with theoretical expectations. However, in the transition process, the moduli are much smaller than theoretical ones and this can be chalked up to crystalline imperfection in the transition state.

  3. Improved Stochastic Subspace System Identification for Structural Health Monitoring

    Science.gov (United States)

    Chang, Chia-Ming; Loh, Chin-Hsiung

    2015-07-01

    Structural health monitoring acquires structural information through numerous sensor measurements. Vibrational measurement data render the dynamic characteristics of structures to be extracted, in particular of the modal properties such as natural frequencies, damping, and mode shapes. The stochastic subspace system identification has been recognized as a power tool which can present a structure in the modal coordinates. To obtain qualitative identified data, this tool needs to spend computational expense on a large set of measurements. In study, a stochastic system identification framework is proposed to improve the efficiency and quality of the conventional stochastic subspace system identification. This framework includes 1) measured signal processing, 2) efficient space projection, 3) system order selection, and 4) modal property derivation. The measured signal processing employs the singular spectrum analysis algorithm to lower the noise components as well as to present a data set in a reduced dimension. The subspace is subsequently derived from the data set presented in a delayed coordinate. With the proposed order selection criteria, the number of structural modes is determined, resulting in the modal properties. This system identification framework is applied to a real-world bridge for exploring the feasibility in real-time applications. The results show that this improved system identification method significantly decreases computational time, while qualitative modal parameters are still attained.

  4. Time-Frequency Methods for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Alexander L. Pyayt

    2014-03-01

    Full Text Available Detection of early warning signals for the imminent failure of large and complex engineered structures is a daunting challenge with many open research questions. In this paper we report on novel ways to perform Structural Health Monitoring (SHM of flood protection systems (levees, earthen dikes and concrete dams using sensor data. We present a robust data-driven anomaly detection method that combines time-frequency feature extraction, using wavelet analysis and phase shift, with one-sided classification techniques to identify the onset of failure anomalies in real-time sensor measurements. The methodology has been successfully tested at three operational levees. We detected a dam leakage in the retaining dam (Germany and “strange” behaviour of sensors installed in a Boston levee (UK and a Rhine levee (Germany.

  5. Monitoring structure development in milk acidification using diffuse reflectance profiles

    DEFF Research Database (Denmark)

    Skytte, Jacob Lercke; Andersen, Ulf; Møller, Flemming

    2012-01-01

    -optical tuneable filter to illuminate the sample. The generated beam is spectrally narrow and can be tuned in the spectral range from 450-1050 nm. This system is described in detail in [3]. It is a research platform, which is constantly developed and adjusted according to research needs. Besides providing a non....... It is therefore essential to monitor these structural changes and a variety of methods have been proposed to continuously follow this coagulation of milk [1]. Especially non-invasive methods for in situ production line application have been of interest. We propose a method for analyzing structural changes in milk......-invasive method, the system also has potential as a design platform for creating specialized and cost-efficient vision systems. Our preliminary results are highly encouraging and show a clear relation between rheology and diffuse reflectance. A factorial experiment studying the effects of the content of fat...

  6. Damage detection and health monitoring of operational structures

    Energy Technology Data Exchange (ETDEWEB)

    James, G.; Mayes, R.; Carne, T.; Reese, G.

    1994-09-01

    Initial damage detection/health monitoring experiments have been performed on three different operational structures: a fracture critical bridge, a composite wind turbine blade, and an aging aircraft. An induced damage test was performed on the Rio Grande/I40 bridge before its demolition. The composite wind turbine test was fatgued to failure with periodic modal testing performed throughout the testing. The front fuselage of a DC-9 aircraft was used as the testbed for an induced damage test. These tests have yielded important insights into techniques for experimental damage detection on real structures. Additionally, the data are currently being used with current damage detection algorithms to further develop the numerical technology. State of the art testing technologies such as, high density modal testing, scanning laser vibrometry and natural excitation testing have also been utilized for these tests.

  7. Dynamic time warping for temperature compensation in structural health monitoring

    Science.gov (United States)

    Douglass, Alexander; Harley, Joel B.

    2017-02-01

    Guided wave structural health monitoring uses ultrasonic waves to identify changes in structures. To identify these changes, most guided wave methods require a pristine baseline measurement with which other measurements are compared. Damage signatures arise when there is a deviation between the baseline and the recorded measurement. However, temperature significantly complicates this analysis by creating misalignment between the baseline and measurements. This leads to false alarms of damage and significantly reduces the reliability of these systems. Several methods have been created to account for these temperature perturbations. Yet, most of these compensation methods fail in harsh, highly variable temperature conditions or require a prohibitive amount of prior data. In this paper, we use an algorithm known as dynamic time warping to compensate for temperature in these harsh conditions. We demonstrate that dynamic time warping is able to account for temperature variations whereas the more traditional baseline signal stretch method is unable to resolve damage under high temperature fluctuations.

  8. Predictive simulation of guide-wave structural health monitoring

    Science.gov (United States)

    Giurgiutiu, Victor

    2017-04-01

    This paper presents an overview of recent developments on predictive simulation of guided wave structural health monitoring (SHM) with piezoelectric wafer active sensor (PWAS) transducers. The predictive simulation methodology is based on the hybrid global local (HGL) concept which allows fast analytical simulation in the undamaged global field and finite element method (FEM) simulation in the local field around and including the damage. The paper reviews the main results obtained in this area by researchers of the Laboratory for Active Materials and Smart Structures (LAMSS) at the University of South Carolina, USA. After thematic introduction and research motivation, the paper covers four main topics: (i) presentation of the HGL analysis; (ii) analytical simulation in 1D and 2D; (iii) scatter field generation; (iv) HGL examples. The paper ends with summary, discussion, and suggestions for future work.

  9. Review on pressure sensors for structural health monitoring

    Science.gov (United States)

    Sikarwar, Samiksha; Satyendra; Singh, Shakti; Yadav, B. C.

    2017-08-01

    This paper reports the state of art in a variety of pressure and the detailed study of various matrix based pressure sensors. The performances of the bridges, buildings, etc. are threatened by earthquakes, material degradations, and other environmental effects. Structural health monitoring (SHM) is crucial to protect the people and also for assets planning. This study is a contribution in developing the knowledge about self-sensing smart materials and structures for the construction industry. It deals with the study of self-sensing as well as mechanical and electrical properties of different matrices based on pressure sensors. The relationships among the compression, tensile strain, and crack length with electrical resistance change are also reviewed.

  10. Surface Monitoring of CFRP Structures for Adhesive Bonding

    Science.gov (United States)

    Ledesma, Rodolfo; Palmieri, Frank L.; Yost, William T.; Connell, John W.; Fitz-Gerald, James M.

    2017-01-01

    Adhesive bonding of composite materials requires reliable monitoring and detection of surface contaminants to assure robust and durable bonded structures. Surface treatment and effective monitoring prior to bonding is essential in order to obtain a surface free from contaminants that may degrade structural performance. Two techniques which monitor the effectiveness of the laser surface treatment of carbon fiber reinforced polymer (CFRP) materials are being investigated: laser induced breakdown spectroscopy (LIBS) and optically stimulated electron emission (OSEE). The applicability of LIBS to detect silicone contaminants on CFRP composites is studied using 35 ns Nd:YAG laser pulses at 355 nm with a pulse energy of 45 mJ. The LIBS regime in which pulse energies are < 100 mJ is referred to as mLIBS. CFRP surfaces were contaminated with polydimethylsiloxane (PDMS), a major component of silicone based mold release agents. The presence of PDMS is found by inspecting the Si I emission line at 288.2 nm. Untreated CFRP samples and CFRP contaminated with PDMS were tested. The PDMS areal density ranged from 0.36 Â+/- 0.04 to 0.51 Â+/- 0.16 mg/cm2. The results demonstrate the successful detection of PDMS on CFRP using mLIBS. In addition, OSEE was used to measure CFRP surface cleanliness pre- and post-treatment by laser ablation on specimens contaminated with PDMS coatings from 8 nm to 1311 nm in thickness. The results showed a significant increase in the OSEE photocurrent after laser surface treatment.

  11. Active structural health monitoring of composite plates and sandwiches

    Directory of Open Access Journals (Sweden)

    Sadílek P.

    2013-12-01

    Full Text Available The aim of presented work is to design, assemble and test a functional system, that is able to reveal damage from impact loading. This is done by monitoring of change of spectral characteristics on a damaged structure that is caused by change of mechanical properties of material or by change of structure’s geometry. Excitation and monitoring of structures was done using piezoelectric patches. Unidirectional composite plate was tested for eigenfrequencies using chirp signal. The eigenfrequencies were compared to results from experiments with an impact hammer and consequently with results from finite element method. Same method of finding eigenfrequencies was used on a different unidirectional composite specimen. Series of impacts were performed. Spectrum of eigenfrequencies was measured on undamaged plate and then after each impact. Measurements of the plate with different level of damage were compared. Following experiments were performed on sandwich materials where more different failures may happen. Set of sandwich beams (cut out from one plate made of two outer composite layers and a foam core was investigated and subjected to several impacts. Several samples were impacted in the same manner to get comparable results. The impacts were performed with growing impact energy.

  12. Electronic Structures of Square Planar Coordinated Transition Metal Ions in Compounds with Gillespite Structure

    Institute of Scientific and Technical Information of China (English)

    林传易

    1990-01-01

    Electronic structures of square planar coordinated transition metal ions in BaCuSi4O10 and CaCrSi4O10 are investigated using the ligand-field theory(LFT),angular overlap model(AOM) and iterative extended Hueckel molecular orbital theory(IET).The electronic energy levels of the natural mineral dioptase are also investigated,in which the Cu2+ ions occupy the sites of pseudo D4h symmetry,Both LFT and AOM predict that the crystal-field levels of transition metal ions in these compounds follow such an order that E(2B1g)transitions obtained from point charge calcuations are in good agreement with those observed.However,the energy-level order cannot be determined unambiguously from the IET calculation because it depends on the values of parameters chosen for the calculation.

  13. Structural health monitoring of compression connectors for overhead transmission lines

    Science.gov (United States)

    Wang, Hong; Wang, Jy-An John; Swindeman, Joseph P.; Ren, Fei; Chan, John

    2017-04-01

    Two-stage aluminum conductor steel-reinforced (ACSR) compression connectors are extensively used in US overhead transmission lines. The connectors are made by crimping a steel sleeve onto a steel core and an aluminum sleeve over electrical conducting aluminum strands. The connectors are designed to operate at temperatures up to 125°C, but their performance is increasingly degrading because of overloading of lines. Currently, electric utilities conduct routine line inspections using thermal and electrical measurements, but these methods do not provide information about the structural integrity of connectors. In this work, structural health monitoring (SHM) of compression connectors was studied using electromechanical impedance (EMI) analysis. Lead zirconate titanate (PZT)-5A was identified as a smart material for SHM. A flexible high-temperature bonding layer was used to address challenges in PZT integration due to a significant difference in the coefficients of thermal expansion of PZT and the aluminum substrate. The steel joint on the steel core was investigated because it is responsible for the ultimate tensile strength of the connector. Tensile testing was used to induce structural damage to the joint, or steel core pullout, and thermal cycling introduced additional structural perturbations. EMI measurements were conducted between the tests. The root mean square deviation (RMSD) of EMI was identified as a damage index. The use of steel joints has been shown to enable SHM under simulated conditions. The EMI signature is sensitive to variations in structural conditions. RMSD can be correlated to the structural health of a connector and has potential for use in the SHM and structural integrity evaluation.

  14. Quantification of the Value of Structural Health Monitoring Information for Fatigue Deteriorating Structural Systems

    DEFF Research Database (Denmark)

    Thöns, Sebastian; Schneider, Ronald; Faber, Michael Havbro

    2015-01-01

    This paper addresses the quantification of the value of structural health monitoring (SHM) before its implementation for structural systems on the basis of its Value of Information (VoI). The value of SHM is calculated utilizing the Bayesian pre-posterior decision analysis modelling the structural...... life cycle performance, the integrity management and the structural risks. The relevance and precision of SHM information for the reduction of the structural system risks and the expected cost of the structural integrity management throughout the life cycle constitutes the value of SHM....... The influence of and the value of SHM in regard to the structural system risks and the integrity management is explicated and explained. The results are pointing to the importance of the consideration of the structural system risks for the quantification of the value of SHM....

  15. Bragg grating structural sensing system for bridge monitoring

    Science.gov (United States)

    Measures, Raymond M.; Alavie, A. Tino; Maaskant, Robert; Ohn, Myo M.; Karr, Shawn E.; Huang, Shang Yuan

    1994-09-01

    Corrosion of steel within bridges and other large concrete structures has become a serious problem and consequently there is growing interest in replacing the steel within such structures with carbon fiber based composite materials. The first highway bridge in the world to use carbon fiber composite prestressing tendons was constructed and opened to the public in the fall of 1993. This two span bridge was also unique in another respect, it is the first highway bridge in the world to have been built with a set of fiber optic Bragg grating sensors structurally integrated into several of its precast concrete deck support girders. A four-channel fiber laser sensor demodulation system that was rugged, compact and transportable was developed for this project. This demodulation system monitored the changes in the internal strain on all three types (steel and two types of carbon fiber composite) of prestressing tendons over several months. The same structurally integrated fiber optic sensing system has also been used to measure the change in the internal strain within the deck girders arising from both static and dynamic loading of the bridge with a large truck.

  16. Load monitoring and compensation strategies for guided-waves based structural health monitoring using piezoelectric transducers

    Science.gov (United States)

    Roy, Surajit; Ladpli, Purim; Chang, Fu-Kuo

    2015-09-01

    Accurate interpretation of in-situ piezoelectric sensor signals is a challenging task. This paper presents the development of a numerical compensation model based on physical insight to address the influence of structural loads on piezo-sensor signals. The model requires knowledge of in-situ strain and temperature distribution in a structure while acquiring piezoelectric sensor signals. The parameters of the numerical model are obtained using experiments on flat aluminum plate under uniaxial tensile loading. It is shown that the model parameters obtained experimentally can be used for different structures, and sensor layout. Furthermore, the combined effects of load and temperature on the piezo-sensor response are also investigated and it is observed that both of these factors have a coupled effect on the sensor signals. It is proposed to obtain compensation model parameters under a range of operating temperatures to address this coupling effect. An important outcome of this study is a new load monitoring concept using in-situ piezoelectric sensor signals to track changes in the load paths in a structure.

  17. Load monitoring and compensation strategies for guided-waves based structural health monitoring using piezoelectric transducers

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Surajit; Ladpli, Purim; Chang, Fu-Kuo

    2015-09-01

    Accurate interpretation of in-situ piezoelectric sensor signals is a challenging task. This article presents the development of a numerical compensation model based on physical insight to address the influence of structural loads on piezo-sensor signals. The model requires knowledge of in-situ strain and temperature distribution in a structure while acquiring sensor signals. The parameters of the numerical model are obtained using experiments on flat aluminum plate under uniaxial tensile loading. It is shown that the model parameters obtained experimentally can be used for different structures, and sensor layout. Furthermore, the combined effects of load and temperature on the piezo-sensor response are also investigated and it is observed that both of these factors have a coupled effect on the sensor signals. It is proposed to obtain compensation model parameters under a range of operating temperatures to address this coupling effect. An important outcome of this study is a new load monitoring concept using in-situ piezoelectric sensor signals to track changes in the load paths in a structure.

  18. Electronic correlations at the alpha-gamma structural phase transition in paramagnetic iron

    OpenAIRE

    Leonov, I.; Poteryaev, A. I.; Anisimov, V. I.; Vollhardt, D.

    2010-01-01

    We compute the equilibrium crystal structure and phase stability of iron at the alpha(bcc)-gamma(fcc) phase transition as a function of temperature, by employing a combination of ab initio methods for calculating electronic band structures and dynamical mean-field theory. The magnetic correlation energy is found to be an essential driving force behind the alpha-gamma structural phase transition in paramagnetic iron.

  19. Structural Analysis of Labor Market Transitions Using Indirect Inference

    DEFF Research Database (Denmark)

    An, Mark Yuing; Liu, Ming

    1996-01-01

    In the econometric analysis of labor market transitions, the data generating process is often specified as a continuous-time semi-Markovian process with a finite state space. With typically short panel data, analysts have long been concerne d with the initial conditions problem.......In the econometric analysis of labor market transitions, the data generating process is often specified as a continuous-time semi-Markovian process with a finite state space. With typically short panel data, analysts have long been concerne d with the initial conditions problem....

  20. Advanced instrumentation for acousto-ultrasonic based structural health monitoring

    Science.gov (United States)

    Smithard, Joel; Galea, Steve; van der Velden, Stephen; Powlesland, Ian; Jung, George; Rajic, Nik

    2016-04-01

    Structural health monitoring (SHM) systems using structurally-integrated sensors potentially allow the ability to inspect for damage in aircraft structures on-demand and could provide a basis for the development of condition-based maintenance approaches for airframes. These systems potentially offer both substantial cost savings and performance improvements over conventional nondestructive inspection (NDI). Acousto-ultrasonics (AU), using structurallyintegrated piezoelectric transducers, offers a promising basis for broad-field damage detection in aircraft structures. For these systems to be successfully applied in the field the hardware for AU excitation and interrogation needs to be easy to use, compact, portable, light and, electrically and mechanically robust. Highly flexible and inexpensive instrumentation for basic background laboratory investigations is also required to allow researchers to tackle the numerous scientific and engineering issues associated with AU based SHM. The Australian Defence Science and Technology Group (DST Group) has developed the Acousto Ultrasonic Structural health monitoring Array Module (AUSAM+), a compact device for AU excitation and interrogation. The module, which has the footprint of a typical current generation smart phone, provides autonomous control of four send and receive piezoelectric elements, which can operate in pitch-catch or pulse-echo modes and can undertake electro-mechanical impedance measurements for transducer and structural diagnostics. Modules are designed to operate synchronously with other units, via an optical link, to accommodate larger transducer arrays. The module also caters for fibre optic sensing of acoustic waves with four intensity-based optical inputs. Temperature and electrical resistance strain gauge inputs as well as external triggering functionality are also provided. The development of a Matlab hardware object allows users to easily access the full hardware functionality of the device and

  1. STRUCTURAL 3D MONITORING USING A NEW SINUSOIDAL FITTING ADJUSTMENT

    Directory of Open Access Journals (Sweden)

    I. Detchev

    2016-06-01

    Full Text Available Digital photogrammetric systems combined with image processing techniques have been used for structural monitoring purposes for more than a decade. For applications requiring sub-millimetre level precision, the use of off-the-shelf DSLR cameras is a suitable choice, especially when the low cost of the involved sensors is a priority. The disadvantage in the use of entry level DSLRs is that there is a trade-off between frame rate and burst rate – a high frame rate is either not available or it cannot be sustained long enough. This problem must be overcome when monitoring a structural element undergoing a dynamic test, where a range of loads are cycled through multiple times a second. In order to estimate deflections during such a scenario, this paper proposes a new least-squares adjustment for sinusoidal fitting. The new technique is capable of processing multiple back-to-back bursts of data within the same adjustment, which synthetically increases the de-facto temporal resolution of the system. The paper describes a beam deformation test done in a structures laboratory. The experimental results were assessed in terms of both their precision and accuracy. The new method increased the effective sampling frequency three-fold, which improved the standard deviations of the estimated parameters with up to two orders of magnitude. A residual RMSE as low as 30 μm was attained, and likewise the RMSE of the computed amplitudes between the photogrammetric system and the control laser transducers was as small as 34 μm.

  2. Structural 3d Monitoring Using a New Sinusoidal Fitting Adjustment

    Science.gov (United States)

    Detchev, I.; Habib, A.; Lichti, D.; El-Badry, M.

    2016-06-01

    Digital photogrammetric systems combined with image processing techniques have been used for structural monitoring purposes for more than a decade. For applications requiring sub-millimetre level precision, the use of off-the-shelf DSLR cameras is a suitable choice, especially when the low cost of the involved sensors is a priority. The disadvantage in the use of entry level DSLRs is that there is a trade-off between frame rate and burst rate - a high frame rate is either not available or it cannot be sustained long enough. This problem must be overcome when monitoring a structural element undergoing a dynamic test, where a range of loads are cycled through multiple times a second. In order to estimate deflections during such a scenario, this paper proposes a new least-squares adjustment for sinusoidal fitting. The new technique is capable of processing multiple back-to-back bursts of data within the same adjustment, which synthetically increases the de-facto temporal resolution of the system. The paper describes a beam deformation test done in a structures laboratory. The experimental results were assessed in terms of both their precision and accuracy. The new method increased the effective sampling frequency three-fold, which improved the standard deviations of the estimated parameters with up to two orders of magnitude. A residual RMSE as low as 30 μm was attained, and likewise the RMSE of the computed amplitudes between the photogrammetric system and the control laser transducers was as small as 34 μm.

  3. New smart materials to address issues of structural health monitoring.

    Energy Technology Data Exchange (ETDEWEB)

    Chaplya, Pavel Mikhail

    2004-12-01

    Nuclear weapons and their storage facilities may benefit from in-situ structural health monitoring systems. Appending health-monitoring functionality to conventional materials and structures has been only marginally successful. The purpose of this project was to evaluate feasibility of a new smart material that includes self-sensing health monitoring functions similar to that of a nervous system of a living organism. Reviews of current efforts in the fields of heath-monitoring, nanotechnology, micro-electromechanical systems (MEMS), and wireless sensor networks were conducted. Limitations of the current nanotechnology methods were identified and new approaches were proposed to accelerate the development of self-sensing materials. Wireless networks of MEMS sensors have been researched as possible prototypes of self-sensing materials. Sensor networks were also examined as enabling technologies for dense data collection techniques to be used for validation of numerical methods and material parameter identification. Each grain of the envisioned material contains sensors that are connected in a dendritic manner similar to networks of neurons in a nervous system. Each sensor/neuron can communicate with the neighboring grains. Both the state of the sensor (on/off) and the quality of communication signal (speed/amplitude) should indicate not only a presence of a structural defect but the nature of the defect as well. For example, a failed sensor may represent a through-grain crack, while a lost or degraded communication link may represent an inter-granular crack. A technology to create such material does not exist. While recent progress in the fields of MEMS and nanotechnology allows to envision these new smart materials, it is unrealistic to expect creation of self-sensing materials in the near future. The current state of MEMS, nanotechnology, communication, sensor networks, and data processing technologies indicates that it will take more than ten years for the

  4. Using biogeochemical tracing and ecohydrological monitoring to increase understanding of water, sediment and carbon dynamics across dryland vegetation transitions

    Science.gov (United States)

    Puttock, Alan; Dungait, Jennifer; Macleod, Kit; Bol, Roland; Brazier, Richard

    2014-05-01

    Drylands worldwide have experienced rapid and extensive environmental change, which across large areas has been characterised by the encroachment of woody vegetation into grasslands. Woody encroachment leads to changes in the abiotic and biotic structure and function of dryland ecosystems and has been shown to result in accelerated soil erosion and loss of soil nutrients. The relationship between environmental change, soil erosion and the carbon cycle in dryland environments remains uncertain. Covering over 40 % of the terrestrial land surface, dryland environments are of significant global importance, both as a habitat and a soil carbon store. Thus, there is a clear need to further our understanding of dryland vegetation change and impacts on carbon dynamics. Here, grama grass to creosote shrub and grama grass to piñon-juniper woodland; two grass-to-woody ecotones that occur across large swathes of the semi-arid Southwestern United States are investigated. This study combines an ecohydrological monitoring framework with a multi-proxy biogeochemical approach using stable carbon isotope and n-alkane lipid biomarkers to trace the source of organic carbon. Results will be presented showing that following woody encroachment into grasslands, there is a transition to a more heterogeneous ecosystem structure and an increased hydrological connectivity. Consequentially, not only do drylands lose significantly more soil and organic carbon via accentuated fluvial erosion, but this includes significant amounts of legacy organic carbon which would previously have been stable under the previous grass cover. Results suggest that dryland soils may therefore, not act as a stable organic carbon pool and that accelerated fluvial erosion of carbon, driven by vegetation change, has important implications for the global carbon cycle.

  5. On structural health monitoring of aircraft adhesively bonded repairs

    Science.gov (United States)

    Pavlopoulou, Sofia

    The recent interest in life extension of ageing aircraft and the need to address the repair challenges in the new age composite ones, led to the investigation of new repair methodologies such as adhesively bonded repair patches. The present thesis focuses on structural health monitoring aspects of the repairs, evaluating their performance with guided ultrasonic waves aiming to develop a monitoring strategy which would eliminate unscheduled maintenance and unnecessary inspection costs. To address the complex nature of the wave propagation phenomena, a finite element based model identified the existing challenges by exploring the interaction of the excitation waves with different levels of damage. The damage sensitivity of the first anti-symmetric mode was numerically investigated. An external bonded patch and a scarf repair, were further tested in static and dynamic loadings, and their performance was monitored with Lamb waves, excited by surface-bonded piezoelectric transducers.. The response was processed by means of advanced pattern recognition and data dimension reduction techniques such as novelty detection and principal component analysis. An optimisation of these tools enabled an accurate damage detection under complex conditions. The phenomena of mode isolation and precise arrival time determination under a noisy environment and the problem of inadequate training data were investigated and solved through appropriate transducer arrangements and advanced signal processing respectively. The applicability of the established techniques was demonstrated on an aluminium repaired helicopter tail stabilizer. Each case study utilised alternative non-destructive techniques for validation such as 3D digital image correlation, X-ray radiography and thermography. Finally a feature selection strategy was developed through the analysis of the instantaneous properties of guided waves for damage detection purposes..

  6. Feature and Statistical Model Development in Structural Health Monitoring

    Science.gov (United States)

    Kim, Inho

    All structures suffer wear and tear because of impact, excessive load, fatigue, corrosion, etc. in addition to inherent defects during their manufacturing processes and their exposure to various environmental effects. These structural degradations are often imperceptible, but they can severely affect the structural performance of a component, thereby severely decreasing its service life. Although previous studies of Structural Health Monitoring (SHM) have revealed extensive prior knowledge on the parts of SHM processes, such as the operational evaluation, data processing, and feature extraction, few studies have been conducted from a systematical perspective, the statistical model development. The first part of this dissertation, the characteristics of inverse scattering problems, such as ill-posedness and nonlinearity, reviews ultrasonic guided wave-based structural health monitoring problems. The distinctive features and the selection of the domain analysis are investigated by analytically searching the conditions of the uniqueness solutions for ill-posedness and are validated experimentally. Based on the distinctive features, a novel wave packet tracing (WPT) method for damage localization and size quantification is presented. This method involves creating time-space representations of the guided Lamb waves (GLWs), collected at a series of locations, with a spatially dense distribution along paths at pre-selected angles with respect to the direction, normal to the direction of wave propagation. The fringe patterns due to wave dispersion, which depends on the phase velocity, are selected as the primary features that carry information, regarding the wave propagation and scattering. The following part of this dissertation presents a novel damage-localization framework, using a fully automated process. In order to construct the statistical model for autonomous damage localization deep-learning techniques, such as restricted Boltzmann machine and deep belief network

  7. The transition to turbulence in parallel flows: transition to turbulence or to regular structures

    CERN Document Server

    Pomeau, Yves

    2015-01-01

    We propose a scenario for the formation of localized turbulent spots in transition flows, which is known as resulting from the subcritical character of the transition. We show that it is not necessary to add 'by hand" a term of random noise in the equations, in order to describe the existence of long wavelength fluctuations as soon as the bifurcated state is beyond the Benjamin-Feir instability threshold. We derive the instability threshold for generalized complex Ginzburg-Landau equation which displays subcriticality. Beyond and close to the Benjamin-Feir threshold we show that the dynamics is mainly driven by the phase of the complex amplitude which obeys Kuramoto-Sivashinsky equation while the fluctuations of the modulus are smaller and slaved to the phase (as already proved for the supercritical case). On the opposite, below the Benjamin-Feir instability threshold, the bifurcated state does loose the randomness associated to turbulence so that the transition becomes of the mean-field type as in noiseless ...

  8. Development of smart sensing system for structural health monitoring

    Science.gov (United States)

    Lu, Kung-Chun; Loh, Chin-Hsiung; Weng, Jian Huang

    2010-04-01

    The objective of this paper is to upgrade a wireless sensing unit which can meet the following requirements: 1) Improvement of system powering and analog signal processing 2) Enhancement of signal resolution and provide reliable wireless communication data, 3) Enhance capability for continuous long-term monitoring. Based on the prototype of the wireless sensing unit developed by Prof. Lynch at the Stanford University, the following upgrading steps are summarized: 1. Reduce system noise by using SMD passive elements and preventing the coupling digital and analog circuits, and increasing the capacity of power. 2. Improve the ADC sampling resolution and accuracy with a higher resolution Analog-to-Digital Converter (ADC): a 24bits ADC with programmable gain amplifier. 3. Improve wireless communication by using the wireless radio 9XTend which supported by the router (Digi MESH) communication function using 900MHz frequency band. Based on the upgrade wireless sensing unit, verification of the new wireless sensing unit was conducted from the ambient vibration survey of a base-isolated building. This new upgrade wireless sensing unit can provide more reliable data for continuous structural health monitoring. Incorporated with the identification software (modified stochastic subspace identification method) the smart sensing system for SHM is developed.

  9. Geological and geophysical methods for monitoring of heritage structures

    Science.gov (United States)

    Kulynych, Anna

    2017-04-01

    Using the analysis of geological and geophysical survey of the soil conditions of the site where the architectural landmarks of Kyiv are concentrated the research proposes to develop an optimal set of geological and geophysical studies aimed at monitoring and evaluating the impact of underflooding, risk of landslide and increase of seismic magnitude on the upper portion of geological cross-section. The research offers suggestions concerning the establishment of a monitoring system for the principal sites where the architectural heritage is located. As the earthquake origins are not scattered randomly but located within the relatively narrow zones of active faults, that is, the places most exposed to rapid geodynamic shifts, active faults and blocks they form are one of the main signs for identifying potential seismogenic areas. From the point of view of the present geodynamic instability the morphostructural neotectonic points characterized by the high degree of tectonic fragmentation, including within the upper portion of the sedimentary cover, the high values of relief energy and activation of exogenous processes deserve special attention. The research develops the comparison of areas with increased seismic impacts allocated according to geophysical data with neotectonic structural plan, allows to conclude about their suitability for morphostructural neotectonic points and some sections of active faults exactly that is important to consider when constructing new buildings and protecting the existing ones.

  10. Structural health condition monitoring of rails using acoustic emission techniques

    Science.gov (United States)

    Yilmazer, Pinar

    In-service rails can develop several types of structural defects due to fatigue and wear caused by rolling stock passing over them. Most rail defects will develop gradually over time thus permitting inspection engineers to detect them in time before final failure occurs. In the UK, certain types of severe rail defects such as tache ovales, require the fitting of emergency clamps and the imposing of an Emergency Speed Restriction (ESR) until the defects are removed. Acoustic emission (AE) techniques can be applied for the detection and continuous monitoring of defect growth therefore removing the need of imposing strict ESRs. The work reported herewith aims to develop a sound methodology for the application of AE in order to detect and subsequently monitor damage evolution in rails. To validate the potential of the AE technique, tests have been carried out under laboratory conditions on three and four-point bending samples manufactured from 260 grade rail steel. Further tests, simulating the background noise conditions caused by passing rolling stock have been carried out using special experimental setups. The crack growth events have been simulated using a pencil tip break..

  11. Bridges analysis, design, structural health monitoring, and rehabilitation

    CERN Document Server

    Bakht, Baidar

    2015-01-01

    This book offers a valuable guide for practicing bridge engineers and graduate students in structural engineering; its main purpose is to present the latest concepts in bridge engineering in fairly easy-to-follow terms. The book provides details of easy-to-use computer programs for: ·      Analysing slab-on-girder bridges for live load distribution. ·      Analysing slab and other solid bridge components for live load distribution. ·      Analysing and designing concrete deck slab overhangs of girder bridges under vehicular loads. ·      Determining the failure loads of concrete deck slabs of girder bridges under concentrated wheel loads. In addition, the book includes extensive chapters dealing with the design of wood bridges and soil-steel bridges. Further, a unique chapter on structural health monitoring (SHM) will help bridge engineers determine the actual load carrying capacities of bridges, as opposed to their perceived analytical capacities. The chapter addressing structures...

  12. Defect classification in sparsity-based structural health monitoring

    Science.gov (United States)

    Golato, Andrew; Ahmad, Fauzia; Santhanam, Sridhar; Amin, Moeness G.

    2017-05-01

    Guided waves have gained popularity in structural health monitoring (SHM) due to their ability to inspect large areas with little attenuation, while providing rich interactions with defects. For thin-walled structures, the propagating waves are Lamb waves, which are a complex but well understood type of guided waves. Recent works have cast the defect localization problem of Lamb wave based SHM within the sparse reconstruction framework. These methods make use of a linear model relating the measurements with the scene reflectivity under the assumption of point-like defects. However, most structural defects are not perfect points but tend to assume specific forms, such as surface cracks or internal cracks. Knowledge of the "type" of defects is useful in the assessment phase of SHM. In this paper, we present a dual purpose sparsity-based imaging scheme which, in addition to accurately localizing defects, properly classifies the defects present simultaneously. The proposed approach takes advantage of the bias exhibited by certain types of defects toward a specific Lamb wave mode. For example, some defects strongly interact with the anti-symmetric modes, while others strongly interact with the symmetric modes. We build model based dictionaries for the fundamental symmetric and anti-symmetric wave modes, which are then utilized in unison to properly localize and classify the defects present. Simulated data of surface and internal defects in a thin Aluminum plate are used to validate the proposed scheme.

  13. A Wireless Laser Displacement Sensor Node for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Se Woon Choi

    2013-09-01

    Full Text Available This study describes a wireless laser displacement sensor node that measures displacement as a representative damage index for structural health monitoring (SHM. The proposed measurement system consists of a laser displacement sensor (LDS and a customized wireless sensor node. Wireless communication is enabled by a sensor node that consists of a sensor module, a code division multiple access (CDMA communication module, a processor, and a power module. An LDS with a long measurement distance is chosen to increase field applicability. For a wireless sensor node driven by a battery, we use a power control module with a low-power processor, which facilitates switching between the sleep and active modes, thus maximizing the power consumption efficiency during non-measurement and non-transfer periods. The CDMA mode is also used to overcome the limitation of communication distance, which is a challenge for wireless sensor networks and wireless communication. To evaluate the reliability and field applicability of the proposed wireless displacement measurement system, the system is tested onsite to obtain the required vertical displacement measurements during the construction of mega-trusses and an edge truss, which are the primary structural members in a large-scale irregular building currently under construction. The measurement values confirm the validity of the proposed wireless displacement measurement system and its potential for use in safety evaluations of structural elements.

  14. A wireless laser displacement sensor node for structural health monitoring.

    Science.gov (United States)

    Park, Hyo Seon; Kim, Jong Moon; Choi, Se Woon; Kim, Yousok

    2013-09-30

    This study describes a wireless laser displacement sensor node that measures displacement as a representative damage index for structural health monitoring (SHM). The proposed measurement system consists of a laser displacement sensor (LDS) and a customized wireless sensor node. Wireless communication is enabled by a sensor node that consists of a sensor module, a code division multiple access (CDMA) communication module, a processor, and a power module. An LDS with a long measurement distance is chosen to increase field applicability. For a wireless sensor node driven by a battery, we use a power control module with a low-power processor, which facilitates switching between the sleep and active modes, thus maximizing the power consumption efficiency during non-measurement and non-transfer periods. The CDMA mode is also used to overcome the limitation of communication distance, which is a challenge for wireless sensor networks and wireless communication. To evaluate the reliability and field applicability of the proposed wireless displacement measurement system, the system is tested onsite to obtain the required vertical displacement measurements during the construction of mega-trusses and an edge truss, which are the primary structural members in a large-scale irregular building currently under construction. The measurement values confirm the validity of the proposed wireless displacement measurement system and its potential for use in safety evaluations of structural elements.

  15. Health monitoring studies on composite structures for aerospace applications

    Energy Technology Data Exchange (ETDEWEB)

    James, G.; Roach, D.; Hansche, B.; Meza, R.; Robinson, N.

    1996-02-01

    This paper discusses ongoing work to develop structural health monitoring techniques for composite aerospace structures such as aircraft control surfaces, fuselage sections or repairs, and reusable launch vehicle fuel tanks. The overall project is divided into four tasks: Operational evaluation, diagnostic measurements, information condensation, and damage detection. Five composite plates were constructed to study delaminations, disbonds, and fluid retention issues as the initial step in creating an operational system. These four square feet plates were graphite-epoxy with nomex honeycomb cores. The diagnostic measurements are composed of modal tests with a scanning laser vibrometer at over 500 scan points per plate covering the frequency range up to 2000 Hz. This data has been reduced into experimental dynamics matrices using a generic, software package developed at the University of Colorado at Boulder. The continuing effort will entail performing a series of damage identification studies to detect, localize, and determine the extent of the damage. This work is providing understanding and algorithm development for a global NDE technique for composite aerospace structures.

  16. Lamb wave propagation modeling for structure health monitoring

    Institute of Scientific and Technical Information of China (English)

    Xiaoyue ZHANG; Shenfang YUAN; Tong HAO

    2009-01-01

    This study aims to model the propagation of Lamb waves used in structure health monitoring. A number of different numerical computational techniques have been developed for wave propagation studies. The local interaction simulation approach, used for modeling sharp interfaces and discontinuities in complex media (LISA/SIM theory), has been effectively applied to numerical simulations of elastic wave interaction. This modeling is based on the local interaction simulation approach theory and is finally accomplished through the finite elements software Ansys11. In this paper, the Lamb waves propagating characteristics and the LISA/SIM theory are introduced. The finite difference equations describing wave propagation used in the LISA/SIM theory are obtained. Then, an anisotropic metallic plate model is modeled and a simulating Lamb waves signal is loaded on. Finally, the Lamb waves propagation modeling is implemented.

  17. 3D Ultrasonic Wave Simulations for Structural Health Monitoring

    Science.gov (United States)

    Campbell, Leckey Cara A/; Miler, Corey A.; Hinders, Mark K.

    2011-01-01

    Structural health monitoring (SHM) for the detection of damage in aerospace materials is an important area of research at NASA. Ultrasonic guided Lamb waves are a promising SHM damage detection technique since the waves can propagate long distances. For complicated flaw geometries experimental signals can be difficult to interpret. High performance computing can now handle full 3-dimensional (3D) simulations of elastic wave propagation in materials. We have developed and implemented parallel 3D elastodynamic finite integration technique (3D EFIT) code to investigate ultrasound scattering from flaws in materials. EFIT results have been compared to experimental data and the simulations provide unique insight into details of the wave behavior. This type of insight is useful for developing optimized experimental SHM techniques. 3D EFIT can also be expanded to model wave propagation and scattering in anisotropic composite materials.

  18. Inspection of Piezoceramic Transducers Used for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Inka Mueller

    2017-01-01

    Full Text Available The use of piezoelectric wafer active sensors (PWAS for structural health monitoring (SHM purposes is state of the art for acousto-ultrasonic-based methods. For system reliability, detailed information about the PWAS itself is necessary. This paper gives an overview on frequent PWAS faults and presents the effects of these faults on the wave propagation, used for active acousto-ultrasonics-based SHM. The analysis of the wave field is based on velocity measurements using a laser Doppler vibrometer (LDV. New and established methods of PWAS inspection are explained in detail, listing advantages and disadvantages. The electro-mechanical impedance spectrum as basis for these methods is discussed for different sensor faults. This way this contribution focuses on a detailed analysis of PWAS and the need of their inspection for an increased reliability of SHM systems.

  19. Structural phase transition and elastic properties of thorium pnictides at high pressure

    Indian Academy of Sciences (India)

    Kuldeep Kholiya; B R K Gupta

    2007-04-01

    In the present paper we have pointed out the weaknesses of the approach by Aynyas et al [1] to study the structural phase transition and elastic properties of thorium pnictides. The calculated values of phase transition pressure and other elastic properties using the realistic and actual approach are also given and compared with the experimental and previous theoretical work.

  20. Structural transition and magnetic ordering in (Sm,Ce)FeAsO{sub (1-x)}F{sub x}

    Energy Technology Data Exchange (ETDEWEB)

    Hamann-Borrero, Jorge E.; Kondrat, Agnieszka; Klingeler, Ruediger; Hess, Christian; Behr, G.; Buechner, Bernd [Leibniz Institute for Solid State and Materials Research, IFW Dresden (Germany); Maeter, Hemke; Klauss, Hans-Henning [Institut fuer Festkoerperphysik, TU Dresden (Germany); Feyerherm, Ralf; Argyriou, Dimitri [Helmholtz Zentrum Berlin (Germany)

    2010-07-01

    The tetragonal to orthorhombic transition of the layered compounds (Sm,Ce)FeAsO{sub (1-x)}F{sub x} is studied by means of synchrotron X-ray diffraction, {mu}SR and resistivity. We particularly focus on the onset of the SDW and superconducting states by monitoring the structural transition temperature T{sub s} the magnetic ordering temperature T{sub N} and the critical temperature T{sub c}. In the case of SmFeAsO{sub (1-x)}F{sub x} the SDW state is only gradually suppressed upon doping until it is entirely suppressed in favour of the superconducting state. This is in contrast to CeFeAsO{sub (1-x)}F{sub x} where the SDW state is suppressed much more efficiently and where superconductivity coexists with magnetism. Moreover we do not observe any orthorhombic distortion in superconducting samples.

  1. Development of a model based Structural-Health-Monitoring-Systems for condition monitoring of rotor blades; Entwicklung eines modellgestuetzten Structural-Health-Monitoring-Systems zur Zustandsueberwachung von Rotorblaettern

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, C.; Friedmann, H.; Henkel, F.O. [Woelfel Beratende Ingenieure GmbH und Co.KG, Hoechberg (Germany); Frankenstein, B.; Schubert, L. [Fraunhofer-Institut fuer Zerstoerungsfreie Pruefverfahren, Dresden (Germany)

    2010-07-01

    The authors of the contribution under consideration report on a development of a Structural-Health-Monitoring-System which is to supervise the condition of the rotor blades of wind power plants and to detect in time structural changes before total failures. It is based on a combination of measuring techniques from the areas of the led rollers in the ultrasonic range and low-frequency modal analysis. The combination of both techniques was already promisingly used with past investigations of rotor blades. By means of modal analysis, statements to the total behaviour of the structure of rotor blades are possible. Endangered and strongly stressed areas additionally are supervised by led rollers within the ultrasonic range. The authors also report on the conception and execution of a fatigue test at a material rotor blade with a length by 39.1 m.

  2. Adjusting to change: linking family structure transitions with parenting and boys' adjustment.

    Science.gov (United States)

    Martinez, Charles R; Forgatch, Marion S

    2002-06-01

    This study examined links between family structure transitions and children's academic, behavioral, and emotional outcomes in a sample of 238 divorcing mothers and their sons in Grades 1-3. Multiple methods and agents were used in assessing family process variables and child outcomes. Findings suggest that greater accumulations of family transitions were associated with poorer academic functioning, greater acting-out behavior, and worse emotional adjustment for boys. However, in all three cases, these relationships were mediated by parenting practices: Parental academic skill encouragement mediated the relationship between transitions and academic functioning, and a factor of more general effective parenting practices mediated the relationships between transitions and acting out and emotional adjustment.

  3. Phase Transition of MoS2 Bilayer Structures

    DEFF Research Database (Denmark)

    Pandey, Mohnish; Bothra, Pallavi; Pati, Swapan K.

    2016-01-01

    In the present study, using density functional calculations we have investigated a possible mechanism for the structural phase transition of the semiconducting bilayer 2H-MoS2 via lithiation. The results indicate that the addition of lithium to the bilayer 2H-MoS2 transforms the bilayer to a hete...... microscopic mechanism of the phase transition in MoS2 and enriches the atomic scale understanding of the interaction of MoS2 with the alkali ions and other transition metal dichalcogenides manifesting a similar phase transition....

  4. Framework for Structural Online Health Monitoring of Aging and Degradation of Secondary Systems due to some Aspects of Erosion

    Energy Technology Data Exchange (ETDEWEB)

    Gribok, Andrei [Idaho National Lab. (INL), Idaho Falls, ID (United States); Patnaik, Sobhan [Idaho National Lab. (INL), Idaho Falls, ID (United States); Williams, Christian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pattanaik, Marut [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kanakala, Raghunath [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    This report describes the current state of research related to critical aspects of erosion and selected aspects of degradation of secondary components in nuclear power plants. The report also proposes a framework for online health monitoring of aging and degradation of secondary components. The framework consists of an integrated multi-sensor modality system which can be used to monitor different piping configurations under different degradation conditions. The report analyses the currently known degradation mechanisms and available predictive models. Based on this analysis, the structural health monitoring framework is proposed. The Light Water Reactor Sustainability Program began to evaluate technologies that could be used to perform online monitoring of piping and other secondary system structural components in commercial NPPs. These online monitoring systems have the potential to identify when a more detailed inspection is needed using real-time measurements, rather than at a pre-determined inspection interval. This transition to condition-based, risk informed automated maintenance will contribute to a significant reduction of operations and maintenance costs that account for the majority of nuclear power generation costs. There is unanimous agreement between industry experts and academic researchers that identifying and prioritizing inspection locations in secondary piping systems (for example, in raw water piping or diesel piping) would eliminate many excessive in-service inspections. The proposed structural health monitoring framework takes aim at answering this challenge by combining long-range guided wave technologies with other monitoring techniques, which can significantly increase the inspection length and pinpoint the locations that degraded the most. More widely, the report suggests research efforts aimed at developing, validating, and deploying online corrosion monitoring techniques for complex geometries, which are pervasive in NPPs.

  5. Notes on Critical Assessment of Theoretical Calculations of Atomic Structure and Transition Probabilities

    OpenAIRE

    Hyun-Kyung Chung; Per Jönsson; Alexander Kramida

    2013-01-01

    Atomic structure and transition probabilities are fundamental physical data required in many fields of science and technology. Atomic physics codes are freely available to other community users to generate atomic data for their interest, but the quality of these data is rarely verified. This special issue addresses estimation of uncertainties in atomic structure and transition probability calculations, and discusses methods and strategies to assess and ensure the quality of theoretical atomic...

  6. Fiber optic shape sensing for monitoring of flexible structures

    Science.gov (United States)

    Lally, Evan M.; Reaves, Matt; Horrell, Emily; Klute, Sandra; Froggatt, Mark E.

    2012-04-01

    Recent advances in materials science have resulted in a proliferation of flexible structures for high-performance civil, mechanical, and aerospace applications. Large aspect-ratio aircraft wings, composite wind turbine blades, and suspension bridges are all designed to meet critical performance targets while adapting to dynamic loading conditions. By monitoring the distributed shape of a flexible component, fiber optic shape sensing technology has the potential to provide valuable data during design, testing, and operation of these smart structures. This work presents a demonstration of such an extended-range fiber optic shape sensing technology. Three-dimensional distributed shape and position sensing is demonstrated over a 30m length using a monolithic silica fiber with multiple optical cores. A novel, helicallywound geometry endows the fiber with the capability to convert distributed strain measurements, made using Optical Frequency-Domain Reflectometry (OFDR), to a measurement of curvature, twist, and 3D shape along its entire length. Laboratory testing of the extended-range shape sensing technology shows

  7. Applications of nonlinear system identification to structural health monitoring.

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, C. R. (Charles R.); Sohn, H. (Hoon); Robertson, A. N. (Amy N.)

    2004-01-01

    The process of implementing a damage detection strategy for aerospace, civil and mechanical engineering infrastructure is referred to as structural health monitoring (SHM). In many cases damage causes a structure that initially behaves in a predominantly linear manner to exhibit nonlinear response when subject to its operating environment. The formation of cracks that subsequently open and close under operating loads is an example of such damage. The damage detection process can be significantly enhanced if one takes advantage of these nonlinear effects when extracting damage-sensitive features from measured data. This paper will provide an overview of nonlinear system identification techniques that are used for the feature extraction process. Specifically, three general approaches that apply nonlinear system identification techniques to the damage detection process are discussed. The first two approaches attempt to quantify the deviation of the system from its initial linear characteristics that is a direct result of damage. The third approach is to extract features from the data that are directly related to the specific nonlinearity associated with the damaged condition. To conclude this discussion, a summary of outstanding issues associated with the application of nonlinear system identification techniques to the SHM problem is presented.

  8. Structural Health Monitoring under Nonlinear Environmental or Operational Influences

    Directory of Open Access Journals (Sweden)

    Jyrki Kullaa

    2014-01-01

    Full Text Available Vibration-based structural health monitoring is based on detecting changes in the dynamic characteristics of the structure. It is well known that environmental or operational variations can also have an influence on the vibration properties. If these effects are not taken into account, they can result in false indications of damage. If the environmental or operational variations cause nonlinear effects, they can be compensated using a Gaussian mixture model (GMM without the measurement of the underlying variables. The number of Gaussian components can also be estimated. For the local linear components, minimum mean square error (MMSE estimation is applied to eliminate the environmental or operational influences. Damage is detected from the residuals after applying principal component analysis (PCA. Control charts are used for novelty detection. The proposed approach is validated using simulated data and the identified lowest natural frequencies of the Z24 Bridge under temperature variation. Nonlinear models are most effective if the data dimensionality is low. On the other hand, linear models often outperform nonlinear models for high-dimensional data.

  9. Phase Space Dissimilarity Measures for Structural Health Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bubacz, Jacob A [ORNL; Chmielewski, Hana T [ORNL; Pape, Alexander E [ORNL; Depersio, Andrew J [ORNL; Hively, Lee M [ORNL; Abercrombie, Robert K [ORNL; Boone, Shane [ORNL

    2011-11-01

    A novel method for structural health monitoring (SHM), known as the Phase Space Dissimilarity Measures (PSDM) approach, is proposed and developed. The patented PSDM approach has already been developed and demonstrated for a variety of equipment and biomedical applications. Here, we investigate SHM of bridges via analysis of time serial accelerometer measurements. This work has four aspects. The first is algorithm scalability, which was found to scale linearly from one processing core to four cores. Second, the same data are analyzed to determine how the use of the PSDM approach affects sensor placement. We found that a relatively low-density placement sufficiently captures the dynamics of the structure. Third, the same data are analyzed by unique combinations of accelerometer axes (vertical, longitudinal, and lateral with respect to the bridge) to determine how the choice of axes affects the analysis. The vertical axis is found to provide satisfactory SHM data. Fourth, statistical methods were investigated to validate the PSDM approach for this application, yielding statistically significant results.

  10. Structural health monitoring of PC structures with novel types of distributed sensors

    Science.gov (United States)

    Yang, Caiqian; Wu, Zhishen; Zhang, Yufeng

    2010-04-01

    In this paper, the structural health monitoring of a pre-stressed concrete (PC) structure based on two types of distributed sensing techniques is addressed. The sensing elements are Brillouin scattering-based fiber optic sensors (FOSs) and HCFRP (hybrid carbon fiber reinforced polymer) sensors composed of three types of carbon tows. Both types of sensors are characterized by a broad-based and distributed sensing function. The HCFRP sensors are bonded on PC tendon, steel reinforcing bar, and embedded in tensile and compressive concrete sides with epoxy resins and putties. The FOSs are embedded in the tensile and compressive concrete sides where the HCFRP sensors are embedded as well. The distributed sensors are arranged to detect and monitor the initiation and propagation of cracks, yielding of steel reinforcements and corrosion of PC tendons. The experimental investigations demonstrate that the initiation and location of cracks, yielding of steel reinforcements, corrosion of PC tendons and structural health of PC structures can be effectively detected and monitored with such kinds of distributed sensing systems.

  11. Organizational Structures and Data Use in Volunteer Monitoring Organizations (VMOs)

    Science.gov (United States)

    Laird, Shelby Gull; Nelson, Stacy A. C.; Stubbs, Harriett S.; James, April L.; Menius, Erika

    2012-01-01

    Complex environmental problems call for unique solutions to monitoring efforts alongside developing a more environmentally literate citizenry. Community-based monitoring (CBM) through the use of volunteer monitoring organizations helps to provide a part of the solution, particularly when CBM groups work with research scientists or government…

  12. Organizational Structures and Data Use in Volunteer Monitoring Organizations (VMOs)

    Science.gov (United States)

    Laird, Shelby Gull; Nelson, Stacy A. C.; Stubbs, Harriett S.; James, April L.; Menius, Erika

    2012-01-01

    Complex environmental problems call for unique solutions to monitoring efforts alongside developing a more environmentally literate citizenry. Community-based monitoring (CBM) through the use of volunteer monitoring organizations helps to provide a part of the solution, particularly when CBM groups work with research scientists or government…

  13. First order magneto-structural transition in functional magnetic materials: phase-coexistence and metastability

    Indian Academy of Sciences (India)

    S B Roy; M K Chattopadhyay; M A Manekar; K J S Sokhey; P Chaddah

    2006-11-01

    First order magneto-structural transition plays an important role in the functionality of various magnetic materials of current interest like manganese oxide systems showing colossal magnetoresistance, Gd5(Ge, Si)4 alloys showing giant magnetocaloric effects and magnetic shape memory alloys. The key features of this magneto-structural transition are phase-coexistence and metastability. This generality is highlighted with experimental results obtained in a particular class of materials. A generalized framework of disorder influenced first order phase transition is introduced to understand the interesting experimental results which have some bearing on the functionality of the concerned materials.

  14. Propagation error minimization method for multiple structural displacement monitoring system

    Science.gov (United States)

    Jeon, Haemin; Shin, Jae-Uk; Myung, Hyun

    2013-04-01

    In the previous study, a visually servoed paired structured light system (ViSP) which is composed of two sides facing each other, each with one or two lasers, a 2-DOF manipulator, a camera, and a screen has been proposed. The lasers project their parallel beams to the screen on the opposite side and 6-DOF relative displacement between two sides is estimated by calculating positions of the projected laser beams and rotation angles of the manipulators. To apply the system to massive civil structures such as long-span bridges or high-rise buildings, the whole area should be divided into multiple partitions and each ViSP module is placed in each partition in a cascaded manner. In other words, the movement of the entire structure can be monitored by multiplying the estimated displacements from multiple ViSP modules. In the multiplication, however, there is a major problem that the displacement estimation error is propagated throughout the multiple modules. To solve the problem, propagation error minimization method (PEMM) which uses Newton-Raphson formulation inspired by the error back-propagation algorithm is proposed. In this method, a propagation error at the last module is calculated and then the estimated displacement from ViSP at each partition is updated in reverse order by using the proposed PEMM that minimizes the propagation error. To verify the performance of the proposed method, various simulations and experimental tests have been performed. The results show that the propagation error is significantly reduced after applying PEMM.

  15. Can dead zones create transition disk like structures?

    CERN Document Server

    Pinilla, Paola; Ovelar, Maria de Juan; Birnstiel, Til

    2016-01-01

    [Abridged] Regions of low ionisation where the activity of the magneto-rotational instability is suppressed, the so called dead zones, have been suggested to explain gaps and asymmetries of transition disks. We investigate the gas and dust evolution simultaneously assuming simplified prescriptions for a dead zone and a magnetohydrodynamic (MHD) wind acting on the disk. We explore whether or not the resulting gas and dust distribution can create signatures similar to the ones observed in transition disks. For the dust evolution, we include the transport, growth, and fragmentation of dust particles. To compare with observations, we produce synthetic images in scattered optical light and in thermal emission at mm wavelengths. In all models with a dead zone, a bump in the gas surface density is produced, which is able to efficiently trap large particles ($\\gtrsim1$ mm) at the outer edge of the dead zone. The gas bump reaches an amplitude of a factor of $\\sim5$, which can be enhanced by the presence of a MHD wind ...

  16. New smart materials to address issues of structural health monitoring.

    Energy Technology Data Exchange (ETDEWEB)

    Chaplya, Pavel Mikhail

    2004-12-01

    Nuclear weapons and their storage facilities may benefit from in-situ structural health monitoring systems. Appending health-monitoring functionality to conventional materials and structures has been only marginally successful. The purpose of this project was to evaluate feasibility of a new smart material that includes self-sensing health monitoring functions similar to that of a nervous system of a living organism. Reviews of current efforts in the fields of heath-monitoring, nanotechnology, micro-electromechanical systems (MEMS), and wireless sensor networks were conducted. Limitations of the current nanotechnology methods were identified and new approaches were proposed to accelerate the development of self-sensing materials. Wireless networks of MEMS sensors have been researched as possible prototypes of self-sensing materials. Sensor networks were also examined as enabling technologies for dense data collection techniques to be used for validation of numerical methods and material parameter identification. Each grain of the envisioned material contains sensors that are connected in a dendritic manner similar to networks of neurons in a nervous system. Each sensor/neuron can communicate with the neighboring grains. Both the state of the sensor (on/off) and the quality of communication signal (speed/amplitude) should indicate not only a presence of a structural defect but the nature of the defect as well. For example, a failed sensor may represent a through-grain crack, while a lost or degraded communication link may represent an inter-granular crack. A technology to create such material does not exist. While recent progress in the fields of MEMS and nanotechnology allows to envision these new smart materials, it is unrealistic to expect creation of self-sensing materials in the near future. The current state of MEMS, nanotechnology, communication, sensor networks, and data processing technologies indicates that it will take more than ten years for the

  17. Ultrasonic guided wave mechanics for composite material structural health monitoring

    Science.gov (United States)

    Gao, Huidong

    The ultrasonic guided wave based method is very promising for structural health monitoring of aging and modern aircraft. An understanding of wave mechanics becomes very critical for exploring the potential of this technology. However, the guided wave mechanics in complex structures, especially composite materials, are very challenging due to the nature of multi-layer, anisotropic, and viscoelastic behavior. The purpose of this thesis is to overcome the challenges and potentially take advantage of the complex wave mechanics for advanced sensor design and signal analysis. Guided wave mechanics is studied in three aspects, namely wave propagation, excitation, and damage sensing. A 16 layer quasi-isotropic composite with a [(0/45/90/-45)s]2 lay up sequence is used in our study. First, a hybrid semi-analytical finite element (SAFE) and global matrix method (GMM) is used to simulate guided wave propagation in composites. Fast and accurate simulation is achieved by using SAFE for dispersion curve generation and GMM for wave structure calculation. Secondly, the normal mode expansion (NME) technique is used for the first time to study the wave excitation characteristics in laminated composites. A clear and simple definition of wave excitability is put forward as a result of NME analysis. Source influence for guided wave excitation is plotted as amplitude on a frequency and phase velocity spectrum. This spectrum also provides a guideline for transducer design in guided wave excitation. The ultrasonic guided wave excitation characteristics in viscoelastic media are also studied for the first time using a modified normal mode expansion technique. Thirdly, a simple physically based feature is developed to estimate the guided wave sensitivity to damage in composites. Finally, a fuzzy logic decision program is developed to perform mode selection through a quantitative evaluation of the wave propagation, excitation and sensitivity features. Numerical simulation algorithms are

  18. Fielding a structural health monitoring system on legacy military aircraft: A business perspective

    Energy Technology Data Exchange (ETDEWEB)

    Bos, Marcel J. [Dept. of Gas Turbines and Structural Integrity, National Aerospace Laboratory NLR, Amsterdam (Netherlands)

    2015-12-15

    An important trend in the sustainment of military aircraft is the transition from preventative maintenance to condition based maintenance (CBM). For CBM, it is essential that the actual system condition can be measured and the measured condition can be reliably extrapolated to a convenient moment in the future in order to facilitate the planning process while maintaining flight safety. Much research effort is currently being made for the development of technologies that enable CBM, including structural health monitoring (SHM) systems. Great progress has already been made in sensors, sensor networks, data acquisition, models and algorithms, data fusion/mining techniques, etc. However, the transition of these technologies into service is very slow. This is because business cases are difficult to define and the certification of the SHM systems is very challenging. This paper describes a possibility for fielding a SHM system on legacy military aircraft with a minimum amount of certification issues and with a good prospect of a positive return on investment. For appropriate areas in the airframe the application of SHM will reconcile the fail-safety and slow crack growth damage tolerance approaches that can be used for safeguarding the continuing airworthiness of these areas, combining the benefits of both approaches and eliminating the drawbacks.

  19. Development of structural health monitoring systems for composite bonded repairs on aircraft structures

    Science.gov (United States)

    Galea, Stephen C.; Powlesland, Ian G.; Moss, Scott D.; Konak, Michael J.; van der Velden, Stephen P.; Stade, Bryan; Baker, Alan A.

    2001-08-01

    The application of bonded composite patches to repair or reinforce defective metallic structures is becoming recognized as a very effective versatile repair procedure for many types of problems. Immediate applications of bonded patches are in the fields of repair of cracking, localized reinforcement after removal of corrosion damage and for reduction of fatigue strain. However, bonded repairs to critical components are generally limited due to certification concerns. For certification and management of repairs to critical structure, the Smart Patch approach may be an acceptable solution from the airworthiness prospective and be cost effective for the operator and may even allow some relaxation of the certification requirements. In the most basic form of the Smart Patch in-situ sensors can be used as the nerve system to monitor in service the structural condition (health or well-being) of the patch system and the status of the remaining damage in the parent structure. This application would also allow the operator to move away from current costly time-based maintenance procedures toward real-time health condition monitoring of the bonded repair and the repaired structure. TO this end a stand-alone data logger device, for the real-time health monitoring of bonded repaired systems, which is in close proximity to sensors on a repair is being developed. The instrumentation will measure, process and store sensor measurements during flight and then allow this data to be up-loaded, after the flight, onto a PC, via remote (wireless) data access. This paper describes two in-situ health monitoring systems which will be used on a composite bonded patch applied to an F/A-18. The two systems being developed consists of a piezoelectric (PVDF) film-based and a conventional electrical-resistance foil strain gauge-based sensing system. The latter system uses a primary cell (Lithium- based battery) as the power source, which should enable an operating life of 1-2 years. The patch

  20. VA Health Care: Processes to Evaluate, Implement, and Monitor Organizational Structure Changes Needed

    Science.gov (United States)

    2016-09-01

    VA HEALTH CARE Processes to Evaluate, Implement, and Monitor Organizational Structure Changes Needed Report to...Monitor Organizational Structure Changes Needed What GAO Found Recent internal and external reviews of Veterans Health Administration (VHA...operations have identified deficiencies in its organizational structure and recommended changes that would require significant restructuring to address

  1. Monitoring of Structural Integrity of Composite Structures by Embedded Optical Fiber Sensors

    Science.gov (United States)

    Osei, Albert J.

    2002-01-01

    Real time monitoring of the mechanical integrity and stresses on key aerospace composite structures like aircraft wings, walls of pressure vessels and fuel tanks or any other structurally extended components and panels as in space telescopes is very important to NASA. Future military and commercial aircraft as well as NASA space systems such as Space Based Radar and International Space Station will incorporate a monitoring system to sense any degradation to the structure. In the extreme flight conditions of an aerospace vehicle it might be desirable to measure the strain every ten centimeters and thus fully map out the strain field of a composite component. A series of missions and vehicle health management requirements call for these measurements. At the moment thousands of people support a few vehicle launches per year. This number can be significantly reduced by implementing intelligent vehicles with integral nervous systems (smart structures). This would require maintenance to be performed only as needed. Military and commercial aircrafts have an equally compelling case. Maintenance yearly costs are currently reaching astronomical heights. Monitoring techniques are therefore required that allow for maintenance to be performed only when needed. This would allow improved safety by insuring that necessary tasks are performed while reducing costs by eliminating procedures that are costly and not needed. The advantages fiber optical sensors have over conventional electro-mechanical systems like strain gauges have been widely extolled in the research literature. These advantages include their small size, low weight, immunity to electrical resistance, corrosion resistance, compatibility with composite materials and process conditions, and multiplexing capabilities. One fiber optic device which is suitable for distributed sensing is the fiber Bragg grating (FBG). Researchers at NASA MSFC are currently developing techniques for using FBGs for monitoring the integrity of

  2. Recent Advances in Energy Harvesting Technologies for Structural Health Monitoring Applications

    OpenAIRE

    Joseph Davidson; Changki Mo

    2014-01-01

    This paper reviews recent developments in energy harvesting technologies for structural health monitoring applications. Many industries have a great deal of interest in obtaining technology that can be used to monitor the health of machinery and structures. In particular, the need for autonomous monitoring of structures has been ever-increasing in recent years. Autonomous SHM systems typically include embedded sensors, data acquisition, wireless communication, and energy harvesting systems. A...

  3. Structural monitoring system with fiber Bragg grating sensors: Implementation and software solution

    CERN Document Server

    Fedorov, Aleksey; Makhrov, Ilya; Pozhar, Nikolay; Anufriev, Maxim; Pnev, Alexey; Karasik, Valeriy

    2014-01-01

    We present a structural health monitoring system for nondestructive testing of composite materials based on the fiber Bragg grating sensors and specialized software solution. Developed structural monitoring system has potential applications for preliminary tests of novel composite materials as well as real-time structural health monitoring of industrial objects. The software solution realizes control for the system, data processing and alert of an operator.

  4. Data Processing Algorithms in Wireless Sensor Networks får Structural Health Monitoring

    OpenAIRE

    Danna, Nigatu Mitiku; Mekonnen, Esayas Getachew

    2012-01-01

    The gradual deterioration and failure of old buildings, bridges and other civil engineering structures invoked the need for Structural Health Monitoring (SHM) systems to develop a means to monitor the health of structures. Dozens of sensing, processing and monitoring mechanisms have been implemented and widely deployed with wired sensors. Wireless sensor networks (WSNs), on the other hand, are networks of large numbers of low cost wireless sensor nodes that communicate through a wireless medi...

  5. Structural Health Monitoring Using Textile Reinforcement Structures with Integrated Optical Fiber Sensors

    Directory of Open Access Journals (Sweden)

    Kort Bremer

    2017-02-01

    Full Text Available Optical fiber-based sensors “embedded” in functionalized carbon structures (FCSs and textile net structures (TNSs based on alkaline-resistant glass are introduced for the purpose of structural health monitoring (SHM of concrete-based structures. The design aims to monitor common SHM parameters such as strain and cracks while at the same time acting as a structural strengthening mechanism. The sensor performances of the two systems are characterized in situ using Mach-Zehnder interferometric (MZI and optical attenuation measurement techniques, respectively. For this purpose, different FCS samples were subjected to varying elongation using a tensile testing machine by carefully incrementing the applied force, and good correlation between the applied force and measured length change was observed. For crack detection, the functionalized TNSs were embedded into a concrete block which was then exposed to varying load using the three-point flexural test until destruction. Promising results were observed, identifying that the location of the crack can be determined using the conventional optical time domain reflectometry (OTDR technique. The embedded sensors thus evaluated show the value of the dual achievement of the schemes proposed in obtaining strain/crack measurement while being utilized as strengthening agents as well.

  6. Phase Transitions in Sampling Algorithms and the Underlying Random Structures

    Science.gov (United States)

    Randall, Dana

    Sampling algorithms based on Markov chains arise in many areas of computing, engineering and science. The idea is to perform a random walk among the elements of a large state space so that samples chosen from the stationary distribution are useful for the application. In order to get reliable results, we require the chain to be rapidly mixing, or quickly converging to equilibrium. For example, to sample independent sets in a given graph G, the so-called hard-core lattice gas model, we can start at any independent set and repeatedly add or remove a single vertex (if allowed). By defining the transition probabilities of these moves appropriately, we can ensure that the chain will converge to a use- ful distribution over the state space Ω. For instance, the Gibbs (or Boltzmann) distribution, parameterized by Λ> 0, is defined so that p(Λ) = π(I) = Λ|I| /Z, where Z = sum_{J in Ω} Λ^{|J|} is the normalizing constant known as the partition function. An interesting phenomenon occurs as Λ is varied. For small values of Λ, local Markov chains converge quickly to stationarity, while for large values, they are prohibitively slow. To see why, imagine the underlying graph G is a region of the Cartesian lattice. Large independent sets will dominate the stationary distribution π when Λ is sufficiently large, and yet it will take a very long time to move from an independent set lying mostly on the odd sublattice to one that is mostly even. This phenomenon is well known in the statistical physics community, and characterizes by a phase transition in the underlying model.

  7. Simultaneous excitation system for efficient guided wave structural health monitoring

    Science.gov (United States)

    Hua, Jiadong; Michaels, Jennifer E.; Chen, Xin; Lin, Jing

    2017-10-01

    Many structural health monitoring systems utilize guided wave transducer arrays for defect detection and localization. Signals are usually acquired using the ;pitch-catch; method whereby each transducer is excited in turn and the response is received by the remaining transducers. When extensive signal averaging is performed, the data acquisition process can be quite time-consuming, especially for metallic components that require a low repetition rate to allow signals to die out. Such a long data acquisition time is particularly problematic if environmental and operational conditions are changing while data are being acquired. To reduce the total data acquisition time, proposed here is a methodology whereby multiple transmitters are simultaneously triggered, and each transmitter is driven with a unique excitation. The simultaneously transmitted waves are captured by one or more receivers, and their responses are processed by dispersion-compensated filtering to extract the response from each individual transmitter. The excitation sequences are constructed by concatenating a series of chirps whose start and stop frequencies are randomly selected from a specified range. The process is optimized using a Monte-Carlo approach to select sequences with impulse-like autocorrelations and relatively flat cross-correlations. The efficacy of the proposed methodology is evaluated by several metrics and is experimentally demonstrated with sparse array imaging of simulated damage.

  8. PVDF Multielement Lamb Wave Sensor for Structural Health Monitoring.

    Science.gov (United States)

    Ren, Baiyang; Lissenden, Cliff J

    2016-01-01

    The characteristics of Lamb waves, which are multimodal and dispersive, provide both challenges and opportunities for structural health monitoring (SHM). Methods for nondestructive testing with Lamb waves are well established. For example, mode content can be determined by moving a sensor to different positions and then transforming the spatial-temporal data into the wavenumber-frequency domain. This mode content information is very useful because at every frequency each mode has a unique wavestructure, which is largely responsible for its sensitivity to material damage. Furthermore, mode conversion occurs when the waves interact with damage, making mode content an excellent damage detection feature. However, in SHM, the transducers are typically at fixed locations and are immovable. Here, an affixed polyvinylidene fluoride (PVDF) multielement sensor is shown to provide these same capabilities. The PVDF sensor is bonded directly to the waveguide surface, conforms to curved surfaces, has low mass, low profile, low cost, and minimal influence on passing Lamb waves. While the mode receivability is dictated by the sensor being located on the surface of the waveguide, both symmetric and antisymmetric modes can be detected and group velocities measured.

  9. Temperature effects in ultrasonic Lamb wave structural health monitoring systems.

    Science.gov (United States)

    Lanza di Scalea, Francesco; Salamone, Salvatore

    2008-07-01

    There is a need to better understand the effect of temperature changes on the response of ultrasonic guided-wave pitch-catch systems used for structural health monitoring. A model is proposed to account for all relevant temperature-dependent parameters of a pitch-catch system on an isotropic plate, including the actuator-plate and plate-sensor interactions through shear-lag behavior, the piezoelectric and dielectric permittivity properties of the transducers, and the Lamb wave dispersion properties of the substrate plate. The model is used to predict the S(0) and A(0) response spectra in aluminum plates for the temperature range of -40-+60 degrees C, which accounts for normal aircraft operations. The transducers examined are monolithic PZT-5A [PZT denotes Pb(Zr-Ti)O3] patches and flexible macrofiber composite type P1 patches. The study shows substantial changes in Lamb wave amplitude response caused solely by temperature excursions. It is also shown that, for the transducers considered, the response amplitude changes follow two opposite trends below and above ambient temperature (20 degrees C), respectively. These results can provide a basis for the compensation of temperature effects in guided-wave damage detection systems.

  10. On Assessing the Robustness of Structural Health Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Stull, Christopher J. [Los Alamos National Laboratory; Hemez, Francois M. [Los Alamos National Laboratory; Farrar, Charles R. [Los Alamos National Laboratory

    2012-08-24

    As Structural Health Monitoring (SHM) continues to gain popularity, both as an area of research and as a tool for use in industrial applications, the number of technologies associated with SHM will also continue to grow. As a result, the engineer tasked with developing a SHM system is faced with myriad hardware and software technologies from which to choose, often adopting an ad hoc qualitative approach based on physical intuition or past experience to making such decisions. This paper offers a framework that aims to provide the engineer with a quantitative approach for choosing from among a suite of candidate SHM technologies. The framework is outlined for the general case, where a supervised learning approach to SHM is adopted, and the presentation will focus on applying the framework to two commonly encountered problems: (1) selection of damage-sensitive features and (2) selection of a damage classifier. The data employed for these problems will be drawn from a study that examined the feasibility of applying SHM to the RAPid Telescopes for Optical Response observatory network.

  11. Flexible High Energy-Conversion Sensing Materials for Structural Health Monitoring Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The applicant is developing flexible highly-efficient piezoelectric materials for use in structural health monitoring (SHM) as contemplated in the solicitation...

  12. Highly Reliable Structural Health Monitoring of Smart Composite Vanes for Jet Engine Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Intelligent Fiber Optic Systems and Auburn University propose a Fiber Bragg Grating (FBG) integrated Structural Health Monitoring (SHM) sensor system capable of...

  13. Highly Reliable Structural Health Monitoring of Smart Composite Vanes for Jet Engine Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase 1, Intelligent Fiber Optic Systems (IFOS) successfully demonstrated a Fiber Bragg Grating (FBG) based integrated Structural Health Monitoring (SHM) sensor...

  14. Structural Health Monitoring with Fiber Bragg Grating and Piezo Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — IFOS and its research institute collaborator, Washington State University (WSU), have demonstrated feasibility of a structural health monitoring (SHM) system for...

  15. A methodological review of piezoelectric based acoustic wave generation and detection techniques for structural health monitoring

    National Research Council Canada - National Science Library

    Sun, Z; Rocha, B; Wu, K.-T; Mrad, N

    2013-01-01

    .... As condition based maintenance has emerged as a valuable approach to enhancing continued aircraft airworthiness while reducing the life cycle cost, its enabling structural health monitoring (SHM...

  16. Transitions between imperfectly ordered crystalline structures: A phase switch Monte Carlo study

    OpenAIRE

    Wilms, Dorothea; Wilding, Nigel B.; Binder, Kurt

    2012-01-01

    A model for two-dimensional colloids confined laterally by "structured boundaries" (i.e., ones that impose a periodicity along the slit) is studied by Monte Carlo simulations. When the distance D between the confining walls is reduced at constant particle number from an initial value D_0, for which a crystalline structure commensurate with the imposed periodicity fits, to smaller values, a succession of phase transitions to imperfectly ordered structures occur. These structures have a reduced...

  17. a Monte Carlo Study of Carbon Monoxide Layers Adsorbed on Ionic Substrates:. Structures and Phase Transitions

    Science.gov (United States)

    Vu, Ngoc-Thanh; Jack, David B.

    We have studied the order-disorder phase transitions of carbon monoxide layers adsorbed on sodium chloride and lithium flouride substrates using the Metropolis Monte Carlo method. The simulations have been performed in the temperature range from 5 K to 60 K. At low temperature and monolayer coverage, both of these systems form ordered phases which disorder as the temperature is increased. The transition temperature (Tc) is between 30 K and 35 K for CO/NaCl, and from 40 K to 45 K for CO/LiF. Below Tc, both systems have an ordered p(2 × 1) type structure due to correlated azimuthal orientations. Above Tc, both systems undergo a phase transition to an azimuthally disordered p(1 × 1) structure, i.e. one with no preferred orientation in the surface plane. The heat capacity shows a characteristic divergence at the transition temperature. Coverages of less than a monolayer of the CO/NaCl system have also been studied. The CO molecules are found to aggregate and form islands with an ordered structure in the middle of the islands. These islands also undergo an order-disorder transition but at lower temperatures. Multilayer systems were found to destabilize the p(2 × 1) structure of the bottommost layer in favor of a p(1 × 1) structure with the upper layers adopting the bulk structure.

  18. Structural semiconductor-to-semimetal phase transition in two-dimensional materials induced by electrostatic gating.

    Science.gov (United States)

    Li, Yao; Duerloo, Karel-Alexander N; Wauson, Kerry; Reed, Evan J

    2016-01-01

    Dynamic control of conductivity and optical properties via atomic structure changes is of technological importance in information storage. Energy consumption considerations provide a driving force towards employing thin materials in devices. Monolayer transition metal dichalcogenides are nearly atomically thin materials that can exist in multiple crystal structures, each with distinct electrical properties. By developing new density functional-based methods, we discover that electrostatic gating device configurations have the potential to drive structural semiconductor-to-semimetal phase transitions in some monolayer transition metal dichalcogenides. Here we show that the semiconductor-to-semimetal phase transition in monolayer MoTe2 can be driven by a gate voltage of several volts with appropriate choice of dielectric. We find that the transition gate voltage can be reduced arbitrarily by alloying, for example, for Mo(x)W(1-x)Te2 monolayers. Our findings identify a new physical mechanism, not existing in bulk materials, to dynamically control structural phase transitions in two-dimensional materials, enabling potential applications in phase-change electronic devices.

  19. Application of Wireless Monitoring System to Structural Health Monitoring of Long-Spanned Cable-Stayed Bridge

    Institute of Scientific and Technical Information of China (English)

    MENG Qing-cheng; QI Xin; Li Qiao

    2007-01-01

    The remote monitoring system applied to the construction control and health monitoring of the Nanjing Third Yangtze River Bridge is introduced. The system makes it possible to get the structure capabilities and environmental parameters of the bridge at the predetermined moment. It sends the collected data over a long distance to an assigned position for display and analysis. The related methods and working condition of the wireless monitoring system are discussed. The measured data during 48 h are employed to determine the feasibility for the closure of the bridge.

  20. Coherent Structures in Transition of a Flat-Plate Boundary Layer at Ma=0.7

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ying; LI Xin-Liang; FU De-Xun; MA Yan-Wen

    2007-01-01

    @@ Direct numerical simulation (DNS) of a spatially evolving flat-plate boundary layer transition process at free stream Mach number 0.7 is performed. Tollmien-Schlichting (T-S) waves are added on the inlet boundary as the disturbances before transition. Typical coherent structures in the transition process are investigated based on the second invariant of velocity gradient tensor. The instantaneous shear stress and the mean velocity profile in the transition region are studied. In our view, the fact that the peak value of shear stress in the stress concentration area increases and exceeds a threshold value during the later stage of the transition process plays an important role in the laminar breakdown process.

  1. Phase transitions, interfacial fluctuations and hidden symmetries for fluids near structured walls

    Indian Academy of Sciences (India)

    A O Parry; J M Romero-Enrique

    2005-05-01

    Fluids adsorbed at micro-patterned and geometrically structured substrates can exhibit novel phase transitions and interfacial fluctuation effects distinct from those characteristic of wetting at planar, homogeneous walls. We review recent theoretical progress in this area paying particular attention to filling transitions pertinent to fluid adsorption near wedges, which have highlighted a deep connection between geometrical and contact angles. We show that filling transitions are not only characterized by large scale interfacial fluctuations leading to universal critical singularities but also reveal hidden symmetries with short-ranged critical wetting transitions and properties of dimensional reduction. We propose a non-local interfacial model which fulfills all these properties and throws light on long-standing problems regarding the order of the 3D short-range critical wetting transition.

  2. The twistorial structure of loop-gravity transition amplitudes

    CERN Document Server

    Speziale, Simone

    2012-01-01

    The spin foam formalism provides transition amplitudes for loop quantum gravity. Important aspects of the dynamics are understood, but many open questions are pressing on. In this paper we address some of them using a twistorial description, which brings new light on both classical and quantum aspects of the theory. At the classical level, we clarify the covariant properties of the discrete geometries involved, and the role of the simplicity constraints in leading to SU(2) Ashtekar-Barbero variables. We identify areas and Lorentzian dihedral angles in twistor space, and show that they form a canonical pair. The primary simplicity constraints are solved by simple twistors, parametrized by SU(2) spinors and the dihedral angles. We construct an SU(2) holonomy and prove it to correspond to the Ashtekar-Barbero connection. We argue that the role of secondary constraints is to provide a non trivial embedding of the cotangent bundle of SU(2) in the space of simple twistors. At the quantum level, a Schroedinger repre...

  3. Phase transition, phase transition mechanism and crystal structure of a new compound-Ca2FeWO6

    Institute of Scientific and Technical Information of China (English)

    傅正民; 李文秀

    1995-01-01

    A new compound Ca2FeWO6 has been synthesized by solid state sintering. The phase transition of this compound was investigated by means of differential thermal analysis (DTA), X-ray powder diffraction and other methods. It is discovered that the compound has a displacive phase transition of the first order at (706±5)℃. The low temperature phase. α-Ca2FeWO6. belongs to orthorhombic system, with space group Pmm2. Its lattice parameters at room temperature are; a = 0.77051 nm, 6=0.54242nm and r = 0.551 08 nm, the measured density is Dm = 6.04g/cm3, and each unit cell contains two formula weight. The high temperature phase, β-Ca2FeWO6, belongs to the cubic system, with space group Fm3m and the lattice parameter is a = 0.780 8 nm at 750℃, z = 4. The calculated density is Dx = 5.802g/cm3, The crystal structures of α-Ca2FeWO6 and β-Ca2FeWO6 were also determined by means of the X-ray polycrystal diffraction method. The phase transition mechanism is expounded in detail.

  4. Phase transition, phase transition temperature and crystal structure of a new compound----Ca2PdWO6

    Institute of Scientific and Technical Information of China (English)

    傅正民; 李文秀

    1996-01-01

    A new compound Ca2PdWO6 has been synthesized by solid state sintering. The phase transition of this compound was investigated by means of differential thermal analysis (DTA), X-ray phase analysis, precise measurement of lattice parameters and other methods. It is discovered that the compound has a displacive phase transition of the first order at (806+5)C. The low temperature phase, a-Ca2PdWO6, belongs to orthorhombic system, with space group Pmm2. Its lattice parameters at room temperature are: a=0.79946nm, b=0.55404nm and c=0.58008nm. The measured density is Dm=6.26g/cm3, and each unit cell contains two formula weights. The high temperature phase, Ca2PdWO6, belongs to the cubic system, with space group fm3m and the lattice parameter is a = 0.810 3 nm at 860C; Z = 4. The calculated density is Dx=5.821g/cm3. The crystal structure of Ca2PdWO6 and Ca,PdWO6 was also determined by means of the X-ray polycrystal diffraction method. The factors influencing phase transition temperature are discussed in detail.

  5. Structural phase transition of CdTe: an ab initio study.

    Science.gov (United States)

    Alptekin, Sebahaddin

    2013-01-01

    A constant pressure ab initio MD technique and density functional theory with a generalized gradient approximation (GGA) was used to study the pressure-induced phase transition in zinc-blende CdTe. We found that CdTe undergoes a structural first-order phase transition to [Formula: see text] (binary β-tin) tetragonal structure in the constant pressure molecular dynamics simulation at 20 GPa. When the pressure was increased to 50 GPa, the phase of tetragonal structure converted to a new Imm2 orthorhombic structure. These phase transformations were also calculated by using the enthalpy calculations. Transition phases, lattice parameters and bulk properties we attained are comparable with experimental and theoretical data.

  6. First-principles calculations of structure and high pressure phase transition in gallium nitride

    Institute of Scientific and Technical Information of China (English)

    Tan Li-Na; Hu Cui-E; Yu Bai-Ru; Chen Xiang-Rong

    2007-01-01

    The phase transitions of semiconductor GaN from the Wurtzite (WZ) structure and the zinc-blende (ZB) structure to the rocksalt (RS) structure are investigated by using the first-principles plane-wave pseudopotential density functional method combined with the ultrasoft pseudopotential scheme in the generalized gradient approximation (GGA)correction. It is found that the phase transitions from the WZ structure and the ZB structure to the RS structure occur at pressures of 46.1 GPa and 45.2 GPa, respectively. The lattice parameters, bulk moduli and their pressure derivatives of these structures of GaN are also calculated. Our results are consistent with available experimental and other theoretical results. The dependence of the normalized formula-unit volume V/Vo on pressure P is also successfully obtained.

  7. Sensitive search for the temporal variation of the fine structure constant using radio-frequency E1 transitions in atomic dysprosium

    CERN Document Server

    Nguyen, A T; Lamoreaux, S K; Torgerson, J R

    2003-01-01

    It has been proposed that the radio-frequency electric-dipole (E1) transition between two nearly degenerate opposite-parity states in atomic dysprosium should be highly sensitive to possible temporal variation of the fine structure constant ($\\alpha$) [V. A. Dzuba, V. V. Flambaum, and J. K. Webb, Phys. Rev. A {\\bf 59}, 230 (1999)]. We discuss here an experimental realization of the proposed search, which involves monitoring the E1 transition frequency over a period of time using direct frequency counting techniques. We estimate that a statistical sensitivity of $|\\adota| \\sim 10^{-18}$/yr may be achieved and discuss possible systematic effects in such a measurement.

  8. Characterizing structural transitions using localized free energy landscape analysis.

    Directory of Open Access Journals (Sweden)

    Nilesh K Banavali

    Full Text Available BACKGROUND: Structural changes in molecules are frequently observed during biological processes like replication, transcription and translation. These structural changes can usually be traced to specific distortions in the backbones of the macromolecules involved. Quantitative energetic characterization of such distortions can greatly advance the atomic-level understanding of the dynamic character of these biological processes. METHODOLOGY/PRINCIPAL FINDINGS: Molecular dynamics simulations combined with a variation of the Weighted Histogram Analysis Method for potential of mean force determination are applied to characterize localized structural changes for the test case of cytosine (underlined base flipping in a GTCAGCGCATGG DNA duplex. Free energy landscapes for backbone torsion and sugar pucker degrees of freedom in the DNA are used to understand their behavior in response to the base flipping perturbation. By simplifying the base flipping structural change into a two-state model, a free energy difference of upto 14 kcal/mol can be attributed to the flipped state relative to the stacked Watson-Crick base paired state. This two-state classification allows precise evaluation of the effect of base flipping on local backbone degrees of freedom. CONCLUSIONS/SIGNIFICANCE: The calculated free energy landscapes of individual backbone and sugar degrees of freedom expectedly show the greatest change in the vicinity of the flipping base itself, but specific delocalized effects can be discerned upto four nucleotide positions away in both 5' and 3' directions. Free energy landscape analysis thus provides a quantitative method to pinpoint the determinants of structural change on the atomic scale and also delineate the extent of propagation of the perturbation along the molecule. In addition to nucleic acids, this methodology is anticipated to be useful for studying conformational changes in all macromolecules, including carbohydrates, lipids, and proteins.

  9. A Structural and Functional Model of Teachers' Monitoring Skills Development

    Science.gov (United States)

    Masalimova, Alfiya R.; Barinova, Nataliya A.

    2016-01-01

    The relevance of the present issue is caused by a strong need to conduct monitoring processes in all types of teaching processes and a poor development of theoretical, content and technological, scientific and methodological material for teachers' monitoring skills development during their teaching practice. The aim of the article is to create and…

  10. Stability-to-instability transition in the structure of large-scale networks

    Science.gov (United States)

    Hu, Dandan; Ronhovde, Peter; Nussinov, Zohar

    2012-12-01

    We examine phase transitions between the “easy,” “hard,” and “unsolvable” phases when attempting to identify structure in large complex networks (“community detection”) in the presence of disorder induced by network “noise” (spurious links that obscure structure), heat bath temperature T, and system size N. The partition of a graph into q optimally disjoint subgraphs or “communities” inherently requires Potts-type variables. In earlier work [Philos. Mag.1478-643510.1080/14786435.2011.616547 92, 406 (2012)], when examining power law and other networks (and general associated Potts models), we illustrated that transitions in the computational complexity of the community detection problem typically correspond to spin-glass-type transitions (and transitions to chaotic dynamics in mechanical analogs) at both high and low temperatures and/or noise. The computationally “hard” phase exhibits spin-glass type behavior including memory effects. The region over which the hard phase extends in the noise and temperature phase diagram decreases as N increases while holding the average number of nodes per community fixed. This suggests that in the thermodynamic limit a direct sharp transition may occur between the easy and unsolvable phases. When present, transitions at low temperature or low noise correspond to entropy driven (or “order by disorder”) annealing effects, wherein stability may initially increase as temperature or noise is increased before becoming unsolvable at sufficiently high temperature or noise. Additional transitions between contending viable solutions (such as those at different natural scales) are also possible. Identifying community structure via a dynamical approach where “chaotic-type” transitions were found earlier. The correspondence between the spin-glass-type complexity transitions and transitions into chaos in dynamical analogs might extend to other hard computational problems. In this work, we examine large

  11. PHASE ANALYSIS AND CRYSTAL STRUCTURE STUDIES ON BINARY ALLOYS OF ALUMINUM WITH TRANSITION METALS.

    Science.gov (United States)

    In order to provide the necessary background for detailed crystal-chemistry studies in the field of binary aluminum - transition metal systems, extensive investigations have been carried out on the phase relations of a large number of such systems. The results of these studies are briefly summarized, as are also the results of crystal structure determinations of a few alumi num - transition metal phases. (Author)

  12. Orientation dependence of structural transition in fcc Al driven under uniaxial compression by atomistic simulations

    Institute of Scientific and Technical Information of China (English)

    Li Li; Shao Jian-Li; Duan Su-Qing; Liang Jiu-Qing

    2011-01-01

    By molecular dynamics simulations employing an embedded atom method potential, we have investigated structural transformations in single crystal Al caused by uniaxial strain loading along the[001],[011]and[111]directions.We find that the structural transition is strongly dependent on the crystal orientations. The entire structure phase transition only occurs when loading along the[001]direction, and the increased amplitude of temperature for[001]loading is evidently lower than that for other orientations. The morphology evolutions of the structural transition for [011]and[111]loadings are analysed in detail. The results indicate that only 20% of atoms transit to the hcp phase for[011]and[111]loadings, and the appearance of the hcp phase is due to the partial dislocation moving forward on {111}fcc family. For[011]loading, the hcp phase grows to form laminar morphology in four planes, which belong to the{111}fcc family;while for[111]loading, the hcp phase grows into a laminar structure in three planes, which belong to the {111}fcc family except for the(111)plane. In addition, the phase transition is evaluated by using the radial distribution functions.

  13. Competing structures in two dimensions: Square-to-hexagonal transition

    Science.gov (United States)

    Gränz, Barbara; Korshunov, Sergey E.; Geshkenbein, Vadim B.; Blatter, Gianni

    2016-08-01

    We study a system of particles in two dimensions interacting via a dipolar long-range potential D /r3 and subject to a square-lattice substrate potential V (r ) with amplitude V and lattice constant b . The isotropic interaction favors a hexagonal arrangement of the particles with lattice constant a , which competes against the square symmetry of the underlying substrate lattice. We determine the minimal-energy states at fixed external pressure p generating the commensurate density n =1 /b2=(4/3 ) 1 /2/a2 in the absence of thermal and quantum fluctuations, using both analytical techniques based on the harmonic and continuum elastic approximations as well as numerical relaxation of particle configurations. At large substrate amplitude V >0.2 eD, with eD=D /b3 the dipolar energy scale, the particles reside in the substrate minima and hence arrange in a square lattice. Upon decreasing V , the square lattice turns unstable with respect to a zone-boundary shear mode and deforms into a period-doubled zigzag lattice. Analytic and numerical results show that this period-doubled phase in turn becomes unstable at V ≈0.074 eD towards a nonuniform phase developing an array of domain walls or solitons; as the density of solitons increases, the particle arrangement approaches that of a rhombic (or isosceles triangular) lattice. At a yet smaller substrate value estimated as V ≈0.046 eD, a further solitonic transition establishes a second nonuniform phase which smoothly approaches the hexagonal (or equilateral triangular) lattice phase with vanishing amplitude V . At small but finite amplitude V , the hexagonal phase is distorted and hexatically locked at an angle of φ ≈3 .8∘ with respect to the substrate lattice. The square-to-hexagonal transformation in this two-dimensional commensurate-incommensurate system thus involves a complex pathway with various nontrivial lattice- and modulated phases.

  14. Specifications and applications of the technical code for monitoring of building and bridge structures in China

    Directory of Open Access Journals (Sweden)

    Y Yang

    2016-12-01

    Full Text Available Recently, the exclusive compulsory technical code (GB 50982-2014 for structural health monitoring of buildings and bridges in China has been developed and implemented. This code covers the majority of the field monitoring methods and stipulates the corresponding technical parameters for monitoring of high-rise structures, large-span spatial structures, bridges and base-isolated structures. This article first presents the comprehensive review and linear comparison of existing structural health monitoring codes and standards. Subsequently, the progress of the codification of GB 50982-2014 is imparted and its main features and specifications are summarized. Finally, in accordance with GB50982-2014, several representative structural health monitoring practical applications of large-scale infrastructures in China are exemplified to illustrate how this national code can bridge the gap between theory and practical applications of structural health monitoring. This technical code is an important milestone in the application of well-established structural health monitoring techniques into the realistic and complex engineering projects. Also, it can provide abundant and authoritative information for practitioners and researchers involving the structural health monitoring techniques.

  15. Phase Behavior and Structural Transitions in Sodium Dodecyl Sulfonate Microemulsions

    Institute of Scientific and Technical Information of China (English)

    杨根生; 施介华; 等

    2002-01-01

    The forming mechanism of microemulsion of sodium dodecyl sulfonate.alcohols,water and isooctane was studied,with particular emphasis on the effect of molecular weight and concentration of alocohols.Phase diagram of the four components,alcohol, sodium dodecyl sulfonate,water and isooctane,was used as a means of study,through which the microemulsion regions were determined.Phase diagram of sodium dodecyl sulfonate/n-pentanol/isooctane/water system at km=2(km=Wn-pentanol/WSDS)is presented. The variation of conductivities of different microemulsion samples with water was measured.From the conductivities we investigated a change in structure from water droplets in oil(W/O)at low water content to liquid crystal at intermediate water content and a structure of oil droplets in water(O/W)at high water content.

  16. Pressure-induced structural transitions in MgH2.

    Science.gov (United States)

    Vajeeston, P; Ravindran, P; Kjekshus, A; Fjellvåg, H

    2002-10-21

    The stability of MgH2 has been studied up to 20 GPa using density-functional total-energy calculations. At ambient pressure alpha-MgH2 takes a TiO2-rutile-type structure. alpha-MgH2 is predicted to transform into gamma-MgH2 at 0.39 GPa. The calculated structural data for alpha- and gamma-MgH2 are in very good agreement with experimental values. At equilibrium the energy difference between these modifications is very small, and as a result both phases coexist in a certain volume and pressure field. Above 3.84 GPa gamma-MgH2 transforms into beta-MgH2, consistent with experimental findings. Two further transformations have been identified at still higher pressure: (i) beta- to delta-MgH2 at 6.73 GPa and (ii) delta- to epsilon-MgH2 at 10.26 GPa.

  17. Analysis and assessment of bridge health monitoring mass data—progress in research/development of "Structural Health Monitoring"

    Institute of Scientific and Technical Information of China (English)

    LI AiQun; DING YouLiang; WANG Hao; GUO Tong

    2012-01-01

    The "Structural Health Monitoring" is a project supported by National Natural Science Foundation for Distinguished Young Scholars of China (Grant No.50725828).To meet the urgent requirements of analysis and assessment of mass monitoring data of bridge environmental actions and structural responses,the monitoring of environmental actions and action effect modeling methods,dynamic performance monitoring and early warning methods,condition assessment and operation maintenance methods of key members are systematically studied in close combination with structural characteristics of long-span cable-stayed bridges and suspension bridges.The paper reports the progress of the project as follows.(1) The environmental action modeling methods of long-span bridges are established based on monitoring data of temperature,sustained wind and typhoon.The action effect modeling methods are further developed in combination with the multi-scale baseline finite element modeling method for long-span bridges.(2) The identification methods of global dynamic characteristics and internal forces of cables and hangers for long-span cable-stayed bridges and suspension bridges are proposed using the vibration monitoring data,on the basis of which the condition monitoring and early warning methods of bridges are developed using the environmental-condition-normalization technique.(3) The analysis methods for fatigue loading effect of welded details of steel box girder,temperature and traffic loading effect of expansion joint are presented based on long-term monitoring data of strain and beam-end displacement,on the basis of which the service performance assessment and remaining life prediction methods are developed.

  18. Complex transition to cooperative behavior in a structured population model.

    Directory of Open Access Journals (Sweden)

    Luciano Miranda

    Full Text Available Cooperation plays an important role in the evolution of species and human societies. The understanding of the emergence and persistence of cooperation in those systems is a fascinating and fundamental question. Many mechanisms were extensively studied and proposed as supporting cooperation. The current work addresses the role of migration for the maintenance of cooperation in structured populations. This problem is investigated in an evolutionary perspective through the prisoner's dilemma game paradigm. It is found that migration and structure play an essential role in the evolution of the cooperative behavior. The possible outcomes of the model are extinction of the entire population, dominance of the cooperative strategy and coexistence between cooperators and defectors. The coexistence phase is obtained in the range of large migration rates. It is also verified the existence of a critical level of structuring beyond that cooperation is always likely. In resume, we conclude that the increase in the number of demes as well as in the migration rate favor the fixation of the cooperative behavior.

  19. Structural control and health monitoring of building structures with unknown ground excitations: Experimental investigation

    Science.gov (United States)

    He, Jia; Xu, You-Lin; Zhan, Sheng; Huang, Qin

    2017-03-01

    When health monitoring system and vibration control system both are required for a building structure, it will be beneficial and cost-effective to integrate these two systems together for creating a smart building structure. Recently, on the basis of extended Kalman filter (EKF), a time-domain integrated approach was proposed for the identification of structural parameters of the controlled buildings with unknown ground excitations. The identified physical parameters and structural state vectors were then utilized to determine the control force for vibration suppression. In this paper, the possibility of establishing such a smart building structure with the function of simultaneous damage detection and vibration suppression was explored experimentally. A five-story shear building structure equipped with three magneto-rheological (MR) dampers was built. Four additional columns were added to the building model, and several damage scenarios were then simulated by symmetrically cutting off these columns in certain stories. Two sets of earthquakes, i.e. Kobe earthquake and Northridge earthquake, were considered as seismic input and assumed to be unknown during the tests. The structural parameters and the unknown ground excitations were identified during the tests by using the proposed identification method with the measured control forces. Based on the identified structural parameters and system states, a switching control law was employed to adjust the current applied to the MR dampers for the purpose of vibration attenuation. The experimental results show that the presented approach is capable of satisfactorily identifying structural damages and unknown excitations on one hand and significantly mitigating the structural vibration on the other hand.

  20. Data Analysis Algorithm Suitable for Structural Health Monitoring Based on Dust Network Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposed project will attempt to develop a data analysis system for structural health monitoring on space structures. The data analysis software will be a key...

  1. Structures, Phase Transitions and Tricritical Behavior of the Hybrid Perovskite Methyl Ammonium Lead Iodide

    Science.gov (United States)

    Whitfield, P. S.; Herron, N.; Guise, W. E.; Page, K.; Cheng, Y. Q.; Milas, I.; Crawford, M. K.

    2016-01-01

    We have examined the crystal structures and structural phase transitions of the deuterated, partially deuterated and hydrogenous organic-inorganic hybrid perovskite methyl ammonium lead iodide (MAPbI3) using time-of-flight neutron and synchrotron X-ray powder diffraction. Near 330 K the high temperature cubic phases transformed to a body-centered tetragonal phase. The variation of the order parameter Q for this transition scaled with temperature T as Q ∼ (Tc−T)β, where Tc is the critical temperature and the exponent β was close to ¼, as predicted for a tricritical phase transition. However, we also observed coexistence of the cubic and tetragonal phases over a range of temperature in all cases, demonstrating that the phase transition was in fact first-order, although still very close to tricritical. Upon cooling further, all the tetragonal phases transformed into a low temperature orthorhombic phase around 160 K, again via a first-order phase transition. Based upon these results, we discuss the impact of the structural phase transitions upon photovoltaic performance of MAPbI3 based solar cells. PMID:27767049

  2. Correlation between oxygen adsorption energy and electronic structure of transition metal macrocyclic complexes.

    Science.gov (United States)

    Liu, Kexi; Lei, Yinkai; Wang, Guofeng

    2013-11-28

    Oxygen adsorption energy is directly relevant to the catalytic activity of electrocatalysts for oxygen reduction reaction (ORR). In this study, we established the correlation between the O2 adsorption energy and the electronic structure of transition metal macrocyclic complexes which exhibit activity for ORR. To this end, we have predicted the molecular and electronic structures of a series of transition metal macrocyclic complexes with planar N4 chelation, as well as the molecular and electronic structures for the O2 adsorption on these macrocyclic molecules, using the density functional theory calculation method. We found that the calculated adsorption energy of O2 on the transition metal macrocyclic complexes was linearly related to the average position (relative to the lowest unoccupied molecular orbital of the macrocyclic complexes) of the non-bonding d orbitals (d(z(2)), d(xy), d(xz), and d(yz)) which belong to the central transition metal atom. Importantly, our results suggest that varying the energy level of the non-bonding d orbitals through changing the central transition metal atom and/or peripheral ligand groups could be an effective way to tuning their O2 adsorption energy for enhancing the ORR activity of transition metal macrocyclic complex catalysts.

  3. Structures, Phase Transitions and Tricritical Behavior of the Hybrid Perovskite Methyl Ammonium Lead Iodide

    Science.gov (United States)

    Whitfield, P. S.; Herron, N.; Guise, W. E.; Page, K.; Cheng, Y. Q.; Milas, I.; Crawford, M. K.

    2016-10-01

    We have examined the crystal structures and structural phase transitions of the deuterated, partially deuterated and hydrogenous organic-inorganic hybrid perovskite methyl ammonium lead iodide (MAPbI3) using time-of-flight neutron and synchrotron X-ray powder diffraction. Near 330 K the high temperature cubic phases transformed to a body-centered tetragonal phase. The variation of the order parameter Q for this transition scaled with temperature T as Q ˜ (Tc-T)β, where Tc is the critical temperature and the exponent β was close to ¼, as predicted for a tricritical phase transition. However, we also observed coexistence of the cubic and tetragonal phases over a range of temperature in all cases, demonstrating that the phase transition was in fact first-order, although still very close to tricritical. Upon cooling further, all the tetragonal phases transformed into a low temperature orthorhombic phase around 160 K, again via a first-order phase transition. Based upon these results, we discuss the impact of the structural phase transitions upon photovoltaic performance of MAPbI3 based solar cells.

  4. Kinetics of nucleotide-dependent structural transitions in the kinesin-1 hydrolysis cycle.

    Science.gov (United States)

    Mickolajczyk, Keith J; Deffenbaugh, Nathan C; Arroyo, Jaime Ortega; Andrecka, Joanna; Kukura, Philipp; Hancock, William O

    2015-12-29

    To dissect the kinetics of structural transitions underlying the stepping cycle of kinesin-1 at physiological ATP, we used interferometric scattering microscopy to track the position of gold nanoparticles attached to individual motor domains in processively stepping dimers. Labeled heads resided stably at positions 16.4 nm apart, corresponding to a microtubule-bound state, and at a previously unseen intermediate position, corresponding to a tethered state. The chemical transitions underlying these structural transitions were identified by varying nucleotide conditions and carrying out parallel stopped-flow kinetics assays. At saturating ATP, kinesin-1 spends half of each stepping cycle with one head bound, specifying a structural state for each of two rate-limiting transitions. Analysis of stepping kinetics in varying nucleotides shows that ATP binding is required to properly enter the one-head-bound state, and hydrolysis is necessary to exit it at a physiological rate. These transitions differ from the standard model in which ATP binding drives full docking of the flexible neck linker domain of the motor. Thus, this work defines a consensus sequence of mechanochemical transitions that can be used to understand functional diversity across the kinesin superfamily.

  5. VO{sub 2} (A): Reinvestigation of crystal structure, phase transition and crystal growth mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Rao Popuri, Srinivasa [ICMCB, CNRS, UPR 9048, F-33608 Pessac (France); University of Bordeaux, ICMCB, UPR 9048, F-33608 Pessac (France); National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Plautius Andronescu Str. No. 1, 300224 Timisoara (Romania); Artemenko, Alla [ICMCB, CNRS, UPR 9048, F-33608 Pessac (France); University of Bordeaux, ICMCB, UPR 9048, F-33608 Pessac (France); Labrugere, Christine [CeCaMA, University of Bordeaux 1, ICMCB, 87 Avenue du Dr. A. Schweitzer, F-33608 Pessac (France); Miclau, Marinela [National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Plautius Andronescu Str. No. 1, 300224 Timisoara (Romania); Villesuzanne, Antoine [ICMCB, CNRS, UPR 9048, F-33608 Pessac (France); University of Bordeaux, ICMCB, UPR 9048, F-33608 Pessac (France); Pollet, Michaël, E-mail: pollet@icmcb-bordeaux.cnrs.fr [ICMCB, CNRS, UPR 9048, F-33608 Pessac (France); University of Bordeaux, ICMCB, UPR 9048, F-33608 Pessac (France)

    2014-05-01

    Well crystallized VO{sub 2} (A) microrods were grown via a single step hydrothermal reaction in the presence of V{sub 2}O{sub 5} and oxalic acid. With the advantage of high crystalline samples, we propose P4/ncc as an appropriate space group at room temperature. From morphological studies, we found that the oriented attachment and layer by layer growth mechanisms are responsible for the formation of VO{sub 2} (A) micro rods. The structural and electronic transitions in VO{sub 2} (A) are strongly first order in nature, and a marked difference between the structural transition temperatures and electronic transitions temperature was evidenced. The reversible intra- (LTP-A to HTP-A) and irreversible inter- (HTP-A to VO{sub 2} (M1)) structural phase transformations were studied by in-situ powder X-ray diffraction. Attempts to increase the size of the VO{sub 2} (A) microrods are presented and the possible formation steps for the flower-like morphologies of VO{sub 2} (M1) are described. - Graphical abstract: Using a single step and template free hydrothermal synthesis, well crystallized VO{sub 2} (A) microrods were prepared and the P4/ncc space group was assigned to the room temperature crystal structure. Reversible and irreversible phase transitions among different VO{sub 2} polymorphs were identified and their progressive nature was highlighted. Attempts to increase the microrods size, involving layer by layer formation mechanisms, are presented. - Highlights: • Highly crystallized VO{sub 2} (A) microrods were grown via a single step hydrothermal process. • The P4/ncc space group was determined for VO{sub 2} (A) at room temperature. • The electronic structure and progressive nature of the structural phase transition were investigated. • A weak coupling between structural and electronic phase transitions was identified. • Different crystallite morphologies were discussed in relation with growth mechanisms.

  6. Long-Term Structural Health Monitoring System for a High-Speed Railway Bridge Structure

    Directory of Open Access Journals (Sweden)

    You-Liang Ding

    2015-01-01

    Full Text Available Nanjing Dashengguan Bridge, which serves as the shared corridor crossing Yangtze River for both Beijing-Shanghai high-speed railway and Shanghai-Wuhan-Chengdu railway, is the first 6-track high-speed railway bridge with the longest span throughout the world. In order to ensure safety and detect the performance deterioration during the long-time service of the bridge, a Structural Health Monitoring (SHM system has been implemented on this bridge by the application of modern techniques in sensing, testing, computing, and network communication. The SHM system includes various sensors as well as corresponding data acquisition and transmission equipment for automatic data collection. Furthermore, an evaluation system of structural safety has been developed for the real-time condition assessment of this bridge. The mathematical correlation models describing the overall structural behavior of the bridge can be obtained with the support of the health monitoring system, which includes cross-correlation models for accelerations, correlation models between temperature and static strains of steel truss arch, and correlation models between temperature and longitudinal displacements of piers. Some evaluation results using the mean value control chart based on mathematical correlation models are presented in this paper to show the effectiveness of this SHM system in detecting the bridge’s abnormal behaviors under the varying environmental conditions such as high-speed trains and environmental temperature.

  7. Long-Term Structural Health Monitoring System for a High-Speed Railway Bridge Structure

    Science.gov (United States)

    Wu, Lai-Yi

    2015-01-01

    Nanjing Dashengguan Bridge, which serves as the shared corridor crossing Yangtze River for both Beijing-Shanghai high-speed railway and Shanghai-Wuhan-Chengdu railway, is the first 6-track high-speed railway bridge with the longest span throughout the world. In order to ensure safety and detect the performance deterioration during the long-time service of the bridge, a Structural Health Monitoring (SHM) system has been implemented on this bridge by the application of modern techniques in sensing, testing, computing, and network communication. The SHM system includes various sensors as well as corresponding data acquisition and transmission equipment for automatic data collection. Furthermore, an evaluation system of structural safety has been developed for the real-time condition assessment of this bridge. The mathematical correlation models describing the overall structural behavior of the bridge can be obtained with the support of the health monitoring system, which includes cross-correlation models for accelerations, correlation models between temperature and static strains of steel truss arch, and correlation models between temperature and longitudinal displacements of piers. Some evaluation results using the mean value control chart based on mathematical correlation models are presented in this paper to show the effectiveness of this SHM system in detecting the bridge's abnormal behaviors under the varying environmental conditions such as high-speed trains and environmental temperature. PMID:26451387

  8. Long-Term Structural Health Monitoring System for a High-Speed Railway Bridge Structure.

    Science.gov (United States)

    Ding, You-Liang; Wang, Gao-Xin; Sun, Peng; Wu, Lai-Yi; Yue, Qing

    2015-01-01

    Nanjing Dashengguan Bridge, which serves as the shared corridor crossing Yangtze River for both Beijing-Shanghai high-speed railway and Shanghai-Wuhan-Chengdu railway, is the first 6-track high-speed railway bridge with the longest span throughout the world. In order to ensure safety and detect the performance deterioration during the long-time service of the bridge, a Structural Health Monitoring (SHM) system has been implemented on this bridge by the application of modern techniques in sensing, testing, computing, and network communication. The SHM system includes various sensors as well as corresponding data acquisition and transmission equipment for automatic data collection. Furthermore, an evaluation system of structural safety has been developed for the real-time condition assessment of this bridge. The mathematical correlation models describing the overall structural behavior of the bridge can be obtained with the support of the health monitoring system, which includes cross-correlation models for accelerations, correlation models between temperature and static strains of steel truss arch, and correlation models between temperature and longitudinal displacements of piers. Some evaluation results using the mean value control chart based on mathematical correlation models are presented in this paper to show the effectiveness of this SHM system in detecting the bridge's abnormal behaviors under the varying environmental conditions such as high-speed trains and environmental temperature.

  9. Tunable Laser Development for In-flight Fiber Optic Based Structural Health Monitoring Systems

    Science.gov (United States)

    Richards, Lance; Parker, Allen; Chan, Patrick

    2014-01-01

    The objective of this task is to investigate, develop, and demonstrate a low-cost swept lasing light source for NASA DFRC's fiber optics sensing system (FOSS) to perform structural health monitoring on current and future aerospace vehicles. This is the regular update of the Tunable Laser Development for In-flight Fiber Optic Based Structural Health Monitoring Systems website.

  10. The use of permanent corrosion monitoring in new and existing reinforced concrete structures

    Energy Technology Data Exchange (ETDEWEB)

    Broomfield, J.P. [Broomfield (J.P.), London (United Kingdom); Davies, K.; Hladky, K.

    1999-11-01

    Corrosion monitoring systems consisting of linear polarization, concrete resistivity and other probes have been installed in new structures to monitor durability and in existing structures to evaluate rehabilitation strategies such as corrosion inhibitor application and patch repairs. The types of sensors used, data collection techniques, results and interpretation are discussed.

  11. MONITORING OF GLYCEMIA IN COWS FOR THE DETECTION OF PRIMARY METABOLIC DISORDERS IN THE TRANSITION PERIOD

    Directory of Open Access Journals (Sweden)

    Usenko V. V.

    2016-09-01

    Full Text Available The article contains a synthesis of modern views on the problem of ketosis and related metabolic disorders. We have given evidences of the exceptional role of hypoglycemia in the development of progressive metabolic diseases of cows during the transition period. The necessity of implementing a program for critical period with mandatory control of glycemia was substantiated

  12. DelftCluster Railway transition zones and switches: Factual report fieldtest monitoring

    NARCIS (Netherlands)

    Hartman, A.D.

    2009-01-01

    For the Delft Cluster project ‘Railway transition zones and switches’, extensive field-testing has been carried out. At a location east of the railway station Gouda Goverwelle (GoGo) the behavior of a track and soil at a culvert and a switch are studied. This report is part of a series of reports de

  13. Conformational transition paths harbor structures useful for aiding drug discovery and understanding enzymatic mechanisms in protein kinases.

    Science.gov (United States)

    Wong, Chung F

    2016-01-01

    This short article examines the usefulness of fast simulations of conformational transition paths in elucidating enzymatic mechanisms and guiding drug discovery for protein kinases. It applies the transition path method in the MOIL software package to simulate the paths of conformational transitions between six pairs of structures from the Protein Data Bank. The structures along the transition paths were found to resemble experimental structures that mimic transient structures believed to form during enzymatic catalysis or conformational transitions, or structures that have drug candidates bound. These findings suggest that such simulations could provide quick initial insights into the enzymatic mechanisms or pathways of conformational transitions of proteins kinases, or could provide structures useful for aiding structure-based drug design.

  14. Reaction of sulfur-containing structural units of transition metals

    Institute of Scientific and Technical Information of China (English)

    陈忠宁; 康北笙; 童叶翔; 张华新; 苏成勇; 林璋; 洪茂椿; 郁开北

    1997-01-01

    Two tri-n-butylphosphme-participated ( PBu3n) nickel (Ⅱ) complexes of 2-mercaptophenol(H2mp),i.e,Ni2Ru(mp)3(Hmp)(PBu3n)3 3 exhibiting a curved heterotrinuclear metal skeleton and its mononuclear "synthon",[HNEt3] [Ni(mp) (Hmp) (PBu3n)] 1 were synthesized and characterized by X-crystallography and 1H NMR,FAB-MS and cyclic valtammogram measurements.The nickel(Ⅱ) center in 1 has a square-planar geometry For 3,the ruthenium(Ⅲ) atom is in a distorted octahedral environment and the two mckel(Ⅱ) atoms exhibit square-planar and rare triangle-planar geometries,respectively.The Ni (1)-Ru-Ni(2 ) arrangement is severely asymmetric with the distances 0.254 and 0.394 nm,respectively,for Ni(1)-Ru and Ni(2)-Ru.The structural regularities of relevant complexes are summarized in relation to the structural as well as spectra data.

  15. Pressure induced structural phase transition in SnS—An ab initio study

    Indian Academy of Sciences (India)

    M Rajagopalan; G Kalpana; V Priyamvadha

    2006-02-01

    The structural behaviour of SnS under pressure has been investigated by first principle density functional calculations of the total energy by the TB–LMTO approach. We find that SnS undergoes a structural phase transition from orthorhombic type to monoclinic type structure around 17 GPa which is in good agreement with the recent experimental study. In addition, the ground state properties are computed and compared with the available results.

  16. Multiple high-temperature transitions driven by dynamical structures in NaI

    Science.gov (United States)

    Manley, M. E.; Jeffries, J. R.; Lee, H.; Butch, N. P.; Zabalegui, A.; Abernathy, D. L.

    2014-06-01

    Multiple, consecutive high-temperature transitions in NaI involving dynamical order and/or localization in the energy-momentum spectrum but not in the average crystal structure are revealed by lattice dynamics, x-ray lattice spacing, and heat-capacity measurements. Distinctive energy-momentum patterns and lattice distortions indicate dynamical structures forming within randomly stacked planes, rather than the isolated point-defect-like intrinsic localized modes predicted. Transition entropies are accounted for by vibrational entropy changes, and the transition enthalpies are explained by the strain energy of forming stacking-fault-like planar distortions deduced from x-ray-diffraction peak shifts. The vibrational entropy of the dynamical structures stabilizes surrounding elastic distortions.

  17. Pressure-induced structural transition in chalcopyrite ZnSiP2

    Science.gov (United States)

    Bhadram, Venkata S.; Krishna, Lakshmi; Toberer, Eric S.; Hrubiak, Rostislav; Greenberg, Eran; Prakapenka, Vitali B.; Strobel, Timothy A.

    2017-05-01

    The pressure-dependent phase behavior of semiconducting chalcopyrite ZnSiP2 was studied up to 30 GPa using in situ X-ray diffraction and Raman spectroscopy in a diamond-anvil cell. A structural phase transition to the rock salt type structure was observed between 27 and 30 GPa, which is accompanied by soft phonon mode behavior and simultaneous loss of Raman signal and optical transmission through the sample. The high-pressure rock salt type phase possesses cationic disorder as evident from broad features in the X-ray diffraction patterns. The behavior of the low-frequency Raman modes during compression establishes a two-stage, order-disorder phase transition mechanism. The phase transition is partially reversible, and the parent chalcopyrite structure coexists with an amorphous phase upon slow decompression to ambient conditions.

  18. Pressure-induced structural transition in chalcopyrite ZnSiP 2

    Energy Technology Data Exchange (ETDEWEB)

    Bhadram, Venkata S.; Krishna, Lakshmi; Toberer, Eric S.; Hrubiak, Rostislav; Greenberg, Eran; Prakapenka, Vitali B.; Strobel, Timothy A.

    2017-05-02

    The pressure-dependent phase behavior of semiconducting chalcopyrite ZnSiP2 was studied up to 30 GPa using in situ X-ray diffraction and Raman spectroscopy in a diamond-anvil cell. A structural phase transition to the rock salt type structure was observed between 27 and 30 GPa, which is accompanied by soft phonon mode behavior and simultaneous loss of Raman signal and optical transmission through the sample. The high-pressure rock salt type phase possesses cationic disorder as evident from broad features in the X-ray diffraction patterns. The behavior of the low-frequency Raman modes during compression establishes a two-stage, order-disorder phase transition mechanism. The phase transition is partially reversible, and the parent chalcopyrite structure coexists with an amorphous phase upon slow decompression to ambient conditions.

  19. An Investigation of Magnetically Induced Structural Phase Transitions Near a Magnetic Phase Boundary

    Science.gov (United States)

    Brown, D. E.; Hoffmann, C. A.; Hua, J.; Totapally, S.; Mais, J.; Chmaissem, O.; Dabrowski, B.; Ren, Yang

    2004-03-01

    The structural properties of the perovskite La_1-xSr_xMnO_3, x = 0.55, have been studied using synchrotron powder x-ray diffraction under high magnetic fields (up to 6 Tesla) for zero field cooled and field cooled conditions. This compound has an interesting phase transition point where both structural and magnetic properties change. As temperature decreases, it undergoes a tetragonal (I4/mcm) to orthorhombic (Fmmm) first-order structural phase transition while simultaneously undergoing a ferromagnetic to an A-type antiferromagnetic magnetic phase transition. Under the application of a strong magnetic field, the structure can be forced from the ferromagnetic tetragonal structure to the antiferromagnetic orthorhombic structure, which is nearly a reversible process. Thus the strong competition between the magnetic phases can be significantly affected by applying an external magnetic field. The magnetic perovskites, such as the colossal magnetoresistive materials, appear to be susceptible to such large and surprising magnetically induced phase transitions. Work at NIU is supported by the State of Illinois under HECA. Work at APS/ANL is supported by the US DOE-BES No. W-31-109-ENG-38.

  20. Hybrid optical-fibre/geopolymer sensors for structural health monitoring of concrete structures

    Science.gov (United States)

    Perry, M.; Saafi, M.; Fusiek, G.; Niewczas, P.

    2015-04-01

    In this work, we demonstrate hybrid optical-fibre/geopolymer sensors for monitoring temperature, uniaxial strain and biaxial strain in concrete structures. The hybrid sensors detect these measurands via changes in geopolymer electrical impedance, and via optical wavelength measurements of embedded fibre Bragg gratings. Electrical and optical measurements were both facilitated by metal-coated optical fibres, which provided the hybrid sensors with a single, shared physical path for both voltage and wavelength signals. The embedded fibre sensors revealed that geopolymer specimens undergo 2.7 mɛ of shrinkage after one week of curing at 42 °C. After curing, an axial 2 mɛ compression of the uniaxial hybrid sensor led to impedance and wavelength shifts of 7 × 10-2 and -2 × 10-4 respectively. The typical strain resolution in the uniaxial sensor was 100 μ \\varepsilon . The biaxial sensor was applied to the side of a concrete cylinder, which was then placed under 0.6 mɛ of axial, compressive strain. Fractional shifts in impedance and wavelength, used to monitor axial and circumferential strain, were 3 × 10-2 and 4 × 10-5 respectively. The biaxial sensor’s strain resolution was approximately 10 μ \\varepsilon in both directions. Due to several design flaws, the uniaxial hybrid sensor was unable to accurately measure ambient temperature changes. The biaxial sensor, however, successfully monitored local temperature changes with 0.5 °C resolution.

  1. Interrogating a cell signalling network sensitively monitors cell fate transition during early differentiation of mouse embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    LIU; Yi-Hsin; HO; Chih-ming

    2010-01-01

    The different cell types in an animal are often considered to be specified by combinations of transcription factors,and defined by marker gene expression.This paradigm is challenged,however,in stem cell research and application.Using a mouse embryonic stem cell(mESC) culture system,here we show that the expression level of many key stem cell marker genes/transcription factors such as Oct4,Sox2 and Nanog failed to monitor cell status transition during mESC differentiation.On the other hand,the response patterns of cell signalling network to external stimuli,as monitored by the dynamics of protein phosphorylation,changed dramatically.Our results also suggest that an irreversible alternation in the cell signalling network precedes the adjustment of transcription factor levels.This is consistent with the notion that signal transduction events regulate cell fate specification.We propose that interrogating a cell signalling network can assess the cell property more precisely,and provide a sensitive measurement for the early events in cell fate transition.We wish to bring attention to the potential problem of cell identification using a few marker genes,and suggest a novel methodology to address this issue.

  2. Crystal structure and phase transition mechanisms in CsFe{sub 2}F{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Molokeev, M.S., E-mail: msmolokeev@gmail.com [Kirensky Institute of Physics, Siberian Department RAS, 660036 Krasnoyarsk (Russian Federation); Bogdanov, E.V., E-mail: evbogdanov@iph.krasn.ru [Kirensky Institute of Physics, Siberian Department RAS, 660036 Krasnoyarsk (Russian Federation); Institute of Energetics and Management of Energetic Sources, State Agrarian University, 660049 Krasnoyarsk (Russian Federation); Misyul, S.V., E-mail: misjul@akadem.ru [Institute of Physical Engineering and Radioelectronics, Siberian Federal University, 660074 Krasnoyarsk (Russian Federation); Tressaud, A., E-mail: tressaud@icmcb-bordeaux.cnrs.fr [Institute of Condensed Matter Chemistry of Bordeaux (ICMCB-CNRS), Université Bordeaux, 33608-Pessac (France); Flerov, I.N., E-mail: flerov@iph.krasn.ru [Kirensky Institute of Physics, Siberian Department RAS, 660036 Krasnoyarsk (Russian Federation); Institute of Physical Engineering and Radioelectronics, Siberian Federal University, 660074 Krasnoyarsk (Russian Federation)

    2013-04-15

    For the first time, structural phase transitions induced by the temperature were found in A{sub x}M{sub x}{sup II}M{sub (1−x)}{sup III}F{sub 3} fluorides with the defect pyrochlore structure (Fd3{sup ¯}m, Z=8). The room temperature structure of CsFe{sub 2}F{sub 6} was determined using X-ray powder diffraction technique. This phase was found to be ordered with the Pnma space group. The study of the temperature stability of orthorhombic structure by differential scanning calorimeter between 100 K and 700 K has shown a succession of phase transitions. The Pnma (Z=4)→Imma (Z=4)→I4{sub 1}/amd (Z=4)→Fd3{sup ¯}m (Z=8) structural sequence was proposed to occur within a rather narrow temperature range 500–560 K. The mechanism of structural transition has been mainly associated with the rotation of (MF{sub 6}) octahedra and small displacements of some Fe atoms. This assumption is in good agreement with the low experimental entropy value, which is characteristic for displacive transformations. - Graphical abstract: Mechanism of phase transition between the HT cubic form of CsFe{sub 2}F{sub 6} at 573 K (left) and the room temperature orthorhombic form at 298 K (right). The grey rectangles are clusters of five FeF{sub 6} octahedra. Highlights: ► Structural transition found for the first time in CsFe{sub 2}F{sub 6} with defect pyrochlore type. ► Fe{sup II} and Fe{sup III} atoms are ordered in room temperature Pnma form of CsFe{sub 2}F{sub 6}. ► Pnma(Z=4)→Imma(Z=4)→I4{sub 1}/amd(Z=4)→Fd-3m(Z=8) transition sequence is proposed. ► Structural transition due to rotation of MF{sub 6} groups+small displacements of Fe atoms. ► The low value of the entropy is in agreement with a displacive-type transition.

  3. Better Transitions for Troops: An Application of Schlossberg's Transition Framework to Analyses of Barriers and Institutional Support Structures for Student Veterans

    Science.gov (United States)

    Griffin, Kimberly A.; Gilbert, Claire K.

    2015-01-01

    Scholssberg's transition theory is used to frame qualitative analysis of narratives from veterans, administrators, and student affairs professionals, examining whether and how institutions can influence veterans' transitions to higher education. Findings suggest how institutional structures assist students in developing navigational…

  4. Better Transitions for Troops: An Application of Schlossberg's Transition Framework to Analyses of Barriers and Institutional Support Structures for Student Veterans

    Science.gov (United States)

    Griffin, Kimberly A.; Gilbert, Claire K.

    2015-01-01

    Scholssberg's transition theory is used to frame qualitative analysis of narratives from veterans, administrators, and student affairs professionals, examining whether and how institutions can influence veterans' transitions to higher education. Findings suggest how institutional structures assist students in developing navigational…

  5. Coupled magnetic, structural, and electronic phase transitions in FeRh

    Science.gov (United States)

    Lewis, L. H.; Marrows, C. H.; Langridge, S.

    2016-08-01

    The B2-ordered intermetallic magnetic compound FeRh exhibits a thermodynamically first-order phase transition in the vicinity of room temperature that makes it a highly intriguing subject for both fundamental and applied study. On heating through the transition the magnetic character changes from antiferromagnetic to ferromagnetic order with an accompanying large increase in the electrical conductivity and an abrupt expansion in the lattice structure. Accompanying these effects is a very large entropy change comprising both magnetic and lattice contributions. As well as being driven by temperature, these coupled phase transitions may be driven by the application or removal of a magnetic field, or, because of the extremely strong lattice-spin interactions present in this compound, by an applied strain (pressure), and combinations thereof. In addition to these driving factors, the transition temperature can also be tuned by both compositional and finite size effects. Building from historical work on bulk forms of FeRh, the effects of extrinsic and intrinsic parameter variation on the coupled magnetic, structural, and electronic phase transitions are reviewed here, with special attention directed to phenomena that manifest themselves in thin films. Overall, the rich manner in which the physical properties of FeRh change at the phase transition has potential for a wide range of technological applications in areas such as thermally-assisted magnetic recording media, CFC-free magnetic cooling, sensors for energy management, and novel spintronic devices.

  6. Variable defect structures cause the magnetic low-temperature transition in natural monoclinic pyrrhotite

    Science.gov (United States)

    Koulialias, D.; Kind, J.; Charilaou, M.; Weidler, P. G.; Löffler, J. F.; Gehring, A. U.

    2016-02-01

    Non-stoichiometric monoclinic 4C pyrrhotite (Fe7S8) is a major magnetic remanence carrier in the Earth's crust and in extraterrestrial materials. Because of its low-temperature magnetic transition around 30 K also known as Besnus transition, which is considered to be an intrinsic property, this mineral phase is easily detectable in natural samples. Although the physical properties of pyrrhotite have intensively been studied, the mechanism behind the pronounced change in magnetization at the low-temperature transition is still debated. Here we report magnetization experiments on a pyrrhotite crystal (Fe6.6S8) that consists of a 4C and an incommensurate 5C* superstructure that are different in their defect structure. The occurrence of two superstructures is magnetically confirmed by symmetric inflection points in hysteresis measurements above the transition at about 30 K. The disappearance of the inflection points and the associated change of the hysteresis parameters indicate that the two superstructures become strongly coupled to form a unitary magnetic anisotropy system at the transition. From this it follows that the Besnus transition in monoclinic pyrrhotite is an extrinsic magnetic phenomenon with respect to the 4C superstructure and therefore the physics behind it is in fact different from that of the well-known Verwey transition.

  7. Close monitoring as a contextual stimulator : How need for structure affects the relation between close monitoring and work outcomes

    NARCIS (Netherlands)

    Rietzschel, Eric F.; Slijkhuis, Marjette; Van Yperen, Nico W.

    2014-01-01

    In this article, we argue and demonstrate that employees' Personal Need for Structure (PNS) moderates the negative effects of close monitoring on job satisfaction, intrinsic work motivation, and innovative job performance (as rated by their supervisors). In a field study (N=295), we found that emplo

  8. Significance of Operating Environment in Condition Monitoring of Large Civil Structures

    Directory of Open Access Journals (Sweden)

    Sreenivas Alampalli

    1999-01-01

    Full Text Available Success of remote long-term condition monitoring of large civil structures and developing calibrated analytical models for damage detection, depend significantly on establishing accurate baseline signatures and their sensitivity. Most studies reported in the literature concentrated on the effect of structural damage on modal parameters without emphasis on reliability of modal parameters. Thus, a field bridge structure was studied for the significance of operating conditions in relation to baseline signatures. Results indicate that in practice, civil structures should be monitored for at least one full cycle of in-service environmental changes before establishing baselines for condition monitoring or calibrating finite-element models. Boundary conditions deserve special attention.

  9. The effect of melt overheating on the melt structure transition and solidified structures of Sn-Bi40 alloy

    Institute of Scientific and Technical Information of China (English)

    CHEN HongSheng; ZU FangQiu; OHEN Jie; ZOU Li; DING GuoHua; HUANG ZhongYue

    2008-01-01

    Evolution of the electrical resistivity of Sn-4Owt%Bi melt with time under different overheating temperatures during isothermal experiments has been studied, and the relationship between different melt state, solidification behavior and solidified structure has also been investigated. The results show that the melt structure transition revealed by the abnormal change of resistivity would take place within a certain holding time just when the holding temperature is above a certain critical, and that the higher the temperature above the critical, the shorter the "incubation period" of the melt structure transition, and the faster the transition speed. The results of solidification experiments suggest that the melt structure transition caused by different holding time at the same temperature can lead to a higher so- lidification undercooling degree, finer grain size and change of microscopic pattern. Further exploration indicates that the solidification undercooling degree can come to a head when the melt is held at the specific temperature for a given time. The functionary mechanism of the phenomena above is also discussed briefly.

  10. The effect of melt overheating on the melt structure transition and solidified structures of Sn-Bi40 alloy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Evolution of the electrical resistivity of Sn-40wt%Bi melt with time under different overheating temperatures during isothermal experiments has been studied, and the relationship between different melt state, solidification behavior and solidified structure has also been investigated. The results show that the melt structure transition revealed by the abnormal change of resistivity would take place within a certain holding time just when the holding temperature is above a certain critical, and that the higher the temperature above the critical, the shorter the "incubation period" of the melt structure transition, and the faster the transition speed. The results of solidification experiments suggest that the melt structure transition caused by different holding time at the same temperature can lead to a higher so-lidification undercooling degree, finer grain size and change of microscopic pattern. Further exploration indicates that the solidification undercooling degree can come to a head when the melt is held at the specific temperature for a given time. The functionary mechanism of the phenomena above is also discussed briefly.

  11. Transition-sized Au92 nanoparticle bridging non-fcc-structured gold nanoclusters and fcc-structured gold nanocrystals.

    Science.gov (United States)

    Liao, Lingwen; Chen, Jishi; Wang, Chengming; Zhuang, Shengli; Yan, Nan; Yao, Chuanhao; Xia, Nan; Li, Lingling; Bao, Xiaoli; Wu, Zhikun

    2016-10-04

    Herein, we report the intriguing structure, optical absorption and electrochemical properties of the transition-sized Au92(TBBT)44 (Au92 for short, TBBT = 4-tert-butylbenzenethiolate) nanoparticle. An interesting observation is the 4H phase array of Au92 nanoparticles in the unit cells of single crystals.

  12. Transition in occupational radiation exposure monitoring methods in diagnostic and interventional radiology.

    Science.gov (United States)

    Lönnroth, Nadja; Hirvonen-Kari, Mirja; Timonen, Marjut; Savolainen, Sauli; Kortesniemi, Mika

    2012-08-01

    Radiation exposure monitoring is a traditional keystone of occupational radiation safety measures in medical imaging. The aim of this study was to review the data on occupational exposures in a large central university hospital radiology organisation and propose changes in the radiation worker categories and methods of exposure monitoring. An additional objective was to evaluate the development of electronic personal dosimeters and their potential in the digitised radiology environment. The personal equivalent dose of 267 radiation workers (116 radiologists and 151 radiographers) was monitored using personal dosimeters during the years 2006-2010. Accumulated exposure monitoring results exceeding the registration threshold were observed in the personal dosimeters of 73 workers (59 radiologists' doses ranged from 0.1 to 45.1 mSv; 14 radiographers' doses ranged from 0.1 to 1.3 mSv). The accumulated personal equivalent doses are generally very small, only a few angiography radiologists have doses >10 mSv per 5 y. The typical effective doses are dosimeters. An active real-time dosimetry system is warranted to support radiation protection strategy where optimisation aspects, including improving working methods, are essential.

  13. Bus Operation Monitoring Oriented Public Transit Travel Index System and Calculation Models

    Directory of Open Access Journals (Sweden)

    Jiancheng Weng

    2013-01-01

    Full Text Available This study proposed a two-dimensional index system which is concerned essentially with urban travel based on travel modes and user satisfaction. First, the public transit was taken as an example to describe the index system establishing process. In consideration of convenience, rapid, reliability, comfort, and safety, a bus service evaluation index system was established. The indicators include the N-minute coverage of bus stops, average travel speed, and fluctuation of travel time between stops and bus load factor which could intuitively describe the characteristics of public transport selected to calculate bus travel indexes. Then, combined with the basic indicators, the calculation models of Convenience Index (CI, Rapid Index (RI, Reliability Index (RBI, and Comfort Index (CTI were established based on the multisource data of public transit including the real-time bus GPS data and passenger IC card data. Finally, a case study of Beijing bus operation evaluation and analysis was conducted by taking real bus operation data including GPS data and passenger transaction recorder (IC card data. The results showed that the operation condition of the public transit was well reflected and scientifically classified by the bus travel index models.

  14. Structural health monitoring for fatigue life prediction of orthotropic brdige decks

    NARCIS (Netherlands)

    Pijpers, R.J.M.; Pahlavan, P.L.; Paulissen, J.H.; Hakkesteegt, H.C.; Jansen, T.H.

    2013-01-01

    Infrastructure asset owners are more and more confronted with structures reaching the end of their structural life. Structural Health Monitoring (SHM) systems should provide up-to-date information about the actual condition, as well predict the structural life and required maintenance of the assets

  15. Structural Health Monitoring Using Neural Network Based Vibrational System Identification

    CERN Document Server

    Sofge, Donald A

    2007-01-01

    Composite fabrication technologies now provide the means for producing high-strength, low-weight panels, plates, spars and other structural components which use embedded fiber optic sensors and piezoelectric transducers. These materials, often referred to as smart structures, make it possible to sense internal characteristics, such as delaminations or structural degradation. In this effort we use neural network based techniques for modeling and analyzing dynamic structural information for recognizing structural defects. This yields an adaptable system which gives a measure of structural integrity for composite structures.

  16. Design and High Precision Monitoring of Detector Structures at CERN

    CERN Document Server

    Lackner, Friedrich; Riegler, Werner

    2007-01-01

    Situated on the outskirts of Geneva, CERN is the leading center for particle physics in the world. The Large Hadron Collider (LHC) with its 27 km ringshaped accelerator, which is currently under construction and will be operational in 2008, will begin a new era in high energy physics by revealing the basic constituents of the universe. One of the experiments is ALICE (A Large Ion - Colliding - Experiment), a detector consisting of multiple layers of sub detectors around the collision point to detect dierent types and properties of particles created in the collisions. Those particles are identified via their energy, momentum, track and decay products, and it is therefore important to align the various sub detectors very precisely to each other and monitor their position. The monitoring systems have to operate for an extended period of time under extreme conditions (e.g. high radiation) and must not absorb too many of the particles created in the collisions. This dissertation describes monitoring systems develo...

  17. Condition Monitoring for wind power plants. Structure monitoring and lifetime monitoring of wind power plants (SCMS and LCMS); Condition Monitoring fuer Windenergieanlagen. Strukturmonitoring and Lebensdauerueberwachung von Windenergieanlagen (SCMS and LCMS)

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Holger [P.E. Concepts GmbH, Essen (Germany)

    2010-07-01

    Knowledge about the condition and the remaining lifetime of the structural components of WEPs provides considerable advantages for the manufacturers, owners and insurers. To gain this knowledge, two monitoring systems have been developed, one for the structural condition monitoring and one for the lifetime condition monitoring. Both systems need only little additional measuring expense or none at all, the main part is in the software evaluating the measurement results and parts of the wind and control data. The results of the verification at multi-megawatt wind turbines show that the systems work satisfactorily and that even a sensor-free lifetime monitoring is possible. (orig.)

  18. On the polymorphism of benzocaine; a low-temperature structural phase transition for form (II).

    Science.gov (United States)

    Chan, Eric J; Rae, A David; Welberry, T Richard

    2009-08-01

    A low-temperature structural phase transition has been observed for form (II) of benzocaine (BZC). Lowering the temperature doubles the b-axis repeat and changes the space group from P2(1)2(1)2(1) to P112(1) with gamma now 99.37 degrees. The structure is twinned, the twin rule corresponding to a 2(1) screw rotation parallel to a. The phase transition is associated with a sequential displacement parallel to a of zigzag bi-layers of ribbons perpendicular to b*. No similar phase transition was observed for form (I) and this was attributed to the different packing symmetries of the two room-temperature polymorphic forms.

  19. Phase transitions and ordering structures of a model of a chiral helimagnet in three dimensions

    Science.gov (United States)

    Nishikawa, Yoshihiko; Hukushima, Koji

    2016-08-01

    Phase transitions in a classical Heisenberg spin model of a chiral helimagnet with the Dzyaloshinskii-Moriya interaction in three dimensions are numerically studied. By using the event-chain Monte Carlo algorithm recently developed for particle and continuous spin systems, we perform equilibrium Monte Carlo simulations for large systems up to about 106 spins. Without magnetic fields, the system undergoes a continuous phase transition with critical exponents of the three-dimensional XY model, and a uniaxial periodic helical structure emerges in the low-temperature region. In the presence of a magnetic field perpendicular to the axis of the helical structure, it is found that there exists a critical point on the temperature and magnetic-field phase diagram and that above the critical point the system exhibits a phase transition with strong divergence of the specific heat and the uniform magnetic susceptibility.

  20. Structural and magnetic phase transitions in NdCoAsO under high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Uhoya, Walter; Tsoi, Georgiy M.; Vohra, Yogesh K.; McGuire, Michael A.; Sefat, Athena S.; Sales, Brian C.; Mandrus, David; Weir, Samuel T. (UAB); (ORNL); (LLNL)

    2010-05-04

    We have investigated structural and magnetic phase transitions under high pressures in a quaternary rare-earth transition-metal arsenide oxide NdCoAsO compound that is isostructural to the high temperature superconductor parent phase NdFeAsO. The four-probe electrical resistance measurements carried out in a designer diamond anvil cell show that the ferromagnetic Curie temperature and antiferromagnetic Neel temperature increase with an increase in pressure. High pressure x-ray diffraction studies using a synchrotron source show a structural phase transition from a tetragonal phase to a new crystallographic phase at a pressure of 23 GPa at 300 K. The NdCoAsO sample remained antiferromagnetic and non-superconducting down to 10 K and up to the highest pressure achieved in this experiment, 53 GPa. A P-T phase diagram for NdCoAsO is presented from ambient conditions to P = 53 GPa and T = 10 K.

  1. Structural and magnetic phase transitions in NdCoAsO under high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Uhoya, Walter [University of Alabama, Birmingham; Tsoi, Georgiy [University of Alabama, Birmingham; Vohra, Y. K. [University of Alabama, Birmingham; McGuire, Michael A [ORNL; Sefat, A. S. [Oak Ridge National Laboratory (ORNL); Sales, Brian C [ORNL; Mandrus, David [ORNL; Weir, S. T. [Lawrence Livermore National Laboratory (LLNL)

    2010-01-01

    We have investigated structural and magnetic phase transitions under high pressures in a quaternary rare-earth transition-metal arsenide oxide NdCoAsO compound that is isostructural to the high temperature superconductor parent phase NdFeAsO. The four-probe electrical resistance measurements carried out in a designer diamond anvil cell show that the ferromagnetic Curie temperature and antiferromagnetic Neel temperature increase with an increase in pressure. High pressure x-ray diffraction studies using a synchrotron source show a structural phase transition from a tetragonal phase to a new crystallographic phase at a pressure of 23 GPa at 300 K. The NdCoAsO sample remained antiferromagnetic and non-superconducting down to 10 K and up to the highest pressure achieved in this experiment, 53 GPa. A P-T phase diagram for NdCoAsO is presented from ambient conditions to P = 53 GPa and T = 10 K.

  2. High pressure structural phase transitions of TiO2 nanomaterials

    Science.gov (United States)

    Quan-Jun, Li; Bing-Bing, Liu

    2016-07-01

    Recently, the high pressure study on the TiO2 nanomaterials has attracted considerable attention due to the typical crystal structure and the fascinating properties of TiO2 with nanoscale sizes. In this paper, we briefly review the recent progress in the high pressure phase transitions of TiO2 nanomaterials. We discuss the size effects and morphology effects on the high pressure phase transitions of TiO2 nanomaterials with different particle sizes, morphologies, and microstructures. Several typical pressure-induced structural phase transitions in TiO2 nanomaterials are presented, including size-dependent phase transition selectivity in nanoparticles, morphology-tuned phase transition in nanowires, nanosheets, and nanoporous materials, and pressure-induced amorphization (PIA) and polyamorphism in ultrafine nanoparticles and TiO2-B nanoribbons. Various TiO2 nanostructural materials with high pressure structures are prepared successfully by high pressure treatment of the corresponding crystal nanomaterials, such as amorphous TiO2 nanoribbons, α-PbO2-type TiO2 nanowires, nanosheets, and nanoporous materials. These studies suggest that the high pressure phase transitions of TiO2 nanomaterials depend on the nanosize, morphology, interface energy, and microstructure. The diversity of high pressure behaviors of TiO2 nanomaterials provides a new insight into the properties of nanomaterials, and paves a way for preparing new nanomaterials with novel high pressure structures and properties for various applications. Project supported by the National Basic Research Program of China (Grant No. 2011CB808200), the National Natural Science Foundation of China (Grant Nos. 11374120, 11004075, 10979001, 51025206, 51032001, and 21073071), and the Cheung Kong Scholars Programme of China.

  3. Structural monitoring of tunnels using terrestrial laser scanning

    NARCIS (Netherlands)

    Lindenbergh, R.C.; Uchanski, L.; Bucksch, A.; Van Gosliga, R.

    2009-01-01

    In recent years terrestrial laser scanning is rapidly evolving as a surveying technique for the monitoring of engineering objects like roof constructions, mines, dams, viaducts and tunnels. The advantage of laser scanning above traditional surveying methods is that it allows for the rapid acquisitio

  4. Fiber Optics Deliver Real-Time Structural Monitoring

    Science.gov (United States)

    2013-01-01

    To alter the shape of aircraft wings during flight, researchers at Dryden Flight Research Center worked on a fiber optic sensor system with Austin-based 4DSP LLC. The company has since commercialized a new fiber optic system for monitoring applications in health and medicine, oil and gas, and transportation, increasing company revenues by 60 percent.

  5. Disorder-induced structural transitions in topological insulating Ge-Sb-Te compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeongwoo; Jhi, Seung-Hoon, E-mail: jhish@postech.ac.kr [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)

    2015-05-21

    The mechanism for the fast switching between amorphous, metastable, and crystalline structures in chalcogenide phase-change materials has been a long-standing puzzle. Based on first-principles calculations, we study the atomic and electronic properties of metastable Ge{sub 2}Sb{sub 2}Te{sub 5} and investigate the atomic disorder to understand the transition between crystalline hexagonal and cubic structures. In addition, we study the topological insulating property embedded in these compounds and its evolution upon structural changes and atomic disorder. We also discuss the role of the surface-like states arising from the topological insulating property in the metal-insulator transition observed in the hexagonal structure.

  6. On the stability of rhenium up to 1 TPa pressure against transition to the bcc structure

    Indian Academy of Sciences (India)

    A K Verma; P Ravindran; R S Rao; B K Godwal; R Jeanloz

    2003-01-01

    We have carried out electronic structure total energy calculations on rhenium in the hexagonal close packed (hcp) and body centred cubic (bcc) phases, by the full potential linear muffin–tin orbital method, in order to verify the stability of the ambient pressure hcp phase against transition to the bcc structure at high pressures. As per our results, no hcp to bcc structural transition can occur up to 1 TPa pressures. Moreover, our Bain path calculations show that face centred cubic and body centred tetragonal structures are also not energetically preferred over hcp in this pressure range. The axial ratio (/) of Re changes by less than 0.33% in the pressure range studied.

  7. Shear effects on crystallization behaviors and structure transitions of isotactic poly-1-butene

    DEFF Research Database (Denmark)

    Li, Jingqing; Guan, Peipei; Zhang, Yao;

    2014-01-01

    Different melt pre-shear conditions were applied to isotactic poly-1-butene (iP-1-B) and the effect on the crystallization behaviors and the crystalline structure transitions of iP-1-B were investigated. The polarized optical microscope observations during isothermal crystallization process...... crystalline structures. With the melt pre-shear rate increasing, the lattice spaces of the crystallites decreased and the long period, L, and the amorphous layer thickness, La, along the equator direction increased slightly, but L and La along the meridian direction was not affected by melt pre-shear flow....... Though the orientated crystalline structures existed in the iP-1-B samples, no accelerating effect on crystal transition from II to I was found. Importantly, the final crystalline structures of iP-1-B in form I was found tunable under different melt pre-shear conditions, even though...

  8. Pressure-induced structure phase transition on Y sub 2 O sub 3

    CERN Document Server

    Ma Yan Ming; Ma Hong An; Pan Yue Wu; Cui Qi Liang; Liu Bing Bing; Cui Tian; Zou Guang Tian; LiuJing

    2002-01-01

    Diamond anvil cell (DAC) is adopted to carry out in situ high pressure measurements for Y sub 2 O sub 3 powder sample in the range from ambient to 23 GPa, by using synchrotron X-ray diffraction method. Two structural phase transitions were observed in the pressure range. At P = 12.8 GPa, Y sub 2 O sub 3 transforms from cubic to monoclinic structure. At P = 21.8 GPa, Y sub 2 O sub 3 transforms from monoclinic to another new phase. However, the crystal structure of the new phase cannot be determined, because the diffraction pattern of the sample disappears. The decompressed sample is monoclinic structure, indicating that the first pressure-induced phase transition is irreversible

  9. Domain wall structure transition during magnetization reversal process in magnetic nanowires

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The analytical micromagnetics and numerical simulations were used to investigate the domain wall structure during the magnetization reversal in nanowires. Micromagnetic analysis shows that the domain wall structure is mainly determined by the competition between the demagnetization energy and exchange energy. The wall with vortex magnetization structure in cross-section is energetically more favorable for wires with large diameter. With the reduction of diameter the exchange energy increases. At a critical diameter the vortex structure can not be sustained and the transition from vortex wall to transverse wall occurs. The critical diameters for this transition are about 40 nm for Ni wire and 20 nm for Fe wire, respectively. A series of micromagnetic simulations on the cone-shaped wire confirm the analytical results. The simulations also show that during the reversal process the vortex domain wall moves much faster than the transverse one.

  10. Phase transitions as the origin of large scale structure in the universe

    Science.gov (United States)

    Turok, Neil

    1989-01-01

    A review of the formation of large scale structure through gravitational growth of primordial perturbations is given. This is followed by a discussion of how symmetry breaking phase transitions in the early universe might have produced the required perturbations, in particular through the formation and evolution of a network of cosmic strings.

  11. Quantum Mechanics Calculations, Basicity and Crystal Structure: The Route to Transition Metal Complexes of Azahelicenes

    Directory of Open Access Journals (Sweden)

    Isabella Natali Sora

    2012-01-01

    Full Text Available Quantum mechanics density functional calculations provided gas-phase electron distributions and proton affinities for several mono- and diaza[5]helicenes; computational results, together with experimental data concerning crystal structures and propensity to methylation of the nitrogen atom(s, provide a basis for designing azahelicene complexes with transition metal ions.

  12. Three-dimensional evolution of flow structures in transitional circular and chevron jets

    NARCIS (Netherlands)

    Violato, D.; Scarano, F.

    2011-01-01

    The three-dimensional behavior of flow transition in circular and 6-chevron jets at Re = 5000 is investigated with experiments conducted on a free water jet by time-resolved tomographic particle image velocimetry. The emphasis is on the unsteady organization of coherent flow structures, which play a

  13. Percolation transitions in porous structure and their effect on physicochemical properties of ceramics

    Science.gov (United States)

    Kul'Kov, S. N.; Buyakova, S. P.; Smolin, A. Yu.; Roman, N. V.; Kinelovskii, S. A.

    2011-04-01

    Computer simulation and experimental investigation of zirconia-based ceramics showed that a percolation transition from isolated to communicating pores in this brittle porous material lead to changes in the character of dependence of the elastic properties and structural characteristics on the total porosity.

  14. Phase transition in triglycine family of hydrogen bonded ferroelectrics: An interpretation based on structural studies

    Indian Academy of Sciences (India)

    R R Choudhury; R Chitra; P U Sastry; Amit Das; M Ramanadham

    2004-07-01

    Using the crystal structure, a comprehensive interpretation of the origin of ferroelectricity in the hydrogen bonded triglycine family of crystals is given. Our detailed analysis showed that the instability of nitrogen double well potential plays a driving role in the mechanism of the ferroelectric transitions in these crystals.

  15. Three-dimensional evolution of flow structures in transitional circular and chevron jets

    NARCIS (Netherlands)

    Violato, D.; Scarano, F.

    2011-01-01

    The three-dimensional behavior of flow transition in circular and 6-chevron jets at Re = 5000 is investigated with experiments conducted on a free water jet by time-resolved tomographic particle image velocimetry. The emphasis is on the unsteady organization of coherent flow structures, which play a

  16. In situ unravelling structural modulation across the charge-density-wave transition in vanadium disulfide.

    Science.gov (United States)

    Sun, Xu; Yao, Tao; Hu, Zhenpeng; Guo, Yuqiao; Liu, Qinghua; Wei, Shiqiang; Wu, Changzheng

    2015-05-28

    A deep understanding of the relationship between electronic and structure ordering across the charge-density-wave (CDW) transition is crucial for both fundamental study and technological applications. Herein, using in situ X-ray absorption fine structure (XAFS) spectroscopy coupled with high-resolution transmission electron microscopy (HRTEM), we have illustrated the atomic-level information on the local structural evolution across the CDW transition and its influence on the intrinsic electrical properties in VS2 system. The structure transformation, which is highlighted by the formation of vanadium trimers with derivation of V-V bond length (ΔR = 0.10 Å), was clearly observed across the CDW process. Moreover, the corresponding influence of lattice variation on the electronic behavior was clearly characterized by experimental results as well as theoretical analysis, which demonstrated that vanadium trimers drive the deformation of space charge density distribution into √3 ×√3 periodicity, with the conductivity of a1g band reducing by half. These observations directly unveiled the close connection between lattice evolution and electronic property variation, paving a new avenue for understanding the intrinsic nature of electron-lattice interactions in the VS2 system and other isostructural transition metal dichalcogenides across the CDW transition process.

  17. Structures and phase transitions of ScH3 under high pressure

    Institute of Scientific and Technical Information of China (English)

    Kong Bo; Zhou Zhu-Wen; Chen De-Liang; Ling-hu Rong-Feng

    2013-01-01

    The structures and the phase transitions of ScH3 under high pressure are investigated using first-principles calculations.The calculated structural parameters at zero pressure agree well with the available experimental data.With increasing pressure,the transition sequence hcp (GdH3-type)→ C2/m →fcc→hcp (YH3-type)→Cmcm of ScH3 is predicted first; the corresponding transition pressures at 0 K are 23 GPa,25 GPa,348 GPa,and 477 GPa,respectively.The C2/m symmetry structure is a possible candidate but not a good one as the intermediate state from hexagonal to cubic in ScH3.On the other hand,via the analysis of the structures of hexagonal ScH2.9,cubic ScH3,and cubic ScH2,we find that the repulsive interactions of H-H atoms must play an important role in the transition from hexagonal to cubic.

  18. Structures of the Dehydrogenation Products of Methane Activation by 5d Transition Metal Cations

    NARCIS (Netherlands)

    Lapoutre, V.J.F.; Redlich, B.; Meer, A.F.G.; Oomens, J.; Bakker, J.M.; Sweeney, A.; Mookherjee, A.; Armentrout, P.B.

    2013-01-01

    The activation of methane by gas-phase transition metal cations (M+) has been studied extensively, both experimentally and using density functional theory (DFT). Methane is exothermically dehydrogenated by several 5d metal ions to form [M,C,2H](+) and H-2. However, the structure of the

  19. Structures of the dehydrogenation products of methane activation by 5d transition metal cations

    NARCIS (Netherlands)

    Lapoutre, V. J. F.; Redlich, B.; van der Meer, A. F. G.; Oomens, J.; Bakker, J. M.; Sweeney, A.; Mookherjee, A.; Armentrout, P. B.

    2013-01-01

    The activation of methane by gas-phase transition metal cations (M +) has been studied extensively, both experimentally and using density functional theory (DFT). Methane is exothermically dehydrogenated by several 5d metal ions to form [M,C,2H]+ and H2. However, the structure of the dehydrogenation

  20. Structure Dependence of Lysosomal Transit of Chitosan-Based Polyplexes for Gene Delivery.

    Science.gov (United States)

    Thibault, Marc; Lavertu, Marc; Astolfi, Mélina; Buschmann, Michael D

    2016-10-01

    Chitosan-based polyplexes are known to traffic through lysosomes for a relatively long time, independent of the degree of deacetylation (DDA) and the number average molecular weight (Mn) of the polymer, even though both of these parameters have profound effects on polyplex stability and transfection efficiency. A better understanding of the lysosomal barrier is paramount to the rational design of vectors capable of overcoming obstacles to transgene expression. The aim of the present study was to investigate if lysosomal transit affects chitosan-based polyplex transfection efficiency in a structure-dependent (DDA, Mn) manner. Toward this end, we analyzed the effects of intracellular trafficking modifying agents on transfection efficiency and intracellular vesicular trafficking of polyplexes with different structural properties and stabilities or nucleic acid binding affinity. The use of agents that modify endosome/lysosome acidification and transit processes by distinct mechanisms and their effect on cell viability, polyplex uptake, vesicular trafficking, and transfection efficiency revealed novel and strong chitosan structure-dependent consequences of lysosomal transit. Inhibiting lysosomal transit using chloroquine significantly increased the efficiency of unstable polyplexes, while having minimal effects for polyplexes with intermediate or high stability. In parallel, specifically inhibiting the acidification of vesicles abrogated transfection for all formulations, suggesting that vesicular acidification is essential to promote transfection, most probably by facilitating lysosomal escape. These results provide novel insights into the structure-performance relationship of chitosan-based gene delivery systems.

  1. Theorizing power in transition studies: the role of creativity and novel practices in structural change

    NARCIS (Netherlands)

    J. Hoffman

    2013-01-01

    An important theoretical challenge for theorizing about power dynamics in societal transitions is the transformation of power itself. In this respect, it is especially puzzling how agency at the level of novel practices can extend beyond the habitual, how it can draw on structures and destructure at

  2. Direct Numerical Simulation of structural vacillation in the transition to geostrophic turbulence

    CERN Document Server

    Randriamampianina, Anthony; Fruh, Wolf-Gerrit; Read, Peter L

    2007-01-01

    The onset of small-scale fluctuations around a steady convection pattern in a rotating baroclinic annulus filled with air is investigated using Direct Numerical Simulation. In previous laboratory experiments of baroclinic waves, such fluctuations have been associated with a flow regime termed Structural Vacillation which is regarded as the first step in the transition to fully-developed geostrophic turbulence.

  3. Structures of the dehydrogenation products of methane activation by 5d transition metal cations

    NARCIS (Netherlands)

    Lapoutre, V. J. F.; Redlich, B.; van der Meer, A. F. G.; Oomens, J.; Bakker, J. M.; Sweeney, A.; Mookherjee, A.; Armentrout, P. B.

    2013-01-01

    The activation of methane by gas-phase transition metal cations (M +) has been studied extensively, both experimentally and using density functional theory (DFT). Methane is exothermically dehydrogenated by several 5d metal ions to form [M,C,2H]+ and H2. However, the structure of the dehydrogenation

  4. Local temperature redistribution and structural transition during joule-heating-driven conductance switching in VO2.

    Science.gov (United States)

    Kumar, Suhas; Pickett, Matthew D; Strachan, John Paul; Gibson, Gary; Nishi, Yoshio; Williams, R Stanley

    2013-11-13

    Joule-heating induced conductance-switching is studied in VO2 , a Mott insulator. Complementary in situ techniques including optical characterization, blackbody microscopy, scanning transmission X-ray microscopy (STXM) and numerical simulations are used. Abrupt redistribution in local temperature is shown to occur upon conductance-switching along with a structural phase transition, at the same current.

  5. Structural Transition of Gd2O3:Eu Induced by High Pressure

    Institute of Scientific and Technical Information of China (English)

    CHEN Hai-Yong; ZOU Guang-Tian; HE Chun-Yuan; GAO Chun-Xiao; ZHANG Jia-Hua; GAO Shi-Yong; LU Hong-Liang; NIE Yan-Guang; LI Dong-Mei; KAN Shi-Hai

    2007-01-01

    @@ The structural transition of bulk and nano-size Gd2O3:Eu are studied by high pressure energy disperse x-ray diffraction (XRD) and high pressure photoluminescence. Our results show that in spite of different size of Gd2O3 particles, the cubic structure turns into a possible hexagonal one above 13.4 GPa. When the pressure is released,the sample reverses to the monoclinic structure. No cubic structure presents in the released samples. That is to say, the compression and relaxation of the sample leads to the cubic Gd2O3:Eu then turns into the monoclinic one.

  6. Optimization of industrial structure: crux of the transition of mining cities

    Institute of Scientific and Technical Information of China (English)

    LI Ping

    2007-01-01

    The rise and development of mining cities in our country take an extremely special status and play an important role in the national economy and social development.However, there are many problems in mining cities and their industrial structure. To realize the transition of mining cities, we must optimize the industrial structure. According to the theory of the optimization of industrial structure, the strategy is to organize regional enterprise groups, develop cluster economy, continuing industry and circular economy, and promote the rationalization of cities and regional industrial structure.

  7. HRTS observations of the fine structure and dynamics of the solar chromosphere and transition zone

    Science.gov (United States)

    Dere, K. P.

    1983-01-01

    Arc-second UV observations of the Sun by the NRL High Resolution Telescope and Spectrograph (HRTS) have led to the discovery of dynamic fine structures such as 400 km/s coronal jets and chromospheric jets (spicules) and have provided new information about the structure and dynamics of the transition zone. These observations are reviewed and their relevance to the origin of the solar wind is discussed.

  8. NQR Study of the Structural Phase Transition in 1,2-Diphenylhydrazine

    Science.gov (United States)

    Matsuura, Hazime; Matsuzaki, Tomio; Fukazawa, Yuji; Abe, Yoshihito

    1982-12-01

    14N NQR lines in 1,2-diphenylhydrazine have been investigated between 4.2 K and 370 K by using a pulsed spectrometer. With increasing temperature, the number of resonance line in NQR spectra decreased from six lines to three lines above 115 K. The temperature dependence of resonance lines reveals that 1,2-diphenylhydrazine makes a second order structural phase transition around 115 K. An information about the molecular structure is also obtained.

  9. A correlation between pulse diagnosis of human body and health monitoring of structures

    Institute of Scientific and Technical Information of China (English)

    C.C.Chang; Henry T. Y. Yang

    2004-01-01

    The concept of health monitoring is a key aspect of the field of medicine that has been practiced for a long time. A commonly used diagnostic and health monitoring practice is pulse diagnosis, which can be traced back approximately five thousand years in the recorded history of China. With advances in the development of modem technology, the concept of health monitoring of a variety of engineering structures in several applications has begun to attract widespread attention.Of particular interest in this study is the health monitoring of civil structures. It seems natural, and even beneficial, that these two health-monitoring methods, one as applies to the human body and the other to civil structures, should be analyzed and compared. In this paper, the basic concepts and theories of the two monitoring methods are first discussed. Similarities are then summarized and commented upon. It is hoped that this correlation analysis may help provide structural engineers with some insights into the intrinsic concept of using pulse diagnosis in human health monitoring, which may be of some benefit in the development of modern structural health monitoring methods.

  10. Metal-insulator transition in epitaxial NdNiO3 thin film: A structural, electrical and optical study

    Science.gov (United States)

    Shao, Tao; Qi, Zeming; Wang, Yuyin; Li, Yuanyuan; Yang, Mei; Hu, Chuansheng

    2017-03-01

    NdNiO3 thin film has been prepared by pulsed laser deposition on LaAlO3 (001) single crystalline substrate. Temperature-dependent resistivity measurement shows a sharp metal-insulator transition in such thin film. The phase transition temperature can be tuned from 90 K to 121 K by changing the thickness of thin film. The structure evolution during phase transition is studied by Raman spectroscopy. Optical conductivity reveals that the variation carrier density in the process of phase transition. The results of structural, electrical and optical studies provide useful insights to understand the mechanism of metal-insulator transition of NdNiO3 thin film.

  11. Slab stagnation and buckling in the mantle transition zone: Rheology, phase transition, trench migration, and seismic structure

    Science.gov (United States)

    Bina, Craig; Cizkova, Hana

    2014-05-01

    Subducting slabs may exhibit buckling instabilities and consequent folding behavior in the mantle transition zone for various combinations of dynamical parameters, accompanied by temporal variations in dip angle, plate velocity, and trench retreat. Parameters governing such behavior include both viscous forces (slab and mantle rheology) and buoyancy forces (slab thermal structure and mineral phase relations). 2D numerical experiments show that many parameter sets lead to slab deflection at the base of the transition zone, typically accompanied by quasi-periodic oscillations (consistent with previous scaling analyses) in largely anticorrelated plate and rollback velocities, resulting in undulating stagnant slabs as buckle folds accumulate subhorizontally atop the lower mantle. Slab interactions with mantle phase transitions are important components of this process (Bina and Kawakatsu, 2010; Čížková and Bina, 2013). For terrestrial parameter sets, trench retreat is found to be nearly ubiquitous, and trench advance is quite rare - due to both rheological structure and ridge-push effects (Čížková and Bina, 2013). Recent analyses of global plate motions indicate that significant trench advance is also rare on Earth, being largely restricted to the Izu-Bonin arc (Matthews et al., 2013). Consequently, we explore the conditions necessary for terrestrial trench advance through dynamical models involving the unusual geometry associated with the Philippine Sea region. Detailed images of buckled stagnant slabs are difficult to resolve due to smoothing effects inherent in seismic tomography, but velocity structures computed for compositionally layered slabs, using laboratory data on relevant mineral assemblages, can be spatially low-pass filtered for comparison with tomographic images of corresponding resolution. When applied to P-wave velocity anomalies from stagnant slab material beneath northeast China, model slabs which undulate due to compound buckling fit

  12. The Monitor project: the search for transits in the open cluster NGC 2362

    CERN Document Server

    Miller, Adam A; Aigrain, Suzanne; Hodgkin, Simon; Hebb, Leslie

    2008-01-01

    We present the results of a systematic search for transiting planets in a ~5 Myr open cluster, NGC 2362. We observed ~1200 candidate cluster members, of which ~475 are believed to be genuine cluster members, for a total of ~100 hours. We identify 15 light curves with reductions in flux that pass all our detection criteria, and 6 of the candidates have occultation depths compatible with a planetary companion. The variability in these six light curves would require very large planets to reproduce the observed transit depth. If we assume that none of our candidates are in fact planets then we can place upper limits on the fraction of stars with hot Jupiters (HJs) in NGC 2362. We obtain 99% confidence upper limits of 0.22 and 0.70 on the fraction of stars with HJs (f_p) for 1-3 and 3-10 day orbits, respectively, assuming all HJs have a planetary radius of 1.5R_Jup. These upper limits represent observational constraints on the number of stars with HJs at an age <~10 Myr, when the vast majority of stars are thou...

  13. A new solution of measuring thermal response of prestressed concrete bridge girders for structural health monitoring

    Science.gov (United States)

    Jiao, Pengcheng; Borchani, Wassim; Hasni, Hassene; Lajnef, Nizar

    2017-08-01

    This study develops a novel buckling-based mechanism to measure the thermal response of prestressed concrete bridge girders under continuous temperature changes for structural health monitoring. The measuring device consists of a bilaterally constrained beam and a piezoelectric polyvinylidene fluoride transducer that is attached to the beam. Under thermally induced displacement, the slender beam is buckled. The post-buckling events are deployed to convert the low-rate and low-frequency excitations into localized high-rate motions and, therefore, the attached piezoelectric transducer is triggered to generate electrical signals. Attaching the measuring device to concrete bridge girders, the electrical signals are used to detect the thermal response of concrete bridges. Finite element simulations are conducted to obtain the displacement of prestressed concrete girders under thermal loads. Using the thermal-induced displacement as input, experiments are carried out on a 3D printed measuring device to investigate the buckling response and corresponding electrical signals. A theoretical model is developed based on the nonlinear Euler-Bernoulli beam theory and large deformation assumptions to predict the buckling mode transitions of the beam. Based on the presented theoretical model, the geometry properties of the measuring device can be designed such that its buckling response is effectively controlled. Consequently, the thermally induced displacement can be designed as limit states to detect excessive thermal loads on concrete bridge girders. The proposed solution sufficiently measures the thermal response of concrete bridges.

  14. Structure and phase transitions of the multilamellar DMPC membranes in presence of the DMSO and DESO

    Science.gov (United States)

    Gorshkova, Yu E.; Ivankov, O. I.

    2017-05-01

    The structure and phase transitions of the prepared and formed spontaneously multilamellar vesicles (MLVs) of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) in dimethyl sulfoxide (DMSO) and diethyl sulfoxide (DESO) were investigated using small angle neutron scattering (SANS). The both polar aprotic solvents increase the temperature of the main phase transition (Tm ). The pre-transition does not observed at sulfoxides mole fraction X = 0.2. The transition of the MLVs DMPC in the presence DMSO from gel to liquid-crystalline phase occurs at lower temperature. The method of the MLVs preparation has directly effects on the temperature of the main phase transition and its structure. The value of Tm is higher with ∼ 4.6 ºC in case of the spontaneous forming MLVs from extruded ULVs. The thickness of the solvent layer for prepared MLVs is less by 4.0 Å in gel phase and by 5.6 Å in liquid-crystalline phase than the thickness of the solvent layer for spontaneously formed MLVs.

  15. Structural transitions and hysteresis in clump- and stripe-forming systems under dynamic compression.

    Science.gov (United States)

    McDermott, Danielle; Olson Reichhardt, Cynthia J; Reichhardt, Charles

    2016-11-28

    Using numerical simulations, we study the dynamical evolution of particles interacting via competing long-range repulsion and short-range attraction in two dimensions. The particles are compressed using a time-dependent quasi-one dimensional trough potential that controls the local density, causing the system to undergo a series of structural phase transitions from a low density clump lattice to stripes, voids, and a high density uniform state. The compression proceeds via slow elastic motion that is interrupted with avalanche-like bursts of activity as the system collapses to progressively higher densities via plastic rearrangements. The plastic events vary in magnitude from small rearrangements of particles, including the formation of quadrupole-like defects, to large-scale vorticity and structural phase transitions. In the dense uniform phase, the system compresses through row reduction transitions mediated by a disorder-order process. We characterize the rearrangement events by measuring changes in the potential energy, the fraction of sixfold coordinated particles, the local density, and the velocity distribution. At high confinements, we find power law scaling of the velocity distribution during row reduction transitions. We observe hysteresis under a reversal of the compression when relatively few plastic rearrangements occur. The decompressing system exhibits distinct phase morphologies, and the phase transitions occur at lower compression forces as the system expands compared to when it is compressed.

  16. Muon-Substituted Malonaldehyde: Transforming a Transition State into a Stable Structure by Isotope Substitution.

    Science.gov (United States)

    Goli, Mohammad; Shahbazian, Shant

    2016-02-12

    Isotope substitutions are usually conceived to play a marginal role on the structure and bonding pattern of molecules. However, a recent study [Angew. Chem. Int. Ed. 2014, 53, 13706-13709; Angew. Chem. 2014, 126, 13925-13929] further demonstrates that upon replacing a proton with a positively charged muon, as the lightest radioisotope of hydrogen, radical changes in the nature of the structure and bonding of certain species may take place. The present report is a primary attempt to introduce another example of structural transformation on the basis of the malonaldehyde system. Accordingly, upon replacing the proton between the two oxygen atoms of malonaldehyde with the positively charged muon a serious structural transformation is observed. By using the ab initio nuclear-electronic orbital non-Born-Oppenheimer procedure, the nuclear configuration of the muon-substituted species is derived. The resulting nuclear configuration is much more similar to the transition state of the proton transfer in malonaldehyde rather than to the stable configuration of malonaldehyde. The comparison of the "atoms in molecules" (AIM) structure of the muon-substituted malonaldehyde and the AIM structure of the stable and the transition-state configurations of malonaldehyde also unequivocally demonstrates substantial similarities of the muon-substituted malonaldehyde to the transition state.

  17. Enhanced FBG sensor-based system performance assessment for monitoring strain along a prestressed CFRP rod in structural monitoring

    DEFF Research Database (Denmark)

    Kerrouche, A.; Boyle, W.J.O.; Sun, T.

    2009-01-01

    Fiber Bragg grating (FBG) sensor-based systems have been widely used for many engineering applications including most recently a number of applications in structural health monitoring. It is well known that strain and temperature both affect the FBG spectrum which in the interrogation system...... of the existing FBG-based system and the evaluation of the software developed to be compatible with a resolution reaching as high as +/- 0.15 mu epsilon is presented. The system has been tested under particular conditions where a prestressed CFRP (carbon fiber reinforced polymer) rod to which a FBG sensor...... will be converted to a conventional electronic signal. This procedure provides the means for the FBG-based sensor system to be used for several monitoring applications. The aim of this research is to improve an existing monitoring system which has been used for several Held test inspections. A brief description...

  18. Identifying a Transition Competency Domain Structure: Assisting Transition Planning Teams to Understand Roles and Responsibilities of Community Partners

    Science.gov (United States)

    Plotner, Anthony; Trach, John; Shogren, Karrie

    2012-01-01

    The special education and rehabilitation literature is replete with articles examining transition planning, services and supports; however, transition models have typically been developed for the school context and not focused on other transition team members. These school-based models are important; however, models developed from the perspectives…

  19. In-service Structural Health Monitoring of a Full-scale Composite Horizontal Tail

    Institute of Scientific and Technical Information of China (English)

    WU Zhanjun; GAO Dongyue; WANG Yishou; Gorgin RAHIM

    2015-01-01

    In-service structural health monitoring (SHM) technologies are critical for the utilization of composite aircraft structures. We developed a Lamb wave-based in-service SHM technology using built-in piezoelectric actuator/sensor networks to monitor delamination extension in a full-scale composite horizontal tail. The in-service SHM technology combine of damage rapid monitoring (DRM) stage and damage imaging diagnosis (DID) stage allows for real-time monitoring and long term tracking of the structural integrity of composite aircraft structures. DRM stage using spearman rank correlation coefifcient was introduced to generate a damage index which can be used to monitor the trend of damage extension. The DID stage based on canonical correlation analysis aimed at intuitively highlighting structural damage regions in two-dimensional images. The DRM and DID stages were trialed by an in-service SHM experiment of CFRP T-joint. Finally, the detection capability of the in-service SHM technology was verified in the SHM experiment of a full-scale composite horizontal tail. Experimental results show that the rapid monitoring method effectively monitors the damage occurrence and extension tendency in real time;damage imaging diagnosis results are consistent with those from the failure model of the composite horizontal tail structure.

  20. A new process monitoring method based on noisy time structure independent component analysis

    Institute of Scientific and Technical Information of China (English)

    Lianfang Cai; Xuemin Tian

    2015-01-01

    Conventional process monitoring method based on fast independent component analysis (FastICA) cannot take the ubiquitous measurement noises into account and may exhibit degraded monitoring performance under the adverse effects of the measurement noises. In this paper, a new process monitoring approach based on noisy time structure ICA (NoisyTSICA) is proposed to solve such problem. A NoisyTSICA algorithm which can consider the measurement noises explicitly is firstly developed to estimate the mixing matrix and extract the independent components (ICs). Subsequently, a monitoring statistic is built to detect process faults on the basis of the recur-sive kurtosis estimations of the dominant ICs. Lastly, a contribution plot for the monitoring statistic is constructed to identify the fault variables based on the sensitivity analysis. Simulation studies on the continuous stirred tank reactor system demonstrate that the proposed NoisyTSICA-based monitoring method outperforms the conven-tional FastICA-based monitoring method.

  1. Shear-induced phase transition of nanocrystalline hexagonal boron nitride to wurtzitic structure at room temperature and lower pressure.

    Science.gov (United States)

    Ji, Cheng; Levitas, Valery I; Zhu, Hongyang; Chaudhuri, Jharna; Marathe, Archis; Ma, Yanzhang

    2012-11-20

    Disordered structures of boron nitride (BN), graphite, boron carbide (BC), and boron carbon nitride (BCN) systems are considered important precursor materials for synthesis of superhard phases in these systems. However, phase transformation of such materials can be achieved only at extreme pressure-temperature conditions, which is irrelevant to industrial applications. Here, the phase transition from disordered nanocrystalline hexagonal (h)BN to superhard wurtzitic (w)BN was found at room temperature under a pressure of 6.7 GPa after applying large plastic shear in a rotational diamond anvil cell (RDAC) monitored by in situ synchrotron X-ray diffraction (XRD) measurements. However, under hydrostatic compression to 52.8 GPa, the same hBN sample did not transform to wBN but probably underwent a reversible transformation to a high-pressure disordered phase with closed-packed buckled layers. The current phase-transition pressure is the lowest among all reported direct-phase transitions from hBN to wBN at room temperature. Usually, large plastic straining leads to disordering and amorphization; here, in contrast, highly disordered hBN transformed to crystalline wBN. The mechanisms of strain-induced phase transformation and the reasons for such a low transformation pressure are discussed. Our results demonstrate a potential of low pressure-room temperature synthesis of superhard materials under plastic shear from disordered or amorphous precursors. They also open a pathway of phase transformation of nanocrystalline materials and materials with disordered and amorphous structures under extensive shear.

  2. Shear-induced phase transition of nanocrystalline hexagonal boron nitride to wurtzitic structure at room temperature and lower pressure

    Science.gov (United States)

    Ji, Cheng; Levitas, Valery I.; Zhu, Hongyang; Chaudhuri, Jharna; Marathe, Archis; Ma, Yanzhang

    2012-01-01

    Disordered structures of boron nitride (BN), graphite, boron carbide (BC), and boron carbon nitride (BCN) systems are considered important precursor materials for synthesis of superhard phases in these systems. However, phase transformation of such materials can be achieved only at extreme pressure–temperature conditions, which is irrelevant to industrial applications. Here, the phase transition from disordered nanocrystalline hexagonal (h)BN to superhard wurtzitic (w)BN was found at room temperature under a pressure of 6.7 GPa after applying large plastic shear in a rotational diamond anvil cell (RDAC) monitored by in situ synchrotron X-ray diffraction (XRD) measurements. However, under hydrostatic compression to 52.8 GPa, the same hBN sample did not transform to wBN but probably underwent a reversible transformation to a high-pressure disordered phase with closed-packed buckled layers. The current phase-transition pressure is the lowest among all reported direct-phase transitions from hBN to wBN at room temperature. Usually, large plastic straining leads to disordering and amorphization; here, in contrast, highly disordered hBN transformed to crystalline wBN. The mechanisms of strain-induced phase transformation and the reasons for such a low transformation pressure are discussed. Our results demonstrate a potential of low pressure–room temperature synthesis of superhard materials under plastic shear from disordered or amorphous precursors. They also open a pathway of phase transformation of nanocrystalline materials and materials with disordered and amorphous structures under extensive shear. PMID:23129624

  3. FRAMEWORK FOR STRUCTURAL ONLINE HEALTH MONITORING OF AGING AND DEGRADATION OF SECONDARY PIPING SYSTEMS DUE TO SOME ASPECTS OF EROSION

    Energy Technology Data Exchange (ETDEWEB)

    Gribok, Andrei V.; Agarwal, Vivek

    2017-06-01

    This paper describes the current state of research related to critical aspects of erosion and selected aspects of degradation of secondary components in nuclear power plants (NPPs). The paper also proposes a framework for online health monitoring of aging and degradation of secondary components. The framework consists of an integrated multi-sensor modality system, which can be used to monitor different piping configurations under different degradation conditions. The report analyses the currently known degradation mechanisms and available predictive models. Based on this analysis, the structural health monitoring framework is proposed. The Light Water Reactor Sustainability Program began to evaluate technologies that could be used to perform online monitoring of piping and other secondary system structural components in commercial NPPs. These online monitoring systems have the potential to identify when a more detailed inspection is needed using real time measurements, rather than at a pre-determined inspection interval. This transition to condition-based, risk-informed automated maintenance will contribute to a significant reduction of operations and maintenance costs that account for the majority of nuclear power generation costs. Furthermore, of the operations and maintenance costs in U.S. plants, approximately 80% are labor costs. To address the issue of rising operating costs and economic viability, in 2017, companies that operate the national nuclear energy fleet started the Delivering the Nuclear Promise Initiative, which is a 3 year program aimed at maintaining operational focus, increasing value, and improving efficiency. There is unanimous agreement between industry experts and academic researchers that identifying and prioritizing inspection locations in secondary piping systems (for example, in raw water piping or diesel piping) would eliminate many excessive in-service inspections. The proposed structural health monitoring framework takes aim at

  4. Secondary Structure Transition and Critical Stress for a Model of Spider Silk Assembly.

    Science.gov (United States)

    Giesa, Tristan; Perry, Carole C; Buehler, Markus J

    2016-02-08

    Spiders spin their silk from an aqueous solution to a solid fiber in ambient conditions. However, to date, the assembly mechanism in the spider silk gland has not been satisfactorily explained. In this paper, we use molecular dynamics simulations to model Nephila clavipes MaSp1 dragline silk formation under shear flow and determine the secondary structure transitions leading to the experimentally observed fiber structures. While no experiments are performed on the silk fiber itself, insights from this polypeptide model can be transferred to the fiber scale. The novelty of this study lies in the calculation of the shear stress (300-700 MPa) required for fiber formation and identification of the amino acid residues involved in the transition. This is the first time that the shear stress has been quantified in connection with a secondary structure transition. By study of molecules containing varying numbers of contiguous MaSp1 repeats, we determine that the smallest molecule size giving rise to a "silk-like" structure contains six polyalanine repeats. Through a probability analysis of the secondary structure, we identify specific amino acids that transition from α-helix to β-sheet. In addition to portions of the polyalanine section, these amino acids include glycine, leucine, and glutamine. The stability of β-sheet structures appears to arise from a close proximity in space of helices in the initial spidroin state. Our results are in agreement with the forces exerted by spiders in the silking process and the experimentally determined global secondary structure of spidroin and pulled MaSp1 silk. Our study emphasizes the role of shear in the assembly process of silk and can guide the design of microfluidic devices that attempt to mimic the natural spinning process and predict molecular requirements for the next generation of silk-based functional materials.

  5. Applications of Piezoelectric Materials in Structural Health Monitoring and Repair: Selected Research Examples

    Directory of Open Access Journals (Sweden)

    Ser Tong Quek

    2010-12-01

    Full Text Available The paper reviews the recent applications of piezoelectric materials in structural health monitoring and repair conducted by the authors. First, commonly used piezoelectric materials in structural health monitoring and structure repair are introduced. The analysis of plain piezoelectric sensors and actuators and interdigital transducer and their applications in beam, plate and pipe structures for damage detection are reviewed in detail. Second, an overview is presented on the recent advances in the applications of piezoelectric materials in structural repair. In addition, the basic principle and the current development of the technique are examined.

  6. Evidence for anomalous optical transition radiation linear polarization effects in beam-profile monitors

    Directory of Open Access Journals (Sweden)

    A. H. Lumpkin

    2013-10-01

    Full Text Available Investigations of the effects of optical transition radiation (OTR polarization components on beam profiles are presented. The transverse profiles are examined using the OTR perpendicular and parallel polarization components with respect to the dimension of interest. We observed ∼15% projected profile size reductions with the perpendicularly polarized components on a 65-μm beam image size case at 14 MeV, a 150-μm beam image size at 4.5 GeV, and a 1100-μm beam image size at 7 GeV. These effects are all several times larger than expected (and anomalous in this sense when compared to the standard OTR point-spread function calculations. We propose the time-averaged induced-current distribution which generates the OTR represents the actual beam size more faithfully with the perpendicular polarization component and recommend its routine use and subsequent deconvolution.

  7. EPR Studies of a structural phase transition in Mn 2+-doped zinc fluotitanate hexahydrate

    Science.gov (United States)

    Jayaram, Geetha; Sastry, G. Sivarama

    1983-05-01

    Electron paramagnetic resonance studies of Mn 2+ in zinc fluotitanate hexahydrate (ZnTiF 6·6H 2O) have been made between 77 and 300 K, in the X-band frequency range. At 173±2 K a structural phase transition was observed. The axial symmetry at room temperature with a single magnetic site was destroyed in the low-temperature phase, where two crystallographically inequivalent sites rotated by 8° from the axis could be identified, with their symmetry axis retained along the room-temperature c axis. The important features associated with this phase transition are reported along with the room-temperature data.

  8. Molecular structures of HNC and HCN derived from the eight stable isotopic species. [Transitions

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, E.F.; Creswell, R.A.; Winnewisser, M.; Winnewisser, G.

    1976-01-01

    Ground vibrational state rotational transitions were measured for the following isotopic species of HNC: H/sup 15/NC, H/sup 15/N/sup 13/C, DN/sup 13/C, D/sup 15/NC and D/sup 15/N/sup 13/C. Similar transitions were also measured for H/sup 13/C/sup 15/N and D/sup 13/C/sup 15/N. These measurements complete the set of rotational constants for the eight stable isotopic species of the two molecules. Molecular structures are calculated from these data in several ways and are compared with the results of recent ab initio calculations.

  9. Prediction of spin-dependent electronic structure in 3d-transition-metal doped antimonene

    Science.gov (United States)

    Yang, L. F.; Song, Y.; Mi, W. B.; Wang, X. C.

    2016-07-01

    We investigate the geometric structure and electronic and magnetic properties of 3d-transition-metal atom doped antimonene using spin-polarized first-principles calculations. Strong orbital hybridization exhibits between 3d-transition-metal and Sb atoms, where covalent bonds form in antimonene. A spin-polarized semiconducting state appears in Cr-doped antimonene, while half-metallic states appear by doping Ti, V, and Mn. These findings indicate that once combined with doping states, the bands of antimonene systems offer a variety of features. Specific dopants lead to half-metallic characters with high spin polarization that has potential application in spintronics.

  10. Interlocking order parameter fluctuations in structural transitions between adsorbed polymer phases.

    Science.gov (United States)

    Martins, Paulo H L; Bachmann, Michael

    2016-01-21

    By means of contact-density chain-growth simulations of a simple coarse-grained lattice model for a polymer grafted at a solid homogeneous substrate, we investigate the complementary behavior of the numbers of surface-monomer and monomer-monomer contacts under various solvent and thermal conditions. This pair of contact numbers represents an appropriate set of order parameters that enables the distinct discrimination of significantly different compact phases of polymer adsorption. Depending on the transition scenario, these order parameters can interlock in perfect cooperation. The analysis helps understand the transitions from compact filmlike adsorbed polymer conformations into layered morphologies and dissolved adsorbed structures, respectively, in more detail.

  11. Rare-earth transition-metal intermetallics: Structure-bonding-property relationships

    Energy Technology Data Exchange (ETDEWEB)

    Han, M. K. [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    The explorations of rare-earth, transition metal intermetallics have resulted in the synthesis and characterization, and electronic structure investigation, as well as understanding the structure-bonding property relationships. The work has presented the following results: (1) Understanding the relationship between compositions and properties in LaFe13-xSix system: A detailed structural and theoretical investigation provided the understanding of the role of a third element on stabilizing the structure and controlling the transformation of cubic NaZn{sub 13}-type structures to the tetragonal derivative, as well as the relationship between the structures and properties. (2) Synthesis of new ternary rare-earth iron silicides Re2-xFe4Si14-y and proposed superstructure: This compound offers complex structural challenges such as fractional occupancies and their ordering in superstructure. (3) Electronic structure calculation of FeSi2: This shows that the metal-semiconductor phase transition depends on the structure. The mechanism of band gap opening is described in terms of bonding and structural distortion. This result shows that the electronic structure calculations are an essential tool for understanding the relationship between structure and chemical bonding in these compounds. (4) Synthesis of new ternary rare-earth Zinc aluminides Tb3Zn3.6Al7.4: Partially ordered structure of Tb3Zn3.6Al7.4 compound provides new insights into the formation, composition and structure of rare-earth transition-metal intermetallics. Electronic structure calculations attribute the observed composition to optimizing metal-metal bonding in the electronegative (Zn, Al) framework, while the specific ordering is strongly influenced by specific orbital interactions. (5) Synthesis of new structure type of Zn39(CrxAl1-x)81

  12. Rare-Earth Transition-Metal Intermetallics: Structure-bonding-Property Relationships

    Energy Technology Data Exchange (ETDEWEB)

    Han, Mi-Kyung [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    Our explorations of rare-earth, transition metal intermetallics have resulted in the synthesis and characterization, and electronic structure investigation, as well as understanding the structure-bonding-property relationships. Our work has presented the following results: (1) Understanding the relationship between compositions and properties in LaFe13-xSix system: A detailed structural and theoretical investigation provided the understanding of the role of a third element on stabilizing the structure and controlling the transformation of cubic NaZn13-type structures to the tetragonal derivative, as well as the relationship between the structures and properties. (2) Synthesis of new ternary rare-earth iron silicides RE2-xFe4Si14-y and proposed superstructure: This compound offers complex structural challenges such as fractional occupancies and their ordering in superstructure. (3) Electronic structure calculation of FeSi2: This shows that the metal-semiconductor phase transition depends on the structure. The mechanism of band gap opening is described in terms of bonding and structural distortion. This result shows that the electronic structure calculations are an essential tool for understanding the relationship between structure and chemical bonding in these compounds. (4) Synthesis of new ternary rare-earth Zinc aluminides Tb3Zn3.6Al7.4: Partially ordered structure of Tb3.6Zn13-xAl7.4 compound provides new insights into the formation, composition and structure of rare-earth transition-metal intermetallics. Electronic structure calculations attribute the observed composition to optimizing metal-metal bonding in the electronegative (Zn, Al) framework, while the specific ordering is strongly influenced by specific orbital interactions. (5) Synthesis of new structure type of Zn39(CrxAl1-x

  13. Universal wetting transition of an evaporating water droplet on hydrophobic micro- and nano-structures.

    Science.gov (United States)

    Bussonnière, Adrien; Bigdeli, Masoud B; Chueh, Di-Yen; Liu, Qingxia; Chen, Peilin; Tsai, Peichun Amy

    2017-02-07

    Water-repellent, rough surfaces have a remarkable and beneficial wetting property: when a water droplet comes in contact with a small fraction of the solid, both liquid-solid adhesion and hydrodynamic drag are reduced. As a prominent example from nature, the lotus leaf-comprised of a wax-like material with micro- and nano-scaled roughness-has recently inspired numerous syntheses of superhydrophobic substrates. Due to the diverse applications of superhydrophobicity, much research has been devoted to the fabrication and investigations of hydrophobic micro-structures using established micro-fabrication techniques. However, wetting transitions remain relatively little explored. During evaporation, a water droplet undergoes a wetting transition from a (low-frictional) partial to (adhesive) complete contact with the solid, destroying the superhydrophobicity and the self-cleaning properties of the slippery surface. Here, we experimentally examine the wetting transition of a drying droplet on hydrophobic nano-structures, a previously unexplored regime. In addition, using a theoretical analysis we found a universal criterion of this wetting transition that is characterized by a critical contact angle. Different from previous results showing different critical droplet sizes, our results show a universal, geometrically-dependent, critical contact angle, which agrees well with various data for both hydrophobic micro- and nano-structures.

  14. A new approach for structural health monitoring by applying anomaly detection on strain sensor data

    NARCIS (Netherlands)

    Trichias, K.; Pijpers, R.J.M.; Meeuwissen, H.B.

    2014-01-01

    Structural Health Monitoring (SHM) systems help to monitor critical infrastructures (bridges, tunnels, etc.) remotely and provide up-to-date information about their physical condition. In addition, it helps to predict the structure’s life and required maintenance in a cost-efficient way. Typically,

  15. A new approach for structural health monitoring by applying anomaly detection on strain sensor data

    NARCIS (Netherlands)

    Trichias, K.; Pijpers, R.J.M.; Meeuwissen, H.B.

    2014-01-01

    Structural Health Monitoring (SHM) systems help to monitor critical infrastructures (bridges, tunnels, etc.) remotely and provide up-to-date information about their physical condition. In addition, it helps to predict the structure’s life and required maintenance in a cost-efficient way. Typically,

  16. Structural Safety Monitoring of High Arch Dam Using Improved ABC-BP Model

    Directory of Open Access Journals (Sweden)

    Yantao Zhu

    2016-01-01

    Full Text Available The establishment of a structural safety monitoring model of a dam is necessary for the evaluation of the dam’s deformation status. The structural safety monitoring method based on the monitoring data is widely used in traditional research. On the basis of the analysis of the high arch dam’s deformation principles, this study proposes a structural safety monitoring method derived from the dam deformation monitoring data. The method first analyzes and establishes the spatial and temporal distribution of high arch dam’s safety monitoring, overcoming the standard artificial bee colony (ABC algorithm’s shortcoming of easily falling into the local optimum by adopting the adaptive proportion and average Euclidean distance afterwards. The improved ABC algorithm is used to optimize the backpropagation (BP neural network’s initial weight and threshold. The application example proves that ABC-BP model’s improvement method is important for the establishment of a high arch deformation safety monitoring model and can effectively improve the model’s fitting and forecasting ability. This method provides a reference for the establishment of a structural safety monitoring model of dam and provides guidance for the establishment of a forecasting model in other fields.

  17. Methods for Sensing and Monitoring Fatigue Cracks and Their Applicability for Marine Structures

    NARCIS (Netherlands)

    Horst, Menno van der; Kaminski, Miroslaw; Puik, Erik

    2013-01-01

    In order to guarantee structural integrity of marine structures in an effective way, operators of these structures seek an affordable, simple and robust system for monitoring detected cracks. Such systems are not yet available and the authors took a challenge to research a possibility of developing

  18. Monitoring Scientific Developments from a Dynamic Perspective: Self-Organized Structuring To Map Neural Network Research.

    Science.gov (United States)

    Noyons, E. C. M.; van Raan, A. F. J.

    1998-01-01

    Using bibliometric mapping techniques, authors developed a methodology of self-organized structuring of scientific fields which was applied to neural network research. Explores the evolution of a data generated field structure by monitoring the interrelationships between subfields, the internal structure of subfields, and the dynamic features of…

  19. Electronic Structure Evolution across the Peierls Metal-Insulator Transition in a Correlated Ferromagnet

    Directory of Open Access Journals (Sweden)

    P. A. Bhobe

    2015-10-01

    Full Text Available Transition metal compounds often undergo spin-charge-orbital ordering due to strong electron-electron correlations. In contrast, low-dimensional materials can exhibit a Peierls transition arising from low-energy electron-phonon-coupling-induced structural instabilities. We study the electronic structure of the tunnel framework compound K_{2}Cr_{8}O_{16}, which exhibits a temperature-dependent (T-dependent paramagnetic-to-ferromagnetic-metal transition at T_{C}=180  K and transforms into a ferromagnetic insulator below T_{MI}=95  K. We observe clear T-dependent dynamic valence (charge fluctuations from above T_{C} to T_{MI}, which effectively get pinned to an average nominal valence of Cr^{+3.75} (Cr^{4+}∶Cr^{3+} states in a 3∶1 ratio in the ferromagnetic-insulating phase. High-resolution laser photoemission shows a T-dependent BCS-type energy gap, with 2G(0∼3.5(k_{B}T_{MI}∼35  meV. First-principles band-structure calculations, using the experimentally estimated on-site Coulomb energy of U∼4  eV, establish the necessity of strong correlations and finite structural distortions for driving the metal-insulator transition. In spite of the strong correlations, the nonintegral occupancy (2.25 d-electrons/Cr and the half-metallic ferromagnetism in the t_{2g} up-spin band favor a low-energy Peierls metal-insulator transition.

  20. Correlation of phenylpropanolamine bioavailability with gastrointestinal transit by scintigraphic monitoring of /sup 111/In-labeled hydroxypropylmethylcellulose matrices

    Energy Technology Data Exchange (ETDEWEB)

    Feely, L.C.; Davis, S.S.

    1989-04-01

    Two controlled-release hydroxypropylmethylcellulose (HPMC) matrix formulations, a single-unit and a multiple-unit system, have been evaluated in human volunteers. Both formulations contained the sympathomimetic drug phenylpropanolamine hydrochloride and each was radiolabeled with /sup 111/Inbound Amberlite IR 120 ion-exchange resin. The formulations were administered to each of six healthy male volunteers and gastrointestinal (GI) transit was monitored using a gamma camera. Serum samples were taken at set time intervals and assayed for phenylpropanolamine content, thus allowing blood drug levels to be correlated with the position of the dosage form in the GI tract. The multiple-unit system emptied from the stomach gradually over a period of about 180 min, when administered after a light breakfast, whereas the single-unit dosage forms had extremely variable gastric emptying times (range, 60 to greater than 570 min). However, both formulations provided prolonged phenylpropanolamine blood levels. The differences in the blood profiles obtained with the two formulations were attributed to variations in their in vitro release rates and not to any differences in their GI transit times.