WorldWideScience

Sample records for monitoring snow area

  1. Snow season variability in a boreal-Arctic transition area monitored by MODIS data

    Science.gov (United States)

    Malnes, Eirik; Rune Karlsen, Stein; Johansen, Bernt; Bjerke, Jarle W.; Tømmervik, Hans

    2016-12-01

    The duration and extent of snow cover is expected to change rapidly with climate change. Therefore, there is a need for improved monitoring of snow for the benefit of forecasting, impact assessments and the population at large. Remotely sensed techniques prove useful for remote areas where there are few field-based monitoring stations. This paper reports on a study of snow season using snow cover area fraction data from the two northernmost counties in Norway, Troms and Finnmark. The data are derived from the daily 500 m standard snow product (MOD10A1) from the NASA Terra MODerate Resolution Imaging Spectroradiometer (MODIS) sensor for the 2000-2010 period. This dataset has been processed with multi-temporal interpolation to eliminate clouds. The resulting cloud-free daily time series of snow cover fraction maps, have subsequently been used to derive the first and last snow-free day for the entire study area. In spring, the correlation between the first snow-free day mapped by MODIS data and snow data from 40 meteorological stations was highly significant (p < 0.05) for 36 of the stations, and with a of bias of less than 10 days for 34 of the stations. In autumn, 31 of the stations show highly significant (p < 0.05) correlation with MODIS data, and the bias was less than 10 days for 27 of the stations. However, in some areas and some years, the start and end of the snow season could not be detected due to long overcast periods. In spring 2002 and 2004 the first snow-free day was early, but arrived late in 2000, 2005 and 2008. In autumn 2009 snowfall arrived more than 7 days earlier in 50% of the study area as compared to the 2000-2010 average. MODIS-based snow season products will be applicable for a wide range of sectors including hydrology, nature-based industries, climate change studies and ecology. Therefore refinement and further testing of this method should be encouraged.

  2. Technical snow production in skiing areas: conditions, practice, monitoring and modelling. A case study in Mayrhofen/Austria

    Science.gov (United States)

    Strasser, Ulrich; Hanzer, Florian; Marke, Thomas; Rothleitner, Michael

    2017-04-01

    The production of technical snow today is a self-evident feature of modern alpine skiing resort management. Millions of Euros are invested every year for the technical infrastructure and its operation to produce a homogeneous and continuing snow cover on the skiing slopes for the winter season in almost every larger destination in the Alps. In Austria, skiing tourism is a significant factor of the national economic structure. We present the framing conditions of technical snow production in the mid-size skiing resort of Mayrhofen (Zillertal Alps/Austria, 136 km slopes, elevation range 630 - 2.500 m a.s.l.). Production conditions are defined by the availability of water, the planned date for the season opening, and the climatic conditions in the weeks before. By means of an adapted snow production strategy an attempt is made to ecologically and economically optimize the use of water and energy resources. Monitoring of the snow cover is supported by a network of low-cost sensors and mobile snow depth recordings. Finally, technical snow production is simulated with the spatially distributed, physically based hydroclimatological model AMUNDSEN. The model explicitly considers individual snow guns and distributes the produced snow along the slopes. The amount of simulated snow produced by each device is a function of its type, of actual wet-bulb temperature at the location, of ski area infrastructure (in terms of water supply and pumping capacity), and of snow demand.

  3. Monitoring snow-cover area change in Antarctic coastline region using MODIS product data

    Institute of Scientific and Technical Information of China (English)

    Chen Jing; Li Rendong; Ye Ming; Lu Yang

    2009-01-01

    Based on MODIS snow products, this article studied the changes of snow cover area during 2003-2006 along the coastline of the Antarctic, and 18 typical regions were chosen for further analysis. The result showed that the change of snow cover area was in a fluctuant downward trend as a whole, and more fluctuated obviously in warm season than in cold season. In temporal scale: for the season cycle, the snow cover extent increased rapidly in cold season (Apr-Oct), while the performance in warm season (Nov-Mar) was not exactly the same during the four years, the snow cover extent decreased in the first and then increased in 2004 and 2006, however, increased firstly and then decreased but reduced as a whole in 2005, for the inter-annual cycle, snow cover extent was the largest in 2003, but reached to the lowest level in 2004, and then increased gradually in 2005 and 2006, whereas, it declined with fluctuant as a whole. In spatial scale, changes mainly centralized along the coastline, moreover, it was more remarkable in the West Antarctic than in the East Antarctic, especially in the Antarctic Peninsula region.

  4. Snow monitoring using microwave radars

    OpenAIRE

    Koskinen, Jarkko

    2001-01-01

    Remote sensing has proven its usefulness in various applications. For mapping, land-use classification and forest monitoring optical satellite and airborne images are used operationally. However, this is not the case with snow monitoring. Currently only ground-based in situ and weather measurements are used operationally for snow monitoring in Finland. Ground measurements are conducted once a month on special snow courses. These measurements are used to update the hydrological model that simu...

  5. Seeing the Snow through the Trees: Towards a Validated Canopy Adjustment for Fractional Snow Covered Area

    Science.gov (United States)

    Coons, L.; Nolin, A. W.; Painter, T.

    2012-12-01

    Satellite remote sensing is an important tool for monitoring the spatial distribution of snow cover, which acts as a vital reservoir of water for human and ecosystem needs. Current methods exist mapping the fraction of snow in each image pixel from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat Thematic Mapper (TM). Although these methods can effectively detect this fractional snow-covered area (fSCA) in open areas, snow cover is underestimated in forested areas where canopy cover obscures the snow. Accounting for obscured snow cover will significantly improve estimates of fSCA for hydrologic forecasting and monitoring. This study will address how individual trees and the overall forest canopy affect snow distributions on the ground with the goal of determining metrics that can parameterize the spatial patterns of sub-canopy snow cover. Snow cover measurements were made during winter 2011-2012 at multiple sites representing a range of canopy densities. In the snow-free season, we used terrestrial laser scanning (TLS) and manual field methods to fully characterize the forest canopy height, canopy gap fraction, crown width, tree diameter at breast height (DBH), and stand density. We also use multi-angle satellite imagery from MISR and airborne photos to map canopy characteristics over larger areas. Certain canopy structure characteristics can be represented with remote sensing data. These data serve as a key first step in developing canopy adjustment factors for fSCA from MODIS, TM, and other snow mapping sensors.

  6. Monitoring and modelling snow avalanches in Svalbard

    Science.gov (United States)

    Humlum, O.; Christiansen, H.; Neumann, U.; Eckerstorfer, M.; Sjöblom, A.; Stalsberg, K.; Rubensdotter, L.

    2009-04-01

    Monitoring and modelling snow avalanches in Svalbard Ole Humlum 1,3, Hanne H. Christiansen 1, Ulrich Neumann 1, Markus Eckerstorfer 1, Anna Sjöblom 1, Knut Stalsberg 2 and Lena Rubensdotter 2. 1: The University Centre in Svalbard (UNIS). 2: Geological Survey of Norway (NGU) 3: University of Oslo Ground based transportation in Svalbard landscape all takes place across mountainous terrain affected by different geomorphological slope processes. Traffic in and around the Svalbard settlements is increasing, and at the same time global climate models project substantial increases in temperature and precipitation in northern high latitudes for coming century. Therefore improved knowledge on the effect of climatic changes on slope processes in such high arctic landscapes is becoming increasingly important. Motivated by this, the CRYOSLOPE Svalbard research project since 2007 has carried out field observations on snow avalanche frequency and associated meteorological conditions. Snow avalanches are important geomorphic agents of erosion and deposition, and have long been a source of natural disasters in many mid-latitude mountain areas. Avalanches as a natural hazard has thereby been familiar to inhabitants of the Alps and Scandinavia for centuries, while it is a more recent experience in high arctic Svalbard. In addition, overall climate, topography and especially high winter wind speeds makes it difficult to apply snow avalanche models (numerical or empirical) developed for use at lower latitudes, e.g. in central Europe. In the presentation we examplify results from the ongoing (since winter 2006-07) monitoring of snow avalanches in Svalbard along a 70 km long observational route in the mountains. In addition, we present observations on the geomorphological impact of avalanches, with special reference to the formation of rock glaciers. Finally, we also present some initial results from numerical attempts of snow avalanche risk modelling within the study area.

  7. TLS monitoring of snowpack distribution in a mountain forested areas: Analysis of canopy disturbance on snow evolution.

    Science.gov (United States)

    Revuelto, Jesús; López-Moreno, Juan Ignacio; Azorin-Molina, Cesar; Alonso, Esteban; San Miguel, Alba

    2016-04-01

    Forested mountain areas at high elevations show important interaction with snowpack distribution and its evolution in time, and thus in many cases are the limit of the cryosphere in mountain zones. Such interactions have significant consequences in the hydrologic response of mountain rivers. Thereby observing the evolution of snowpack in forested areas has a big importance form a basic science perspective and also for water management. This work presents a detailed comparison of small scale effect of forest characteristics on snowpack distribution in Central Pyrenees, before and after a strong modification of canopies features. The snowpack distribution has been obtained using a novel remote sensing technology (Terrestrial Laser Scanner, TLS), with high spatial resolution (0.25m) over a 1000m2 study area for 27 survey dates along three snow seasons. Between the second and the third snow season a strong canopy pruning was performed in the study site, and thereby the snowpack evolution with both canopy configurations was compared. A Principal Component Analysis has been applied to analyze the snowpack distributions observed during the study period. Results obtained have shown that despite large differences in Canopy radius (1.2 m) and Canopy height (2.5m), not a different snowpack evolution was observed. For both Canopy configurations the variable with higher importance on snowpack distribution is the snow depth amount. The change in forest structure has important implications in the decrease of Canopy areas and the increase of Open areas (proportionally to Canopy change), but not a different interaction with forest structure was observed. The canopy pruning realized in the study site is typically accomplished for fire risk reduction and this shows the consequences that such action has in snowpack distribution and that hereby these may have in water management possibly delaying peak runoff.

  8. Snow Monitoring Using Remote Sensing Data: Modification of Normalized Difference Snow Index

    Science.gov (United States)

    Kaplan, G.; Avdan, U.

    2016-12-01

    Snow cover is an important part of the Earth`s climate system so its continuous monitoring is necessary to map snow cover in high resolution. Satellite remote sensing can successfully fetch land cover and land cover changes. Although normalized difference snow index NDSI has quite good accuracy, topography shadow, water bodies and clouds can be easily misplaced as snow. Using Landsat TM, +ETM and TIRS/OLI satellite images, the NDSI was modified for more accurate snow mapping. In this paper, elimination of the misplaced water bodies was made using the high reflectance of the snow in the blue band. Afterwards, the modified NDSI (MNDSI) was used for estimating snow cover through the years on the highest mountains in Republic of Macedonia. The results from this study show that the MNDSI accuracy is bigger than the NDSI`s, totally eliminating the misplaced water bodies, and partly the one caused from topography and clouds. Also, it was noticed that the snow cover in the study area has been lowered through the years. For future studies, the MNDSI should be validated on different study areas with different characteristics.

  9. Snow measurement system for airborne snow surveys (GPR system from helicopter) in high mountian areas.

    Science.gov (United States)

    Sorteberg, Hilleborg K.

    2010-05-01

    In the hydropower industry, it is important to have precise information about snow deposits at all times, to allow for effective planning and optimal use of the water. In Norway, it is common to measure snow density using a manual method, i.e. the depth and weight of the snow is measured. In recent years, radar measurements have been taken from snowmobiles; however, few energy supply companies use this method operatively - it has mostly been used in connection with research projects. Agder Energi is the first Norwegian power producer in using radar tecnology from helicopter in monitoring mountain snow levels. Measurement accuracy is crucial when obtaining input data for snow reservoir estimates. Radar screening by helicopter makes remote areas more easily accessible and provides larger quantities of data than traditional ground level measurement methods. In order to draw up a snow survey system, it is assumed as a basis that the snow distribution is influenced by vegetation, climate and topography. In order to take these factors into consideration, a snow survey system for fields in high mountain areas has been designed in which the data collection is carried out by following the lines of a grid system. The lines of this grid system is placed in order to effectively capture the distribution of elevation, x-coordinates, y-coordinates, aspect, slope and curvature in the field. Variation in climatic conditions are also captured better when using a grid, and dominant weather patterns will largely be captured in this measurement system.

  10. MONITORING OF SNOW COVER VARIATION USING MODIS SNOW PRODUCT

    Directory of Open Access Journals (Sweden)

    N. Fayaz

    2013-09-01

    Full Text Available Snow is one of the integral components of hydrological and climatic systems. Needless to say, snow cover areas (SCA are considered as indispensable input of hydrological and general circulation models. Studying the spatial and temporal variability of SCA is of the paramount importance for tremendous variety of research such as climate change, water supply and properly managing water resources. In this study by means of Moderate Resolution Imaging Spectroradiometer (MODIS snow cover product, the variation of snow cover extent (SCE in Karoun basin located in western part of Iran is evaluated for twelve years' duration; since 2000 to 2012. The results show that the paramount occurrence of SCE is observed during February months of 2003, 2010 and 2011 as well as during December months of 2006 and 2009.The utmost occurrence of SCE is considered during January months of the other remaining years. Annual average shows that SCE varies from 11% in 2011 to 22% in 2006. According to Mann-Kendal trend test, throughout twelve years; 2000 to 2012, a majority of the pixels in the study area have no considerable trend although there is a decreasing trend on a small portion of the pixels located in the eastern part the study domain.

  11. Snow Cover Monitoring Using MODIS Data in Liaoning Province, Northeastern China

    Directory of Open Access Journals (Sweden)

    Yu Lu

    2010-03-01

    Full Text Available This paper presents the results of snow cover monitoring studies in Liaoning Province, northeastern China, using MODIS data. Snow cover plays an important role in both the regional water balance and soil moisture properties during the early spring in northeastern China. In addition, heavy snowfalls commonly trigger hazards such as flooding, caused by rapid snow melt, or crop failure, resulting from fluctuations in soil temperature associated with changes in the snow cover. The latter is a function of both regional, or global, climatic changes, as well as fluctuations in the albedo resulting from variations in the Snow Covered Area (SCA. These impacts are crucial to human activities, especially to those living in middle-latitude areas such as Liaoning Province. Thus, SCA monitoring is currently an important tool in studies of global climate change, particularly because satellite remote sensing data provide timely and efficient snow cover information for large areas. In this study, MODIS L1B data, MODIS Daily Snow Products (MOD10A1 and MODIS 8-day Snow Products (MOD10A2 were used to monitor the SCA of Liaoning Province over the winter months of November–April, 2006–2008. The effects of cloud masking and forest masking on the snow monitoring results were also assessed. The results show that the SCA percentage derived from MODIS L1B data is relatively consistent, but slightly higher than that obtained from MODIS Snow Products. In situ data from 25 snow stations were used to assess the accuracy of snow cover monitoring from the SCA compared to the results from MODIS Snow Products. The studies found that the SCA results were more reliable than MODIS Snow Products in the study area.

  12. Photographic Snow-cover Monitoring on St Sorlin Glacier, France.

    Science.gov (United States)

    Gerbaux, M.; Genthon, C.; Dedieu, J.; Balestrieri, J.

    2004-12-01

    Like most other glaciers in the Alps, the St Sorlin glacier (french Alps, 45.16°N, 6.16°E, 2900 m asl mean elevation and 3km2 of surface area) has been retreating fast in the last 20 years. To understand the meteorological factors responsible for this retreat, and to tentatively predict glaciers evolution in a changing (warming) climate, we use a distributed snow/ice mass and energy balance model derived from the CROCUS snow model (Météo-France). There is no direct meteorological observation on or near St Sorlin glacier yet, and hourly meteorology to force the snow/ice model is obtained from disaggregated meteorological analyses. The model is found to reproduce the St Sorlin mass balance of the last 20 years as obtained from field glaciological measurements and stereophotographic reconstructions. The model is also found to reproduce the interannual variations of the equilibrium line as determined from optical satellite imagery. Because of the albedo feedback involved, it is also important to verify that the summer snow/ice transition on the glacier is correctly simulated. Thus, an automated photographic system was set up facing St Sorlin glacier to monitor the evolution of the snow cover. The system was installed on the 13th of July 2004 and is still in operation at time of abstract writing. Digital photographies are taken every 4 hours, permitting so far at least one non-obstructed (rain, fog) picture per day. The first pictures in the series show an almost fully snow-covered glacier while the latest ones show bare ice up to the highest parts of the glacier. Snow is occasionally deposited during precipitation events but hardly last more than 3 days. Snow line position is deduced from pictures using a DEM with georeferenced points visible on pictures. It should then be compared with the modelled one. The automated photographic system provides not only snow cover to check snow/ice model results at seasonal time-scales, but also qualitative meteorological

  13. Snow specific surface area simulation using the one-layer snow model in the Canadian LAnd Surface Scheme (CLASS)

    OpenAIRE

    2013-01-01

    Snow grain size is a key parameter for modeling microwave snow emission properties and the surface energy balance because of its influence on the snow albedo, thermal conductivity and diffusivity. A model of the specific surface area (SSA) of snow was implemented in the one-layer snow model in the Canadian LAnd Surface Scheme (CLASS) version 3.4. This offline multilayer model (CLASS-SSA) simulates the decrease of SSA based on snow age, snow temperature and t...

  14. [Snow cover pollution monitoring in Ufa].

    Science.gov (United States)

    Daukaev, R A; Suleĭmanov, R A

    2008-01-01

    The paper presents the results of examining the snow cover polluted with heavy metals in the large industrial town of Ufa. The level of man-caused burden on the snow cover of the conventional parts of the town was estimated and compared upon exposure to a wide range of snow cover pollutants. The priority snow cover pollutants were identified among the test heavy metals.

  15. Data sets for snow cover monitoring and modelling from the National Snow and Ice Data Center

    Science.gov (United States)

    Holm, M.; Daniels, K.; Scott, D.; McLean, B.; Weaver, R.

    2003-04-01

    A wide range of snow cover monitoring and modelling data sets are pending or are currently available from the National Snow and Ice Data Center (NSIDC). In-situ observations support validation experiments that enhance the accuracy of remote sensing data. In addition, remote sensing data are available in near-real time, providing coarse-resolution snow monitoring capability. Time series data beginning in 1966 are valuable for modelling efforts. NSIDC holdings include SMMR and SSM/I snow cover data, MODIS snow cover extent products, in-situ and satellite data collected for NASA's recent Cold Land Processes Experiment, and soon-to-be-released ASMR-E passive microwave products. The AMSR-E and MODIS sensors are part of NASA's Earth Observing System flying on the Terra and Aqua satellites Characteristics of these NSIDC-held data sets, appropriateness of products for specific applications, and data set access and availability will be presented.

  16. Tracking Forest and Open Area Effects on Snow Accumulation by Unmanned Aerial Vehicle Photogrammetry

    Science.gov (United States)

    Lendzioch, T.; Langhammer, J.; Jenicek, M.

    2016-06-01

    Airborne digital photogrammetry is undergoing a renaissance. The availability of low-cost Unmanned Aerial Vehicle (UAV) platforms well adopted for digital photography and progress in software development now gives rise to apply this technique to different areas of research. Especially in determining snow depth spatial distributions, where repetitive mapping of cryosphere dynamics is crucial. Here, we introduce UAV-based digital photogrammetry as a rapid and robust approach for evaluating snow accumulation over small local areas (e.g., dead forest, open areas) and to reveal impacts related to changes in forest and snowpack. Due to the advancement of the technique, snow depth of selected study areas such as of healthy forest, disturbed forest, succession, dead forest, and of open areas can be estimated at a 1 cm spatial resolution. The approach is performed in two steps: 1) developing a high resolution Digital Elevation Model during snow-free and 2) during snow-covered conditions. By substracting these two models the snow depth can be accurately retrieved and volumetric changes of snow depth distribution can be achieved. This is a first proof-of-concept study combining snow depth determination and Leaf Area Index (LAI) retrieval to monitor the impact of forest canopy metrics on snow accumulation in coniferous forest within the Šumava National Park, Czech Republic. Both, downward-looking UAV images and upward-looking LAI-2200 canopy analyser measurements were applied to reveal the LAI, controlling interception and transmitting radiation. For the performance of downward-looking images the snow background instead of the sky fraction was used. In contrast to the classical determination of LAI by hemispherical photography or by LAI plant canopy analyser, our approach will also test the accuracy of LAI measurements by UAV that are taken simultaneously during the snow cover mapping campaigns. Since the LAI parameter is important for snowpack modelling, this method presents

  17. Potential for Monitoring Snow Cover in Boreal Forests by Combining MODIS Snow Cover and AMSR-E SWE Maps

    Science.gov (United States)

    Riggs, George A.; Hall, Dorothy K.; Foster, James L.

    2009-01-01

    Monitoring of snow cover extent and snow water equivalent (SWE) in boreal forests is important for determining the amount of potential runoff and beginning date of snowmelt. The great expanse of the boreal forest necessitates the use of satellite measurements to monitor snow cover. Snow cover in the boreal forest can be mapped with either the Moderate Resolution Imaging Spectroradiometer (MODIS) or the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) microwave instrument. The extent of snow cover is estimated from the MODIS data and SWE is estimated from the AMSR-E. Environmental limitations affect both sensors in different ways to limit their ability to detect snow in some situations. Forest density, snow wetness, and snow depth are factors that limit the effectiveness of both sensors for snow detection. Cloud cover is a significant hindrance to monitoring snow cover extent Using MODIS but is not a hindrance to the use of the AMSR-E. These limitations could be mitigated by combining MODIS and AMSR-E data to allow for improved interpretation of snow cover extent and SWE on a daily basis and provide temporal continuity of snow mapping across the boreal forest regions in Canada. The purpose of this study is to investigate if temporal monitoring of snow cover using a combination of MODIS and AMSR-E data could yield a better interpretation of changing snow cover conditions. The MODIS snow mapping algorithm is based on snow detection using the Normalized Difference Snow Index (NDSI) and the Normalized Difference Vegetation Index (NDVI) to enhance snow detection in dense vegetation. (Other spectral threshold tests are also used to map snow using MODIS.) Snow cover under a forest canopy may have an effect on the NDVI thus we use the NDVI in snow detection. A MODIS snow fraction product is also generated but not used in this study. In this study the NDSI and NDVI components of the snow mapping algorithm were calculated and analyzed to determine how they changed

  18. The assessment of EUMETSAT HSAF Snow Products for mountainuos areas in the eastern part of Turkey

    Science.gov (United States)

    Akyurek, Z.; Surer, S.; Beser, O.; Bolat, K.; Erturk, A. G.

    2012-04-01

    Monitoring the snow parameters (e.g. snow cover area, snow water equivalent) is a challenging work. Because of its natural physical properties, snow highly affects the evolution of weather from daily basis to climate on a longer time scale. The derivation of snow products over mountainous regions has been considered very challenging. This can be done by periodic and precise mapping of the snow cover. However inaccessibility and scarcity of the ground observations limit the snow cover mapping in the mountainous areas. Today, it is carried out operationally by means of optical satellite imagery and microwave radiometry. In retrieving the snow cover area from satellite images bring the problem of topographical variations within the footprint of satellite sensors and spatial and temporal variation of snow characteristics in the mountainous areas. Most of the global and regional operational snow products use generic algorithms for flat and mountainous areas. However the non-uniformity of the snow characteristics can only be modeled with different algorithms for mountain and flat areas. In this study the early findings of Satellite Application Facilities on Hydrology (H-SAF) project, which is financially supported by EUMETSAT, will be presented. Turkey is a part of the H-SAF project, both in product generation (eg. snow recognition, fractional snow cover and snow water equivalent) for mountainous regions for whole Europe, cal/val of satellite-derived snow products with ground observations and cal/val studies with hydrological modeling in the mountainous terrain of Europe. All the snow products are operational on a daily basis. For the snow recognition product (H10) for mountainous areas, spectral thresholding methods were applied on sub pixel scale of MSG-SEVIRI images. The different spectral characteristics of cloud, snow and land determined the structure of the algorithm and these characteristics were obtained from subjective classification of known snow cover features

  19. Preparation for Snow Cover Monitoring Using Sentinel-1 and Sentinel-3 Data

    Science.gov (United States)

    Nagler, Thomas; Rott, Helmut; Bippus, Gabriele; Ripper, Elisabeth

    2013-04-01

    Seasonal snow is a key element of the water cycle in high and mid latitudes, characterized by high spatial and temporal variability. Melt water is an important water resource in many mountain areas and also in lowlands downstream. Accurate observations of snow extent and physical properties of snow are not only of interest for climate change research, but are of great socio-economic importance. The Sentinel satellite series, including SAR and multispectral optical satellite data enable to monitor the snow extent from regional to global scale with high temporal sampling. Automatic processing lines of multispectral optical satellite data including rectification, calibration, cloud masking and snow detection have been implemented for generation of snow information and tested with various satellite sensors. Ongoing work is related with adapting and optimizing the snow retrieval algorithm for Sentinel 3 SLSTR and OCLI, making use of the full spectral capabilities of these sensors for generating high quality snow maps. The algorithm for mapping snow makes use of the typical spectral signature of snow in the visible (VIS) and short wave infrared (SWIR) region of the spectrum, which enables a clear discrimination against other surfaces. The baseline products include binary snow extent maps derived from combinations of VIS and SWIR bands and maps of fractional snow extent. The preliminary version of the retrieval algorithm uses dual-sensor Sentinel-3 SLSTR and OCLI data for mapping the snow extent and applies the multi-spectral un-mixing method and cloud screening making use of the various spectral channels of the two sensors. Snow conditions (wet/dry) can be retrieved from SAR observations as provided by Sentinel-1. The algorithm builds on the multi-temporal change detection technique for mapping melting snow areas and improved to make use of the dual-polarisation acquisition capabilities of Sentinel-1. In the presentation we will show first examples of the improved

  20. Cloudiness and snow cover in Alpine areas from MODIS products

    Science.gov (United States)

    Da Ronco, P.; De Michele, C.

    2014-04-01

    Snow cover maps provide an information of great practical interest for hydrologic purposes: when combined with point values of snow water equivalent (SWE), they allow to estimate the regional snow resource. Earth observation satellites are an interesting tool for evaluating large scale snow distribution and extension. In this context, MODIS (MODerate resolution Imaging Spectroradiometeron on board Terra and Aqua satellites) daily Snow Covered Area product has been widely tested and proved to be appropriate for hydrologic applications. However, within a daily map the presence of cloudiness can hide the ground, thus preventing snow detection. Here, we considered MODIS binary products for daily snow mapping over Po river basin. Modeling the variability of snow cover duration, distribution and snow water equivalent is a first important step in investigating climate change impacts on the regime of the major Italian river. Ten years (2003-2012) of MOD10A1 and MYD10A1 snow maps have been analyzed and processed with the support of 500 m-resolution Digital Elevation Model (DEM). We firstly investigated the issue of cloudiness, highlighting its dependence on altitude and season. Snow maps seem to suffer the influence of overcast conditions mainly in mountain and during the melting season. Such a result is certainly related to satellite crossing times, since cloud coverage over mountains usually increases in the afternoon: however, in Aqua and Terra snow products it highly influences those areas where snow detection is regarded with more interest. In spring, the average percentages of area lying beneath clouds are in the order of 70%, for altitudes over 1000 m a.s.l. Then, on the basis of previous studies, we proposed a cloud removal procedure and its application to a wide area, characterized by high topographic and geomorphological heterogeneities such as northern Italy. While conceiving the new method, our first target was to preserve the daily temporal resolution of the

  1. Estimation of Subpixel Snow-Covered Area by Nonparametric Regression Splines

    Science.gov (United States)

    Kuter, S.; Akyürek, Z.; Weber, G.-W.

    2016-10-01

    Measurement of the areal extent of snow cover with high accuracy plays an important role in hydrological and climate modeling. Remotely-sensed data acquired by earth-observing satellites offer great advantages for timely monitoring of snow cover. However, the main obstacle is the tradeoff between temporal and spatial resolution of satellite imageries. Soft or subpixel classification of low or moderate resolution satellite images is a preferred technique to overcome this problem. The most frequently employed snow cover fraction methods applied on Moderate Resolution Imaging Spectroradiometer (MODIS) data have evolved from spectral unmixing and empirical Normalized Difference Snow Index (NDSI) methods to latest machine learning-based artificial neural networks (ANNs). This study demonstrates the implementation of subpixel snow-covered area estimation based on the state-of-the-art nonparametric spline regression method, namely, Multivariate Adaptive Regression Splines (MARS). MARS models were trained by using MODIS top of atmospheric reflectance values of bands 1-7 as predictor variables. Reference percentage snow cover maps were generated from higher spatial resolution Landsat ETM+ binary snow cover maps. A multilayer feed-forward ANN with one hidden layer trained with backpropagation was also employed to estimate the percentage snow-covered area on the same data set. The results indicated that the developed MARS model performed better than th

  2. Fractional snow-covered area parameterization over complex topography

    Directory of Open Access Journals (Sweden)

    N. Helbig

    2014-08-01

    Full Text Available Fractional snow-covered area (SCA is a key parameter in large-scale hydrological, meteorological and climate models. Since SCA affects albedos and surface energy balance fluxes, it is especially of interest over mountainous terrain where generally a reduced SCA is observed in large grid cells. Temporal and spatial snow distributions are however difficult to measure over complex topography. We therefore present a parameterization of the SCA based on a new subgrid parameterization for the standard deviation of snow depth over complex topography. Highly-resolved snow depth data at peak of winter were used from two distinct climatic regions, in eastern Switzerland and in the Spanish Pyrenees. Topographic scaling parameters are derived assuming Gaussian slope characteristics. We use computationally cheap terrain parameters, namely the correlation length of subgrid topographic features and the mean squared slope. A scale dependent analysis was performed by randomly aggregating the alpine catchments in domain sizes ranging from 50 m to 3 km. For the larger domain sizes, snow depth was predominantly normally distributed. Trends between terrain parameters and standard deviation of snow depth were similar for both climatic regions, allowing to parameterize the standard deviation of snow depth based on terrain parameters. To make the parameterization widely applicable, we introduced the mean snow depth as a climate indicator. Assuming a normal snow distribution and spatially homogeneous melt, snow cover depletion curves were derived for a broad range of coefficients of variations. The most accurate closed form fit resembled an existing SCA parameterization. By including the subgrid parameterization for the standard deviation of snow depth, we extended the SCA parameterization for topographic influences. For all domain sizes we obtained errors lower than 10% between measured and parameterized SCA.

  3. Geo-Hazard Detection and Monitoring Using SAR and Optical Images in a Snow-Covered Area: The Menyuan (China Test Site

    Directory of Open Access Journals (Sweden)

    Qihuan Huang

    2017-09-01

    Full Text Available In this work, we combine SAR and optical images for geo-hazard detection and monitoring in Western China. An extremely small baseline of C-band SAR image pairs acquired from Sentinel-1A at Menyuan, China, is analyzed. Apart from the large area of coseismal deformation, we proposed an earthquake-derived landslide detecting method by removing the coseismal deformation with polynomial fitting, then the detected moving areas were confirmed with Chinese Gaofen-1 optical satellite images. Sentinel-1A C-band interferograms show about a 7-cm line of sight movement caused by the MS 6.4 Menyuan earthquake; meanwhile, several features indicative of ground movement were detected by the proposed method and demonstrated by the Gaofen-1 optical images; the interpretation of high-resolution optical data complemented the goal of better understanding the behavior of geo-hazard disasters. InSAR time series analysis provides an opportunity for continuous monitoring of geo-hazards in remote areas, while the optical image method is easily affected by decorrelation due to snowfall.

  4. TRACKING FOREST AND OPEN AREA EFFECTS ON SNOW ACCUMULATION BY UNMANNED AERIAL VEHICLE PHOTOGRAMMETRY

    Directory of Open Access Journals (Sweden)

    T. Lendzioch

    2016-06-01

    Full Text Available Airborne digital photogrammetry is undergoing a renaissance. The availability of low-cost Unmanned Aerial Vehicle (UAV platforms well adopted for digital photography and progress in software development now gives rise to apply this technique to different areas of research. Especially in determining snow depth spatial distributions, where repetitive mapping of cryosphere dynamics is crucial. Here, we introduce UAV-based digital photogrammetry as a rapid and robust approach for evaluating snow accumulation over small local areas (e.g., dead forest, open areas and to reveal impacts related to changes in forest and snowpack. Due to the advancement of the technique, snow depth of selected study areas such as of healthy forest, disturbed forest, succession, dead forest, and of open areas can be estimated at a 1 cm spatial resolution. The approach is performed in two steps: 1 developing a high resolution Digital Elevation Model during snow-free and 2 during snow-covered conditions. By substracting these two models the snow depth can be accurately retrieved and volumetric changes of snow depth distribution can be achieved. This is a first proof-of-concept study combining snow depth determination and Leaf Area Index (LAI retrieval to monitor the impact of forest canopy metrics on snow accumulation in coniferous forest within the Šumava National Park, Czech Republic. Both, downward-looking UAV images and upward-looking LAI-2200 canopy analyser measurements were applied to reveal the LAI, controlling interception and transmitting radiation. For the performance of downward-looking images the snow background instead of the sky fraction was used. In contrast to the classical determination of LAI by hemispherical photography or by LAI plant canopy analyser, our approach will also test the accuracy of LAI measurements by UAV that are taken simultaneously during the snow cover mapping campaigns. Since the LAI parameter is important for snowpack modelling, this

  5. Variability of snow line elevation, snow cover area and depletion in the main Slovak basins in winters 2001–2014

    Directory of Open Access Journals (Sweden)

    Krajčí Pavel

    2016-03-01

    Full Text Available Spatial and temporal variability of snow line (SL elevation, snow cover area (SCA and depletion (SCD in winters 2001–2014 is investigated in ten main Slovak river basins (the Western Carpathians. Daily satellite snow cover maps from MODIS Terra (MOD10A1, V005 and Aqua (MYD10A1, V005 with resolution 500 m are used.

  6. Snow

    Institute of Scientific and Technical Information of China (English)

    小雅

    2011-01-01

    雪花,雪花,白又凉。雪花,雪花,来了又走。啊,雪花!你去哪儿?我不知道,我不知道,飘到哪儿。%Snow, snow, White and cold. Snow, snow, Come and go. Oh, snow! Where do you go? I don't know, I don't know. Where I go.

  7. Evolution of snow-covered area at hillslope scale using terrestrial photography

    Science.gov (United States)

    José Pérez-Palazón, María; Pimentel, Rafael; Herrero, Javier; María Perales, José; José Polo, María

    2015-04-01

    The spatial distribution of snow is conditioned by both meteorological driving processes and topography. Monitoring by remote sensing is a powerful source of data in medium-large areas, but poses some constraints when heterogeneity is significant at scales smaller than the spatial resolution of the GIS-modeling. Such is the case of Mediterranean mountainous watersheds, especially during melting cycles. In these cases terrestrial photography, whose spatial and temporal resolutions can be adapted to the study problem, is an economic and also efficient alternative. This study uses terrestrial photography to quantify the relationship between the elevation gradient and the presence-absence of snow during the snowmelt cycles. The study was carried out in Sierra Nevada Mountain, southern, Spain, specifically, on a hillside of the Ducal River basin, where terrestrial images were taken with a frequency ranging from 1 to 4 days from May to July, 2009. These images were referenced using a digital elevation model (DEM) and an algorithm based on graphics design principles. The presence of snow was detected using machine learning techniques, a clustering method in which two clusters are selected: pixels with and without snow. The results of this process are snow map series with the same temporal frequency of the image acquisition and the spatial resolution of the DEM (10 x 10 m). An exponential trend was clearly observed in the behavior of the evolution of snow with elevation, with a high determination coefficient value (R2>0.98). Moreover, this trend could be fitted with only two parameters, which were also related to elevation. The trend was validated in another monitored location during a different snowmelt period of 2013, when similar results were obtained (RMSE<0.15 m2m-2 in terms of snow cover area). From the results, further assessment was performed in the study site in reference to other hydrological processes with a strong snow influence, such as the recession curve in

  8. Calibration of a distributed snow model using MODIS snow covered area data

    Science.gov (United States)

    Franz, Kristie J.; Karsten, Logan R.

    2013-06-01

    Spatial ground-based observations of snow are often limited at the watershed-scale, therefore the snow modeling component of a hydrologic modeling system is often calibrated along with the rainfall-runoff model using watershed discharge observations. This practice works relatively well for lumped modeling applications when the accuracy of sub-watershed processes is generally not of concern. However, with the increasing use of distributed models, realistic representation of processes, such as snow areal depletion, become more important. In this study, we test the use of snow covered area (SCA) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the Terra satellite for calibration of four key parameters in the distributed US National Weather Service (NWS) SNOW17 model in the North Fork of the American River basin in California, USA. Three tests are conducted; two rely solely on MODIS SCA data and one includes discharge in the calibration procedure. The three calibrations are compared to the use of parameters obtained from the NWS California Nevada River Forecast Center (CNRFC). The calibration approach that utilizes both MODIS SCA and discharge data produces the most accurate spatial (gridded) SCA and basin discharge simulations but not the best SCA summary statistics. In general it was found that improvement in simulated SCA when averaged and evaluated by elevation zone using standard summary statistics, does not necessarily coincide with more accurate discharge simulations.

  9. Drones application on snow and ice surveys in alpine areas

    Science.gov (United States)

    La Rocca, Leonardo; Bonetti, Luigi; Fioletti, Matteo; Peretti, Giovanni

    2015-04-01

    First results from Climate change are now clear in Europe, and in Italy in particular, with the natural disasters that damaged irreparably the territory and the habitat due to extreme meteorological events. The Directive 2007/60/EC highlight that an "effective natural hazards prevention and mitigation that requires coordination between Member States above all on natural hazards prevention" is necessary. A climate change adaptation strategy is identified on the basis of the guidelines of the European Community program 2007-2013. Following the directives provided in the financial instrument for civil protection "Union Civil Protection Mechanism" under Decision No. 1313/2013 / EU of the European Parliament and Council, a cross-cutting approach that takes into account a large number of implementation tools of EU policies is proposed as climate change adaptation strategy. In last 7 years a network of trans-Alpine area's authorities was created between Italy and Switzerland to define an adaptive strategy on climate change effects on natural enviroment based on non structural remedies. The Interreg IT - CH STRADA Project (STRategie di ADAttamento al cambiamento climatico) was born to join all the non structural remedies to climate change effects caused by snow and avalanches, on mountain sources, extreme hydrological events and to manage all transnational hydrological resources, involving all stakeholders from Italy and Switzerland. The STRADA project involved all civil protection authorities and all research centers in charge of snow, hydrology end civil protection. The Snow - meteorological center of the Regional Agency for Environment Protection (CNM of ARPA Lombardia) and the Civil Protection of Lombardy Region created a research team to develop tools for avalanche prediction and to observe and predict snow cover on Alpine area. With this aim a lot of aerial photo using Drone as been performed in unusual landscape. Results of all surveys were really interesting on a

  10. Snow multivariable data assimilation for hydrological predictions in mountain areas

    Science.gov (United States)

    Piazzi, Gaia; Campo, Lorenzo; Gabellani, Simone; Rudari, Roberto; Castelli, Fabio; Cremonese, Edoardo; Morra di Cella, Umberto; Stevenin, Hervé; Ratto, Sara Maria

    2016-04-01

    -based and remotely sensed data of different snow-related variables (snow albedo and surface temperature, Snow Water Equivalent from passive microwave sensors and Snow Cover Area). SMASH performance was evaluated in the period June 2012 - December 2013 at the meteorological station of Torgnon (Tellinod, 2 160 msl), located in Aosta Valley, a mountain region in northwestern Italy. The EnKF algorithm was firstly tested by assimilating several ground-based measurements: snow depth, land surface temperature, snow density and albedo. The assimilation of snow observed data revealed an overall considerable enhancement of model predictions with respect to the open loop experiments. A first attempt to integrate also remote sensed information was performed by assimilating the Land Surface Temperature (LST) from METEOSAT Second Generation (MSG), leading to good results. The analysis allowed identifying the snow depth and the snowpack surface temperature as the most impacting variables in the assimilation process. In order to pinpoint an optimal number of ensemble instances, SMASH performances were also quantitatively evaluated by varying the instances amount. Furthermore, the impact of the data assimilation frequency was analyzed by varying the assimilation time step (3h, 6h, 12h, 24h).

  11. Study of snow cover area and depth variation of the Tianshan Mountains

    Science.gov (United States)

    Tao, Jianwei; Qin, Qiming

    2008-10-01

    Based on the image characteristics of Tianshan Mountains, using multi-temporal multi-band NOAA/AVHRR, MODIS images, combined with high resolution CBERS-1/2 and ETM images, a model for estimating the area of snow cover and the depth of snow cover at different places was proposed. The snow cover variation characteristics including the distribution of snow cover, the depth of snow cover and the drawing method for snow cover were focused. Based on the model, the snow cover of the area along Tianshan Highway from 1996-2006 was studied.

  12. The possibility of distance methods application for snow dump sites monitoring

    Directory of Open Access Journals (Sweden)

    Pasko Olga

    2016-01-01

    Full Text Available In this article the results of remote sensing of the Earth for monitoring of four snow dump sites in Tomsk are described. Their compliance with permitted type of the territory use was evaluated. Earlier unknown time of the operation start was identified. The spatial-temporal variability of areas was defined. The temperature profiles of snow dump and background sites were analyzed. Use of remote sensing data allowed easy identification of snow dump sites creation time. The fact that the sites are located out of zones of permitted type of the territory use was revealed, that is violation of the law. For the first time the cartographic material was collected and showed that in the recent years their areas increased in average in 18%. The fore-cast for the nearest years was made. The article contains satellite images indicting the degradation of soil-vegetative cover of snow dumps. The reasons are contamination and overcooling of the soil in the beginning of vegetation period. The research results became the initial material for perfection of snow dumps territories management and will be applied in the work of environmental protecting service. Approaches proposed by authors may be used in solving similar problems in any region.

  13. SNOW COVER MONITORING BY REMOTE SENSING AND SNOWMELT RUNOFF CALCULATION IN THE UPPER HUANGHE RIVER BASIN

    Institute of Scientific and Technical Information of China (English)

    LANYong-chao; MAQua-jie; 等

    2002-01-01

    The upper Huanghe(Yellow) River basin is situated in the northeast of the Qinghai-Xizang(Tibet)Plateau of China.The melt-water from the snow-cover is main water supply for the rivers in the region during springtime and other arid regions of the northwestern China, and the hydrological conditions of the rivers are directly controlled by the snowmelt water in spring .So snowmelt runoff forecast has importance for hydropower,flood prevention and water resources utilize-tion.The application of remote sensing and Geographic Information System(GIS) techniques in snow cover monitoring and snowmelt runoff calculation in the upper Huanghe River basin are introduced amply in this paper.The key parame-ter-snow cover area can be computed by satellite images from multi-platform,multi-templral and multi-spectral.A clus-ter of snow-cover data can be yielded by means of the classification filter method.Meanwhile GIS will provide relevant information for obtaining the parameters and also for zoning .According to the typical samples extracting snow covered moun-tained in detail also.The runoff snowmelt models based on the snow-cover data from NOAA images and observation data of runoff,precipitation and air temperature have been satisfactorily used for predicting the inflow to the Longyangxia Reser-voir,which is located at lower end of snow cover region and is one of the largest reservoirs on the upper Huanghe River, during late March to early June.The result shows that remote sensing techniques combined with the ground meteorological and hydrological observation is of great potential in snowmelt runoff forecasting for a large river basin.With the develop-ment of remote sensing technique and the progress of the interpretation method,the forecast accuracy of snowmelt runoff will be improved in the near future .Large scale extent and few stations are two objective reality situations in Chian,so they should be considered in simulation and forecast.Apart from dividing ,the derivation of

  14. SNOW COVER MONITORING BY REMOTE SENSING AND SNOWMELT RUNOFF CALCULATION IN THE UPPER HUANGHE RIVER BASIN

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The upper Huanghe(Yellow) River basin is situated in the northeast of the Qinghai-Xizang(Tibet)Plateau of China. The melt-water from the snow-cover is main water supply for the rivers in the region during springtime and other arid regions of the northwestern China, and the hydrological conditions of the rivers are directly controlled by the snowmelt water in spring. So snowmelt runoff forecast has importance for hydropower, flood prevention and water resources utilization. The application of remote sensing and Geographic Information System (GIS) techniques in snow cover monitoring and snowmelt runoff calculation in the upper Huanghe River basin are introduced amply in this paper. The key parameter- snow cover area can be computed by satellite images from multi-platform, multi-temporal and multi-spectral. A cluster of snow-cover data can be yielded by means of the classification filter method. Meanwhile GIS will provide relevant information for obtaining the parameters and also for zoning. According to the typical samples extracting snow covered mountainous region, the snowmelt runoff calculation models in the upper Huanghe River basin are presented and they are mentioned in detail also. The runoff snowmelt models based on the snow-cover data from NOAA images and observation data of runoff, precipitation and air temperature have been satisfactorily used for predicting the inflow to the Longyangxia Reservoir , which is located at lower end of snow cover region and is one of the largest reservoirs on the upper Huanghe River, during late March to early June. The result shows that remote sensing techniques combined with the ground meteorological and hydrological observation is of great potential in snowmelt runoff forecasting for a large river basin. With the development of remote sensing technique and the progress of the interpretation method, the forecast accuracy of snowmelt runoff will be improved in the near future. Large scale extent and few stations are two

  15. Use of Sentinels to aid the global monitoring of snow cover

    Science.gov (United States)

    Pulliainen, Jouni; Salminen, Miia; Luojus, Kari; Metsämäki, Sari; Lemmetyinen, Juha; Takala, Matias; Cohen, Juval; Böttcher, Kristine

    2014-05-01

    Earth observation instruments onboard Sentinel satellites provide a unique opportunity for the monitoring and investigation of global snow processes. The issue of the possible decay of seasonal snow cover is highly relevant for climate research. In addition to water cycle, the extent and amount of snow affects to surface albedo, and indirectly to carbon cycling. The latter issue includes snow-induced changes in permafrost regions (active layer characteristics), as well as the effect of snow (melt) to vegetation growth and soil respiration. Recent advances in ESA DUE GlobSnow project have shown that by combining data from optical satellite sensors and passive microwave instruments advanced Climate Data Records (CDR) on seasonal snow cover can be produced, extending to time periods of over 30 years. The combined snow cover products provide information both on Snow Extent (SE) and Snow Water Equivalent (SWE) on a daily basis. The applicable instruments providing historical data for CDR generation include such microwave radiometers as SMMR, AMSR and SSMI/I, and such optical sensors as AVHRR, AATSR and VIIRS. Sentinel 3, especially its SLSTR instrument, is a prominent tool for expanding the snow CDR for forthcoming years. The developed global snow cover monitoring methodology, demonstrated and discussed here, derives the SWE information from passive microwave data (accompanied with in situ observations of snow depth at synoptic weather stations). The snow extent and fractional snow cover (FSC) on ground is derived from optical satellite data, in order to accurately map the continental line of seasonal snow cover, and to map regions of ephemeral snow cover. An advanced feature in the developed methodology is the provision of uncertainty information on snow cover characteristics associated with each individual satellite data footprint on ground and moment of time. In addition to assisting the generation and extension of the global snow cover CDR, Sentinel missions provide

  16. Monitoring and evaluation of seasonal snow cover in Kashmir valley using remote sensing, GIS and ancillary data

    Indian Academy of Sciences (India)

    H S Negi; N K Thakur; Rajeev Kumar; Manoj Kumar

    2009-12-01

    Seasonal snow cover is a vital natural resource in the Himalaya. Monitoring of the areal extent of seasonal snow cover is important for both climatological studies as well as hydrological applications. In the present paper, snow cover monitoring was carried out to evaluate the region-wise accumulation and ablation pattern of snow cover in Pir Panjal and Shamshawari ranges of Kashmir valley. The study was carried out for the winter period between November and April of 2004–05, 2005–06 and 2006–07, using multi-temporal WiFS sensor data of IRS-1C/1D satellites. The study shows reduction in the areal extent of seasonal snow cover and rising trend of maximum temperature in three winters for the entire Kashmir valley. This has been validated with 20 years (1988– 89 to 2007–08) climatic conditions prevailed in both ranges of Kashmir valley. Region-wise study shows the spatial and temporal variability in seasonal snow cover within Kashmir valley. Advance melting was observed in Banihal and Naugam/Tangdhar regions than Gurez and Machhal regions. Different geographical parameters of these regions were studied to evaluate the influence on snow cover and it was observed that altitude and position of region with respect to mountain range are the deciding factors for retaining the seasonal snow cover for longer duration. Such region-wise study of snow cover monitoring, can provide vital inputs for planning the hydropower projects, development in habitat areas, recreational and strategic planning in the region.

  17. Exploration of long-term reanalysis of Sierra Nevada snowpack inferred from snow covered area information

    Science.gov (United States)

    Girotto, M.; Margulis, S. A.; Durand, M.

    2012-04-01

    The spatial heterogeneity of the mountain snowpack and a continuously changing climate affects a variety of processes including surface water discharge. An apparent shift in ablation time and loss of snow water equivalent (SWE) in the Sierra Nevada range in California (CA), U.S.A. has been reported from several past studies based on downstream flow and/or point scale in-situ observations records. Understanding the geophysical controls and interannual variability of the spatial patterns of snow accumulation and ablation are critical for predicting the effects of climate variability on the snowpack water storage. Therefore, a continuous space-time characterization of snow distribution that uses spatially and temporally extensive remotely sensed information is necessary to improve our ability to predict and monitor this vital resource in complex mountainous terrain. Toward this end, this research generates spatial and temporal SWE estimates over a snow-dominated watershed located in the Southern Sierra Nevada, CA. We use a reanalysis data assimilation approach that is capable of merging remotely sensed Snow Covered Area (SCA) data into snow prediction models, while at the same time accounting for the limitations of each. SCA information derived from the long-term record of Landsat-5 Thematic Mapper measurements are used. The assimilation of SCA into the land surface model, coupled together with a snow depletion model, predicts continuous (in space and time) SWE at a high spatial resolution. The resulting SWE dataset from the reanalysis framework, and its relation to physiographic properties, is studied to explore specific information related to how snow accumulation and snow melt has evolved and been effected by climate variability and change. In particular, the analysis focuses on highlighting how patterns related to different physiographic components respond to observed climate signals (e.g. Pacific Decadal Oscillation (PDO) and the Oceanic El Niño Index (ONI)) and

  18. The detection of cloud-free snow-covered areas using AATSR measurements

    OpenAIRE

    2010-01-01

    A new method to detect cloud-free snow-covered areas has been developed using the measurements by the Advanced Along Track Scanning Radiometer (AATSR) on board the ENVISAT satellite in order to discriminate clear snow fields for the retrieval of aerosol optical thickness or snow properties. The algorithm uses seven AATSR channels from visible (VIS) to thermal infrared (TIR) and analyses the spectral behaviour of each pixel in order to recognize the spectral signature of snow. The algorithm in...

  19. The detection of cloud free snow covered areas using AATSR measurements

    OpenAIRE

    2010-01-01

    A new method to detect cloud free snow covered areas is developed using the measurements by the Advanced Along Track Scanning Radiometer (AATSR) on board the ENVISAT satellite in order to discriminate clear snow fields for the retrieval of aerosol optical thickness or snow properties. The algorithm uses seven AATSR channels from VIS to TIR and analyzes the spectral behavior of each pixel in order to recognize the spectral signature of snow. The algorithm includes a set of relative thresholds ...

  20. Integrated snow and avalanche monitoring syatem for Indian Himalaya using multi-temporal satellite imagery and ancillary data

    Science.gov (United States)

    Sharma, S. S.; Mani, Sneh; Mathur, P.

    The variations in the local climate, environment and altitude as well as fast snow cover build up and rapid changes in snow characteristics with passage of winter are major contributing factors to make snow avalanches as one of the threatening problems in the North West Himalaya. For sustainable development of these mountainous areas, a number of multi-purpose projects are being planned. In recent times, the danger of natural and man-made hazards is increasing and the availability of water is fluctuating; and thus, making the project implementation difficult. To overcome these difficulties to a great extent, an integrated monitoring system is required for short term as well as long term assessment of snowcover variation and avalanche hazard. In order to monitor the spatial extent of snow cover, satellite data can be employed on an operational basis. Spectral settings as well as the temporal and spatial resolution make time series NOAA-AVHHR and MODIS sensor data well suited for operational snow cover monitoring at regional or continental scale; Indian Remote Sensing Satellite (IRS) LISS, WiFS and AWiFS sensor data suitable for studies at larger scale; and microwave data for extraction of snow wetness information.. In the present paper, an attempt is made to study the trends of changes in snow characteristics and related avalanche phenomenon using time series multi-temporal, multi-resolution satellite data with respect to different ranges in Western Himalaya, namely Pir Panjal range, Great Himalaya range, Zanskar range, Ladakh range and Great Karakoram range. The operational processing of these data included geocoding, calibration, terrain normalization, classification, statistical post classification and derivation of snow cover statistics. The calibration and normalization of imageries allowed the application of physically based classification thresholds possible for albedo, brightness temperature and the Normalized Difference Snow Index (NDSI) parameters

  1. Integrated snow and avalanche monitoring system for Indian Himalaya using multi-temporal satellite imagery and ancillary data

    Science.gov (United States)

    Sharma, S. S.; Mani, Sneh; Mathur, P.

    The variations in the local climate, environment and altitude as well as fast snow cover build up and rapid changes in snow characteristics with passage of winter are major contributing factors to make snow avalanches as one of the threatening problems in the North West Himalaya. For sustainable development of these mountainous areas, a number of multi-purpose projects are being planned. In recent times, the danger of natural and man-made hazards is increasing and the availability of water is fluctuating; and thus, making the project implementation difficult. To overcome these difficulties to a great extent, an integrated monitoring system is required for short term as well as long term assessment of snowcover variation and avalanche hazard. In order to monitor the spatial extent of snow cover, satellite data can be employed on an operational basis. Spectral settings as well as the temporal and spatial resolution make time series NOAA-AVHHR and MODIS sensor data well suited for operational snow cover monitoring at regional or continental scale; Indian Remote Sensing Satellite (IRS) LISS, WiFS and AWiFS sensor data suitable for studies at larger scale; and microwave data for extraction of snow wetness information.. In the present paper, an attempt is made to study the trends of changes in snow characteristics and related avalanche phenomenon using time series multi-temporal, multi-resolution satellite data with respect to different ranges in Western Himalaya, namely Pir Panjal range, Great Himalaya range, Zanskar range, Ladakh range and Great Karakoram range. The operational processing of these data included geocoding, calibration, terrain normalization, classification, statistical post classification and derivation of snow cover statistics. The calibration and normalization of imageries allowed the application of physically based classification thresholds possible for albedo, brightness temperature and the Normalized Difference Snow Index (NDSI) parameters

  2. Snow Cover Monitoring Method by Using H J-1 Satellite Data%Snow Cover Monitoring Method by Using H J-1Satellite Data

    Institute of Scientific and Technical Information of China (English)

    WANG Li-tao; ZHOU Yi; ZHOU Qiang; WANG Shi-xin; YAN Fu-li

    2011-01-01

    Environment and Disasters Monitoring Microsatellite Constellation with high spatial resolution,high temporal resolution and high spectral resolution characteristics was put forward by China.HJ-1B satellite,one of the first two small optical satellites,had a CCD camera and an infrared camera,which would provide an important new data source for snow monitoring.In the present paper,through analyzing the sensor and data characteristics of HJ-1B,we proposed a new infrared normalized difference snow index (INDSI) referring to the traditional normalized difference snow index (NDSI).The accuracy of these two automatic snow recognition methods was estimated based on a supervised classification method.The accuracy of the traditional NDSI method was 97.761 9% while that of the new INDSI method was 98.617 1%.

  3. Measuring the specific surface area of wet snow using 1310 nm reflectance

    Directory of Open Access Journals (Sweden)

    J.-C. Gallet

    2013-10-01

    Full Text Available The specific surface area (SSA of snow can be used as an objective measurement of grain size and is therefore a central variable to describe snow physical properties such as albedo. Snow SSA can now be easily measured in the field using optical methods based on infrared reflectance. However, existing optical methods have only been validated for dry snow. Here we test the possibility to use the DUFISSS instrument, based on the measurement of the 1310 nm reflectance of snow with an integrating sphere, to measure the SSA of wet snow. We perform cold room experiments where we measure the SSA of a wet snow sample, freeze it and measure it again, to quantify the difference in reflectance between frozen and wet snow. We study snow samples in the SSA range 12–37 m2 kg−1 and in the mass liquid water content range 5–32%. We conclude that the SSA of wet snow can be obtained from the measurement of its 1310 nm reflectance using three simple steps. In most cases, the SSA thus obtained is less than 10% different from the value that would have been obtained if the sample had been considered dry, so that the three simple steps constitute a minor correction. We also run two optical models to interpret the results, but no model reproduces correctly the water-ice distribution in wet snow, so that their predictions of wet snow reflectance are imperfect.

  4. Monitoring snow cover and its effect on runoff regime in the Jizera Mountains

    Science.gov (United States)

    Kulasova, Alena

    2015-04-01

    The Jizera Mountains in the northern Bohemia are known by its rich snow cover. Winter precipitation represents usually a half of the precipitation in the hydrological year. Gradual snow accumulation and melt depends on the course of the particular winter period, the topography of the catchments and the type of vegetation. During winter the snow depth, and especially the snow water equivalent, are affected by the changing character of the falling precipitation, air and soil temperatures and the wind. More rapid snowmelt occurs more on the slopes without forest oriented to the South, while a gradual snowmelt occurs on the locations turned to the North and in forest. Melting snow recharges groundwater and affects water quality in an important way. In case of extreme situation the snowmelt monitoring is important from the point of view of flood protection of communities and property. Therefore the immediate information on the amount of water in snow is necessary. The way to get this information is the continuous monitoring of the snow depth and snow water equivalent. In the Jizera Mountains a regular monitoring of snow cover has been going on since the end of the 19th century. In the 80s of the last century the Jizera Mountains were affected by the increased fallout of pollutants in the air. There followed a gradual dieback of the forest cover and cutting down the upper part of the ridges. In order to get data for the quantification of runoff regime changes in the changing natural environment, the Czech Hydrometeorological Institute (CHMI) founded in the upper part of the Mountains several experimental catchments. One of the activities of the employees of the experimental basis is the regular measurement of snow cover at selected sites from 1982 up to now. At the same time snow cover is being observed using snow pillows, where its mass is monitored with the help of pressure sensors. In order to improve the reliability of the continuous measurement of the snow water

  5. The detection of cloud free snow covered areas using AATSR measurements

    Directory of Open Access Journals (Sweden)

    L. G. Istomina

    2010-03-01

    Full Text Available A new method to detect cloud free snow covered areas is developed using the measurements by the Advanced Along Track Scanning Radiometer (AATSR on board the ENVISAT satellite in order to discriminate clear snow fields for the retrieval of aerosol optical thickness or snow properties. The algorithm uses seven AATSR channels from VIS to TIR and analyzes the spectral behavior of each pixel in order to recognize the spectral signature of snow. The algorithm includes a set of relative thresholds and combines all seven channels into one flexible criterion, which allows us to filter out all the pixels with spectral behavior similar to that of snow. The algorithm does not use any kind of morphological criteria and does not require the studied surface to have any special structure. The snow spectral shape criterion was determined by a comprehensive theoretical study, which included radiative transfer simulations for various atmospheric conditions as well as studying existing models and measurements of snow optical and physical properties in different spectral bands. The method has been optimized to detect cloud free snow covered areas, and does not produce cloud/land/ocean/snow mask. However, the algorithm can be extended and be able to discriminate various kinds of surfaces.

    The presented method has been validated against Micro Pulse Lidar data and compared to MODIS cloud mask over snow covered areas, showing quite good correspondence to each other.

  6. Modelling the spatial distribution of snow water equivalent at the catchment scale taking into account changes in snow covered area

    Directory of Open Access Journals (Sweden)

    T. Skaugen

    2011-12-01

    Full Text Available A successful modelling of the snow reservoir is necessary for water resources assessments and the mitigation of spring flood hazards. A good estimate of the spatial probability density function (PDF of snow water equivalent (SWE is important for obtaining estimates of the snow reservoir, but also for modelling the changes in snow covered area (SCA, which is crucial for the runoff dynamics in spring. In a previous paper the PDF of SWE was modelled as a sum of temporally correlated gamma distributed variables. This methodology was constrained to estimate the PDF of SWE for snow covered areas only. In order to model the PDF of SWE for a catchment, we need to take into account the change in snow coverage and provide the spatial moments of SWE for both snow covered areas and for the catchment as a whole. The spatial PDF of accumulated SWE is, also in this study, modelled as a sum of correlated gamma distributed variables. After accumulation and melting events the changes in the spatial moments are weighted by changes in SCA. The spatial variance of accumulated SWE is, after both accumulation- and melting events, evaluated by use of the covariance matrix. For accumulation events there are only positive elements in the covariance matrix, whereas for melting events, there are both positive and negative elements. The negative elements dictate that the correlation between melt and SWE is negative. The negative contributions become dominant only after some time into the melting season so at the onset of the melting season, the spatial variance thus continues to increase, for later to decrease. This behaviour is consistent with observations and called the "hysteretic" effect by some authors. The parameters for the snow distribution model can be estimated from observed historical precipitation data which reduces by one the number of parameters to be calibrated in a hydrological model. Results from the model are in good agreement with observed spatial moments

  7. Modelling the spatial distribution of snow water equivalent at the catchment scale taking into account changes in snow covered area

    Science.gov (United States)

    Skaugen, T.; Randen, F.

    2011-12-01

    A successful modelling of the snow reservoir is necessary for water resources assessments and the mitigation of spring flood hazards. A good estimate of the spatial probability density function (PDF) of snow water equivalent (SWE) is important for obtaining estimates of the snow reservoir, but also for modelling the changes in snow covered area (SCA), which is crucial for the runoff dynamics in spring. In a previous paper the PDF of SWE was modelled as a sum of temporally correlated gamma distributed variables. This methodology was constrained to estimate the PDF of SWE for snow covered areas only. In order to model the PDF of SWE for a catchment, we need to take into account the change in snow coverage and provide the spatial moments of SWE for both snow covered areas and for the catchment as a whole. The spatial PDF of accumulated SWE is, also in this study, modelled as a sum of correlated gamma distributed variables. After accumulation and melting events the changes in the spatial moments are weighted by changes in SCA. The spatial variance of accumulated SWE is, after both accumulation- and melting events, evaluated by use of the covariance matrix. For accumulation events there are only positive elements in the covariance matrix, whereas for melting events, there are both positive and negative elements. The negative elements dictate that the correlation between melt and SWE is negative. The negative contributions become dominant only after some time into the melting season so at the onset of the melting season, the spatial variance thus continues to increase, for later to decrease. This behaviour is consistent with observations and called the "hysteretic" effect by some authors. The parameters for the snow distribution model can be estimated from observed historical precipitation data which reduces by one the number of parameters to be calibrated in a hydrological model. Results from the model are in good agreement with observed spatial moments of SWE and SCA

  8. Distributed, explicit modeling of technical snow production and ski area management with the hydroclimatological model AMUNDSEN

    Science.gov (United States)

    Hanzer, Florian; Marke, Thomas; Strasser, Ulrich

    2016-04-01

    In this presentation, a module for simulating technical snow production in ski areas coupled to the spatially distributed physically based hydroclimatological model AMUNDSEN is presented. The module explicitly considers individual snow guns and distributes the produced snow along the slopes. The amount of snow produced by each device is a function of its type, of wet-bulb temperature at the location, of ski area infrastructure (in terms of water supply and pumping capacity), and of snow demand. An empirical rule in the modeling for snow production, derived from common snowmaking practices, splits the winter season into a period of maximum snowmaking and a successive period of selective on-demand snowmaking. The model is exemplarily set up for a ski area in the Schladming region (Austrian Alps) using actual snowmaking infrastructure data. Integration of these data as model variables, as well as stakeholder-defined indicators and thresholds, have been implemented as defined interfaces in a coupled component model architecture. Comparison of the model results with recordings of snowmaking operation and satellite-derived snow cover maps indicate that the model is capable of accurately simulating the real-world snowmaking practice, and the combined natural and technical snow conditions on the slopes. The explicit consideration of individual snow guns and ski area infrastructure makes the model a valuable tool for scenario applications, e.g. to assess the effects of different ski area management strategies and changes in snowmaking infrastructure for climate change impact studies.

  9. Monitoring the spatio-temporal evolution of the snow cover in the eastern Alps from MODIS data

    Science.gov (United States)

    Cianfarra, P.; Salvini, F.; Valt, M.

    2009-04-01

    Estimating the snow cover extent in mountain ranges is important for a wide variety purposes including of scientific studies, environmental and meteo-climatic applications, as well as predicting water availability for energy resource and agriculture. Moreover, the monitoring of the spatio-temporal variation of the snow cover thickness, coupled with ground data from weather stations, allows to identify avalanche risk areas after heavy snowfall. The aim of this study is to test an automatic procedure to identify and map the snow coverage for different altitude interval in the eastern part of the Alpine range. There has been much progress since 1966 when the first operational snow mapping was done by NOAA with spaceborne sensors that provide daily, global observations to monitor the variability in space and time in the extent of snow cover. MODIS sensors offer increased improvements relative to the AVHRR that has been operational for many years on the NOAA Polar Operational Environmental Satellite System. In this context the MODIS provides observations at a nominal spatial resolution of 500 m versus the 1.1 km spatial resolution of the AVHRR and continuously available (spatially and temporally), spectral band observation that span the visible and short-wave infrared wavelengths, including those useful for recognize snow cover. The other advantage of using MODIS data is its availability and cost by the NASA's server. In this work we used MOD02 (L1B) data providing calibrated radiance values at the sensor (without atmospheric correction). Snow cover map production included the following steps: selection of the images with clear sky conditions, geometric correction and georeferencing to UTM zone 32 ,WSG 84 ellipsoid, to eliminate the distortion of and the typical bow-tie effect that produces the observed not alignment of the scan lines in the row image; spatial sub setting to produce an image covering an area of about 200 x 120 km; identification of the snow cover was

  10. Monitoring snow cover variability (2000-2014) in the Hengduan Mountains based on cloud-removed MODIS products with an adaptive spatio-temporal weighted method

    Science.gov (United States)

    Li, Xinghua; Fu, Wenxuan; Shen, Huanfeng; Huang, Chunlin; Zhang, Liangpei

    2017-08-01

    Monitoring the variability of snow cover is necessary and meaningful because snow cover is closely connected with climate and ecological change. In this work, 500 m resolution MODIS daily snow cover products from 2000 to 2014 were adopted to analyze the status in Hengduan Mountains. In order to solve the spatial discontinuity caused by clouds in the products, we propose an adaptive spatio-temporal weighted method (ASTWM), which is based on the initial result of a Terra and Aqua combination. This novel method simultaneously considers the temporal and spatial correlations of the snow cover. The simulated experiments indicate that ASTWM removes clouds completely, with a robust overall accuracy (OA) of above 93% under different cloud fractions. The spatio-temporal variability of snow cover in the Hengduan Mountains was investigated with two indices: snow cover days (SCD) and snow fraction. The results reveal that the annual SCD gradually increases and the coefficient of variation (CV) decreases with elevation. The pixel-wise trends of SCD first rise and then drop in most areas. Moreover, intense intra-annual variability of the snow fraction occurs from October to March, during which time there is abundant snow cover. The inter-annual variability, which mainly occurs in high elevation areas, shows an increasing trend before 2004/2005 and a decreasing trend after 2004/2005. In addition, the snow fraction responds to the two climate factors of air temperature and precipitation. For the intra-annual variability, when the air temperature and precipitation decrease, the snow cover increases. Besides, precipitation plays a more important role in the inter-annual variability of snow cover than temperature.

  11. The detection of cloud-free snow-covered areas using AATSR measurements

    Directory of Open Access Journals (Sweden)

    L. G. Istomina

    2010-08-01

    Full Text Available A new method to detect cloud-free snow-covered areas has been developed using the measurements by the Advanced Along Track Scanning Radiometer (AATSR on board the ENVISAT satellite in order to discriminate clear snow fields for the retrieval of aerosol optical thickness or snow properties. The algorithm uses seven AATSR channels from visible (VIS to thermal infrared (TIR and analyses the spectral behaviour of each pixel in order to recognize the spectral signature of snow. The algorithm includes a set of relative thresholds and combines all seven channels into one flexible criterion, which allows us to filter out all the pixels with spectral behaviour similar to that of snow. The algorithm does not use any kind of morphological criteria and does not require the studied surface to have any special structure. The snow spectral shape criterion was determined by a comprehensive theoretical study, which included radiative transfer simulations for various atmospheric conditions as well as studying existing models and measurements of optical and physical properties of snow in different spectral bands. The method has been optimized to detect cloud-free snow-covered areas, and does not produce cloud/land/ocean/snow mask. However, the algorithm can be extended and able to discriminate various kinds of surfaces.

    The presented method has been validated against Micro Pulse Lidar data and compared to Moderate Resolution Imaging Spectroradiometer (MODIS cloud mask over snow-covered areas, showing quite good correspondence to each other.

    Comparison of both MODIS cloud mask and presented snow mask to AATSR operational cloud mask showed that in some cases of snow surface the accuracy of AATSR operational cloud mask is questionable.

  12. A research on snow distribution in mountainous area using airborne laser scanning

    Science.gov (United States)

    Nishihara, T.; Tanise, A.

    2015-12-01

    In snowy cold regions, the snowmelt water stored in dams in early spring meets the water demand for the summer season. Thus, snowmelt water serves as an important water resource. However, snowmelt water also can cause snowmelt floods. Therefore, it's necessary to estimate snow water equivalent in a dam basin as accurately as possible. For this reason, the dam operation offices in Hokkaido, Japan conduct snow surveys every March to estimate snow water equivalent in the dam basin. In estimating, we generally apply a relationship between elevation and snow water equivalent. But above the forest line, snow surveys are generally conducted along ridges due to the risk of avalanches or other hazards. As a result, snow water equivalent above the forest line is significantly underestimated. In this study, we conducted airborne laser scanning to measure snow depth in the high elevation area including above the forest line twice in the same target area (in 2012 and 2015) and analyzed the relationships of snow depth above the forest line and some indicators of terrain. Our target area was the Chubetsu dam basin. It's located in central Hokkaido, a high elevation area in a mountainous region. Hokkaido is a northernmost island of Japan. Therefore it's a cold and snowy region. The target range for airborne laser scanning was 10km2. About 60% of the target range was above the forest line. First, we analyzed the relationship between elevation and snow depth. Below the forest line, the snow depth increased linearly with elevation increase. On the other hand, above the forest line, the snow depth varied greatly. Second, we analyzed the relationship between overground-openness and snow depth above the forest line. Overground-openness is an indicator quantifying how far a target point is above or below the surrounding surface. As a result, a simple relationship was clarified. Snow depth decreased linearly as overground-openness increases. This means that areas with heavy snow cover are

  13. Monitoring Snow Using Geostationary Satellite Retrievals During the SAAWSO Project

    Science.gov (United States)

    Rabin, Robert M.; Gultepe, Ismail; Kuligowski, Robert J.; Heidinger, Andrew K.

    2016-09-01

    The SAAWSO (Satellite Applications for Arctic Weather and SAR (Search And Rescue) Operations) field programs were conducted by Environment Canada near St. Johns, NL and Goose Bay, NL in the winters of 2012-13 and 2013-14, respectively. The goals of these programs were to validate satellite-based nowcasting products, including snow amount, wind intensity, and cloud physical parameters (e.g., cloud cover), over northern latitudes with potential applications to Search And Rescue (SAR) operations. Ground-based in situ sensors and remote sensing platforms were used to measure microphysical properties of precipitation, clouds and fog, radiation, temperature, moisture and wind profiles. Multi-spectral infrared observations obtained from Geostationary Operational Environmental Satellite (GOES)-13 provided estimates of cloud top temperature and height, phase (water, ice), hydrometer size, extinction, optical depth, and horizontal wind patterns at 15 min intervals. In this work, a technique developed for identifying clouds capable of producing high snowfall rates and incorporating wind information from the satellite observations is described. The cloud top physical properties retrieved from operational satellite observations are validated using measurements obtained from the ground-based in situ and remote sensing platforms collected during two precipitation events: a blizzard heavy snow storm case and a moderate snow event. The retrieved snow precipitation rates are found to be comparable to those of ground-based platform measurements in the heavy snow event.

  14. Evolution of the Specific Surface Area of Snow in a High Temperature Gradient Metamorphism

    Science.gov (United States)

    Wang, X.; Baker, I.

    2014-12-01

    The structural evolution of low-density snow under a high temperature gradient over a short period usually takes place in the surface layers during diurnal recrystallization or on a clear, cold night. To relate snow microstructures with their thermal properties, we combined X-ray computed microtomography (micro-CT) observations with numerical simulations. Different types of snow were tested over a large range of TGs (100 K m-1- 500 K m-1). The Specific Surface Area (SSA) was used to characterize the temperature gradient metamorphism (TGM). The magnitude of the temperature gradient and the initial snow type both influence the evolution of SSA. The SSA evolution under TGM was dominated by grain growth and the formation of complex surfaces. Fresh snow experienced a logarithmic decrease of SSA with time, a feature been observed previously by others [Calonne et al., 2014; Schneebeli and Sokratov, 2004; Taillandier et al., 2007]. However, for initial rounded and connected snow structures, the SSA will increase during TGM. Understanding the SSA increase is important in order to predict the enhanced uptake of chemical species by snow or increase in snow albedo. Calonne, N., F. Flin, C. Geindreau, B. Lesaffre, and S. Rolland du Roscoat (2014), Study of a temperature gradient metamorphism of snow from 3-D images: time evolution of microstructures, physical properties and their associated anisotropy, The Cryosphere Discussions, 8, 1407-1451, doi:10.5194/tcd-8-1407-2014. Schneebeli, M., and S. A. Sokratov (2004), Tomography of temperature gradient metamorphism of snow and associated changes in heat conductivity, Hydrological Processes, 18(18), 3655-3665, doi:10.1002/hyp.5800. Taillandier, A. S., F. Domine, W. R. Simpson, M. Sturm, and T. A. Douglas (2007), Rate of decrease of the specific surface area of dry snow: Isothermal and temperature gradient conditions, Journal of Geophysical Research: Earth Surface (2003-2012), 112(F3), doi: 10.1029/2006JF000514.

  15. Aerotechnogenic Monitoring of Urban Environment on Snow Cover Pollution (on the Example of Voronezh City

    Directory of Open Access Journals (Sweden)

    Prozhorina Tatyana Ivanovna

    2014-09-01

    Full Text Available Snow cover is characterized by high sorption ability and represents an informative object in the process of identifying the technogenic pollution of urban environment. The article contains the results of the research on the chemical composition of the snow which fell in Voronezh in the winter period of 2013–2014. The coefficients of chemical elements concentration were calculated to provide objective characteristics of snow cover pollution. The authors analyze the connection between the presence of pollutants in snow and the level of technogenic impact. The obtained ranges of anomaly coefficients among anions reflect the composition of technogenic emissions. The mineralization of snow water reliably characterizes the intensity of anthropogenic impact on the urban environment, and the value of mineralization snow samples ranges from 62,6 (background to 183,9 mg/l. Maximum values of mineralization (more than 150 mg/l are typical for samples taken in transport area. High values of salinity (more than 120 mg/l are observed in snow samples taken in the industrial area, which confirms the high “technogenic pressure” on the urban environment in zones of industrial and transport potential of the city. The investigated functional areas can be arranged in the following series by descending level of contamination: transport area > industrial zone > residential and recreational areas > background territory. The study of the chemical composition of snow cover in the various functional areas of Voronezh allows to conclude that the pH level, mineralization and the content of suspended solids in snow waters characterize the intensity of anthropogenic pressure on the urban environment, and the composition of melt waters indicates the nature of its pollution.

  16. Upward-looking L-band FMCW radar for snow cover monitoring

    OpenAIRE

    2014-01-01

    Forecasting snow avalanche danger in mountainous regions is of major importance for the protection of infrastructure in avalanche run-out zones. Inexpensive measurement devices capable of measuring snow height and layer properties in avalanche starting zones may help to improve the quality of risk assessment. We present a low-cost L-band frequency modulated continuous wave radar system (FMCW) in upward-looking configuration. To monitor the snowpack evolution, the radar system was deployed in ...

  17. Estimating spatial distribution of daily snow depth with kriging methods: combination of MODIS snow cover area data and ground-based observations

    Directory of Open Access Journals (Sweden)

    C. L. Huang

    2015-09-01

    Full Text Available Accurately measuring the spatial distribution of the snow depth is difficult because stations are sparse, particularly in western China. In this study, we develop a novel scheme that produces a reasonable spatial distribution of the daily snow depth using kriging interpolation methods. These methods combine the effects of elevation with information from Moderate Resolution Imaging Spectroradiometer (MODIS snow cover area (SCA products. The scheme uses snow-free pixels in MODIS SCA images with clouds removed to identify virtual stations, or areas with zero snow depth, to compensate for the scarcity and uneven distribution of stations. Four types of kriging methods are tested: ordinary kriging (OK, universal kriging (UK, ordinary co-kriging (OCK, and universal co-kriging (UCK. These methods are applied to daily snow depth observations at 50 meteorological stations in northern Xinjiang Province, China. The results show that the spatial distribution of snow depth can be accurately reconstructed using these kriging methods. The added virtual stations improve the distribution of the snow depth and reduce the smoothing effects of the kriging process. The best performance is achieved by the OK method in cases with shallow snow cover and by the UCK method when snow cover is widespread.

  18. Using mid-altitude regions as observatories of change in snow areas: the Natural Park of Cazorla, Segura y las Villas (South Spain) as study case for early snow regression.

    Science.gov (United States)

    Montilla, Soledad; Pimentel, Rafael; José Pérez-Palazón, María; Aguillar, Cristina; José Polo, María

    2017-04-01

    Snow plays a key role at the hydrological cycle in semiarid mountainous areas, modifying the energy and water balances that govern the regime of stored water in the snowpack, a key resource for the spring and summer river flow. The Natural and National Park of Sierra Nevada (SNNP), a coastal mountain range up to 3450 m a.s.l. in southern Spain, is a representative example of snow areas in Mediterranean-climate regions; its high altitudinal gradient results in a wide variety of eco-climatic environments, and it is part of the global monitoring network to study climate change. Both monitoring and modelling efforts have been performed to assess this variability and its significant scales; whereas increasing temperature trends have been found, no significant trends are observed so far regarding the precipitation regime both on a seasonal and annual basis, with a highly variable impact on the snow regime in this area, especially in the mid-altitude range. In this context, the study of the snow cover in the neighbouring Natural Park of Cazorla, Segura and Las Villas (CSLVNP), with similar climatic conditions but lower altitudes (up to 2107 m a.s.l.) is proposed as a parallel monitoring site for early warning of impacts of climate change on the snow regime. The CSLVNP is the most extensive protected area in Spain and it is located to the north of SNPN, with less influence of the Mediterranean Sea. This study carried out a first quantification of the snow importance in this area, which exhibits a large transitional zone with a dominant alpine environment, and its relationship with the observed local precipitation-temperature trends. For this, the snow cover fraction on a 30x30 m gridded resolution has been studied during a 5-yr period combining on-site meteorological observations and remote-sensing data analysis, and snow modelling by the distributed and physically based approach for Mediterranean regions proposed by Herrero et al. (2009; 2010). The analysis of the

  19. Automatic monitoring of the effective thermal conductivity of snow in a low Arctic shrub tundra

    Science.gov (United States)

    Domine, F.; Barrere, M.; Sarrazin, D.; Morin, S.

    2015-03-01

    The effective thermal conductivity of snow, keff, is a critical variable which determines the temperature gradient in the snowpack and heat exchanges between the ground and the atmosphere through the snow. Its accurate knowledge is therefore required to simulate snow metamorphism, the ground thermal regime, permafrost stability, nutrient recycling and vegetation growth. Yet, few data are available on the seasonal evolution of snow thermal conductivity in the Arctic. We have deployed heated needle probes on low Arctic shrub tundra near Umiujaq, Quebec, (56°34´ N; 76°29´ W) and monitored automatically the evolution of keff for two consecutive winters, 2012-2013 and 2013-2014, at 4 heights in the snowpack. Shrubs are 20 cm high dwarf birch. Here, we develop an algorithm for the automatic determination of keff from the heating curves and obtain 404 keff values. We evaluate possible errors and biases associated with the use of the heated needles. The time-evolution of keff is very different for both winters. This is explained by comparing the meteorological conditions in both winters, which induced different conditions for snow metamorphism. In particular, important melting events the second year increased snow hardness, impeding subsequent densification and increase in thermal conductivity. Shrubs are observed to have very important impacts on snow physical evolution: (1) shrubs absorb light and facilitate snow melt under intense radiation; (2) the dense twig network of dwarf birch prevents snow compaction and therefore keff increase; (3) the low density depth hoar that forms within shrubs collapsed in late winter, leaving a void that was not filled by snow.

  20. Automatic monitoring of the effective thermal conductivity of snow in a low-Arctic shrub tundra

    Science.gov (United States)

    Domine, F.; Barrere, M.; Sarrazin, D.; Morin, S.; Arnaud, L.

    2015-06-01

    The effective thermal conductivity of snow, keff, is a critical variable which determines the temperature gradient in the snowpack and heat exchanges between the ground and the atmosphere through the snow. Its accurate knowledge is therefore required to simulate snow metamorphism, the ground thermal regime, permafrost stability, nutrient recycling and vegetation growth. Yet, few data are available on the seasonal evolution of snow thermal conductivity in the Arctic. We have deployed heated needle probes on low-Arctic shrub tundra near Umiujaq, Quebec, (N56°34'; W76°29') and monitored automatically the evolution of keff for two consecutive winters, 2012-2013 and 2013-2014, at four heights in the snowpack. Shrubs are 20 cm high dwarf birch. Here, we develop an algorithm for the automatic determination of keff from the heating curves and obtain 404 keff values. We evaluate possible errors and biases associated with the use of the heated needles. The time evolution of keff is very different for both winters. This is explained by comparing the meteorological conditions in both winters, which induced different conditions for snow metamorphism. In particular, important melting events in the second year increased snow hardness, impeding subsequent densification and increase in thermal conductivity. We conclude that shrubs have very important impacts on snow physical evolution: (1) shrubs absorb light and facilitate snow melt under intense radiation; (2) the dense twig network of dwarf birch prevent snow compaction, and therefore keff increase; (3) the low density depth hoar that forms within shrubs collapsed in late winter, leaving a void that was not filled by snow.

  1. A new MODIS daily cloud free snow cover mapping algorithm on the Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    XiaoDong Huang; XiaoHua Hao; QiSheng Feng; Wei Wang; TianGang Liang

    2014-01-01

    Because of similar reflective characteristics of snow and cloud, the weather status seriously affects snow monitoring using optical remote sensing data. Cloud amount analysis during 2010 to 2011 snow seasons shows that cloud cover is the major limitation for snow cover monitoring using MOD10A1 and MYD10A1. By use of MODIS daily snow cover products and AMSR-E snow wa-ter equivalent products (SWE), several cloud elimination methods were integrated to produce a new daily cloud free snow cover product, and information of snow depth from 85 climate stations in Tibetan Plateau area (TP) were used to validate the accuracy of the new composite snow cover product. The results indicate that snow classification accuracy of the new daily snow cover product reaches 91.7%when snow depth is over 3 cm. This suggests that the new daily snow cover mapping algorithm is suitable for monitoring snow cover dynamic changes in TP.

  2. Cloud obstruction and snow cover in Alpine areas from MODIS products

    Science.gov (United States)

    Da Ronco, P.; De Michele, C.

    2014-11-01

    Snow cover maps provide information of great practical interest for hydrologic purposes: when combined with point values of snow water equivalent (SWE), they enable estimation of the regional snow resource. In this context, Earth observation satellites are an interesting tool for evaluating large scale snow distribution and extension. MODIS (MODerate resolution Imaging Spectroradiometer on board Terra and Aqua satellites) daily Snow Covered Area product has been widely tested and proved to be appropriate for hydrologic applications. However, within a daily map the presence of cloud cover can hide the ground, thus obstructing snow detection. Here, we consider MODIS binary products for daily snow mapping over the Po River basin. Ten years (2003-2012) of MOD10A1 and MYD10A1 snow maps have been analysed and processed with the support of a 500 m resolution Digital Elevation Model (DEM). We first investigate the issue of cloud obstruction, highlighting its dependence on altitude and season. Snow maps seem to suffer the influence of overcast conditions mainly in mountain and during the melting period. Thus, cloud cover highly influences those areas where snow detection is regarded with more interest. In spring, the average percentages of area lying beneath clouds are in the order of 70%, for altitudes over 1000 m a.s.l. Then, starting from previous studies, we propose a cloud removal procedure and we apply it to a wide area, characterized by high geomorphological heterogeneity such as the Po River basin. In conceiving the new procedure, our first target was to preserve the daily temporal resolution of the product. Regional snow and land lines were estimated for detecting snow cover dependence on elevation. In cases when there was not enough information on the same day within the cloud-free areas, we used temporal filters with the aim of reproducing the micro-cycles which characterize the transition altitudes, where snow does not stand continually over the entire winter

  3. Forward-looking Assimilation of MODIS-derived Snow Covered Area into a Land Surface Model

    Science.gov (United States)

    Zaitchik, Benjamin F.; Rodell, Matthew

    2008-01-01

    Snow cover over land has a significant impact on the surface radiation budget, turbulent energy fluxes to the atmosphere, and local hydrological fluxes. For this reason, inaccuracies in the representation of snow covered area (SCA) within a land surface model (LSM) can lead to substantial errors in both offline and coupled simulations. Data assimilation algorithms have the potential to address this problem. However, the assimilation of SCA observations is complicated by an information deficit in the observation SCA indicates only the presence or absence of snow, and not snow volume and by the fact that assimilated SCA observations can introduce inconsistencies with atmospheric forcing data, leading to non-physical artifacts in the local water balance. In this paper we present a novel assimilation algorithm that introduces MODIS SCA observations to the Noah LSM in global, uncoupled simulations. The algorithm utilizes observations from up to 72 hours ahead of the model simulation in order to correct against emerging errors in the simulation of snow cover while preserving the local hydrologic balance. This is accomplished by using future snow observations to adjust air temperature and, when necessary, precipitation within the LSM. In global, offline integrations, this new assimilation algorithm provided improved simulation of SCA and snow water equivalent relative to open loop integrations and integrations that used an earlier SCA assimilation algorithm. These improvements, in turn, influenced the simulation of surface water and energy fluxes both during the snow season and, in some regions, on into the following spring.

  4. Monitoring of the Liquid Water Content During Snowmelt Using C-Band SAR Data and the Snow Model CROCUS

    Science.gov (United States)

    Rondeau-Genesse, G.; Trudel, M.; Leconte, R.

    2014-12-01

    Coupling C-Band synthetic aperture radar (SAR) data to a multilayer snow model is a step in better understanding the temporal evolution of the radar backscattering coefficient during snowmelt. The watershed used for this study is the Nechako River Basin, located in the Rocky Mountains of British-Columbia (Canada). This basin has a snowpack of several meters in depth and part of its water is diverted to the Kemano hydropower system, managed by Rio-Tinto Alcan. Eighteen RADARSAT-2 ScanSAR Wide archive images were acquired in VV/VH polarization for the winter of 2011-2012, under different snow conditions. They are interpreted along with CROCUS, a multilayer physically-based snow model developed by Météo-France. This model discretizes the snowpack into 50 layers, which makes it possible to monitor various characteristics, such as liquid water content (LWC), throughout the season. CROCUS is used to model three specific locations of the Nechako River Basin. Results vary from one site to another, but in general there is a good agreement between the modeled LWC of the first layer of the snowpack and the backscattering coefficient of the RADARSAT-2 images, with a coefficient of determination (R²) of 0.80 and more. The radar images themselves were processed using an updated version of Nagler's methodology, which consists of subtracting an image in wet snow conditions to one in dry snow conditions, as wet snow can then be identified using a soft threshold centered around -3 dB. A second filter was used in order to differentiate dry snow and bare soil. That filter combines a VH/VV ratio threshold and an altitude criterion. The ensuing maps show a good agreement with the MODIS snow-covered area, which is already obtained daily over the Nechako River Basin, but with additional information on the location of wet snow and without sensibility to cloud cover. As a next step, the outputs of CROCUS will be used in Mätzler's Microwave Emission Model of Layered Snowpacks (MEMLS) to

  5. Infrasound monitoring of snow avalanches in the Italian Alps

    Science.gov (United States)

    Ripepe, Maurizio; Ulivieri, Giacomo; Marchetti, Emanuele; Chiambretti, Igor; Segor, Valerio; Pitet, Luca

    2010-05-01

    Risk assessment of snow avalanches is mostly related to weather conditions and snow cover. However a robust risk validation requires to identify all avalanches occurring, in order to compare predictions to real effects. For this purpose on December 2009 we installed a temporary 4-element, small aperture (100 m), infrasound array in the Alps. The array has been deployed south of Mt. Rosa, at an elevation of 2000 m a.s.l. in the valley of Gressoney, where natural avalanches are expected and triggered ones are regularly programmed. The array consists into 4 absolute pressure transducers with a sensitivity of 0.01 Pa in the 0.1-50 Hz frequency band and a 7 channel Guralp CMG-DM24 A/D converter, sampling at 100 Hz. Timing is achieved with a GPS receiver. The array is completely buried in snow. Gel cell batteries and 200 W solar panels provide the array power requirements (~3 W) and should allow a continuous operation during the winter season. A multi-channel semblance is carried out on the continuous data set as a function of slowness, back-azimuth and frequency of recorded infrasound in order to detect all avalanches occurring from the back-ground signal, strongly affected by microbarom and mountain induced gravity waves. This pilot experiment in Italy will allow to verify the efficiency of the system, and might represent an important validation to modeled avalanches activity during this winter season.

  6. Upward-looking L-band FMCW radar for snow cover monitoring.

    Science.gov (United States)

    Okorn, Robert; Brunnhofer, Georg; Platzer, Thomas; Heilig, Achim; Schmid, Lino; Mitterer, Christoph; Schweizer, Jürg; Eisen, Olaf

    2014-07-01

    Forecasting snow avalanche danger in mountainous regions is of major importance for the protection of infrastructure in avalanche run-out zones. Inexpensive measurement devices capable of measuring snow height and layer properties in avalanche starting zones may help to improve the quality of risk assessment. We present a low-cost L-band frequency modulated continuous wave radar system (FMCW) in upward-looking configuration. To monitor the snowpack evolution, the radar system was deployed in fall and subsequently was covered by snowfalls. During two winter seasons we recorded reflections from the overlying snowpack. The influence of reflection magnitude and phase to the measured frequency spectra, as well as the influence of signal processing were investigated. We present a method to extract the phase of the reflection coefficients from the phase response of the frequency spectra and their integration into the presentation of the measurement data. The phase information significantly improved the detectability of the temporal evolution of the snow surface reflection. We developed an automated and a semi-automated snow surface tracking algorithm. Results were compared with independently measured snow height from a laser snow-depth sensor and results derived from an upward-looking impulse radar system (upGPR). The semi-automated tracking used the phase information and had an accuracy of about 6 to 8 cm for dry-snow conditions, similar to the accuracy of the upGPR, compared to measurements from the laser snow-depth sensor. The percolation of water was observable in the radargrams. Results suggest that the upward-looking FMCW system may be a valuable alternative to conventional snow-depth sensors for locations, where fixed installations above ground are not feasible.

  7. Simulation of the specific surface area of snow using a one-dimensional physical snowpack model: implementation and evaluation for subarctic snow in Alaska

    Directory of Open Access Journals (Sweden)

    H. W. Jacobi

    2009-09-01

    Full Text Available The specific surface area (SSA of the snow constitutes a powerful parameter to quantify the exchange of matter and energy between the snow and the atmosphere. However, currently no snow physics model can simulate the SSA. Therefore, two different types of empirical parameterizations of the specific surface area (SSA of snow are implemented into the existing one-dimensional snow physics model CROCUS. The parameterizations are either based on diagnostic equations relating the SSA to parameters like snow type and density or on prognostic equations that describe the change of SSA depending on snow age, snowpack temperature, and the temperature gradient within the snowpack. Simulations with the upgraded CROCUS model were performed for a subarctic snowpack, for which an extensive data set including SSA measurements is available at Fairbanks, Alaska for the winter season 2003/2004. While a reasonable agreement between simulated and observed SSA values is obtained using both parameterizations, the model tends to overestimate the SSA. This overestimation is more pronounced using the diagnostic equations compared to the results of the prognostic equations. Parts of the SSA deviations using both parameterizations can be attributed to differences between simulated and observed snow heights, densities, and temperatures. Therefore, further sensitivity studies regarding the thermal budget of the snowpack were performed. They revealed that reducing the heat conductivity of the snow or increasing the turbulent fluxes at the snow surfaces leads to a slight improvement of the simulated thermal budget of the snowpack compared to the observations. However, their impact on further simulated parameters like snow height and SSA remains small. Including additional physical processes in the snow model may have the potential to advance the simulations of the thermal budget of the snowpack and, thus, the SSA simulations.

  8. Simulation of the specific surface area of snow using a one-dimensional physical snowpack model: implementation and evaluation for subarctic snow in Alaska

    Science.gov (United States)

    Jacobi, H.-W.; Domine, F.; Simpson, W. R.; Douglas, T. A.; Sturm, M.

    2010-01-01

    The specific surface area (SSA) of the snow constitutes a powerful parameter to quantify the exchange of matter and energy between the snow and the atmosphere. However, currently no snow physics model can simulate the SSA. Therefore, two different types of empirical parameterizations of the specific surface area (SSA) of snow are implemented into the existing one-dimensional snow physics model CROCUS. The parameterizations are either based on diagnostic equations relating the SSA to parameters like snow type and density or on prognostic equations that describe the change of SSA depending on snow age, snowpack temperature, and the temperature gradient within the snowpack. Simulations with the upgraded CROCUS model were performed for a subarctic snowpack, for which an extensive data set including SSA measurements is available at Fairbanks, Alaska for the winter season 2003/2004. While a reasonable agreement between simulated and observed SSA values is obtained using both parameterizations, the model tends to overestimate the SSA. This overestimation is more pronounced using the diagnostic equations compared to the results of the prognostic equations. Parts of the SSA deviations using both parameterizations can be attributed to differences between simulated and observed snow heights, densities, and temperatures. Therefore, further sensitivity studies regarding the thermal budget of the snowpack were performed. They revealed that reducing the thermal conductivity of the snow or increasing the turbulent fluxes at the snow surfaces leads to a slight improvement of the simulated thermal budget of the snowpack compared to the observations. However, their impact on further simulated parameters like snow height and SSA remains small. Including additional physical processes in the snow model may have the potential to advance the simulations of the thermal budget of the snowpack and, thus, the SSA simulations.

  9. SNOW AVALANCHE ACTIVITY IN PARÂNG SKI AREA REVEALED BY TREE-RINGS

    Directory of Open Access Journals (Sweden)

    F. MESEȘAN

    2014-11-01

    Full Text Available Snow Avalanche Activity in Parâng Ski Area Revealed by Tree-Rings. Snow avalanches hold favorable conditions to manifest in Parâng Mountains but only one event is historically known, without destructive impact upon infrastructure or fatalities and this region wasn’t yet the object of avalanche research. The existing ski infrastructure of Parâng resort located in the west of Parâng Mountains is proposed to be extended in the steep slopes of subalpine area. Field evidence pinpoints that these steep slopes were affected by snow avalanches in the past. In this study we analyzed 11 stem discs and 31 increment cores extracted from 22 spruces (Picea abies (L. Karst impacted by avalanches, in order to obtain more information about past avalanches activity. Using the dendrogeomorphological approach we found 13 avalanche events that occurred along Scărița avalanche path, since 1935 until 2012, nine of them produced in the last 20 years. The tree-rings data inferred an intense snow avalanche activity along this avalanche path. This study not only calls for more research in the study area but also proves that snow avalanches could constitute an important restrictive factor for the tourism infrastructure and related activities in the area. It must be taken into consideration by the future extension of tourism infrastructure. Keywords: snow avalanche, Parâng Mountains, dendrogeomorphology, ski area.

  10. Controls and geomorphic effects of a high-magnitude/low-frequency snow avalanche event in the proglacial area of the Bødalsbreen glacier, Nordfjord, western Norway

    Science.gov (United States)

    Laute, Katja; Beylich, Achim A.

    2014-05-01

    Due to the interactions between the prevalent climatic factors and the local topography snow avalanches are a common phenomena especially in western and northern Norway. Compared to the annually occurring snow avalanches (low-magnitude/high-frequency events) so-called extreme snow avalanches (high-magnitude/low-frequency) are more difficult to record as they are characterized by recurrence intervals often larger than a decade. During the winter-spring period 2011/2012 an extreme snow avalanche occurred within the upper valley part of a steep mountain catchment (Bødalen) in western Norway. The snow avalanche run-out zone was located directly in front of the Bødalsbreen glacier which had a substantial effect with respect to the reworking and remobilization of exposed sediment and debris within the proglacial area. Due to the ongoing glacier retreat of the Bødalsbreen glacier freshly exposed areas are enlarged which e.g. exhibit a comparably higher sediment availability enabling active sediment reworking and re-deposition by secondary transfers (e.g. by snow avalanches or fluvial processes). This study focuses on (i) morphometric and meteorological controls of this specific snow avalanche extreme event and (ii) its related relative role in mass transport as compared to the annually monitored snow avalanche activity within the Bødalen valley. Mapping of the extension and run-out distance of this extreme snow avalanche event is combined with spatial data analysis of possible morphometric controls. The timing and meteorological controls of this event are explored based on meteorological data from two different climate stations located nearby. The volume of the entire snow avalanche, its speed and possible pressure effects are estimated and the total transferred sediment mass is calculated. First results show that this extreme snow avalanche was initiated by a large breakup of the snowpack developed along the cliff of an E-facing rockwall located above the B

  11. Automated Webcam Monitoring of Fractional Snow Cover in Northern Boreal Conditions

    Directory of Open Access Journals (Sweden)

    Ali Nadir Arslan

    2017-07-01

    Full Text Available Fractional snow cover (FSC is an important parameter to estimate snow water equivalent (SWE and surface albedo important to climatic and hydrological applications. The presence of forest creates challenges to retrieve FSC accurately from satellite data, as forest canopy can block the sensor’s view of snow cover. In addition to the challenge related to presence of forest, in situ data of FSC—necessary for algorithm development and validation—are very limited. This paper investigates the estimation of FSC using digital imagery to overcome the obstacle caused by forest canopy, and the possibility to use this imagery in the validation of FSC derived from satellite data. FSC is calculated here using an algorithm based on defining a threshold value according to the histogram of an image, to classify a pixel as snow-covered or snow-free. Images from the MONIMET camera network, producing a continuous image series in Finland, are used in the analysis of FSC. The results obtained from automated image analysis of snow cover are compared with reference data estimated by visual inspection of same images. The results show the applicability and usefulness of digital imagery in the estimation of fractional snow cover in forested areas, with a Root Mean Squared Error (RMSE in the range of 0.1–0.3 (with the full range of 0–1.

  12. Android Based Area Web Monitoring

    Science.gov (United States)

    Kanigoro, Bayu; Galih Salman, Afan; Moniaga, Jurike V.; Chandra, Eric; Rezky Chandra, Zein

    2014-03-01

    The research objective is to develop an application that can be used in the monitoring of an area by using a webcam. It aims to create a sense of security on the user's application because it can monitor an area using mobile phone anywhere. The results obtained in this study is to create an area with a webcam monitoring application that can be accessed anywhere as long as the monitoring results have internet access and can also be accessed through Android Based Mobile Phone.

  13. Android Based Area Web Monitoring

    Directory of Open Access Journals (Sweden)

    Kanigoro Bayu

    2014-03-01

    Full Text Available The research objective is to develop an application that can be used in the monitoring of an area by using a webcam. It aims to create a sense of security on the user's application because it can monitor an area using mobile phone anywhere. The results obtained in this study is to create an area with a webcam monitoring application that can be accessed anywhere as long as the monitoring results have internet access and can also be accessed through Android Based Mobile Phone.

  14. Linking snow depth to avalanche release area size: measurements from the Vallée de la Sionne field site

    Science.gov (United States)

    Veitinger, Jochen; Sovilla, Betty

    2016-08-01

    One of the major challenges in avalanche hazard assessment is the correct estimation of avalanche release area size, which is of crucial importance to evaluate the potential danger that avalanches pose to roads, railways or infrastructure. Terrain analysis plays an important role in assessing the potential size of avalanche releases areas and is commonly based on digital terrain models (DTMs) of a snow-free summer terrain. However, a snow-covered winter terrain can significantly differ from its underlying, snow-free terrain. This may lead to different, and/or potentially larger release areas. To investigate this hypothesis, the relation between avalanche release area size, snow depth and surface roughness was investigated using avalanche observations of artificially triggered slab avalanches over a period of 15 years in a high-alpine field site. High-resolution, continuous snow depth measurements at times of avalanche release showed a decrease of mean surface roughness with increasing release area size, both for the bed surface and the snow surface before avalanche release. Further, surface roughness patterns in snow-covered winter terrain appeared to be well suited to demarcate release areas, suggesting an increase of potential release area size with greater snow depth. In this context, snow depth around terrain features that serve as potential delineation borders, such as ridges or trenches, appeared to be particularly relevant for release area size. Furthermore, snow depth measured at a nearby weather station was, to a considerable extent, related to potential release area size, as it was often representative of snow depth around those critical features where snow can accumulate over a long period before becoming susceptible to avalanche release. Snow depth - due to its link to surface roughness - could therefore serve as a highly useful variable with regard to potential release area definition for varying snow cover scenarios, as, for example, the avalanche

  15. C-Band SAR Imagery for Snow-Cover Monitoring at Treeline, Churchill, Manitoba, Canada

    Directory of Open Access Journals (Sweden)

    Frédérique C. Pivot

    2012-07-01

    Full Text Available RADARSAT and ERS-2 data collected at multiple incidence angles are used to characterize the seasonal variations in the backscatter of snow-covered landscapes in the northern Hudson Bay Lowlands during the winters of 1997/98 and 1998/99. The study evaluates the usefulness of C-band SAR systems for retrieving the snow water equivalent under dry snow conditions in the forest–tundra ecotone. The backscatter values are compared against ground measurements at six sampling sites, which are taken to be representative of the land-cover types found in the region. The contribution of dry snow to the radar return is evident when frost penetrates the first 20 cm of soil. Only then does the backscatter respond positively to changes in snow water equivalent, at least in the open and forested areas near the coast, where 1-dB increases in backscatter for each approximate 5–10 mm of accumulated water equivalent are observed at 20–31° incidence angles. Further inland, the backscatter shows either no change or a negative change with snow accumulation, which suggests that the radar signal there is dominated by ground surface scattering (e.g., fen when not attenuated by vegetation (e.g., forested and transition. With high-frequency ground-penetrating radar, we demonstrate the presence of a 10–20-cm layer of black ice underneath the snow cover, which causes the reduced radar returns (−15 dB and less observed in the inland fen. A correlation between the backscattering and the snow water equivalent cannot be determined due to insufficient observations at similar incidence angles. To establish a relationship between the snow water equivalent and the backscatter, only images acquired with similar incidence angles should be used, and they must be corrected for both vegetation and ground effects.

  16. Changes in surface area and concentrations of semivolatile organic contaminants in aging snow.

    Science.gov (United States)

    Burniston, Debbie A; Strachan, William J M; Hoff, John T; Wania, Frank

    2007-07-15

    During the winter of 1999/2000 five snowpacks at Turkey Lake Watershed east of Lake Superior were sampled immediately after falling and again after several days of aging for the analysis of specific snow surface area and the concentrations of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs). The snow surface could be determined with a relative coefficient of variation of 6% using frontal chromatography, measuring the retention of ethyl acetate, a substance with known adsorption coefficient on the ice surface. The snow surface area of fresh snow varied from 1000 to 1330 cm2/g and was higher for snow falling during colder days. The aged snow samples had consistently lower surface areas ranging from 520 to 780 cm2/g, corresponding to an average loss of half of the initial surface area during aging. The rate of loss of surface area was faster at higher temperatures. Dieldrin, alpha-HCH, and gamma-HCH were the most abundant OCPs in snowmelt water, but endosulfan, chlordane-related substances, heptachlor epoxide, pp'-DDT, pp'-DDE, and chlorinated benzenes were also consistently present. Three midwinter snowpacks that aged during relatively cold temperatures generally experienced a loss of PCBs and OCPs that was of the same order of magnitude as the observed loss of snow surface area. However, no relationship between the extent of loss and the strength of a contaminants' sorption to snow was apparent. Few significant changes in snowpack concentrations of OCPs and PCBs were observed in a snowpack that fell at relatively high temperatures and aged under colder conditions. Concentrations of OCPs and PCBs increased in a late-winter snowpack that aged while temperatures rapidly increased to above freezing. Concentrations of pp'-DDE and endosulfan-II that increased in snowpacks that saw simultaneous decreases in the levels of pp'-DDT and endosulfan-I hint at the occurrence of sunlight induced conversions in snow. While surface area decreases clearly

  17. Determination of the specific surface area of snow using ozonation of 1,1-diphenylethylene.

    Science.gov (United States)

    Ray, Debajyoti; Kurková, Romana; Hovorková, Ivana; Klán, Petr

    2011-12-01

    We measured the kinetics of ozonation reaction of 1,1-diphenylethylene (DPE) in artificial snow, produced by shock freezing of DPE aqueous solutions sprayed into liquid nitrogen. It was demonstrated that most of the reactant molecules are in direct (productive) contact with gaseous ozone, thus the technique produces snow with organic molecules largely ejected to the surface of snow grains. The kinetic data were used to evaluate the snow specific surface area (∼70 cm(2) g(-1)). This number is a measure of the availability of the molecules on the surface for chemical reaction with gaseous species. The experimental results were consistent with the Langmuir-Hinshelwood type reaction mechanism. DPE represents environmentally relevant compounds such as alkenes which can react with atmospheric ozone, and are relatively abundant in natural snow. For typical atmospheric ozone concentrations in polar areas (20 ppbv), we estimated that half-life of DPE on the surface of snow grains is ∼5 days at submonolayer coverages and -15 °C.

  18. Vertical profiles of the specific surface area of the snow at Dome C, Antarctica

    Directory of Open Access Journals (Sweden)

    J.-C. Gallet

    2010-09-01

    Full Text Available The specific surface area (SSA of snow determines in Part the albedo of snow surfaces and the capacity of the snow to adsorb chemical species and catalyze reactions. Despite these crucial roles, almost no value of snow SSA are available for the largest permanent snow expanse on Earth, the Antarctic. We have measured the first vertical profiles of snow SSA near Dome C (DC: 75°06´ S, 123°20´ E, 3233 m a.s.l. on the Antarctic plateau, and at seven sites during the logistical traverse between Dome C and the French coastal base Dumont D'Urville (DDU: 66°40´ S, 140°01´ E during the Austral summer 2008–2009. We used the DUFISSS system, which measures the IR reflectance of snow at 1310 nm with an integrating sphere. At DC, the mean SSA of the snow in the top 1 cm is 38 m2 kg−1, decreasing monotonically to 14 m2 kg−1 at a depth of 15 cm. Along the traverse, the snow SSA profile is similar to that at DC in the first 600 km from DC. Closer to DDU, the SSA of the top 5 cm is 23 m2 kg−1, decreasing to 19 m2 kg−1 at 50 cm depth. This is attributed to wind, which causes a rapid decrease of surface snow SSA, but forms hard windpacks whose SSA decrease more slowly with time. Since light-absorbing impurities are not concentrated enough to affect albedo, the vertical profiles of SSA and density were used to calculate the spectral albedo of the snow for several realistic illumination conditions, using the DISORT radiative transfer model. A preliminary comparison with MODIS data is presented for use in energy balance calculations and for comparison with other satellite retrievals. These calculated albedos are compared to the few existing measurements on the Antarctic plateau. The interest of postulating a submillimetric, high-SSA layer at the snow surface to explain measured albedos is discussed.

  19. Infrasonic monitoring of snow avalanches in the Alps

    Science.gov (United States)

    Marchetti, E.; Ulivieri, G.; Ripepe, M.; Chiambretti, I.; Segor, V.

    2012-04-01

    Risk assessment of snow avalanches is mostly related to weather conditions and snow cover. However a robust risk validation requires to identify all avalanches occurring, in order to compare predictions to real effects. For this purpose on December 2010 we installed a permanent 4-element, small aperture (100 m), infrasound array in the Alps, after a pilot experiment carried out in Gressonay during the 2009-2010 winter season. The array has been deployed in the Ayas Valley, at an elevation of 2000 m a.s.l., where natural avalanches are expected and controlled events are regularly performed. The array consists into 4 Optimic 2180 infrasonic microphones, with a sensitivity of 10-3 Pa in the 0.5-50 Hz frequency band and a 4 channel Guralp CMG-DM24 A/D converter, sampling at 100 Hz. Timing is achieved with a GPS receiver. Data are transmitted to the Department of Earth Sciences of the University of Firenze, where data is recorded and processed in real-time. A multi-channel semblance is carried out on the continuous data set as a function of slowness, back-azimuth and frequency of recorded infrasound in order to detect all avalanches occurring from the back-ground signal, strongly affected by microbarom and mountain induced gravity waves. This permanent installation in Italy will allow to verify the efficiency of the system in short-to-medium range (2-8 km) avalanche detection, and might represent an important validation to model avalanches activity during this winter season. Moreover, the real-time processing of infrasonic array data, might strongly contribute to avalanche risk assessments providing an up-to-description of ongoing events.

  20. THE SNOW DRIFT POTENTIAL IN THE PLAIN AREA OF BUZĂU COUNTY

    Directory of Open Access Journals (Sweden)

    Romulus COSTACHE

    2013-12-01

    Full Text Available The aim of this study is to analyze and identify the most exposed areas to snowdrifts, in case of a blizzard phenomenon, in the plain area of Buzău County. Blizzard is the most frequently occurring climatic hazard in the study area, in the cold season, that causes the blocking of the roads and the massive snow accumulation in th built-up areas found in the open field or in negative relief forms. In order to identify areas with high potential snowdrifts, the Snow Drifts Potential Index (SDPI was defined, calculated and localized. This was achieved in the GIS by integrating three factors, namely: the use of land, river valleys and the surfaces exposure in the study area. Finally, the results showed that the most exposed areas to the the snow-drift phenomenon are the built areas found in the river beds, and also those on slopes sheltered from contact with the Carpathian. The importance of this study lies in the fact that once established and localized the areas with high potential for snow-drifts, measures can be taken in order to combat the disastrous effects generated by blizzards in the plains of Buzău County.

  1. Hydrological Modelling and data assimilation of Satellite Snow Cover Area using a Land Surface Model, VIC

    Science.gov (United States)

    Naha, Shaini; Thakur, Praveen K.; Aggarwal, S. P.

    2016-06-01

    The snow cover plays an important role in Himalayan region as it contributes a useful amount to the river discharge. So, besides estimating rainfall runoff, proper assessment of snowmelt runoff for efficient management and water resources planning is also required. A Land Surface Model, VIC (Variable Infiltration Capacity) is used at a high resolution grid size of 1 km. Beas river basin up to Thalot in North West Himalayas (NWH) have been selected as the study area. At first model setup is done and VIC has been run in its energy balance mode. The fluxes obtained from VIC has been routed to simulate the discharge for the time period of (2003-2006). Data Assimilation is done for the year 2006 and the techniques of Data Assimilation considered in this study are Direct Insertion (D.I) and Ensemble Kalman Filter (EnKF) that uses observations of snow covered area (SCA) to update hydrologic model states. The meteorological forcings were taken from 0.5 deg. resolution VIC global forcing data from 1979-2006 with daily maximum temperature, minimum temperature from Climate Research unit (CRU), rainfall from daily variability of NCEP and wind speed from NCEP-NCAR analysis as main inputs and Indian Meteorological Department (IMD) data of 0.25 °. NBSSLUP soil map and land use land cover map of ISRO-GBP project for year 2014 were used for generating the soil parameters and vegetation parameters respectively. The threshold temperature i.e. the minimum rain temperature is -0.5°C and maximum snow temperature is about +0.5°C at which VIC can generate snow fluxes. Hydrological simulations were done using both NCEP and IMD based meteorological Forcing datasets, but very few snow fluxes were obtained using IMD data met forcing, whereas NCEP based met forcing has given significantly better snow fluxes throughout the simulation years as the temperature resolution as given by IMD data is 0.5°C and rainfall resolution of 0.25°C. The simulated discharge has been validated using observed

  2. Hydrological Modelling and data assimilation of Satellite Snow Cover Area using a Land Surface Model, VIC

    Directory of Open Access Journals (Sweden)

    S. Naha

    2016-06-01

    Full Text Available The snow cover plays an important role in Himalayan region as it contributes a useful amount to the river discharge. So, besides estimating rainfall runoff, proper assessment of snowmelt runoff for efficient management and water resources planning is also required. A Land Surface Model, VIC (Variable Infiltration Capacity is used at a high resolution grid size of 1 km. Beas river basin up to Thalot in North West Himalayas (NWH have been selected as the study area. At first model setup is done and VIC has been run in its energy balance mode. The fluxes obtained from VIC has been routed to simulate the discharge for the time period of (2003-2006. Data Assimilation is done for the year 2006 and the techniques of Data Assimilation considered in this study are Direct Insertion (D.I and Ensemble Kalman Filter (EnKF that uses observations of snow covered area (SCA to update hydrologic model states. The meteorological forcings were taken from 0.5 deg. resolution VIC global forcing data from 1979-2006 with daily maximum temperature, minimum temperature from Climate Research unit (CRU, rainfall from daily variability of NCEP and wind speed from NCEP-NCAR analysis as main inputs and Indian Meteorological Department (IMD data of 0.25 °. NBSSLUP soil map and land use land cover map of ISRO-GBP project for year 2014 were used for generating the soil parameters and vegetation parameters respectively. The threshold temperature i.e. the minimum rain temperature is -0.5°C and maximum snow temperature is about +0.5°C at which VIC can generate snow fluxes. Hydrological simulations were done using both NCEP and IMD based meteorological Forcing datasets, but very few snow fluxes were obtained using IMD data met forcing, whereas NCEP based met forcing has given significantly better snow fluxes throughout the simulation years as the temperature resolution as given by IMD data is 0.5°C and rainfall resolution of 0.25°C. The simulated discharge has been validated

  3. Evaluation of the snow-covered area data product from MODIS

    Science.gov (United States)

    Maurer, Edwin P.; Rhoads, Joshua D.; Dubayah, Ralph O.; Lettenmaier, Dennis P.

    2003-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS), flown on board the Terra Earth Observing System (EOS) platform launched in December 1999, produces a snow-covered area (SCA) product. This product is expected to be of better quality than SCA products based on operational satellites (notably GOES and AVHRR), due both to improved spectral resolution and higher spatial resolution of the MODIS instrument. The gridded MODIS SCA product was compared with the SCA product produced and distributed by the National Weather Service National Operational Hydrologic Remote Sensing Center (NOHRSC) for 46 selected days over the Columbia River basin and 32 days over the Missouri River basin during winter and spring of 2000-01. Snow presence or absence was inferred from ground observations of snow depth at 1330 stations in the Missouri River basin and 762 stations in the Columbia River basin, and was compared with the presence/absence classification for the corresponding pixels in the MODIS and NOHRSC SCA products. On average, the MODIS SCA images classified fewer pixels as cloud than NOHRSC, the effect of which was that 15% more of the Columbia basin area could be classified as to presence-absence of snow, while overall there was a statistically insignificant difference over the Missouri basin. Of the pixels classified as cloud free, MODIS misclassified 4% and 5% fewer overall (for the Columbia and Missouri basins respectively) than did the NOHRSC product. When segregated by vegetation cover, forested areas had the greatest differences in fraction of cloud cover reported by the two SCA products, with MODIS classifying 13% and 17% less of the images as cloud for the Missouri and Columbia basins respectively. These differences are particularly important in the Columbia River basin, 39% of which is forested. The ability of MODIS to classify significantly greater amounts of snow in the presence of cloud in more topographically complex, forested, and snow-dominated areas of

  4. ESA GlobSnow Snow Water Equivalent (SWE)

    Data.gov (United States)

    National Aeronautics and Space Administration — The European Space Agency (ESA) Global Snow Monitoring for Climate Research (GlobSnow) snow water equivalent (SWE) v2.0 data record contains snow information derived...

  5. Sodankylä manual snow survey program

    Directory of Open Access Journals (Sweden)

    L. Leppänen

    2015-12-01

    Full Text Available The manual snow survey program of the Arctic Research Centre of Finnish Meteorological Institute (FMI-ARC consists of numerous observations of natural seasonal taiga snowpack in Sodankylä, northern Finland. The easily accessible measurement areas represent the typical forest and soil types in the boreal forest zone. Systematic snow measurements began in 1909 with snow depth (SD and snow water equivalent (SWE; however some older records of the snow and ice cover exists. In 2006 the manual snow survey program expanded to cover snow macro- and microstructure from regular snow pits at several sites using both traditional and novel measurement techniques. Present-day measurements include observations of SD, SWE, temperature, density, horizontal layers of snow, grain size, specific surface area (SSA, and liquid water content (LWC. Regular snow pit measurements are performed weekly during the snow season. Extensive time series of manual snow measurements are important for the monitoring of temporal and spatial changes in seasonal snowpack. This snow survey program is an excellent base for the future research of snow properties.

  6. Rate of evolution of the specific surface area of surface snow layers.

    Science.gov (United States)

    Cabanes, Axel; Legagneux, Loïc; Dominé, Florent

    2003-02-15

    The snowpack can impact atmospheric chemistry by exchanging adsorbed or dissolved gases with the atmosphere. Modeling this impact requires the knowledge of the specific surface area (SSA) of snow and its variations with time. We have therefore measured the evolution of the SSA of eight recent surface snow layers in the Arctic and the French Alps, using CH4 adsorption at liquid nitrogen temperature (77 K). The SSA of fresh snow layers was found to decrease with time, from initial values in the range 613-1540 cm2/g to values as low as 257 cm2/g after 6 days. This is explained by snow metamorphism, which causes modifications in crystal shapes, here essentially crystal rounding and the disappearance of microstructures. A parametrization of the rate of SSA decrease is proposed. We fit the SSA decrease to an exponential law and find that the time constant alpha(exp) (day(-1)) depends on temperature according to alpha(exp) = 76.6 exp (-1708/7), with Tin kelvin. Our parametrization predicts that the SSA of a snow layer evolving at -40 degrees C will decrease by a factor of 2 after 14 days, while a similar decrease at -1 degrees C will only require 5 days. Wind was found to increase the rate of SSA decrease, but insufficient data did not allow a parametrization of this effect.

  7. Modeling and monitoring avalanches caused by rain-on-snow events

    Science.gov (United States)

    Havens, S.; Marshall, H. P.; Trisca, G. O.; Johnson, J. B.; Nicholson, B.

    2014-12-01

    Direct-action avalanches occur during large storm cycles in mountainous regions, when stresses on the snowpack increase rapidly due to the load of new snow and outpace snow strengthening due to compaction. If temperatures rise above freezing during the storm and snowfall turns to rain, the near-surface snow undergoes rapid densification caused by the introduction of liquid water. This shock to the snowpack, if stability is near critical, can cause widespread immediate avalanching due to the large induced strain rates in the slab, followed by secondary delayed avalanches due to both the increased load as well as water percolation to the depth of a weak layer. We use the semi-empirical SNOow Slope Stability model (SNOSS) to estimate the evolution of stability prior to large avalanches during rain-on-snow events on Highway 21 north of Boise, Idaho. We have continuously monitored avalanche activity using arrays of infrasound sensors in the avalanche-prone section of HW21 near Stanley, in collaboration with the Idaho Transportation Department's avalanche forecasting program. The autonomous infrasound avalanche monitoring system provides accurate timing of avalanche events, in addition to capturing avalanche dynamics during some major releases adjacent to the array. Due to the remote location and low winter traffic volume, the highway is typically closed for multiple days during major avalanche cycles. Many major avalanches typically release naturally and reach the road, but due the complex terrain and poor visibility, manual observations are often not possible until several days later. Since most avalanche programs typically use explosives on a regular basis to control slope stability, the infrasound record of avalanche activity we have recorded on HW21 provides a unique opportunity to study large naturally triggered avalanches. We use a first-order physically based stability model to estimate the importance of precipitation phase, amount, and rate during major rain-on-snow

  8. A GIS Software Toolkit for Monitoring Areal Snow Cover and Producing Daily Hydrologic Forecasts using NASA Satellite Imagery Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aniuk Consulting, LLC, proposes to create a GIS software toolkit for monitoring areal snow cover extent and producing streamflow forecasts. This toolkit will be...

  9. Estimation of snow covered area for an urban catchment using image processing and neural networks.

    Science.gov (United States)

    Matheussen, B V; Thorolfsson, S T

    2003-01-01

    This paper presents a method to estimate the snow covered area (SCA) for small urban catchments. The method uses images taken with a digital camera positioned on top of a tall building. The camera is stationary and takes overview images of the same area every fifteen minutes throughout the winter season. The images were read into an image-processing program and a three-layered feed-forward perceptron artificial neural network (ANN) was used to calculate fractional snow cover within three different land cover types (road, park and roofs). The SCA was estimated from the number of pixels with snow cover relative to the total number of pixels. The method was tested for a small urban catchment, Risvollan in Trondheim, Norway. A time series of images taken during spring of 2001 and the 2001-2002 winter season was used to generate a time series of SCA. Snow covered area was also estimated from aerial photos. The results showed a strong correlation between SCA estimated from the digital camera and the aerial photos. The time series of SCA can be used for verification of urban snowmelt models.

  10. Snow Cover Area Retrieval Using C-band SAR in Mountain Areas%C波段SAR山区积雪面积提取研究

    Institute of Scientific and Technical Information of China (English)

    孙少波; 车涛; 王树果; 王增艳

    2013-01-01

    Spaceborne Synthetic Aperture Radar (SAR) sensors not only has the capabilities of penetrating clouds and providing day and night remote sensing data,but also has the capability of penetrating snow cover to retrieve subsurface information.In this paper,10 scenes of ENVSAT-ASAR images were acquired with multiple incidence angles,which were used to characterize the seasonal variations of snow covered landscapes in the upper reaches of the Heihe River Basin from 10 April,2011 to 15 September,2011.Besides,12 MODIS images were used to provide background information,as well as support the monitoring of spatial and temporal variability of snow cover.During snow melt period,the presence of liquid water within the snowpack,which increased the snow dielectric constant,resulting in an appreciable decrease of backscatter coefficients in comparison with dry snow and snow-free soil surface.According to analysis of snow cover spatial and temporal variability of study area,the mostly common used-3 dB threshold clearly underestimates snow cover in our study area and the-2 dB threshold was applied to retrieve the wet snow cover.On the basis of the wet snow cover map,in association with DEM data and wet snow cover percent image which derived from Sigmoid function,the dry snow cover areas were mapped.The final snow mapping results were compared with the classification image of ETM+,and the total accuracy reached 78%.The spatial and temporal variability of snow cover indicated that the main errors were caused by snow rapidly melting process in northeast and northwest low altitude area from 10 April,2011 to 13 April,2011.%合成孔径雷达(SAR)不仅具有穿云透雾、全天候观测地表的能力,而且可穿透地表覆盖一定深度获取地表覆盖物内部特征信息.利用2011年10景ENVISAT-ASAR可变极化模式精细图像(ASA_ APP_ 1P)数据,分析比较了黑河上游祁连山冰沟流域不同时段积雪SAR后向散射特性,应用同期的MODIS积雪面积产品

  11. Sodankylä manual snow survey program

    Science.gov (United States)

    Leppänen, Leena; Kontu, Anna; Hannula, Henna-Reetta; Sjöblom, Heidi; Pulliainen, Jouni

    2016-05-01

    The manual snow survey program of the Arctic Research Centre of the Finnish Meteorological Institute (FMI-ARC) consists of numerous observations of natural seasonal taiga snowpack in Sodankylä, northern Finland. The easily accessible measurement areas represent the typical forest and soil types in the boreal forest zone. Systematic snow measurements began in 1909 with snow depth (HS) and snow water equivalent (SWE). In 2006 the manual snow survey program expanded to cover snow macro- and microstructure from regular snow pits at several sites using both traditional and novel measurement techniques. Present-day snow pit measurements include observations of HS, SWE, temperature, density, stratigraphy, grain size, specific surface area (SSA) and liquid water content (LWC). Regular snow pit measurements are performed weekly during the snow season. Extensive time series of manual snow measurements are important for the monitoring of temporal and spatial changes in seasonal snowpack. This snow survey program is an excellent base for the future research of snow properties.

  12. Estimating time and spatial distribution of snow water equivalent in the Hakusan area

    Science.gov (United States)

    Tanaka, K.; Matsui, Y.; Touge, Y.

    2015-12-01

    In the Sousei program, on-going Japanese research program for risk information on climate change, assessing the impact of climate change on water resources is attempted using the integrated water resources model which consists of land surface model, irrigation model, river routing model, reservoir operation model, and crop growth model. Due to climate change, reduction of snowfall amount, reduction of snow cover and change in snowmelt timing, change in river discharge are of increasing concern. So, the evaluation of snow water amount is crucial for assessing the impact of climate change on water resources in Japan. To validate the snow simulation of the land surface model, time and spatial distribution of the snow water equivalent was estimated using the observed surface meteorological data and RAP (Radar Analysis Precipitation) data. Target area is Hakusan. Hakusan means 'white mountain' in Japanese. Water balance of the Tedori River Dam catchment was checked with daily inflow data. Analyzed runoff was generally well for the period from 2010 to 2012. From the result for 2010-2011 winter, maximum snow water equivalent in the headwater area of the Tedori River dam reached more than 2000mm in early April. On the other hand, due to the underestimation of RAP data, analyzed runoff was under estimated from 2006 to 2009. This underestimation is probably not from the lack of land surface model, but from the quality of input precipitation data. In the original RAP, only the rain gauge data of JMA (Japan Meteorological Agency) were used in the analysis. Recently, other rain gauge data of MLIT (Ministry of Land, Infrastructure, Transport and Tourism) and local government have been added in the analysis. So, the quality of the RAP data especially in the mountain region has been greatly improved. "Reanalysis" of the RAP precipitation is strongly recommended using all the available off-line rain gauges information. High quality precipitation data will contribute to validate

  13. The Ecology of Snow: A Biome-Based Analysis of Trends in Northern Hemisphere Snow-covered Area and Duration, 1971-2014

    Science.gov (United States)

    Allchin, M.; Déry, S.

    2016-12-01

    The seasonal 'lifetime' of snowpack depends on appropriate conditions of both temperature and humidity. Biomes also evolve in response to the same influences, but over timescales of centuries to millenia. It follows that biomes provide a useful spatial framework for studies of snow climatology. Such an investigation would additionally yield information relating to the climatological and hydrological stresses being experienced in each ecological setting. This submission therefore describes research to quantify the intra-annual variation of trends in snow-covered area (SA) among Northern Hemisphere (NH) biomes. Weekly biome SA was estimated through the continuous 1971-2014 period of the NOAA - Rutgers NH snow climate data record by overlaying the grid on the WWF Terrestrial EcoRegions spatial dataset. The resultant 43-year time-series for each week and biome was tested for trends using Mann-Kendall Analysis. Significant negative trends in snow-season length were identified in almost all snow-dominated biomes. The strengths and signs of biome SA trends vary throughout the year, in some cases dramatically, controlled largely by influences of latitude and elevation. Prior studies have shown how negative trends which dominate through spring and summer at continental and hemispheric scales intensify linearly as the season progresses: intriguingly, the same phenomenon is noted among biomes, but the gradients of these amplifications vary with context. This is thought likely to relate to modulation of the snow-albedo feedback by the contrasting land-cover characteristics in each biome. Dividing the long-term mean weekly SA in each biome by the corresponding trend offers a (highly conservative) estimate of the years remaining before snow becomes `extinct' in each biome in each week of the year.

  14. Wide area continuous offender monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Hoshen, J. [Lucent Technologies (United States); Drake, G. [New Mexico Dept. of Corrections, Santa Fe, NM (United States); Spencer, D. [Sandia National Labs., Albuquerque, NM (United States)

    1996-11-01

    The corrections system in the U.S. is supervising over five million offenders. This number is rising fast and so are the direct and indirect costs to society. To improve supervision and reduce the cost of parole and probation, first generation home arrest systems were introduced in 1987. While these systems proved to be helpful to the corrections system, their scope is rather limited because they only cover an offender at a single location and provide only a partial time coverage. To correct the limitations of first-generation systems, second-generation wide area continuous electronic offender monitoring systems, designed to monitor the offender at all times and locations, are now on the drawing board. These systems use radio frequency location technology to track the position of offenders. The challenge for this technology is the development of reliable personal locator devices that are small, lightweight, with long operational battery life, and indoors/outdoors accuracy of 100 meters or less. At the center of a second-generation system is a database that specifies the offender`s home, workplace, commute, and time the offender should be found in each. The database could also define areas from which the offender is excluded. To test compliance, the system would compare the observed coordinates of the offender with the stored location for a given time interval. Database logfiles will also enable law enforcement to determine if a monitored offender was present at a crime scene and thus include or exclude the offender as a potential suspect.

  15. Design of a scanning laser meter for monitoring the spatio-temporal evolution of snow depth and its application in the Alps and in Antarctica

    Science.gov (United States)

    Picard, Ghislain; Arnaud, Laurent; Panel, Jean-Michel; Morin, Samuel

    2016-07-01

    Although both the temporal and spatial variations of the snow depth are usually of interest for numerous applications, available measurement techniques are either space-oriented (e.g. terrestrial laser scans) or time-oriented (e.g. ultrasonic ranging probe). Because of snow heterogeneity, measuring depth in a single point is insufficient to provide accurate and representative estimates. We present a cost-effective automatic instrument to acquire spatio-temporal variations of snow depth. The device comprises a laser meter mounted on a 2-axis stage and can scan ≈ 200 000 points over an area of 100-200 m2 in 4 h. Two instruments, installed in Antarctica (Dome C) and the French Alps (Col de Porte), have been operating continuously and unattended over 2015 with a success rate of 65 and 90 % respectively. The precision of single point measurements and long-term stability were evaluated to be about 1 cm and the accuracy to be 5 cm or better. The spatial variability in the scanned area reached 7-10 cm (root mean square) at both sites, which means that the number of measurements is sufficient to average out the spatial variability and yield precise mean snow depth. With such high precision, it was possible for the first time at Dome C to (1) observe a 3-month period of regular and slow increase of snow depth without apparent link to snowfalls and (2) highlight that most of the annual accumulation stems from a single event although several snowfall and strong wind events were predicted by the ERA-Interim reanalysis. Finally the paper discusses the benefit of laser scanning compared to multiplying single-point sensors in the context of monitoring snow depth.

  16. Linking snow depth to avalanche release area size: measurements from the Vallée de la Sionne field site

    OpenAIRE

    2016-01-01

    One of the major challenges in avalanche hazard assessment is the correct estimation of avalanche release area size, which is of crucial importance to evaluate the potential danger that avalanches pose to roads, railways or infrastructure. Terrain analysis plays an important role in assessing the potential size of avalanche releases areas and is commonly based on digital terrain models (DTMs) of a snow-free summer terrain. However, a snow-covered winter terrain can significa...

  17. Assessment and application of a snowblow modelling approach for identifying enhanced snow accumulation in areas of former glaciation

    Science.gov (United States)

    Mills, Stephanie; Smith, Michael; Le Brocq, Anne; Ardakova, Ekaterina; Hillier, John; Boston, Clare

    2016-04-01

    The redistribution of snow by wind can play an important role in providing additional mass to the surface of glaciers and can, therefore, have an impact on the glacier's surface mass balance. In areas of marginal glaciation, this local topo-climatic effect may be prove crucial for the initiation and survival of glaciers, whilst it can also increase heterogeneity in the distribution of snow on ice caps and ice sheets. We present a newly developed snowblow model which calculates spatial variations in relative snow accumulation that result from variations in topography. We apply this model to areas of former marginal glaciation in the Brecon Beacons, Wales and an area of former plateau icefield glaciation in the Monadhliath, Scotland. We can then determine whether redistribution by snow can help explain variations in the estimated equilibrium line altitudes (ELAs) of these former glaciers. Specifically, we compare the areas where snow is modelled as accumulating, to the reconstructed glacier surface, which is based on mapped moraines believed to be of Younger Dryas age. The model is applied to 30 m resolution DEMs and potential snow accumulation is simulated from different wind directions in order to determine the most likely contributing sector. Total snow accumulation in sub-set areas is then calculated and compared to the reconstructed glacier area. The results suggest that areas with larger amounts of snow accumulation often correspond with those where the ELA is lower than surrounding glaciers and vice versa, in both the marginal and icefield setting, suggesting that the role of snowblow in supplying additional mass to the surface of glaciers is significant.

  18. Assimilation of MODIS Snow Cover Area Data in a Distributed Hydrological Model Using the Particle Filter

    Directory of Open Access Journals (Sweden)

    Milan Kalas

    2013-11-01

    Full Text Available Snow is an important component of the water cycle, and its estimation in hydrological models is of great significance concerning the simulation and forecasting of flood events due to snow-melt. The assimilation of Snow Cover Area (SCA in physical distributed hydrological models is a possible source of improvement of snowmelt-related floods. In this study, the assimilation in the LISFLOOD model of the MODIS sensor SCA has been evaluated, in order to improve the streamflow simulations of the model. This work is realized with the final scope of improving the European Flood Awareness System (EFAS pan-European flood forecasts in the future. For this purpose daily 500 m resolution MODIS satellite SCA data have been used. Tests were performed in the Morava basin, a tributary of the Danube, for three years. The particle filter method has been chosen for assimilating the MODIS SCA data with different frequencies. Synthetic experiments were first performed to validate the assimilation schemes, before assimilating MODIS SCA data. Results of the synthetic experiments could improve modelled SCA and discharges in all cases. The assimilation of MODIS SCA data with the particle filter shows a net improvement of SCA. The Nash of resulting discharge is consequently increased in many cases.

  19. Retrieval of snow Specific Surface Area (SSA) from MODIS data in mountainous regions

    Science.gov (United States)

    Mary, A.; Dumont, M.; Dedieu, J.-P.; Durand, Y.; Sirguey, P.; Milhem, H.; Mestre, O.; Negi, H. S.; Kokhanovsky, A. A.

    2012-05-01

    This study describes a method to retrieve snow specific surface area (SSA) from satellite radiance reasurements in mountainous terrain. It aims at comparing different retrieval methods and at addressing topographic corrections of reflectance, namely slope and aspect of terrain and multiple reflections on neighbouring slopes. We use an iterative algorithm to compute reflectance from radiance of the MODerate resolution Imaging Spectrometer (MODIS) with a comprehensive correction of local illumination with regards to topography. The retrieved SSA is compared to the results of the snowpack model Crocus, fed by driving data from the SAFRAN meteorological analysis, over a large domain in the French Alps. We compared SSA retrievals with and without topographic or anisotropy correction, and with a spherical or non-spherical snow reflectance model. The topographic correction enables SSA to be retrieved in better agreement with those from SAFRAN-Crocus. The root mean square deviation is 10.0 m2 kg-1 and the bias is -0.6 m2 kg-1, over 3829 pixels representing seven different dates and snow conditions. The standard deviation of MODIS retrieved data, larger than the one of SAFRAN-Crocus estimates, is responsible for half this RMSD. It is due to the topographic classes used by SAFRAN-Crocus. In addition, MODIS retrieved data show SSA gradients with elevation and solar exposition, physically consistent and in good agreement with SAFRAN-Crocus.

  20. Retrieval of snow Specific Surface Area (SSA from MODIS data in mountainous regions

    Directory of Open Access Journals (Sweden)

    A. Mary

    2012-05-01

    Full Text Available This study describes a method to retrieve snow specific surface area (SSA from satellite radiance reasurements in mountainous terrain. It aims at comparing different retrieval methods and at addressing topographic corrections of reflectance, namely slope and aspect of terrain and multiple reflections on neighbouring slopes. We use an iterative algorithm to compute reflectance from radiance of the MODerate resolution Imaging Spectrometer (MODIS with a comprehensive correction of local illumination with regards to topography. The retrieved SSA is compared to the results of the snowpack model Crocus, fed by driving data from the SAFRAN meteorological analysis, over a large domain in the French Alps. We compared SSA retrievals with and without topographic or anisotropy correction, and with a spherical or non-spherical snow reflectance model. The topographic correction enables SSA to be retrieved in better agreement with those from SAFRAN-Crocus. The root mean square deviation is 10.0 m2 kg−1 and the bias is −0.6 m2 kg−1, over 3829 pixels representing seven different dates and snow conditions. The standard deviation of MODIS retrieved data, larger than the one of SAFRAN-Crocus estimates, is responsible for half this RMSD. It is due to the topographic classes used by SAFRAN-Crocus. In addition, MODIS retrieved data show SSA gradients with elevation and solar exposition, physically consistent and in good agreement with SAFRAN-Crocus.

  1. Crossing physical simulations of snow conditions and a geographic model of ski area to assess ski resorts vulnerability

    Science.gov (United States)

    François, Hugues; Spandre, Pierre; Morin, Samuel; George-Marcelpoil, Emmanuelle; Lafaysse, Matthieu; Lejeune, Yves

    2016-04-01

    In order to face climate change, meteorological variability and the recurrent lack of natural snow on the ground, ski resorts adaptation often rely on technical responses. Indeed, since the occurrence of episodes with insufficient snowfalls in the early 1990's, snowmaking has become an ordinary practice of snow management, comparable to grooming, and contributes to optimise the operation of ski resorts. It also participates to the growth of investments and is associated with significant operating costs, and thus represents a new source of vulnerability. The assessment of the actual effects of snowmaking and of snow management practices in general is a real concern for the future of the ski industry. The principal model use to simulate snow conditions in resorts, Ski Sim, has also been moving this way. Its developers introduced an artificial input of snow on ski area to complete natural snowfalls and considered different organisations of ski lifts (lower and upper zones). However the use of a degree-day model prevents them to consider the specific properties of artificial snow and the impact of grooming on the snowpack. A first proof of concept in the French Alps has shown the feasibility and the interest to cross the geographic model of ski areas and the output of the physically-based reanalysis of snow conditions SAFRAN - Crocus (François et al., CRST 2014). Since these initial developments, several ways have been explored to refine our model. A new model of ski areas has been developed. Our representation is now based on gravity derived from a DEM and ski lift localisation. A survey about snow management practices also allowed us to define criteria in order to model snowmaking areas given ski areas properties and tourism infrastructures localisation. We also suggest to revisit the assessment of ski resort viability based on the "one hundred days rule" based on natural snow depth only. Indeed, the impact of snow management must be considered so as to propose

  2. Snow Cover Mapping in the Northern Area of Pakistan and Jammu Kashmir (hindu Kush Himalayas) Using Ndsi, Unmixing Method and Srtm dem Data

    Science.gov (United States)

    Kim, H.; Din, A. U.; Oki, K.; Takeuchi, W.; Oki, T.

    2015-12-01

    Snow area measurement is very important for hydrologists, glaciologists and for climate change researchers. Field measurement is very difficult as in case of a steep and in a complex terrain such as Himalayas, therefore we rely on remote sensing (both active and passive) data. Usually snow area is calculated from reflectance data using different snow index e.g. Normalize difference snow index (NDSI) and then it is translated into snow area. However, in most cases we are actually calculating the planimetric area or grid area of every pixel. The actual snow is along the surface of the terrain and proper estimation can only be done if actual surface area is calculated along the slope within each pixel. In the past, some researchers have introduced methodologies and optimized old mechanisms. However, the orographical impact in calculating snow area (fraction), especially in steep mountainous regions, still has many problems, and many times these problems are usually ignored which leads to under estimation of total snow amount. In this study we calculated the actual surface area from SRTM version 4.1 90m (at equator) processed DEM data provided by CGIAR-CSI. MODIS Reflectance (MOD09A1 L3 Product) composite data of 500m resolution for 2010 and 2011 in the northern areas of Pakistan, Jammu & Kashmir region where great Himalayas are stretched was used to calculate snow cover using NDSI index. Threshold of NDSI>0.4 was set to classify snow or no snow for the clear pixels and for further classification, unmixing method (subjective pixel method only) was used to calculate snow fraction within each pixel. Results shows that in a complex terrain such as Himalayas, ratio of surface to planimetric snow area is more than 50%. This means that it should be taken into consideration for more realistic snow amount estimation. Seasonal snow fraction histogram from unmixing method indicates that NDSI measures snow cover area by 1.86 times more in cold season (maximum snow area) and 1

  3. Daily Area of Snow Melt Onset on Arctic Sea Ice from Passive Microwave Satellite Observations 1979–2012

    OpenAIRE

    Angela C. Bliss; Anderson, Mark R

    2014-01-01

    Variability in snow melt onset (MO) on Arctic sea ice since 1979 is examined by determining the area of sea ice experiencing the onset of melting during the melt season on a daily basis. The daily MO area of the snow and ice surface is determined from passive microwave satellite-derived MO dates for the Arctic Ocean and sub-regions. Annual accumulations of MO area are determined by summing the time series of daily MO area through the melt season. Daily areas and annual accumulations of MO are...

  4. Automated identification of potential snow avalanche release areas based on digital elevation models

    Directory of Open Access Journals (Sweden)

    Y. Bühler

    2013-05-01

    Full Text Available The identification of snow avalanche release areas is a very difficult task. The release mechanism of snow avalanches depends on many different terrain, meteorological, snowpack and triggering parameters and their interactions, which are very difficult to assess. In many alpine regions such as the Indian Himalaya, nearly no information on avalanche release areas exists mainly due to the very rough and poorly accessible terrain, the vast size of the region and the lack of avalanche records. However avalanche release information is urgently required for numerical simulation of avalanche events to plan mitigation measures, for hazard mapping and to secure important roads. The Rohtang tunnel access road near Manali, Himachal Pradesh, India, is such an example. By far the most reliable way to identify avalanche release areas is using historic avalanche records and field investigations accomplished by avalanche experts in the formation zones. But both methods are not feasible for this area due to the rough terrain, its vast extent and lack of time. Therefore, we develop an operational, easy-to-use automated potential release area (PRA detection tool in Python/ArcGIS which uses high spatial resolution digital elevation models (DEMs and forest cover information derived from airborne remote sensing instruments as input. Such instruments can acquire spatially continuous data even over inaccessible terrain and cover large areas. We validate our tool using a database of historic avalanches acquired over 56 yr in the neighborhood of Davos, Switzerland, and apply this method for the avalanche tracks along the Rohtang tunnel access road. This tool, used by avalanche experts, delivers valuable input to identify focus areas for more-detailed investigations on avalanche release areas in remote regions such as the Indian Himalaya and is a precondition for large-scale avalanche hazard mapping.

  5. Use of positive reinforcement conditioning to monitor pregnancy in an unanesthetized snow leopard (Uncia uncia) via transabdominal ultrasound.

    Science.gov (United States)

    Broder, Jacqueline M; Macfadden, Annabell J; Cosens, Lindsay M; Rosenstein, Diana S; Harrison, Tara M

    2008-01-01

    Closely monitoring snow leopard (Uncia uncia) fetal developments via transabdominal ultrasound, with minimal stress to the animal, was the goal of this project. The staff at Potter Park Zoo has used the principles of habituation, desensitization, and positive reinforcement to train a female snow leopard (U. uncia). Ultrasound examinations were preformed on an unanesthetized feline at 63 and 84 days. The animal remained calm and compliant throughout both procedures. Fetuses were observed and measured on both occasions. The absence of anesthesia eliminated components of psychologic and physiologic stress associated with sedation. This was the first recorded instance of transabdominal ultrasound being carried out on an unanesthetized snow leopard. It documents the feasibility of detecting pregnancy and monitoring fetal development via ultrasound. Zoo Biol 27:78-85, 2008. (c) 2007 Wiley-Liss, Inc.

  6. AREA-BASED SNOW DAMAGE CLASSIFICATION OF FOREST CANOPIES USING BI- TEMPORAL LIDAR DATA

    Directory of Open Access Journals (Sweden)

    M. Vastaranta

    2012-09-01

    Full Text Available Multitemporal LiDAR data provide means for mapping structural changes in forest canopies. We demonstrate the use of area-based estimation method for snow damage assessment. Change features of bi-temporal LiDAR point height distributions were used as predictors in combination with in situ training data. In the winter 2009–2010, snow damages occurred in Hyytiälä (62°N, 24°E, southern Finland. Snow load resulted in broken, bent and fallen trees changing the canopy structure. The damages were documented at the tree level at permanent field plots and dense LiDAR data from 2007 and 2010 were used in the analyses. A 5 × 5-m grid was established in one pine%ndash;spruce stand and change metrics from the LiDAR point height distribution were extracted for the cells. Cells were classified as damaged (n = 43 or undamaged (n = 42 based on the field data. Stepwise logistic regression detected the damaged cells with an overall accuracy of 78.6% (Kappa = 0.57. The best predictors were differences in h-distribution percentage points 5, 35, 40, 50 and 70 of first-or-single return data. The tentative results from the single stand suggest that dense bi-temporal LiDAR data and an area-based approach could be feasible in mapping canopy changes. The accuracy of the point h-distribution is dependent on the pulse density per grid cell. Depending on the time span between LiDAR acquisitions, the natural changes of the h- distributions due to tree growth need to be accounted for as well as differences in the scanning geometry, which can substantially affect the LiDAR h-metrics.

  7. Tomography-based monitoring of isothermal snow metamorphism under advective conditions

    Directory of Open Access Journals (Sweden)

    P. P. Ebner

    2015-02-01

    Full Text Available Time-lapse X-ray micro-tomography was used to investigate the structural dynamics of isothermal snow metamorphism exposed to an advective airflow. Diffusion and advection across the snow pores were analysed in controlled laboratory experiments. The 3-D digital geometry obtained by tomographic scans was used in direct pore-level numerical simulations to determine the effective transport properties. The results showed that isothermal advection with saturated air have no influence on the coarsening rate that is typical for isothermal snow metamorphism. Diffusion originating in the Kelvin effect between snow structures dominates and is the main transport process in isothermal snow packs.

  8. An automated methodology for differentiating rock from snow, clouds and sea in Antarctica from Landsat 8 imagery: a new rock outcrop map and area estimation for the entire Antarctic continent

    Science.gov (United States)

    Burton-Johnson, Alex; Black, Martin; Fretwell, Peter T.; Kaluza-Gilbert, Joseph

    2016-08-01

    As the accuracy and sensitivity of remote-sensing satellites improve, there is an increasing demand for more accurate and updated base datasets for surveying and monitoring. However, differentiating rock outcrop from snow and ice is a particular problem in Antarctica, where extensive cloud cover and widespread shaded regions lead to classification errors. The existing rock outcrop dataset has significant georeferencing issues as well as overestimation and generalisation of rock exposure areas. The most commonly used method for automated rock and snow differentiation, the normalised difference snow index (NDSI), has difficulty differentiating rock and snow in Antarctica due to misclassification of shaded pixels and is not able to differentiate illuminated rock from clouds. This study presents a new method for identifying rock exposures using Landsat 8 data. This is the first automated methodology for snow and rock differentiation that excludes areas of snow (both illuminated and shaded), clouds and liquid water whilst identifying both sunlit and shaded rock, achieving higher and more consistent accuracies than alternative data and methods such as the NDSI. The new methodology has been applied to the whole Antarctic continent (north of 82°40' S) using Landsat 8 data to produce a new rock outcrop dataset for Antarctica. The new data (merged with existing data where Landsat 8 tiles are unavailable; most extensively south of 82°40' S) reveal that exposed rock forms 0.18 % (21 745 km2) of the total land area of Antarctica: half of previous estimates.

  9. Landslide Monitoring with ALOS/PALSAR data in Mountain Area

    Science.gov (United States)

    Tian, X.; Qi, H.; Yu, B.

    2015-12-01

    InSAR is a relatively new technique with a high potential in earth observation, which has made great success in monitoring urban areas deformation. At present, although there are a considerable number of applications in the complicated mountain areas, it is hard to obtain sufficiently high-density stable point targets in these regions. So scientists have been trying to solve this bottleneck problem and improve accuracy in mountain areas. In this work, we present the landslide measurement result in complicated topographic region using ALOS/PALSAR data. The test area is selected around highlands of the boundary between China and India. We choose 13 scenes of ALOS/PALSAR images from May 2007 to February 2011. The main landforms in this experimental region are bare rock and soil, ice and snow, the vegetation in the alpine area. Due to the lithology of the strata and the undulations extent of the terrain, it is prone to cause landslides in the event of rainfall, earthquakes, snow melt or human activities. The traditional PS algorithm has a higher requirement for a long time series data collection, especially in low-coherence area of vegetation cover. As the collected data and stable points are relatively less in this experimental area, we plan to study the time series InSAR analysis coherence model and error model, and extend its application to the extra-urban regions. The approach has been carried out to increase the density of stable points, which are mainly distributed on the top of mountain and ridge areas. And using the 13 images we find several subsidence areas by this technique. The result shows that the top of mountain is relatively stable and the suspected landslide areas are mainly along the ridge, which is in accordance with the actual situation. Then the mechanism and stability analysis of landslide is discussed. Meanwhile, some other measurement data in experimental area is available for cross validation, such as optical data and TerraSAR-X data. And a

  10. Snow physics as relevant to snow photochemistry

    Directory of Open Access Journals (Sweden)

    F. Domine

    2007-05-01

    Full Text Available Snow on the ground is a complex multiphase photochemical reactor that dramatically modifies the chemical composition of the overlying atmosphere. A quantitative description of the emissions of reactive gases by snow requires the knowledge of snow physical properties. This overview details our current understanding of how those physical properties relevant to snow photochemistry vary during snow metamorphism. Properties discussed are density, specific surface area, optical properties, thermal conductivity, permeability and gas diffusivity. Inasmuch as possible, equations to parameterize these properties as a function of climatic variables are proposed, based on field measurements, laboratory experiments and theory. The potential of remote sensing methods to obtain information on some snow physical variables such as grain size, liquid water content and snow depth are discussed. The possibilities for and difficulties of building a snow photochemistry model by adapting current snow physics models are explored. Elaborate snow physics models already exist, and including variables of particular interest to snow photochemistry such as light fluxes and specific surface area appears possible. On the other hand, understanding the nature and location of reactive molecules in snow seems to be the greatest difficulty modelers will have to face for lack of experimental data, and progress on this aspect will require the detailed study of natural snow samples.

  11. Tomography-based monitoring of isothermal snow metamorphism under advective conditions

    OpenAIRE

    P. P. Ebner; M. Schneebeli; A. Steinfeld

    2015-01-01

    Time-lapse X-ray microtomography was used to investigate the structural dynamics of isothermal snow metamorphism exposed to an advective airflow. The effect of diffusion and advection across the snow pores on the snow microstructure were analysed in controlled laboratory experiments and possible effects on natural snowpacks discussed. The 3-D digital geometry obtained by tomographic scans was used in direct pore-level numerical simulations to determine the effective permeabi...

  12. Objective Characterization of Snow Microstructure for Microwave Emission Modeling

    Science.gov (United States)

    Durand, Michael; Kim, Edward J.; Molotch, Noah P.; Margulis, Steven A.; Courville, Zoe; Malzler, Christian

    2012-01-01

    Passive microwave (PM) measurements are sensitive to the presence and quantity of snow, a fact that has long been used to monitor snowcover from space. In order to estimate total snow water equivalent (SWE) within PM footprints (on the order of approx 100 sq km), it is prerequisite to understand snow microwave emission at the point scale and how microwave radiation integrates spatially; the former is the topic of this paper. Snow microstructure is one of the fundamental controls on the propagation of microwave radiation through snow. Our goal in this study is to evaluate the prospects for driving the Microwave Emission Model of Layered Snowpacks with objective measurements of snow specific surface area to reproduce measured brightness temperatures when forced with objective measurements of snow specific surface area (S). This eliminates the need to treat the grain size as a free-fit parameter.

  13. Influence of stress, temperature and crystal morphology on isothermal densification and specific surface area decrease of new snow

    Directory of Open Access Journals (Sweden)

    S. Schleef

    2014-10-01

    Full Text Available Laboratory-based, experimental data for the microstructural evolution of new snow are scarce, though applications would benefit from a quantitative characterization of the main influences. To this end, we have analyzed the metamorphism and concurrent densification of new snow under isothermal conditions by means of X-ray microtomography and compiled a comprehensive data set of 45 time series. In contrast to previous measurements on isothermal metamorphism on time scales of weeks to months, we analyzed the initial 24–48 h of snow evolution at a high temporal resolution of 3 hours. The data set comprised natural and laboratory-grown snow, and experimental conditions included systematic variations of overburden stress, temperature and crystal habit to address the main influences on specific surface area (SSA decrease rate and densification rate in a snowpack. For all conditions, we found a linear relation between density and SSA, indicating that metamorphism has an immediate influence for the densification of new snow. The slope of the linear relation, however, depends on the other parameters which were analyzed individually to derive a best-fit parameterization for the SSA decrease rate and densification rate. In the investigated parameter range, we found that the initial value of the SSA constituted the main morphological influence on the SSA decrease rate. In turn, the SSA decrease rate constituted the main influence on the densification rate.

  14. Permafrost and snow monitoring at Rothera Point (Adelaide Island, Maritime Antarctica): Implications for rock weathering in cryotic conditions

    Science.gov (United States)

    Guglielmin, Mauro; Worland, M. Roger; Baio, Fabio; Convey, Peter

    2014-11-01

    In February 2009 a new permafrost borehole was installed close to the British Antarctic Survey Station at Rothera Point, Adelaide Island (67.57195°S 68.12068°W). The borehole is situated at 31 m asl on a granodiorite knob with scattered lichen cover. The spatial variability of snow cover and of ground surface temperature (GST) is characterised through the monitoring of snow depth on 5 stakes positioned around the borehole and with thermistors placed at three different rock surfaces (A, B and C). The borehole temperature is measured by 18 thermistors placed at different depths between 0.3 and 30 m. Snow persistence is very variable both spatially and temporally with snow free days per year ranging from 13 and more than 300, and maximum snow depths varying between 0.03 and 1.42 m. This variability is the main cause of high variability in GST, that ranged between - 3.7 and - 1.5 °C. The net effect of the snow cover is a cooling of the surface. Mean annual GST, mean summer GST, and the degree days of thawing and the n-factor of thawing were always much lower at sensor A where snow persistence and depth were greater than in the other sensor locations. At sensor A the potential freeze-thaw events were negligible (0-3) and the thermal stress was at least 40% less than in the other sensor locations. The zero curtain effect at the rock surface occurred only at surface A, favouring chemical weathering over mechanical action. The active layer thickness (ALT) ranged between 0.76 and 1.40 m. ALT was directly proportional to the mean air temperature in summer, and inversely proportional to the maximum snow depth in autumn. ALT temporal variability was greater than reported at other sites at similar latitude in the Northern Hemisphere, or with the similar mean annual air temperature in Maritime Antarctica, because vegetation and a soil organic horizon are absent at the study site. Zero annual amplitude in temperature was observed at about 16 m depth, where the mean annual

  15. Building a Cloud-based Global Snow Observatory

    Science.gov (United States)

    Li, X.; Coll, J. M.

    2016-12-01

    Snow covers some 40 percent of Earth's land masses year in and year out and constitutes a vitally important variable for the planet's climate, hydrology, and biosphere due to its high albedo and insulation. It affects atmospheric circulation patterns, permafrost, glacier mass balance, river discharge, and groundwater recharge (Dietz et al. 2015). Snow is also nature's igloo where species from microscopic fungi to 800-pound moose survive the winter each in its own way (Pauli et al. 2013; Petty et al. 2015). Many studies have found that snow in high elevation regions is particularly sensitive to global climate change and is considered as sentinel of change. For human beings, about one-sixth of the world's population depends on seasonal snow and glaciers for their water supply (Barnett et al. 2005) and more than 50% of mountainous areas have an essential or supportive role for downstream regions (Viviroli et al. 2007). Large snowstorms also have a major impact on society in terms of human life, economic loss, and disruption (Squires et al. 2014). Remote sensing provides a practical approach of monitoring global snow and ice cover change. Based on our comprehensive validation and assessment on MODIS snow products, we build a cloud-based Global Snow Observatory (GSO) using Google Earth Engine (GEE) to serve as a platform for global researchers and the general public to access, visualize, and analyze snow data and to build snowmelt runoff models for mountain watersheds. Specifically, we build the GSO to serve global MODIS daily snow cover data and their analyses through GEE on Google App Engine. The GSO provides users the functions of accessing and extracting cloud-gap-filled snow data and interactive snow cover change exploration. In addition to snow cover frequency (SCF), we also plan to develop several other snow cover parameters, including snow cover duration/days, snow cover onset dates, and snow cover melting dates, and to study the shift and trend of global snow

  16. Using hacked point and shoot cameras for time-lapse snow cover monitoring in an Alpine valley

    Science.gov (United States)

    Weijs, S. V.; Diebold, M.; Mutzner, R.; Golay, J. R.; Parlange, M. B.

    2012-04-01

    In Alpine environments, monitoring snow cover is essential get insight in the hydrological processes and water balance. Although measurement techniques based on LIDAR are available, their cost is often a restricting factor. In this research, an experiment was done using a distributed array of cheap consumer cameras to get insight in the spatio-temporal evolution of snowpack. Two experiments are planned. The first involves the measurement of eolic snow transport around a hill, to validate a snow saltation model. The second monitors the snowmelt during the melting season, which can then be combined with data from a wireless network of meteorological stations and discharge measurements at the outlet of the catchment. The poster describes the hardware and software setup, based on an external timer circuit and CHDK, the Canon Hack Development Kit. This latter is a flexible and developing software package, released under a GPL license. It was developed by hackers that reverse engineered the firmware of the camera and added extra functionality such as raw image output, more full control of the camera, external trigger and motion detection, and scripting. These features make it a great tool for geosciences. Possible other applications involve aerial stereo photography, monitoring vegetation response. We are interested in sharing experiences and brainstorming about new applications. Bring your camera!

  17. Monitoring System for ALICE Surface Areas

    CERN Document Server

    Demirbasci, Oguz

    2016-01-01

    I have been at CERN for 12 weeks within the scope of Summer Student Programme working on a monitoring system project for surface areas of the ALICE experiment during this period of time. The development and implementation of a monitoring system for environmental parameters in the accessible areas where a cheap hardware setup can be deployed were aim of this project. This report explains how it was developed by using Arduino, Raspberry PI, WinCC OA and DIM protocol.

  18. Calibration of a non-invasive cosmic-ray probe for wide area snow water equivalent measurement

    Science.gov (United States)

    Sigouin, Mark J. P.; Si, Bing C.

    2016-06-01

    Measuring snow water equivalent (SWE) is important for many hydrological purposes such as modelling and flood forecasting. Measurements of SWE are also crucial for agricultural production in areas where snowmelt runoff dominates spring soil water recharge. Typical methods for measuring SWE include point measurements (snow tubes) and large-scale measurements (remote sensing). We explored the potential of using the cosmic-ray soil moisture probe (CRP) to measure average SWE at a spatial scale between those provided by snow tubes and remote sensing. The CRP measures above-ground moderated neutron intensity within a radius of approximately 300 m. Using snow tubes, surveys were performed over two winters (2013/2014 and 2014/2015) in an area surrounding a CRP in an agricultural field in Saskatoon, Saskatchewan, Canada. The raw moderated neutron intensity counts were corrected for atmospheric pressure, water vapour, and temporal variability of incoming cosmic-ray flux. The mean SWE from manually measured snow surveys was adjusted for differences in soil water storage before snowfall between both winters because the CRP reading appeared to be affected by soil water below the snowpack. The SWE from the snow surveys was negatively correlated with the CRP-measured moderated neutron intensity, giving Pearson correlation coefficients of -0.90 (2013/2014) and -0.87 (2014/2015). A linear regression performed on the manually measured SWE and moderated neutron intensity counts for 2013/2014 yielded an r2 of 0.81. Linear regression lines from the 2013/2014 and 2014/2015 manually measured SWE and moderated neutron counts were similar; thus differences in antecedent soil water storage did not appear to affect the slope of the SWE vs. neutron relationship. The regression equation obtained from 2013/2014 was used to model SWE using the moderated neutron intensity data for 2014/2015. The CRP-estimated SWE for 2014/2015 was similar to that of the snow survey, with an root

  19. Influence of microscale in snow distributed modelling in semiarid regions

    OpenAIRE

    Pimentel Leiva, Rafael

    2015-01-01

    This work focuses on the importance of the microscale snow distribution in the modelling of the snow dynamics in semiarid regions. Snow over these areas has particular features that further complicate its measuring, monitoring and modelling (e.g. several snowmelt cycles throughout the year and a very heterogeneous distribution). Most extended GIS-based calculation of snowmelt/accumulation models must deal with non-negligible scales effects below the cell size, which may result ...

  20. Tomography-based monitoring of isothermal snow metamorphism under advective conditions

    OpenAIRE

    P. P. Ebner; M. Schneebeli; A. Steinfeld

    2015-01-01

    Time-lapse X-ray micro-tomography was used to investigate the structural dynamics of isothermal snow metamorphism exposed to an advective airflow. Diffusion and advection across the snow pores were analysed in controlled laboratory experiments. The 3-D digital geometry obtained by tomographic scans was used in direct pore-level numerical simulations to determine the effective transport properties. The results showed that isothermal advection with saturated air have no influence...

  1. Survey monitoring of environmental radioactivity in Seoul area

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jai Ki.; Chung, Ok Sun [Seoul Monitoring Station, Seoul (Korea, Republic of)

    2000-12-15

    The following results were obtained through the monitoring in 2000 at the Seoul monitoring station: gamma dose rate: 14.6 - 10.6 {mu}R/h, gross beta activity in airborne dust : 224 - 9.80 mBq/m{sup 3}, gross beta activity in precipitation dust : 50.0 - 5.68 MBq/km - 30 days ; gross beta activity in rain and snow : 1267 - 19.0 mBq/L, gross beta activity in tap water : 127 - 26.3 mBq/L. All the monitored variables remained in the corresponding normal ranges, which implies that there were no abnormal situations of environmental radiation in the Seoul region in 2000. Radioactivity contents in foodstuffs consumed in Seoul area were analyzed for use in assessment of population doses via dietary intakes. Natural isotopes {sup 40}K and {sup 7}Be constitute the major radioactivity and {sup 137}Cs is the only man-made isotope detected in some sample.

  2. Support vector machine-based decision tree for snow cover extraction in mountain areas using high spatial resolution remote sensing image

    Science.gov (United States)

    Zhu, Liujun; Xiao, Pengfeng; Feng, Xuezhi; Zhang, Xueliang; Wang, Zuo; Jiang, Luyuan

    2014-01-01

    Snow cover extraction in mountain areas is a complex task, especially from high spatial resolution remote sensing (HSRRS) data. The influence of mountain shadows in HSRRS is severe and normalized difference snow index-based snow cover extraction methods are inaccessible. A decision tree building method for snow cover extraction (DTSE) integrated with an efficiency feature selection algorithm is proposed. The severe influence of terrain shadows is eliminated by extracting snow in sunlight and snow in shadow separately in different nodes. In the feature selection algorithm, deviation of fuzzy grade matrix is proposed as a class-specific criterion which improves the efficiency and robustness of the selected feature set, thus making the snow cover extraction accurate. Two experiments are carried out based on ZY-3 image of two regions (regions A and B) located in Tianshan Mountains, China. The experiment on region A achieves an adequate accuracy demonstrating the robustness of the DTSE building method. The experiment on region B shows that a general DTSE model achieves an unsatisfied accuracy for snow in shadow and DTSE rebuilding evidently improves the performance, thus providing an accurate and fast way to extract snow cover in mountain areas.

  3. Noninvasive genetic population survey of snow leopards (Panthera uncia in Kangchenjunga conservation area, Shey Phoksundo National Park and surrounding buffer zones of Nepal

    Directory of Open Access Journals (Sweden)

    Karmacharya Dibesh B

    2011-11-01

    Full Text Available Abstract Background The endangered snow leopard is found throughout major mountain ranges of Central Asia, including the remote Himalayas. However, because of their elusive behavior, sparse distribution, and poor access to their habitat, there is a lack of reliable information on their population status and demography, particularly in Nepal. Therefore, we utilized noninvasive genetic techniques to conduct a preliminary snow leopard survey in two protected areas of Nepal. Results A total of 71 putative snow leopard scats were collected and analyzed from two different areas; Shey Phoksundo National Park (SPNP in the west and Kangchanjunga Conservation Area (KCA in the east. Nineteen (27% scats were genetically identified as snow leopards, and 10 (53% of these were successfully genotyped at 6 microsatellite loci. Two samples showed identical genotype profiles indicating a total of 9 individual snow leopards. Four individual snow leopards were identified in SPNP (1 male and 3 females and five (2 males and 3 females in KCA. Conclusions We were able to confirm the occurrence of snow leopards in both study areas and determine the minimum number present. This information can be used to design more in-depth population surveys that will enable estimation of snow leopard population abundance at these sites.

  4. Catchment-scale evaluation of pollution potential of urban snow at two residential catchments in southern Finland.

    Science.gov (United States)

    Sillanpää, Nora; Koivusalo, Harri

    2013-01-01

    Despite the crucial role of snow in the hydrological cycle in cold climate conditions, monitoring studies of urban snow quality often lack discussions about the relevance of snow in the catchment-scale runoff management. In this study, measurements of snow quality were conducted at two residential catchments in Espoo, Finland, simultaneously with continuous runoff measurements. The results of the snow quality were used to produce catchment-scale estimates of areal snow mass loads (SML). Based on the results, urbanization reduced areal snow water equivalent but increased pollutant accumulation in snow: SMLs in a medium-density residential catchment were two- to four-fold higher in comparison with a low-density residential catchment. The main sources of pollutants were related to vehicular traffic and road maintenance, but also pet excrement increased concentrations to a high level. Ploughed snow can contain 50% of the areal pollutant mass stored in snow despite its small surface area within a catchment.

  5. Composition of microbial communities in aerosol, snow and ice samples from remote glaciated areas (Antarctica, Alps, Andes

    Directory of Open Access Journals (Sweden)

    J. Elster

    2007-06-01

    Full Text Available Taxonomical and ecological analyses were performed on micro-autotrophs (cyanobacteria and algae together with remnants of diatom valves, micro-fungi (hyphae and spores, bacteria (rod, cocci and red clusters, yeast, and plant pollen extracted from various samples: Alps snow (Mt. Blank area, Andean snow (Illimani, Bolivia, Antarctic aerosol filters (Dumont d'Urville, Terre Adélie, and Antarctic inland ice (Terre Adélie. Three methods for ice and snow sample's pre-concentration were tested (filtration, centrifugation and lyophilisation. Afterwards, cultivation methods for terrestrial, freshwater and marine microorganisms (micro-autotrophs and micro-fungi were used in combination with liquid and solid media. The main goal of the study was to find out if micro-autotrophs are commonly transported by air masses, and later stored in snow and icecaps around the world. The most striking result of this study was the absence of culturable micro-autotrophs in all studied samples. However, an unusual culturable pigmented prokaryote was found in both alpine snow and aerosol samples. Analyses of many samples and proper statistical analyses (PCA, RDA- Monte Carlo permutation tests showed that studied treatments highly significantly differ in both microbial community and biotic remnants composition F=9.33, p=0.001. In addition, GLM showed that studied treatments highly significantly differ in numbers of categories of microorganisms and remnants of biological material F=11.45, p=0.00005. The Antarctic aerosol samples were characterised by having red clusters of bacteria, the unusual prokaryote and yeasts. The high mountain snow from the Alps and Andes contained much more culturable heterotrophs. The unusual prokaryote was very abundant, as were coccoid bacteria, red clusters of bacteria, as well as yeasts. The Antarctic ice samples were quite different. These samples had higher numbers of rod bacteria and fungal hyphae. The microbial communities and

  6. Elemental composition in surface snow from the ultra-high elevation area of Mt. Qomolangma (Everest)

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A total of 14 surface snow (0-10 cm) samples were collected along the climbing route (6500-8844 m a.s.l.) on the northern slope of Mt. Qomolangma in May, 2005. Analysis of elemental concentrations in these samples showed that there are no clear trends for element variations with elevation due to redistribution of surface snow by strong winds during spring. In addition, local crustal aerosol inputs also have an influence on elemental composition of surface snow. Comparison between elemental concentration datasets of 2005 and 1997 indicated that data from 2005 were of higher quality. Elemental concentrations (especially for heavy metals) at Mt. Qomolangma are comparable with polar sites, and far lower than large cities. This indicates that anthropogenic activities and heavy metal pollution have little effect on the Mt. Qomolangma atmospheric environment, which can be representative of the background atmospheric environment.

  7. A new web-based system to improve the monitoring of snow avalanche hazard in France

    Science.gov (United States)

    Bourova, Ekaterina; Maldonado, Eric; Leroy, Jean-Baptiste; Alouani, Rachid; Eckert, Nicolas; Bonnefoy-Demongeot, Mylene; Deschatres, Michael

    2016-05-01

    Snow avalanche data in the French Alps and Pyrenees have been recorded for more than 100 years in several databases. The increasing amount of observed data required a more integrative and automated service. Here we report the comprehensive web-based Snow Avalanche Information System newly developed to this end for three important data sets: an avalanche chronicle (Enquête Permanente sur les Avalanches, EPA), an avalanche map (Carte de Localisation des Phénomènes d'Avalanche, CLPA) and a compilation of hazard and vulnerability data recorded on selected paths endangering human settlements (Sites Habités Sensibles aux Avalanches, SSA). These data sets are now integrated into a common database, enabling full interoperability between all different types of snow avalanche records: digitized geographic data, avalanche descriptive parameters, eyewitness reports, photographs, hazard and risk levels, etc. The new information system is implemented through modular components using Java-based web technologies with Spring and Hibernate frameworks. It automates the manual data entry and improves the process of information collection and sharing, enhancing user experience and data quality, and offering new outlooks to explore and exploit the huge amount of snow avalanche data available for fundamental research and more applied risk assessment.

  8. Snow leopard found in high-altitude area on "World Roof"

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    @@ Researchers with the CAS Cold and Arid Region Environmental and Engineering Research Institute shot pictures of a snow leopard on a grassland about 5,100m above the sea level on the Qinghai-Tibet Plateau.The pictures are precious because they are the first images of the endangered animal in the region.

  9. Evaluation of snow cover and snow depth on the Qinghai-Tibetan Plateau derived from passive microwave remote sensing

    Science.gov (United States)

    Dai, Liyun; Che, Tao; Ding, Yongjian; Hao, Xiaohua

    2017-08-01

    Snow cover on the Qinghai-Tibetan Plateau (QTP) plays a significant role in the global climate system and is an important water resource for rivers in the high-elevation region of Asia. At present, passive microwave (PMW) remote sensing data are the only efficient way to monitor temporal and spatial variations in snow depth at large scale. However, existing snow depth products show the largest uncertainties across the QTP. In this study, MODIS fractional snow cover product, point, line and intense sampling data are synthesized to evaluate the accuracy of snow cover and snow depth derived from PMW remote sensing data and to analyze the possible causes of uncertainties. The results show that the accuracy of snow cover extents varies spatially and depends on the fraction of snow cover. Based on the assumption that grids with MODIS snow cover fraction > 10 % are regarded as snow cover, the overall accuracy in snow cover is 66.7 %, overestimation error is 56.1 %, underestimation error is 21.1 %, commission error is 27.6 % and omission error is 47.4 %. The commission and overestimation errors of snow cover primarily occur in the northwest and southeast areas with low ground temperature. Omission error primarily occurs in cold desert areas with shallow snow, and underestimation error mainly occurs in glacier and lake areas. With the increase of snow cover fraction, the overestimation error decreases and the omission error increases. A comparison between snow depths measured in field experiments, measured at meteorological stations and estimated across the QTP shows that agreement between observation and retrieval improves with an increasing number of observation points in a PMW grid. The misclassification and errors between observed and retrieved snow depth are associated with the relatively coarse resolution of PMW remote sensing, ground temperature, snow characteristics and topography. To accurately understand the variation in snow depth across the QTP, new algorithms

  10. Evaluation of snow cover and snow depth on the Qinghai–Tibetan Plateau derived from passive microwave remote sensing

    Directory of Open Access Journals (Sweden)

    L. Dai

    2017-08-01

    Full Text Available Snow cover on the Qinghai–Tibetan Plateau (QTP plays a significant role in the global climate system and is an important water resource for rivers in the high-elevation region of Asia. At present, passive microwave (PMW remote sensing data are the only efficient way to monitor temporal and spatial variations in snow depth at large scale. However, existing snow depth products show the largest uncertainties across the QTP. In this study, MODIS fractional snow cover product, point, line and intense sampling data are synthesized to evaluate the accuracy of snow cover and snow depth derived from PMW remote sensing data and to analyze the possible causes of uncertainties. The results show that the accuracy of snow cover extents varies spatially and depends on the fraction of snow cover. Based on the assumption that grids with MODIS snow cover fraction > 10 % are regarded as snow cover, the overall accuracy in snow cover is 66.7 %, overestimation error is 56.1 %, underestimation error is 21.1 %, commission error is 27.6 % and omission error is 47.4 %. The commission and overestimation errors of snow cover primarily occur in the northwest and southeast areas with low ground temperature. Omission error primarily occurs in cold desert areas with shallow snow, and underestimation error mainly occurs in glacier and lake areas. With the increase of snow cover fraction, the overestimation error decreases and the omission error increases. A comparison between snow depths measured in field experiments, measured at meteorological stations and estimated across the QTP shows that agreement between observation and retrieval improves with an increasing number of observation points in a PMW grid. The misclassification and errors between observed and retrieved snow depth are associated with the relatively coarse resolution of PMW remote sensing, ground temperature, snow characteristics and topography. To accurately understand the variation in snow

  11. Diversity of bacteria producing pigmented colonies in aerosol, snow and soil samples from remote glacial areas (Antarctica, Alps and Andes)

    Science.gov (United States)

    González-Toril, E.; Amils, R.; Delmas, R. J.; Petit, J.-R.; Komárek, J.; Elster, J.

    2008-04-01

    Four different communities and one culture of pigmented microbial assemblages were obtained by incubation in mineral medium of samples collected from high elevation snow in the Alps (Mt. Blanc area) and the Andes (Nevado Illimani summit, Bolivia), from Antarctic aerosol (French station Dumont d'Urville) and a maritime Antarctic soil (King George Island, South Shetlands, Uruguay Station Artigas). Molecular analysis of more than 200 16S rRNA gene sequences showed that all cultured cells belong to the Bacteria domain. The phylogenetic comparison with the currently available rDNA database allowed the identification of sequences belonging to Proteobacteria (Alpha-, Beta- and Gamma-proteobacteria), Actinobacteria and Bacteroidetes phyla. The Andes snow culture was the richest in bacterial diversity (eight microorganisms identified) and the maritime Antarctic soil the poorest (only one). Snow samples from Col du midi (Alps) and the Andes shared the highest number of identified microorganisms (Agrobacterium, Limnobacter, Aquiflexus and two uncultured Alphaproteobacteria clones). These two sampling sites also shared four sequences with the Antarctic aerosol sample (Limnobacter, Pseudonocardia and an uncultured Alphaproteobacteria clone). The only microorganism identified in the maritime Antarctica soil (Brevundimonas sp.) was also detected in the Antarctic aerosol. The two snow samples from the Alps only shared one common microorganism. Most of the identified microorganisms have been detected previously in cold environments (Dietzia kujamenisi, Pseudonocardia Antarctica, Hydrogenophaga palleronii and Brebundimonas sp.), marine sediments (Aquiflexus balticus, Pseudomonas pseudoalkaligenes, Pseudomonas sp. and one uncultured Alphaproteobacteria), and soils and rocks (Pseudonocardia sp., Agrobactrium sp., Limnobacter sp. and two uncultured Alphaproteobacetria clones). Air current dispersal is the best model to explain the presence of very specific microorganisms, like those

  12. Neutron area monitor with TLD pairs

    Energy Technology Data Exchange (ETDEWEB)

    Guzman G, K. A.; Borja H, C. G.; Valero L, C.; Hernandez D, V. M.; Vega C, H. R., E-mail: ing_karen_guzman@yahoo.com.mx [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10. Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2011-11-15

    The response of a passive neutron area monitor with pairs of thermoluminescent dosimeters has been calculated using the Monte Carlo code MCNP5. The response was calculated for one TLD 600 located at the center of a polyethylene cylinder, as moderator. When neutrons collide with the moderator lose their energy reaching the TLD with thermal energies where the ambient dose equivalent is calculated. The response was calculated for 47 monoenergetic neutron sources ranging from 1E(-9) to 20 MeV. Response was calculated using two irradiation geometries, one with an upper source and another with a lateral source. For both irradiation schemes the response was calculated with the TLDs in two positions, one parallel to the source and another perpendicular to the source. The advantage of this passive neutron monitor area is that can be used in locations with intense, pulsed and mixed radiation fields. (Author)

  13. Passive neutron area monitor with TLD pairs

    Energy Technology Data Exchange (ETDEWEB)

    Guzman G, K. A.; Borja H, C. G.; Valero L, C.; Hernandez D, V. M.; Vega C, H. R., E-mail: fermineutron@yahoo.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2012-06-15

    The response of a passive neutron area monitor with pairs of thermoluminescent dosimeters (TLD) has been calculated using the Monte Carlo code MCNP5. The response was calculated for one TLD 600 located at the center of a polyethylene moderator. The response was calculated for 47 monoenergetic neutron sources ranging from 1E(-9) to 20 MeV. Response was calculated using two irradiation geometries, one with an upper source and another with a lateral source. For both irradiation schemes the response was calculated with the TLD in two positions, one parallel to the source and another perpendicular to the source. The advantage of this passive neutron monitor area is that can be used in locations with intense, pulsed and mixed radiation fields like those in radiotherapy vault rooms with linear accelerators. (Author)

  14. Trace Elements and Common Ions in Southeastern Idaho Snow: Regional Air Pollutant Tracers for Source Area Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, Michael Lehman; Einerson, Jeffrey James; Schuster, Paul; Susong, David D.

    2002-09-01

    Snow samples were collected in southeastern Idaho over two winters to assess trace elements and common ions concentrations in air pollutant fallout across the region. The objectives were to: 1) develop sampling and analysis techniques that would produce accurate measurements of a broad suite of elements and ions in snow, 2) identify the major elements in regional fallout and their spatial and temporal trends, 3) determine if there are unique combinations of elements that are characteristic to the major source areas in the region (source profiles), and 4) use pattern recognition and multivariate statistical techniques (principal component analysis and classical least squares regression) to investigate source apportionment of the fallout to the major source areas. In the winter of 2000-2001, 250 snow samples were collected across the region over a 4-month period and analyzed in triplicate using inductively-coupled plasma mass spectrometry (ICP-MS) and ion chromatography (IC). Thirty-nine (39) trace elements and 9 common ions were positively identified in most samples. The data were analyzed using pattern recognition tools in the software, Pirouette® (Infometrix, Inc.). These results showed a large crustal component (Al, Zn, Mn, Ba, and rare earth elements), an overwhelming contribution from phosphate processing facilities located outside Pocatello in the southern portion of the ESRP, some changes in concentrations over time, and no obvious source area profiles (unique chemical signatures) other than at Pocatello. Concentrations near a major U.S. Department of Energy industrial complex on the Idaho National Engineering and Environmental Laboratory (INEEL) were lower than those observed at major downwind communities. In the winter of 2001-2002, we tried a new sampling design (and collected 135 additional samples) in an attempt to estimate pure emission profiles from the major source areas in the region and used classical least squares regression (CLS) to source

  15. Road Snow Damage Area Highway Design Principle%公路风吹雪雪害地区公路设计原则

    Institute of Scientific and Technical Information of China (English)

    张传义

    2012-01-01

    简要介绍凤吹雪对公路交通的危害,并分析公路风吹雪雪害的成因,提出在风吹雪地区公路设计中,应提前考虑风雪流对拟建公路的危害,减少风吹雪的危害程度。%This paper briefly introduces the blowing snow on highway traffic hazards, as well as the analysis, in the forward wind, snow area highway design, consideration should be given to advance construction of highway snowdrift snow hazard risk, reduce.

  16. Monitoring of Population Density of Snow Leopard in Xinjiang.%新疆雪豹种群密度监测方法探讨

    Institute of Scientific and Technical Information of China (English)

    马鸣; 徐峰; Bariushaa Munkhtsog; 吴逸群; Tomas McCarthy; Kyle McCarthy

    2011-01-01

    the group began to take infrared photos, conducted survey of food sources of the leopards, investigated fur market and paths of trading, and cases of killing, and carry out civil survey through questionnaire, non-government organization community service and research on conflicts between grazing and wildlife protection. A total of 36 infrared cameras were laid out, working a total of about 2 094 days or 50 256 hours. A total 71 rolls of film were collected and developed, including 32 clear pictures of snow leopards, thus making up a shooting rate or capture rate of 1.53%. It was ascertained that in Tomur Peak area, there were 5 -8 snow leopards roaming within a range of 250 km2,forming a population density of 2.0 -3.2 per 100 km2. After comparing the various monitoring results, the advantages and limitations of different monitoring methods have been discussed.

  17. Snow Web 2.0: The Next Generation of Antarctic Meteorological Monitoring Systems?

    Science.gov (United States)

    Coggins, J.; McDonald, A.; Plank, G.; Pannell, M.; Ward, R.; Parsons, S.

    2012-04-01

    Adequate in-situ observation of the Antarctic lower atmosphere has proved problematic, due to a combination of the inhospitable nature and extent of the continent. Traditional weather stations are expensive, subject to extreme weather for long periods and are often isolated, and as such are prone to failure and logistically difficult to repair. We have developed the first generation of an extended system of atmospheric sensors, each costing a fraction of the price of a traditional weather station. The system is capable of performing all of the monitoring tasks of a traditional station, but has built-in redundancy over the traditional approach because many units can be deployed in a relatively small area for similar expenditure as one large weather station. Furthermore, each unit is equipped with wireless networking capabilities and so is able to share information with those units in its direct vicinity. This allows for the ferrying of collected information to a manned observation station and hence the ability to monitor data in real-time. The distributed nature of the data collected can then be used as a stand-alone product to investigate small-scale weather and climate phenomena or integrated into larger studies and be used to monitor wide regions. GPS hardware installed on each unit also allows for high-resolution glacier or ice-shelf tracking. As a testing and data gathering study, eighteen such weather stations were deployed in the vicinity of Scott Base, Ross Island, Antarctica over the 2011/12 summer season. This presentation reports on findings from this field study, and discusses possibilities for the future.

  18. Neutron area monitor with passive detector

    Energy Technology Data Exchange (ETDEWEB)

    Valero L, C.; Guzman G, K. A.; Borja H, C. G.; Hernandez D, V. M.; Vega C, H. R., E-mail: fermineutron@yahoo.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2012-06-15

    Using Monte Carlo method the responses of a passive neutron monitor area has been calculated. To detect thermal neutrons the monitor has a gold foil that is located at the center of a polyethylene cylinder. Impinging neutrons are moderated by polyethylene nuclei reaching the gold foil with the energy to induce activation through the reaction {sup 197}Au(n, {gamma}) {sup 198}Au. The {sup 198}Au decays emitting 0.411 MeV gamma rays with a half life of 2.7 days. The induced activity is intended to be measured with a gamma-ray spectrometer with a 3'' {phi} x 3'' NaI(Tl) scintillator and the saturation activity is correlated to the ambient dose equivalent. The response was calculated for 47 monoenergetic neutron sources ranging from 1 x 10{sup -9} to 20 MeV. Calculated fluence response was compared with the response of neutron monitor area LB 6411. (Author)

  19. Wide-area continuous offender monitoring

    Science.gov (United States)

    Hoshen, Joseph; Drake, George; Spencer, Debra D.

    1997-02-01

    The corrections system in the U.S. is supervising over five million offenders. This number is rising fast and so are the direct and indirect costs to society. To improve supervision and reduce the cost of parole and probation, first generation home arrest systems were introduced in 1987. While these systems proved to be helpful to the corrections system, their scope is rather limited because they only cover an offender at a single location and provide only a partial time coverage. To correct the limitations of first- generation systems, second-generation wide area continuous electronic offender monitoring systems, designed to monitor the offender at all times and locations, are now on the drawing board. These systems use radio frequency location technology to track the position of offenders. The challenge for this technology is the development of reliable personal locator devices that are small, lightweight, with long operational battery life, and indoors/outdoors accuracy of 100 meters or less. At the center of a second-generation system is a database that specifies the offender's home, workplace, commute, and time the offender should be found in each. The database could also define areas from which the offender is excluded. To test compliance, the system would compare the observed coordinates of the offender with the stored location for a given time interval. Database logfiles will also enable law enforcement to determine if a monitored offender was present at a crime scene and thus include or exclude the offender as a potential suspect.

  20. Temporal monitoring of the soil freeze-thaw cycles over snow-cover land by using off-ground GPR

    KAUST Repository

    Jadoon, Khan

    2013-07-01

    We performed off-ground ground-penetrating radar (GPR) measurements over a bare agricultural field to monitor the freeze-thaw cycles over snow-cover. The GPR system consisted of a vector network analyzer combined with an off-ground monostatic horn antenna, thereby setting up an ultra-wideband stepped-frequency continuous-wave radar. Measurements were performed during nine days and the surface of the bare soil was exposed to snow fall, evaporation and precipitation as the GPR antenna was mounted 110 cm above the ground. Soil surface dielectric permittivity was retrieved using an inversion of time-domain GPR data focused on the surface reflection. The GPR forward model used combines a full-waveform solution of Maxwell\\'s equations for three-dimensional wave propagation in planar layered media together with global reflection and transmission functions to account for the antenna and its interactions with the medium. Temperature and permittivity sensors were installed at six depths to monitor the soil dynamics in the top 8 cm depth. Significant effects of soil dynamics were observed in the time-lapse GPR, temperature and permittivity data and in particular freeze and thaw events were clearly visible. A good agreement of the trend was observed between the temperature, permittivity and GPR time-lapse data with respect to five freeze-thaw cycles. The GPR-derived permittivity was in good agreement with sensor observations. The proposed method appears to be promising for the real-time mapping and monitoring of the frozen layer at the field scale. © 2013 IEEE.

  1. Application of radar polarimetry techniques for retrieval snow and rain characteristics in remote sensing

    Science.gov (United States)

    Darvishi, M.; Ahmadi, Gh. R.

    2013-09-01

    The presence of snow cover has significant impacts on the both global and regional climate and water balance on earth. The accurate estimation of snow cover area can be used for forecasting runoff due to snow melt and output of hydroelectric power. With development of remote sensing techniques at different scopes in earth science, enormous algorithms for retrieval hydrometeor parameters have been developed. Some of these algorithms are used to provide snow cover map such as NLR with AVHRR/MODIS sensor for Norway, Finnish with AVHRR sensor for Finland and NASA with MODIS sensor for global maps. Monitoring snow cover at different parts of spectral electromagnetic is detectable (visible, near and thermal infrared, passive and active microwave). Recently, specific capabilities of active microwave remote sensing such as snow extent map, snow depth, snow water equivalent (SWE), snow state (wet/dry) and discrimination between rain and snow region were given a strong impetus for using this technology in snow monitoring, hydrology, climatology, avalanche research and etc. This paper evaluates the potentials and feasibility of polarimetric ground microwave measurements of snow in active remote sensing field. We will consider the behavior co- and cross-polarized backscattering coefficients of snowpack response with polarimetric scatterometer in Ku and L band at the different incident angles. Then we will show how to retrieve snow cover depth, snow permittivity and density parameters at the local scale with ground-based SAR (GB-SAR). Finally, for the sake of remarkable significant the transition region between rain and snow; the variables role of horizontal reflectivity (ZHH) and differential reflectivity (ZDR) in delineation boundary between snow and rain and some others important variables at polarimetric weather radar are presented.

  2. Application of radar polarimetry techniques for retrieval snow and rain characteristics in remote sensing

    Directory of Open Access Journals (Sweden)

    M. Darvishi

    2013-09-01

    Full Text Available The presence of snow cover has significant impacts on the both global and regional climate and water balance on earth. The accurate estimation of snow cover area can be used for forecasting runoff due to snow melt and output of hydroelectric power. With development of remote sensing techniques at different scopes in earth science, enormous algorithms for retrieval hydrometeor parameters have been developed. Some of these algorithms are used to provide snow cover map such as NLR with AVHRR/MODIS sensor for Norway, Finnish with AVHRR sensor for Finland and NASA with MODIS sensor for global maps. Monitoring snow cover at different parts of spectral electromagnetic is detectable (visible, near and thermal infrared, passive and active microwave. Recently, specific capabilities of active microwave remote sensing such as snow extent map, snow depth, snow water equivalent (SWE, snow state (wet/dry and discrimination between rain and snow region were given a strong impetus for using this technology in snow monitoring, hydrology, climatology, avalanche research and etc. This paper evaluates the potentials and feasibility of polarimetric ground microwave measurements of snow in active remote sensing field. We will consider the behavior co- and cross-polarized backscattering coefficients of snowpack response with polarimetric scatterometer in Ku and L band at the different incident angles. Then we will show how to retrieve snow cover depth, snow permittivity and density parameters at the local scale with ground-based SAR (GB-SAR. Finally, for the sake of remarkable significant the transition region between rain and snow; the variables role of horizontal reflectivity (ZHH and differential reflectivity (ZDR in delineation boundary between snow and rain and some others important variables at polarimetric weather radar are presented.

  3. Diversity of bacteria producing pigmented colonies in aerosol, snow and soil samples from remote glacial areas (Antarctica, Alps and Andes

    Directory of Open Access Journals (Sweden)

    E. González-Toril

    2008-04-01

    Full Text Available Four different communities and one culture of pigmented microbial assemblages were obtained by incubation in mineral medium of samples collected from high elevation snow in the Alps (Mt. Blanc area and the Andes (Nevado Illimani summit, Bolivia, from Antarctic aerosol (French station Dumont d'Urville and a maritime Antarctic soil (King George Island, South Shetlands, Uruguay Station Artigas. Molecular analysis of more than 200 16S rRNA gene sequences showed that all cultured cells belong to the Bacteria domain. The phylogenetic comparison with the currently available rDNA database allowed the identification of sequences belonging to Proteobacteria (Alpha-, Beta- and Gamma-proteobacteria, Actinobacteria and Bacteroidetes phyla. The Andes snow culture was the richest in bacterial diversity (eight microorganisms identified and the maritime Antarctic soil the poorest (only one. Snow samples from Col du midi (Alps and the Andes shared the highest number of identified microorganisms (Agrobacterium, Limnobacter, Aquiflexus and two uncultured Alphaproteobacteria clones. These two sampling sites also shared four sequences with the Antarctic aerosol sample (Limnobacter, Pseudonocardia and an uncultured Alphaproteobacteria clone. The only microorganism identified in the maritime Antarctica soil (Brevundimonas sp. was also detected in the Antarctic aerosol. The two snow samples from the Alps only shared one common microorganism. Most of the identified microorganisms have been detected previously in cold environments (Dietzia kujamenisi, Pseudonocardia Antarctica, Hydrogenophaga palleronii and Brebundimonas sp., marine sediments (Aquiflexus balticus, Pseudomonas pseudoalkaligenes, Pseudomonas sp. and one uncultured Alphaproteobacteria, and soils and rocks (Pseudonocardia sp.,

  4. Observation and modeling of the seasonal evolution of the snow specific surface area at Dome C in Antarctica

    Science.gov (United States)

    Picard, G.; Libois, Q.; Arnaud, L.; Dumont, M.; Lafaysse, M.; Morin, S.

    2015-12-01

    The specific surface area (SSA) of surface snow evolves in response to meteorological conditions (e.g. temperature and precipitation). It is the main driver of the albedo in the near infrared range where most of the solar energy is absorbed in Antarctica. In turn, albedo change affects snow temperature, which drives SSA evolution rate, and at a larger scale influences the climate of snow-covered regions through snow-albedo feedback loops. Here we present a SSA retrieval method based on in-situ spectral albedo measurements and explore the factors limiting the accuracy of this method. The snowpack model Crocus is also used to simulate SSA evolution, and to investigate the respective role of temperature and precipitation Automatic spectral measurements of the upwelling and downwelling irradiance in the range 800nm - 1050nm are acquired every hour with a spectrophotometer deployed at Dome C since 2012. Spectral albedo is derived from these measurements and is used in conjunction with an asymptotic analytical solution of the radiative transfer equation to retrieve surface SSA estimates representative of the topmost centimeter. The sensitivity analysis of this method shows that the spectro-angular response of the cosine collector used to capture the light, and the uncertainty in the surface roughness are the largest sources of error, and can account for up to 20% uncertainty in SSA retrieval. In contrast, the dark current of the spectrometer, the inter-calibration of the upwelling and downwelling lines are good enough or sufficiently easy to correct not to impact the retrieval. To compare the surface SSA time-series to Crocus simulations, a few adaptations to the Antarctic conditions have been implemented in the model. The results show that the Crocus successfully matches the observations at daily to seasonal time scales, except for a few cases when snowfalls are not present in the meteorological forcing. On the contrary, the inter-annual variability of summer SSA

  5. Measuring the specific surface area of snow with X-ray tomography and gas adsorption: comparison and implications for surface smoothness

    Directory of Open Access Journals (Sweden)

    M. Kerbrat

    2008-03-01

    Full Text Available Chemical and physical processes, such as heterogeneous chemical reactions, light scattering, and metamorphism occur in the natural snowpack. To model these processes in the snowpack, the specific surface area (SSA is a key parameter. In this study, two methods, computed tomography and methane adsorption, which have intrinsically different effective resolutions – molecular and 30 μm, respectively – were used to determine the SSA of similar natural snow samples. Except for very fresh snow, the two methods give identical results, with an uncertainty of 3%. This implies that the surface of aged natural snow is smooth up to a scale of about 30 μm and that if smaller structures are present they do not contribute significantly to the overall SSA. It furthermore implies that for optical methods a voxel size of 10 μm is sufficient to capture all structural features of this type of snow; however, fresh precipitation appears to contain small features that cause an under-estimation of SSA with tomography at this resolution. The methane adsorption method is therefore superior to computed tomography for very fresh snow having high SSA. Nonetheless, in addition to SSA determination, tomography provides full geometric information about the ice matrix. It can also be advantageously used to investigate layered snow packs, as it allows measuring SSA in layers of less than 1 mm.

  6. Long-term monitoring of fecal steroid hormones in female snow leopards (Panthera uncia during pregnancy or pseudopregnancy.

    Directory of Open Access Journals (Sweden)

    Kodzue Kinoshita

    Full Text Available Knowledge of the basic reproductive physiology of snow leopards is required urgently in order to develop a suitable management conditions under captivity. In this study, the long-term monitoring of concentrations of three steroid hormones in fecal matter of three female snow leopards was performed using enzyme immunoassays: (1 estradiol-17β, (2 progesterone and (3 cortisol metabolite. Two of the female animals were housed with a male during the winter breeding season, and copulated around the day the estradiol-17β metabolite peaked subsequently becoming pregnant. The other female was treated in two different ways: (1 first housed with a male in all year round and then (2 in the winter season only. She did not mate with him on the first occasion, but did so latter around when estradiol-17β metabolite peaked, and became pseudopregnant. During pregnancy, progesterone metabolite concentrations increased for 92 or 94 days, with this period being approximately twice as long as in the pseudopregnant case (31, 42, 49 and 53 days. The levels of cortisol metabolite in the pseudopregnant female (1.35 µg/g were significantly higher than in the pregnant females (0.33 and 0.24 µg/g (P<0.05. Similarly, during the breeding season, the levels of estradiol-17β metabolite in the pseudopregnant female (2.18 µg/g were significantly higher than those in the pregnant females (0.81 and 0.85 µg/g (P<0.05. Unlike cortisol the average levels of estradiol-17β during the breeding season were independent of reproductive success.The hormone levels may also be related to housing conditions and the resulting reproductive success in female leopards. The female housed with a male during the non-breeding season had high levels of cortisol metabolites and low levels of estradiol-17β in the breeding season, and failed to become pregnant. This indicates that housing conditions in snow leopards may be an important factor for normal endocrine secretion and resulting breeding

  7. A snow cover climatology for the Pyrenees from MODIS snow products

    Science.gov (United States)

    Gascoin, S.; Hagolle, O.; Huc, M.; Jarlan, L.; Dejoux, J.-F.; Szczypta, C.; Marti, R.; Sanchez, R.

    2015-05-01

    The seasonal snow in the Pyrenees is critical for hydropower production, crop irrigation and tourism in France, Spain and Andorra. Complementary to in situ observations, satellite remote sensing is useful to monitor the effect of climate on the snow dynamics. The MODIS daily snow products (Terra/MOD10A1 and Aqua/MYD10A1) are widely used to generate snow cover climatologies, yet it is preferable to assess their accuracies prior to their use. Here, we use both in situ snow observations and remote sensing data to evaluate the MODIS snow products in the Pyrenees. First, we compare the MODIS products to in situ snow depth (SD) and snow water equivalent (SWE) measurements. We estimate the values of the SWE and SD best detection thresholds to 40 mm water equivalent (w.e.) and 150 mm, respectively, for both MOD10A1 and MYD10A1. κ coefficients are within 0.74 and 0.92 depending on the product and the variable for these thresholds. However, we also find a seasonal trend in the optimal SWE and SD thresholds, reflecting the hysteresis in the relationship between the depth of the snowpack (or SWE) and its extent within a MODIS pixel. Then, a set of Landsat images is used to validate MOD10A1 and MYD10A1 for 157 dates between 2002 and 2010. The resulting accuracies are 97% (κ = 0.85) for MOD10A1 and 96% (κ = 0.81) for MYD10A1, which indicates a good agreement between both data sets. The effect of vegetation on the results is analyzed by filtering the forested areas using a land cover map. As expected, the accuracies decrease over the forests but the agreement remains acceptable (MOD10A1: 96%, κ = 0.77; MYD10A1: 95%, κ = 0.67). We conclude that MODIS snow products have a sufficient accuracy for hydroclimate studies at the scale of the Pyrenees range. Using a gap-filling algorithm we generate a consistent snow cover climatology, which allows us to compute the mean monthly snow cover duration per elevation band and aspect classes. There is snow on the ground at least 50% of the

  8. Design of an optimal snow observation network to estimate snowpack

    Science.gov (United States)

    Juan Collados Lara, Antonio; Pardo-Iguzquiza, Eulogio; Pulido-Velazquez, David

    2016-04-01

    Snow is an important water resource in many river basins that must be taken into account in hydrological modeling. Although the snow cover area may be nowadays estimated from satellite data, the snow pack thickness must be estimated from experimental data by using some interpolation procedure or hydrological models that approximates snow accumulation and fusion processes. The experimental data consist of hand probes and snow samples collected in a given number of locations that constitute the monitoring network. Assuming that there is an existing monitoring network, its optimization may imply the selection of an optimal network as a subset of the existing network (decrease of the existing network in the case that there are no funds for maintaining the full existing network) or to increase the existing network by one or more stations (optimal augmentation problem). In this work we propose a multicriterion approach for the optimal design of a snow network. These criteria include the estimation variance from a regression kriging approach for estimating thickness of the snowpack (using ground and satellite data), to minimize the total snow volume and accessibility criteria. We have also proposed a procedure to analyze the sensitivity of the results to the non-snow data deduced from the satellite information. We intent to minimize the uncertities in snowpack estimation. The methodology has been applied to estimation of the snow cover area and the design of the optimal snow observation network in Sierra Nevada mountain range in the Southern of Spain. Acknowledgments: This research has been partially supported by the GESINHIMPADAPT project (CGL2013-48424-C2-2-R) with Spanish MINECO funds. We would also like to thank ERHIN program and NASA DAAC for the data provided for this study.

  9. ASAR analysis of the snow cover in Livingston and Deception Islands.

    Science.gov (United States)

    Mora, C.; Vieira, G.; Ramos, M.

    2009-04-01

    ASAR images from Envisat are analyzed to study the snow cover regime of Deception and Livingston Islands (South Sthetlands, Antarctic Peninsula). Data is provided by the European Space Agency in the framework of the Proposal Category-1: Snow cover characteristics and regime in the South Shetlands (Maritime Antarctic) - SnowAntar. Medium resolution images (WSW, APM and IMM) are analyzed since December 2008, and are prepared using the processing chains from BEST (Basic Envisat SAR Toolbox). The process includes the transformation of DN into power values, geometric and radiometric correction, image filtering and computation of the backscattering coefficient for each pixel. Thereafter, the imagery is analyzed in image analysis software for the classification of backscattering. A multitemporal imagery analysis is conducted in order to set a threshold on the differential backscatter between scenes under wet snow and snow free-conditions. These algorithms allow for the study of snow surface wetness and snow water equivalent. The study of snow cover regime is linked to the permafrost monitoring and modeling effort conducted in the region in the framework of the PERMANTAR-PERMAMODEL projects. The proprieties of snow are of major significance for the ground energy balance and therefore to the ground thermal regime, since thick snow provides excellent insulation. Permafrost is therefore influenced by snow cover properties, spatial distribution and regime. Snow cover maps will be produced for integration in permafrost modeling and also for comparison with re-analysis data from ERA-Interim. The poster presents the first results of the imagery analysis of the snow cover regime since December 2008. The satellite data is validated in the field with several areas of interest (AOI) with snow thickness monitoring devices based on thermal regimes at different heights.

  10. MODIS Snow Cover Mapping Decision Tree Technique: Snow and Cloud Discrimination

    Science.gov (United States)

    Riggs, George A.; Hall, Dorothy K.

    2010-01-01

    Accurate mapping of snow cover continues to challenge cryospheric scientists and modelers. The Moderate-Resolution Imaging Spectroradiometer (MODIS) snow data products have been used since 2000 by many investigators to map and monitor snow cover extent for various applications. Users have reported on the utility of the products and also on problems encountered. Three problems or hindrances in the use of the MODIS snow data products that have been reported in the literature are: cloud obscuration, snow/cloud confusion, and snow omission errors in thin or sparse snow cover conditions. Implementation of the MODIS snow algorithm in a decision tree technique using surface reflectance input to mitigate those problems is being investigated. The objective of this work is to use a decision tree structure for the snow algorithm. This should alleviate snow/cloud confusion and omission errors and provide a snow map with classes that convey information on how snow was detected, e.g. snow under clear sky, snow tinder cloud, to enable users' flexibility in interpreting and deriving a snow map. Results of a snow cover decision tree algorithm are compared to the standard MODIS snow map and found to exhibit improved ability to alleviate snow/cloud confusion in some situations allowing up to about 5% increase in mapped snow cover extent, thus accuracy, in some scenes.

  11. NOAA NESDIS global automated satellite-based snow mapping system and products

    Science.gov (United States)

    Romanov, Peter

    2016-05-01

    Accurate, timely and spatially detailed information on the snow cover distribution and on the snow pack properties is needed in various research and practical applications including numerical weather prediction, climate modeling, river runoff estimates and flood forecasts. Owing to the wide area coverage, high spatial resolution and short repeat cycle of observations satellites present one of the key components of the global snow and ice cover monitoring system. The Global Multisensor Automated Snow and Ice Mapping System (GMASI) has been developed at the request of NOAA National Weather Service (NWS) and NOAA National Ice Center (NIC) to facilitate NOAA operational monitoring of snow and ice cover and to provide information on snow and ice for use in NWP models. Since 2006 the system has been routinely generating daily snow and ice cover maps using combined observations in the visible/infrared and in the microwave from operational meteorological satellites. The output product provides continuous (gap free) characterization of the global snow and ice cover distribution at 4 km spatial resolution. The paper presents a basic description of the snow and ice mapping algorithms incorporated in the system as well as of the product generated with GMASI. It explains the approach used to validate the derived snow and ice maps and provides the results of their accuracy assessment.

  12. Estimation of soil redistribution rates due to snow cover related processes in a mountainous area (Valle d'Aosta, NW Italy

    Directory of Open Access Journals (Sweden)

    E. Ceaglio

    2012-02-01

    Full Text Available Mountain areas are widely affected by soil erosion, which is generally linked to runoff processes occurring in the growing season and snowmelt period. Also processes like snow gliding and full-depth snow avalanches may be important factors that can enhance soil erosion, however the role and importance of snow movements as agents of soil redistribution are not well understood yet. The aim of this study was to provide information on the relative importance of snow related processes in comparison to runoff processes. In the study area, which is an avalanche path characterized by intense snow movements, soil redistribution rates were quantified with two methods: (i by field measurements of sediment yield in an avalanche deposition area during 2009 and 2010 winter seasons; (ii by caesium-137 method, which supplies the cumulative net soil loss/gain since 1986, including all the soil erosion processes. The snow related soil accumulation estimated with data from the deposit area (27.5 Mg ha−1 event−1 and 161.0 Mg ha−1 event−1 was not only higher than the yearly sediment amounts, reported in literature, due to runoff processes, but it was even more intense than the yearly total deposition rate assessed with 137Cs (12.6 Mg ha−1 yr−1. The snow related soil erosion rates estimated from the sediment yield at the avalanche deposit area (3.7 Mg ha−1 and 20.8 Mg ha−1 were greater than the erosion rates reported in literature and related to runoff processes; they were comparable to the yearly total erosion rates assessed with the 137Cs method (13.4 Mg ha−1 yr−1 and 8.8 Mg ha−1 yr−1. The 137Cs method also showed that, where the ground avalanche does not release, the erosion and deposition of soil particles from the upper part of the basin was considerable and likely related to

  13. Assessing the thermal dissipation sap flux density method for monitoring cold season water transport in seasonally snow-covered forests.

    Science.gov (United States)

    Chan, Allison M; Bowling, David R; Phillips, Nathan

    2017-07-01

    Productivity of conifers in seasonally snow-covered forests is high before and during snowmelt when environmental conditions are optimal for photosynthesis. Climate change is altering the timing of spring in many locations, and changes in the date of transition from winter dormancy can have large impacts on annual productivity. Sap flow methods provide a promising approach to monitor tree activity during the cold season and the winter-spring and fall-winter transitions. Although sap flow techniques have been widely used, cold season results are generally not reported. Here we examine the feasibility of using the Granier thermal dissipation (TD) sap flux density method to monitor transpiration and dormancy of evergreen conifers during the cold season. We conducted a laboratory experiment which demonstrated that the TD method reliably detects xylem water transport (when it occurs) both at near freezing temperature and at low flow rate, and that the sensors can withstand repeated freeze-thaw events. However, the dependence between sensor output and water transport rate in these experiments differed from the established TD relation. In field experiments, sensors installed in two Abies forests lasted through two winters and a summer with low failure. The baseline (no-flow) sensor output varied considerably with temperature during the cold season, and a new baseline algorithm was developed to accommodate this variation. The Abies forests differed in elevation (2070 and 2620 m), and there was a clear difference in timing of initiation and cessation of transpiration between them. We conclude that the TD method can be reliably used to examine water transport during cold periods with associated low flow conditions. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. One decade of scientific studies of snow management on Austria's glacier ski resorts

    Science.gov (United States)

    Fischer, Andrea; Helfricht, Kay

    2016-04-01

    After the extremely warm summer of 2003, when melt affected Austria's glaciers up to the highest elevations, a scientific study on artificial modification of mass balance was initiated. It examined the effects of glacier covers and water injection, but also various grooming methods and snow accumulations based on monitoring and modelling of snow and energy balance. The results showed that covering the glacier was the most effective and cheapest method, saving about 70% of glacier melt in places. But covers are restricted to a small portion of the area, as they require high maintenance. In recent years, snow production and snow accumulation by wind drift have gained more and more importance, not only modifying glacier mass balance, but also guaranteeing an early season start. Initially about 35 ha of the glacier area (ski resort area and less than one per mille of the total glacier area in Austria) were covered and later the area was reduced as snow production possibilities increased. Snow depots are often used as fun parks for snow boarders. Glacier covers are not primarily used for keeping snow for early season start on ski tracks, but to maintain the surface, especially close to cable car infrastructure, at a constant elevation and slope. Despite glacier dynamics, glacier surfaces with snow management show reduced decrease of surface elevation , both on piste and along lift tracks.

  15. Seasonal ERT monitoring of subsurface processes connected to freezing, thawing, snow accumulation and melt cycles

    Science.gov (United States)

    Krzeminska, Dominika; Starkloff, Torsten; Bloem, Esther; Stolte, Jannes

    2016-04-01

    For a better understanding of processes that influence snowmelt infiltration and runoff, and their consequences on soil erosion during spring periods, we established a long-term winter-spring ERT transect in the Gryteland catchment (Norway). The ERT transect is 71 m long, with 1 m spacing between the electrodes. It covers a depression with a north and south facing slope. The readings are collected once a week and, if needed, after a sudden change in weather conditions. Additionally, the soil transect is equipped with six TDR profiles, which register soil moisture and soil temperature every thirty minutes, at five depths (5, 10, 20, 30, 40 cm), for quantifying the ERT readings. The measurements performed during winter 2014/2015 gave promising results and showed the potential of ERT monitoring for understanding the soil thermal and hydraulic processes occurring during a winter and early spring. Moreover, there are visible differences in temporal trends and spatial variations in observed ERT patterns on the opposite facing slopes, which are of special interest. With the on-going experiment, we are aiming to understand the reoccurrence of the observed processes as well as to quantify soil moisture patterns. Herein, we would like to present the preliminary result of two ERT experiments (2014/2015 and 2015/2016) and discuss the advantages and limitations of our experiments. Moreover, we would like to stimulate the discussion about the potential of ERT for spatial and temporal monitoring of soil hydraulic and thermal processes and indirect measurements of soil water content.

  16. Applying MODIS data to monitor snow cover in cultivated land in Henan Province%MODIS数据在河南省耕地雪盖监测中的应用

    Institute of Scientific and Technical Information of China (English)

    刘婷; 范磊; 王来刚; 程永政; 杨春华

    2012-01-01

    [Objective]The feasibility of using MODIS data to monitor snow cover in cultivated land in Henan Province was studied to provide technical supports for disaster mitigation. [ Method ] Normalized difference snow index (NDSI) was calculated based on MODIS data of several days, combining with the spectrum information of the second and the fourth wave band and vegetation index, snow cover and cloud were separated from other objects. Then the snow cover was extracted from cloud by use of MODIS cloud mask data. [ Result ]The area of snow-covered cultivated land on January 16, January 29, January 31, 2010, accounted for 13.04, 68.43 and 65.23% of the total cultivated area in Henan, respectively, which mostly distributed in main grain production area in the south of Yellow River, and showed trends in gradually extending from west to east. [Conclusion]Assisted by Geographic Information System (GIS), MODIS data could he used to monitor large area of snow disaster, which was verified by the results of field investigation. Moreover, technical support could be provided to disaster mitigation through rendering thematic maps based on the results of remote sensing monitor and GIS.%[目的]探讨利用MODIS数据监测河南省耕地雪盖的可行性,为减灾抗灾提供技术支持.[方法]利用多天的MODIS数据,通过计算归一化差分积雪指数,结合第2、4波段的波谱信息及植被指数,将雪、云与其他地物分开,再结合MODIS的云掩膜数据去除云的影响,实现雪盖的提取.[结果]2008年1月16、29、31日耕地积雪覆盖面积分别占全省耕地面积的13.04%、68.43%和65.23%,主要集中分布在黄河以南粮食主产区,且呈由西向东逐渐推移发展趋势.[结论]在基础地理信息数据辅助下,利用MODIS数据进行大面积雪情监测是可行的,监测结果得到地面调查支持,可进行业务化运作.将遥感监测结果和基础地理信息数据相结合,进行各种专题图的制作,可为减灾抗灾提供技术支持.

  17. Facility Effluent Monitoring Plan determinations for the 600 Area facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nickels, J.M.

    1991-08-01

    This document determines the need for Facility Effluent Monitoring Plans for Westinghouse Hanford Company's 600 Area facilities on the Hanford Site. The Facility Effluent Monitoring Plan determinations were prepared in accordance with A Guide For Preparing Hanford Site Facility Effluent Monitoring Plans (WHC 1991). Five major Westinghouse Hanford Company facilities in the 600 Area were evaluated: the Purge Water Storage Facility, 212-N, -P, and -R Facilities, the 616 Facility, and the 213-J K Storage Vaults. Of the five major facilities evaluated in the 600 Area, none will require preparation of a Facility Effluent Monitoring Plan.

  18. Protected areas system planning and monitoring

    NARCIS (Netherlands)

    Vreugdenhil, D.

    2003-01-01

    The Vth World Parks Congress to be held in Durban, South Africa, September 8-17, 2003 will evaluate progress in protected areas conservation and stipulate strategic policies for the coming decade. Most countries of the world have at least a collection of protected areas, and have signed the Conventi

  19. Wide Area Wind Field Monitoring Status & Results

    Energy Technology Data Exchange (ETDEWEB)

    Alan Marchant; Jed Simmons

    2011-09-30

    Volume-scanning elastic has been investigated as a means to derive 3D dynamic wind fields for characterization and monitoring of wind energy sites. An eye-safe volume-scanning lidar system was adapted for volume imaging of aerosol concentrations out to a range of 300m. Reformatting of the lidar data as dynamic volume images was successfully demonstrated. A practical method for deriving 3D wind fields from dynamic volume imagery was identified and demonstrated. However, the natural phenomenology was found to provide insufficient aerosol features for reliable wind sensing. The results of this study may be applicable to wind field measurement using injected aerosol tracers.

  20. Technical Basis Document for PFP Area Monitoring Dosimetry Program

    CERN Document Server

    Cooper, J R

    2000-01-01

    This document describes the phantom dosimetry used for the PFP Area Monitoring program and establishes the basis for the Plutonium Finishing Plant's (PFP) area monitoring dosimetry program in accordance with the following requirements: Title 10, Code of Federal Regulations (CFR), part 835, ''Occupational Radiation Protection'' Part 835.403; Hanford Site Radiological Control Manual (HSRCM-1), Part 514; HNF-PRO-382, Area Dosimetry Program; and PNL-MA-842, Hanford External Dosimetry Technical Basis Manual.

  1. Glacial areas, lake areas, and snow lines from 1975 to 2012: status of the Cordillera Vilcanota, including the Quelccaya Ice Cap, northern central Andes, Peru

    Science.gov (United States)

    Hanshaw, M. N.; Bookhagen, B.

    2014-03-01

    Glaciers in the tropical Andes of southern Peru have received limited attention compared to glaciers in other regions (both near and far), yet remain of vital importance to agriculture, fresh water, and hydropower supplies of downstream communities. Little is known about recent glacial-area changes and how the glaciers in this region respond to climate changes, and, ultimately, how these changes will affect lake and water supplies. To remedy this, we have used 158 multi-spectral satellite images spanning almost 4 decades, from 1975 to 2012, to obtain glacial- and lake-area outlines for the understudied Cordillera Vilcanota region, including the Quelccaya Ice Cap. Additionally, we have estimated the snow-line altitude of the Quelccaya Ice Cap using spectral unmixing methods. We have made the following four key observations: first, since 1988 glacial areas throughout the Cordillera Vilcanota (1988 glacial area: 361 km2) have been declining at a rate of 3.99 ± 1.15 km2 yr-1 (22 year average, 1988-2010, with 95% confidence interval (CI), n = 8 images). Since 1980, the Quelccaya Ice Cap (1980 glacial area: 63.1 km2) has been declining at a rate of 0.57 ± 0.10 km2 yr-1 (30 year average, 1980-2010, with 95% CI, n = 14). Second, decline rates for individual glacierized regions have been accelerating during the past decade (2000-2010) as compared to the preceding decade (1988-1999) with an average increase from 37.5 to 42.3 × 10-3 km2 yr-1 km-2 (13%). Third, glaciers with lower median elevations are declining at higher rates than those with higher median elevations. Specifically, glaciers with median elevations around 5200 m a.s.l. are retreating to higher elevations at a rate of ~1 m yr-1 faster than glaciers with median elevations around 5400 m a.s.l. Fourth, as glacial regions have decreased, 77% of lakes connected to glacial watersheds have either remained stable or shown a roughly synchronous increase in lake area, while 42% of lakes not connected to glacial

  2. Estimation of soil redistribution rates due to snow cover related processes in a mountainous area (Valle d'Aosta, NW Italy

    Directory of Open Access Journals (Sweden)

    E. Ceaglio

    2011-09-01

    Full Text Available Mountain areas are widely affected by soil erosion, which is commonly linked to runoff processes. Also winter processes, like snow gliding and full-depth avalanches, may be important factors that can enhance soil erosion, however the role and importance of snow movements as agents of soil redistribution are not well understood yet. The aim of this study is to provide information on the relative importance of snow related soil erosion processes in comparison to runoff processes. In the study area, which is an avalanche path characterized by intense snow movements and soil erosion, soil redistribution rates were quantified with two methods: (i by field measurements of sediment yield in an avalanche deposition area during 2009 and 2010 winter seasons; (ii by Caesium-137 method, which supplies the cumulative net soil loss/gain since 1986, including winter and summer soil erosion processes. The soil erosion rates estimated from the sediment yield at the avalanche deposit area (3.2 and 20.8 Mg ha−1 event−1 is comparable to the yearly erosion rates (averaged since 1986 estimated with the Cs-137 method (8.8–13.4 Mg ha−1 yr−1. The soil accumulation rate estimated with data from the avalanche deposition area (28.2 and 160.7 Mg ha−1 event−1 is even more intense than the yearly deposition rates estimated with Cs-137 (8.9–12.6 Mg ha−1 yr−1. This might be due to the high relevance of the two investigated avalanche events and/or to the discrepancy between the long-term (since 1986 signal of the Cs-137 method compared to rates of 2009 and 2010. Even though the comparability is limited by the different time scale of the applied methods, both methods yielded similar magnitudes of soil redistribution rates indicating that soil erosion due to snow movements is the main driving force of soil redistribution in the area. Therefore winter processes have to be

  3. Temporal variation in the deposition of polycyclic aromatic compounds in snow in the Athabasca Oil Sands area of Alberta.

    Science.gov (United States)

    Manzano, Carlos A; Muir, Derek; Kirk, Jane; Teixeira, Camilla; Siu, May; Wang, Xiaowa; Charland, Jean-Pierre; Schindler, David; Kelly, Erin

    2016-09-01

    Atmospheric deposition of polycyclic aromatic compounds (PACs) via and onto snow, and their releasing during spring snowmelt has been a concern in the Athabasca Oil Sands Region of Alberta. This study was designed to evaluate the concentrations, loadings, and distribution of PACs in springtime snowpack and how they have changed since the first study in 2008. Snowpack samples were collected in late winters 2011-2014 at varying distances from the main developments. PAC concentration and deposition declined exponentially with distance, with pyrenes, chrysenes, and dibenzothiophenes dominating the distribution within the first 50 km. The distribution of PACs was different between sites located close to upgraders and others located close to mining facilities. Overall, PAC loadings were correlated with priority pollutant elements and water chemistry parameters, while wind direction and speed were not strong contributors to the variability observed. Total PAC mass deposition during winter months and within the first 50 km was initially estimated by integrating the exponential decay function fitted through the data using a limited number of sites from 2011 to 2014: 1236 kg (2011), 1800 kg (2012), 814 kg (2013), and 1367 (2014). Total loadings were estimated to have a twofold increase between 2008 and 2014, although the increase observed was not constant. Finally, kriging interpolation is presented as an alternative and more robust approach to estimate PAC mass deposition in the area. After a more intensive sampling campaign in 2014, the PAC mass deposition was estimated to be 1968 kg.

  4. Using crowdsourced web content for informing water systems operations in snow-dominated catchments

    Science.gov (United States)

    Giuliani, Matteo; Castelletti, Andrea; Fedorov, Roman; Fraternali, Piero

    2016-12-01

    Snow is a key component of the hydrologic cycle in many regions of the world. Despite recent advances in environmental monitoring that are making a wide range of data available, continuous snow monitoring systems that can collect data at high spatial and temporal resolution are not well established yet, especially in inaccessible high-latitude or mountainous regions. The unprecedented availability of user-generated data on the web is opening new opportunities for enhancing real-time monitoring and modeling of environmental systems based on data that are public, low-cost, and spatiotemporally dense. In this paper, we contribute a novel crowdsourcing procedure for extracting snow-related information from public web images, either produced by users or generated by touristic webcams. A fully automated process fetches mountain images from multiple sources, identifies the peaks present therein, and estimates virtual snow indexes representing a proxy of the snow-covered area. Our procedure has the potential for complementing traditional snow-related information, minimizing costs and efforts for obtaining the virtual snow indexes and, at the same time, maximizing the portability of the procedure to several locations where such public images are available. The operational value of the obtained virtual snow indexes is assessed for a real-world water-management problem, the regulation of Lake Como, where we use these indexes for informing the daily operations of the lake. Numerical results show that such information is effective in extending the anticipation capacity of the lake operations, ultimately improving the system performance.

  5. Temporal Monitoring of the Soil Freeze-Thaw Cycles over a Snow-Covered Surface by Using Air-Launched Ground-Penetrating Radar

    KAUST Repository

    Jadoon, Khan

    2015-09-18

    We tested an off-ground ground-penetrating radar (GPR) system at a fixed location over a bare agricultural field to monitor the soil freeze-thaw cycles over a snow-covered surface. The GPR system consisted of a monostatic horn antenna combined with a vector network analyzer, providing an ultra-wideband stepped-frequency continuous-wave radar. An antenna calibration experiment was performed to filter antenna and back scattered effects from the raw GPR data. Near the GPR setup, sensors were installed in the soil to monitor the dynamics of soil temperature and dielectric permittivity at different depths. The soil permittivity was retrieved via inversion of time domain GPR data focused on the surface reflection. Significant effects of soil dynamics were observed in the time-lapse GPR, temperature and dielectric permittivity measurements. In particular, five freeze and thaw events were clearly detectable, indicating that the GPR signals respond to the contrast between the dielectric permittivity of frozen and thawed soil. The GPR-derived permittivity was in good agreement with sensor observations. Overall, the off-ground nature of the GPR system permits non-invasive time-lapse observation of the soil freeze-thaw dynamics without disturbing the structure of the snow cover. The proposed method shows promise for the real-time mapping and monitoring of the shallow frozen layer at the field scale.

  6. Temporal Monitoring of the Soil Freeze-Thaw Cycles over a Snow-Covered Surface by Using Air-Launched Ground-Penetrating Radar

    Directory of Open Access Journals (Sweden)

    Khan Zaib Jadoon

    2015-09-01

    Full Text Available We tested an off-ground ground-penetrating radar (GPR system at a fixed location over a bare agricultural field to monitor the soil freeze-thaw cycles over a snow-covered surface. The GPR system consisted of a monostatic horn antenna combined with a vector network analyzer, providing an ultra-wideband stepped-frequency continuous-wave radar. An antenna calibration experiment was performed to filter antenna and back scattered effects from the raw GPR data. Near the GPR setup, sensors were installed in the soil to monitor the dynamics of soil temperature and dielectric permittivity at different depths. The soil permittivity was retrieved via inversion of time domain GPR data focused on the surface reflection. Significant effects of soil dynamics were observed in the time-lapse GPR, temperature and dielectric permittivity measurements. In particular, five freeze and thaw events were clearly detectable, indicating that the GPR signals respond to the contrast between the dielectric permittivity of frozen and thawed soil. The GPR-derived permittivity was in good agreement with sensor observations. Overall, the off-ground nature of the GPR system permits non-invasive time-lapse observation of the soil freeze-thaw dynamics without disturbing the structure of the snow cover. The proposed method shows promise for the real-time mapping and monitoring of the shallow frozen layer at the field scale.

  7. Vertical profile of the specific surface area and density of the snow at Dome C and on a transect to Dumont D'Urville, Antarctica – albedo calculations and comparison to remote sensing products

    Directory of Open Access Journals (Sweden)

    J.-C. Gallet

    2011-08-01

    Full Text Available The specific surface area (SSA of snow determines in part the albedo of snow surfaces and the capacity of the snow to adsorb chemical species and catalyze reactions. Despite these crucial roles, almost no value of snow SSA are available for the largest permanent snow expanse on Earth, the Antarctic. We report the first extensive study of vertical profiles of snow SSA near Dome C (DC: 75°06' S, 123°20' E, 3233 m a.s.l. on the Antarctic plateau, and at seven sites during the logistical traverse between Dome C and the French coastal base Dumont D'Urville (DDU: 66°40' S, 140°01' E during the Austral summer 2008–2009. We used the DUFISSS system, which measures the IR reflectance of snow at 1310 nm with an integrating sphere. At DC, the mean SSA of the snow in the top 1 cm is 38 m2 kg−1, decreasing monotonically to 14 m2 kg−1 at a depth of 50 cm. Along the traverse, the snow SSA profile is similar to that at DC in the first 600 km from DC. Closer to DDU, the SSA of the top 5 cm is 23 m2 kg−1, decreasing to 19 m2 kg−1 at 50 cm depth. This difference is attributed to wind, which causes a rapid decrease of surface snow SSA, but forms hard windpacks whose SSA decrease more slowly with time. Since light-absorbing impurities are not concentrated enough to affect albedo, the vertical profiles of SSA and density were used to calculate the spectral albedo of the snow for several realistic illumination conditions, using the DISORT radiative transfer model. A preliminary comparison with MODIS data is presented and our calculations and MODIS data show similar trends.

  8. 基于支持向量机算法的冰雪下垫面地区的云区检测%Support Vector Machines for Cloud Detection over Ice-Snow Areas

    Institute of Scientific and Technical Information of China (English)

    陈刚; 鄂栋臣

    2007-01-01

    In polar regions, cloud and underlying ice-snow areas are difficult to distinguish in satellite images because of their high albedo in the visible band and low surface temperature of ice-snow areas in the infrared band. A cloud detection method over ice-snow covered areas in Antarctica is presented. On account of different texture features of cloud and ice-snow areas,five texture features are extracted based on GLCM. Nonlinear SVM is then used to obtain the optimal classification hyperplane from training data. The experiment results indicate that this algorithm performs well in cloud detection in Antarctica,especially for thin cirrus detection. Furthermore, when images are resampled to a quarter or 1/16 of the full size, cloud percentages are still at the same level, while the processing time decreases exponentially.

  9. Response of a neutron monitor area with TLDs pairs

    Energy Technology Data Exchange (ETDEWEB)

    Guzman G, K. A.; Borja H, C. G.; Valero L, C.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Gallego, E.; Lorente, A., E-mail: ing_karen_guzman@yahoo.com.mx [Universidad Politecnica de Madrid, Departamento de Ingenieria Nuclear, Jose Gutierrez Abascal 2, E-28006 Madrid (Spain)

    2011-10-15

    The response of a passive neutron monitor area has been calculated using the Monte Carlo code MCNP5. The response was the amount of n({sup 6}Li, T){alpha} reactions occurring in a TLD-600 located at the center of a cylindrical polyethylene moderator. Fluence, (n, a) and H*(10) responses were calculated for 47 monoenergetic neutron sources. The H*(10) relative response was compared with responses of commercially available neutron monitors being alike. Due to {sup 6}Li cross section (n, {alpha}) reactions are mainly produced by thermal neutrons, however TLD-600 is sensitive to gamma-rays; to eliminate the signal due to photons monitor area was built to hold 2 pairs of TLD-600 and 2 pairs of TLD-700, thus from the difference between TLD-600 and TLD-700 readouts the net signal due to neutrons is obtained. The monitor area was calibrated at the Universidad Politecnica de Madrid using a {sup 241}AmBe neutron source; net TLD readout was compared with the H*(10) measured with a Bert hold Lb-6411. Performance of the neutron monitor area was determined through two independent experiments, in both cases the H*(10) was statistically equal to H*(10) measured with a Bert hold Lb-6411. Neutron monitor area with TLDs pairs can be used in working areas with intense, mixed and pulsed radiation fields. (Author)

  10. Survey monitoring of environmental radioactivity in Daejeon area

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Jae Shik; Noh, Hyung Ah [Daejon Radiation Monitoring Station, Daejeon (Korea, Republic of)

    2002-12-15

    Systematic understanding of the distribution of environmental radioactivity and radiation level in Daejeon, including Chungchung area, in normal circumstance, and rapid detection of unusual variation of the radiation level in emergency situation thereby ensure public safety are the objectives of this project to be carried out. This report summarizes and interprets environmental radiation/radioactivity monitoring data obtained at Daejeon Radiation Monitoring Station in 2002. In conclusion, the natural environmental radiation level in Daejeon area has been preserved as usual and no significant artificial enhancement in environmental radioactivity was observed during the course of this survey and monitoring period.

  11. Survey monitoring of environmental radioactivity in Daejeon area

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Jae Shik; Noh, Hyung Ah [Daejon Radiation Monitoring Station, Daejeon (Korea, Republic of)

    2003-12-15

    Systematic understanding of the distribution of environmental radioactivity and radiation level in Daejeon, including Chungchung area, in normal circumstance, and rapid detection of unusual variation of the radiation level in emergency situation thereby ensure public safety are the objectives of this project to be carried out. This report summarizes and interprets environmental radiation/radioactivity monitoring data obtained at Daejeon Radiation Monitoring Station in 2002. In conclusion, the natural environmental radiation level in Daejeon area has been preserved as usual and no significant artificial enhancement in environmental radioactivity was observed during the course of this survey and monitoring period.

  12. Monitoring snow melt characteristics on the Greenland ice sheet using a new MODIS land surface temperature and emissivity product (MOD21)

    Science.gov (United States)

    Hulley, G. C.; Hall, D. K.; Hook, S. J.

    2013-12-01

    Land Surface Temperature (LST) and emissivity are sensitive energy-balance parameters that control melt and energy exchange between the surface and the atmosphere. MODIS LST is currently used to monitor melt zones on glaciers and can be used for glacier or ice sheet mass balance calculations. Much attention has been paid recently to the warming of the Arctic in the context of global warming, with a focus on the Greenland ice sheet because of its importance with sea-level rise. Various researchers have shown a steady decline in the extent of the Northern Hemisphere sea ice, both the total extent and the extent of the perennial or multiyear ice. Surface melt characteristics over the Greenland ice sheet have been traditionally monitored using the MODIS LST and albedo products (e.g. MOD11 and MOD10A1). Far fewer studies have used thermal emissivity data to monitor surface melt characteristics due to the lack of suitable data. In theory, longwave emissivity combined with LST information should give a more direct measure of snow melt characteristics since the emissivity is an intrinsic property of the surface, whereas the albedo is dependent on other factors such as solar zenith angle, and shadowing effects. Currently no standard emissivity product exists that can dynamically retrieve changes in longwave emissivity consistently over long time periods. This problem has been addressed with the new MOD21 product, which uses the ASTER TES algorithm to dynamically retrieve LST and spectral emissivity (bands 29, 31, 32) at 1-km resolution. In this study we show that using a new proposed index termed the snow emissivity difference index (SEDI) derived from the MOD21 longwave emissivity product, combined with the LST, will improve our understanding of snow melt and freezeup dynamics on ice sheets such as Greenland. The results also suggest that synergistic use of both thermal-based and albedo data will help to improve our understanding of snow melt dynamics on glaciers and ice

  13. The use of remotely-sensed canopy variables and ultrasonic snow depth sensors to improve the understanding of forest - snow interactions (Invited)

    Science.gov (United States)

    Varhola, A.; Coops, N.; Teti, P.; Weiler, M.

    2013-12-01

    Current methods to estimate snow accumulation and ablation at the plot and watershed levels can be improved as new technologies offer alternative approaches to more accurately monitor snow dynamics and their drivers. Here we conduct a meta-analysis of snow and vegetation data collected in British Columbia to explore the relationships between a wide range of forest structure variables --obtained from Light Detection and Ranging (LiDAR), hemispherical photography (HP) and Landsat Thematic Mapper-- and several indicators of snow accumulation and ablation estimated from manual snow surveys and ultrasonic range sensors. By merging and standardizing all the ground plot information available in the study area, we demonstrate how LiDAR-derived forest cover above 0.5 m was the variable explaining the highest percentage of absolute peak snow water equivalent (SWE) (33%), while HP-derived leaf area index and gap fraction (45° angle of view) were the best potential predictors of snow ablation rate (SAR) (explaining 57% of variance). This study reveals how continuous SWE data from ultrasonic sensors are fundamental to obtain statistically-significant relationships between snow indicators and structural metrics by increasing mean coefficient of determination by 20% when compared to manual surveys. The relationships between vegetation and some spectral indices from Landsat and snow indicators, not explored before, were almost as high as those shown by LiDAR or HP and thus point towards a new line of research with important practical implications. While the use of different data sources from two snow seasons prevented us from developing models with predictive capacity, a large sample size allowed us to identify outliers that weakened the relationships and suggest improvements for future research. A concise overview of the limitations of this and previous studies is provided along with propositions to consistently improve experimental designs to take advantage of remote sensing

  14. Putting humans in the loop: Using crowdsourced snow information to inform water management

    Science.gov (United States)

    Fedorov, Roman; Giuliani, Matteo; Castelletti, Andrea; Fraternali, Piero

    2016-04-01

    The unprecedented availability of user generated data on the Web due to the advent of online services, social networks, and crowdsourcing, is opening new opportunities for enhancing real-time monitoring and modeling of environmental systems based on data that are public, low-cost, and spatio-temporally dense, possibly contributing to our ability of making better decisions. In this work, we contribute a novel crowdsourcing procedure for computing virtual snow indexes from public web images, either produced by users or generated by touristic webcams, which is based on a complex architecture designed for automatically crawling content from multiple web data sources. The procedure retains only geo-tagged images containing a mountain skyline, identifies the visible peaks in each image using a public online digital terrain model, and classifies the mountain image pixels as snow or no-snow. This operation yields a snow mask per image, from which it is possible to extract time series of virtual snow indexes representing a proxy of the snow covered area. The value of the obtained virtual snow indexes is estimated in a real world water management problem. We consider the snow-dominated catchment of Lake Como, a regulated lake in Northern Italy, where snowmelt represents the most important contribution to seasonal lake storage, and we used the virtual snow indexes for informing the daily operation of the lake's dam. Numerical results show that such information is effective in extending the anticipation capacity of the lake operations, ultimately improving the system performance.

  15. Snow gliding and loading under two different forest stands:a case study in the north-western Italian Alps

    Institute of Scientific and Technical Information of China (English)

    Davide Viglietti; Margherita Maggioni; Enrico Bruno; Ermanno Zanini; Michele Freppaz

    2013-01-01

    The presence of a thick snowpack could interfere with forest stability, especially on steep slopes with potential damages for young and old stands. The study of snow gliding in forests is rather complex be-cause this phenomenon could be influenced not only by forest features, but also by snow/soil interface characteristics, site morphology, meteoro-logical conditions and snow physical properties. Our starting hypothesis is that different forest stands have an influence on the snowpack evolu-tion and on the temperature and moisture at the snow/soil interface, which subsequently could affect snow gliding processes and snow forces. The aim of this work is therefore to analyse the snowpack evolution and snow gliding movements under different forest covers, in order to deter-mine the snow forces acting on single trees. The study site is located in a subalpine forest in Aosta Valley (NW-Italy) and includes two plots at the same altitude, inclination and aspect but with different tree composition:Larch (Larix decidua) and Spruce (Picea abies). The plots were equipped with moisture and temperature sensors placed at the snow/soil interface and glide shoes for continuous monitoring of snow gliding. The recorded data were related to periodically monitored snowpack and snow/soil in-terface properties. Data were collected during two winter seasons (2009-10 and 2010-11). The snow forces on trees were analytically calculated either from snowpack data and site morphology or also from measured snow gliding rates. Different snow accumulations were observed under the two different forest stands, with a significant effect on temperature and moisture at the snow/soil interface. The highest snow gliding rates were observed under Larch and were related to rapid increases in mois-ture at the snow/soil interface. The calculated snow forces were generally lower than the threshold values reported for tree uprooting due to snow gliding, as confirmed by the absence of tree damages in the

  16. Snow drift: acoustic sensors for avalanche warning and research

    Science.gov (United States)

    Lehning, M.; Naaim, F.; Naaim, M.; Brabec, B.; Doorschot, J.; Durand, Y.; Guyomarc'h, G.; Michaux, J.-L.; Zimmerli, M.

    Based on wind tunnel measurements at the CSTB (Jules Verne) facility in Nantes and based on field observations at the SLF experimental site Versuchsfeld Weissfluhjoch, two acoustic wind drift sensors are evaluated against different mechanical snow traps and one optical snow particle counter. The focus of the work is the suitability of the acoustic sensors for applications such as avalanche warning and research. Although the acoustic sensors have not yet reached the accuracy required for typical research applications, they can, however, be useful for snow drift monitoring to help avalanche forecasters. The main problem of the acoustic sensors is a difficult calibration that has to take into account the variable snow properties. Further difficulties arise from snow fall and high wind speeds. However, the sensor is robust and can be operated remotely under harsh conditions. It is emphasized that due to the lack of an accurate reference method for snow drift measurements, all sensors play a role in improving and evaluating snow drift models. Finally, current operational snow drift models and snow drift sensors are compared with respect to their usefulness as an aid for avalanche warning. While drift sensors always make a point measurement, the models are able to give a more representative drift index that is valid for a larger area. Therefore, models have the potential to replace difficult observations such as snow drift in operational applications. Current models on snow drift are either only applicable in flat terrain, are still too complex for an operational application (Lehning et al., 2000b), or offer only limited information on snow drift, such as the SNOWPACK drift index (Lehning et al., 2000a). On the other hand, snow drift is also difficult to measure. While mechanical traps (Mellor 1960; Budd et al., 1966) are probably still the best reference, they require more or less continuous manual operation and are thus not suitable for remote locations or long

  17. Snow drift: acoustic sensors for avalanche warning and research

    Directory of Open Access Journals (Sweden)

    M. Lehning

    2002-01-01

    Full Text Available Based on wind tunnel measurements at the CSTB (Jules Verne facility in Nantes and based on field observations at the SLF experimental site Versuchsfeld Weissfluhjoch, two acoustic wind drift sensors are evaluated against different mechanical snow traps and one optical snow particle counter. The focus of the work is the suitability of the acoustic sensors for applications such as avalanche warning and research. Although the acoustic sensors have not yet reached the accuracy required for typical research applications, they can, however, be useful for snow drift monitoring to help avalanche forecasters. The main problem of the acoustic sensors is a difficult calibration that has to take into account the variable snow properties. Further difficulties arise from snow fall and high wind speeds. However, the sensor is robust and can be operated remotely under harsh conditions. It is emphasized that due to the lack of an accurate reference method for snow drift measurements, all sensors play a role in improving and evaluating snow drift models. Finally, current operational snow drift models and snow drift sensors are compared with respect to their usefulness as an aid for avalanche warning. While drift sensors always make a point measurement, the models are able to give a more representative drift index that is valid for a larger area. Therefore, models have the potential to replace difficult observations such as snow drift in operational applications. Current models on snow drift are either only applicable in flat terrain, are still too complex for an operational application (Lehning et al., 2000b, or offer only limited information on snow drift, such as the SNOWPACK drift index (Lehning et al., 2000a. On the other hand, snow drift is also difficult to measure. While mechanical traps (Mellor 1960; Budd et al., 1966 are probably still the best reference, they require more or less continuous manual operation and are thus not suitable for remote locations

  18. A precise monitoring of snow surface height in the region of Lambert Glacier basin-Amery Ice Shelf, East Antarctica

    Institute of Scientific and Technical Information of China (English)

    XIAO Cunde; QIN Dahe; BIAN Lingen; ZHOU Xiuji; I. Allison; YAN Ming

    2005-01-01

    The net surface snow accumulation on the Antarctic ice sheet is determined by a combination of precipitation, sublimation and wind redistribution. We present a one-year record of hourly snow-height measurements at LGB69 (70°50'S, 77°04(E,1850 m a.s.l.), east side of Lambert Glacier basin (LGB), and 4 year record at G3 (70°53'S, 69°52'E, 84 m a.s.l.), Amery Ice Shelf (AIS). The measurements were made with ultrasonic sensors mounted on automatic weather stations installed at two sites. The snow accumulation at LGB69 is approximately 70 cm. Throughout the winter, between April and September, there was little change in surface snow height (SSH) at the two sites. The negative SSH change is due to densification at LGB69, and is due to both ablation and densification at G3. The strongest accumulation at two sites occurred during the period between Octobers and March (accounting for 101.6% at LGB69), with four episodic increasing events occurring during 2002 for LGB69, and eight events during 1999-2002 for G3 (2 to 3 events per year). At LGB69, these episodic events coincided with obvious humidity "pulses" and decreases of incoming solar radiation as recorded by the AWS. Observations of the total cloud amount at Davis station, 160 km NNE of LGB69, showed good correlation with major accumulation events recorded at LGB69. There was an obvious anti-correlation between the lowest cloud height at Davis and the daily accumulation rate at LGB69. Although there was no correlation over the total year between wind speed and accumulation at LGB69, large individual accumulation events are associated with episodes of strong wind (>7 m/s), we estimate drift snow may contribute to total SSH up to 35%. Strong accumulation events at LGB69 are associated with major storms in the region and inland transport of moist air masses from the coast.

  19. Remote Sensing-based Methodologies for Snow Model Adjustments in Operational Streamflow Prediction

    Science.gov (United States)

    Bender, S.; Miller, W. P.; Bernard, B.; Stokes, M.; Oaida, C. M.; Painter, T. H.

    2015-12-01

    Water management agencies rely on hydrologic forecasts issued by operational agencies such as NOAA's Colorado Basin River Forecast Center (CBRFC). The CBRFC has partnered with the Jet Propulsion Laboratory (JPL) under funding from NASA to incorporate research-oriented, remotely-sensed snow data into CBRFC operations and to improve the accuracy of CBRFC forecasts. The partnership has yielded valuable analysis of snow surface albedo as represented in JPL's MODIS Dust Radiative Forcing in Snow (MODDRFS) data, across the CBRFC's area of responsibility. When dust layers within a snowpack emerge, reducing the snow surface albedo, the snowmelt rate may accelerate. The CBRFC operational snow model (SNOW17) is a temperature-index model that lacks explicit representation of snowpack surface albedo. CBRFC forecasters monitor MODDRFS data for emerging dust layers and may manually adjust SNOW17 melt rates. A technique was needed for efficient and objective incorporation of the MODDRFS data into SNOW17. Initial development focused in Colorado, where dust-on-snow events frequently occur. CBRFC forecasters used retrospective JPL-CBRFC analysis and developed a quantitative relationship between MODDRFS data and mean areal temperature (MAT) data. The relationship was used to generate adjusted, MODDRFS-informed input for SNOW17. Impacts of the MODDRFS-SNOW17 MAT adjustment method on snowmelt-driven streamflow prediction varied spatially and with characteristics of the dust deposition events. The largest improvements occurred in southwestern Colorado, in years with intense dust deposition events. Application of the method in other regions of Colorado and in "low dust" years resulted in minimal impact. The MODDRFS-SNOW17 MAT technique will be implemented in CBRFC operations in late 2015, prior to spring 2016 runoff. Collaborative investigation of remote sensing-based adjustment methods for the CBRFC operational hydrologic forecasting environment will continue over the next several years.

  20. [Entomological monitoring of an area to assess Dirofilaria transmission risk].

    Science.gov (United States)

    Ganushkina, L A; Rakova, V M; Ivanova, I B; Supriaga, V G; Sergiev, V P

    2014-01-01

    As the basis for entomological monitoring, the authors first propose to investigate the structure of a season of D. repens invasion transmission in the carrier in relation to the ambient temperature, such as onset of a transmission season, terminaton of mosquito infection, the number of invasion circulations. A calculating procedure has been developed. It is shown that there is a need for entomological monitoring of each specific area irrespective of the latitude to study a risk for local dirofilariasis cases.

  1. Guidance on Monitoring of Gross Changes in Forest Area

    OpenAIRE

    Achard, Frederic; DeFries, Ruth; Herold, Martin; Mollicone, Danilo; Pandey, Devendra; Souza, Carlos

    2008-01-01

    This chapter presents the state of the art for data and approaches to be used for monitoring forest area changes at the national scale in tropical countries using remote sensing imagery. It includes approaches and data for monitoring both deforestation and forest degradation and for establishing historical reference scenarios. The chapter presents the minimum requirements to develop first order national deforestation databases, using typical and internationally accepted methods. There are ...

  2. Nordic Snow Radar Experiment

    Science.gov (United States)

    Lemmetyinen, Juha; Kontu, Anna; Pulliainen, Jouni; Vehviläinen, Juho; Rautiainen, Kimmo; Wiesmann, Andreas; Mätzler, Christian; Werner, Charles; Rott, Helmut; Nagler, Thomas; Schneebeli, Martin; Proksch, Martin; Schüttemeyer, Dirk; Kern, Michael; Davidson, Malcolm W. J.

    2016-09-01

    The objective of the Nordic Snow Radar Experiment (NoSREx) campaign was to provide a continuous time series of active and passive microwave observations of snow cover at a representative location of the Arctic boreal forest area, covering a whole winter season. The activity was a part of Phase A studies for the ESA Earth Explorer 7 candidate mission CoReH2O (Cold Regions Hydrology High-resolution Observatory). The NoSREx campaign, conducted at the Finnish Meteorological Institute Arctic Research Centre (FMI-ARC) in Sodankylä, Finland, hosted a frequency scanning scatterometer operating at frequencies from X- to Ku-band. The radar observations were complemented by a microwave dual-polarization radiometer system operating from X- to W-bands. In situ measurements consisted of manual snow pit measurements at the main test site as well as extensive automated measurements on snow, ground and meteorological parameters. This study provides a summary of the obtained data, detailing measurement protocols for each microwave instrument and in situ reference data. A first analysis of the microwave signatures against snow parameters is given, also comparing observed radar backscattering and microwave emission to predictions of an active/passive forward model. All data, including the raw data observations, are available for research purposes through the European Space Agency and the Finnish Meteorological Institute. A consolidated dataset of observations, comprising the key microwave and in situ observations, is provided through the ESA campaign data portal to enable easy access to the data.

  3. Snow White Trenches

    Science.gov (United States)

    2008-01-01

    This image was acquired by NASA's Phoenix Mars Lander's Surface Stereo Imager on the 25th Martian day of the mission, or Sol 24 (June 19, 2008), after the May 25, 2008, landing. This image shows the trenches informally called 'Snow White 1' (left) and 'Snow White 2' (right). The trench is about 5 centimeters (2 inches) deep and 30 centimeters (12 inches) long. 'Snow White' is located in a patch of Martian soil near the center of a polygonal surface feature, nicknamed 'Cheshire Cat.' The 'dump pile' is located at the top of the trench, the side farthest away from the lander, and has been dubbed 'Croquet Ground.' The digging site has been named 'Wonderland.' This image has been enhanced to brighten shaded areas. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  4. Downscaling Snow Cover Fraction Data in Mountainous Regions Based on Simulated Inhomogeneous Snow Ablation

    Directory of Open Access Journals (Sweden)

    Hong Yi Li

    2015-07-01

    Full Text Available High-resolution snow distributions are essential for studying cold regions. However, the temporal and spatial resolutions of current remote sensing snow maps remain limited. Remotely sensed snow cover fraction (SCF data only provide quantitative descriptions of snow area proportions and do not provide information on subgrid-scale snow locations. We present a downscaling method based on simulated inhomogeneous snow ablation capacities that are driven by air temperature and solar radiation data. This method employs a single parameter to adjust potential snow ablation capacities. Using this method, SCF data with a resolution of 500 m are downscaled to a resolution of 30 m. Then, 18 remotely sensed TM, CHRIS and EO-1 snow maps are used to verify the downscaled results. The mean overall accuracy is 0.69, the average root-mean-square error (RMSE of snow-covered slopes between the downscaled snow map and the real snow map is 3.9°, and the average RMSE of the sine of the snow covered aspects between the downscaled snow map and the real snow map is 0.34, which is equivalent to 19.9°. This method can be applied to high-resolution snow mapping in similar mountainous regions.

  5. 2002 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    Energy Technology Data Exchange (ETDEWEB)

    Y. E. Townsend

    2003-06-01

    Environmental, subsidence, and meteorological monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS)(refer to Figure 1). These monitoring data include radiation exposure, air, groundwater,meteorology, vadose zone, subsidence, and biota data. Although some of these media (radiation exposure, air, and groundwater) are reported in detail in other Bechtel Nevada (BN) reports (Annual Site Environmental Report [ASER], the National Emissions Standard for Hazardous Air Pollutants [NESHAP] report, and the Annual Groundwater Monitoring Report), they are also summarized in this report to provide an overall evaluation of RWMS performance and environmental compliance. Direct radiation monitoring data indicate that exposure at and around the RWMSs is not above background levels. Air monitoring data indicate that tritium concentrations are slightly above background levels. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS has not been affected by the facility. Meteorological data indicate that 2002 was a dry year: rainfall totaled 26 mm (1.0 in) at the Area 3 RWMS and 38 mm (1.5 in) at the Area 5 RWMS. Vadose zone monitoring data indicate that 2002 rainfall infiltrated less than 30 cm (1 ft) before being returned to the atmosphere by evaporation. Soil-gas tritium monitoring data indicate slow subsurface migration, and tritium concentrations in biota were lower than in previous years. Special investigations conducted in 2002 included: a comparison between waste cover water contents measured by neutron probe and coring; and a comparison of four methods for measuring radon concentrations in air. All 2002 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility Performance Assessments (PAs).

  6. The Evaluation of SR-50 for Snow Depth Measurements at Tanggula Area%唐古拉地区超声雪深传感器SR-50监测研究

    Institute of Scientific and Technical Information of China (English)

    肖瑶; 赵林; 李韧; 焦克勤; 乔永平; 姚济敏

    2013-01-01

    利用2004年5月以来超声雪深传感器SR-50在青藏高原唐古拉综合监测场获取的实时积雪资料和相关气象数据,评估了SR-50在青藏高原积雪监测中的性能和作用,并对青藏高原腹地多年冻土区积雪变化特征进行初步分析.结果表明:超声雪深传感器SR-50对不同时间尺度的地表积雪过程均有较好的监测能力.监测数据清晰地显示唐古拉地区地表积雪深度在夜间相对稳定、在日间迅速降低的特点.唐古拉地区平均年积雪日数为82 d,各月均有地表积雪出现,但夏季的地表积雪较少且持续时间很短.该地区地表积雪总体上呈厚度较薄、消融较快、持续时间较短的特点.2005-2008年该地区瞬时最大积雪深度为22 cm,日平均积雪深度小于5 cm日数占总积雪日数的71.58%.%Snow cover,an important component of the cryosphere,has a profound impact on the surface and atmospheric heat conditions,ecological environment and water resources due to its special characteristics such as high reflectivity,high emissivity and low thermal conductivity.Because of its altitude and topography,the Tibet Plateau becomes the largest region with snow cover in the Northern Hemisphere.Snow cover data commonly used in scientific research is mostly collected by satellite,microwave Snow monitoring data or the daily snow depth measurements from meteorological observation stations.These data show a disadvantage of insufficient time resolution when studying the detailed processes of snow cover and the impacts.Ultrasonic snow depth sensor SR-50,developed by Campbell Company,is an advanced observation instrument for snow depth.Using the measurements obtained by SR-50 at Tanggula (TGL) comprehensive monitoring site in the permafrost region on the Tibet Plateau,the evaluation of SR-50 for snow depth measurements is introduced and the characteristics of snow cover in permafrost regions are analyzed.The results indicate that SR-50 shows a very

  7. The stepwise discriminant algorithm for snow cover mapping based on FY-3/MERSI data

    Science.gov (United States)

    Han, Tao; Wang, Dawei; Jiang, Youyan; Wang, Xiaowei

    2013-10-01

    Medium Resolution Spectral Imager (MERSI) on board China's new generation polar orbit meteorological satellite FY- 3A provides a new data source for snow monitoring in large area. As a case study, the typical snow cover of Qilian Mountains in northwest China was selected in this paper to develop the algorithm to map snow cover using FY- 3A/MERSI. By analyzing the spectral response characteristics of snow and other surface elements, as well as each channel image quality on FY-3A/MERSI, the widely used Normalized Difference Snow Index (NDSI) was defined to be computed from channel 2 and channel 7 for this satellite data. Basing on NDSI, a tree-structure prototype version of snow identification model was proposed, including five newly-built multi-spectral indexes to remove those pixels such as forest, cloud shadow, water, lake ice, sand (salty land), or cloud that are usually confused with snow step by step, especially, a snow/cloud discrimination index was proposed to eliminate cloud, apart from use of cloud mask product in advance. Furthermore, land cover land use (LULC) image has been adopted as auxiliary dataset to adjust the corresponding LULC NDSI threshold constraints for snow final determination and optimization. This model is composed as the core of FY-3A/MERSI snow cover mapping flowchart, to produce daily snow map at 250m spatial resolution, and statistics can be generated on the extent and persistence of snow cover in each pixel for time series maps. Preliminary validation activities of our snow identification model have been undertaken. Comparisons of the 104 FY- 3A/MERSI snow cover maps in 2010-2011 snow season with snow depth records from 16 meteorological stations in Qilian Mountains region, the sunny snow cover had an absolute accuracy of 92.8%. Results of the comparison with the snow cover identified from 6 Terra/MODIS scenes showed that they had consistent pixels about 85%. When the two satellite resultant snow cover maps compared with the 6

  8. Prevalence of pure versus mixed snow cover pixels across spatial resolutions in alpine environments: implications for binary and fractional remote sensing approaches

    Science.gov (United States)

    Selkowitz, David J.; Forster, Richard; Caldwell, Megan K.

    2014-01-01

    Remote sensing of snow-covered area (SCA) can be binary (indicating the presence/absence of snow cover at each pixel) or fractional (indicating the fraction of each pixel covered by snow). Fractional SCA mapping provides more information than binary SCA, but is more difficult to implement and may not be feasible with all types of remote sensing data. The utility of fractional SCA mapping relative to binary SCA mapping varies with the intended application as well as by spatial resolution, temporal resolution and period of interest, and climate. We quantified the frequency of occurrence of partially snow-covered (mixed) pixels at spatial resolutions between 1 m and 500 m over five dates at two study areas in the western U.S., using 0.5 m binary SCA maps derived from high spatial resolution imagery aggregated to fractional SCA at coarser spatial resolutions. In addition, we used in situ monitoring to estimate the frequency of partially snow-covered conditions for the period September 2013–August 2014 at 10 60-m grid cell footprints at two study areas with continental snow climates. Results from the image analysis indicate that at 40 m, slightly above the nominal spatial resolution of Landsat, mixed pixels accounted for 25%–93% of total pixels, while at 500 m, the nominal spatial resolution of MODIS bands used for snow cover mapping, mixed pixels accounted for 67%–100% of total pixels. Mixed pixels occurred more commonly at the continental snow climate site than at the maritime snow climate site. The in situ data indicate that some snow cover was present between 186 and 303 days, and partial snow cover conditions occurred on 10%–98% of days with snow cover. Four sites remained partially snow-free throughout most of the winter and spring, while six sites were entirely snow covered throughout most or all of the winter and spring. Within 60 m grid cells, the late spring/summer transition from snow-covered to snow-free conditions lasted 17–56 days and averaged 37

  9. Changes of snow cover in Poland

    Science.gov (United States)

    Szwed, Małgorzata; Pińskwar, Iwona; Kundzewicz, Zbigniew W.; Graczyk, Dariusz; Mezghani, Abdelkader

    2017-02-01

    The present paper examines variability of characteristics of snow cover (snow cover depth, number of days with snow cover and dates of beginning and end of snow cover) in Poland. The study makes use of a set of 43 long time series of observation records from the stations in Poland, from 1952 to 2013. To describe temporal changes in snow cover characteristics, the intervals of 1952-1990 and of 1991-2013 are compared and trends in analysed data are sought (e.g., using the Mann-Kendall test). Observed behaviour of time series of snow-related variables is complex and not easy to interpret, for instance because of the location of the research area in the zone of transitional moderate climate, where strong variability of climate events is one of the main attributes. A statistical link between the North Atlantic Oscillation (NAO) index and the snow cover depth, as well as the number of snow cover days is found.

  10. Conservation and monitoring of invertebrates in terrestrial protected areas

    Directory of Open Access Journals (Sweden)

    Melodie A. McGeoch

    2011-05-01

    Full Text Available Invertebrates constitute a substantial proportion of terrestrial and freshwater biodiversity and are critical to ecosystem function. However, their inclusion in biodiversity monitoring and conservation planning and management has lagged behind better-known, more widely appreciated taxa. Significant progress in invertebrate surveys, systematics and bioindication, both globally and locally, means that their use in biodiversity monitoring and conservation is becoming increasingly feasible. Here we outline challenges and solutions to the integration of invertebrates into biodiversity management objectives and monitoring in protected areas in South Africa. We show that such integration is relevant and possible, and assess the relative suitability of seven key taxa in this context. Finally, we outline a series of recommendations for mainstreaming invertebrates in conservation planning, surveys and monitoring in and around protected areas.Conservation implications: Invertebrates constitute a substantial and functionally significant component of terrestrial biodiversity and are valuable indicators of environmental condition. Although consideration of invertebrates has historically been neglected in conservation planning and management, substantial progress with surveys, systematics and bioindication means that it is now both feasible and advisable to incorporate them into protected area monitoring activities.

  11. SNOW CLEARING

    CERN Multimedia

    Groupe de Transport/Transport Group

    1999-01-01

    In order to facilitate snow-clearing operations, which commence at 4.30 every morning, drivers of CERN vehicles are kindly requested to group their cars together in the car parks. This will greatly help us in our work. Thank you for your co-operation.Transport Group / ST-HMTel. 72202

  12. Snow clearance

    CERN Multimedia

    Mauro Nonis

    2005-01-01

    In reply to the numerous questions received, we should like to inform you of the actions and measures taken in an effort to maintain the movements of vehicles and pedestrians since the heavy snow fall on Sunday 23 January. Our contractor's employees began clearing the snow during the morning of Sunday 23 January on the main CERN sites (Meyrin, Prévessin), but an accident prevented them from continuing. The vehicle in question was repaired by Monday morning when two other vehicles joined it to resume snow clearing; priority was given to access points to the main sites and the LHC sites, as well as to the main roads inside the sites. The salt sprinklers were also brought into action that same day; the very low temperature during the night from Monday to Tuesday prevented the snow from melting and compacted the ice; the continuing cold during the day on Tuesday (-6°C at 10:00 on the Meyrin site) meant that all efforts to remove the ice were doomed to failure. In order to ensure more efficie...

  13. Investigating the role of topography on snow cover duration and distribution in the Italian Apennines by means of MODIS data

    Science.gov (United States)

    Da Ronco, Pierfrancesco; Piperno, Peter; Avanzi, Francesco; De Michele, Carlo

    2016-04-01

    Snow cover plays an important role in the water cycle influencing water resource availability. As the seasonal cycle of snowpack is highly sensitive to variations of precipitation and temperature, the expected future changes in the atmospheric forcings may impact on the timing of snow accumulation and melt. In this work we investigated the effects of the complex topography of a mountain range on snow dynamics by means of MODIS data of snow cover (2003 - 2014) and a 500 m-resolution Digital Elevation Model. The study area is the central Apennines, having peaks in elevation over 2800 m asl in the Majella and Gran Sasso massifs. Firstly, we carried out a validation of MOD10A1/MYD10A1 SCA products comparing ground data of snow depth measured by seven monitoring stations with the remote sensing time series of snow covered area. The comparison confirms the accuracy of MODIS products in snow cover mapping in mountain areas, in agreement with what found in other regions around the world. Then, we subjected Aqua and Terra snow cover maps to a cloud removal procedure ensuring a pixel-scale estimate of snow cover presence at daily temporal resolution. The new cloud-free dataset was used for deriving trends of snow cover duration and snow cover distribution for different classes of aspect, slope and concavity within the mountain part of the domain. The analysis has allowed us to quantify the impacts of these topographic features on the accumulation and melting processes. In particular, the north-facing slopes show a lower snowline altitude in all seasons and a longer snow duration in spring.

  14. The integrated monitoring area Lheebroekerzand, Netherlands. Data of 1994

    Energy Technology Data Exchange (ETDEWEB)

    Mathijssen-Spiekman, E.A.M.; De Zwart, D.

    1995-09-01

    The results of the title monitoring programme are presented. The main objective of this paper is to compile and present the 1994 monitoring data which are obliged to be forwarded to the international database in Helsinki, Finland, by the end of September 1995. Additional non-obligatory data are also reported. It is explicitly not within the scope of this report to give a detailed analysis of causes and effects as may be concluded from correlation studies comprising longer time-series and spatial gradient. In 1994, the biological part of the integrated monitoring programme consisted of a regular inventory of birds, leafminers and butterflies in the monitoring area, as well as inventories of the aquatic macrofauna present in the moorland pool Kliplo and observations on the performance of pine trees. The chemical-physical part included meteorological variables like temperature, humidity, the amount of precipitation and irradiation, together with chemical analysis of air, precipitation, mosses, leaves, needles and pool water. Where possible, the series of data are described, interpreted and compared. The obligatory monitoring activities described in the ICP/IM-manual which are possible to be performed in the Dutch area, are carried out with exception of the programmes on trunk epiphytes, aerial green algae and soil water chemistry. Concerning progress and conclusiveness of the Netherlands contribution to the UN/ECE-IMP it can be stated that: more manpower is needed to continue the program; the development of the monitoring area is not yet completed and additions to the monitoring programme have to be performed; more sampling and analysis is needed to draw firm conclusions on the applicability of the data on leafminers and butterflies and other recent additions; more capacity is needed to pay adequate attention to the interpretation and evaluation of collected data. 7 figs., 5 tabs., 18 refs., 3 appendices

  15. SNOWMIP2: An evaluation of forest snow process simulations

    Science.gov (United States)

    Richard Essery; Nick Rutter; John Pomeroy; Robert Baxter; Manfred Stahli; David Gustafsson; Alan Barr; Paul Bartlett; Kelly Elder

    2009-01-01

    Models of terrestrial snow cover, or snow modules within land surface models, are used in many meteorological, hydrological, and ecological applications. Such models were developed first, and have achieved their greatest sophistication, for snow in open areas; however, huge tracts of the Northern Hemisphere both have seasonal snow cover and are forested (Fig. 1)....

  16. Research on the seasonal snow of the Arctic Slope

    Energy Technology Data Exchange (ETDEWEB)

    Benson, C.S.

    1986-01-01

    This project deals with the seasonal snow on Alaska's Arctic Slope. It is concentrated on snow of the R{sub 4}D project area. However, an important aspect of this study is to relate the snow cover of this area with the rest of the Arctic Slope. The goals include determination of the amount of precipitation which comes as snow, the wind transport of this snow and its depositional pattern as influenced by drifting, the physical properties of the snow, the physical processes which operate in it, the proportions of it which go into evaporation, infiltration and runoff, and the biological role of the snow cover.

  17. Research on the seasonal snow of the Arctic Slope

    Energy Technology Data Exchange (ETDEWEB)

    Benson, C.S.

    1991-01-01

    This project deals with the seasonal snow on Alaska's Arctic Slope. Although it is concentrated on snow of the R{sub 4}D project area, it is important to relate the snow cover of this area with the rest of the Arctic Slope. The goals include determination of the amount of precipitation which comes as snow, the wind transport of this snow and its depositional pattern as influenced by drifting, the physical properties of the snow, the physical processes which operate in it, the proportions of it which go into evaporation, infiltration and runoff, and the biological role of the snow cover.

  18. Research on the seasonal snow of the Arctic Slope

    Energy Technology Data Exchange (ETDEWEB)

    Benson, C.S.

    1989-01-01

    This project deals with the seasonal snow on Alaska's Arctic Slope. Although it is concentrated on snow of the R40 project area, it is important to relate the snow cover of this area with the rest of the Arctic Slope. The goals include determination Of the amount of precipitation which comes as snow, the wind transport of this snow and its depositional pattern as influenced by drifting, the physical properties of the snow, the physical processes which operate in it, the proportions of it which go into evaporation, infiltration and runoff, and the biological role of the snow cover.

  19. Application of Snpp/viirs Data in Near Real-Time Supra-Snow Flood Detection

    Science.gov (United States)

    Li, S.; Sun, D.; Goldberg, M.; Sjoberg, B.; Plumb, E. W.; Holloway, E.; Lindsey, S.; Kreller, M.

    2015-12-01

    Supra-snow/ice flood is very common in high latitude areas from winter to spring break-up seasons along rivers flowing to even higher latitude areas, but this flood type doesn't draw much attention due to poor ground conditions for river watch and ground observations. Satellite data from SNPP/VIIRS (Suomi-National Polar-orbit Partnership/Visible/Infrared Imager Radiometer Suite) instead have shown great advantages in supra-snow/ice flood detection due to its large swath coverage, multiple daily observations in high latitude areas and moderate spatial resolution. Thus, methods for supra-snow/ice water detection were developed to detect near real-time supra-snow/ice floods automatically using SNPP/VIIRS imagery. The methods were mainly based on spectral features of supra-snow/ice floodwater, assisting by geometry-based algorithm and object-based algorithm to remove cloud shadows and terrain shadows over snow/ice surface. The detected supra-snow/ice floodwater was further applied in water fraction retrieval for better representation of flood extent using a modified histogram method based on linear combination model. The developed methods were successfully applied in dynamic monitoring of 2015's supra-snow/ice flood along Sag River in Alaska, which was claimed as a state disaster by Alaska state government, and further tested with more than 1000 VIIRS granules year around. Analyses through visual inspection with VIIRS false-color composite images and quantitative comparison with Landsat-8 OLI images show promising and robust performance in detection of supra-snow/ice floodwater, indicating a high feasibility for the method to be applied in operations for near real-time supra-snow/ice flood detection.

  20. Can snow depth be used to predict the distribution of the high Arctic aphid Acyrthosiphon svalbardicum (Hemiptera: Aphididae on Spitsbergen?

    Directory of Open Access Journals (Sweden)

    Ávila-Jiménez María L

    2011-10-01

    Full Text Available Abstract Background The Svalbard endemic aphid Acyrthosiphon svalbardicum (Heikinheimo, 1968 is host specific to Dryas octopetala L. ssp octopetala (Rosaceae. It has been hypothesized that the aphid is present on those areas with a thin winter snow cover and which therefore clear of snow earlier in the season. This early snow clearance results in a longer growing period and allows the aphid to experience at least the minimum number of degree days required to complete its life cycle. However, this hypothesis lacked a detailed field validation. We aimed to test the relationship between the aphid distribution and time of snow clearance at landscape scale, mapping snow depth at peak of snow accumulation for the two succeeding years 2009 and 2010 and examining site occupancy and plant phenology the following summers. Additionally, the distribution range mapped by Strathdee & Bale (1995 was revisited to address possible changes in range along the coast of the fjord. Results A linear relation between snow depth and timing of snow melt was found but with strong inter-annual and landscape variation. Both snow depth and plant phenology were found to affect patch occupancy. In August, the aphid, at the three life stages scored (viviparae, oviparae/males and eggs, was present most frequently in those D. octopetala patches with the most advanced plant phenology and which showed shallower snow depths in spring. However, many patches predicted to contain aphids were empty. The aphid distribution range has expanded 4.7 km towards the fjord mouth from 1995. Conclusions Snow depth alone, and hence date of snow clearance, cannot precisely define species distribution at landscape scale, as this cannot explain why are they unoccupied patches under shallow snow depths with advanced plant phenology. We nonetheless present a model Arctic system that could form the basis for long term monitoring for climate- driven species shifts.

  1. Snow White 5 Trench

    Science.gov (United States)

    2008-01-01

    This image was acquired by NASA's Phoenix Mars Lander's Robotic Arm Camera on the 35th Martian day of the mission, or Sol 34 (June 29, 2008), after the May 25, 2008, landing. This image shows the trench informally called 'Snow White 5.' The trench is 4-to-5 centimeters (about 1.5-to-1.9 inches) deep, 24 centimeters (about 9 inches) wide and 33 centimeters (13 inches) long. Snow White 5 is Phoenix's current active digging area after additional trenching, grooming, and scraping by Phoenix's Robotic Arm in the last few sols to trenches informally called Snow White 1, 2, 3, and 4. Near the top center of the image is the Robotic Arm's Thermal and Electrical Conductivity Probe. Snow White 5 is located in a patch of Martian soil near the center of a polygonal surface feature, nicknamed 'Cheshire Cat.' The digging site has been named 'Wonderland.' This image has been enhanced to brighten shaded areas. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  2. 基于混合像元分解的天山典型地区冰雪变化监测%Monitoring of Snow Cover Changes in Tianshan Mountains Based on Mixed Pixel Decomposition

    Institute of Scientific and Technical Information of China (English)

    金鑫; 柯长青

    2012-01-01

    针对中低分辨率遥感图像中存在大量混合像元,而传统的图像分类方法存在只能将某个像元归到某一类中,不能正确反映混合像元实际情况的问题.以新疆天山典型冰川覆盖区为例,根据TM/ETM+遥感图像的光谱特征,结合天山地区地表覆盖特点,在线性混合像元分解方法基础上,设计一种符合冰川地区特点的“冰雪-植被-裸露山体-阴影”端元组分模型.通过选择合适的端元并将其反射率值代入改进后的且满足约束条件的线性混合像元分解模型,得到各端元组分丰度图,进而精确提取出冰雪信息并计算其面积.1989年TM和2000年ETM+遥感图像冰雪信息提取结果表明,运用线性混合像元分解模型能很好地监测实验区的冰雪覆盖变化情况.%Mixed pixels are abundant in medium - low resolution images, but the traditional methods for image classification could only assign pixels to one class,with the ignorance of the mixed pixels. To tackle this problem, the authors selected the typical area in Tianshan Glacier of Xinjiang as an experimental area. Based on the theory of mixed pixel decomposition and the principle of the linear model and taking into account the spectral characteristics of TM/ETM + image as well as the land cover characteristics of Tianshan area, the authors developed an end -member composition model suitable for the glacier area,i. e. , Snow - Vegetation - Rock - Shade model. After the appropriate end - members were selected and the reflectance values were substituted into the improved linear mixed pixel decomposition model, which satisfied the constraints, the abundance image of individual end - member was calculated and the snow cover information was easily and precisely extracted. The extraction results of snow cover in 1989 and 2000 demonstrate that the mixed pixel decomposition and the linear model could be used to monitor the snow cover changes in the glacier area.

  3. Wide-area monitoring of interconnected power systems

    CERN Document Server

    Messina, Arturo Román

    2015-01-01

    This book provides a compact yet comprehensive treatment of advanced data-driven signal processing techniques for the analysis and characterization of both ambient power system data and transient oscillations resulting from major disturbances. Inspired by recent developments in multi-sensor data fusion, multi-temporal data assimilation techniques for power system monitoring are proposed and tested in the context of modern wide-area monitoring system architectures. Recent advances in understanding and modeling nonlinear, time-varying power system processes are reviewed and factors affecting the

  4. Moisture Monitoring at Area G, Technical Area 54, Los Alamos National Laboratory, 2016 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Levitt, Daniel Glenn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Birdsell, Kay Hanson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jennings, Terry L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); French, Sean B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-17

    Hydrological characterization and moisture monitoring activities provide data required for evaluating the transport of subsurface contaminants in the unsaturated and saturated zones beneath Area G, and for the Area G Performance Assessment and Composite Analysis. These activities have been ongoing at Area G, Technical Area 54 of the Los Alamos National Laboratory since waste disposal operations began in 1957. This report summarizes the hydrological characterization and moisture monitoring activities conducted at Area G. It includes moisture monitoring data collected from 1986 through 2016 from numerous boreholes and access tubes with neutron moisture meters, as well as data collected by automated dataloggers for water content measurement sensors installed in a waste disposal pit cover, and buried beneath the floor of a waste disposal pit. This report is an update of a nearly identical report by Levitt et al., (2015) that summarized data collected through early 2015; this report includes additional moisture monitoring data collected at Pit 31 and the Pit 38 extension through December, 2016. It also includes information from the Jennings and French (2009) moisture monitoring report and includes all data from Jennings and French (2009) and the Draft 2010 Addendum moisture monitoring report (Jennings and French, 2010). For the 2015 version of this report, all neutron logging data, including neutron probe calibrations, were investigated for quality and pedigree. Some data were recalculated using more defensible calibration data. Therefore, some water content profiles are different from those in the Jennings and French (2009) report. All of that information is repeated in this report for completeness. Monitoring and characterization data generally indicate that some areas of the Area G vadose zone are consistent with undisturbed conditions, with water contents of less than five percent by volume in the top two layers of the Bandelier tuff at Area G. These data also

  5. 'Snow Queen' Animation

    Science.gov (United States)

    2008-01-01

    This animation consists of two close-up images of 'Snow Queen,' taken several days apart, by the Robotic Arm Camera (RAC) aboard NASA's Phoenix Mars Lander. Snow Queen is the informal name for a patch of bright-toned material underneath the lander. Thruster exhaust blew away surface soil covering Snow Queen when Phoenix landed on May 25, 2008, exposing this hard layer comprising several smooth rounded cavities beneath the lander. The RAC images show how Snow Queen visibly changed between June 15, 2008, the 21st Martian day, or sol, of the mission and July 9, 2008, the 44th sol. Cracks as long as 10 centimeters (about four inches) appeared. One such crack is visible at the left third and the upper third of the Sol 44 image. A seven millimeter (one-third inch) pebble or clod appears just above and slightly to the right of the crack in the Sol 44 image. Cracks also appear in the lower part of the left third of the image. Other pieces noticeably shift, and some smooth texture has subtly roughened. The Phoenix team carefully positioned and focused RAC the same way in both images. Each image is about 60 centimeters, or about two feet, wide. The object protruding in from the top on the right half of the images is Phoenix's thermal and electrical conductivity probe. Snow Queen and other ice exposed by Phoenix landing and trenching operations on northern polar Mars is the first time scientists have been able to monitor Martian ice at a place where temperatures are cold enough that the ice doesn't immediately sublimate, or vaporize, away. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  6. Storing snow for the next winter: Two case studies on the application of snow farming.

    Science.gov (United States)

    Grünewald, Thomas; Wolfsperger, Fabian

    2016-04-01

    Snow farming is the conservation of snow during the warm half-year. This means that large piles of snow are formed in spring in order to be conserved over the summer season. Well-insulating materials such as chipped wood are added as surface cover to reduce melting. The aim of snow farming is to provide a "snow guaranty" for autumn or early winter - this means that a specific amount of snow will definitively be available, independent of the weather conditions. The conserved snow can then be used as basis for the preparation of winter sports grounds such as cross-country tracks or ski runs. This helps in the organization of early winter season sport events such as World Cup races or to provide appropriate training conditions for athletes. We present a study on two snow farming projects, one in Davos (Switzerland) and one in the Martell valley of South Tyrol. At both places snow farming has been used for several years. For the summer season 2015, we monitored both snow piles in order to assess the amount of snow conserved. High resolution terrestrial laser scanning was performed to measure snow volumes of the piles at the beginning and at the end of the summer period. Results showed that only 20% to 30 % of the snow mass was lost due to ablation. This mass loss was surprisingly low considering the extremely warm and dry summer. In order to identify the most relevant drivers of snow melt we also present simulations with the sophisticated snow cover models SNOWPACK and Alpine3D. The simulations are driven by meteorological input data recorded in the vicinity of the piles and enable a detailed analysis of the relevant processes controlling the energy balance. The models can be applied to optimize settings for snow farming and to examine the suitability of new locations, configurations or cover material for future snow farming projects.

  7. Survey monitoring of environmental radioactivity in Daegu area

    Energy Technology Data Exchange (ETDEWEB)

    Kang, H. D.; Lee, S. Y. [Kyungpook National Univ., Daegu (Korea, Republic of)

    1998-01-15

    The objectives of the project are to monitor an abnormal radiation level in Taegu and Kyungpook region, and to enhance our ability to prepare for the radiological emergency situation by establishing the radioactivity monitoring system in Taegu and Kyungpook region. Gross beta activities were measured and gamma radionuclides were analysed for the environmental samples of air-borned dust. precipitation. fallout and drinking water collected in Taegu radioactivity monitoring center. and gamma exposure rates were also measured. To establish the basic data base on the environmental radioactivity, gamma radionuclide analyses were carried out for the samples of soil, drinking water, grain, vegetable, milk, and fish which were obtained from 31 different areas, and the spatial gamma exposure rates from 61 different points were also measured in Taegu and Kyungpook region. In conclusion, it didn't appear any evidence for newly pollution of artificial radioactivity in Taegu and Kyungpook region.

  8. Can a snow structure model estimate snow characteristics relevant to reindeer husbandry?

    Directory of Open Access Journals (Sweden)

    Sirpa Rasmus

    2014-02-01

    Full Text Available Snow affects foraging conditions of reindeer e.g. by increasing the energy expenditures for moving and digging work or, in contrast, by making access of arboreal lichen easier. Still the studies concentrating on the role of the snow pack structure on reindeer population dynamics and reindeer management are few. We aim to find out which of the snow characteristics are relevant for reindeer in the northern boreal zone according to the experiences of reindeer herders and is this relevance seen also in reproduction rate of reindeer in this area. We also aim to validate the ability of the snow model SNOWPACK to reliably estimate the relevant snow structure characteristics. We combined meteorological observations, snow structure simulations by the model SNOWPACK and annual reports by reindeer herders during winters 1972-2010 in the Muonio reindeer herding district, northern Finland. Deep snow cover and late snow melt were the most common unfavorable conditions reported. Problematic conditions related to snow structure were icy snow and ground ice or unfrozen ground below the snow, leading to mold growth on ground vegetation. Calf production percentage was negatively correlated to the measured annual snow depth and length of the snow cover time and to the simulated snow density. Winters with icy snow could be distinguished in three out of four reported cases by SNOWPACK simulations and we could detect reliably winters with conditions favorable for mold growth. Both snow amount and also quality affects the reindeer herding and reindeer reproduction rate in northern Finland. Model SNOWPACK can relatively reliably estimate the relevant structural properties of snow. Use of snow structure models could give valuable information about grazing conditions, especially when estimating the possible effects of warming winters on reindeer populations and reindeer husbandry. Similar effects will be experienced also by other arctic and boreal species.

  9. 2016 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    Energy Technology Data Exchange (ETDEWEB)

    Black, David [National Security Technologies, LLC. (NSTec), Mercury, NV (United States)

    2017-08-30

    Environmental monitoring data are collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) within the Nevada National Security Site (NNSS). These data include direct radiation exposure, as well as radiation from the air, groundwater, meteorology, and vadose zone. This report summarizes the 2016 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports, developed by National Security Technologies, LLC Direct radiation monitoring data indicate exposure levels at the RWMSs are within the range of background levels measured at the NNSS. Slightly elevated exposure levels outside the Area 3 RWMS are attributed to nearby historical aboveground nuclear weapons tests. Air monitoring data show that tritium concentrations in water vapor and americium and plutonium concentrations in air particles are below Derived Concentration Standards for these radionuclides. Groundwater monitoring data indicate the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by RWMS operations. Results of groundwater analysis from wells around the Area 5 RWMS were all below established investigation levels. Leachate samples collected from the leachate collection system at the mixed low-level waste cell were below established contaminant regulatory limits. During 2016, precipitation at the Area 3 RWMS was 8% below average, and precipitation at the Area 5 RWMS was 8% above average. Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents downward percolation of precipitation more effectively than evaporation as measured from the bare-soil weighing lysimeter. Vadose zone monitoring on Area 5 and Area 3 RWMS cell covers shows no evidence of precipitation percolating through the covers

  10. Sentinel areas: a monitoring strategy in public health

    Directory of Open Access Journals (Sweden)

    Teixeira Maria da Glória

    2002-01-01

    Full Text Available Available techniques for monitoring the health situation have proven insufficient, thus leading to a discussion of the need for their improvement based on new data collection strategies allowing for data use by local health systems. This article presents the methodological basis for a strategy to monitor health problems utilizing demarcated intra-urban spaces called "sentinel areas" to collect fundamental social, economic, behavioral, and biological data for public health that allow for a closer approach to the reality of complex social spaces. The authors present an experience that is being developed in Salvador, Bahia, Brazil, to evaluate the epidemiological impact of an environmental sanitation program. They discuss selection criteria for the areas and the potential uses of this strategy allowing for the rapid utilization of epidemiological resources by health services and the timely application of the results to reorient and enhance health intervention practices.

  11. An Automated Approach for Mapping Persistent Ice and Snow Cover over High Latitude Regions

    Directory of Open Access Journals (Sweden)

    David J. Selkowitz

    2015-12-01

    Full Text Available We developed an automated approach for mapping persistent ice and snow cover (glaciers and perennial snowfields from Landsat TM and ETM+ data across a variety of topography, glacier types, and climatic conditions at high latitudes (above ~65°N. Our approach exploits all available Landsat scenes acquired during the late summer (1 August–15 September over a multi-year period and employs an automated cloud masking algorithm optimized for snow and ice covered mountainous environments. Pixels from individual Landsat scenes were classified as snow/ice covered or snow/ice free based on the Normalized Difference Snow Index (NDSI, and pixels consistently identified as snow/ice covered over a five-year period were classified as persistent ice and snow cover. The same NDSI and ratio of snow/ice-covered days to total days thresholds applied consistently across eight study regions resulted in persistent ice and snow cover maps that agreed closely in most areas with glacier area mapped for the Randolph Glacier Inventory (RGI, with a mean accuracy (agreement with the RGI of 0.96, a mean precision (user’s accuracy of the snow/ice cover class of 0.92, a mean recall (producer’s accuracy of the snow/ice cover class of 0.86, and a mean F-score (a measure that considers both precision and recall of 0.88. We also compared results from our approach to glacier area mapped from high spatial resolution imagery at four study regions and found similar results. Accuracy was lowest in regions with substantial areas of debris-covered glacier ice, suggesting that manual editing would still be required in these regions to achieve reasonable results. The similarity of our results to those from the RGI as well as glacier area mapped from high spatial resolution imagery suggests it should be possible to apply this approach across large regions to produce updated 30-m resolution maps of persistent ice and snow cover. In the short term, automated PISC maps can be used to

  12. An automated approach for mapping persistent ice and snow cover over high latitude regions

    Science.gov (United States)

    Selkowitz, David J.; Forster, Richard R.

    2016-01-01

    We developed an automated approach for mapping persistent ice and snow cover (glaciers and perennial snowfields) from Landsat TM and ETM+ data across a variety of topography, glacier types, and climatic conditions at high latitudes (above ~65°N). Our approach exploits all available Landsat scenes acquired during the late summer (1 August–15 September) over a multi-year period and employs an automated cloud masking algorithm optimized for snow and ice covered mountainous environments. Pixels from individual Landsat scenes were classified as snow/ice covered or snow/ice free based on the Normalized Difference Snow Index (NDSI), and pixels consistently identified as snow/ice covered over a five-year period were classified as persistent ice and snow cover. The same NDSI and ratio of snow/ice-covered days to total days thresholds applied consistently across eight study regions resulted in persistent ice and snow cover maps that agreed closely in most areas with glacier area mapped for the Randolph Glacier Inventory (RGI), with a mean accuracy (agreement with the RGI) of 0.96, a mean precision (user’s accuracy of the snow/ice cover class) of 0.92, a mean recall (producer’s accuracy of the snow/ice cover class) of 0.86, and a mean F-score (a measure that considers both precision and recall) of 0.88. We also compared results from our approach to glacier area mapped from high spatial resolution imagery at four study regions and found similar results. Accuracy was lowest in regions with substantial areas of debris-covered glacier ice, suggesting that manual editing would still be required in these regions to achieve reasonable results. The similarity of our results to those from the RGI as well as glacier area mapped from high spatial resolution imagery suggests it should be possible to apply this approach across large regions to produce updated 30-m resolution maps of persistent ice and snow cover. In the short term, automated PISC maps can be used to rapidly

  13. Overview of the Existing Forest Area Changes Monitoring Systems

    OpenAIRE

    Achard, Frederic; DeFries, Ruth; Pandey, Devendra; Souza, Carlos

    2009-01-01

    This chapter presents an overview of the existing forest area changes monitoring systems at the national scale in tropical countries using remote sensing imagery. Section 3.2.2 describes national case studies: the Brazilian system which produces annual estimates of deforestation in the legal Amazon, the Indian National biannual forest cover assessment, an example of a sampling approach in the Congo basin and an example of wall-to-wall approach in Cameroon.

  14. 1998 Comprehensive TNX Area Annual Groundwater and Effectiveness Monitoring Report

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.

    1999-06-02

    Shallow groundwater beneath the TNX Area at the Savannah River Site has been contaminated with chlorinated volatile organic compounds such as trichloroethylene and carbon tetrachloride. The Interim Action T-1 Air Stripper System began operation on September 16, 1996. A comprehensive groundwater monitoring program was initiated to measure the effectiveness of the system. The Interim Action is meeting its objectives and is capable of continuing to do so until the final groundwater remedial action is in place.

  15. L-Area Reactor - 1993 annual - groundwater monitoring report

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.A.

    1994-09-01

    Groundwater was sampled and analyzed during 1993 from wells monitoring the water table at the following locations in L Area: the L-Area Acid/Caustic Basin (four LAC wells), L-Area Research Wells in the southern portion of the area (outside the fence; three LAW wells), the L-Area Oil and Chemical Basin (four LCO wells), the L-Area Disassembly Basin (two LDB wells), the L-Area Burning/Rubble Pit (four LRP wells), and the L-Area Seepage Basin (four LSB wells). During 1993, tetrachloroethylene was detected above its drinking water standard (DWS) in the LAC, LAW, LCO, and LDB well series. Lead exceeded its 50 {mu}g/L standard in the LAW, LDB, and LRP series, and tritium was above its DWS in the LAW, LCO, and LSB series. Apparently anomalous elevated levels of the common laboratory contaminant bis(2-ethylhexyl)phthalate were reported during first quarter in one well each in the LAC series and LCO series, and during third quarter in a different LCO well. Extensive radionuclide analyses were performed during 1993 in the LAC, LAW, and LCO well series. No radionuclides other than tritium were reported above DWS or Flag 2 criteria.

  16. On the status of Snow Leopard Panthera uncial (Schreber, 1775 in Annapurna, Nepal

    Directory of Open Access Journals (Sweden)

    S.B. Ale

    2014-03-01

    Full Text Available We conducted a status-survey on Snow Leopard Panthera uncia and its main prey, the Blue Sheep Pseudois nayaur, in the Mustang District of Nepal’s Annapurna Conservation Area, in 2010 and 2011. Sign transects, covering a total linear distance of 19.4km, revealed an average density of 5.8 signs per kilometer, which compares with those from other Snow Leopard range countries. This also roughly corresponded with the minimum number of three adult Snow Leopards we obtained from nine remote cameras, deployed to monitor areas of c. 75km2 in extent. We obtained 42 pictures of Snow Leopards during nine capture events. We conclude that Mustang harbors at least three adult Snow Leopards, and probably more, along with a healthy Blue Sheep population (a total of 528 individuals, along 37.6km of Snow Leopard transect lines. We suggest that people-wildlife conflicts exist but that the local people tolerate Snow Leopards based on their Buddhist socio-religious values.

  17. Tsunamis hazard assessment and monitoring for the Back Sea area

    Science.gov (United States)

    Partheniu, Raluca; Ionescu, Constantin; Constantin, Angela; Moldovan, Iren; Diaconescu, Mihail; Marmureanu, Alexandru; Radulian, Mircea; Toader, Victorin

    2016-04-01

    NIEP has improved lately its researches regarding tsunamis in the Black Sea. As part of the routine earthquake and tsunami monitoring activity, the first tsunami early-warning system in the Black Sea has been implemented in 2013 and is active during these last years. In order to monitor the seismic activity of the Black Sea, NIEP is using a total number of 114 real time stations and 2 seismic arrays, 18 of the stations being located in Dobrogea area, area situated in the vicinity of the Romanian Black Sea shore line. Moreover, there is a data exchange with the Black Sea surrounding countries involving the acquisition of real-time data for 17 stations from Bulgaria, Turkey, Georgia and Ukraine. This improves the capability of the Romanian Seismic Network to monitor and more accurately locate the earthquakes occurred in the Black Sea area. For tsunamis monitoring and warning, a number of 6 sea level monitoring stations, 1 infrasound barometer, 3 offshore marine buoys and 7 GPS/GNSS stations are installed in different locations along and near the Romanian shore line. In the framework of ASTARTE project, few objectives regarding the seismic hazard and tsunami waves height assessment for the Black Sea were accomplished. The seismic hazard estimation was based on statistical studies of the seismic sources and their characteristics, compiled using different seismic catalogues. Two probabilistic methods were used for the evaluation of the seismic hazard, the Cornell method, based on the Gutenberg Richter distribution parameters, and Gumbel method, based on extremes statistic. The results show maximum values of possible magnitudes and their recurrence periods, for each seismic source. Using the Tsunami Analysis Tool (TAT) software, a set of tsunami modelling scenarios have been generated for Shabla area, the seismic source that could mostly affect the Romanian shore. These simulations are structured in a database, in order to set maximum possible tsunami waves that could be

  18. The integrated monitoring area Lheebroekerzand the Netherlands. Data of 1995

    Energy Technology Data Exchange (ETDEWEB)

    Mathijssen-Spiekman, E.A.M.

    1996-09-01

    The results of the title monitoring programme are presented. The main objective of this paper is to compile and present the 1995 monitoring data which are obliged to be forwarded to the international database in Helsinki, Finland, by the end of September 1996. Additional non-obligatory data are also reported. It is explicitly not within the scope of this report to give a detailed analysis of causes and effects as may be concluded from correlation studies comprising longer time-series and spatial gradient. In 1995, the biological part of the integrated monitoring programme consisted of a regular inventory of birds, leafminers and butterflies in the monitoring area, as well as inventories of the aquatic macrofauna present in the moorland pool Kliplo and observations on the performance of pine trees. The chemical-physical part included meteorological variables like temperature, humidity, the amount of precipitation and irradiation, together with chemical analysis of air, precipitation, leaves, needles and pool water. Where possible, the series of data are described and compared with data of previous years. The obligatory monitoring activities described in the ICP/IM-manual which are possible to be performed in the Dutch area, are carried out with exception of the programmes on trunk epiphytes, aerial green algae and soil water chemistry. Also in 1995, the capacity was lacking to develop these programmes. The improvement which has been carried out in 1995 is increasing the number of rainwater-collectors for bulk- and throughfall deposition from 4 to 5. Due to lack of manpower the running programmes were barely continued. 7 figs., 17 tabs., 23 refs., 3 appendices

  19. Snow depth and snow persistence patterns in the Arctic from analysis of the entire Landsat archive

    Science.gov (United States)

    Macander, M. J.; Swingley, C. S.; Parr, C.; Sturm, M.; Selkowitz, D.; Larsen, C.

    2016-12-01

    The entire archive of Landsat 5 TM, Landat 7 ETM+, and Landsat 8 OLI imagery collected between March 1 and August 31, 1999-2016 was analyzed to map the presence or absence of snow, with consideration given to clouds, cloud shadows, terrain shadows, and canopy cover. Google Earth Engine was utilized to rapidly classify and summarize the entire time-series. The time-series of observations were then pooled across all the years and a binary classification tree determined the day of year that based split the observations into a snow-covered and a snow-free season. The analysis was completed for arctic Alaska and covers approximately one million square kilometers. The snow persistence product was validated using SNOTEL sites and MODIS time series metrics. The snow persistence patterns are highly correlated with end of winter snow depth patterns. We compared the Landsat snow persistence to the normal snow depth from repeat LIDAR surveys and field snow depth measurements and applied the results to estimate snow distribution over much larger regions. A nonlinear relationship between normal snow-free day of year and mean end of winter snow depth was observed. A polynomial model (r-squared = 0.95) was developed and was extrapolated to the surrounding area to produce a regional map of modeled mean end of winter snow depth.

  20. Snow hydrology in a general circulation model

    Science.gov (United States)

    Marshall, Susan; Roads, John O.; Glatzmaier, Gary

    1994-01-01

    A snow hydrology has been implemented in an atmospheric general circulation model (GCM). The snow hydrology consists of parameterizations of snowfall and snow cover fraction, a prognostic calculation of snow temperature, and a model of the snow mass and hydrologic budgets. Previously, only snow albedo had been included by a specified snow line. A 3-year GCM simulation with this now more complete surface hydrology is compared to a previous GCM control run with the specified snow line, as well as with observations. In particular, the authors discuss comparisons of the atmospheric and surface hydrologic budgets and the surface energy budget for U.S. and Canadian areas. The new snow hydrology changes the annual cycle of the surface moisture and energy budgets in the model. There is a noticeable shift in the runoff maximum from winter in the control run to spring in the snow hydrology run. A substantial amount of GCM winter precipitation is now stored in the seasonal snowpack. Snow cover also acts as an important insulating layer between the atmosphere and the ground. Wintertime soil temperatures are much higher in the snow hydrology experiment than in the control experiment. Seasonal snow cover is important for dampening large fluctuations in GCM continental skin temperature during the Northern Hemisphere winter. Snow depths and snow extent show good agreement with observations over North America. The geographic distribution of maximum depths is not as well simulated by the model due, in part, to the coarse resolution of the model. The patterns of runoff are qualitatively and quantitatively similar to observed patterns of streamflow averaged over the continental United States. The seasonal cycles of precipitation and evaporation are also reasonably well simulated by the model, although their magnitudes are larger than is observed. This is due, in part, to a cold bias in this model, which results in a dry model atmosphere and enhances the hydrologic cycle everywhere.

  1. Environmental monitoring in peat bog areas by change detection methods

    Science.gov (United States)

    Michel, Ulrich; Mildes, Wiebke

    2016-10-01

    Remote sensing image analysis systems and geographic information systems (GIS) show great promise for the integration of a wide variety of spatial information supporting tasks such as urban and regional planning, natural resource management, agricultural studies and topographic or thematic mapping. Current and future remote sensing programs are based on a variety of sensors that will provide timely and repetitive multisensor earth observation on a global scale. GIS offer efficient tools for handling, manipulating, analyzing and presenting spatial data that are required for sensible decision making in various areas. The Environmental Monitoring project may serve as a convincing example of the operational use of integrated GIS/remote sensing technologies. The overall goal of the project is to assess the capabilities of satellite remote sensing for the analysis of land use changes, especially in moor areas. These areas are recognized as areas crucial to the mission of the Department of Environment and, therefore, to be placed under an extended level of protection. It is of critical importance, however, to have accurate and current information about the ecological and economic state of these sensitive areas. In selected pasture and moor areas, methods for multisensor data fusion have being developed and tested. The results of this testing show which techniques are useful for pasture and moor monitoring at an operational level. A hierarchical method is used for extracting bog land classes with respect to the environmental protection goals. A highly accurate classification of the following classes was accomplished: deciduous- and mixed forest, coniferous forest, water, very wet areas, meadowland/farmland with vegetation, meadowland/farmland with partly vegetation, meadowland/ farmland without vegetation, peat quarrying with maximum of 50% vegetation, de- and regeneration stages. In addition, a change detection analysis is performed in comparison with the existing

  2. Area monitor for neutrons with thin sheet of Au; Monitor de area para neutrones con laminilla de Au

    Energy Technology Data Exchange (ETDEWEB)

    Valero L, C.; Guzman G, K. A.; Banuelos F, A.; Borja H, C. G.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Gallego, E.; Lorente, A., E-mail: fermineutron@yahoo.com [Universidad Politecnica de Madrid, Departamento de Ingenieria Nuclear, C/ Jose Gutierrez Abascal 2, E-28006 Madrid (Spain)

    2011-11-15

    A passive area monitor for neutrons with an activation detector was designed and constructed to be used in sites where the radiation field is mixed, intense and pulsed, like happens in the radiotherapy rooms that use lineal accelerators of medical use or in enclosures with cyclotrons for PET, or where the field is mixed and intense as in the nuclear power plants. This equipment is useful for the exposition cases of the patients or workers that receive not counted radiation dose, generating harmful effects to the health, for what is necessary to take the pertinent measures for the radiological protection. The design of the area monitor was realized using the MCNP5 code, where was considered an activation detector and therefore thin sheets of Au-197 located in the moderator center were used. The moderator was designed as a polyethylene cylindrical to moderate the neutrons. The gold was used like detector for its high cross section and its physical and chemical characteristics. The response of the monitor is maxim for energies from 1 to 20 MeV, region where the flowing coefficients and dose are majors. Therefore, the designed and constructed monitor can be used in sites with high, mixed and pulsed radiation fields. (Author)

  3. Offsite environmental monitoring report. Radiation monitoring around United States nuclear test areas, calendar year 1982

    Energy Technology Data Exchange (ETDEWEB)

    Black, S. C.; Grossman, R. F.; Mullen, A. A.; Potter, G. D.; Smith, D. D. [comps.

    1983-07-01

    A principal activity of the Offsite Radiological Safety Program is routine environmental monitoring for radioactive materials in various media and for radiation in areas which may be affected by nuclear tests. It is conducted to document compliance with standards, to identify trends, and to provide information to the public. This report summarizes these activities for CY 1982.

  4. Estimating Snow Budget of Karaj Dam Reservoir

    Directory of Open Access Journals (Sweden)

    Manijeh G. Tali

    2009-01-01

    Full Text Available Problem statement: Most of the cold period precipitation of Karaj Basin falls in the form of snow. This snow and its run off are important to the dam and the local needs such as agriculture and the drinking water of Tehran. But due to the scarcity and in some elevations the lack of weather stations, measuring this snow cover and its run off is difficult. We have decided to estimate the amount of this snow cover by using surrogate methods such as satellite images of MODIS and temperature thresholds. Approach: To estimate the snow water budget of the Karaj Dam Reservoir Basin, first a temperature threshold of 3° Celsius was defined according to the analysis of daily temperature and precipitation values of Nesa station during 1960-2000. The elevation of this temperature was as low as 1590 m in February and 5734 m in August. During each month the melting snow was computed over the area between 3 and zero degrees Celsius and precipitation below zero degrees was considered as permanent snow cover. The precipitation of areas above 3° was computed as rain. Using this temperature threshold and the DEM map of the basin we estimated the snow cover and snow melt water of the basin. The snow cover area on the MODIS images was estimated and compared with that computed from temperature threshold. Both methods gave relatively similar results. At the end the snow melt water of the whole cold period was calculated and added up to estimate the total snow water budget. Results: The results showed that during the study months most (67.7% of the precipitation comes in the form of snow. And most of this snow (97.5% melts during months March and onward. Its monthly distributions are 3.8% in March, 22.7% in April and 71% in May. The total snow water entering the dam was about 181.73 million cubic meters. Conclusion: The comparison of the results from temperature thresholds with the MODIS images snow cover showed very little and negligible discrepancy. Therefore, this

  5. Analysis of MODIS snow cover time series over the alpine regions as input for hydrological modeling

    Science.gov (United States)

    Notarnicola, Claudia; Rastner, Philipp; Irsara, Luca; Moelg, Nico; Bertoldi, Giacomo; Dalla Chiesa, Stefano; Endrizzi, Stefano; Zebisch, Marc

    2010-05-01

    Snow extent and relative physical properties are key parameters in hydrology, weather forecast and hazard warning as well as in climatological models. Satellite sensors offer a unique advantage in monitoring snow cover due to their temporal and spatial synoptic view. The Moderate Resolution Imaging Spectrometer (MODIS) from NASA is especially useful for this purpose due to its high frequency. However, in order to evaluate the role of snow on the water cycle of a catchment such as runoff generation due to snowmelt, remote sensing data need to be assimilated in hydrological models. This study presents a comparison on a multi-temporal basis between snow cover data derived from (1) MODIS images, (2) LANDSAT images, and (3) predictions by the hydrological model GEOtop [1,3]. The test area is located in the catchment of the Matscher Valley (South Tyrol, Northern Italy). The snow cover maps derived from MODIS-images are obtained using a newly developed algorithm taking into account the specific requirements of mountain regions with a focus on the Alps [2]. This algorithm requires the standard MODIS-products MOD09 and MOD02 as input data and generates snow cover maps at a spatial resolution of 250 m. The final output is a combination of MODIS AQUA and MODIS TERRA snow cover maps, thus reducing the presence of cloudy pixels and no-data-values due to topography. By using these maps, daily time series starting from the winter season (November - May) 2002 till 2008/2009 have been created. Along with snow maps from MODIS images, also some snow cover maps derived from LANDSAT images have been used. Due to their high resolution (manto nevoso in aree alpine con dati MODIS multi-temporali e modelli idrologici, 13th ASITA National Conference, 1-4.12.2009, Bari, Italy. [3] Zanotti F., Endrizzi S., Bertoldi G. and Rigon R. 2004. The GEOtop snow module. Hydrological Processes, 18: 3667-3679. DOI:10.1002/hyp.5794.

  6. From the clouds to the ground - snow precipitation patterns vs. snow accumulation patterns

    Science.gov (United States)

    Gerber, Franziska; Besic, Nikola; Mott, Rebecca; Gabella, Marco; Germann, Urs; Bühler, Yves; Marty, Mauro; Berne, Alexis; Lehning, Michael

    2017-04-01

    Knowledge about snow distribution and snow accumulation patterns is important and valuable for different applications such as the prediction of seasonal water resources or avalanche forecasting. Furthermore, accumulated snow on the ground is an important ground truth for validating meteorological and climatological model predictions of precipitation in high mountains and polar regions. Snow accumulation patterns are determined by many different processes from ice crystal nucleation in clouds to snow redistribution by wind and avalanches. In between, snow precipitation undergoes different dynamical and microphysical processes, such as ice crystal growth, aggregation and riming, which determine the growth of individual particles and thereby influence the intensity and structure of the snowfall event. In alpine terrain the interaction of different processes and the topography (e.g. lifting condensation and low level cloud formation, which may result in a seeder-feeder effect) may lead to orographic enhancement of precipitation. Furthermore, the redistribution of snow particles in the air by wind results in preferential deposition of precipitation. Even though orographic enhancement is addressed in numerous studies, the relative importance of micro-physical and dynamically induced mechanisms on local snowfall amounts and especially snow accumulation patterns is hardly known. To better understand the relative importance of different processes on snow precipitation and accumulation we analyze snowfall and snow accumulation between January and March 2016 in Davos (Switzerland). We compare MeteoSwiss operational weather radar measurements on Weissfluhgipfel to a spatially continuous snow accumulation map derived from airborne digital sensing (ADS) snow height for the area of Dischma valley in the vicinity of the weather radar. Additionally, we include snow height measurements from automatic snow stations close to the weather radar. Large-scale radar snow accumulation

  7. Snow Cover Maps from MODIS Images at 250 m Resolution, Part 2: Validation

    Directory of Open Access Journals (Sweden)

    Marc Zebisch

    2013-03-01

    Full Text Available The performance of a new algorithm for binary snow cover monitoring based on Moderate Resolution Imaging Spectroradiometer (MODIS satellite images at 250 m resolution is validated using snow cover maps (SCA based on Landsat 7 ETM+ images and in situ snow depth measurements from ground stations in selected test sites in Central Europe. The advantages of the proposed algorithm are the improved ground resolution of 250 m and the near real-time availability with respect to the 500 m standard National Aeronautics and Space Administration (NASA MODIS snow products (MOD10 and MYD10. It allows a more accurate snow cover monitoring at a local scale, especially in mountainous areas characterized by large landscape heterogeneity. The near real-time delivery makes the product valuable as input for hydrological models, e.g., for flood forecast. A comparison to sixteen snow cover maps derived from Landsat ETM/ETM+ showed an overall accuracy of 88.1%, which increases to 93.6% in areas outside of forests. A comparison of the SCA derived from the proposed algorithm with standard MODIS products, MYD10 and MOD10, indicates an agreement of around 85.4% with major discrepancies in forested areas. The validation of MODIS snow cover maps with 148 in situ snow depth measurements shows an accuracy ranging from 94% to around 82%, where the lowest accuracies is found in very rugged terrain restricted to in situ stations along north facing slopes, which lie in shadow in winter during the early morning acquisition.

  8. Vegetation and Variable Snow Cover: Spatial Patterns of Shrubland, and Grassland Snow

    Science.gov (United States)

    Liston, G. E.; Hiemstra, C. A.; Strack, J. E.

    2003-12-01

    Regions that experience long winters with snowfall and high winds frequently exhibit heterogeneous snow distribution patterns that arise from interactions among snow, wind, topography, and vegetation. Variable snow cover and resultant heterogeneities in albedo and growing season length can affect local weather patterns and energy budgets, and produce spatially co-variable ecosystem properties. While snow influences local atmospheric processes and ecosystems, an important and underappreciated feedback exists between vegetation and snow cover. Plant size, canopy density, and rigidity determine how much snow accumulates on the lee side of individual plants (e.g., shrubland vs. grassland). In addition, the canopy can also influence how much energy reaches the snowpack, thereby hindering or accelerating snowmelt. An overhanging canopy reduces incoming solar radiation while providing a source of turbulent sensible and longwave radiative energy. Historically, most snow vegetation interaction studies have been limited to areas that experience an abundance of snow (e.g., mountainous areas) where trees have a large influence on seasonal snow-cover. In contrast, snow cover patterns associated with shrublands and grasslands have received little attention, despite covering vast expanses (53%) of the seasonally snow-covered globe. In this study, snow depths were measured every two weeks from December through March in a small, 0.25 km2 study area located in North Park, Colorado. The study area possesses little topographic relief and consists of shrub patches, dominated by greasewood (Sarcobatus vermiculatus) and sagebrush (Artemisia tridentata), embedded in a matrix of graminoids (sedges, rushes, and grasses). Snow cover patterns and spatial statistics were dramatically different in graminoid-dominated cover compared with shrub cover. The graminoid snow cover was thinner, less variable, and more ephemeral than the shrub snow pack. Snow was readily eroded by wind from graminoid

  9. Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas, calendar year 1991

    Energy Technology Data Exchange (ETDEWEB)

    Chaloud, D.J.; Dicey, B.B.; Mullen, A.A.; Neale, A.C.; Sparks, A.R.; Fontana, C.A.; Carroll, L.D.; Phillips, W.G.; Smith, D.D.; Thome, D.J.

    1992-01-01

    This report describes the Offsite Radiation Safety Program conducted during 1991 by the Environmental Protection Agency`s (EPA`s) Environmental Monitoring Systems Laboratory-Las Vegas. This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ion chambers (PICs); and by biological monitoring of animals, food crops, and humans. Personnel with mobile monitoring equipment are placed in areas downwind from the test site prior to each nuclear weapons test to implement protective actions, provide immediate radiation monitoring, and obtain environmental samples rapidly after any occurrence of radioactivity release. Comparison of the measurements and sample analysis results with background levels and with appropriate standards and regulations indicated that there was no radioactivity detected offsite by the various EPA monitoring networks and no exposure above natural background to the population living in the vicinity of the NTS that could be attributed to current NTS activities. Annual and long-term trends were evaluated in the Noble Gas, Tritium, Milk Surveillance, Biomonitoring, TLD, PIC networks, and the Long-Term Hydrological Monitoring Program.

  10. The reflectance characteristics of snow covered surfaces

    Science.gov (United States)

    Batten, E. S.

    1979-01-01

    Data analysis techniques were developed to most efficiently use available satellite measurements to determine and understand components of the surface energy budget for ice and snow-covered areas. The emphasis is placed on identifying the important components of the heat budget related to snow surfaces, specifically the albedo and the energy consumed in the melting process. Ice and snow charts are prepared by NOAA from satellite observations which map areas into three relative reflectivity zones. Field measurements are analyzed of the reflectivity of an open snow field to assist in the interpretation of the NOAA reflectivity zones.

  11. Spectral Reflectance Characteristics of Different Snow and Snow-Covered Land Surface Objects and Mixed Spectrum Fitting

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jia-hua; ZHOU Zheng-ming; WANG Pei-juan; YAO Feng-mei; Liming Yang

    2011-01-01

    The field spectroradiometer was used to measure spectra of different snow and snow-covered land surface objects in Beijing area.The result showed that for a pure snow spectrum,the snow reflectance peaks appeared from visible to 800 nm band locations; there was an obvious absorption valley of snow spectrum near 1 030 nm wavelength.Compared with fresh snow,the reflection peaks of the old snow and melting snow showed different degrees of decline in the ranges of 300~1 300,1 700~1 800 and 2 200~2 300 nm,the lowest was from the compacted snow and frozen ice.For the vegetation and snow mixed spectral characteristics,it was indicated that the spectral reflectance increased for the snow-covered land types (including pine leaf with snow and pine leaf on snow background),due to the influence of snow background in the range of 350~1 300 nm.However,the spectrum reflectance of mixed pixel remained a vegetation spectral characteristic.In the end,based on the spectrum analysis of snow,vegetation,and mixed snow/vegetation pixels,the mixed spectral fitting equations were established,and the results showed that there was good correlation between spectral curves by simulation fitting and observed ones (correlation coefficient R2 =0.950 9).

  12. Spectral reflectance characteristics of different snow and snow-covered land surface objects and mixed spectrum fitting.

    Science.gov (United States)

    Zhang, Jia-Hua; Zhou, Zheng-Ming; Wang, Pei-Juan; Yao, Feng-Mei; Liming, Yang

    2011-09-01

    The field spectroradiometer was used to measure spectra of different snow and snow-covered land surface objects in Beijing area. The result showed that for a pure snow spectrum, the snow reflectance peaks appeared from visible to 800 nm band locations; there was an obvious absorption valley of snow spectrum near 1 030 nm wavelength. Compared with fresh snow, the reflection peaks of the old snow and melting snow showed different degrees of decline in the ranges of 300-1 300, 1 700-1 800 and 2 200-2 300 nm, the lowest was from the compacted snow and frozen ice. For the vegetation and snow mixed spectral characteristics, it was indicated that the spectral reflectance increased for the snow-covered land types (including pine leaf with snow and pine leaf on snow background), due to the influence of snow background in the range of 350-1 300 nm. However, the spectrum reflectance of mixed pixel remained a vegetation spectral characteristic. In the end, based on the spectrum analysis of snow, vegetation, and mixed snow/vegetation pixels, the mixed spectral fitting equations were established, and the results showed that there was good correlation between spectral curves by simulation fitting and observed ones (correlation coefficient R2 = 0.950 9).

  13. Extreme heterogeneity of land surface in spring inducing highly complex micrometeorological flow features and heat exchange processes over partly snow covered areas

    Science.gov (United States)

    Mott, Rebecca; Schlögl, Sebastian; Dirks, Lisa; Lehning, Michael

    2017-04-01

    The melting mountain snow cover in spring typically changes from a continuous snow cover to a mosaic of patches of snow and bare ground inducing an extreme heterogeneity of the land surface. Energy balance models typically assume a continuous snow cover, neglecting the complex interaction between the atmospheric boundary layer and the strongly variable surface. We experimentally investigated the small-scale boundary layer dynamics over snow patches and their effect on the energy balance at the snow surface. A comprehensive measurement campaign, the Dischma Experiment, was conducted during three entire ablation periods in spring 2014, 2015 and 2016. The aim of this project is to investigate the boundary layer development and the energy exchange over a melting snow cover with a gradually decreasing snow cover fraction. For this purpose, two measurement towers equipped with five to six ultrasonic anemometers were installed over a long-lasting snow patch. Furthermore, temporally and spatially high resolution ablation rates and snow surface temperatures were determined with a terrestrial laser scanner and an Infrared camera. This data set allows us to relate the spatial patterns of ablation rates and snow surface temperatures to boundary layer dynamics and the changing snow cover fraction. Experimental data reveal that wind conditions, snow cover distribution, local wind fetch distance and topographical curvature control the near-surface boundary layer characteristics and heat exchange processes over snow. The strong heterogeneity of land surface induced by the patchy snow cover caused a high spatial and temporal variability of snow surface temperature and snow melt patterns. Small scale flow features, such as katabatic flows or wind sheltering can be shown to strongly affect the temporal evolution of snow surface patterns. Furthermore, turbulence data reveal a strong correlation of turbulent heat exchange over melting snow with the occurrence of internal thermal

  14. 'Snow White' Trench

    Science.gov (United States)

    2008-01-01

    This image was acquired by NASA's Phoenix Mars Lander's Surface Stereo Imager on Sol 43, the 43rd Martian day after landing (July 8, 2008). This image shows the trench informally called 'Snow White.' Two samples were delivered to the Wet Chemistry Laboratory, which is part of Phoenix's Microscopy, Electrochemistry, and Conductivity Analyzer (MECA). The first sample was taken from the surface area just left of the trench and informally named 'Rosy Red.' It was delivered to the Wet Chemistry Laboratory on Sol 30 (June 25, 2008). The second sample, informally named 'Sorceress,' was taken from the center of the 'Snow White' trench and delivered to the Wet Chemistry Laboratory on Sol 41 (July 6, 2008). The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  15. Locating air quality monitoring station using wind impact area diagram.

    Science.gov (United States)

    George, K V; Verma, P; Devotta, S

    2008-10-01

    In this study a new methodology is suggested to approximate the impact area downwind of an air pollution source, where air quality monitoring can be carried out to capture the maximum pollutant concentration. Hourly wind speed for a given month is grouped in to different wind speed ranges and the distance of pollutant travel is approximated from the average wind speed of that wind speed range. Since change in wind direction causes the impact distance to rotate, its rotation is approximated by the SD of wind direction change. Using this approach, area or region down wind of a source is determined and plotted. The pattern of monthly change of wind is better represented by the new type of diagram as compared to the wind rose diagram.

  16. Observed Differences between North American Snow Extent and Snow Depth Variability

    Science.gov (United States)

    Ge, Y.; Gong, G.

    2006-12-01

    Snow extent and snow depth are two related characteristics of a snowpack, but they need not be mutually consistent. Differences between these two variables at local scales are readily apparent. However at larger scales which interact with atmospheric circulation and climate, snow extent is typically the variable used, while snow depth is often assumed to be minor and/or mutually consistent compared to snow extent, though this is rarely verified. In this study, a new regional/continental-scale gridded dataset derived from field observations is utilized to quantitatively evaluate the relationship between snow extent and snow depth over North America. Various statistical methods are applied to assess the mutual consistency of monthly snow depth vs. snow extent, including correlations, composites and principal components. Results indicate that snow depth variations are significant in their own rights, and that depth and extent anomalies are largely unrelated, especially over broad high latitude regions north of the snowline. In the vicinity of the snowline, where precipitation and ablation can affect both snow extent and snow depth, the two variables vary concurrently, especially in autumn and spring. It is also found that deeper winter snow translates into larger snow-covered area in the subsequent spring/summer season, which suggests a possible influence of winter snow depth on summer climate. The observed lack of mutual consistency at continental/regional scales suggests that snowpack depth variations may be of sufficiently large magnitude, spatial scope and temporal duration to influence regional-hemispheric climate, in a manner unrelated to the more extensively studied snow extent variations.

  17. Operational snow mapping with simplified data assimilation using the seNorge snow model

    Science.gov (United States)

    Saloranta, Tuomo M.

    2016-07-01

    Frequently updated maps of snow conditions are useful for many applications, e.g., for avalanche and flood forecasting services, hydropower energy situation analysis, as well as for the general public. Numerical snow models are often applied in snow map production for operational hydrological services. However, inaccuracies in the simulated snow maps due to model uncertainties and the lack of suitable data assimilation techniques to correct them in near-real time may often reduce the usefulness of the snow maps in operational use. In this paper the revised seNorge snow model (v.1.1.1) for snow mapping is described, and a simplified data assimilation procedure is introduced to correct detected snow model biases in near real-time. The data assimilation procedure is theoretically based on the Bayesian updating paradigm and is meant to be pragmatic with modest computational and input data requirements. Moreover, it is flexible and can utilize both point-based snow depth and satellite-based areal snow-covered area observations, which are generally the most common data-sources of snow observations. The model and analysis codes as well as the "R" statistical software are freely available. All these features should help to lower the challenges and hurdles hampering the application of data-assimilation techniques in operational hydrological modeling. The steps of the data assimilation procedure (evaluation, sensitivity analysis, optimization) and their contribution to significantly increased accuracy of the snow maps are demonstrated with a case from eastern Norway in winter 2013/2014.

  18. ULF radio monitoring network in a seismic area

    Science.gov (United States)

    Toader, Victorin; Moldovan, Iren-Adelina; Ionescu, Constantin; Marmureanu, Alexandru

    2017-04-01

    ULF monitoring is a part of a multidisciplinary network (AeroSolSys) located in Vrancea (Curvature Carpathian Mountains). Four radio receivers (100 kHz - microwave) placed on faults in a high seismic area characterized by deep earthquakes detect fairly weak radio waves. The radio power is recorded in correlation with many other parameters related to near surface low atmosphere phenomena (seismicity, solar radiation, air ionization, electromagnetic activity, radon, CO2 concentration, atmospheric pressure, telluric currents, infrasound, seismo-acoustic emission, meteorological information). We follow variations in the earth's surface propagate radio waves avoiding reflection on ionosphere. For this reason the distance between stations is less than 60 km and the main source of emission is near (Bod broadcasting transmitter for long- and medium-wave radio, next to Brasov city). In the same time tectonic stress affects the radio propagation in air and it could generates ULF waves in ground (LAI coupling). To reduce the uncertainty is necessary to monitor a location for extended periods of time to outline local and seasonal fluctuations. Solar flares do not affect seismic activity but they produce disturbances in telecommunications networks and power grids. Our ULF monitoring correlated with two local magnetometers does not indicate this so far with our receivers. Our analysis was made during magnetic storms with Kp 7 and 8 according to NOAA satellites. To correlate the results we implemented an application that monitors the satellite EUTELSAT latency compared to WiMAX land communication in the same place. ULF band radio monitoring showed that our receiver is dependent on temperature and that it is necessary to introduce a band pass filter in data analysis. ULF data acquisition is performed by Kinemetrics and National Instruments digitizers with a sampling rate of 100 Hz in Miniseed format and then converted into text files with 1 Hz rate for analysis in very low

  19. MONITORING OF LARGE INSTABLE AREAS: system reliability and new tools.

    Science.gov (United States)

    Leandro, G.; Mucciarelli, M.; Pellicani, R.; Spilotro, G.

    2009-04-01

    The monitoring of unstable or potentially unstable areas is a necessary operation every time you can not remove the conditions of risk and apply to mitigation measures. In Italian Apennine regions there are many urban or extra-urban areas affected by instability, for which it is impracticable to remove hazard conditions, because of size and cost problems. The technological evolution exportable to the field of land instability monitoring is particularly lively and allows the use of warning systems unthinkable just few years ago. However, the monitoring of unstable or potentially unstable areas requires a very great knowledge of the specific problems, without which the reliability of the system may be dangerously overestimated. The movement may arise, indeed, in areas not covered by instrumentation, or covered with vegetation that prevents the acquisition of both reflected signals in the multi-beam laser techniques and radar signals. Environmental conditions (wind, concentrated sources of light, temperature changes, presence of animals) may also invalidate the accuracy of the measures, by introducing modulations or disturbance at a level well above the threshold of alarm signal, leading consequently to raise the values of the warning threshold. The Authors have gained long experience with the observation and monitoring of some large landslides in the Southern Apennine (Aliano, Buoninventre, Calciano, Carlantino, etc.) and unstable areas also at regional scale. One of the most important experiences is about the case of landslides of extensive areas, where unstable and stables zones coexist along transverse and longitudinal axis. In many of these cases you need the accurate control of the movement at selected points to evaluate the trend of displacement velocity, which can be achieved by means of a single-beam laser. The control of these movements, however, does not provide information on stress pattern into the stable areas. Among the sensitive precursors, acoustic

  20. Survey monitoring of environmental radioactivity in Chuncheon area

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Ki.; Hwang, Sang Kyu [Chuncheon Regional Radioactivity Monitoring Station, Chuncheon (Korea, Republic of)

    2000-12-15

    Gross beta radioactivities in airborne dust, fallout, precipitation and tap water, and gamma exposure rates have been monitored periodically in 2000 at Chunchon Regional Radioactivity Monitoring Station. The concentrations of radioactive nuclide of {sup 7}Be and {sup 137}Cs on airborne dust, and {sup 7}Be, {sup 40}K and {sup 137}Cs on fallout, precipitation have been analyzed monthly. The {sup 7}Be, {sup 40}K, {sup 137}Cs and {sup 226}Ra etc. concentrations in the 23 foodstuffs(potato, sweet potato, bean sprout, onion, pumpkin, spinach, welsh onion, radish leaves, red pepper, garlic, lettuce, apple, persimmon, orange, pear, grape, mackerel, Alaska pollack, hairtail, squid oyster, baby clam, mussed) and 5 tap water sampled in Youngsoe area of Kangwon-do have also been measured. No significant changes from the previous years have been found in gross beta radioactivities in environmental samples and gamma exposure rates. The concentrations of {sup 7}Be, {sup 40}K, and {sup 137}Cs nuclide in the foodstuffs sampled in Youngseo area are less(or slightly higher in some cases) than the MDA value, except {sup 40}K nuclide. The concentrations of {sup 137}Cs and {sup 226}Ra nuclide in tap water are less(or is slightly higher in one sample) than the MDA value.

  1. Survey monitoring of environmental radioactivity in Chuncheon area

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Moon Hoe.; Hwang, Sang Gyu [Chuncheon Regional Radioactivity Monitoring Station, Chuncheon (Korea, Republic of)

    2003-12-15

    Gross beta radioactivities in airborne dust, fallout, precipitation and tap water, and gamma exposure rates have been monitored periodically in 2003 at Chunchon Regional Radioactivity Monitoring Station. The concentrations of radioactive nuclide of {sup 7}Be and {sup 137} Cs on airborne dust, and {sup 7}Be, {sup 40}K and {sup 137}Cs on fallout, precipitation have been analyzed monthly. The {sup 7}Be, {sup 40}K, {sup 137}Cs etc. concentrations in the 22 foodstuffs(peanut, chestnut, walnut, pine nut acorn, oak mushroom, western mushroom, winter mushroom, oyster mushroom, coffee, green tea, ginseng tea, soils, cereals, vegetable, indicator plant) and 10 tap water sampled in Youngseo area of Kangwon-do have also been measured. No significant changes from the previous years have been found in gross beta radioactivities in environmental samples and gamma exposure rates. The concentrations of {sup 7}Be, {sup 40}K, and {sup 137}Cs nuclide in the foodstuffs sampled in Youngseo area are less(or slightly higher in some cases) than the MDA values, except {sup 40}K nuclide. All the concentrations of {sup 137}Cs nuclides in the water are less than the MDA values.

  2. Survey monitoring of environmental radioactivity in Chuncheon area

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Ki.; Hwang, Sang Kyu [Chuncheon Regional Radioactivity Monitoring Station, Chuncheon (Korea, Republic of)

    2001-12-15

    Gross beta radioactivities in airborne dust, fallout, precipitation and tap water, and gamma exposure rates have been monitored periodically in 2001 at Chunchon Regional Radioactivity Monitoring Station. The concentrations of radioactive nuclide of {sup 7}Be and {sup 137}Cs on airborne dust, and {sup 7}Be, {sup 40}K and {sup 137}Cs on fallout, precipitation have been analyzed monthly. The {sup 7}Be, {sup 40}K, {sup 137}Cs and {sup 226}Ra etc. concentrations in the 23 foodstuffs(potato, sweet potato, bean sprout, onion, pumpkin, spinach, welsh onion, radish leaves, red pepper, garlic, lettuce, apple, persimmon, orange, pear, grape, mackerel, Alaska pollack, hairtail, squid oyster, baby clam, mussel) and 5 tap water sampled in Youngseo area of Kangwon-do have also been measured. No significant changes from the previous years have been found in gross beta radioactivities in environmental samples and gamma exposure rates. The concentrations of {sup 7}Be, {sup 40}K, and {sup 137}Cs nuclide in the foodstuffs sampled in Youngseo area are less(or slightly higher in some cases) than the MDA values, except {sup 40}K nuclide. All the concentrations of {sup 137}Cs and {sup 226}Ra nuclides in the water are less than the MDA values.

  3. Survey monitoring of environmental radioactivity in Chuncheon area

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Moon Hoe.; Hwang, Sang Gyu [Chuncheon Regional Radioactivity Monitoring Station, Chuncheon (Korea, Republic of)

    2002-12-15

    Gross beta radioactivities in airborne dust, fallout, precipitation and tap water, and gamma exposure rates have been monitored periodically in 2002 at Chunchon Regional Radioactivity Monitoring Station. The concentrations of radioactive nuclide of {sup 7}Be and {sup 137}Cs on airborne dust, and {sup 7}Be, {sup 40}K and {sup 137}Cs on fallout, precipitation have been analyzed monthly. The {sup 7}Be, {sup 40}K, {sup 137}Cs etc. concentrations in the 19 foodstuffs(peanut, chestnut, walnut, pine nut acorn, oak mushroom, western mushroom, winter mushroom, oyster mushroom, coffee, green tea, ginseng tea, soils, cereals, vegetable, indicator plant) and 5 tap water sampled in Youngseo area of Kangwon-do have also been measured. No significant changes from the previous years have been found in gross beta radioactivities in environmental samples and gamma exposure rates. The concentrations of {sup 7}Be, {sup 40}K, and {sup 137}Cs nuclide in the foodstuffs sampled in Youngseo area are less(or slightly higher in some cases) than the MDA values, except {sup 40}K nuclide. All the concentrations of {sup 137}Cs nuclides in the water are less than the MDA values.

  4. Unsupervised Change Detection for Geological and Ecological Monitoring via Remote Sensing: Application on a Volcanic Area

    Science.gov (United States)

    Falco, N.; Pedersen, G. B. M.; Vilmunandardóttir, O. K.; Belart, J. M. M. C.; Sigurmundsson, F. S.; Benediktsson, J. A.

    2016-12-01

    The project "Environmental Mapping and Monitoring of Iceland by Remote Sensing (EMMIRS)" aims at providing fast and reliable mapping and monitoring techniques on a big spatial scale with a high temporal resolution of the Icelandic landscape. Such mapping and monitoring will be crucial to both mitigate and understand the scale of processes and their often complex interlinked feedback mechanisms.In the EMMIRS project, the Hekla volcano area is one of the main sites under study, where the volcanic eruptions, extreme weather and human activities had an extensive impact on the landscape degradation. The development of innovative remote sensing approaches to compute earth observation variables as automatically as possible is one of the main tasks of the EMMIRS project. Furthermore, a temporal remote sensing archive is created and composed by images acquired by different sensors (Landsat, RapidEye, ASTER and SPOT5). Moreover, historical aerial stereo photos allowed decadal reconstruction of the landscape by reconstruction of digital elevation models. Here, we propose a novel architecture for automatic unsupervised change detection analysis able to ingest multi-source data in order to detect landscape changes in the Hekla area. The change detection analysis is based on multi-scale analysis, which allows the identification of changes at different level of abstraction, from pixel-level to region-level. For this purpose, operators defined in mathematical morphology framework are implemented to model the contextual information, represented by the neighbour system of a pixel, allowing the identification of changes related to both geometrical and spectral domains. Automatic radiometric normalization strategy is also implemented as pre-processing step, aiming at minimizing the effect of different acquisition conditions. The proposed architecture is tested on multi-temporal data sets acquired over different time periods coinciding with the last three eruptions (1980-1981, 1991

  5. Accumulation variability over a small area in east Dronning Maud Land, Antarctica, as determined from shallow firn cores and snow pits : some implications for ice-core records

    NARCIS (Netherlands)

    Karlof, Lars; Isaksson, Elisabeth; Winther, Jan-Gunnar; Gundestrup, Niels; Meijer, Harro A. J.; Mulvaney, Robert; Pourchet, Michel; Hofstede, Coen; Lappegard, Gaute; Pettersson, Rickard; Van den Broeke, Michiel; Van De Wal, Roderik S. W.

    2005-01-01

    We investigate and quantify the variability of snow accumulation rate around a medium-depth firn core (1160 m) drilled in east Dronning Maud Land, Antarctica (75 degrees 00'S, 15 degrees 00'E; 3470 m h.a.e. (ellipsoidal height)). We present accumulation data from five snow pits and five shallow (20

  6. Accumulation variability over a small area in east Dronning Maud Land, Antarctica, as determined from shallow firn cores and snow pits : some implications for ice-core records

    NARCIS (Netherlands)

    Karlof, Lars; Isaksson, Elisabeth; Winther, Jan-Gunnar; Gundestrup, Niels; Meijer, Harro A. J.; Mulvaney, Robert; Pourchet, Michel; Hofstede, Coen; Lappegard, Gaute; Pettersson, Rickard; Van den Broeke, Michiel; Van De Wal, Roderik S. W.

    2005-01-01

    We investigate and quantify the variability of snow accumulation rate around a medium-depth firn core (1160 m) drilled in east Dronning Maud Land, Antarctica (75 degrees 00'S, 15 degrees 00'E; 3470 m h.a.e. (ellipsoidal height)). We present accumulation data from five snow pits and five shallow (20

  7. Landslide monitoring in the Atlantic Highlands area, New Jersey

    Science.gov (United States)

    Reilly, Pamela A.; Ashland, Francis X.; Fiore, Alex R.

    2017-08-25

    Shallow and deep-seated landslides have occurred episodically on the steep coastal bluffs of the Atlantic Highlands area (Boroughs of Atlantic Highlands and Highlands) in New Jersey. The oldest documented deep-seated landslide occurred in April 1782 and significantly changed the morphology of the bluff. However, recent landslides have been mostly shallow in nature and have occurred during large storms with exceptionally heavy rainfall. These shallow landslides have resulted in considerable damage to residential property and local infrastructure and threatened human safety.The recent shallow landslides in the area (locations modified from New Jersey Department of Environmental Protection) consist primarily of slumps and flows of earth and debris within areas of historical landslides or on slopes modified by human activities. Such landslides are typically triggered by increases in shallow soil moisture and pore-water pressure caused by sustained and intense rainfall associated with spring nor’easters and late summer–fall tropical cyclones. However, the critical relation between rainfall, soil-moisture conditions, and landslide movement has not been fully defined. The U.S. Geological Survey is currently monitoring hillslopes within the Atlantic Highlands area to better understand the hydrologic and meteorological conditions associated with shallow landslide initiation.

  8. Energy technology monitoring - New areas and in-depth investigations; Technologie-Monitoring - Weitere Bereiche - Vertiefungen

    Energy Technology Data Exchange (ETDEWEB)

    Rigassi, R.; Eicher, H. [Dr. Eicher und Pauli AG, Liestal (Switzerland); Steiner, P.; Ott, W. [Econcept AG, Zuerich (Switzerland)

    2005-07-01

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) presents the results of a project that examined long-term trends in the energy technology area in order to provide information that is to form the basis for political action and the distribution of energy research funding in Switzerland. Energy-technology areas examined include variable-speed electrical drives, ventilation systems for low-energy-consumption buildings, membrane technology and the use of plastics in lightweight automobiles. Examples are quoted and the current state of the appropriate technologies and market aspects are examined. Also, the potential and future developments in the areas listed are looked at. The consequences for energy policy and future developments in the technology-monitoring area are considered.

  9. A Preliminary Analysis of Features and Causes of the Snow Storm Event over the Southern Areas of China in January 2008

    Institute of Scientific and Technical Information of China (English)

    WANG Donghai; LIU Chongjian; LIU Ying; WEI Fengying; ZHAO Nan; JIANG Zhina; LI Ying; CHEN Juying; WANG Yafei; SHI Xiaohui; XU Xiangde

    2009-01-01

    Four successive freezing rain/heavy snowfall processes occurred in the southern part of China from 11 January to 2 February 2008 (named "0801 Southern Snow Disaster" hereafter), during which a large-scale blocking circulation lasted for a long time over the mid-high latitudes of the Euro-Asian continent. This severe event is featured with a broad spatial scale, strong intensity, long duration, and serious damage. During the event, the blocking situation in the mid-high latitudes maintained quasi-sationary, but weather systems in the lower latitudes were active. Abundant water vapor was supplied, and favorable weather conditions for ice storms were formed over the large areas across the southern part of China.The results in this paper demonstrate that the significant factors responsible for the abnormal atmospheric circulation and this severe event include: 1) the very active Arctic Oscillation (AO), which helped the permanent maintenance of the planetary-scale waves; 2) the continuous transfer of negative vorticity from the upstream region around 50°E into the blocking area, which caused the blocking situation reinforced repeatedly and sustained for a long time; and 3) the active air currents south of the Tibetan Plateau, which ensured abundant moisture supply to the southern areas of China.The 0801 Southern Snow Disaster was accompanied by extremely severe icing. In this paper, the data from Cloud-Profile Radar onboard the satellite CloudSat are used to study the dynamic and microphysical features of this event. The results show that there existed a melting layer between 2 and 4 km, and ice particles could be found above this layer and in the layer near the ground surface. Surface temperature kept between -4℃ and 0℃ with relative humidity over 90%, which provided the descending supercooled waterdrops with favorable synoptic and physical conditions to form glaze and ice at the surface via freezing, deposition and/or accretion.Causes of the event might be, as a

  10. Debris-covered glacier anomaly? Morphological factors controlling changes in the mass balance, surface area, terminus position, and snow line altitude of Himalayan glaciers

    Science.gov (United States)

    Salerno, Franco; Thakuri, Sudeep; Tartari, Gianni; Nuimura, Takayuki; Sunako, Sojiro; Sakai, Akiko; Fujita, Koji

    2017-08-01

    What are the main morphological factors that control the heterogeneous responses of debris-covered glaciers to climate change in the southern central Himalaya? A debate is open whether thinning rates on debris-covered glaciers are comparable to those of debris-free ones. Previous studies have adopted a deterministic approach, which is indispensable, but is also limiting in that only a few glaciers can be monitored. In this context, we propose a statistical analysis based on a wider glacier population as a complement to these deterministic studies. We analysed 28 glaciers situated on the southern slopes of Mt. Everest in the central southern Himalaya during the period 1992-2008. This study combined data compiled by three distinct studies for a common period and population of glaciers for use in a robust statistical analysis. Generally, surface gradient was the main morphological factor controlling the features and responses of the glaciers to climate change. In particular, the key points that emerged are as follows. 1) Reduced downstream surface gradient is responsible for increased glacier thinning. 2) The development of supraglacial ponds is a further controlling factor of glacier thinning: where supraglacial ponds develop, the glaciers register further surface lowering. 3) Debris coverage and thickness index were not found to be significantly responsible for the development of supraglacial ponds, changes in elevation, or shifts in snow line altitude.

  11. Ambient monitoring of asbestos in selected Italian living areas.

    Science.gov (United States)

    Gualtieri, Alessandro F; Mangano, Dario; Gualtieri, Magdalena Lassinantti; Ricchi, Anna; Foresti, Elisabetta; Lesci, Giorgio; Roveri, Norberto; Mariotti, Mauro; Pecchini, Giovanni

    2009-08-01

    This paper presents the results of an intensive monitoring activity of the particulate, fall-out and soil of selected living areas in Italy with the aim to detect the asbestos concentration in air and subsequent risk of exposure for the population in ambient living environments, and to assess the nature of the other mineral phases composing the particulate matrix. Some areas were sorted out because of the presence of asbestos containing materials on site whereas others were used as blank spots in the attempt to detect the background environmental concentration of asbestos in air. Because the concentration of asbestos in ambient environments is presumably very low, and it is well known that conventional low-medium flow sampling systems with filters of small diameter (25mm) may collect only a very small fraction of particulate over a short period, for the first time here, an intense monitoring activity was conducted with a high flow sampling system. The high flow system requires the use of large cellulose filters with the advantage that, increasing the amount of collected dust, the probability to collect asbestos fibers increases. Both the protocol of monitoring and analysis are novel and prompted by the need to increase the sensitivity towards the small number of expected fibers. With this goal, the collection of fall-out samples (the particulate falling into a collector filled with distilled water during the monitoring shift) and soil samples was also accomplished. The analytical protocol of the matrix particulate included preliminary X-ray powder diffraction (XRPD), optical microscopy and quantitative electron microscopy (SEM and TEM). Correlations with climatic trends and PM10 concentration data were also attempted. The surprising outcome of this work is that, despite the nature of the investigated site, the amount of dispersed asbestos fibers is very low and invariably lower than the theoretical method detection limits of the SEM and TEM techniques for

  12. Snow cover regime in Livingston and Deception Islands (Maritime Antarctic) using multitemporal analysis of ASAR imagery from 2009.

    Science.gov (United States)

    Mora, Carla; Vieira, Gonçalo; Ramos, Miguel

    2010-05-01

    ASAR images from Envisat (WSW and IMM) are analyzed to study the snow cover regime of Deception and Livingston Islands (South Shetlands, Antarctic Peninsula) during 2009. The study is part of the project PERMANTAR focusing on monitoring and modeling the thermal regime of permafrost. For a GIS-based spatial modelling of snow cover distribution, spatially distributed data is required and the exploration of microwave remote sensing is the most suitable technique for mapping the snow cover characteristics and regime. This becomes especially true due to the long winter night and unstable weather conditions of the northern Antarctic Peninsula region. For this purpose a multitemporal ASAR imagery analysis was conducted in order to distinguish wet snow cover from snow free terrain using the absorption dependency of the radar signal on the liquid water content of the snow to set a threshold on the differential backscatter between scenes. The imagery was analyzed using the processing chains from NEST (ESA SAR Toolbox). Preliminary results of the analysis of the time-series show strong seasonal changes in the backscattering due to the variations of liquid water content in snow. Validation of the results obtained from the microwave imagery is done using the ground truth data. In January and February 2009 we have installed in Livingston and Deception islands time-lapse camera in key-areas, ultra-sonic sensors of the snow thickness and probes with snow temperature mini-loggers. This data will be collected from field sites n January 2010 and used for the calibration of the results. Satellite immagery is provided by the European Space Agency in the framework of the Proposal Category-1: Snow cover characteristics and regime in the South Shetlands (Maritime Antarctic) - SnowAntar.

  13. Snow water equivalent mapping in Norway

    Science.gov (United States)

    Tveito, O. E.; Udnæs, H.-C.; Engeset, R.; Førland, E. J.; Isaksen, K.; Mengistu, Z.

    2003-04-01

    In high latitude area snow covers the ground large parts of the year. Information about the water volume as snow is of major importance in many respects. Flood forecasters at NVE need it in order to assess possible flood risks. Hydropower producers need it to plan the most efficient production of the water in their reservoirs, traders to estimate the potential energy available for the market. Meteorologists on their side use the information as boundary conditions in weather forecasting models. The Norwegian meteorological institute has provided snow accumulation maps for Norway for more than 50 years. These maps are now produced twice a month in the winter season. They show the accumulated precipitation in the winter season from the day the permanent snow cover is established. They do however not take melting into account, and do therefore not give a good description of the actual snow amounts during and after periods with snowmelt. Due to an increased need for a direct measure of water volumes as snow cover, met.no and NVE initialized a joint project in order to establish maps of the actual snow cover expressed in water equivalents. The project utilizes recent developments in the use of GIS in spatial modeling. Daily precipitation and temperature are distributed in space by using objective spatial interpolation methods. The interpolation considers topographical and other geographical parameters as well as weather type information. A degree-day model is used at each modeling point to calculate snow-accumulation and snowmelt. The maps represent a spatial scale of 1x1 km2. The modeled snow reservoir is validated by snow pillow values as well traditional snow depth observations. Preliminary results show that the new snow modeling approach reproduces the snow water equivalent well. The spatial approach also opens for a wide use in the terms of areal analysis.

  14. Monitoring and forecasting local landslide hazard in the area of Longyearbyen, Svalbard - early progress and experiences from the Autumn 2016 events

    Science.gov (United States)

    Wang, Thea; Krøgli, Ingeborg; Boje, Søren; Colleuille, Hervé

    2017-04-01

    Since 2013 the Norwegian Water Resources and Energy Directorate (NVE) has operated a landslide early warning system (LEWS) for mainland Norway. The Svalbard islands, situated 800 km north of the Norwegian mainland, and 1200 km from the North Pole, are not part of the conventional early warning service. However, following the fatal snow avalanche event 19 Dec. 2015 in the settlement of Longyearbyen (78° north latitude), local authorities and the NVE have initiated monitoring of the hydro-meteorological conditions for the area of Longyearbyen, as an extraordinary precaution. Two operational forecasting teams from the NVE; the snow avalanche and the landslide hazard forecasters, perform hazard assessment related to snow avalanches, slush flows, debris flows, shallow slides and local flooding. This abstract will focus on recent experiences made by the landslide hazard team during the autumn 2016 landslide events, caused by a record setting wet and warm summer and autumn of 2016. The general concept of the Norwegian LEWS is based on frequency intervals of extreme hydro-meteorological conditions. This general concept has been transposed to the Longyearbyen area. Although the climate is considerably colder and drier than mainland Norway, experiences so far are positive and seem useful to the local authorities. Initially, the landslide hazard evaluation was intended to consider only slush flow hazard during the snow covered season. However, due to the extraordinary warm and wet summer and autumn 2016, the landslide hazard forecasters unexpectedly had to issue warnings for the local authorities due to increased risk of shallow landslides and debris flows. This was done in close cooperation with the Norwegian Meteorological Institute, who provided weather forecasts from the recently developed weather prediction model, AROME-Arctic. Two examples, from 14-15 Oct and 8-9 Nov 2016, will be given to demonstrate how the landslide hazard assessment for the Longyearbyen area is

  15. Monitoring of Soil Remediation Process in the Metal Mining Area

    Science.gov (United States)

    Kim, Kyoung-Woong; Ko, Myoung-Soo; Han, Hyeop-jo; Lee, Sang-Ho; Na, So-Young

    2016-04-01

    Stabilization using proper additives is an effective soil remediation technique to reduce As mobility in soil. Several researches have reported that Fe-containing materials such as amorphous Fe-oxides, goethite and hematite were effective in As immobilization and therefore acid mine drainage sludge (AMDS) may be potential material for As immobilization. The AMDS is the by-product from electrochemical treatment of acid mine drainage and mainly contains Fe-oxide. The Chungyang area in Korea is located in the vicinity of the huge abandoned Au-Ag Gubong mine which was closed in the 1970s. Large amounts of mine tailings have been remained without proper treatment and the mobilization of mine tailings can be manly occurred during the summer heavy rainfall season. Soil contamination from this mobilization may become an urgent issue because it can cause the contamination of groundwater and crop plants in sequence. In order to reduce the mobilization of the mine tailings, the pilot scale study of in-situ stabilization using AMDS was applied after the batch and column experiments in the lab. For the monitoring of stabilization process, we used to determine the As concentration in crop plants grown on the field site but it is not easily applicable because of time and cost. Therefore, we may need simple monitoring technique to measure the mobility or leachability which can be comparable with As concentration in crop plants. We compared several extraction methods to suggest the representative single extraction method for the monitoring of soil stabilization efficiency. Several selected extraction methods were examined and Mehlich 3 extraction method using the mixture of NH4F, EDTA, NH4NO3, CH3COOH and HNO3 was selected as the best predictor of the leachability or mobility of As in the soil remediation process.

  16. Long term continuous radon monitoring in a seismically active area

    CERN Document Server

    Piersanti, A; Galli, G

    2015-01-01

    We present the results of a long term, continuous radon monitoring experiment started in April 2010 in a seismically active area, affected during the 2010-2013 data acquisition time window by an intense micro seismic activity and by several small seismic events. We employed both correlation and cross-correlation analyses in order to investigate possible relationship existing between the collected radon data, seismic events and meteorological parameters. Our results do not support the feasibility of a robust one-to-one association between the small magnitude earthquakes characterizing the local seismic activity and single radon measurement anomalies, but evidence significant correlation patterns between the spatio-temporal variations of seismic moment release and soil radon emanations, the latter being anyway dominantly modulated by meteorological parameters variations.

  17. Survey monitoring of environmental radioactivity in Gangneung area

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hwa; An, Mi Jung [Gangnung Regional Radiation Monitoring Station, Gangneung (Korea, Republic of)

    2003-12-15

    The objectives of the project are to get a systematic data for the distribution of environmental radioactivity levels in Gangnung provinces, and use them as a baseline data for the health of the peoples. To monitor the environmental radiation/radioactivity, gross beta activities and gamma exposure rate in the airborne-dust, fallout, precipitation and tap water were measured in Gangnung province during the period of January 1 - December 31, 2003. Waters from drinking water reservoirs, agricultural and marine products were sampled and measured by the HPGe(High Purity Ge)detector for the analysis from some selected areas to make sure of the effect of the fallout due to the atmospheric weapons test. The radioactivity in Kangnung was all about the past data.

  18. Survey monitoring of environmental radioactivity in Gangneung area

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hwa; An, Mi Jung [Gangnung Regional Radiation Monitoring Station, Gangneung (Korea, Republic of)

    2002-12-15

    The objectives of the project are to get a systematic data for the distribution of environmental radioactivity levels in Gangnung provinces, and use them as a baseline data for the health of the peoples. To monitor the environmental radiation/radioactivity, gross beta activities and gamma exposure rate in the airborne-dust, fallout, precipitation and tap water were measured in Kangnung province during the period of January 1- December 31, 2002. Waters from drinking water reservoirs, agricultural and marine products were sampled and measured by the HPGe(High Purity Ge)detector for the analysis from some selected areas to make sure of the effect of the fallout due to the atmospheric weapons test. The radioactivity in Kangnung was all about the past data.

  19. Remotely Measuring Snow Depth in Inaccessible Terrain

    Science.gov (United States)

    Dixon, D.; Boon, S.

    2010-12-01

    In watershed-scale studies of snow accumulation, high alpine areas are typically important accumulation areas. While snow depth measurements may not be collected in these regions due to avalanche danger, failing to include them in basin-wide estimates of snow accumulation may lead to large underestimates of basin-scale water yield. We present a new method to measure spatially distributed point snow depths remotely. Previously described methods using terrestrial laser scanning (TLS) systems, airborne light detection and ranging (LiDAR) systems, and hand-held laser distance meters have several limitations related to cost, data processing, and accuracy, thus reducing their applicability. The use of a modern robotic total station attempts to resolve these limitations. Total stations have much greater measurement accuracy than laser distance meters, and are significantly less expensive then TLS and LiDAR systems. Data can be output in common data formats, simplifying data processing and management. Measurement points can also be resampled repeatedly throughout the season with high accuracy and precision. Simple trigonometry is used to convert total station measurements into estimates of snow depth perpendicular to the slope. We present results of remote snow depth measurements using a Leica Geosystems TCRP 1201+ robotic total station. Snow depth estimates from the station are validated against measured depths in a field trial. The method is then applied in a basin-scale study to collect and calculate high elevation snow depth, in combination with traditional snow surveys at lower elevations.

  20. Geodetic Monitoring System Operating On Neapolitan Volcanic Area (southern Italy)

    Science.gov (United States)

    Pingue, F.; Ov-Geodesy Team

    The Neapolitan volcanic area is located in the southern sector of the Campanian Plain Graben including three volcanic active structures (Somma-Vesuvius, Campi Flegrei and Ischia). The Somma-Vesuvius complex, placed East of Naples, is a strato-volcano composed by a more ancient apparatus (Mt. Somma) and a younger cone (Mt. Vesu- vius) developed inside Somma caldera. Since last eruption (1944) it is in a quiescent state characterised by a low level seismicity and deformation activity. The Campi Fle- grei, located West of Naples, are a volcanic field inside an older caldera rim. The last eruption, occurred in the 1538, built up the Mt. Nuovo cone. The Campi Flegrei are subject to a slow vertical deformation, called bradyseism. In the 1970-1972 and 1982-1984 they have been affected by two intense episodes of ground upheaval (ac- companied by an intense seismic activity)0, followed by a subsidence phase, slower than uplift and still active. Though such phenomenon has not been followed by erup- tive events, it caused serious damages, emphasizing the high volcanic risk of the phle- grean caldera. The Ischia island, located SW of Naples, has been characterised by a volcanic activity both explosive and effusive, occurred mainly in the last 50,000 years. These events modelled the topography producing fault systems and structures delim- iting the Mt. Epomeo resurgent block. The last eruption has occurred on 1302. After, the dynamics of the island has been characterised by seismic activity (the strongest earthquake occurred on 1883) and by a meaningful subsidence, on the S and NW sec- tors of the island. The concentration of such many active volcanoes in an area with a dense urbanization (about 1,500,000 inhabitants live) needs systematic and contin- uous monitoring of the dynamics. These information are necessary in order to char- acterise eruptive precursors useful for modelling the volcanoes behaviour. Insofar, the entire volcanic Neapolitan area, characterised by a

  1. Application of MODIS snow cover products: wildfire impacts on snow and melt in the Sierra Nevada

    Directory of Open Access Journals (Sweden)

    P. D. Micheletty

    2014-07-01

    Full Text Available The current work evaluates the spatial and temporal variability in snow after a large forest fire in northern California with Moderate Resolution Imaging Spectroradiometer (MODIS snow covered area and grain size (MODSCAG algorithm. MODIS MOD10A1 fractional snow covered area and MODSCAG fractional snow cover products are utilized to detect spatial and temporal changes in snowpack after the 2007 Moonlight Fire and an unburned basin, Grizzly Ridge, for water years (WY 2002–2012. Estimates of canopy adjusted and non-adjusted MODSCAG fractional snow covered area (fSCA are smoothed and interpolated to provide a continuous timeseries of daily basin average snow extent over the two basins. The removal of overstory canopy by wildfire exposes more snow cover; however, elemental pixel comparisons and statistical analysis show that the MOD10A1 product has a tendency to overestimate snow coverage pre-fire, muting the effects of wildfire. The MODSCAG algorithm better distinguishes sub-pixel snow coverage in forested areas and is highly correlated to soil burn severity after the fire. Annual MODSCAG fSCA estimates show statistically significant increased fSCA in the Moonlight Fire study area after the fire (WY 2008–2011; P < 0.01 compared to pre-fire averages and the control basin. After the fire, the number of days exceeding a pre-fire high snow cover threshold increased by 81%. Canopy reduction increases exposed viewable snow area and the amount of solar radiation that reaches the snowpack leading to earlier basin average melt-out dates compared to the nearby unburned basin. There is also a significant increase in MODSCAG fSCA post-fire regardless of slope or burn severity. Alteration of regional snow cover has significant implications for both short and long-term water supplies for downstream communities and resource managers.

  2. Echelon approach to areas of concern in synoptic regional monitoring

    Science.gov (United States)

    Myers, Wayne; Patil, Ganapati P.; Joly, Kyle

    1997-01-01

    Echelons provide an objective approach to prospecting for areas of potential concern in synoptic regional monitoring of a surface variable. Echelons can be regarded informally as stacked hill forms. The strategy is to identify regions of the surface which are elevated relative to surroundings (Relative ELEVATIONS or RELEVATIONS). These are areas which would continue to expand as islands with receding (virtual) floodwaters. Levels where islands would merge are critical elevations which delimit echelons in the vertical dimension. Families of echelons consist of surface sectors constituting separate islands for deeper waters that merge as water level declines. Pits which would hold water are disregarded in such a progression, but a complementary analysis of pits is obtained using the surface as a virtual mould to cast a counter-surface (bathymetric analysis). An echelon tree is a family tree of echelons with peaks as terminals and the lowest level as root. An echelon tree thus provides a dendrogram representation of surface topology which enables graph theoretic analysis and comparison of surface structures. Echelon top view maps show echelon cover sectors on the base plane. An echelon table summarizes characteristics of echelons as instances or cases of hill form surface structure. Determination of echelons requires only ordinal strength for the surface variable, and is thus appropriate for environmental indices as well as measurements. Since echelons are inherent in a surface rather than perceptual, they provide a basis for computer-intelligent understanding of surfaces. Echelons are given for broad-scale mammalian species richness in Pennsylvania.

  3. 1997 Comprehensive TNX Area Annual Groundwater and Effectiveness Monitoring Report

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.

    1998-04-01

    Shallow groundwater beneath the TNX Area at the Savannah River Site (SRS) has been contaminated with chlorinated volatile organic compounds (CVOCs) such as trichloroethylene (TCE) and carbon tetrachloride. In November 1994, an Interim Record of Decision (IROD) was agreed to and signed by the U. S. Department of Energy (DOE), the Environmental Protection Agency (EPA), and the South Carolina Department of Health {ampersand} Environmental Control (SCDHEC). The Interim Record of Decision requires the installation of a hybrid groundwater corrective action (HGCA) to stabilize the plume of groundwater contamination and remove CVOCs dissolved in the groundwater. The hybrid groundwater corrective action included a recovery well network, purge water management facility, air stripper, and an airlift recirculation well. The recirculation well was dropped pursuant to a test that indicated it to be ineffective at the TNX Area. Consequently, the groundwater corrective action was changed from a hybrid to a single action, pump-and-treat approach. The Interim Action (IA) T-1 air stripper system began operation on September 16, 1996. a comprehensive groundwater monitoring program was initiated to measure the effectiveness of the system. As of December 31, 1997, the system has treated 32 million gallons of contaminated groundwater removed 32 pounds of TCE. The recovery well network created a `capture zone` that stabilized the plume of contaminated groundwater.

  4. Impact of the variability of the seasonal snow cover on the ground surface regimes in Hurd Peninsula (Livingston Island, Antarctic)

    Science.gov (United States)

    Nieuwendam, Alexandre; Ramos, Miguel; Vieira, Gonçalo

    2014-05-01

    Seasonally snow cover has a great impact on the thermal regime of the active layer and permafrost. Ground temperatures over a year are strongly affected by the timing, duration, thickness, structure and physical and thermal properties of snow cover. The purpose of this communication is to characterize the shallow ground thermal regimes, with special reference to the understanding of the influence snow cover in permafrost spatial distribution, in the ice-free areas of the north western part of Hurd Peninsula in the vicinity of the Spanish Antarctic Station "Juan Carlos I" and Bulgarian Antarctic Station "St. Kliment Ohridski". We have analyzed and ground temperatures as well as snow thickness data in four sites distributed along an altitudinal transect in Hurd Peninsula from 2007 to 2013: Nuevo Incinerador (25 m asl), Collado Ramos (110 m), Ohridski (140 m) and Reina Sofia Peak (275 m). At each study site, data loggers were installed for the monitoring of air temperatures (at 1.5 m high), ground temperatures (5, 20 and 40 cm depth) and for snow depth (2, 5, 10, 20, 40, 80 and 160 cm) at 4-hour intervals. The winter data suggests the existence of three types of seasonal stages regarding the ground surface thermal regime and the thickness of snow cover: (a) shallow snow cover with intense ground temperatures oscillations; (b) thick snow cover and low variations of soil temperatures; and (c) stability of ground temperatures. Ground thermal conditions are also conditioned by a strong variability. Winter data indicates that Nuevo Incinerador site experiences more often thicker snow cover with higher ground temperatures and absence of ground temperatures oscillations. Collado Ramos and Ohridski show frequent variations of snow cover thickness, alternating between shallow snow cover with high ground temperature fluctuation and thick snow cover and low ground temperature fluctuation. Reina Sofia in all the years has thick snow cover with little variations in soil

  5. The Importance of Snow Distribution on Sea Ice

    Science.gov (United States)

    Butler, B.; Polashenski, C.; Divine, D.; King, J.; Liston, G. E.; Nicolaus, M.; Rösel, A.

    2015-12-01

    Snow's insulating and reflective properties substantially influence Arctic sea ice growth and decay. A particularly important, but under-appreciated, aspect of snow on sea ice is its fine-scale spatial distribution. Snow redistribution into dunes and drifts controls the effective thermal conductivity of a snowpack and dictates the locations of melt pond formation, exerting considerable control over ice mass balance. The effective thermal conductivity of snow distributions created on sea ice, for example, is often considerably greater than a uniform snowpack of equivalent mean thickness. During the N-ICE 2015 campaign north of Svalbard, we studied snow distributions across multiple ice types and the impacts these have on thermal fluxes and ice mass balance. We used terrestrial LiDAR to observe the snow surface topography over km2 areas, conducted many thousands of manual snow depth measurements, and collected hundreds of observations of the snow physical properties in snow pits. We find that the wind driven redistribution of snow can alter the net effect of a constant snow cover volume on ice mass balance as strongly as inter-annual variability in the amount and timing of snowfall. Further comparison with snow depth distributions from field campaigns in other parts of the Arctic highlights regional and inter-annual differences in snow distribution. We quantify the impact of this variability on ice mass balance and demonstrate the need for considering snow distributions and redistribution processes in sea ice models.

  6. A blending snow cover data base on MODIS and AMSR-E snow cover in Qinghai-Tibet Plateau

    Science.gov (United States)

    Xiaohua, H.; Wang, J.; Che, T.; Dai, L. Y.

    2012-04-01

    The algorithms of MODIS Terra and MODIS Aqua versions of the snow products have been developed by the NASA National Snow and Ice Data Center (NSIDC). The MODIS global snow-cover products have been available through the NSIDC Distributed Active Archive Center (DAAC) since February 24, 2000 to Terra and July 4, 2002 to Aqua. The MODIS snow-cover maps represent a potential improvement relative to hemispheric-scale snow maps that are available today mainly because of the improved spatial resolution and snow/cloud discrimination capabilities of MODIS, and the frequent global coverage. In China, the snow distribution is different to other regions. Their accuracy on Qinghai-Tibet Plateau (QTP), however, has not yet been established. There are some drawbacks about NSIDC global snow cover products on QTP: 1. The characteristics of snow depth distribution on QTP: Thin, discontinuous. Our research indicated the MODIS snow-cover products underestimated the snow cover area in QTP. 2. The daily snow cover product from MODIS-Terra and Aqua can include the data gaps. 3. The snow products can separate snow from most obscuring clouds. However, there are still many cloud pixels in daily snow cover products. The study developed a new blending daily snow cover algorithm through improving the NSIDC snow algorithms and combining MODIS and AMSR-E data in QTP. The new snow cover products will provide daily snow cover at 500-m resolution in QTP. The new snow cover algorithm employs a grouped-criteria technique using the Normalized Difference Snow Index (NDSI) and other spectral threshold tests and image fusion technology to identify and classify snow on a pixel-by-pixel basis. The usefulness of the NDSI is based on the fact that snow and ice are considerably more reflective in the visible than in the shortwave IR part of the spectrum, and the reflectance of most clouds remains high in the short-wave IR, while the reflectance of snow is low. We propose a set of three steps, based on a

  7. [Observations of spectral data and characteristics analysis of snow-bare soil mixed pixel generated by micro-simulation].

    Science.gov (United States)

    Liu, Yan; Li, Yang

    2014-07-01

    To explore the differences of mixed-pixel in spectral mixing mechanism at micro-and macro -scale, the micro- simulation of snow-bare soil mixed pixel was taken as the object of study in an artificial test environment. Reflectance spectra of mixed pixel and snow, bare soil endmember with different area ratio were collected by full-band spectrometer with fixed probe distance. Qualitative and quantitative analysis of original reflectance spectra was done, and reflectance spectra form 350 to 2 500 nm and normalized reflectance spectral data of 350 to 1 815 nm excluding noise were normalized. At the same time, we collected EOS/MODIS and Environment and Disaster Monitoring Satellites data of the same period over the same area and analyzed the correlation of channels in visible, near-infrared and shortwave infrared wavelength range at different resolution scales and the relationship between spectrum of mixed snow-soil and endmember pixel in MODIS image was analyzed. The results showed that, (1) At the micro scale, non-linear relationship existed between mixed pixel and endmember within the scope of the full-wave and linear relationship existed in sub-band wavelength range; (2) At the macro scale, linear relationship existed between mixed pixel and endmember. (3) In statistics of spectral values, the correlation between snow-soil mixture and endmember is positive for snow-soil mixture and snow endmember, and is negative for snow-soil mixture and soil endmember.

  8. Possible effects of ongoing and predicted climate change on snow avalanche activity in western Norway

    Science.gov (United States)

    Laute, Katja; Beylich, Achim A.

    2016-04-01

    As snow avalanche formation is mainly governed by meteorological conditions as, e.g., air temperature fluctuations, heavy precipitation and wind conditions, it is likely that the frequency and magnitude of both ordinary and extreme snow avalanche events is modified through the documented effects of current and future climate change. In the Northern Hemisphere, 1983-2013 was likely the warmest 30-year period of the last 1400 years (IPCC, 2013). Meteorological records of western Norway show the general trend that the last 100 years, especially the last three decades, have been warmer and wetter than the time periods before. However, it is not evident that snow avalanche activity will increase in the near future. Today, the number of studies assessing the impact of climate change on the occurrence and magnitude of snow avalanches is limited. This work focuses on recent and possible future effects of climate change on snow avalanche activity along the western side of the Jostedalsbreen ice cap representing one of the areas with the highest snow avalanche activity in entire Norway. We have analyzed long-term homogenized meteorological data from five meteorological stations in different elevations above sea level, three of them with a long-term record of 120 years (1895-2015). In addition to the statistical analyses of long-term datasets, gained results and insights from a four-year (2009-2012) high-resolution snow avalanche monitoring study conducted in the same study area are incorporated. The statistical analyses of mean monthly air temperature, monthly precipitation sums and mean monthly snow depths showed that there is a trend of increasing air temperatures and precipitation sums whereas no clear trend was found for mean snow depths. Magnitude-frequency analyses conducted for three defined time intervals (120, 90, 60 years) of monthly precipitation sums exhibit an increase of precipitation especially during the last 30 years with the tendency that more precipitation

  9. Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas, calendar year 1993

    Energy Technology Data Exchange (ETDEWEB)

    Chaloud, D.J; Daigler, D.M.; Davis, M.G. [and others

    1996-06-01

    This report describes the Offsite Radiation Safety Program conducted during 1993 by the Environmental Protection Agency`s (EPA`s) Environmental Monitoring Systems Laboratory - Las Vegas (EMSL-LV). This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ionization chambers (PICs); by biological monitoring of foodstuffs including animal tissues and food crops; and by measurement of radioactive material deposited in humans.

  10. Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas, calendar year 1997

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.G.; Flotard, R.D.; Fontana, C.A.; Hennessey, P.A.; Maunu, H.K.; Mouck, T.L.; Mullen, A.A.; Sells, M.D.

    1999-01-01

    This report describes the Offsite Radiological Environmental Monitoring Program (OREMP) conducted during 1997 by the US Environmental Protection Agency`s (EPAs), Radiation and Indoor Environments National Laboratory, Las Vegas, Nevada. This laboratory operated an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling and analyzing milk, water, and air; by deploying and reading thermoluminescent dosimeters (TLDs); and using pressurized ionization chambers (PICs) to measure ambient gamma exposure rates with a sensitivity capable of detecting low level exposures not detected by other monitoring methods.

  11. Weekly LiDAR snow depth mapping for operational snow hydrology - the NASA JPL Airborne Snow Observatory (Invited)

    Science.gov (United States)

    Deems, J. S.; Painter, T. H.; McGurk, B. J.

    2013-12-01

    Operational hydrologic simulation and forecasting in snowmelt-dominated watersheds currently relies on indices of snow accumulation and melt from measurements at a small number of point locations or geographically-limited manual surveys. These data sources cannot adequately characterize the spatial distribution of snow depth/water equivalent, which is the primary determinant of snowpack volume and runoff rates. The NASA JPL Airborne Snow Observatory's airborne laser scanning system maps snow depth at high spatial and temporal resolutions, providing an unprecedented snowpack monitoring capability and enabling a new operational paradigm. In the Spring of 2013, the ASO mapped snow depth in the Tuolumne River Basin in California's Yosemite National Park on a nominally weekly basis, and provided fast-turnaround spatial snow depth and water equivalent maps to the operators of Hetch Hetchy Reservoir, the water supply for 2.5 million people on the San Francisco peninsula. These products enabled more accurate runoff simulation and optimal reservoir management in a year of very low snow accumulation. We present the initial results from this new application of multi-temporal LiDAR mapping in operational snow hydrology.

  12. Offsite environmental monitoring report; radiation monitoring around United States nuclear test areas, Calendar Year 1996

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.G.; Flotard, R.D.; Fontana, C.A.; Huff, P.A.; Maunu, H.K.; Mouck, T.L.; Mullen, A.A.; Sells, M.D.

    1997-08-01

    This report describes the Offsite Radiation Safety Program. This laboratory operated an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs); and using pressurized ionization chambers (PICs). No nuclear weapons testing was conducted in 1996 due to the continuing nuclear test moratorium. During this period, R and IE personnel maintained readiness capability to provide direct monitoring support if testing were to be resumed and ascertained compliance with applicable EPA, DOE, state, and federal regulations and guidelines. Comparison of the measurements and sample analysis results with background levels and with appropriate standards and regulations indicated that there was no airborne radioactivity from diffusion or resuspension detected by the various EPA monitoring networks surrounding the NTS. There was no indication of potential migration of radioactivity to the offsite area through groundwater and no radiation exposure above natural background was received by the offsite population. All evaluated data were consistent with previous data history.

  13. Estimating maritime snow density from seasonal climate variables

    Science.gov (United States)

    Bormann, K. J.; Evans, J. P.; Westra, S.; McCabe, M. F.; Painter, T. H.

    2013-12-01

    Snow density is a complex parameter that influences thermal, optical and mechanical snow properties and processes. Depth-integrated properties of snowpacks, including snow density, remain very difficult to obtain remotely. Observations of snow density are therefore limited to in-situ point locations. In maritime snowfields such as those in Australia and in parts of the western US, snow densification rates are enhanced and inter-annual variability is high compared to continental snow regions. In-situ snow observation networks in maritime climates often cannot characterise the variability in snowpack properties at spatial and temporal resolutions required for many modelling and observations-based applications. Regionalised density-time curves are commonly used to approximate snow densities over broad areas. However, these relationships have limited spatial applicability and do not allow for interannual variability in densification rates, which are important in maritime environments. Physically-based density models are relatively complex and rely on empirical algorithms derived from limited observations, which may not represent the variability observed in maritime snow. In this study, seasonal climate factors were used to estimate late season snow densities using multiple linear regressions. Daily snow density estimates were then obtained by projecting linearly to fresh snow densities at the start of the season. When applied spatially, the daily snow density fields compare well to in-situ observations across multiple sites in Australia, and provide a new method for extrapolating existing snow density datasets in maritime snow environments. While the relatively simple algorithm for estimating snow densities has been used in this study to constrain snowmelt rates in a temperature-index model, the estimates may also be used to incorporate variability in snow depth to snow water equivalent conversion.

  14. Assimilation of satellite information in a snowpack model to improve characterization of snow cover for runoff simulation and forecasting

    Directory of Open Access Journals (Sweden)

    L. S. Kuchment

    2009-08-01

    Full Text Available A new technique for constructing spatial fields of snow characteristics for runoff simulation and forecasting is presented. The technique incorporates satellite land surface monitoring data and available ground-based hydrometeorological measurements in a physical based snowpack model. The snowpack model provides simulation of temporal changes of the snow depth, density and water equivalent (SWE, accounting for snow melt, sublimation, refreezing melt water and snow metamorphism processes with a special focus on forest cover effects. The model was first calibrated against available ground-based snow measurements and then was applied to calculate the spatial distribution of snow characteristics using satellite data and interpolated ground-based meteorological data. The remote sensing data used in the model consist of products derived from observations of MODIS and AMSR-E instruments onboard Terra and Aqua satellites. They include daily maps of snow cover, snow water equivalent (SWE, land surface temperature, and weekly maps of surface albedo. Maps of land cover classes and tree cover fraction derived from NOAA AVHRR were used to characterize the vegetation cover. The developed technique was tested over a study area of approximately 200 000 km2 located in the European part of Russia (56° N to 60° N, and 48° E to 54° E. The study area comprises the Vyatka River basin with the catchment area of 124 000 km2. The spatial distributions of SWE, obtained with the coupled model, as well as solely from satellite data were used as the inputs in a physically-based model of runoff generation to simulate runoff hydrographs on the Vyatka river for spring seasons of 2003, 2005. The comparison of simulated hydrographs with the observed ones has shown that suggested procedure gives a higher accuracy of snow cover spatial distribution representation and hydrograph simulations than the direct use of satellite SWE data.

  15. Assimilation of satellite information in a snowpack model to improve characterization of snow cover for runoff simulation and forecasting

    Science.gov (United States)

    Kuchment, L. S.; Romanov, P.; Gelfan, A. N.; Demidov, V. N.

    2009-08-01

    A new technique for constructing spatial fields of snow characteristics for runoff simulation and forecasting is presented. The technique incorporates satellite land surface monitoring data and available ground-based hydrometeorological measurements in a physical based snowpack model. The snowpack model provides simulation of temporal changes of the snow depth, density and water equivalent (SWE), accounting for snow melt, sublimation, refreezing melt water and snow metamorphism processes with a special focus on forest cover effects. The model was first calibrated against available ground-based snow measurements and then was applied to calculate the spatial distribution of snow characteristics using satellite data and interpolated ground-based meteorological data. The remote sensing data used in the model consist of products derived from observations of MODIS and AMSR-E instruments onboard Terra and Aqua satellites. They include daily maps of snow cover, snow water equivalent (SWE), land surface temperature, and weekly maps of surface albedo. Maps of land cover classes and tree cover fraction derived from NOAA AVHRR were used to characterize the vegetation cover. The developed technique was tested over a study area of approximately 200 000 km2 located in the European part of Russia (56° N to 60° N, and 48° E to 54° E). The study area comprises the Vyatka River basin with the catchment area of 124 000 km2. The spatial distributions of SWE, obtained with the coupled model, as well as solely from satellite data were used as the inputs in a physically-based model of runoff generation to simulate runoff hydrographs on the Vyatka river for spring seasons of 2003, 2005. The comparison of simulated hydrographs with the observed ones has shown that suggested procedure gives a higher accuracy of snow cover spatial distribution representation and hydrograph simulations than the direct use of satellite SWE data.

  16. A drought index accounting for snow

    Science.gov (United States)

    Staudinger, Maria; Stahl, Kerstin; Seibert, Jan

    2015-04-01

    The Standardized Precipitation Index (SPI) is the most widely used index to characterize and monitor droughts that are related to precipitation deficiencies. However, the SPI does not always deliver the relevant information for hydrological drought management when precipitation deficiencies are not the only reason for droughts as it is the case for example in snow influenced catchments. If precipitation is temporarily stored as snow, then there is a significant difference between meteorological and hydrological drought because the delayed release of melt water from the snow accumulation to the stream. In this study we introduce an extension to the SPI, the Standardized Snow Melt and Rain Index (SMRI), that captures both rain and snow melt deficits, which in effect modify streamflow. The SMRI does not require any snow data instead observations of temperature and precipitation are used to model snow. The SMRI is evaluated for seven Swiss catchments with varying degrees of snow influence. In particular for catchments with a larger component of snowmelt in runoff generation, we found the SMRI to be a good complementary index to the SPI to describe streamflow droughts. In a further step, the SPI and the SMRI were compared for the summer drought of 2003 and the spring drought of 2011 for Switzerland, using gridded products of precipitation and temperature including the entire country.

  17. Temporal evolution of the snow density near the surface at Dome C on Antarctica Plateau

    Science.gov (United States)

    Champollion, N.; Picard, G.; Arnaud, L.; Macelloni, G.; Remy, F.

    2014-12-01

    Snow density near the surface, i.e. the first 5 - 10 first centimeters, is essential for surface mass balance retrieval from satellite or stakes, thermal diffusion for surface energy budget, firn densification for ice-core interpretation and air / snow chemistry exchange on ice sheets. It is related to the local meteorological conditions such as precipitation, wind and temperature (metamorphism). A long term temporal and spatial evolution of the snow density near the surface on ice sheets could be use to monitor climate evolution. Passive and active microwave offer the possibility to study recent climate evolution with respectively 30 and 20 years of measurements, a very good temporal repeatability and a large spatial coverage. The aim of this paper is (1) to derive the snow density near the surface, called "surface snow density", from AMSR-E passive microwave observations and ENVISAT radar altimetry measurements, and (2) to study the temporal evolution of this density. Surface snow density is also jointly estimated from passive microwave observations and radar altimetry measurements by two independent methods. For both methods, the estimation of density is based on the surface reflection of electromagnetic wave in the microwave domain, which mainly depends on dielectric contrast between air and snow. For passive microwave observations, the polarization ratio is derived in order to be most sensitive to snow density variations near the surface. Then, the Dense Media Radiative Transfer theory is used for modeling and quantify the relationship between polarization ratio and surface snow density. For radar altimetry measurements, the total microwave backscatter coefficient is used because it depends on surface snow density and roughness. Validation of the surface snow density estimations is performed at Dome C on the Antarctica Plateau from in situ measurements of snow density. Uncertainties about the two retrieval methods (from AMSR-E and ENVISAT observations) are

  18. Survey monitoring of environmental radioactivity in Chuncheon area

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Ki.; Hwang, Sang Kyu [Chuncheon Regional Radioactivity Monitoring Station, Chuncheon (Korea, Republic of)

    1998-01-15

    In 1997, the gross average beta activities measured at Chunchon Regional Monitoring Station are 145.55 {+-} 261.40 mBq/m{sup 3} in airborne after 5 hours, 10.05 {+-} 15.65 mBq/m{sup 3} in airborne after 48 hours, 16.90 {+-} 2.94 MBq/km{sup 2} in fallout for 30 days, 79.5 {+-} 142.7 mBq/L in precipitation, and 34.7 {+-} 24.6 mBq/L in tap water. The gamma exposure rate at the same station is 13.10 {+-} 3.93 {mu}R/h. We find no significant changes in these measurements from the past data, and the artificial radionuclide of {sup 137} Cs in airborne dust, fallout and precipitation are found to be less than the M.D.A. values. The concentrations of {sup 137}Cs and {sup 40}K in the soil sampled at 32 sites throughout Yongseo area in Kangwon-do are in the range between 6.59 {+-} 0.47 Bq/kg.dry to 55.54 {+-} 1.58 Bq/kg.dry and 358.3 {+-} 10.3 Bq/kg.dry to 1157.0 {+-} 22.8 Bq/kg.dry, respectively. The gamma exposure rates at 61 sites in Yongseo area are in the range between 12.03 {+-} 0.63 {mu}R/h to 36.74 {+-} 1.06 {mu}R/h with the average value of 17.03 {+-} 3.98 {mu}R/h. Radioactivities in chinese cabbages sampled at 5 different regions in Yongseo area of Kangwon-do are found to be less than M.D.A. value for {sup 137}Cs and 63.60 - 1.03 Bq/kg for {sup 40}K. The data for rice is currently being analysed, and we expect to get the final results for the rice by the time of publishing this report. The radioactivities in dairy and fish product in Yongseo area are found to be that the average concentrations of {sup 137}Cs are in the range of < M.D.A - 0.03 {+-} 0.01 Bq/L in milk product sampled at 3 different regions in Yongseo area and 0.05 {+-} 0.01 - 0.17 {+-} 0.02 Bq/kg in fishes(hair-tail, marckel and Alaska pollack, etc.) sampled in Chunchon city, and the {sup 40}K concentrations are 36.48 {+-} 0.63 - 44.45 {+-} 0.77 Bq/L in the milk samples and 16.26 {+-} 0.34 - 99.44 {+-} 1.60 Bq/kg in the fish samples.

  19. 梅里雪山国家公园生物多样性监测%Biodiversity Monitoring of Meili Snow Mountain National Park

    Institute of Scientific and Technical Information of China (English)

    杨沛芳

    2012-01-01

    梅里雪山国家公园地处“三江并流”世界自然遗产腹心地和“三江并流”风景名胜区.针对人为活动对生物多样性的影响以及旅游对景区环境的影响,于2010年通过设置固定样地及样线方式对公园的生物多样性情况进行调查.结果认为,公园内生物多样性极为丰富,植物群落垂直带谱明显,种类繁多,鸟类资源丰富,生态环境类型多样,公园内人为干扰、火灾隐患随进入人数的增长不断增加.%Meili Snow Mountain National Park is located in the hinterland of the "Three Parallel Rivers" world natural heritage and the "Three Parallel Rivers" Scenic Area. Regarding the impact of human activities on biodiversity as well as the impact of tourism on the scenic environment, the parks biodiversity was investigated in 2010 by setting a fixed sample plot and sample line. Results showed that this park is extremely rich in biodiversity, highlighted with plant communities altitudinal belts, diverse birds resource and ecological environment type, but anthropogenic interference and forest fire could be increasing with human disturbance.

  20. Snow Conditions Near Barrow in Spring 2012

    Science.gov (United States)

    Webster, M.; Rigor, I.; Nghiem, S. V.; Sturm, M.; Kurtz, N. T.; Farrell, S. L.; Gleason, E.; Lieb-Lappen, R.; Saiet, E.

    2012-12-01

    under the flight path of the P-3 during clear and calm conditions. The first site was located at Elson Lagoon which is representative of a flat area and light snow. It had a mean snow depth of 23.7 cm and a standard deviation of 4.2 cm over a 1000 m transect. The second site, farther east in Elson Lagoon, had a mean snow depth of 20.3 cm and standard deviation of 4.9 cm over a 500 m transect. In comparison, the measurements of IceBridge had mean snow depths of 23.7 cm and 20.7 cm with 6.2 cm and 8.5 cm standard deviations, respectively. After averaging the in situ measurements under each P-3 footprint, we found correlations of 0.65 and 0.47 for each study site. RMS differences were 5.5 cm and 8.5 cm. A snow-blowing event occurred from March 23-24, which had sustained wind speeds over 5 m/s. The second site was resampled following this event, resulting in a new mean snow depth of 21.2 cm and a 4.6 cm standard deviation. Snow depths at these sites were ~10 cm lower than the 1954-1991 climatological average for March according to Warren et al., 1999. Our preliminary results agree with those found in Farrell et al., 2012, who also found correlation values between 0.57 and 0.75. These results provide confidence in the quality of this data for studying the role of snow over the Arctic sea ice.

  1. Modelling of snow exceedances

    Science.gov (United States)

    Jordanova, Pavlina K.; Sadovský, Zoltán; Stehlík, Milan

    2017-07-01

    Modelling of snow exceedances is of great importance and interest for ecology, civil engineering and general public. We suggest the favorable fit for exceedances related to the exceptional snow loads from Slovakia, assuming that the data is driven by Generalised Pareto Distribution or Generalized Extreme Value Distribution. Further, the statistical dependence between the maximal snow loads and the corresponding altitudes is studied.

  2. Nevada Test Site 2001 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    Energy Technology Data Exchange (ETDEWEB)

    Y. E. Townsend

    2002-06-01

    Environmental monitoring data, subsidence monitoring data, and meteorology monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS) (refer to Figure 1). These monitoring data include radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota data. Although some of these media (radiation exposure, air, and groundwater) are reported in detail in other Bechtel Nevada (BN) reports (Annual Site Environmental Report [ASER], the National Emissions Standard for Hazardous Air Pollutants [NESHAP] report, and the Annual Groundwater Monitoring Report), they are also summarized in this report to provide an overall evaluation of RWMS performance and environmental compliance. Direct radiation monitoring data indicate that exposure at and around the RWMSs is not above background levels. Air monitoring data indicate that tritium concentrations are slightly above background levels. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS has not been affected by the facility. Meteorology data indicate that 2001 was an average rainfall year: rainfall totaled 150 mm (5.9 in) at the Area 3 RWMS and 120 mm (4.7 in) at the Area 5 RWMS. Vadose zone monitoring data indicate that 2001 rainfall infiltrated less than one meter (3 ft) before being returned to the atmosphere by evaporation. Soil-gas tritium monitoring data indicate slow subsurface migration, and tritium concentrations in biota were lower than in previous years. All 2001 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility performance assessments.

  3. A Look at Seasonal Snow Cover and Snow Mass in the Southern Hemisphere from 1979-2006 Using SMMR and SSM/I Passive Microwave Data

    Science.gov (United States)

    Foster, James

    2009-01-01

    Seasonal snow cover in extra-tropical areas of South America was examined in this study using passive microwave satellite data from the Scanning Multichannel Microwave Radiometer (SMMR) on board the Nimbus-7 satellite and from the Special Sensor Microwave Imagers (SSM/I) on board the Defense Meteorological Satellite Program (DMSP) satellites. For the period from 1979-2006, both snow cover extent and snow mass were estimated for the months of May-September. Most of the seasonal snow in South America occurs in the Patagonia region of Argentina. The average snow cover extent for July, the month with the greatest average extent during the 28-year period of record, is 321,674 sq km. The seasonal (May-September) 2 average snow cover extent was greatest in 1984 (464,250 sq km) and least in 1990 (69,875 sq km). In terms of snow mass, 1984 was also the biggest year (1.19 x 10(exp 13) kg) and 1990 was the smallest year (0.12 X 10(exp 13) kg). A strong relationship exists between the snow cover area and snow mass, correlated at 0.95, though no significant trend was found over the 28 year record for either snow cover extent or snow mass. For this long term climatology, snow mass and snow cover extent are shown to vary considerably from month to month and season to season. This analysis presents a consistent approach to mapping and measuring snow in South America utilizing an appropriate and readily available long term snow satellite dataset. This is the optimal dataset available, thus far, for deriving seasonal snow cover and snow mass in this region. Nonetheless, shallow snow, wet snow, snow beneath forests, as well as snow along coastal areas all may confound interpretation using passive microwave approaches. More work needs to be done to reduce the uncertainties in the data and hence, increase the confidence of the interpretation

  4. Distribution of Snow and Maximum Snow Water Equivalent Obtained by LANDSAT Data and Degree Day Method

    Science.gov (United States)

    Takeda, K.; Ochiai, H.; Takeuchi, S.

    1985-01-01

    Maximum snow water equivalence and snowcover distribution are estimated using several LANDSAT data taken in snowmelting season over a four year period. The test site is Okutadami-gawa Basin located in the central position of Tohoku-Kanto-Chubu District. The year to year normalization for snowmelt volume computation on the snow line is conducted by year to year correction of degree days using the snowcover percentage within the test basin obtained from LANDSAT data. The maximum snow water equivalent map in the test basin is generated based on the normalized snowmelt volume on the snow line extracted from four LANDSAT data taken in a different year. The snowcover distribution on an arbitrary day in snowmelting of 1982 is estimated from the maximum snow water equivalent map. The estimated snowcover is compared with the snowcover area extracted from NOAA-AVHRR data taken on the same day. The applicability of the snow estimation using LANDSAT data is discussed.

  5. Snow Drift Management: Summit Station Greenland

    Science.gov (United States)

    2016-05-01

    ER D C/ CR RE L TR -1 6- 6 Engineering for Polar Operations, Logistics, and Research (EPOLAR) Snow Drift Management Summit Station...Drift Management Summit Station Greenland Robert B. Haehnel and Matthew F. Bigl U.S. Army Engineer Research and Development Center (ERDC) Cold...Engineering for Polar Operations, Logistics, and Research (EPOLAR) EP-ARC-15-33, “Monitoring and Managing Snow Drifting at Summit Station, Greenland” ERDC

  6. Simulation of Snow Processes Beneath a Boreal Scots Pine Canopy

    Institute of Scientific and Technical Information of China (English)

    LI Weiping; LUO Yong; XIA Kun; LIU Xin

    2008-01-01

    A physically-based multi-layer snow model Snow-Atmosphere-Soil-Transfer scheme (SAST) and a land surface model Biosphere-Atmosphere Transfer Scheme (BATS) were employed to investigate how boreal forests influence snow accumulation and ablation under the canopy. Mass balance and energetics of snow beneath a Scots pine canopy in Finland at different stages of the 2003-2004 and 2004-2005 snow seasons are analyzed. For the fairly dense Scots pine forest, drop-off of the canopy-intercepted snow contributes, in some cases, twice as much to the underlying snowpack as the direct throughfall of snow. During early winter snow melting, downward turbulent sensible and condensation heat fluxes play a dominant role together with downward net longwave radiation. In the final stage of snow ablation in middle spring, downward net all-wave radiation dominates the snow melting. Although the downward sensible heat flux is comparable to the net solar radiation during this period, evaporative cooling of the melting snow surface makes the turbulent heat flux weaker than net radiation. Sensitivities of snow processes to leaf area index (LAI) indicate that a denser canopy speeds up early winter snowmelt, but also suppresses melting later in the snow season. Higher LAI increases the interception of snowfall, therefore reduces snow accumulation under the canopy during the snow season; this effect and the enhancement of downward longwave radiation by denser foliage outweighs the increased attenuation of solar radiation, resulting in earlier snow ablation under a denser canopy. The difference in sensitivities to LAI in two snow seasons implies that the impact of canopy density on the underlying snowpack is modulated by interannual variations of climate regimes.

  7. Deriving Snow Cover Metrics for Alaska from MODIS

    Directory of Open Access Journals (Sweden)

    Chuck Lindsay

    2015-09-01

    Full Text Available Moderate Resolution Imaging Spectroradiometer (MODIS daily snow cover products provide an opportunity for determining snow onset and melt dates across broad geographic regions; however, cloud cover and polar darkness are limiting factors at higher latitudes. This study presents snow onset and melt dates for Alaska, portions of western Canada and the Russian Far East derived from Terra MODIS snow cover daily 500 m grid data (MOD10A1 and evaluates our method for filling data gaps caused by clouds or polar darkness. Pixels classified as cloud or no data were reclassified by: spatial filtering using neighboring pixel values; temporal filtering using pixel values for days before/after cloud cover; and snow-cycle filtering based on a time series assessment of a pixel’s position within snow accumulation, cover or melt periods. During the 2012 snow year, these gap-filling methods reduced cloud pixels from 27.7% to 3.1%. A total of 12 metrics (e.g., date of first and last snow, date of persistent snow cover and periods of intermittence for each pixel were calculated by snow year. A comparison of MODIS-derived snow onset and melt dates with in situ observations from 244 weather stations generally showed an early bias in MODIS-derived dates and an effect of increasing cloudiness exacerbating bias. Our results show that mean regional duration of seasonal snow cover is 179–311 days/year and that snow cover is often intermittent, with 41% of the area experiencing ≥2 snow-covered periods during a snow season. Other regional-scale patterns in the timing of snow onset and melt are evident in the yearly 500 m gridded products publically available at http://static.gina.alaska.edu/NPS_products/MODIS_snow/.

  8. Acetaldehyde in the Alaskan subarctic snow pack

    Directory of Open Access Journals (Sweden)

    F. Domine

    2009-09-01

    Full Text Available Acetaldehyde is a reactive intermediate in hydrocarbon oxidation. It is both emitted and taken up by snowpacks and photochemical and physical processes are probably involved. Understanding the reactivity of acetaldehyde in snow and its processes of physical and chemical exchanges requires the knowledge of its incorporation mechanism in snow crystals. We have performed a season-long study of the evolution of acetaldehyde concentrations in the subarctic snowpack near Fairbanks (65° N, central Alaska, which is subjected to a vigorous metamorphism due to persistent elevated temperature gradients in the snowpack, between 20 and 200°C m−1. The snowpack therefore almost entirely transforms into depth hoar. We have also analyzed acetaldehyde in a manipulated snowpack where temperature gradients were suppressed. Snow crystals there transformed much more slowly and their original shapes remained recognizable for months. The specific surface area of snow layers in both types of snowpacks was also measured. We deduce that acetaldehyde is not adsorbed onto the surface of snow crystals and that most of the acetaldehyde is probably not dissolved in the ice lattice of the snow crystals. We propose that most of the acetaldehyde measured is either trapped or dissolved within organic aerosol particles trapped in snow, or that acetaldehyde is formed by the hydrolysis of organic precursors contained in organic aerosols trapped in the snow, when the snow is melted for analysis. These precursors are probably aldehyde polymers formed within the aerosol particles by acid catalysis, but might also be biological molecules. In a laboratory experiment, acetaldehyde-di-n-hexyl acetal, representing a potential acetaldehyde precursor, was subjected to our analytical procedure and reacted to form acetaldehyde. This confirms our suggestion that acetaldehyde in snow could be produced during the melting of snow for analysis.

  9. Research on snow leopards (Panthera uncia using camera-trapping in Wolong National Nature Reserve, China

    Directory of Open Access Journals (Sweden)

    Zhuo Tang

    2017-01-01

    Full Text Available Between November 2013 and March 2016, twenty Ltl-6210MC infrared-triggered camera-traps were installed in Wolong National Nature Reserve, Sichuan, China, to monitor snow leopards(Panthera uncia and other wildlife. A total of 7,056 camera-days of data were collected, including approximately 120,000 photos and video clips. The effective number of snow leopard samples collected by the infrared cameras was 43, and the calculated relative abundance index (RAI for this species was 6.09. During the 28 months of continuous data collection using infrared cameras, records of snow leopards, including leopard cubs, demonstrated that Wolong National Nature Reserve is a relatively hospitable environment for this species. The analytical results indicate that the annual activity peaked in January, and the daily activity peaked between the hours of 18:00–20:00, and daily activity patterns showed seasonal variations. When considering environmental factors, the preferred habitat is the alpine scree where snow leopards appeared most in the ridge areas and the range of preferred reference temperatures for snow leopard activity was found between –10℃ and –3℃. In addition, the lunar-phase relative abundance index was originally created to assess the appearance of wildlife under different night lightness levels. It was found that the snow leopard is fairly active at night, and the lunar-phase has a significant impact on its level of nocturnal activity (P < 0.01. We provided primary sources for further protection and research of snow leopards and the other wildlife. This study could be utilized to comprehensively learn the ecological characteristics and assess snow leopard habitat.

  10. Observing snow cover using unmanned aerial vehicle

    Science.gov (United States)

    Spallek, Waldemar; Witek, Matylda; Niedzielski, Tomasz

    2016-04-01

    Snow cover is a key environmental variable that influences high flow events driven by snow-melt episodes. Estimates of snow extent (SE), snow depth (SD) and snow water equivalent (SWE) allow to approximate runoff caused by snow-melt episodes. These variables are purely spatial characteristics, and hence their pointwise measurements using terrestrial monitoring systems do not offer the comprehensive and fully-spatial information on water storage in snow. Existing satellite observations of snow reveal moderate spatial resolution which, not uncommonly, is not fine enough to estimate the above-mentioned snow-related variables for small catchments. High-resolution aerial photographs and the resulting orthophotomaps and digital surface models (DSMs), obtained using unmanned aerial vehicles (UAVs), may offer spatial resolution of 3 cm/px. The UAV-based observation of snow cover may be done using the near-infrared (NIR) cameras and visible-light cameras. Since the beginning of 2015, in frame of the research project no. LIDER/012/223/L-5/13/NCBR/2014 financed by the National Centre for Research and Development of Poland, we have performed a series of the UAV flights targeted at four sites in the Kwisa catchment in the Izerskie Mts. (part of the Sudetes, SW Poland). Observations are carried out with the ultralight UAV swinglet CAM (produced by senseFly, lightweight 0.5 kg, wingspan 80 cm) which enables on-demand sampling at low costs. The aim of the field work is to acquire aerial photographs taken using the visible-light and NIR cameras for a purpose of producing time series of DSMs and orthophotomaps with snow cover for all sites. The DSMs are used to calculate SD as difference between observational (with snow) and reference (without snow) models. In order to verify such an approach to compute SD we apply several procedures, one of which is the estimation of SE using the corresponding orthophotomaps generated on a basis of visual-light and NIR images. The objective of this

  11. Evaluation of SNODAS snow depth and snow water equivalent estimates for the Colorado Rocky Mountains, USA

    Science.gov (United States)

    Clow, David W.; Nanus, Leora; Verdin, Kristine L.; Schmidt, Jeffrey

    2012-01-01

    The National Weather Service's Snow Data Assimilation (SNODAS) program provides daily, gridded estimates of snow depth, snow water equivalent (SWE), and related snow parameters at a 1-km2 resolution for the conterminous USA. In this study, SNODAS snow depth and SWE estimates were compared with independent, ground-based snow survey data in the Colorado Rocky Mountains to assess SNODAS accuracy at the 1-km2 scale. Accuracy also was evaluated at the basin scale by comparing SNODAS model output to snowmelt runoff in 31 headwater basins with US Geological Survey stream gauges. Results from the snow surveys indicated that SNODAS performed well in forested areas, explaining 72% of the variance in snow depths and 77% of the variance in SWE. However, SNODAS showed poor agreement with measurements in alpine areas, explaining 16% of the variance in snow depth and 30% of the variance in SWE. At the basin scale, snowmelt runoff was moderately correlated (R2 = 0.52) with SNODAS model estimates. A simple method for adjusting SNODAS SWE estimates in alpine areas was developed that uses relations between prevailing wind direction, terrain, and vegetation to account for wind redistribution of snow in alpine terrain. The adjustments substantially improved agreement between measurements and SNODAS estimates, with the R2 of measured SWE values against SNODAS SWE estimates increasing from 0.42 to 0.63 and the root mean square error decreasing from 12 to 6 cm. Results from this study indicate that SNODAS can provide reliable data for input to moderate-scale to large-scale hydrologic models, which are essential for creating accurate runoff forecasts. Refinement of SNODAS SWE estimates for alpine areas to account for wind redistribution of snow could further improve model performance. Published 2011. This article is a US Government work and is in the public domain in the USA.

  12. User requirements for satellite snow data service

    Energy Technology Data Exchange (ETDEWEB)

    Kolberg, S.; Standley, A.; Hiltbrunner, D.; Hallikainen, M.

    1997-12-31

    This report discusses the answers given by ten users or potential users of remotely sensed snow data when asked about their data needs and present measurements, their requirements for remote sensing data and potential of using such, and the models or other analysis tools in which the information is used. The answers show both consensus and differences among the respondents` use of snow data and requirements for remote sensing snow products. For water resources planning and management, the most important variable is snow water equivalent, with acceptable errors around 10%. Acceptable spatial error is typically in the range of 200 m to 1 km. For flood forecasting and short-term runoff simulation, snow covered area is more important, with a classification of 5 to 8 steps being generally sufficient. Meteorologists tend to focus on albedo and snow coverage data, with 5% steps desired for albedo. Geometric resolution and accuracy is less important, temporal resolution and delivery time is more important than in water resource management. For avalanche use, most snow variables except water equivalent are important, several in depth profiles. Spatial and temporal requirements are high. In all user groups there is a desire for models which can use measured values quantitatively. Today, measured snow information is largely interpreted manually and subjectively and lead to actions based on experience and judgement. The organizing of measurements, simulations and calibrated sub-models with varying uncertainty levels is partly a conceptual problem, partly a software problem. 1 ref.

  13. Survey monitoring of environmental radioactivity in Jeju area

    Energy Technology Data Exchange (ETDEWEB)

    U, Zang Kual; Kang, Tae Woo; Park, Won Pyo [Jeju National Univ., Jeju (Korea, Republic of)

    2003-12-15

    The project is carried out to monitor the change of environmental radioactivity in Jeju, and to provide a systematic data for radiation monitoring and counter measurement at a radiological emergency situation. Also the survey of natural environmental radioactivities in the samples was conducted to make the reliable data base for evaluation of internal exposure and environmental contamination of radiation. This report contains the data of gamma exposure rates and radioactivities of airborne dust, fallout, precipitation and tap water which were analyzed periodically by Jeju Regional Monitoring Station in 2002. Also it contains the data of natural radioactivity levels of food stuff such as agricultural and marine products, including drinking waters.

  14. Comparison between Snow Albedo Obtained from Landsat TM, ETM+ Imagery and the SPOT VEGETATION Albedo Product in a Mediterranean Mountainous Site

    Directory of Open Access Journals (Sweden)

    Rafael Pimentel

    2016-02-01

    Full Text Available Albedo plays an important role in snow evolution modeling quantifying the amount of solar radiation absorbed and reflected by the snowpack, especially in mid-latitude regions with semiarid conditions. Satellite remote sensing is the most extensive technique to determine the variability of snow albedo over medium to large areas; however, scale effects from the pixel size of the sensor source may affect the results of snow models, with different impacts depending on the spatial resolution. This work presents the evaluation of snow albedo values retrieved from (1 Landsat images, L (16-day frequency with 30 × 30 m pixel size and (2 SPOT VEGETATION albedo products, SV (10-day frequency with 1 × 1 km pixel size in the Sierra Nevada mountain range in South Spain, a Mediterranean site representative of highly heterogeneous conditions. Daily snow albedo map series were derived from both sources, and used as input for the snow module in the WiMMed (Watershed Integrated Management in Mediterranean Environment hydrological model, which was operational at the study area for snow monitoring for two hydrological years, 2011–2012 and 2012–2013, in the Guadalfeo river basin in Sierra Nevada. The results showed similar albedo trends in both data sources, but with different values, the shift between both sources being distributed in space according to the altitude. This difference resulted in lower snow cover fraction values in the SV-simulations that affected the rest of snow variables included in the simulation. This underestimation, mainly due to the effects of mixed pixels composed by both snow and snow-free areas, produced higher divergences from both sources during the melting periods when the evapo-sublimation and melting fluxes are more relevant. Therefore, the selection of the albedo data source in these areas, where snow evapo-sublimation plays a very important role and the presence of snow-free patches is very frequent, can condition the final

  15. A conceptual, distributed snow redistribution model

    Science.gov (United States)

    Frey, S.; Holzmann, H.

    2015-11-01

    When applying conceptual hydrological models using a temperature index approach for snowmelt to high alpine areas often accumulation of snow during several years can be observed. Some of the reasons why these "snow towers" do not exist in nature are vertical and lateral transport processes. While snow transport models have been developed using grid cell sizes of tens to hundreds of square metres and have been applied in several catchments, no model exists using coarser cell sizes of 1 km2, which is a common resolution for meso- and large-scale hydrologic modelling (hundreds to thousands of square kilometres). In this paper we present an approach that uses only gravity and snow density as a proxy for the age of the snow cover and land-use information to redistribute snow in alpine basins. The results are based on the hydrological modelling of the Austrian Inn Basin in Tyrol, Austria, more specifically the Ötztaler Ache catchment, but the findings hold for other tributaries of the river Inn. This transport model is implemented in the distributed rainfall-runoff model COSERO (Continuous Semi-distributed Runoff). The results of both model concepts with and without consideration of lateral snow redistribution are compared against observed discharge and snow-covered areas derived from MODIS satellite images. By means of the snow redistribution concept, snow accumulation over several years can be prevented and the snow depletion curve compared with MODIS (Moderate Resolution Imaging Spectroradiometer) data could be improved, too. In a 7-year period the standard model would lead to snow accumulation of approximately 2900 mm SWE (snow water equivalent) in high elevated regions whereas the updated version of the model does not show accumulation and does also predict discharge with more accuracy leading to a Kling-Gupta efficiency of 0.93 instead of 0.9. A further improvement can be shown in the comparison of MODIS snow cover data and the calculated depletion curve, where

  16. Research on Monitoring Area Division of Quality Grade Changes in County Cultivated Land and Technology of Deploying Monitoring Point

    Institute of Scientific and Technical Information of China (English)

    Wei; WEI; Lijun; LIAO; Jianxin; YU

    2013-01-01

    It is an important means in management of improving both the quality and quantity of cultivated land to monitor grade changes in cultivated land quality. How to deploy monitoring network system and its point reasonably and roundly are the key to the technology of monitoring grade changes in cultivated land quality by monitoring grade changes in cultivated land quality dynamically in order to obtain the information to the index of cultivated land quality and its changes based on the existing achievements of farmland classification and grading. Spatial analysis method is used to demarcate monitoring area and deploy monitoring point according to ARCGIS,of which the result can meet the demand for monitoring grade changes in cultivated land.

  17. Eurasian Snow Conditions and Summer Monsoon Rainfall over South and Southeast Asia:Assessment and Comparison

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    This study reveals the complex nature of the connection between Eurasian snow and the following summer season's monsoon rainfall by using four different indicators of snow conditions and correlating each of them to summer monsoon rainfall. Using 46 years of historical records of mean winter snow depth,maximum snow depth, and snow starting dates, and 27 years of snow area coverage from remote sensing observations over Eurasia, the authors found diverse correlation patterns between snow conditions and the following warm season's rainfall over South and Southeast Asia. Some of the results contradict the well-known inverse relationships between snow and the summer monsoon. This study provides an easy comparison of results in that it shows the connections between Eurasian snow and monsoon rainfall by using different Eurasian snow indicators based on the best available historical records without discrimination of regional variations in snow conditions.

  18. Variation of snow water resources in northwestern China,1951—1997

    Institute of Scientific and Technical Information of China (English)

    李培基

    1999-01-01

    An observation study is carried out on snow mass amount estimate in northwestern China by using microwave derived snow depth charts employing data from SMMR in conjunction with daily snow depth, density and snow cover duration records for 46 ground climate stations. Spatial patterns, seasonal cycle, and interannual variation of snow cover are discussed. Results show that snow cover is the second largest water supply over the arid northwestern China,and unlike most other areas in the world, northwestern China did not experience any decrease in snow cover since 1987.Secular trends reveal systematic increase in snow mass and durations. Analysis of snow cover-climate relationship indicates that gradual increase in snow cover is primarily in response to increase in snow season precipitation.

  19. Analyzing the importance of wind-blown snow accumulations on Mount

    Science.gov (United States)

    Nestler, Alexander; Huss, Matthias; Ambartsumian, Rouben; Hambarian, Artak; Mohr, Sandra; Santi, Flavio

    2013-04-01

    Armenia's climate has a predominantly continental character with high amounts of precipitation and low temperatures during wintertime and a lack of precipitation together with high temperatures during summer. On the volcano Mount Aragatz, snow is relocated by strong winds into massive accumulations between 2500 and 4100 m a.s.l. during the winter season. These snow accumulations appear every winter in regular patterns as cornices on the lee side of sharp edges, such as those of ridges and canyons, which are arranged in a radial manner around the central crater. The biggest cornices almost outlast the hot period and provide considerable amounts of melt water until they disappear completely by the end of August. Snow melt water is known to have a high economic importance for agriculture on the slopes of Mount Aragatz and in the surroundings of Armenia's captial Yerewan. The aim of this study is to estimate the quantity of water naturally stored as snow on Mount Aragatz, and to what degree the use of geotextiles can prolong the lives of these snow accumulations. The characteristics and the spatial distribution of snow cornices on Mount Aragatz were determined using classical glaciological methods in June/July 2011 and 2012, involving snow depth soundings, water equivalent measurements and snow melt monitoring using ablation stakes, together with GPS mappings and classifications obtained from satellite images of the snow cornices. The combination of these data with ASTER DEMs and local weather data allows the modelling of the formation of wind-driven snow accumulations. Statistical relationships between the measured extent and volume of the snow cornices and surface parameters such as slope, aspect and curvature are established. In order to analyze the meltdown of the snow accumulations and the consequent impacts on runoff generation and the hydrological regime, a glacio-hydrological model integrating topographic parameters and meteorological data is applied. The

  20. Mapping snow depth in alpine terrain with unmanned aerial systems (UASs): potential and limitations

    Science.gov (United States)

    Bühler, Yves; Adams, Marc S.; Bösch, Ruedi; Stoffel, Andreas

    2016-05-01

    . This new measurement technology opens the door for efficient, flexible, repeatable and cost-effective snow depth monitoring over areas of several hectares for various applications, if the national and regional regulations permit the application of UASs.

  1. Numerical simulation of drifting snow sublimation in the saltation layer.

    Science.gov (United States)

    Dai, Xiaoqing; Huang, Ning

    2014-10-14

    Snow sublimation is an important hydrological process and one of the main causes of the temporal and spatial variation of snow distribution. Compared with surface sublimation, drifting snow sublimation is more effective due to the greater surface exposure area of snow particles in the air. Previous studies of drifting snow sublimation have focused on suspended snow, and few have considered saltating snow, which is the main form of drifting snow. In this study, a numerical model is established to simulate the process of drifting snow sublimation in the saltation layer. The simulated results show 1) the average sublimation rate of drifting snow particles increases linearly with the friction velocity; 2) the sublimation rate gradient with the friction velocity increases with increases in the environmental temperature and the undersaturation of air; 3) when the friction velocity is less than 0.525 m/s, the snowdrift sublimation of saltating particles is greater than that of suspended particles; and 4) the snowdrift sublimation in the saltation layer is less than that of the suspended particles only when the friction velocity is greater than 0.625 m/s. Therefore, the drifting snow sublimation in the saltation layer constitutes a significant portion of the total snow sublimation.

  2. Monitoring of glacier in Alaknanda basin using remote sensing data

    Directory of Open Access Journals (Sweden)

    Rahul Nijhawan

    2016-09-01

    Full Text Available This study monitors the great Himalayas between the year 1998–2008 using satellite data. The Landsat satellite data was used to monitor variations in the area of glacier. Further the snow-covered area (SCA of the part of Alaknanda basin was computed both for the winter and the summer season. The analysis for the same was done between 1998 and 2008. It was observed that the amount of decrease in the SCA was more in winter season compared to summer season, which also shows the rate of retreat of glacier. This study also classifies the snow into two categories (1 dry snow and (2 wet snow. The pattern in the change in area of these two categories was analysed both for the winter and summer season.

  3. New instruments for plant area and personnel monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Gammage, R. B.; Hawthorne, A. R.; Vo-Dinh, T.; Schuresko, D. D.

    1980-01-01

    Advances in portable monitoring instruments and simple luminescence techniques for analyzing polynuclear aromatic hydrocarbons (PNAs) are reported. A small, derivative ultra-violet absorption spectrometer is suitable for multipollutant real-time monitoring of several mono- and bicyclic aromatic vapors. A non-compound selective fluorescence spill spotter and lightpipe luminoscope are active instruments for measuring general surface and skin contamination, respectively. A small passive integrating filter paper exposure device that responds to PNA vapors such a pyrene is a very promising and recent development. Synchronous luminescence and room temperature phosphoresence are two attractive and simple to use analytical methodologies for the rapid assaying of major PNA compounds. Their potential for analyzing the cyclohexane extract of particulate matter, or incorporation into a device for the continuous monitoring of select PNAs in aerosols in near-real-time, are discussed.

  4. Survey monitoring of environmental radioactivity in Daegu area

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hee Dong; Cho, Yun Young; Lee, Hae Young [Kyungpook National Univ., Daegu (Korea, Republic of)

    2000-12-15

    The objectives of the project are to monitor an abnormal radiation level in Taegu and Kyungpook region, and to enhance our ability to prepare for the radiological emergency situation by establishing the radioactivity monitoring system in Taegu and Kyungpook region. In this report, we summarized a gamma exposure rates, a gross beta and gamma radionuclide activities for the environmental samples of airborned-dust. precipitation, fallout and tap water collected in Taegu radioactivity monitoring center, and a gamma radionuclide activities for the 28 grocery samples, such as tea, nut and mushroom, rice, chinese cabbage, wormwood and pine needles, soil and drinking water which were obtained from Taegu and Kyungpook region to establish the basic data base for estimating the internal exposure. In conclusion, it didn't appear any evidence for newly pollution of artificial radioactivity in Taegu and Kyungpook region.

  5. Survey monitoring of environmental radioactivity in Jeju area

    Energy Technology Data Exchange (ETDEWEB)

    U, Zang Kual; Kang, Tae Woo [Jeju National Univ., Jeju (Korea, Republic of)

    2000-12-15

    The project is carried out to monitor the change of environmental radioactivity in Jeju, and to provide a systematic data for radiation monitoring and counter measurement at a radiological emergency situation. Also the survey of natural environmental radioactivities in the samples was conducted to make the reliable data base for evaluation of internal exposure and environmental contamination of radiation. This report contains the data of gamma exposure rates and radioactivities of airborne dust, fallout, precipitation and tap water which were analyzed periodically by Jeju Regional Monitoring Station in 2000. Also it contains the data of natural radioactivity levels of food stuff such as agricultural and marine products, including drinking waters. There was no significant difference in environmental radioactivities between 1999 and 2000.

  6. Patient Health Monitoring Using Wireless Body Area Network

    Directory of Open Access Journals (Sweden)

    Hsu Myat Thwe

    2015-06-01

    Full Text Available Abstract Nowadays remote patient health monitoring using wireless technology plays very vigorous role in a society. Wireless technology helps monitoring of physiological parameters like body temperature heart rate respiration blood pressure and ECG. The main aim of this paper is to propose a wireless sensor network system in which both heart rate and body temperature ofmultiplepatients can monitor on PC at the same time via RF network. The proposed prototype system includes two sensor nodes and receiver node base station. The sensor nodes are able to transmit data to receiver using wireless nRF transceiver module.The nRF transceiver module is used to transfer the data from microcontroller to PC and a graphical user interface GUI is developed to display the measured data and save to database. This system can provide very cheaper easier and quick respondent history of patient.

  7. Observations and model simulations of snow albedo reduction in seasonal snow due to insoluble light-absorbing particles during 2014 Chinese survey

    Science.gov (United States)

    Wang, Xin; Pu, Wei; Ren, Yong; Zhang, Xuelei; Zhang, Xueying; Shi, Jinsen; Jin, Hongchun; Dai, Mingkai; Chen, Quanliang

    2017-02-01

    A snow survey was carried out to collect 13 surface snow samples (10 for fresh snow, and 3 for aged snow) and 79 subsurface snow samples in seasonal snow at 13 sites across northeastern China in January 2014. A spectrophotometer combined with chemical analysis was used to quantify snow particulate absorption by insoluble light-absorbing particles (ILAPs, e.g., black carbon, BC; mineral dust, MD; and organic carbon, OC) in snow. Snow albedo was measured using a field spectroradiometer. A new radiative transfer model (Spectral Albedo Model for Dirty Snow, or SAMDS) was then developed to simulate the spectral albedo of snow based on the asymptotic radiative transfer theory. A comparison between SAMDS and an existing model - the Snow, Ice, and Aerosol Radiation (SNICAR) - indicates good agreements in the model-simulated spectral albedos of pure snow. However, the SNICAR model values tended to be slightly lower than those of SAMDS when BC and MD were considered. Given the measured BC, MD, and OC mixing ratios of 100-5000, 2000-6000, and 1000-30 000 ng g-1, respectively, in surface snow across northeastern China, the SAMDS model produced a snow albedo in the range of 0.95-0.75 for fresh snow at 550 nm, with a snow grain optical effective radius (Reff) of 100 µm. The snow albedo reduction due to spherical snow grains assumed to be aged snow is larger than fresh snow such as fractal snow grains and hexagonal plate or column snow grains associated with the increased BC in snow. For typical BC mixing ratios of 100 ng g-1 in remote areas and 3000 ng g-1 in heavy industrial areas across northern China, the snow albedo for internal mixing of BC and snow is lower by 0.005 and 0.036 than that of external mixing for hexagonal plate or column snow grains with Reff of 100 µm. These results also show that the simulated snow albedos by both SAMDS and SNICAR agree well with the observed values at low ILAP mixing ratios but tend to be higher than surface observations at high ILAP

  8. BANip: Enabling Remote Healthcare Monitoring with Body Area Networks

    NARCIS (Netherlands)

    Dokovski, Nikolay; Halteren, van Aart; Widya, Ing; Guelfi, Nicolas; Astesiano, Egidio; Reggio, Gianna

    2004-01-01

    This paper presents a Java service platform for mobile healthcare that enables remote health monitoring using 2.5/3G public wireless networks. The platform complies with todayrsquos healthcare delivery models, in particular it incorporates some functionality of a healthcare call center, a healthport

  9. BANip: Enabling Remote Healthcare Monitoring with Body Area Networks

    NARCIS (Netherlands)

    Dokovski, N.T.; van Halteren, Aart; Widya, I.A.; Guelfi, Nicolas; Astesiano, Egidio; Reggio, Gianna

    2004-01-01

    This paper presents a Java service platform for mobile healthcare that enables remote health monitoring using 2.5/3G public wireless networks. The platform complies with todayrsquos healthcare delivery models, in particular it incorporates some functionality of a healthcare call center, a healthport

  10. Role of snow cover on urban heat island intensity investigated by urban canopy model with snow effects

    Science.gov (United States)

    Sato, T.; Mori, K.

    2015-12-01

    Urban heat islands have been investigated around the world including snowy regions. However, the relationship between urban heat island and snow cover remains unclear. This study examined the effect of snow cover in urban canopy on energy budget in urban areas of Sapporo, north Japan by 1km mesh WRF experiments. The modified urban canopy model permits snow cover in urban canopy by the modification of surface albedo, surface emissivity, and thermal conductivity for roof and road according to snow depth and snow water equivalent. The experiments revealed that snow cover in urban canopy decreases urban air temperature more strongly for daily maximum temperature (0.4-0.6 K) than for daily minimum temperature (0.1-0.3 K). The high snow albedo reduces the net radiation at building roof, leading to decrease in sensible heat flux. Interestingly, the cooling effect of snow cover compensates the warming effect by anthropogenic heat release in Sapporo, suggesting the importance of snow cover treatment in urban canopy model as well as estimating accurate anthropogenic heat distributions. In addition, the effect of road snow clearance tends to increase nocturnal surface air temperature in urban areas. A possible role of snow cover on urban heat island intensity was evaluated by two experiments with snow cover (i.e., realistic condition) and without snow cover in entire numerical domain. The snow cover decreases surface air temperature more in rural areas than in urban areas, which was commonly seen throughout a day, with stronger magnitude during nighttime than daytime, resulting in intensifying urban heat island by 4.0 K for daily minimum temperature.

  11. Monitoring hemlock crown health in Delaware Water Gap National Recreation Area

    Science.gov (United States)

    Michael E. Montgomery; Bradley Onken; Richard A. Evans; Richard A. Evans

    2005-01-01

    Decline of the health of hemlocks in Delaware Water Gap National Recreation Area was noticeable in the southern areas of the park by 1992. The following year, a series of plots were established to monitor hemlock health and the abundance of hemlock woolly adelgid. This poster examines only the health rating of the hemlocks in the monitoring plots.

  12. Modelling high-resolution snow cover precipitation supply for German river catchments with SNOW 4

    Science.gov (United States)

    Böhm, Uwe; Reich, Thomas; Schneider, Gerold; Fiedler, Anett

    2013-04-01

    Formation of snow cover causes a delayed response of surface to precipitation. Both melting of snow and release of liquid water retained within the snow cover form precipitation supply which contributes to runoff and infiltration. The model SNOW 4 is developed to simulate snow cover accumulation and depletion and the resulting precipitation supply on a regular grid. The core of the model is formed by a set of equations which describe the snow cover energy and mass balance. The snow surface energy balance is calculated as a result of the radiation balance and the heat fluxes between atmosphere, soil and snow cover. The available melting heat enters the mass balance computation part of the model and melting of snow or freezing of liquid water within the snow layer takes place depending on its sign. Retention, aging and snow cover regeneration are taken into consideration. The model runs operationally 4 times a day and provides both a snow cover and precipitation supply analysis for the last 30 hours and a forecast for up to 72 hours. For the 30-hour analysis, regionalised observations are used both to define the initial state and force the model. Hourly measurements of air temperature, water vapour pressure, wind speed, global radiation or sunshine duration and precipitation are interpolated to the model grid. For the forecast period, SNOW 4 obtains the required input data from the operational products of the COSMO-EU weather forecast model. The size of a grid box is 1km2. The model area covers a region of 1100x1000km2 and includes the catchments of the German rivers completely. The internal time step is set to 1 hour. Once a day, the compliance between model and regionalized snow cover data is assessed. If discrepancies exceed certain thresholds, the model must be adjusted by a weighted approach towards the observations. The model simulations are updated every six hours based on the most recent observations and weather forecasts. The model works operationally since

  13. Nevada Test Site 2008 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2009-06-23

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site. These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2008 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities.

  14. Snow Roads and Runways

    Science.gov (United States)

    1990-11-01

    CONSTRUCT ROADS FOR MARCHING COLUMNS ALL ARMS (1) Pass over the trace twice with (1) Two passes with the harrow the harrow. and roller. (2) After harrowing...should be accomplished by successive passes with beams or slabs to the towing bars. A method forballasting D-7 orD-8 tractortracks. Normally twoto five... waffle -type snow surface (Fig. 85)and is notas suitable for snow pavement surface has been previously compacted snow compaction as other types of rollers

  15. Snow molds: A group of fungi that prevail under snow.

    Science.gov (United States)

    Matsumoto, Naoyuki

    2009-01-01

    Snow molds are a group of fungi that attack dormant plants under snow. In this paper, their survival strategies are illustrated with regard to adaptation to the unique environment under snow. Snow molds consist of diverse taxonomic groups and are divided into obligate and facultative fungi. Obligate snow molds exclusively prevail during winter with or without snow, whereas facultative snow molds can thrive even in the growing season of plants. Snow molds grow at low temperatures in habitats where antagonists are practically absent, and host plants deteriorate due to inhibited photosynthesis under snow. These features characterize snow molds as opportunistic parasites. The environment under snow represents a habitat where resources available are limited. There are two contrasting strategies for resource utilization, i.e., individualisms and collectivism. Freeze tolerance is also critical for them to survive freezing temperatures, and several mechanisms are illustrated. Finally, strategies to cope with annual fluctuations in snow cover are discussed in terms of predictability of the habitat.

  16. Survey monitoring of environmental radioactivity in Busan area

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Han Soeb; Jang, Young A [Busan Regional Monitoring Station, Busan (Korea, Republic of)

    2001-12-15

    At Regional Radioactivity Monitoring Station in Busan have been measured periodically in 2001 gross beta activities in the airborne dust, fallout, precipitation and tap water and gamma exposure rates. Gamma nuclides in airborne dust, fallout and precipitation have also been I monitored at the station. As a part of environmental radiation/radioactivity distribution survey around Pusan, vegetables, fishes, shellfish, drinking water (total 33ea) samples were taken from sampling sites which were selected by KlNS. We analysis gamma nuclide for all. No significant changes from the previous survey have been found in both beta activities and gamma exposure rates. As the results of analyzing an gamma nuclide concentration in environmental samples in Pusan are fee of radiological contaminants.

  17. Survey monitoring of environmental radioactivity in Gunsan area

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byoung Ho; Ro, Jeong Suk [Kunsan Regional Radioactivity Monitoring Station, Gunsan (Korea, Republic of)

    2001-01-15

    At Regional Radioactivity Monitoring Station in Kunsan have been measured priodically in 2000 gross beta activities in the airborne dust, fallout, precipitation and tap water and gamma exposure rates. Artificial radionuclide of {sup 137}Cs in airborne dust, fallout and precipitation have also been monitored at the station. As a part of environmental radiation/radioactivity distribution survey around Jeon-buk, vegetables, fishes, shellfishes, drinking water (total 33ea) samples were taken from sampling sites which were selected by KINS. We analysis gamma isotope for all. No significant Changes from the previous survey have been found in both beta activities and gamma exposure rates. As the results of analyzig an artificial nuclide concentration in living environmental sample in Jeon-buk are I fee of radiological contaminants.

  18. Survey monitoring of environmental radioactivity in Gunsan area

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byoung Ho; Ro, Jeong Suk [Kunsan Regional Radioactivity Monitoring Station, Gunsan (Korea, Republic of)

    2002-12-15

    At Regional Radioactivity Monitoring Station in Kunsan have been measured priodically in 2002 gross beta activities in the airborne dust, fallout, precipitation and tap water and gamma exposure rates. Artificial radionuclide of {sup 137}Cs in airborne dust, fallout and precipitation have also been monitored at the station. As a part of environmental radiation/radioactivity distribution survey around Jeon-buk, vegetables, fishes, shellfishes, drinking water (total 33ea) samples were taken from sampling sites which were selected by KINS. We analysis gamma isotope for all. No significant changes from the previous survey have been found in both beta activities and gamma exposure rates. As the results of analyzig an artificial nuclide concentration in living environmental sample in Jeon-buk are fee of radiological contaminants.

  19. Survey monitoring of environmental radioactivity in Busan area

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Han Soeb; Jang, Young A. [Busan Regional Monitoring Station, Busan (Korea, Republic of)

    2003-12-15

    At Regional Radioactivity Monitoring Station in Pusan have been measured periodically in 2003 gross beta activities in the airborne dust, fallout, precipitation and tap water and gamma exposure rates. Gamma nuclides in airborne dust, fallout and precipitation have also been monitored at the station. As a part of environmental radiation/radioactivity distribution survey around Busan foodstuffs, dust, drinking water (total 24ea) samples were taken from sampling sites which were selected by KINS. We analysis gamma nuclide for all. No significant changes from the previous survey have been found in both beta activities and gamma exposure rates. As the results of analyzing an gamma nuclide concentration in environmental samples in Pusan are fee of radiological contaminants.

  20. Survey monitoring of environmental radioactivity in Busan area

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Han Soeb; Jang, Young A [Busan Regional Monitoring Station, Busan (Korea, Republic of)

    2002-12-15

    At Regional Radioactivity Monitoring Station in Busan have been measured periodically in 2002 gross beta activities in the airborne dust, fallout, precipitation and tap water and gamma exposure rates. Gamma nuclides in airborne dust, fallout and precipitation have also been monitored at the station. As a part of environmental radiation/radioactivity distribution survey around Pusan foodstuffs, dust, drinking water (total 24ea) samples were taken from sampling sites which were selected by KINS. We analysis gamma nuclide for all. No significant changes from the previous survey have been found in both beta activities and gamma exposure rates. As the results of analyzing an gamma nuclide concentration in environmental samples in Pusan are fee of radiological contaminants.

  1. Chemistry of snow cover and acidic snowfall during a season with a high level of air pollution on the Hans Glacier, Spitsbergen

    Science.gov (United States)

    Nawrot, Adam P.; Migała, Krzysztof; Luks, Bartłomiej; Pakszys, Paulina; Głowacki, Piotr

    2016-09-01

    The central Arctic is within the range of air pollution transported from industrial areas of Eurasia and North America. A poor network of weather stations means that there is limited information available about air quality and contaminant deposition in the Arctic environment. For this reason seasonal snow cover is an important source of information. Chemical properties of precipitation, snow cover and fresh snow were monitored at the Hornsund Polish Polar Station (Spitsbergen) and in the altitude profile of the Hans Glacier. Meteorological data from the coast and the glacier helped to examine in detail the impact of atmospheric processes on snow cover contamination. The episode with extremely acidic precipitation was recognized in snow cover analysed in spring 2006. The source area of pollution and type of synoptic situation which enhanced transfer of pollution to the European Arctic were identified. Changes in snow chemistry in the altitude profile demonstrated the impact of the atmospheric boundary layer on chemical properties of precipitation and snow cover. Non-sea salt SO2 emissions and the role of nitrate in acidification should be considered a serious threat to the Arctic environment.

  2. Survey monitoring of environmental radioactivity in Seoul area

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jai Ki; Chung, Ok Sun; Kim, Hong Suk [Seoul Monitoring Station, Seoul (Korea, Republic of)

    2002-12-15

    The following results were obtained through the environmental radiation monitoring in 2002 at the Seoul Monitoring Station: gamma exposure rate : 10.8 - 13.3 {mu}R/h, mean gross beta activity in airborne dust : 84.1 {+-} 46.2 mBq/m{sup 3}, mean gross beta activity in fallout dust : 11.9 {+-} 5.6 MBq/km{sup 2} - 30 days, meab gross beta activity in precipitation : 317 {+-} 465 mBq/L, mean gross beta activity in tap water : 71.2 {+-} 23.0 mBq/L. All the monitored variables remained in the corresponding normal ranges, which implies that there were no abnormal situations of environmental radiation in the Seoul-Gyunggi districts in 2002. Radioactivity contents in foodstuffs consumed in Seoul and Gyunggi districts were analyzed for use in assessment of population doses via dietary intakes. Samples include 16 foodstuffs (peanut, walnut, pine seeds, chessnut, acorn, sesame, perilla seeds, oak mushroom, meadow mushroom, velvet foot, oyster mushroom, instant coffee, green tea leaves, ginseng tea, rice and Chinese cabbage). Two indicator samples, pine needle and mug wort, were also included. Relatively higher concentrations of {sup 137}Cs, a man-made nuclide, were found in coffee and oak mushroom(0.554 and 0.480 Bq/kg, respectively). A few hundreds Bq/kg of {sup 40}K were found in most of the foodstuffs with higher concentrations in coffee and green tea leaves(786 and 574 Bq/kg, respectively)

  3. Survey monitoring of environmental radioactivity in Seoul area

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jai Ki; Chung, Ok Sun; Kim, Hong Suk [Seoul Monitoring Station, Seoul (Korea, Republic of)

    2002-12-15

    The following results were obtained through the environmental radiation monitoring in 2002 at the Seoul Monitoring Station: gamma exposure rate : 10.8 - 13.3 {mu}R/h, mean gross beta activity in airborne dust : 84.1 {+-} 46.2 mBq/m{sup 3}, mean gross beta activity in fallout dust : 11.9 {+-} 5.6 MBq/km{sup 2} - 30 days, meab gross beta activity in precipitation : 317 {+-} 465 mBq/L, mean gross beta activity in tap water : 71.2 {+-} 23.0 mBq/L. All the monitored variables remained in the corresponding normal ranges, which implies that there were no abnormal situations of environmental radiation in the Seoul-Gyunggi districts in 2002. Radioactivity contents in foodstuffs consumed in Seoul and Gyunggi districts were analyzed for use in assessment of population doses via dietary intakes. Samples include 16 foodstuffs (peanut, walnut, pine seeds, chessnut, acorn, sesame, perilla seeds, oak mushroom, meadow mushroom, velvet foot, oyster mushroom, instant coffee, green tea leaves, ginseng tea, rice and Chinese cabbage). Two indicator samples, pine needle and mug wort, were also included. Relatively higher concentrations of {sup 137}Cs, a man-made nuclide, were found in coffee and oak mushroom(0.554 and 0.480 Bq/kg, respectively). A few hundreds Bq/kg of {sup 40}K were found in most of the foodstuffs with higher concentrations in coffee and green tea leaves(786 and 574 Bq/kg, respectively)

  4. Applications of remote sensing and GIS in surface hydrology: Snow cover, soil moisture and precipitation

    Science.gov (United States)

    Wang, Xianwei

    Studies on surface hydrology can generally be classified into two categories, observation for different components of surface water, and modeling their dynamic movements. This study only focuses on observation part of surface water components: snow cover, soil moisture, and precipitation. Moreover, instead of discussion on the detailed algorithm and instrument technique behind each component, this dissertation pours efforts on analysis of the standard remotely sensed products and their applications under different settings. First in Chapter 2, validation of MODIS Terra 8-day maximum snow cover composite (MOD10A2) in the Northern Xinjiang, China, from 2000-2006, shows that the 8-day MODIS/Terra product has high agreements with in situ measurements as the in situ snow depth is larger or equal to 4 cm, while the agreement is low for the patchy snow as the in situ snow depth less than 4 cm. According to the in situ observation, this chapter develops an empirical algorithm to separate the cloud-covered pixels into snow and no snow. Continued long-term production of MODIS-type snow cover product is critical to assess water resources of the study area, as well as other larger scale global environment monitoring. Terra and Aqua satellites carry the same MODIS instrument and provide two parallel MODIS daily snow cover products at different time (local time 10:30 am and 1:30 pm, respectively). Chapter 3 develops an algorithm and automated scripts to combine the daily MODIS Terra (MOD10A1) and Aqua (MYD10A1) snow cover products, and to automatically generate multi-day Terra-Aqua snow cover image composites, with flexible starting and ending dates and a user-defined cloud cover threshold. Chapter 4 systematically compares the difference between MODIS Terra and Aqua snow cover products within a hydrologic year of 2003-2004, validates the MODIS Terra and Aqua snow cover products using in situ measurements in Northern Xinjiang, and compares the accuracy among the standard MODIS

  5. Snow observations in Mount Lebanon (2011-2016)

    Science.gov (United States)

    Fayad, Abbas; Gascoin, Simon; Faour, Ghaleb; Fanise, Pascal; Drapeau, Laurent; Somma, Janine; Fadel, Ali; Bitar, Ahmad Al; Escadafal, Richard

    2017-08-01

    We present a unique meteorological and snow observational dataset in Mount Lebanon, a mountainous region with a Mediterranean climate, where snowmelt is an essential water resource. The study region covers the recharge area of three karstic river basins (total area of 1092 km2 and an elevation up to 3088 m). The dataset consists of (1) continuous meteorological and snow height observations, (2) snowpack field measurements, and (3) medium-resolution satellite snow cover data. The continuous meteorological measurements at three automatic weather stations (MZA, 2296 m; LAQ, 1840 m; and CED, 2834 m a.s.l.) include surface air temperature and humidity, precipitation, wind speed and direction, incoming and reflected shortwave irradiance, and snow height, at 30 min intervals for the snow seasons (November-June) between 2011 and 2016 for MZA and between 2014 and 2016 for CED and LAQ. Precipitation data were filtered and corrected for Geonor undercatch. Observations of snow height (HS), snow water equivalent, and snow density were collected at 30 snow courses located at elevations between 1300 and 2900 m a.s.l. during the two snow seasons of 2014-2016 with an average revisit time of 11 days. Daily gap-free snow cover extent (SCA) and snow cover duration (SCD) maps derived from MODIS snow products are provided for the same period (2011-2016). We used the dataset to characterize mean snow height, snow water equivalent (SWE), and density for the first time in Mount Lebanon. Snow seasonal variability was characterized with high HS and SWE variance and a relatively high snow density mean equal to 467 kg m-3. We find that the relationship between snow depth and snow density is specific to the Mediterranean climate. The current model explained 34 % of the variability in the entire dataset (all regions between 1300 and 2900 m a.s.l.) and 62 % for high mountain regions (elevation 2200-2900 m a.s.l.). The dataset is suitable for the investigation of snow dynamics and for the forcing

  6. Nevada Test Site, 2006 Waste Management Monitoring Report, Area 3 and Area 5 Radioactive Waste Management Sites

    Energy Technology Data Exchange (ETDEWEB)

    David B. Hudson

    2007-06-30

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site. These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2006 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports (U.S. Department of Energy, 2006; Warren and Grossman, 2007; National Security Technologies, LLC, 2007). Direct radiation monitoring data indicate that exposure levels around the RWMSs are at or below background levels. Air monitoring data at the Area 3 and Area 5 RWMSs indicate that tritium concentrations are slightly above background levels. There is no detectable man-made radioactivity by gamma spectroscopy, and concentrations of americium and plutonium are only slightly above detection limits at the Area 3 RWMS. Measurements at the Area 5 RWMS show that radon flux from waste covers is no higher than natural radon flux from undisturbed soil in Area 5. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by facility operations. Precipitation during 2006 totaled 98.6 millimeters (mm) (3.9 inches [in.]) at the Area 3 RWMS and 80.7 mm (3.2 in.) at the Area 5 RWMS. Soil-gas tritium monitoring continues to show slow subsurface migration consistent with previous results. Moisture from precipitation at Area 5 remains at the bottom of the bare-soil weighing lysimeter, but this same moisture has been removed from the vegetated weighing lysimeter by evapotranspiration. Vadose zone data from the operational waste pit covers show that evaporation continues to slowly remove soil moisture that came from the heavy precipitation in the fall of 2004 and the spring of

  7. Earthquake Monitoring and Study in the Jingpohu Volcano Cluster Area

    Institute of Scientific and Technical Information of China (English)

    Liu Zhi; Duan Yonghong; Xu Zhaofan; Yuan Qinxi; Yang Jian; Zhou Xuesong

    2008-01-01

    Seismicity in the Jingpohu volcanic area was investigated based on the seismic data recorded by the mobile seismic network consisting of 14 stations equipped with 24-bit broad-band 3- component seismographs around Crater Forest. Results show that there appears certain seismicity in Jingpohu and its adjacent areas with a low activity level and most of the recorded earthquakes are the volcanic-tectonic ones. The results of location indicate a dominant focal depth of 10km - 30km, most of the earthquakes are smaller than ML>2.0, and are concentrated in the area of "Crater Forest" and on the Dunhua-Mishan fault which runs through the volcanic area. At station No.2, which has better observation conditions, two types of events, likely associated to volcanism, were recorded; their waveform characteristics are somewhat similar to that of the long-period volcanic event and the volcanic tremor, but with different feature of frequencies.

  8. A Fire Detector for Monitoring Inaccessible Areas in Aircrafts Project

    Data.gov (United States)

    National Aeronautics and Space Administration — En'Urga Inc. will evaluate the feasibility of utilizing reflected, multi-wavelength, near infrared radiation for detecting fires in inaccessible areas within...

  9. The Snow Data System at NASA JPL

    Science.gov (United States)

    Laidlaw, R.; Painter, T. H.; Mattmann, C. A.; Ramirez, P.; Brodzik, M. J.; Rittger, K.; Bormann, K. J.; Burgess, A. B.; Zimdars, P.; McGibbney, L. J.; Goodale, C. E.; Joyce, M.

    2015-12-01

    The Snow Data System at NASA JPL includes a data processing pipeline built with open source software, Apache 'Object Oriented Data Technology' (OODT). It produces a variety of data products using inputs from satellites such as MODIS, VIIRS and Landsat. Processing is carried out in parallel across a high-powered computing cluster. Algorithms such as 'Snow Covered Area and Grain-size' (SCAG) and 'Dust Radiative Forcing in Snow' (DRFS) are applied to satellite inputs to produce output images that are used by many scientists and institutions around the world. This poster will describe the Snow Data System, its outputs and their uses and applications, along with recent advancements to the system and plans for the future. Advancements for 2015 include automated daily processing of historic MODIS data for SCAG (MODSCAG) and DRFS (MODDRFS), automation of SCAG processing for VIIRS satellite inputs (VIIRSCAG) and an updated version of SCAG for Landsat Thematic Mapper inputs (TMSCAG) that takes advantage of Graphics Processing Units (GPUs) for faster processing speeds. The pipeline has been upgraded to use the latest version of OODT and its workflows have been streamlined to enable computer operators to process data on demand. Additional products have been added, such as rolling 8-day composites of MODSCAG data, a new version of the MODSCAG 'annual minimum ice and snow extent' (MODICE) product, and recoded MODSCAG data for the 'Satellite Snow Product Intercomparison and Evaluation Experiment' (SnowPEx) project.

  10. Survey monitoring of environmental radioactivity in Seoul area

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jai Ki; Kim, Hong Suk [Seoul Monitoring Station, Seoul (Korea, Republic of)

    2003-12-15

    The following results were obtained through the environmental radiation monitoring in 2003 at the Seoul monitoring station : gamma exposure rate : 10.8 - 13.3 {mu}R/h, mean gross beta activity in airborne dust : 4.31 {+-} 2.01 mBq/m{sup 3} (after 48 hours), mean gross beta activity in fallout dust : 11.5 {+-} 4.3 MBq/km{sup 2} - 30 days, meab gross beta activity in precipitation : 230 {+-} 246 mBq/L, mean gross beta activity in tap water : 69.3 {+-} 15.7 mBq/L. All the monitored variables remained in the corresponding normal ranges, which implies that there were no abnormal situations of environmental radiation in the Seoul district in 2003. Radioactivity contents in foodstuffs consumed in Seoul and northern part of Gyunggi district were analyzed for use in assessment of population doses via dietary intakes. Samples include 16 foodstuffs(peanut, walnut, pine seeds, chessnut, acorn, sesame, perilla seeds, oak mushroom, meadow mushroom, velvet foot, oyster mushroom, instant coffee, green tea leaves, ginseng tea, rice and Chinese cabbage). Two indicator samples, pine needle and mugwort, were also included. Relatively higher concentrations of {sup l37}Cs, a man-made nuclide, were found in coffee and oak mushroom(0.733 and 0.339 Bq/kg{center_dot}fresh, respectively). A few hundreds Bq/kg{center_dot}fresh of {sup 40}K were found in most of the foodstuffs with higher concentrations in coffee and green tea leaves (1300 and 579 Bq/kg{center_dot}fresh, respectively)

  11. Citizen radiation monitoring program for the TMI area

    Energy Technology Data Exchange (ETDEWEB)

    Baratta, A.J.; Gricar, B.G.; Jester, W.A.

    1981-07-01

    The purpose of the program was to develop a system for citizens to independently measure radiation levels in and around their communities. This report describes the process by which the Program was developed and operated. It also presents the methods used to select and train the citizens in making and interpreting the measurements. The test procedures used to select the equipment for the program are described as are the results of the testing. Finally, the actual monitoring results are discussed along with the citizens' reactions to the program.

  12. A new test apparatus for studying the failure process during loading experiments of snow

    Science.gov (United States)

    Capelli, Achille; Reiweger, Ingrid; Schweizer, Jürg

    2016-04-01

    We developed a new apparatus for fully load-controlled snow failure experiments. The deformation and applied load are measured with two displacement and two force sensors, respectively. The loading experiments are recorded with a high speed camera, and the local strain is derived by a particle image velocimetry (PIV) algorithm. To monitor the progressive failure process within the snow sample, our apparatus includes six piezoelectric transducers that record the acoustic emissions in the ultrasonic range. The six sensors allow localizing the sources of the acoustic emissions, i.e. where the failure process starts and how it develops with time towards catastrophic failure. The quadratic snow samples have a side length of 50 cm and a height of 10 to 20 cm. With an area of 0.25 m2 they are clearly larger than samples used in previous experiments. The size of the samples, which is comparable to the critical size for the onset of crack propagation leading to dry-snow slab avalanche release, allows studying the failure nucleation process and its relation to the spatial distribution of the recorded acoustic emissions. Furthermore the occurrence of features in the acoustic emissions typical for imminent failure of the samples can be analysed. We present preliminary results of the acoustic emissions recorded during tests with homogeneous as well as layered snow samples, including a weak layer, for varying loading rates and loading angles.

  13. Finland Validation of the New Blended Snow Product

    Science.gov (United States)

    Kim, E. J.; Casey, K. A.; Hallikainen, M. T.; Foster, J. L.; Hall, D. K.; Riggs, G. A.

    2008-01-01

    As part of an ongoing effort to validate satellite remote sensing snow products for the recentlydeveloped U.S. Air Force Weather Agency (AFWA) - NASA blended snow product, Satellite and in-situ data for snow extent and snow water equivalent (SWE) are evaluated in Finland for the 2006-2007 snow season Finnish Meteorological Institute (FMI) daily weather station data and Finnish Environment Institute (SYKE) bi-monthly snow course data are used as ground truth. Initial comparison results display positive agreement between the AFWA NASA Snow Algorithm (ANSA) snow extent and SWE maps and in situ data, with discrepancies in accordance with known AMSR-E and MODIS snow mapping limitations. Future ANSA product improvement plans include additional validation and inclusion of fractional snow cover in the ANSA data product. Furthermore, the AMSR-E 19 GHz (horizontal channel) with the difference between ascending and descending satellite passes (Diurnal Amplitude Variations, DAV) will be used to detect the onset of melt, and QuikSCAT scatterometer data (14 GHz) will be used to map areas of actively melting snow.

  14. 东北地区校园雪地足球运动的普及和开展%Popularization and Development of Campus Snow Football in Northeast Area

    Institute of Scientific and Technical Information of China (English)

    李大同

    2015-01-01

    Snow football is a unique geographical winter sports event in northeast area, developing campus snow football in northeast colleges and universities is conducive to the cultivation of students' life-long sports consciousness and habits. By the study on snow football, this paper summed up that campus snow football has the significance and value of enhancing the physical fitness of students, cultivating life-long sports consciousness and habits of students, releasing psychological pressure of students, getting happiness and successful experience, developing good morality of students, cultivating the spirit of collectivism, enriching the cultural life of the campus, promoting the development of public fitness programs and competitive sports. And put forward that the functional departments of the government should pay more attention to the development of snow football, schools should give a strong support on venues and teachers, society, family, business should increase the investment of sponsorship to snow football, students should have good exercise habits, preventing the occurrence of sports injuries and related measures and strategies, providing a theorical reference for the healthy development of campus snow football in northeast area.%雪地足球运动是东北地区独具地域特色的冬季体育锻炼项目,东北地区高校大力开发校园雪地足球运动,有利于学生终身体育意识和习惯的养成.通过对雪地足球项目的研究,总结出校园开展雪地足球运动具有增强学生体质,培养学生终身体育意识和习惯;释放学生心理压力,获得快乐、成功体验;养成学生良好道德风尚,培养集体主义精神;丰富校园文化生活,推动全民健身和竞技体育的发展等意义和价值.并提出政府职能部门要高度重视雪地足球运动的开展;学校应从场地和师资等方面给与大力支持;社会、家庭、商家应加大对雪地足球运动的赞助力度;学生应养

  15. Intercomparison of retrieval algorithms for the specific surface area of snow from near-infrared satellite data in mountainous terrain, and comparison with the output of a semi-distributed snowpack model

    Directory of Open Access Journals (Sweden)

    A. Mary

    2013-04-01

    Full Text Available This study compares different methods to retrieve the specific surface area (SSA of snow from satellite radiance measurements in mountainous terrain. It aims at addressing the effect on the retrieval of topographic corrections of reflectance, namely slope and aspect of terrain, multiple reflections on neighbouring slopes and accounting (or not for the anisotropy of snow reflectance. Using MODerate resolution Imaging Spectrometer (MODIS data for six different clear sky scenes spanning a wide range of snow conditions during the winter season 2008–2009 over a domain of 46 × 50 km in the French Alps, we compared SSA retrievals with and without topographic correction, with a spherical or non-spherical snow reflectance model and, in spherical case, with or without anisotropy corrections. The retrieved SSA values were compared to field measurements and to the results of the detailed snowpack model Crocus, fed by driving data from the SAFRAN meteorological analysis. It was found that the difference in terms of surface SSA between retrieved values and SAFRAN-Crocus output was minimal when the topographic correction was taken into account, when using a retrieval method assuming disconnected spherical snow grains. In this case, the root mean square deviation was 9.4 m2 kg−1 and the mean difference was 0.1 m2 kg−1, based on 3170 pairs of observation and simulated values. The added-value of the anisotropy correction was not significant in our case, which may be explained by the presence of mixed pixels and surface roughness. MODIS retrieved data show SSA variations with elevation and aspect which are physically consistent and in good agreement with SAFRAN-Crocus outputs. The variability of the MODIS retrieved SSA within the topographic classes of the model was found to be relatively small (3.9 m2 kg−1. This indicates that semi-distributed snowpack simulations in mountainous terrain with a sufficiently large number of classes provides a

  16. Monitoring Land Subsidence over Mining Areas with Sentinel-1 Differential SAR Interferometry

    Science.gov (United States)

    Mirek, Katarzna

    2016-08-01

    This paper presents possibilities for monitoring man- made surface deformation on example of two areas (Fig. 1): Upper Silesian Coal Basin and Lubelskie Coal Basin (Poland). Synthetic Aperture Radar (SAR) images acquired by Sentinel-1A satellite are utilized in subsidence studies. Satellite radar interferometry technique (InSAR) was used to detecting and monitoring subsidence. There are clearly visible on obtained interferograms subsidence troughs as a distinctive concentric fringes. This study is a part of initiated the SSUMMO project (Surface Subsidence Multidisciplinary Monitoring). The project will provide multidisciplinary monitoring of mining areas and it will prepare the methodology and research software for continuous observation of the impact of exploitation on surface.

  17. Quantification of uncertainties in snow accumulation, snowmelt, and snow disappearance dates

    Science.gov (United States)

    Raleigh, Mark S.

    Seasonal mountain snowpack holds hydrologic and ecologic significance worldwide. However, observation networks in complex terrain are typically sparse and provide minimal information about prevailing conditions. Snow patterns and processes in this data sparse environment can be characterized with numerical models and satellite-based remote sensing, and thus it is essential to understand their reliability. This research quantifies model and remote sensing uncertainties in snow accumulation, snowmelt, and snow disappearance as revealed through comparisons with unique ground-based measurements. The relationship between snow accumulation uncertainty and model configuration is assessed through a controlled experiment at 154 snow pillow sites in the western United States. To simulate snow water equivalent (SWE), the National Weather Service SNOW-17 model is tested as (1) a traditional "forward" model based primarily on precipitation, (2) a reconstruction model based on total snowmelt before the snow disappearance date, and (3) a combination of (1) and (2). For peak SWE estimation, the reliability of the parent models was indistinguishable, while the combined model was most reliable. A sensitivity analysis demonstrated that the parent models had opposite sensitivities to temperature that tended to cancel in the combined model. Uncertainty in model forcing and parameters significantly controlled model accuracy. Uncertainty in remotely sensed snow cover and snow disappearance in forested areas is enhanced by canopy obstruction but has been ill-quantified due to the lack of sub-canopy observations. To better quantify this uncertainty, dense networks of near-surface temperature sensors were installed at four study areas (≤ 1 km2) with varying forest cover in the Sierra Nevada, California. Snow presence at each sensor was detected during periods when temperature was damped, which resulted from snow cover insulation. This methodology was verified using time-lapse analysis and

  18. Estimation of snow cover distribution in Beas basin, Indian Himalaya using satellite data and ground measurements

    Indian Academy of Sciences (India)

    H S Negi; A V Kulkarni; B S Semwal

    2009-10-01

    In the present paper,a methodology has been developed for the mapping of snow cover in Beas basin,Indian Himalaya using AWiFS (IRS-P6)satellite data.The complexities in the mapping of snow cover in the study area are snow under vegetation,contaminated snow and patchy snow. To overcome these problems,field measurements using spectroradiometer were carried out and reflectance/snow indices trend were studied.By evaluation and validation of different topographic correction models,it was observed that,the normalized difference snow index (NDSI)values remain constant with the variations in slope and aspect and thus NDSI can take care of topography effects.Different snow cover mapping methods using snow indices are compared to find the suitable mapping technique.The proposed methodology for snow cover mapping uses the NDSI (estimated using planetary re flectance),NIR band reflectance and forest/vegetation cover information.The satellite estimated snow or non-snow pixel information using proposed methodology was validated with the snow cover information collected at three observatory locations and it was found that the algorithm classify all the sample points correctly,once that pixel is cloud free.The snow cover distribution was estimated using one year (2004 –05)cloud free satellite data and good correlation was observed between increase/decrease areal extent of seasonal snow cover and ground observed fresh snowfall and standing snow data.

  19. Loropetalum chinense 'Snow Panda'

    Science.gov (United States)

    A new Loropetalum chinense, ‘Snow Panda’, developed at the U.S. National Arboretum is described. ‘Snow Panda’ (NA75507, PI660659) originated from seeds collected near Yan Chi He, Hubei, China in 1994 by the North America-China Plant Exploration Consortium (NACPEC). Several seedlings from this trip w...

  20. Comparison of Snow Albedo from MISR, MODIS and AVHRR with ground-based observations on the Greenland Ice Sheet

    Science.gov (United States)

    Stroeve, J. C.; Nolin, A.

    2001-12-01

    The surface albedo is an important climate parameter, as it controls the amount of solar radiation absorbed by the surface. For snow-covered surfaces, the albedo may be greater than 0.80, thereby allowing very little solar energy to be absorbed by the snowpack. As the snow ages and/or begins to melt, the albedo is reduced considerably, leading to enhanced absorption of solar radiation. Consequently, snow melt, comprises an unstable, positive feedback component of the climate system, which amplifies small pertubations to that system. Satellite remote sensing offers a means for measuring and monitoring the surface albedo of snow-covered areas. This study evaluates snow surface albedo retrievals from MISR, MODIS and AVHRR through comparisons with surface albedo measurements obtained in Greenland. Data from automatic weather stations, in addition to other in situ data collected during 2000 provide the ground-based measurements with which to compare coincident clear-sky satellite albedo retrievals. In general, agreements are good with the satellite data. However, satellite calibration and difficulties accurately representing the angular signature of the snow surface make it difficult to reach an albedo accuracy within 0.05.

  1. Nevada Test Site 2005 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    Energy Technology Data Exchange (ETDEWEB)

    David B. Hudson, Cathy A. Wills

    2006-08-01

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site. These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2005 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports (U.S. Department of Energy, 2005; Grossman, 2005; Bechtel Nevada, 2006). Direct radiation monitoring data indicate that exposure levels around the RWMSs are at or below background levels. Air monitoring data at the Area 3 and Area 5 RWMSs indicate that tritium concentrations are slightly above background levels. There is no detectable man-made radioactivity by gamma spectroscopy, and concentrations of americium and plutonium are only slightly above detection limits at the Area 3 RWMS. Measurements at the Area 5 RWMS show that radon flux from waste covers is no higher than natural radon flux from undisturbed soil in Area 5. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by facility operations. Precipitation during 2005 totaled 219.1 millimeters (mm) (8.63 inches [in.]) at the Area 3 RWMS and 201.4 mm (7.93 in.) at the Area 5 RWMS. Soil-gas tritium monitoring continues to show slow subsurface migration consistent with previous results. Moisture from precipitation at Area 5 has percolated to the bottom of the bare-soil weighing lysimeter, but this same moisture has been removed from the vegetated weighing lysimeter by evapotranspiration. Vadose zone data from the operational waste pit covers show that precipitation from the fall of 2004 and the spring of 2005 infiltrated past the deepest sensors at 188 centimeters (6.2 feet) and remains in the pit cover

  2. NORMALIZED DIFFERENCE SNOW INDEX SIMULATION FOR SNOW-COVER MAPPING IN FOREST BY GEOSAIL MODEL

    Institute of Scientific and Technical Information of China (English)

    CAO Yun-gang; LIU Chuang

    2006-01-01

    The snow-cover mapping in forest area is always one of the difficult points for optical satellite remote sensing. To investigate reflectance variability and to improve the mapping of snow in forest area, GeoSail model was used to simulate the reflectance of a snow-covered forest. Using this model, the effects of varying canopy density, solar illumination and view geometry on the performance of the MODIS (Moderate-resolution Imaging Spectroradiometer)snow-cover mapping algorithm were investigated. The relationship between NDSI (Normalized Difference Snow Index), NDVI (Normalized Difference Vegetation Index) and snow fraction was discussed in detail. Results indicated that the weak performance would be achieved if fixed criteria were used for different regions especially in the complicated land cover components. Finally, some suggestions to MODIS SNOWMAP algorithm were put forward to improve snow mapping precision in forest area based on the simulation, for example, new criteria should be used in coniferous forest, that is, NDSI greater than 0.3 and NDVI greater than zero. Otherwise, a threshold on view zenith angle may be used in the criteria such as 45°.

  3. Estimation of Rheological Properties of Snow Subjected to Creep

    Directory of Open Access Journals (Sweden)

    Chaman Chandel

    2007-07-01

    Full Text Available Creep is one of the most important phenomenons to determine the settlement of snow. Snow,in natural conditions, exists at temperature quite close to its melting point and deforms very fast.The settlement of snow is the result of creep phenomenon under the action of overburdenpressure as well as due to metamorphic processes going on within the snowpack. In thiscommunication, creep behaviour of snow is simulated with four-parameter viscoelastic fluidmodel. This viscoelastic character is basically controlled or monitored by various rheologicalconstants. Estimation of all the rheological constants in the four-parameter viscoelastic fluidmodel appropriate for the creep properties of snow is done. Total 91 uniaxial unconfined constantstress experiments on sieved snow were conducted at controlled temperature conditions. Theeffect of density and varying temperature on these constants is found to be remarkable.

  4. Monitoring of Landslide Areas with the Use of Contemporary Methods of Measuring and Mapping

    Science.gov (United States)

    Skrzypczak, Izabela; Kogut, Janusz; Kokoszka, Wanda; Zientek, Dawid

    2017-03-01

    In recent years, there is an increase of landslide risk observed, which is associated with intensive anthropogenic activities and extreme weather conditions. Appropriate monitoring and proper development of measurements resulting as maps of areas at risk of landslides enables us to estimate the risk in the social and economic aspect. Landslide monitoring in the framework of SOPO project is performed by several methods of measurements: monitoring of surface (GNSS measurement and laser scanning), monitoring in-deepth (inclinometer measurements) and monitoring of the hydrological changes and precipitation (measuring changes in water-table and rainfall).

  5. Monitoring of Landslide Areas with the Use of Contemporary Methods of Measuring and Mapping

    Directory of Open Access Journals (Sweden)

    Skrzypczak Izabela

    2017-03-01

    Full Text Available In recent years, there is an increase of landslide risk observed, which is associated with intensive anthropogenic activities and extreme weather conditions. Appropriate monitoring and proper development of measurements resulting as maps of areas at risk of landslides enables us to estimate the risk in the social and economic aspect. Landslide monitoring in the framework of SOPO project is performed by several methods of measurements: monitoring of surface (GNSS measurement and laser scanning, monitoring in-deepth (inclinometer measurements and monitoring of the hydrological changes and precipitation (measuring changes in water-table and rainfall.

  6. SNOW CLEARING SERVICE WINTER 2001-2002

    CERN Multimedia

    ST-HM Group; Tel. 72202

    2001-01-01

    As usual at this time of the year, the snowing clearing service, which comes under the control of the Transport Group (ST-HM), is preparing for the start of snow-clearing operations (timetable, stand-by service, personnel responsible for driving vehicles and machines, preparation of useful and necessary equipment, work instructions, etc.) in collaboration with the Cleaning Service (ST-TFM) and the Fire Brigade (TIS-FB). The main difficulty for the snow-clearing service is the car parks, which cannot be properly cleared because of the presence of CERN and private vehicles parked there overnight in different parts of the parking areas. The ST-HM Transport Group would therefore like to invite you to park vehicles together in order to facilitate the access of the snow ploughs, thus allowing the car parks to be cleared more efficiently before the personnel arrives for work in the mornings.

  7. Decadal trend of precipitation and temperature patterns and impacts on snow-related variables in a semiarid region, Sierra Nevada, Spain.

    Science.gov (United States)

    José Pérez-Palazón, María; Pimentel, Rafael; Herrero, Javier; José Polo, María

    2016-04-01

    In the current context of global change, mountainous areas constitute singular locations in which these changes can be traced. Early detection of significant shifts of snow state variables in semiarid regions can help assess climate variability impacts and future snow dynamics in northern latitudes. The Sierra Nevada mountain range, in southern Spain, is a representative example of snow areas in Mediterranean-climate regions and both monitoring and modelling efforts have been performed to assess this variability and its significant scales. This work presents a decadal trend analysis throughout the 50-yr period 1960-2010 performed on some snow-related variables over Sierra Nevada, in Spain, which is included in the global climate change observatories network around the world. The study area comprises 4583 km2 distributed throughout the five head basins influenced by these mountains, with altitude values ranging from 140 to 3479 m.a.s.l., just 40 km from the Mediterranean coastline. Meteorological variables obtained from 44 weather stations from the National Meteorological Agency were studied and further used as input to the distributed hydrological model WiMMed (Polo et al., 2010), operational at the study area, to obtain selected snow variables. Decadal trends were obtained, together with their statistical significance, over the following variables, averaged over the whole study area: (1) annual precipitation; (2) annual snowfall; annual (3) mean, (4) maximum and (5) minimum daily temperature; annual (6) mean and (7) maximum daily fraction of snow covered areas; (8) annual number of days with snow cover; (9) mean and (10) maximum daily snow water equivalent; (11) annual number of extreme precipitation events; and (12) mean intensity of the annual extreme precipitation events. These variables were also studied over each of the five regions associated to each basin in the range. Globally decreasing decadal trends were obtained for all the meteorological variables

  8. 中国干旱区积雪面积产品去云处理方法验证与评估%Validation and Assessment of Cloud Obscuration Reduction of Snow Cover Products in Arid Areas in China

    Institute of Scientific and Technical Information of China (English)

    王增艳; 车涛

    2012-01-01

    Cloud coverage in daily snow cover products is a main obstacle in using Moderate Resolution Imaging Spectroradiometer(MODIS).In this study,the multi-temporal and multi-sensor combination approaches are applied to reduce cloud obscuration with Aqua Advanced Microwave Scanning Radiometer for NASA'S Earth Observing System(AMSR-E) snow depth products introduced as the auxiliary data to develop 6 new kinds of snow cover products.Different snow cover duration days(SCD) maps are developed from these combined products.The results are as follows:(1) MODIS and AMSR-E 4-day threshold-combined snow cover product performed well in algorithm efficiency,cloud-reducing effect and capability in maintaining relatively high spatiotemporal resolutions;(2) Under all weather conditions,the overall,snow and land accuracies of the resulted cloud-free products were 96%,80% and 99%,and they were significantly higher than 64%,32% and 70% of the original MODIS Terra and Aqua combination product,respectively;(3) The SCD map generated from this product could not only maintain a high spatial resolution of the original MODIS product,but also could precisely reflect the spatial distribution of the snow cover status in the study area.%针对MODIS每日积雪产品中云覆盖现象严重这一问题,以中国干旱区作为研究对象,结合AMSR-E被动微波雪深数据,采用多时相、多传感器数据融合的方法进行去云处理,获取MODIS每日,4 d,8 d和MODIS与AM-SR-E融合后的每日,4 d与8 d共6种新的积雪产品,并分别提取其积雪持续日数(SCD)。对比结果显示,MODIS与AMSR-E多传感器的阈值法4日融合产品在融合算法效率、云去除效果和融合后保持较高分类精度方面均有较好表现,其融合后的无云产品在全天气条件下具有96%的整体分类精度、80%的雪分类精度和99%的陆地分类精度,大大高于研究区原MODIS Terra-Aqua每日融合积雪产品全天候条件下64%,32%

  9. Digging of 'Snow White' Begins

    Science.gov (United States)

    2008-01-01

    NASA's Phoenix Mars Lander began excavating a new trench, dubbed 'Snow White,' in a patch of Martian soil located near the center of a polygonal surface feature, nicknamed 'Cheshire Cat.' The trench is about 2 centimeters (.8 inches) deep and 30 centimeters (about 12 inches) long. The 'dump pile' is located at the top of the trench, the side farthest away from the lander, and has been dubbed 'Croquet Ground.' The digging site has been named 'Wonderland.' At this early stage of digging, the Phoenix team did not expect to find any of the white material seen in the first trench, now called 'Dodo-Goldilocks.' That trench showed white material at a depth of about 5 centimeters (2 inches). More digging of Snow White is planned for coming sols, or Martian days. The dark portion of this image is the shadow of the lander's solar panel; the bright areas within this region are not in shadow. Snow White was dug on Sol 22 (June 17, 2008) with Phoenix's Robotic Arm. This picture was acquired on the same day by the lander's Surface Stereo Imager. This image has been enhanced to brighten shaded areas. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  10. TNX area groundwater monitoring report. 1996 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    During 1996, samples from selected wells of well cluster P 26 and the TBG, TIR, TNX, TRW, XSB, and YSB well series at the TNX Area of the Savannah River Plant were analyzed for selected heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Sixteen parameters exceeded the final Primary Drinking Water Standards (PDWS). Trichloroethylene exceeded the final PDWS most frequently. Antimony, arsenic beryllium, carbon tetrachloride, chloroform, chromium, copper, dichloromethane, gross alpha, lead, mercury, nitrate, nitrate-nitrite, tetrachloroethylene, or trichloroethylene were evaluated in one or more wells during the year. Groundwater flow directions and rates in the Unconfined Aquifer were similar from quarter to quarter during the year.

  11. Portable system for periodical verification of area monitors for neutrons; Sistema portatil para verificacao periodica de monitores de area para neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Luciane de R.; Leite, Sandro Passos; Lopes, Ricardo Tadeu, E-mail: rluciane@ird.gov.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), RJ (Brazil). Programa de Energia Nuclear; Patrao, Karla C. de Souza; Fonseca, Evaldo S. da; Pereira, Walsan W., E-mail: karla@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. Nacional de Metrologia das Radiacoes Ionizantes (LNMRI). Lab. de Neutrons

    2009-07-01

    The Neutrons Laboratory develops a project viewing the construction of a portable test system for verification of functioning conditions of neutron area monitors. This device will allow to the users the verification of the calibration maintenance of his instruments at the use installations, avoiding the use of an inadequate equipment related to his answer to the neutron beam response

  12. Seasonal controls on snow distribution and aerial ablation at the snow-patch and landscape scales, McMurdo Dry Valleys, Antarctica

    Directory of Open Access Journals (Sweden)

    J. W. Eveland

    2013-06-01

    Full Text Available Accumulated snow in the McMurdo Dry Valleys, while limited, has great ecological significance to subnivian soil environments. Though sublimation dominates the ablation process in this region, measurable increases in soil moisture and insulation from temperature extremes provide more favorable conditions with respect to subnivian soil communities. While precipitation is not substantial, significant amounts of snow can accumulate, via wind transport, in topographic lees along the valley bottoms, forming thousands of discontinuous snow patches. These patches have the potential to act as significant sources of local meltwater, controlling biogeochemical cycling and the landscape distribution of microbial communities. Therefore, determining the spatial and temporal dynamics of snow at multiple scales is imperative to understanding the broader ecological role of snow in this region. High-resolution satellite imagery acquired during the 2009–2010 and 2010–2011 austral summers was used to quantify the distribution of snow across Taylor and Wright valleys. Extracted snow-covered area from the imagery was used as the basis for assessing inter-annual variability and seasonal controls on accumulation and ablation of snow at multiple scales. In addition to landscape analyses, fifteen 1 km2 plots (3 in each of 5 study regions were selected to assess the prevalence of snow cover at finer spatial scales, referred to herein as the snow-patch scale. Results confirm that snow patches tend to form in the same locations each year with some minor deviations observed. At the snow-patch scale, neighboring patches often exhibit considerable differences in aerial ablation rates, and particular snow patches do not reflect trends for snow-covered area observed at the landscape scale. These differences are presumably related to microtopographic influences acting on individual snow patches, such as wind sheltering and differences in snow depth due to the underlying

  13. Deriving Snow-Cover Depletion Curves for Different Spatial Scales from Remote Sensing and Snow Telemetry Data

    Science.gov (United States)

    Fassnacht, Steven R.; Sexstone, Graham A.; Kashipazha, Amir H.; Lopez-Moreno, Juan Ignacio; Jasinski, Michael F.; Kampf, Stephanie K.; Von Thaden, Benjamin C.

    2015-01-01

    During the melting of a snowpack, snow water equivalent (SWE) can be correlated to snow-covered area (SCA) once snow-free areas appear, which is when SCA begins to decrease below 100%. This amount of SWE is called the threshold SWE. Daily SWE data from snow telemetry stations were related to SCA derived from moderate-resolution imaging spectro radiometer images to produce snow-cover depletion curves. The snow depletion curves were created for an 80,000 sq km domain across southern Wyoming and northern Colorado encompassing 54 snow telemetry stations. Eight yearly snow depletion curves were compared, and it is shown that the slope of each is a function of the amount of snow received. Snow-cover depletion curves were also derived for all the individual stations, for which the threshold SWE could be estimated from peak SWE and the topography around each station. A stations peak SWE was much more important than the main topographic variables that included location, elevation, slope, and modelled clear sky solar radiation. The threshold SWE mostly illustrated inter-annual consistency.

  14. Lemming winter habitat choice: a snow-fencing experiment.

    Science.gov (United States)

    Reid, Donald G; Bilodeau, Frédéric; Krebs, Charles J; Gauthier, Gilles; Kenney, Alice J; Gilbert, B Scott; Leung, Maria C-Y; Duchesne, David; Hofer, Elizabeth

    2012-04-01

    The insulative value of early and deep winter snow is thought to enhance winter reproduction and survival by arctic lemmings (Lemmus and Dicrostonyx spp). This leads to the general hypothesis that landscapes with persistently low lemming population densities, or low amplitude population fluctuations, have a low proportion of the land base with deep snow. We experimentally tested a component of this hypothesis, that snow depth influences habitat choice, at three Canadian Arctic sites: Bylot Island, Nunavut; Herschel Island, Yukon; Komakuk Beach, Yukon. We used snow fencing to enhance snow depth on 9-ha tundra habitats, and measured the intensity of winter use of these and control areas by counting rodent winter nests in spring. At all three sites, the density of winter nests increased in treated areas compared to control areas after the treatment, and remained higher on treated areas during the treatment. The treatment was relaxed at one site, and winter nest density returned to pre-treatment levels. The rodents' proportional use of treated areas compared to adjacent control areas increased and remained higher during the treatment. At two of three sites, lemmings and voles showed significant attraction to the areas of deepest snow accumulation closest to the fences. The strength of the treatment effect appeared to depend on how quickly the ground level temperature regime became stable in autumn, coincident with snow depths near the hiemal threshold. Our results provide strong support for the hypothesis that snow depth is a primary determinant of winter habitat choice by tundra lemmings and voles.

  15. Dust radiative forcing in snow of the Upper Colorado River Basin: 1. A 6 year record of energy balance, radiation, and dust concentrations

    Science.gov (United States)

    Painter, Thomas H.; Skiles, S. Mckenzie; Deems, Jeffrey S.; Bryant, Ann C.; Landry, Christopher C.

    2012-07-01

    Dust in snow accelerates snowmelt through its direct reduction of snow albedo and its further indirect reduction of albedo by accelerating the growth of snow grains. Since the westward expansion of the United States that began in the mid-19th century, the mountain snow cover of the Colorado River Basin has been subject to five-fold greater dust loading, largely from the Colorado Plateau and Great Basin. Radiative forcing of snowmelt by dust is not captured by conventional micrometeorological measurements, and must be monitored by a more comprehensive suite of radiation instruments. Here we present a 6 year record of energy balance and detailed radiation measurements in the Senator Beck Basin Study Area, San Juan Mountains, Colorado, USA. Data include broadband irradiance, filtered irradiance, broadband reflected flux, filtered reflected flux, broadband and visible albedo, longwave irradiance, wind speed, relative humidity, and air temperatures. The gradient of the snow surface is monitored weekly and used to correct albedo measurements for geometric effects. The snow is sampled weekly for dust concentrations in plots immediately adjacent to each tower over the melt season. Broadband albedo in the last weeks of snow cover ranged from 0.33 to 0.55 across the 6 years and two sites. Total end of year dust concentration in the top 3 cm of the snow column ranged from 0.23 mg g-1 to 4.16 mg g-1. These measurements enable monitoring and modeling of dust and climate-driven snowmelt forcings in the Upper Colorado River Basin.

  16. Uncertainty in alpine snow mass balance simulations due to snow model parameterisation and windflow representation

    Science.gov (United States)

    Musselman, K. N.; Pomeroy, J. W.; Essery, R.; Leroux, N.

    2013-12-01

    Despite advances in alpine snow modelling there remain two fundamental areas of divergent scientific thought in estimating alpine snow mass balances: i) blowing snow sublimation losses, and ii) wind flow representation. Sublimation calculations have poorly understood humidity feedbacks that vary considerably and mathematical representations of alpine windflow vary in complexity - these differences introduce uncertainty. To better estimate and restrain this uncertainty, a variety of physically based, spatially distributed snowmelt models that consider the physics of wind redistribution and sublimation of blowing snow were evaluated for their ability to simulate seasonal snow distribution and melt patterns in a windy alpine environment in the Canadian Rockies. The primary difference in the snow models was their calculation of blowing snow sublimation losses which ranged from large to small estimates. To examine the uncertainty introduced by windflow calculations on the snow model simulations, each model was forced with output from windflow models of varying computational complexity and physical realism from a terrain-based empirical interpolation of station observations to a simple turbulence model to a computational fluid dynamics model that solves for the Navier-Stokes equations. The high-resolution snow simulations were run over a 1 km2 spatial extent centred on a ridgetop meteorological station within the Marmot Creek Research basin, Alberta, Canada. The three windflow simulations all produced reasonable results compared to wind speeds measured on two opposing slopes (bias better than ×0.3 m s-1; RMSE errors were greatest when forced with output from the empirical wind model and smallest using output from either of the two turbulence models. Simulations with higher blowing snow sublimation rates tended to better match measured SWE at multiple scales, confirming that alpine blowing snow sublimation is an important component of the snow mass balance in this region

  17. Assessment groundwater monitoring plan for single shell tank waste management area B-BX-BY

    Energy Technology Data Exchange (ETDEWEB)

    Caggiano, J.A.

    1996-09-27

    Single Shell Tank Waste Management Area B-BX-BY has been placed into groundwater quality assessment monitoring under interim-status regulations. This document presents background and an assessment groundwater monitoring plan to evaluate any impacts of risks/spills from these Single Shell Tanks in WMA B-BX-BY on groundwater quality.

  18. Monitoring of traffic noise in an urban area using a wireless sensor network

    NARCIS (Netherlands)

    Wessels, P.W.; Basten, T.G.H.; Eerden, F.J.M. van der; Graafland, F.

    2014-01-01

    Developments in systems for monitoring environmental noise have made it possible to monitor the acoustic situation within large urban areas. The developments in hardware size and costs, combined with the developments in wireless communication allow to deploy networks with many acoustic sensors witho

  19. Assessment of Northern Hemisphere Snow Water Equivalent Datasets in ESA SnowPEx project

    Science.gov (United States)

    Luojus, Kari; Pulliainen, Jouni; Cohen, Juval; Ikonen, Jaakko; Derksen, Chris; Mudryk, Lawrence; Nagler, Thomas; Bojkov, Bojan

    2016-04-01

    Reliable information on snow cover across the Northern Hemisphere and Arctic and sub-Arctic regions is needed for climate monitoring, for understanding the Arctic climate system, and for the evaluation of the role of snow cover and its feedback in climate models. In addition to being of significant interest for climatological investigations, reliable information on snow cover is of high value for the purpose of hydrological forecasting and numerical weather prediction. Terrestrial snow covers up to 50 million km² of the Northern Hemisphere in winter and is characterized by high spatial and temporal variability. Therefore satellite observations provide the best means for timely and complete observations of the global snow cover. There are a number of independent SWE products available that describe the snow conditions on multi-decadal and global scales. Some products are derived using satellite-based information while others rely on meteorological observations and modelling. What is common to practically all the existing hemispheric SWE products, is that their retrieval performance on hemispherical and multi-decadal scales are not accurately known. The purpose of the ESA funded SnowPEx project is to obtain a quantitative understanding of the uncertainty in satellite- as well as model-based SWE products through an internationally coordinated and consistent evaluation exercise. The currently available Northern Hemisphere wide satellite-based SWE datasets which were assessed include 1) the GlobSnow SWE, 2) the NASA Standard SWE, 3) NASA prototype and 4) NSIDC-SSM/I SWE products. The model-based datasets include: 5) the Global Land Data Assimilation System Version 2 (GLDAS-2) product 6) the European Centre for Medium-Range Forecasts Interim Land Reanalysis (ERA-I-Land) which uses a simple snow scheme 7) the Modern Era Retrospective Analysis for Research and Applications (MERRA) which uses an intermediate complexity snow scheme; and 8) SWE from the Crocus snow scheme, a

  20. Morphometric and meteorological controls of snow avalanche distribution and activity at hillslopes in steep mountain valleys in western Norway

    Science.gov (United States)

    Laute, Katja; Beylich, Achim A.

    2013-04-01

    Snow avalanches are common phenomena in Norway due to the interactions between the prevalent climatic factors and local topography. Research on snow avalanches provides insights into possible effects of predicted climate change on avalanche activity and connected sediment transport in mountain areas. This study focuses on (i) controlling factors of avalanche distribution and activity, and (ii) their relative importance regarding mass transfers in two steep, parabolic-shaped and glacier-connected tributary valleys (Erdalen and Bødalen) in western Norway. Mapping of distribution, extension and run-out distances of avalanches is combined with spatial data analysis of morphometric controls. Based on correlation of climate data with monitored avalanche events the timing and frequency of avalanches is explored and debris mass transfer on hillslopes caused by avalanches is estimated. The denudative effect of snow avalanches occurs in two steps: firstly throughout erosion directly on the surface of the rockwall and secondly due to their transport ability which causes significant remobilization and transport of available debris further downslope. The spatial distribution of snow avalanches depends on the valley orientation, slope aspect and rockwall morphometry. Especially distinct laterally convex-shaped leeside upper rockwall areas allow a high accumulation rate of snow during winter which is then released as avalanches during spring. The timing and frequency of avalanches in both valleys depend mainly on snowfall intensity, periods with strong winds combined with a stable wind direction or sudden air temperature changes. Snow avalanche activity leads in some valley areas to significant hillslope-channel coupling because debris is transported far enough by avalanches to reach channels. Snow avalanches represent one of the dominant denudational processes and have a high relative importance regarding mass transfer within the sedimentary budgets of the entire valleys.

  1. Snow water content estimation from measured snow temperature

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The vertical temperature profiles of snow and sea ice have been measured in the Arctic during the 2nd Chinese National Arctic Research Expedition in 2003 (CHINARE2003). The high-resolution temperature profile in snow is solved by one-dimensional heat transfer equation. The effective heat diffusivity, internal heat sources are identified. The internal heat source refers to the penetrated solar radiation which usually warms the lower part of the snow layer in summer. By temperature gradient analysis, the zero level can be clarified quantitatively as the boundary of the dry and wet snow. According to the in situ time series of vertical temperature profile, the time series of water content in snow is obtained based on an evaluation method of snow water content associated with the snow and ice physical parameters. The relationship of snow water content and snow temperature and temporal-spatial distribution of snow water content are presented

  2. Nevada Test Site 2009 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Radioactive Waste

    2010-06-23

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS). These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2009 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports. Direct radiation monitoring data indicate exposure levels at the RWMSs are within the range of background levels measured at the NTS. Air monitoring data at the Area 3 and Area 5 RWMSs indicate that tritium concentrations are slightly above background levels. All gamma spectroscopy results for air particulates collected at the Area 3 and Area 5 RWMS were below the minimum detectable concentrations, and concentrations of americium and plutonium are only slightly above detection limits. The measured levels of radionuclides in air particulates and moisture are below derived concentration guides for these radionuclides. Radon flux from waste covers is well below regulatory limits. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by facility operations. The 87.6 millimeters (mm) (3.45 inches [in.]) of precipitation at the Area 3 RWMS during 2009 is 43 percent below the average of 152.4 mm (6.00 in.), and the 62.7 mm (2.47 in.) of precipitation at the Area 5 RWMS during 2009 is 49 percent below the average of 122.5 mm (4.82 in.). Soil-gas tritium monitoring at borehole GCD-05 continues to show slow subsurface migration consistent with previous results. Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents downward percolation of precipitation more effectively than evaporation

  3. Growth of black brant and lesser snow goose goslings in northern Alaska

    Science.gov (United States)

    Hupp, Jerry W.; Ward, David H.; Hogrefe, Kyle R.; Sedinger, James S.; Martin, Philip D.; Stickney, Alice A; Obritschkewitsch, Tim

    2017-01-01

    Gosling body mass can affect first year survival, recruitment, adult body size, and future fecundity of geese, and can serve as an indicator of forage availability and quality on brood-rearing areas. From 2012–2014 we measured body mass of 76 black brant (Branta bernicla nigricans) and 268 lesser snow goose (Chen caerulescens caerulescens) goslings of known age on the Colville River Delta (CRD) of northern Alaska to determine if there was evidence of density-dependent declines in gosling growth following recent population increases of those species and sympatric greater white-fronted geese (Anser albifrons frontalis). We contrasted contemporary body mass of brant goslings and forage biomass in brood-rearing habitats that were shared by all species, with measures obtained on, and near the CRD in the 1990s, prior to the establishment of snow goose nesting colonies in the area. Body mass of brant goslings recaptured between 25 and 32 days of age had not changed over the past 2 decades, despite an influx of snow geese, and increases in populations of brant and white-fronted geese. At 30 days of age, body mass of brant goslings on the CRD was 100–400 g heavier than for brant goslings of the same age on the Yukon-Kuskokwim Delta (YKD), Alaska. Contemporary biomass of grazed Carex subspathacea on CRD brood-rearing areas was comparable to the 1990s and was 2–4 times greater than for the same plant community on the YKD. Historical data on growth of snow goose goslings were not available for the CRD. However, average body mass of 34-day-old snow goose goslings was >230 g heavier than for conspecifics of the same age in the Hudson Bay region. We conclude that the establishment of nesting snow geese on the CRD has not negatively affected brant gosling growth, and that recent population increases of all species have likely not been constrained by forage availability on brood-rearing areas. Barring demographic changes elsewhere in their annual cycles, we predict that

  4. Research on the seasonal snow of the Arctic Slope. Annual progress report, June 1, 1990--March 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Benson, C.S.

    1991-12-31

    This project deals with the seasonal snow on Alaska`s Arctic Slope. Although it is concentrated on snow of the R{sub 4}D project area, it is important to relate the snow cover of this area with the rest of the Arctic Slope. The goals include determination of the amount of precipitation which comes as snow, the wind transport of this snow and its depositional pattern as influenced by drifting, the physical properties of the snow, the physical processes which operate in it, the proportions of it which go into evaporation, infiltration and runoff, and the biological role of the snow cover.

  5. Research on the seasonal snow of the Arctic Slope. Annual progress report, July 15, 1984--January 15, 1986

    Energy Technology Data Exchange (ETDEWEB)

    Benson, C.S.

    1986-12-31

    This project deals with the seasonal snow on Alaska`s Arctic Slope. It is concentrated on snow of the R{sub 4}D project area. However, an important aspect of this study is to relate the snow cover of this area with the rest of the Arctic Slope. The goals include determination of the amount of precipitation which comes as snow, the wind transport of this snow and its depositional pattern as influenced by drifting, the physical properties of the snow, the physical processes which operate in it, the proportions of it which go into evaporation, infiltration and runoff, and the biological role of the snow cover.

  6. Research on the seasonal snow of the Arctic Slope. Annual progress report, January 1, 1989--December 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Benson, C.S.

    1989-12-31

    This project deals with the seasonal snow on Alaska`s Arctic Slope. Although it is concentrated on snow of the R40 project area, it is important to relate the snow cover of this area with the rest of the Arctic Slope. The goals include determination Of the amount of precipitation which comes as snow, the wind transport of this snow and its depositional pattern as influenced by drifting, the physical properties of the snow, the physical processes which operate in it, the proportions of it which go into evaporation, infiltration and runoff, and the biological role of the snow cover.

  7. Snow cover data derived from MODIS for water balance applications

    Directory of Open Access Journals (Sweden)

    A. Gafurov

    2009-02-01

    Full Text Available Snow cover information is of central importance for the estimation of water storage in cold mountainous regions. It is difficult to assess distributed snow cover information in a catchment in order to estimate possible water resources. It is especially a challenge to obtain snow cover information for high mountainous areas. Usually, snow depth is measured at meteorological stations, and it is relatively difficult to extrapolate this spatially or temporally since it highly depends on available energy and topography. The snow coverage of a catchment gives detailed information about the catchment's potential source for water. Many regions lack meteorological stations that measure snow, and usually no stations are available at high elevations.

    Satellite information is a very valuable source for obtaining several environmental parameters. One of the advantages is that the data is mostly provided in a spatially distributed format. This study uses satellite data to estimate snow coverage on high mountainous areas. Moderate-resolution Imaging Spectroradiometer (MODIS snow cover data is used in the Kokcha Catchment located in the north-eastern part of Afghanistan. The main disadvantage of MODIS data that restricts its direct use in environmental applications is cloud coverage. This is why this study is focused on eliminating cloud covered cells and estimating cell information under cloud covered cells using six logical, spatial and temporal approaches. The results give total cloud removal and mapping of snow cover for the study areas.

  8. Snow cover data derived from MODIS for water balance applications

    Science.gov (United States)

    Gafurov, A.; Bárdossy, A.

    2009-02-01

    Snow cover information is of central importance for the estimation of water storage in cold mountainous regions. It is difficult to assess distributed snow cover information in a catchment in order to estimate possible water resources. It is especially a challenge to obtain snow cover information for high mountainous areas. Usually, snow depth is measured at meteorological stations, and it is relatively difficult to extrapolate this spatially or temporally since it highly depends on available energy and topography. The snow coverage of a catchment gives detailed information about the catchment's potential source for water. Many regions lack meteorological stations that measure snow, and usually no stations are available at high elevations. Satellite information is a very valuable source for obtaining several environmental parameters. One of the advantages is that the data is mostly provided in a spatially distributed format. This study uses satellite data to estimate snow coverage on high mountainous areas. Moderate-resolution Imaging Spectroradiometer (MODIS) snow cover data is used in the Kokcha Catchment located in the north-eastern part of Afghanistan. The main disadvantage of MODIS data that restricts its direct use in environmental applications is cloud coverage. This is why this study is focused on eliminating cloud covered cells and estimating cell information under cloud covered cells using six logical, spatial and temporal approaches. The results give total cloud removal and mapping of snow cover for the study areas.

  9. Nevada Test Site 2007 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2008-06-01

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site. These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2007 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports (National Security Technologies, LLC, 2007a; 2008; Warren and Grossman, 2008). Direct radiation monitoring data indicate exposure levels at the RWMSs are at background levels. Air monitoring data at the Area 3 and Area 5 RWMSs indicate that tritium concentrations are slightly above background levels. A single gamma spectroscopy measurement for cesium was slightly above the minimum detectable concentration, and concentrations of americium and plutonium are only slightly above detection limits at the Area 3 RWMS. The measured levels of radionuclides in air particulates are below derived concentration guides for these radionuclides. Radon flux from waste covers is well below regulatory limits. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by facility operations. The 136.8 millimeters (mm) (5.39 inches [in.]) of precipitation at the Area 3 RWMS during 2007 is 13 percent below the average of 158.1 mm (6.22 in.), and the 123.8 mm (4.87 in.) of precipitation at the Area 5 RWMS during 2007 is 6 percent below the average of 130.7 mm (5.15 in.). Soil-gas tritium monitoring at borehole GCD-05U continues to show slow subsurface migration consistent with previous results. Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents downward movement percolation of precipitation more effectively

  10. Nevada National Security Site 2011 Waste Management Monitoring Report, Area 3 and Area 5 Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2012-07-31

    Environmental monitoring data are collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada National Security Site (NNSS). These data are associated with radiation exposure, air, groundwater, meteorology, and vadose zone. This report summarizes the 2011 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports. Direct radiation monitoring data indicate exposure levels at the RWMSs are within the range of background levels measured at the NNSS. Slightly elevated exposure levels outside the Area 3 RWMS are attributed to nearby historical aboveground nuclear weapons tests. Air monitoring data show tritium concentrations in water vapor and americium and plutonium concentrations in air particles are only slightly above detection limits and background levels. The measured levels of radionuclides in air particulates and moisture are below derived concentration guides for these radionuclides. During the last 2 weeks of March 2011, gamma spectroscopy results for air particles showed measurable activities of iodine-131 (131I), cesium-134 (134Cs), and cesium-137 (137Cs). These results are attributed to the release of fission products from the damaged Fukushima Daiichi power plant in Japan. The remaining gamma spectroscopy results for air particulates collected at the Area 3 and Area 5 RWMS were below minimum detectable concentrations. Groundwater monitoring data indicate the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by RWMS operations. Results of groundwater analysis from wells around the Area 5 RWMS were all below established investigation levels. The 86.3 millimeters (mm) (3.40 inches [in.]) of precipitation at the Area 3 RWMS during 2011 is 44% below the average of 154.1 mm (6.07 in.), and the 64.8 mm

  11. Facilitating the exploitation of ERTS imagery using snow enhancement techniques

    Science.gov (United States)

    Wobber, F. J.; Martin, K. (Principal Investigator); Amato, R. V.; Leshendok, T.

    1973-01-01

    The author has identified the following significant results. Comparative analysis of snow-free and snow-covered imagery of the New England Test Area has resulted in a larger number of lineaments mapped from snow-covered imagery in three out of four sets of comparative imagery. Analysts unfamiliar with the New England Test Area were utilized; the quality of imagery was independently judged to be uniform. In all image sets, a greater total length of lineaments was mapped with the snow-covered imagery. The value of this technique for fracture mapping in areas with thick soil cover is suggested. A number of potentially useful environmental applications of snow enhancement related to such areas as mining, land use, and hydrology have been identified.

  12. Environmental Monitoring Plan for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This document presents the Environmental Monitoring Plan (EMP) for Waste Area Grouping (WAG) 6 at the Oak Ridge National Laboratory (ORNL). Based on the results of the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) and on subsequent discussions with regulators, a decision was made to defer implementing source control remedial measures at the WAG. The alternative selected to address the risks associated with WAG 6 involves maintenance of site access controls prevent public exposure to on-site contaminants, continued monitoring of contaminant releases determine if source control measures are required, and development of technologies that could support the final remediation of WAG 6. Although active source control measures are not being implemented at WAG 6, environmental monitoring is necessary to ensure that any potential changes in contaminant release from the WAG are identified early enough to take appropriate action. Two types of environmental monitoring will be conducted: baseline monitoring and annual routine monitoring. The baseline monitoring will be conducted to establish the baseline contaminant release conditions at the WAG, confirm the site-related chemicals of concern (COCs), and gather data to confirm the site hydrologic model. The baseline monitoring is expected to begin in 1994 and last for 12--18 months. The annual routine monitoring will consist of continued sampling and analyses of COCs to determine off-WAG contaminant flux and risk, identify mills in releases, and confirm the primary contributors to risk. The annual routine monitoring will continue for {approximately} 4 years after completion of the baseline monitoring.

  13. Combining ENVISAT ASAR and MODIS data to enable improved snow cover maps

    OpenAIRE

    Mjøen, Håvard Uv

    2008-01-01

    Information about snow covered area is important for several purposes, and this information can be found by detecting reflection of optical waves using optical sensors or by using active radars such as SAR. This thesis is explaining how information from the measurements are used to make snow maps. Optival sensors cannot detect snow when the area is covered by clouds, and this is a problem in the melting season in Norway. Microwaves can penetrate clouds, and detect wet snow. I...

  14. Snow in a very steep rock face: accumulation and redistribution during and after a snowfall event

    Science.gov (United States)

    Sommer, Christian; Lehning, Michael; Mott, Rebecca

    2015-12-01

    Terrestrial laser scanning was used to measure snow thickness changes (perpendicular to the surface) in a rock face. The aim was to investigate the accumulation and redistribution of snow in extremely steep terrain (>60°). The north-east face of the Chlein Schiahorn in the region of Davos in eastern Switzerland was scanned before and several times after a snowfall event. A summer scan without snow was acquired to calculate the total snow thickness. An improved postprocessing procedure is introduced. The data quality could be increased by using snow thickness instead of snow depth (measured vertically) and by consistently applying Multi Station Adjustment to improve the registration. More snow was deposited in the flatter, smoother areas of the rock face. The spatial variability of the snow thickness change was high. The spatial patterns of the total snow thickness were similar to those of the snow thickness change. The correlation coefficient between them was 0.86. The fresh snow was partly redistributed from extremely steep to flatter terrain, presumably mostly through avalanching. The redistribution started during the snowfall and ended several days later. Snow was able to accumulate permanently at every slope angle. The amount of snow in extremely steep terrain was limited but not negligible. Areas steeper than 60° received 15% of the snowfall and contained 10% of the total amount of snow.

  15. Snow in a very steep rock face: accumulation and redistribution during and after a snowfall event

    Directory of Open Access Journals (Sweden)

    Christian Gabriel Sommer

    2015-12-01

    Full Text Available Terrestrial laser scanning was used to measure snow thickness changes (perpendicular to the surface in a rock face. The aim was to investigate the accumulation and redistribution of snow in extremely steep terrain (>60°. The north-east face of the Chlein Schiahorn in the region of Davos in eastern Switzerland was scanned before and several times after a snowfall event. A summer scan without snow was acquired to calculate the total snow thickness. An improved postprocessing procedure is introduced. The data quality could be increased by using snow thickness instead of snow depth (measured vertically and by consistently applying Multi Station Adjustment to improve the registration.More snow was deposited in the flatter, smoother areas of the rock face. The spatial variability of the snow thickness change was high. The spatial patterns of the total snow thickness were similar to those of the snow thickness change. The correlation coefficient between them was 0.86. The fresh snow was partly redistributed from extremely steep to flatter terrain, presumably mostly through avalanching. The redistribution started during the snowfall and ended several days later. Snow was able to accumulate permanently at every slope angle. The amount of snow in extremely steep terrain was limited but not negligible. Areas steeper than 60° received 15% of the snowfall and contained 10% of the total amount of snow.

  16. Nevada National Security Site 2010 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2011-06-01

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada National Security Site (NNSS). These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2010 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports (National Security Technologies, LLC, 2010a; 2010b; 2011). Direct radiation monitoring data indicate exposure levels at the RWMSs are within the range of background levels measured at the NNSS. Air monitoring data at the Area 3 and Area 5 RWMSs indicate that tritium concentrations are slightly above background levels. All gamma spectroscopy results for air particulates collected at the Area 3 and Area 5 RWMS were below the minimum detectable concentrations, and concentrations of americium and plutonium are only slightly above detection limits. The measured levels of radionuclides in air particulates and moisture are below derived concentration guides for these radionuclides. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by facility operations. The 246.9 millimeters (mm) (9.72 inches [in.]) of precipitation at the Area 3 RWMS during 2010 is 56 percent above the average of 158.7 mm (6.25 in.), and the 190.4 mm (7.50 in.) of precipitation at the Area 5 RWMS during 2010 is 50 percent above the average of 126.7 mm (4.99 in.). Soil-gas tritium monitoring at borehole GCD-05 continues to show slow subsurface migration consistent with previous results. Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents downward percolation of precipitation more effectively than

  17. John Snow and research.

    Science.gov (United States)

    Shephard, D A

    1989-03-01

    John Snow's leadership in epidemiology as well as anaesthesia resulted from his research as much as his clinical practice. In anaesthesia, Snow's research concerned the regulation of concentrations of volatile agents and the development of efficient inhalers; the uptake and elimination of volatile agents; stages of anaesthesia; carbon dioxide metabolism and rebreathing; and metabolism in anaesthesia and the theory of anaesthesia. In epidemiology, Snow investigated the relationship of water supplies to mortality in cholera during the London epidemic in 1854, which led him to formulate an original and valid theory of the transmission of cholera. Snow's research, which has received less attention than anecdotes concerning his career (e.g., his anaesthetizing Queen Victoria and urging removal of the handle of a contaminated water pump), was always directed towards solving specific problems. The significance of his research is evident in its leading not only to improvements in health care but also to the evolution of anaesthesia and epidemiology as professional disciplines.

  18. 105KE Basin Area Radiation Monitor System (ARMS) Acceptance Test Procedure

    Energy Technology Data Exchange (ETDEWEB)

    KINKEL, C.C.

    1999-12-14

    This procedure is intended for the Area Radiation Monitoring System, ARMS, that is replacing the existing Programmable Input-Output Processing System, PIOPS, radiation monitoring system in the 105KE basin. The new system will be referred to as the 105KE ARMS, 105KE Area Radiation Monitoring System. This ATP will ensure calibration integrity of the 105KE radiation detector loops. Also, this ATP will test and document the display, printing, alarm output, alarm acknowledgement, upscale check, and security functions. This ATP test is to be performed after completion of the 105KE ARMS installation. The alarm outputs of the 105KE ARMS will be connected to the basin detector alarms, basin annunciator system, and security Alarm Monitoring System, AMS, located in the 200 area Central Alarm Station (CAS).

  19. 105KE Basin Area Radiation Monitor System (ARMS) Acceptance Test Procedure

    CERN Document Server

    Kinkel, C C

    1999-01-01

    This procedure is intended for the Area Radiation Monitoring System, ARMS, that is replacing the existing Programmable Input-Output Processing System, PIOPS, radiation monitoring system in the 105KE basin. The new system will be referred to as the 105KE ARMS, 105KE Area Radiation Monitoring System. This ATP will ensure calibration integrity of the 105KE radiation detector loops. Also, this ATP will test and document the display, printing, alarm output, alarm acknowledgement, upscale check, and security functions. This ATP test is to be performed after completion of the 105KE ARMS installation. The alarm outputs of the 105KE ARMS will be connected to the basin detector alarms, basin annunciator system, and security Alarm Monitoring System, AMS, located in the 200 area Central Alarm Station (CAS).

  20. Gamma-ray and neutron area monitoring system of linear IFMIF prototype accelerator building

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroki, E-mail: takahashi.hiroki@jaea.go.jp [Japan Atomic Energy Agency (JAEA), Rokkasho, Aomori (Japan); Kojima, Toshiyuki; Narita, Takahiro; Tsutsumi, Kazuyoshi; Maebara, Sunao [Japan Atomic Energy Agency (JAEA), Rokkasho, Aomori (Japan); Sakaki, Hironao [JAEA, Kizugawa, Kyoto (Japan); Nishiyama, Koichi [IFMIF/EVEDA Project Team, Rokkasho, Aomori (Japan)

    2013-10-15

    Highlights: • Area monitoring system and control system are needed for LIPAc radiation management. • To secure the radiation safety, these systems are linked with two kinds of data path. • Hardwired data paths are adopted to realize the fast transfer of interlock signals. • Dual LAN and shared memory are adopted to the reliable transfer of monitoring data. • Data transfers without unnecessary load are designed and configured for these systems. -- Abstract: The linear IFMIF prototype accelerator (LIPAc) produces deuteron beam with 1 MW power. Since huge number of neutrons occur from such a high power beam, therefore, it is important for the radiation management to design a high reliability area monitoring system for gamma-rays and neutrons. To obtain the valuable operation data of the high-power deuteron beam at LIPAc, it is important to link and record the beam operation data and the area monitoring data. We realize the reliable data transfer to provide the area monitoring data to the accelerator control system which needs a high reliability using the shared-memory data link method. This paper describes the area monitoring system in the LIPAc building and the data-link between this system and the LIPAc control system.

  1. Dry Snow Metamorphism

    Science.gov (United States)

    2012-09-19

    S. Chen and I. Baker, 12th International Conference on the Physics and Chemistry of Ice, Sapporo , Japan, September 5-10th, 2010. “Advanced...Microstructural Characterization of Snow and Ice”, I. Baker, 12th International Conference on the Physics and Chemistry of Ice, Sapporo , Japan, September 5...on the Physics and Chemistry of Ice, Sapporo , Japan, September 5-10th, 2010. 10 “Advanced Microstructural Characterization of Snow and Ice”, I

  2. Nevada National Security Site 2013 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, D. B.

    2014-08-19

    Environmental monitoring data are collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) within the Nevada National Security Site (NNSS). These data are associated with radiation exposure, air, groundwater, meteorology, and vadose zone. This report summarizes the 2013 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports (National Security Technologies, LLC, 2013; 2014a; 2014b). Direct radiation monitoring data indicate exposure levels at the RWMSs are within the range of background levels measured at the NNSS. Slightly elevated exposure levels outside the Area 3 RWMS are attributed to nearby historical aboveground nuclear weapons tests. Air monitoring data show tritium concentrations in water vapor and americium and plutonium concentrations in air particles are close to detection limits and background levels. The measured levels of radionuclides in air particulates and moisture are below Derived Concentration Standards for these radionuclides. Groundwater monitoring data indicate the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by RWMS operations. Results of groundwater analysis from wells around the Area 5 RWMS were all below established investigation levels. Leachate samples collected from the leachate collection system at the mixed low-level waste cell were below established contaminant regulatory limits. The 105.8 millimeters (mm) (4.17 inches [in.]) of precipitation at the Area 3 RWMS during 2013 is 30% below the average of 150.3 mm (5.92 in.), and the 117.5 mm (4.63 in.) of precipitation at the Area 5 RWMS during 2013 is 5% below the average of 123.6 mm (4.86 in.). Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents

  3. Nevada National Security Site 2012 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, David B.

    2013-09-10

    Environmental monitoring data are collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada National Security Site (NNSS). These data are associated with radiation exposure, air, groundwater, meteorology, and vadose zone. This report summarizes the 2012 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports (National Security Technologies, LLC, 2012; 2013a; 2013b). Direct radiation monitoring data indicate exposure levels at the RWMSs are within the range of background levels measured at the NNSS. Slightly elevated exposure levels outside the Area 3 RWMS are attributed to nearby historical aboveground nuclear weapons tests. Air monitoring data show tritium concentrations in water vapor and americium and plutonium concentrations in air particles are only slightly above detection limits and background levels. The measured levels of radionuclides in air particulates and moisture are below Derived Concentration Standards for these radionuclides. Groundwater monitoring data indicate the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by RWMS operations. Results of groundwater analysis from wells around the Area 5 RWMS were all below established investigation levels. Leachate samples collected from the leachate collection system at the mixed low-level waste cell were below established contaminant regulatory limits. The 133.9 millimeters (mm) (5.27 inches [in.]) of precipitation at the Area 3 RWMS during 2012 is 12% below the average of 153.0 mm (6.02 in.), and the 137.6 mm (5.42 in.) of precipitation at the Area 5 RWMS during 2012 is 11% below the average of 122.4 mm (4.82 in.). Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents

  4. Linking snowfall and snow accumulation to generate spatial maps of SWE and snow depth

    Science.gov (United States)

    Broxton, Patrick D.; Dawson, Nicholas; Zeng, Xubin

    2016-06-01

    It is critically important but challenging to estimate the amount of snow on the ground over large areas due to its strong spatial variability. Point snow data are used to generate or improve (i.e., blend with) gridded estimates of snow water equivalent (SWE) by using various forms of interpolation; however, the interpolation methodologies often overlook the physical mechanisms for the snow being there in the first place. Using data from the Snow Telemetry and Cooperative Observer networks in the western United States, we show that four methods for the spatial interpolation of peak of winter snow water equivalent (SWE) and snow depth based on distance and elevation can result in large errors. These errors are reduced substantially by our new method, i.e., the spatial interpolation of these quantities normalized by accumulated snowfall from the current or previous water years. Our method results in significant improvement in SWE estimates over interpolation techniques that do not consider snowfall, regardless of the number of stations used for the interpolation. Furthermore, it can be used along with gridded precipitation and temperature data to produce daily maps of SWE over the western United States that are comparable to existing estimates (which are based on the assimilation of much more data). Our results also show that not honoring the constraint between SWE and snowfall when blending in situ data with gridded data can lead to the development and propagation of unrealistic errors.

  5. A method to determine the input-output balances for nitrogen applied to the Lheebroekerzand integrated monitoring area (The Netherlands)

    NARCIS (Netherlands)

    Smit, H.M.C.

    1997-01-01

    The International Cooperative Programme on Integrated Monitoring on Air Pollution Effects (ICP/IM) monitors chemical and biological indicators at the level of catchment areas. The Dutch monitoring area is located at Lheebroekerzand (Province of Drenthe). Since this area is not a catchment, an altern

  6. Web design and development for centralize area radiation monitoring system in Malaysian Nuclear Agency

    Science.gov (United States)

    Ibrahim, Maslina Mohd; Yussup, Nolida; Haris, Mohd Fauzi; Soh @ Shaari, Syirrazie Che; Azman, Azraf; Razalim, Faizal Azrin B. Abdul; Yapp, Raymond; Hasim, Harzawardi; Aslan, Mohd Dzul Aiman

    2017-01-01

    One of the applications for radiation detector is area monitoring which is crucial for safety especially at a place where radiation source is involved. An environmental radiation monitoring system is a professional system that combines flexibility and ease of use for data collection and monitoring. Nowadays, with the growth of technology, devices and equipment can be connected to the network and Internet to enable online data acquisition. This technology enables data from the area monitoring devices to be transmitted to any place and location directly and faster. In Nuclear Malaysia, area radiation monitor devices are located at several selective locations such as laboratories and radiation facility. This system utilizes an Ethernet as a communication media for data acquisition of the area radiation levels from radiation detectors and stores the data at a server for recording and analysis. This paper discusses on the design and development of website that enable all user in Nuclear Malaysia to access and monitor the radiation level for each radiation detectors at real time online. The web design also included a query feature for history data from various locations online. The communication between the server's software and web server is discussed in detail in this paper.

  7. A Blended Global Snow Product using Visible, Passive Microwave and Scatterometer Satellite Data

    Science.gov (United States)

    Foster, James L.; Hall, Dorothy K.; Eylander, John B.; Riggs, George A.; Nghiem, Son V.; Tedesco, Marco; Kim, Edward; Montesano, Paul M.; Kelly, Richard E. J.; Casey, Kimberly A.; hide

    2009-01-01

    A joint U.S. Air Force/NASA blended, global snow product that utilizes Earth Observation System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Microwave Scanning Radiometer for EOS (AMSR-E) and QuikSCAT (Quick Scatterometer) (QSCAT) data has been developed. Existing snow products derived from these sensors have been blended into a single, global, daily, user-friendly product by employing a newly-developed Air Force Weather Agency (AFWA)/National Aeronautics and Space Administration (NASA) Snow Algorithm (ANSA). This initial blended-snow product uses minimal modeling to expeditiously yield improved snow products, which include snow cover extent, fractional snow cover, snow water equivalent (SWE), onset of snowmelt, and identification of actively melting snow cover. The blended snow products are currently 25-km resolution. These products are validated with data from the lower Great Lakes region of the U.S., from Colorado during the Cold Lands Processes Experiment (CLPX), and from Finland. The AMSR-E product is especially useful in detecting snow through clouds; however, passive microwave data miss snow in those regions where the snow cover is thin, along the margins of the continental snowline, and on the lee side of the Rocky Mountains, for instance. In these regions, the MODIS product can map shallow snow cover under cloud-free conditions. The confidence for mapping snow cover extent is greater with the MODIS product than with the microwave product when cloud-free MODIS observations are available. Therefore, the MODIS product is used as the default for detecting snow cover. The passive microwave product is used as the default only in those areas where MODIS data are not applicable due to the presence of clouds and darkness. The AMSR-E snow product is used in association with the difference between ascending and descending satellite passes or Diurnal Amplitude Variations (DAV) to detect the onset of melt, and a QSCAT product will be used to

  8. H-Area, K-Area, and Par Pond Sewage Sludge Application sites groundwater monitoring report. First quarter 1995

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.A.

    1995-06-01

    During first quarter 1995, samples from monitoring wells at the K-Area Sewage Sludge Application Site (KSS wells) and Par Pond Sewage Sludge Application Site (PSS wells) were analyzed for constituents required by SCDHEC Construction Permit 13,173. H-Area Sewage Sludge Application Site (HSS wells) samples were analyzed for constituents required by SCDHEC Construction Permit 12,076. All samples are also analyzed as requested for other constituents as part of the Savannah River Site (SRS) Groundwater Monitoring Program. Annual analyses for other constituents, primarily metals, also are required by the permits. The only constituent that exceeded the SCDHEC final Primary Drinking Water Standard in any well was lead which was found in wells HSS 3D and PSS 3D. Aluminum and iron were above Flag 2 criteria in one or more wells in the three sites during first quarter 1995.

  9. Extraction of snow cover information in sparse vegetation area based on spectral measurement and SRF by using MODIS data%基于实测光谱和SRF的稀疏植被区MODIS积雪信息提取

    Institute of Scientific and Technical Information of China (English)

    刘艳; 李杨; 张璞

    2013-01-01

    以新疆准噶尔盆地古尔班通古特沙漠为研究区,以中等分辨率成像光谱仪(MODIS 1B)数据为例,辅以MODIS光谱响应函数(SRF)和全波段光谱仪(ASD)准同步采集的雪面反射光谱,运用线性光谱混合模型(LSMM)实现了稀疏植被区积雪遥感信息提取.结果表明:①利用SRF对雪面反射光谱进行端元光谱到像元光谱的转换,生成对应于MODIS1-7波段的离散光谱,将其与用最小噪声分离(MNF)变换和像元纯度指数(PPI)法获得的MODIS影像端元光谱进行对比,发现MODIS1波段光谱值远大于转换光谱值,MODIS2-7波段光谱值与转换光谱值接近;②MODIS2-7波段影像端元光谱值适用于LSMM估算稀疏植被区积雪分量,积雪分量估算值与归一化差分积雪指数(NDSI)拟合结果显示,剔除MODIS1波段后估算的积雪分量与NDSI的相关性显著提高,表明所提取的积雪分量可以作为估算积雪的典型指数.%In this paper, the linear spectral mixture model (LSMM) was used for the spectral unmixing analysis of the Moderate Resolution Imaging Spectrometer(MODIS)data of the study area in Gurbantunggut desert. Using the spectral response function (SRF) of MODIS1 -7 bands,the authors transformed the end -member spectrum quasi -synchronously collected by the full - band spectrometer ( ASD ) to the pixel spectra, thus generating the discrete spectrum of M0DIS1 - 7 bands. Compared with the MODIS end - member spectra obtained by minimum noise fraction ( MNF) transform and pixel purity index (PPI) ,the end - member spectral values of the first band of MODIS were much larger than the transformed spectrum values, but the spectral values of the MODIS2 - 7 bands were close to the transformed values. Therefore,selecting the image end - member spectral values of the MODIS2 -7 bands, the authors used LSMM to estimate the abundance of snow in the sparse vegetation area appropriately. Fitting the estimated snow component value to the normalized

  10. Area Monitoring Dosimeter Program for the Pacific Northwest National Laboratory: Results for CY 1998

    Energy Technology Data Exchange (ETDEWEB)

    SR Bivins; GA Stoetzel

    1999-06-17

    In January 1993, Pacific Northwest National Laboratory (PNNL) established an area monitoring dosimeter program in accordance with Article 514 of the Department of Energy (DOE) Radiological Control Manual (RCM). The purpose of the program was to minimize the number of areas requiring issuance of personnel dosimeters and to demonstrate that doses outside Radiological Buffer Areas are negligible. In accordance with 10 CFR Part 835.402 (a)(1)-(4) and Article 511.1 of the RCM, personnel dosimetry shall be provided to (1) radiological workers who are likely to receive at least 100 mrem annually and (2) declared pregnant workers, minors, and members of the public who are likely to receive at least 50 mrem annually. Program results for calendar years 1993-1997 confirmed that personnel dosimetry was not needed for individuals located in areas monitored by the program. A total of 97 area thermoluminescent dosimeters (TLDs) were placed in PNNL facilities during calendar year 1998. The TLDs were exchanged and analyzed quarterly. All routine area monitoring TLD results were less than 50 mrem annually after correcting for worker occupancy. The results support the conclusion that personnel dosimeters are not necessary for staff, declared pregnant workers, minors, or members of the public in these monitored areas.

  11. Area Monitoring Dosimeter Program for the Pacific Northwest National Laboratory: Results for CY 1999

    Energy Technology Data Exchange (ETDEWEB)

    Bivins, Steven R.; Stoetzel, Gregory A.

    2000-09-19

    In January 1993, PNNL established an area monitoring dosimeter program in accordance with Article 514 of the DOE Radiological Control Manual. This program was to minimize the number of areas requiring issuance of personnel dosimeters and to demonstrate that doses outside Radiological Buffer Areas are negligible. In accordance with 10 CFR Part 835.402 (a)(1)-(4) and Article 511.1 of the DOE Standard Radiological Control, personnel dosimetry shall be provided to 1) radiological workers who are likely to receive at least 100 mrem annually and 2) declared pregnant workers, minors, and members of the public who are likely to receive at least 50 mrem annually. Program results for calendar years 1993-1998 confirmed that personnel dosimetry was not needed for individuals located in areas monitored by the program. A total of 123 area thermoluminescent dosimeters (TLDs) were placed in PNNL facilities during calendar year 1999. The TLDs were exchanged and analyzed quarterly. All routine area monitoring TLD results were less than 50 mrem annually after correcting for worker occupancy. The results support the conclusion that personnel dosimeters are not necessary for staff, declared pregnant workers, minors, or members of the public in these monitored areas.

  12. Area monitoring dosimeter program for the Pacific Northwest National Laboratory: Results for CY 1996

    Energy Technology Data Exchange (ETDEWEB)

    Bivins, S R; Stoetzel, G A

    1997-06-01

    In January 1993, Pacific Northwest National Laboratory (PNNL) established an area monitoring dosimeter program in accordance with Article 514 of the Department of Energy (DOE) Radiological Control Manual (RCM). The purpose of the program was to minimize the number of areas requiring issuance of personnel dosimeters and to demonstrate that doses outside Radiological buffer Areas are negligible. In accordance with 10 CFR Part 835.402 (a) (1)-(3) and Article 511.1 of the RCM, personnel dosimetry shall be provided to (1) radiological workers who are likely to receive at least 100 mrem annually and (2) declared pregnant workers, minors, and members of the public who are likely to receive at least 50 mrem annually. Program results for calendar years 1993, 1994, and 1995 confirmed that personnel dosimetry was not needed for individuals located in areas monitored by the program. A total of 108 area TLDs were placed in PNNL facilities during CY 1996. The TLDs were exchanged and analyzed quarterly. All routine area monitoring TLD results were less than 50 mrem annually after correcting for worker occupancy. The results support the conclusion that personnel dosimeters are not necessary for staff, declared pregnant workers, minors, or members of the public in these monitored areas.

  13. Area monitoring dosimeter program for the Pacific Northwest National Laboratory: Results for CY 1997

    Energy Technology Data Exchange (ETDEWEB)

    Bivins, S.R.; Stoetzel, G.A.

    1998-07-01

    In January 1993, Pacific Northwest National Laboratory (PNNL) established an area monitoring dosimeter program in accordance with Article 514 of the US Department of Energy (DOE) Radiological Control Manual (RCM). The purpose of the program was to minimize the number of areas requiring issuance of personnel dosimeters and to demonstrate that doses outside Radiological Buffer Areas are negligible. In accordance with 10 CFR Part 835.402 (a) (1)--(3) and Article 511.1 of the RCM, personnel dosimetry shall be provided to (1) radiological workers who are likely to receive at least 100 mrem annually, and (2) declared pregnant workers, minors, and members of the public who are likely to receive at least 50 mrem annually. Program results for calendar years (CY) 1993--1996 confirmed that personnel dosimetry was not needed for individuals located in areas monitored by the program. A total of 93 area thermoluminescent dosimeters (TLDs) were placed in PNNL facilities during CY 1997. The TLDs were exchanged and analyzed quarterly. All routine area monitoring TLD results were less than 50 mrem annually after correcting for worker occupancy. The results support the conclusions that personnel dosimeters are not necessary for staff, declared pregnant workers, minors, or members of the public in these monitored areas.

  14. Satellite discrimination of snow/cloud surfaces

    Science.gov (United States)

    Crane, R. G.; Anderson, M. R.

    1984-01-01

    Differentiation between cloud cover and snow surfaces using remotely sensed data is complicated by the similarity of their radiative temperatures, and also by their similar reflectances at visible wavelengths. A method of cloud analysis over snow-covered regions is presented, using 1.51-1.63 micron data from an experimental sensor on board a U.S. Air Force Defense Meteorological Satellite Program platform. At these wavelengths, snow appears relatively 'black' while clouds are highly reflective. The spatial structure of the 1.51-1.63 micron reflectivity fields over a continuous snow surface are examined. Plots of mean reflectance against coefficients of variation for 4 x 4 pixel areas reveals a cluster of points have low reflectivity and low variability, corresponding to snow-covered (cloud free) areas, and a similar cluster with high reflectances corresponding to 100 per cent cloud cover. For the case of a single layered cloud, the radiances associated with partially filled fields of view are also inferred.

  15. The Snowcloud System: Architecture and Algorithms for Snow Hydrology Studies

    Science.gov (United States)

    Skalka, C.; Brown, I.; Frolik, J.

    2013-12-01

    Snowcloud is an embedded data collection system for snow hydrology field research campaigns conducted in harsh climates and remote areas. The system combines distributed wireless sensor network technology and computational techniques to provide data at lower cost and higher spatio-temporal resolution than ground-based systems using traditional methods. Snowcloud has seen multiple Winter deployments in settings ranging from high desert to arctic, resulting in over a dozen node-years of practical experience. The Snowcloud system architecture consists of multiple TinyOS mesh-networked sensor stations collecting environmental data above and, in some deployments, below the snowpack. Monitored data modalities include snow depth, ground and air temperature, PAR and leaf-area index (LAI), and soil moisture. To enable power cycling and control of multiple sensors a custom power and sensor conditioning board was developed. The electronics and structural systems for individual stations have been designed and tested (in the lab and in situ) for ease of assembly and robustness to harsh winter conditions. Battery systems and solar chargers enable seasonal operation even under low/no light arctic conditions. Station costs range between 500 and 1000 depending on the instrumentation suite. For remote field locations, a custom designed hand-held device and data retrieval protocol serves as the primary data collection method. We are also developing and testing a Gateway device that will report data in near-real-time (NRT) over a cellular connection. Data is made available to users via web interfaces that also provide basic data analysis and visualization tools. For applications to snow hydrology studies, the better spatiotemporal resolution of snowpack data provided by Snowcloud is beneficial in several aspects. It provides insight into snowpack evolution, and allows us to investigate differences across different spatial and temporal scales in deployment areas. It enables the

  16. The value of snow cover maps for hydrological model calibration in snow dominated catchments in Central Asia

    Science.gov (United States)

    Duethmann, Doris; Güntner, Andreas; Peters, Juliane; Vorogushyn, Sergiy

    2013-04-01

    This study aims at investigating the value of snow cover data in addition to discharge data for the calibration of a hydrological model in six headwater catchments of the Karadarya basin, Central Asia. If a hydrological model is to be used for the investigation of potential impacts of climate change, it is important that also internal variables are simulated correctly. Snow melt is of particular relevance, as it is probably the most important runoff generation process in these catchments. The study investigates whether there is a trade-off between good simulations with respect to discharge and with respect to snow cover area. Furthermore, we are interested in the information content of snow cover data, i.e. how many snow cover images would be sufficient for effective calibration of a hydrological model. As suitable precipitation data for the study area are only available up to 1990, MODIS snow cover data could not be used and we instead resorted to AVHRR data. Processing of the AVHRR snow cover data is time consuming, because georeferencing has to be performed manually. If only few images could already exclude parameter sets resulting in low model performance with respect to snow cover area, this would be a very valuable piece of information. In order to investigate this, a varying number of snow cover images is used for model calibration within a Monte-Carlo framework, and the effect on model performance with respect to snow cover area in the validation period is evaluated. The selected study period is 1986-1989, in which both AVHRR data and other input data are available. It is split into two parts with up to around 20 snow cover scenes for model calibration and about the same number for model validation. In most of the catchments we found only a small trade-off between good simulations with respect to discharge and with respect to snow cover area, but if the parameters were selected based on the discharge objective function only, this could also include

  17. Digging in 'Snow White' Trench

    Science.gov (United States)

    2008-01-01

    This image was acquired by NASA's Phoenix Mars Lander's Surface Stereo Imager on the 44th Martian day of the mission, or Sol 43 (July 7, 2008), after the May 25, 2008, landing, showing the current sample scraping area in the trench informally called 'Snow White.' The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is led by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  18. Seasonal controls on snow distribution and aerial ablation at the snow-patch and landscape scales, McMurdo Dry Valleys, Antarctica

    Directory of Open Access Journals (Sweden)

    J. W. Eveland

    2012-09-01

    Full Text Available Accumulated snow in the McMurdo Dry Valleys, while limited, has great ecological significance to subnivian soil environments. Though sublimation dominates the ablation process in this region, measurable increases in soil moisture and insulation from temperature extremes provide more favorable conditions with respect to subnivian soil communities. While precipitation is not substantial, significant amounts of snow can accumulate, via aeolian redistribution, in topographic lees along the valley bottoms, forming thousands of discontinuous snow patches. These patches have the potential to act as significant sources of local melt water, controlling biogeochemical cycling and the landscape distribution of microbial communities. Therefore, determining the spatial and temporal dynamics of snow at multiple scales is imperative to understanding the broader ecological role of snow in this region.

    High-resolution satellite imagery acquired during the 2009–2010 and 2010–2011 austral summers was used to quantify the distribution of snow across Taylor and Wright Valleys. Extracted snow-covered area from the imagery was used as the basis for assessing seasonal variability and seasonal controls on accumulation and ablation of snow at multiple scales. In addition, fifteen 1 km2 plots (3 in each of 5 study regions were selected to assess the prevalence of snow cover at finer spatial scales. Results confirm that snow patches tend to form in the same locations each year with some minor deviations observed. At the snow-patch scale, neighboring patches often exhibit considerable differences in aerial ablation rates, and particular snow patches do not reflect trends for snow-covered area observed at the landscape scale. These differences are presumably related to microtopographic influences over snow depth and exposure. This highlights the importance of both the landscape and snow-patch scales in assessing the effects of snow cover on

  19. Nevada National Security Site 2015 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    Energy Technology Data Exchange (ETDEWEB)

    Black, David [National Security Technologies, LLC. (NSTec), Mercury, NV (United States); Hudson, David [National Security Technologies, LLC. (NSTec), Mercury, NV (United States)

    2016-08-20

    Environmental monitoring data are collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) within the Nevada National Security Site (NNSS). These data include direct radiation exposure, as well as radiation from the air, groundwater, meteorology, and vadose zone. This report summarizes the 2015 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports developed by National Security Technologies, LLC. Direct radiation monitoring data indicate exposure levels at the RWMSs are within the range of background levels measured at the NNSS. Slightly elevated exposure levels outside the Area 3 RWMS are attributed to nearby historical aboveground nuclear weapons tests. Air monitoring data show that tritium concentrations in water vapor and americium and plutonium concentrations in air particles are below Derived Concentration Standards for these radionuclides. Groundwater monitoring data indicate the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by RWMS operations. Results of groundwater analysis from wells around the Area 5 RWMS were all below established investigation levels. Leachate samples collected from the leachate collection system at the mixed low-level waste cell were below established contaminant regulatory limits. During 2015, precipitation at the Area 3 RWMS was 0.9% above average, and precipitation at the Area 5 RWMS was 25% above average. Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents downward percolation of precipitation more effectively than evaporation as measured from the bare-soil weighing lysimeter. The 1.8 inches of precipitation in September reached the lowest sensors at 180 cm on the Cell 5S and 5N covers, however the

  20. Long-term Monitoring Plan for the Central Nevada Test Area

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Ahmed E

    2004-01-01

    This report discusses the long-term monitoring strategy developed for the Central Nevada Test Area (CNTA), where the Faultless underground nuclear test was conducted. It includes a thorough literature review of monitoring well network design. A multi-staged approach for development of the long-term monitoring well network for CNTA is proposed, incorporating a number of issues, including uncertainty of the subsurface environment, cost, selection of well locations, etc. The first stage is to use hydrogeologic expertise combined with model simulations and probability based approaches to select the first set of monitoring wells. The second stage will be based on an optimum design methodology that uses a suitable statistical approach, combined with an optimization approach, to augment the initial set of wells and develop the final long-term monitoring network.

  1. The use of a wireless sensor network to monitor the spectrum in urban areas

    Science.gov (United States)

    Malon, Krzysztof; Skokowski, Paweł; Łopatka, Jerzy

    2017-04-01

    Wireless sensor networks are a tool increasingly used to monitor various environmental parameters. They can also be used for monitoring the electromagnetic spectrum. Wireless sensors, due to their small size, typically have simplified radio receivers with reduced sensitivity and use small antennas. As a result, their effective performance area is similarly limited. This is especially important in urban areas where there are various kinds of adverse propagation phenomena related to area coverage. The aim of the article is to present the phenomena in the wireless sensor networks and propose criteria and methods to optimize their deployment to ensure maximizing the probability of detection of emissions, minimization of unmonitored areas and to provide the necessary hardware redundancy in the priority areas.

  2. A Supervised Approach to Delineate Built-Up Areas for Monitoring and Analysis of Settlements

    Directory of Open Access Journals (Sweden)

    Oliver Harig

    2016-08-01

    Full Text Available Monitoring urban growth and measuring urban sprawl is essential for improving urban planning and development. In this paper, we introduce a supervised approach for the delineation of urban areas using commonly available topographic data and commercial GIS software. The method uses a supervised parameter optimization approach along with buffer-based quality measuring method. The approach was developed, tested and evaluated in terms of possible usage in monitoring built-up areas in spatial science at a very fine-grained level. Results show that built-up area boundaries can be delineated automatically with higher quality compared to the settlement boundaries actually used. The approach has been applied to 166 settlement bodies in Germany. The study shows a very efficient way of extracting settlement boundaries from topographic data and maps and contributes to the quantification and monitoring of urban sprawl. Moreover, the findings from this study can potentially guide policy makers and urban planners from other countries.

  3. INNOVATIVE REMEDIATION AND MONITORING SYSTEM INSIDE AN AREA USED FOR PAPER SLUDGE RECOVERY

    Directory of Open Access Journals (Sweden)

    Valerio Marroni

    2010-12-01

    Full Text Available An innovative bioremediation technology and strategy were applied to a former-quarry area in Imola (BO – Italy concerned by an incorrect environmental restoration of paper sludge, with subsequent uncontrolled biogas production and migration to the adjacent area. An Emergency Plan was implemented by the isolation of the buried sludge area and a characterization project was performed to define an appropriate permanently safe recovery. An innovative biological in situ treatment, avoiding paper sludge removal, was adopted; it was based on the use of tailored compost and enzymes to reduce methane production and concentration. This was integrated by specific monitoring piezometers for both biogas (CH4, CO2 and oxygen monthly measurements, and also the application of a respirometric technique application to buried sludge for assessing its stabilisation under aerobic and anaerobic conditions. This communication describes the strategy used, the treatment and monitoring system and the results of 3 years field pilot application. Monitoring work is still in progress.

  4. A large-area strain sensing technology for monitoring fatigue cracks in steel bridges

    Science.gov (United States)

    Kong, Xiangxiong; Li, Jian; Collins, William; Bennett, Caroline; Laflamme, Simon; Jo, Hongki

    2017-08-01

    This paper presents a novel large-area strain sensing technology for monitoring fatigue cracks in steel bridges. The technology is based on a soft elastomeric capacitor (SEC), which serves as a flexible and large-area strain gauge. Previous experiments have verified the SEC’s capability to monitor low-cycle fatigue cracks experiencing large plastic deformation and large crack opening. Here an investigation into further extending the SEC’s capability for long-term monitoring of fatigue cracks in steel bridges subject to traffic loading, which experience smaller crack openings. It is proposed that the peak-to-peak amplitude (pk-pk amplitude) of the sensor’s capacitance measurement as the indicator of crack growth to achieve robustness against capacitance drift during long-term monitoring. Then a robust crack monitoring algorithm is developed to reliably identify the level of pk-pk amplitudes through frequency analysis, from which a crack growth index (CGI) is obtained for monitoring fatigue crack growth under various loading conditions. To generate representative fatigue cracks in a laboratory, loading protocols were designed based on constant ranges of stress intensity to limit plastic deformations at the crack tip. A series of small-scale fatigue tests were performed under the designed loading protocols with various stress intensity ratios. Test results under the realistic fatigue crack conditions demonstrated the proposed crack monitoring algorithm can generate robust CGIs which are positively correlated with crack lengths and independent from loading conditions.

  5. Snow cover changes in the Hindu-Kush Karakoram Himalaya

    Science.gov (United States)

    Terzago, Silvia; Von Hardenberg, Jost; Palazzi, Elisa; Provenzale, Antonello

    2013-04-01

    Snow cover plays a key role in high-altitude environments, and changes in the snow spatial/temporal distribution and thickness affect energy, radiation and water budgets at the Earth's surface. In particular, a reduction in the snow amount has a direct effect on the availability and seasonal distribution of water resources. This is especially true in areas such as the Hindu-Kush Karakoram Himalaya (HKKH) region, which provides water to about 1.5 Billion peoples in India, Nepal, Pakistan and China. Despite its importance, knowledge on snow dynamics in the HKKH region is still incomplete, owing also to sparse and sporadic surface observations. In this work, we used simulations from Global Climate Models (GCMs) to gain information on snowpack characteristics and climatology in the HKKH region. We selected a set of GCM snow depth datasets from the CMIP5 ensemble, esploring snow abundance and distribution at monthly scale. In order to investigate how well Global Climate Models represent the snow climatology, we compared the results with the ERA-Interim reanalysis, used as an approximation to the real conditions. After exploring the average snow conditions in the last decades, we analyzed the effects of climate change in the HKKH region by using an ensemble of future snow projections obtained from different GCMs and in different climate change scenarios.

  6. Assimilation of satellite observed snow albedo in a land surface model

    NARCIS (Netherlands)

    Malik, M.J.; Velde, van der R.; Vekerdy, Z.; Su, Z.

    2012-01-01

    This study assesses the impact of assimilating satellite-observed snow albedo on the Noah land surface model (LSM)-simulated fluxes and snow properties. A direct insertion technique is developed to assimilate snow albedo into Noah and is applied to three intensive study areas in North Park (Colorado

  7. Assimilation of satellite observed snow albedo in a land surface model

    NARCIS (Netherlands)

    Malik, M.J.; van der Velde, R.; Vekerdy, Z.; Su, Zhongbo

    2012-01-01

    This study assesses the impact of assimilating satellite-observed snow albedo on the Noah land surface model (LSM)-simulated fluxes and snow properties. A direct insertion technique is developed to assimilate snow albedo into Noah and is applied to three intensive study areas in North Park

  8. Assimilation of satellite observed snow albedo in a land surface model

    NARCIS (Netherlands)

    Malik, M.J.; van der Velde, R.; Vekerdy, Z.; Su, Zhongbo

    2012-01-01

    This study assesses the impact of assimilating satellite-observed snow albedo on the Noah land surface model (LSM)-simulated fluxes and snow properties. A direct insertion technique is developed to assimilate snow albedo into Noah and is applied to three intensive study areas in North Park (Colorado

  9. Development of an area monitor for neutrons using solid state nuclear track detector; Desenvolvimento de um monitor de area para neutrons utilizando detector solido de tracos nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Zahn, G.S.

    1994-12-31

    An area monitor for neutrons composed of the solid state nuclear track detector (SSNTD) Makrofol DE, together with a (n,{alpha}) converter, in the center of a 25 cm diameter polyethylene sphere, is developed. The optimal electrochemical etching conditions for the detection of thermal neutrons by the Makrofol DE using the BN converter are studied, leading to the choice of 55 min, at 30{sup 0} C, under a 44,2 kV.cm{sup -1} electric field with oscillation frequency of 2,0 khz. The response of this system to thermal neutrons, in the optimal conditions, is of 2,76(10)x 10{sup -3} tr/n. Changing from the BN converter to a 2,73(3)g compressed boric acid tablet this value lowers to 3,88(17)x 10{sup -4} tr/n. The performance of the whole monitor in the detection of fast neutrons is examined using the BN converter and neutrons from a {sup 241} Am Be source, with a response of 4,4(2)x 10{sup 3} tr.mSv{sup -1}.cm{sup -2} and operational limits between 7(3){mu}Sv and 5,6(2)mSv. The result of the monitoring of the control room of the IPEN Cyclotron accelerator are also presented as a final test for the viability of the practical use of the monitor. (author). 34 refs, 15 figs, 6 tabs, 1 app.

  10. Influence of the exposure time in the area monitors at radiodiagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Leyton, Fernando, E-mail: leyton.fernando@gmail.com [Faculty of Health and Odontology, Diego Portales University, Santiago, Chile and Study Center in Radiological Sciences (CECRAD), Tarapaca University, Arica (Chile); Navarro, Marcus; Macedo, Eric; Navarro, Valeria; Garcia, Igor; Pereira, Lara [Instituto Federal da Bahia (LABPROSAUD/IFBA), Salvador, BA (Brazil). Laboratorio de Produtos para a Saude; Ferreira, Mario [Universidade do Estado da Bahia (UNEB), Salvador, BA (Brazil)

    2015-07-01

    Area monitoring ensures radiation exposure at an acceptable level, which must be lower than the legal limit. Experimental measurements were taken in a ionizing radiation calibration laboratory. The specified reference radiation to radiation protection N80 was used. Five area monitors were used. The ranges of dose rate inaccuracy measured in rate mode for times ≤ 2 and ≥ 3 s were from 10 to 48 % and from 1 to 15 %, respectively. The inaccuracy ranges measured in integrated mode for times ≤ 2 and ≥ 3 s were from 4 to 8 % and from 0 to 22 %, respectively. (author)

  11. Changes in Snow Cover Characteristics Over the Russian Territory in Recent Decades

    Science.gov (United States)

    Bulygina, O. N.; Razuvaev, V. N.; Groisman, P. Y.

    2007-12-01

    The state of snow cover is one of the most important characteristics of the Northern Eurasia climate. The present work sheds light on the snow variations by using empirical and statistical analysis of time series of daily snow depth over Russia. For 400 Russian stations, time series of the daily snow depth and of the extent to which the near-station territory is covered by snow have been prepared in RIHMI-WDC for the period 1951-2006. Our analyses revealed the following regional features in the change of snow cover characteristics. Increases in winter precipitation and surface air temperature affected the variability of snow characteristics. In particular, tendencies towards the increase in the average snow depth over the Russian territory are prevailing, while only a few Russian regions show a decrease in winter snow depth. The largest variations in the average snow depth occur in the late winter - early spring period. In the recent three decades a substantial part of the Russian territory exhibits a shorter snow-cover period. The regionally-averaged snow cover characteristics were analyzed across the seven quasi-homogeneous climatic regions of Russia as well as for the entire nation. In the European part of Russia and in the Russian Far East, the increase in the average snow depth is controlled by winter and autumn precipitation growth. Time series of the number of days with different snow depths have been derived from daily snow depth observations. In the past decades, the number of days with the snow depth above 1 cm tends to decrease in the west of European Russia, in the Urals, Siberia and the Chukotka Peninsula (i.e., over most of Russia), while the number of days with significant snow depth (above 20 cm) tends to increase slightly. Taking into account that the Russian territory dominates the snow-covered areas of Eurasia, we conclude that across most of Northern Eurasia the snowy season became shorter but more "intense".

  12. Limitations of using a thermal imager for snow pit temperatures

    Directory of Open Access Journals (Sweden)

    M. Schirmer

    2013-10-01

    Full Text Available Driven by temperature gradients, kinetic snow metamorphism is important for avalanche formation. Even when gradients appear to be insufficient for kinetic metamorphism, based on temperatures measured 10 cm apart, faceting close to a~crust can still be observed. Recent studies that visualized small scale (< 10 cm thermal structures in a profile of snow layers with an infrared (IR camera produced interesting results. The studies found melt-freeze crusts to be warmer or cooler than the surrounding snow depending on the large scale gradient direction. However, an important assumption within the studies was that a thermal photo of a freshly exposed snow pit was similar enough to the internal temperature of the snow. In this study, we tested this assumption by recording thermal videos during the exposure of the snow pit wall. In the first minute, the results showed increasing gradients with time, both at melt-freeze crusts and at artificial surface structures such as shovel scours. Cutting through a crust with a cutting blade or a shovel produced small concavities (holes even when the objective was to cut a planar surface. Our findings suggest there is a surface structure dependency of the thermal image, which is only observed at times with large temperature differences between air and snow. We were able to reproduce the hot-crust/cold-crust phenomenon and relate it entirely to surface structure in a temperature-controlled cold laboratory. Concave areas cooled or warmed slower compared with convex areas (bumps when applying temperature differences between snow and air. This can be explained by increased radiative transfer or convection by air at convex areas. Thermal videos suggest that such processes influence the snow temperature within seconds. Our findings show the limitations of the use of a thermal camera for measuring pit-wall temperatures, particularly in scenarios where large gradients exist between air and snow and the interaction of snow

  13. Application of radar polarimetry techniques for retrieval snow and rain characteristics in remote sensing

    OpenAIRE

    2013-01-01

    The presence of snow cover has significant impacts on the both global and regional climate and water balance on earth. The accurate estimation of snow cover area can be used for forecasting runoff due to snow melt and output of hydroelectric power. With development of remote sensing techniques at different scopes in earth science, enormous algorithms for retrieval hydrometeor parameters have been developed. Some of these algorithms are used to provide snow cover map such as NLR with AVHRR/MOD...

  14. Subgrid parameterization of snow distribution at a Mediterranean site using terrestrial photography

    Science.gov (United States)

    Pimentel, Rafael; Herrero, Javier; José Polo, María

    2017-02-01

    Subgrid variability introduces non-negligible scale effects on the grid-based representation of snow. This heterogeneity is even more evident in semiarid regions, where the high variability of the climate produces various accumulation melting cycles throughout the year and a large spatial heterogeneity of the snow cover. This variability in a watershed can often be represented by snow accumulation-depletion curves (ADCs). In this study, terrestrial photography (TP) of a cell-sized area (30 × 30 m) was used to define local snow ADCs at a Mediterranean site. Snow-cover fraction (SCF) and snow-depth (h) values obtained with this technique constituted the two datasets used to define ADCs. A flexible sigmoid function was selected to parameterize snow behaviour on this subgrid scale. It was then fitted to meet five different snow patterns in the control area: one for the accumulation phase and four for the melting phase in a cycle within the snow season. Each pattern was successfully associated with the snow conditions and previous evolution. The resulting ADCs were associated to certain physical features of the snow, which were used to incorporate them in the point snow model formulated by Herrero et al. (2009) by means of a decision tree. The final performance of this model was tested against field observations recorded over four hydrological years (2009-2013). The calibration and validation of this ADC snow model was found to have a high level of accuracy, with global RMSE values of 105.8 mm for the average snow depth and 0.21 m2 m-2 for the snow-cover fraction in the control area. The use of ADCs on the cell scale proposed in this research provided a sound basis for the extension of point snow models to larger areas by means of a gridded distributed calculation.

  15. Pavement Snow Melting

    Energy Technology Data Exchange (ETDEWEB)

    Lund, John W.

    2005-01-01

    The design of pavement snow melting systems is presented based on criteria established by ASHRAE. The heating requirements depends on rate of snow fall, air temperature, relative humidity and wind velocity. Piping materials are either metal or plastic, however, due to corrosion problems, cross-linked polyethylene pipe is now generally used instead of iron. Geothermal energy is supplied to systems through the use of heat pipes, directly from circulating pipes, through a heat exchanger or by allowing water to flow directly over the pavement, by using solar thermal storage. Examples of systems in New Jersey, Wyoming, Virginia, Japan, Argentina, Switzerland and Oregon are presented. Key words: pavement snow melting, geothermal heating, heat pipes, solar storage, Wyoming, Virginia, Japan, Argentina, Klamath Falls.

  16. Snow Depth Retrieval with UAS Using Photogrammetric Techniques

    Directory of Open Access Journals (Sweden)

    Benjamin Vander Jagt

    2015-07-01

    Full Text Available Alpine areas pose challenges for many existing remote sensing methods for snow depth retrieval, thus leading to uncertainty in water forecasting and budgeting. Herein, we present the results of a field campaign conducted in Tasmania, Australia in 2013 from which estimates of snow depth were derived using a low-cost photogrammetric approach on-board a micro unmanned aircraft system (UAS. Using commercial off-the-shelf (COTS sensors mounted on a multi-rotor UAS and photogrammetric image processing techniques, the results demonstrate that snow depth can be accurately retrieved by differencing two surface models corresponding to the snow-free and snow-covered scenes, respectively. In addition to accurate snow depth retrieval, we show that high-resolution (50 cm spatially continuous snow depth maps can be created using this methodology. Two types of photogrammetric bundle adjustment (BA routines are implemented in this study to determine the optimal estimates of sensor position and orientation, in addition to 3D scene information; conventional BA (which relies on measured ground control points and direct BA (which does not require ground control points. Error sources that affect the accuracy of the BA and subsequent snow depth reconstruction are discussed. The results indicate the UAS is capable of providing high-resolution and high-accuracy (<10 cm estimates of snow depth over a small alpine area (~0.7 ha with significant snow accumulation (depths greater than one meter at a fraction of the cost of full-size aerial survey approaches. The RMSE of estimated snow depths using the conventional BA approach is 9.6 cm, whereas the direct BA is characterized by larger error, with an RMSE of 18.4 cm. If a simple affine transformation is applied to the point cloud derived from the direct BA, the overall RMSE is reduced to 8.8 cm RMSE.

  17. Declining Spring Snow Cover Extent over Northern Hemisphere Lands

    Science.gov (United States)

    Robinson, David

    2015-04-01

    Annual snow cover extent (SCE) over Northern Hemisphere (NH) lands averages close to 26 million square kilometers. It ranges from an average of 47 million sq. km. in January to 3 million sq. km. (mostly atop the Greenland Ice Sheet) in August. SCE is calculated at the Rutgers Global Snow Lab from daily SCE maps produced by meteorologists at the National Ice Center, who rely primarily on visible satellite imagery to construct the maps. The Rutgers SCE climate data record (CDR) shows that since the late 1980s annual SCE over NH lands has averaged lower than earlier in the satellite era, which for SCE monitoring began in 1967. This is most evident from late winter through spring, being exceedingly pronounced this past decade at high latitudes in May and June. The most recent five Mays have been amongst the lowest seven in terms of NH SCE on record, with Eurasian (EUR) SCE at a record low in 2013. North American (NA) SCE achieved a record minimum in May 2010, but of late has not been as consistently low as over EUR. The past seven Junes have seen record minimum SCE over the NH, and six of the seven lowest over EUR and NA. The recent early timing of arctic snowmelt appears to be occurring at a pace equivalent to if not exceeding the loss of summer Arctic sea ice extent. In situ station observations suggest that spring snow is presently the least extensive in the past century. Possible reasons behind the early melt appear to be associated with atmospheric circulation patterns and overall warming. This presentation, while focusing on SCE variability utilizing the Rutgers SCE CDR, will also include discussion of a new merged snow extent and melt state CDR that includes data from NH continents, Greenland, and Arctic sea ice. Visible and microwave satellite data are employed in these efforts. The merged product is available in netCDF format from the National Snow and Ice Data Center. This includes 25 km (1999-2010) and 100 km (1967-2010) resolution versions using the Equal-Area

  18. Toward advanced daily cloud-free snow cover and snow water equivalent products from Terra-Aqua MODIS and Aqua AMSR-E measurements

    Science.gov (United States)

    Gao, Yang; Xie, Hongjie; Lu, Ning; Yao, Tandong; Liang, Tiangang

    2010-05-01

    SummaryBy taking advantage of the high spatial resolution of optical sensors and cloud penetration of a passive microwave sensor, a method is developed to generate new daily cloud-free snow cover (SC) and snow water equivalent (SWE) products, both in 500 m spatial resolution, utilizing daily Terra-Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) and Aqua Advanced Microwave Scanning Radiometer for NASA's Earth Observing System (AMSR-E) snow products. This method was tested in Fairbanks and Upper Susitna Valley, Alaska area for one hydrological year (October 2006-September 2007). The results confirm that daily MODIS products and Terra-Aqua MODIS combined products have similar and high classification accuracy (91-94%) in cloud-free conditions and that the daily combination can reduce cloud cover ˜10%. The results also show the snow accuracy of the new SC products is 86%, which is much higher than the 31%, 45%, and 49% of the Terra, Aqua, and Terra/Aqua combined snow cover products (in all weather conditions), respectively. The validation demonstrates that the accuracy of AMSR-E SWE products is 68.5% and they tend to overestimate SWE. Redistribution of SWE, based on sub-pixel analysis of AMSR-E pixels, not only generates the new product at higher spatial resolution, now more suitable for basin and regional monitoring and modeling, but also slightly increases the accuracy of the SWE estimations. This method can also be used in merging other optical data such as AVHRR, Landsat with passive microwave data such as SSMR, SSM/I, and for future NPP and NPOESS missions.

  19. "Snow Soup" Students Take on Animation Creation

    Science.gov (United States)

    Nikirk, Martin

    2009-01-01

    This article describes the process of producing "Snow Soup"--the 2009 Adobe Flash animation produced by the Computer Game Development and Animation seniors of Washington County Technical High School in Hagerstown, Maryland, for libraries in their area. In addition to the Flash product, the students produced two related Game Maker games, a printed…

  20. "Snow Soup" Students Take on Animation Creation

    Science.gov (United States)

    Nikirk, Martin

    2009-01-01

    This article describes the process of producing "Snow Soup"--the 2009 Adobe Flash animation produced by the Computer Game Development and Animation seniors of Washington County Technical High School in Hagerstown, Maryland, for libraries in their area. In addition to the Flash product, the students produced two related Game Maker games, a printed…

  1. Missing (in-situ) snow cover data hampers climate change and runoff studies in the Greater Himalayas

    Energy Technology Data Exchange (ETDEWEB)

    Rohrer, Mario [Meteodat GmbH, Technoparkstrasse 1, CH-8005 Zurich (Switzerland); Salzmann, Nadine [Department of Geosciences, Geography, University of Fribourg, Chemin du Musée 4, CH-1700 Fribourg (Switzerland); Stoffel, Markus, E-mail: markus.stoffel@unige.ch [Institute for Environmental Sciences, University of Geneva, Chemin de Drize 7, CH-1227 Carouge, Geneva (Switzerland); Dendrolab.ch, Institute of Geological Sciences, University of Bern, Baltzerstrasse 1+3, CH-3012 Bern (Switzerland); Kulkarni, Anil V. [Divecha Center for Climate Change, Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore 560 012 (India)

    2013-12-01

    The Himalayas are presently holding the largest ice masses outside the polar regions and thus (temporarily) store important freshwater resources. In contrast to the contemplation of glaciers, the role of runoff from snow cover has received comparably little attention in the past, although (i) its contribution is thought to be at least equally or even more important than that of ice melt in many Himalayan catchments and (ii) climate change is expected to have widespread and significant consequences on snowmelt runoff. Here, we show that change assessment of snowmelt runoff and its timing is not as straightforward as often postulated, mainly as larger partial pressure of H{sub 2}O, CO{sub 2}, CH{sub 4}, and other greenhouse gases might increase net long-wave input for snowmelt quite significantly in a future atmosphere. In addition, changes in the short-wave energy balance – such as the pollution of the snow cover through black carbon – or the sensible or latent heat contribution to snowmelt are likely to alter future snowmelt and runoff characteristics as well. For the assessment of snow cover extent and depletion, but also for its monitoring over the extremely large areas of the Himalayas, remote sensing has been used in the past and is likely to become even more important in the future. However, for the calibration and validation of remotely-sensed data, and even more so in light of possible changes in snow-cover energy balance, we strongly call for more in-situ measurements across the Himalayas, in particular for daily data on new snow and snow cover water equivalent, or the respective energy balance components. Moreover, data should be made accessible to the scientific community, so that the latter can more accurately estimate climate change impacts on Himalayan snow cover and possible consequences thereof on runoff. - Highlights: • Remotely sensed snow-cover data need to be validated by in-situ measurements. • More in-situ snow measurement programs are

  2. Research of Snow-Melt Process on a Heated Platform

    Directory of Open Access Journals (Sweden)

    Vasilyev Gregory P.

    2016-01-01

    Full Text Available The article has shown the results of experimental researches of the snow-melt on a heated platform-near building heat-pump snow-melt platform. The near-building (yard heat pump platforms for snow melt with the area up to 10-15 m2 are a basis of the new ideology of organization of the street cleaning of Moscow from snow in the winter period which supposes the creation in the megalopolis of the «distributed snow-melt system» (DSMS using non-traditional energy sources. The results of natural experimental researches are presented for the estimation of efficiency of application in the climatic conditions of Moscow of heat pumps in the snow-melt systems. The researches were conducted on a model sample of the near-building heat-pump platform which uses the low-potential thermal energy of atmospheric air. The conducted researches have confirmed experimentally in the natural conditions the possibility and efficiency of using of atmospheric air as a source of low-potential thermal energy for evaporation of the snow-melt heat pump systems in the climatic conditions of Moscow. The results of laboratory researches of snow-melt process on a heated horizontal platform are presented. The researches have revealed a considerable dependence of efficiency of the snow-melt process on its piling mode (form-building and the organization of the process of its piling mode (form-building and the organization of the process of its (snow mass heat exchange with the surface of the heated platform. In the process of researches the effect of formation of an «ice dome» under the melting snow mass called by the fact that in case of the thickness of snow loaded on the platform more than 10 cm the water formed from the melting snow while the contact with the heating surface don’t spread on it, but soaks into the snow, wets it due to capillary effect and freezes. The formation of «ice dome» leads to a sharp increase of snow-melt period and decreases the operating

  3. Snow hydrology in Mediterranean mountain regions: A review

    Science.gov (United States)

    Fayad, Abbas; Gascoin, Simon; Faour, Ghaleb; López-Moreno, Juan Ignacio; Drapeau, Laurent; Page, Michel Le; Escadafal, Richard

    2017-08-01

    Water resources in Mediterranean regions are under increasing pressure due to climate change, economic development, and population growth. Many Mediterranean rivers have their headwaters in mountainous regions where hydrological processes are driven by snowpack dynamics and the specific variability of the Mediterranean climate. A good knowledge of the snow processes in the Mediterranean mountains is therefore a key element of water management strategies in such regions. The objective of this paper is to review the literature on snow hydrology in Mediterranean mountains to identify the existing knowledge, key research questions, and promising technologies. We collected 620 peer-reviewed papers, published between 1913 and 2016, that deal with the Mediterranean-like mountain regions in the western United States, the central Chilean Andes, and the Mediterranean basin. A large amount of studies in the western United States form a strong scientific basis for other Mediterranean mountain regions. We found that: (1) the persistence of snow cover is highly variable in space and time but mainly controlled by elevation and precipitation; (2) the snowmelt is driven by radiative fluxes, but the contribution of heat fluxes is stronger at the end of the snow season and during heat waves and rain-on-snow events; (3) the snow densification rates are higher in these regions when compared to other climate regions; and (4) the snow sublimation is an important component of snow ablation, especially in high-elevation regions. Among the pressing issues is the lack of continuous ground observation in high-elevation regions. However, a few years of snow depth (HS) and snow water equivalent (SWE) data can provide realistic information on snowpack variability. A better spatial characterization of snow cover can be achieved by combining ground observations with remotely sensed snow data. SWE reconstruction using satellite snow cover area and a melt model provides reasonable information that

  4. Area Monitoring Dosimeter Program for the Pacific Northwest National Laboratory: Results for CY 2005

    Energy Technology Data Exchange (ETDEWEB)

    Bivins, Steven R.; Stoetzel, Gregory A.

    2006-06-21

    Pacific Northwest National Laboratory (PNNL) established an area monitoring dosimeter program in accordance with Article 514 of the Department of Energy (DOE) Radiological Control Manual (RCM) in January 1993. This program is to minimize the number of areas requiring issuance of personnel dosimeters and to demonstrate that doses outside Radiological Buffer Areas are negligible. In accordance with 10 CFR Part 835.402 (a)(1)-(4) and Article 511.1 of the PNNL Radiological Control Program Description, personnel dosimetry shall be provided to (1) radiological workers who are likely to receive at least 100 mrem annually, and (2) declared pregnant workers, minors, and members of the public who are likely to receive at least 50 mrem annually. Program results for calendar years 1993-2005 confirm that personnel dosimetry is not needed for individuals located in areas monitored by the program

  5. Area Monitoring Dosimeter Program for the Pacific Northwest National Laboratory: Results for CY 2001

    Energy Technology Data Exchange (ETDEWEB)

    Bivins, Steven R.; Stoetzel, Gregory A.

    2002-07-08

    Pacific Northwest National Laboratory (PNNL) established an area monitoring dosimeter program in accordance with Article 514 of the U.S. Department of Energy (DOE) Radiological Control Manual (RCM) in January 1993. This program is to minimize the number of areas requiring issuance of personnel dosimeters and to demonstrate that doses outside Radiological Buffer Areas are negligible. In accordance with 10 CFR Part 835.402 (a) (1)-(4) and Article 511.1 of the PNNL Radiological Control Program Description, personnel dosimetry shall be provided to 1) radiological workers who are likely to receive at least 100 mrem annually, and 2) declared pregnant workers, minors, and members of the public who are likely to receive at least 50 mrem annually. Program results for calendar years 1993-2001 confirm that personnel dosimetry is not needed for individuals located in areas monitored by the program.

  6. Area Monitoring Dosimeter Program for the Pacific Northwest National Laboratory: Results for CY 2006

    Energy Technology Data Exchange (ETDEWEB)

    Bivins, Steven R.; Stoetzel, Gregory A.

    2007-07-19

    Pacific Northwest National Laboratory (PNNL) established an area monitoring dosimeter program in accordance with Article 514 of the Department of Energy (DOE) Radiological Control Manual (RCM) in January 1993. This program is to minimize the number of areas requiring issuance of personnel dosimeters and to demonstrate that doses outside Radiological Buffer Areas are negligible. In accordance with 10 CFR Part 835.402 (a)(1)-(4) and Article 511.1 of the PNNL Radiological Control Program Description, personnel dosimetry shall be provided to 1) radiological workers who are likely to receive at least 100 mrem annually, and 2) declared pregnant workers, minors, and members of the public who are likely to receive at least 50 mrem annually. Program results for calendar years 1993-2005 confirm that personnel dosimetry is not needed for individuals located in areas monitored by the program.

  7. Area Monitoring Dosimeter Program for the Pacific Northwest National Laboratory: Results for CY 2000

    Energy Technology Data Exchange (ETDEWEB)

    Bivins, Steven R.; Stoetzel, Gregory A.

    2001-07-05

    Pacific