WorldWideScience

Sample records for monitoring protocol gas

  1. Cochleotoxicity monitoring protocol.

    Science.gov (United States)

    Ferreira Penêda, José; Barros Lima, Nuno; Ribeiro, Leandro; Helena, Diamantino; Domingues, Bruno; Condé, Artur

    2017-05-10

    Cochlear damage is frequent in long-term aminoglycosides therapy or chemotherapeutic treatments with platinum-based agents. Despite its prevalence, it is currently underestimated and underdiagnosed. A monitoring protocol is vital to the early detection of cochleotoxicity and its implementation is widely encouraged in every hospital unit. Our aim was to elaborate a cochleotoxicity monitoring protocol for patients treated with platinum compounds or aminoglycosides antibiotics. PubMed® database was searched using terms relevant to drug cochleotoxicity in order to identify the most adequate protocol. Several articles and guidelines influenced our decision. There is no consensus on a universal monitoring protocol. Its formulation and application rely heavily on available resources and personnel. High-frequency audiometry and otoacoustic emissions play an important role on early detection of cochleotoxicity caused by aminoglycoside antibiotics and platinum compounds. A cochleotoxicity monitoring protocol consisting on an initial evaluation, treatment follow-up and post-treatment evaluation is proposed. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. All rights reserved.

  2. Standardized North American Marsh Bird Monitoring Protocol

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document describes monitoring protocols for marshbirds in North America. Monitoring parameters, field procedures, survey methods, timing of surveys, recording...

  3. Field Monitoring Protocol: Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B.; Earle, L.; Christensen, D.; Maguire, J.; Wilson, E.; Hancock, E.

    2013-02-01

    This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.

  4. Field Monitoring Protocol. Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Earle, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Christensen, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maguire, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wilson, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hancock, C. E. [Mountain Energy Partnership, Longmont, CO (United States)

    2013-02-01

    This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.

  5. Gas House Autonomous System Monitoring

    Science.gov (United States)

    Miller, Luke; Edsall, Ashley

    2015-01-01

    Gas House Autonomous System Monitoring (GHASM) will employ Integrated System Health Monitoring (ISHM) of cryogenic fluids in the High Pressure Gas Facility at Stennis Space Center. The preliminary focus of development incorporates the passive monitoring and eventual commanding of the Nitrogen System. ISHM offers generic system awareness, adept at using concepts rather than specific error cases. As an enabler for autonomy, ISHM provides capabilities inclusive of anomaly detection, diagnosis, and abnormality prediction. Advancing ISHM and Autonomous Operation functional capabilities enhances quality of data, optimizes safety, improves cost effectiveness, and has direct benefits to a wide spectrum of aerospace applications.

  6. The ICOS Ecosystem protocol for gas concentration measurements

    Science.gov (United States)

    Aubinet, Marc; Papale, Dario

    2014-05-01

    This research was initiated in the frame of the ICOS Ecosystem Thematic Center. The aim of ICOS is to provide long term high precision observations required to understand the present state and to predict future behavior of the global carbon cycle and greenhouse gas emissions. Observations will be made through high precision network of stations measuring greenhouse gas fluxes from ecosystems and oceans and greenhouse gas concentrations in the atmosphere. In a long term monitoring infrastructure like the ICOS Ecosystem network, it is crucial to ensure maximum comparability between sites and, for this reason, it is strongly suggested to highly standardize methods and sensors where the knowledge about systematic and random differences between different approaches is not yet fully known, in particular in the medium-long term time range. Long term measurements of trace gas fluxes exchanged by ecosystem require the use of the eddy covariance technique for which gas analyzers are, similarly to sonic anemometers, key elements. However, neither an international standard nor a list of requisites for sensors does exist yet. This presentation focuses thus on the protocol for high frequency gas concentration using infrared gas analyzers. It results from discussions that were brought among the Working group on Eddy covariance fluxes and Storage measurements established by the ICOS Ecosystem Thematic Center and implied about 70 scientists and field workers. The protocol includes a definition of the variable and of the measurement method (infrared gas analyzer), instructions concerning the system conditioning (gas sampling system description including pump, tube, filter dimensioning), sensor calibration and maintenance and finally required data format.

  7. Monitoring System with Two Central Facilities Protocol

    Directory of Open Access Journals (Sweden)

    Caesar Firdaus

    2017-03-01

    Full Text Available The security of data and information on government’s information system required proper way of defending against threat. Security aspect can be achieved by using cryptography algorithm, applying information hiding concept, and implementing security protocol. In this research, two central facilities protocol was implemented on Research and Development Center of Mineral and Coal Technology’s Cooperation Contract Monitoring System by utilizing AES and whitespace manipulation algorithm. Adjustment on the protocol by creating several rule of validation ID’s generation and checking processes could fulfill two of four cryptography objectives, consist of authentication and non-repudiation. The solid collaboration between central legitimization agency (CLA, central tabulating facility (CTF, and client is the main idea in two central facilities protocol. The utilization of AES algorithm could defend the data on transmission from man in the middle attack scenario. On the other hand, whitespace manipulation algorithm provided data integrity aspect of the document that is uploaded to the system itself. Both of the algorithm fulfill confidentiality, data integrity, and authentication.

  8. A Novel Infrared Gas Monitor

    Science.gov (United States)

    Wang, Yingding; Zhong, Hongjie

    2000-03-01

    In the paper a novel non-dispersive infrared(IR) gas monitor is described.It is based on the principle that certain gases absorb IR radiation at specific(and often unique) wavelengths.Conventional devices typically include several primary components:a broadband source, usually an incandescent filament,a rotating chopper shutter,a narrow-band filter,a sample tube and a detector. We have developed a number of IR light emitting diodes(LED) having narrow optical bandwidths and which can be intensity modulated by electrical means,for example InAsSbP(4.2 micron)LED.The IR LED can thus replace the thermal source,narrow-band filter and chopper assembly of the conventional IR gas monitor,yielding a solid state,low- powered,compact and almost maintenance-free instrument with high sensitivity and stability and which free of the effects of mechanical vibration too. The detector used in the IR gas monitor is the solid-state detector,such as PbS,PbSe, InSb,HgCdTe,TGS,LT and PZT detector etc. The different configuration of the IR gas monitor is designed.For example,two-path version for measuring methane concentration by monitoring the 3.31 micron absorption band,it can eliminate the interference effects,such as to compensate for LED intensity changes caused by power and temperature variations,and for signal fluctuations due to changes in detector bias. we also have designed portable single-beam version without the sample tube.Its most primary advantage is very cheap(about cost USD 30 ).It measures carbon dioxide concentration by monitoring the 4.25 micron absorption band.Thought its precisions is low,it is used to control carbon dioxide concentration in the air in the green houses and plastic houses(there are about twenty millon one in the China).Because more carbon dioxide will increase the quanity of vegetable and flower production to a greatextent. It also is used in medical,sanitary and antiepidemic applications,such as hospital, store,hotel,cabin and ballroom etc. Key words

  9. National Protocol Framework for the Inventory and Monitoring of Bees

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This national protocol framework is a standardized tool for the inventory and monitoring of the approximately 4,200 species of native and non-native bee species that...

  10. A network monitor for HTTPS protocol based on proxy

    Science.gov (United States)

    Liu, Yangxin; Zhang, Lingcui; Zhou, Shuguang; Li, Fenghua

    2016-10-01

    With the explosive growth of harmful Internet information such as pornography, violence, and hate messages, network monitoring is essential. Traditional network monitors is based mainly on bypass monitoring. However, we can't filter network traffic using bypass monitoring. Meanwhile, only few studies focus on the network monitoring for HTTPS protocol. That is because HTTPS data is in the encrypted traffic, which makes it difficult to monitor. This paper proposes a network monitor for HTTPS protocol based on proxy. We adopt OpenSSL to establish TLS secure tunes between clients and servers. Epoll is used to handle a large number of concurrent client connections. We also adopt Knuth- Morris-Pratt string searching algorithm (or KMP algorithm) to speed up the search process. Besides, we modify request packets to reduce the risk of errors and modify response packets to improve security. Experiments show that our proxy can monitor the content of all tested HTTPS websites efficiently with little loss of network performance.

  11. Monitoring protocols: Options, approaches, implementation, benefits

    Science.gov (United States)

    Karl, Jason W.; Herrick, Jeffrey E.; Pyke, David A.

    2017-01-01

    Monitoring and adaptive management are fundamental concepts to rangeland management across land management agencies and embodied as best management practices for private landowners. Historically, rangeland monitoring was limited to determining impacts or maximizing the potential of specific land uses—typically grazing. Over the past several decades, though, the uses of and disturbances to rangelands have increased dramatically against a backdrop of global climate change that adds uncertainty to predictions of future rangeland conditions. Thus, today’s monitoring needs are more complex (or multidimensional) and yet still must be reconciled with the realities of costs to collect requisite data. However, conceptual advances in rangeland ecology and management and changes in natural resource policies and societal values over the past 25 years have facilitated new approaches to monitoring that can support rangeland management’s diverse information needs. Additionally, advances in sensor technologies and remote-sensing techniques have broadened the suite of rangeland attributes that can be monitored and the temporal and spatial scales at which they can be monitored. We review some of the conceptual and technological advancements and provide examples of how they have influenced rangeland monitoring. We then discuss implications of these developments for rangeland management and highlight what we see as challenges and opportunities for implementing effective rangeland monitoring. We conclude with a vision for how monitoring can contribute to rangeland information needs in the future.

  12. Prescribed fire monitoring protocol : Medicine Lake NWR

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Initial Survey Instructions for prescribed fire monitoring at Medicine Lake National Wildlife Refuge. Instructions contain methods on data collection, an equipment...

  13. National protocol framework for the inventory and monitoring of bees

    Science.gov (United States)

    Droege, Sam; Engler, Joseph D.; Sellers, Elizabeth A.; Lee O'Brien,

    2016-01-01

    This national protocol framework is a standardized tool for the inventory and monitoring of the approximately 4,200 species of native and non-native bee species that may be found within the National Wildlife Refuge System (NWRS) administered by the U.S. Fish and Wildlife Service (USFWS). However, this protocol framework may also be used by other organizations and individuals to monitor bees in any given habitat or location. Our goal is to provide USFWS stations within the NWRS (NWRS stations are land units managed by the USFWS such as national wildlife refuges, national fish hatcheries, wetland management districts, conservation areas, leased lands, etc.) with techniques for developing an initial baseline inventory of what bee species are present on their lands and to provide an inexpensive, simple technique for monitoring bees continuously and for monitoring and evaluating long-term population trends and management impacts. The latter long-term monitoring technique requires a minimal time burden for the individual station, yet can provide a good statistical sample of changing populations that can be investigated at the station, regional, and national levels within the USFWS’ jurisdiction, and compared to other sites within the United States and Canada. This protocol framework was developed in cooperation with the United States Geological Survey (USGS), the USFWS, and a worldwide network of bee researchers who have investigated the techniques and methods for capturing bees and tracking population changes. The protocol framework evolved from field and lab-based investigations at the USGS Bee Inventory and Monitoring Laboratory at the Patuxent Wildlife Research Center in Beltsville, Maryland starting in 2002 and was refined by a large number of USFWS, academic, and state groups. It includes a Protocol Introduction and a set of 8 Standard Operating Procedures or SOPs and adheres to national standards of protocol content and organization. The Protocol Narrative

  14. Monitoring gas quality green gas feeding in; Monitoring gaskwaliteit groengasinvoeding

    Energy Technology Data Exchange (ETDEWEB)

    Holstein, J. [DNV KEMA Energy and Sustainability, Arnhem (Netherlands); Polman, E. [Kiwa Technology, Apeldoorn (Netherlands)

    2013-04-15

    Due to the growing number of green gas facilities in the Netherlands more practical knowledge is collected about the production and injection of green gas. Also there was the need to gather data about more practical experiences and knowledge about the gas quality, the performance of gas cleaning and gas treatment systems, as well the integration of green gas in the gas infrastructure. In addition to this, there is a need to get insight in the safety aspects of green gas injection. In order to comply this demand, DNV KEMA en Kiwa Technology measured the quality parameters continuously between June 2012 en January 2013 (three weeks) and discontinuously (gas samples) of green gas at eight production facilities. The measurements have been performed at designated places and are independent from the measurements of the biomethane producer. In order to be sure that the results of DNV KEMA and Kiwa are comparable, a combined measurement program was executed. It results in uniformity for all the measured values: the differences are within the uncertainty level for each component. During the measurement period of three weeks, the gas quality parameters were compared to specifications, written down in the national regulations for the transport and the distribution grid respectively [Dutch] Door het groeiend aantal groengasinvoedingen in Nederland wordt steeds meer praktijkkennis verzameld. Er dient meer praktijkkennis te worden verzameld over de chemische gaskwaliteit, prestaties van de gasreiniging- en gasopwaardering en de wijze van inpassing in de bestaande infrastructuur. Daarnaast is het wenselijk om inzicht te verkrijgen in de veiligheid van groengasinvoeding. Daarop is de groengaskwaliteit op acht locaties over een periode van drie weken continu en discontinu gemeten tussen juni 2012 en januari 2013. De metingen zijn uitgevoerd op een aangewezen plaats door de netbeheerder en staan los van de metingen van de invoeders zelf. Voor het waarborgen van de uniformiteit van

  15. Towards a protocol for community monitoring of caribou body condition

    OpenAIRE

    Gary Kofinas; Phil Lyver; Don Russell; Robert White; Augie Nelson; Nicholas Flanders

    2003-01-01

    Effective ecological monitoring is central to the sustainability of subsistence resources of indigenous communities. For caribou, Arctic indigenous people's most important terrestrial subsistence resource, body condition is a useful measure because it integrates many ecological factors that influence caribou productivity and is recognized by biologists and hunters as meaningful. We draw on experience working with indigenous communities to develop a body condition monitoring protocol for harve...

  16. A global protocol for monitoring of coral bleaching

    OpenAIRE

    Oliver, J.; Setiasih, N.; Marshall, P.; Hansen, L

    2004-01-01

    Coral bleaching and subsequent mortality represent a major threat to the future health and productivity of coral reefs. However a lack of reliable data on occurrence, severity and other characteristics of bleaching events hampers research on the causes and consequences of this important phenomenon. This article describes a global protocol for monitoring coral bleaching events, which addresses this problem and can be used by people with different levels of expertise and resources.

  17. Gas monitoring onboard ISS using FTIR spectroscopy

    Science.gov (United States)

    Gisi, Michael; Stettner, Armin; Seurig, Roland; Honne, Atle; Witt, Johannes; Rebeyre, Pierre

    2017-06-01

    In the confined, enclosed environment of a spacecraft, the air quality must be monitored continuously in order to safeguard the crew's health. For this reason, OHB builds the ANITA2 (Analysing Interferometer for Ambient Air) technology demonstrator for trace gas monitoring onboard the International Space Station (ISS). The measurement principle of ANITA2 is based on the Fourier Transform Infrared (FTIR) technology with dedicated gas analysis software from the Norwegian partner SINTEF. This combination proved to provide high sensitivity, accuracy and precision for parallel measurements of 33 trace gases simultaneously onboard ISS by the precursor instrument ANITA1. The paper gives a technical overview about the opto-mechanical components of ANITA2, such as the interferometer, the reference Laser, the infrared source and the gas cell design and a quick overview about the gas analysis. ANITA2 is very well suited for measuring gas concentrations specifically but not limited to usage onboard spacecraft, as no consumables are required and measurements are performed autonomously. ANITA2 is a programme under the contract of the European Space Agency, and the air quality monitoring system is a stepping stone into the future, as a precursor system for manned exploration missions.

  18. Monitoring and humidification during tracheal gas insufflation.

    Science.gov (United States)

    Delgado, E; Hoffman, L A; Tasota, F J; Pinsky, M R

    2001-02-01

    In order to use tracheal gas insufflation (TGI) in a safe and effective manner, it is important to understand potential interactions between TGI and the mechanical ventilator that may impact upon gas delivery and carbon dioxide (CO2) elimination. Furthermore, potentially serious complications secondary to insufflation of cool, dry gas directly into the airway and the possibility of tube occlusion must be considered during use of this adjunct modality to mechanical ventilation. Regardless of the delivery modality (continuous TGI, expiratory TGI, reverse TGI, or bidirectional TGI), conventional respiratory monitoring is required. However, TGI with mechanical ventilation can alter tidal volume and peak inspiratory pressure and can lead to the development of intrinsic positive end-expiratory pressure. Therefore, depending on the gas delivery technique used, it is important to carefully monitor these ventilatory parameters for TGI-induced changes and understand the potential need for adjustments to ventilator settings to facilitate therapy and avoid problems. Optimally, gas insufflated by the TGI catheter should be conditioned by addition of heat and humidity to prevent mucus plug formation and potential damage to the tracheal mucosa. Finally, patients must be closely monitored for increases in peak inspiratory pressure from obstruction of the tracheal tube and should have the TGI catheter removed and inspected every 8-12 hours to assess for plugs.

  19. Recommended protocols for monitoring impacts of wind turbines on birds

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-04-15

    The behaviour of birds in relation to turbine locations are routinely monitored to determine risk factors. Baseline information is typically gathered on birds that reside or migrate through an area to be developed. The purpose of this document was to provide proponents of wind turbine projects with information on the types of protocols likely to be used for baseline studies and follow-up monitoring at proposed wind turbine sites in order to evaluate the impacts of wind turbines on birds. It is intended to facilitate the comparison of data among wind power projects. In order to meet federal environmental assessment requirements, proponents may also be required to follow-up on the actual impact of the installation on birds. This document described methods for collecting field data as well as pre-construction baseline sample methods that might be expected as part of the Environmental Impact Assessment process. Follow-up monitoring should be undertaken during the breeding season, non-breeding season, and at offshore locations. This document also discussed the need to monitor prospective wind turbine sites to determine whether any of the sites present an elevated risk for substantial bat mortality. An overview of post-construction follow-up studies was also provided for carcass searches and collision studies. Details on some of the sampling protocols that are likely to be appropriate for bird monitoring in the context of wind turbine environmental assessment were presented with reference to searches, standardized area searches, distance sampling, behavioural studies, point counts, microphone point counts, playback counts, stopover counts, passage migration counts, acoustic monitoring of migrating birds, radar monitoring, carcass searches, and estimating collisions using other methods. This document also included codes for breeding evidence and a sample data sheet for ten minute point counts. 3 appendices.

  20. Continuous blood gas monitoring in femoral arteries

    Science.gov (United States)

    Schlain, Les A.; Spar, Steven M.; Dellinger, Bart

    1995-05-01

    Continuous intra-arterial blood gas monitoring is a potentially valuable tool in the surgical and intensive care arenas. Patient oxygenation and acid base status can change rapidly and without warning. The ability to monitor pHa, PaCO2 and PaO2 in arterial blood will be a major medical advance for the anesthesiologist and intensivist. Intra-arterial blood gas sensors are typically placed in radial arteries. In certain patient populations accurate monitoring is not possible in radial arteries due to arterial environmental factors such as hypotension, vasoconstriction and atherosclerotic disease. These same factors can make radial cannulation difficult resulting in traumatic catheter insertion, thereby further compromising flow conditions. In situations where radial artery flow is expected to be compromised, selecting a large vessel for sensor placement is desirable. We report an initial feasibility study of our blood gas monitoring system using the femoral artery as the sensing site. Clinical results are presented as well as potential advantages and disadvantages associated with monitoring in the femoral artery.

  1. Practical Physiological Monitoring Protocol for Heat Strain Control

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R B; Johnson, J S; Burastero, S R; Gilmore, O

    2003-07-01

    This protocol is indicated when employees are: (1) Exposed to Heat Stress above the TLV; (2) Performing low to moderate work rates with rare excursions to heavy rates; NOT for heavy and very heavy work rates or requiring peak outputs for extended periods; and, (3) Determined to need physiological heat strain monitoring by the cognizant Industrial Hygienist. The requirements are: (1) A work/rest regimen must be established at outset and adjusted as needed during operations (see Appendix A); (2) On-going data collection and review; (3) Rest times must be increased if indicated; (4) Intended for normal, healthy adults. Seasonal medical screening is recommended; and (5) Training for affected employees regarding this protocol, hydration, self-limitation, lifestyle effects and signs, symptoms and treatment of heat related illnesses. This protocol is to aid industrial hygienists in assessing individual physiological response to employee heat exposures, and provides guidance to identify and reduce heat strain as needed. Physiological monitoring is recommended when heat exposure exceeds the TLV by {ge} 2 C and/or when evaporative cooling is limited or eliminated. Typically, this occurs when the use of personal protective equipment includes impermeable or water vapor restrictive outer garments. This protocol is used to identify when heat strain may be excessive. This is determined through measurements taken during each rest period. If decision criteria are exceeded, changes in work practices shall be implemented immediately to reduce employee heat strain and prevent heat related illnesses up to and including heat stroke, a life threatening condition. This protocol may not be appropriate under all conditions. Sound Industrial Hygiene professional judgment is required. Because the measurements for this protocol occur during the rest phase of the work/rest regimen, the conditions affecting employee heat strain during the work phase must be carefully weighed. Work rate

  2. Recommended protocols for monitoring impacts of wind turbines on birds

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-28

    The proponent of a wind-powered generating station may be required to gather baseline information on birds that reside or migrate through the area to be developed. Proponents may also be required follow-up on the actual impact of the installation on the birds in order to fulfil the requirements of a federal environmental assessment. In order to evaluate impacts of wind turbines on birds, information was provided to proponents on the types of protocols likely to be useful for baseline studies and follow-up monitoring at proposed wind turbine sites. Uses of the document, field data collection, and reporting requirements were first discussed, followed by a detailed discussion of pre-construction baseline sample methods that might be expected as part of the Environmental Impact Assessment process. This information was presented according to monitoring during breeding season, non-breeding season, and offshore locations. Monitoring prospective wind turbine sites to determine whether any of the sites present an elevated risk for substantial bat mortality was also discussed. An overview of post-construction follow-up studies was provided for breeding season, non-breeding season, carcass searches and collision studies. The first appendix provided further details on some of the sampling protocols that are likely to be appropriate for bird monitoring in the context of wind turbine environmental assessment. These include area searches, standardized area searches, distance sampling, behavioural studies, point counts, microphone point counts, playback counts, stopover counts, passage migration counts, acoustic monitoring of migrating birds, radar monitoring, carcass searches, and estimating collisions using other methods. Codes for breeding evidence and a sample data sheet for ten minute point counts were also provides in appendices. 3 appendices.

  3. Magmatic gas scrubbing: Implications for volcano monitoring

    Science.gov (United States)

    Symonds, R.B.; Gerlach, T.M.; Reed, M.H.

    2001-01-01

    Despite the abundance of SO2(g) in magmatic gases, precursory increases in magmatic SO2(g) are not always observed prior to volcanic eruption, probably because many terrestrial volcanoes contain abundant groundwater or surface water that scrubs magmatic gases until a dry pathway to the atmosphere is established. To better understand scrubbing and its implications for volcano monitoring, we model thermochemically the reaction of magmatic gases with water. First, we inject a 915??C magmatic gas from Merapi volcano into 25??C air-saturated water (ASW) over a wide range of gas/water mass ratios from 0.0002 to 100 and at a total pressure of 0.1 MPa. Then we model closed-system cooling of the magmatic gas, magmatic gas-ASW mixing at 5.0 MPa, runs with varied temperature and composition of the ASW, a case with a wide range of magmatic-gas compositions, and a reaction of a magmatic gas-ASW mixture with rock. The modeling predicts gas and water compositions, and, in one case, alteration assemblages for a wide range of scrubbing conditions; these results can be compared directly with samples from degassing volcanoes. The modeling suggests that CO2(g) is the main species to monitor when scrubbing exists; another candidate is H2S(g), but it can be affected by reactions with aqueous ferrous iron. In contrast, scrubbing by water will prevent significant SO2(g) and most HCl(g) emissions until dry pathways are established, except for moderate HCl(g) degassing from pH 100 t/d (tons per day) of SO2(g) in addition to CO2(g) and H2S(g) should be taken as a criterion of magma intrusion. Finally, the modeling suggests that the interpretation of gas-ratio data requires a case-by-case evaluation since ratio changes can often be produced by several mechanisms; nevertheless, several gas ratios may provide useful indices for monitoring the drying out of gas pathways. Published by Elsevier Science B.V.

  4. A xenon gas purity monitor for EXO

    CERN Document Server

    Dobi, A; Herrin, S; Odian, A; Prescott, C Y; Rowson, P C; Ackerman, N; Aharmin, B; Auger, M; Barbeau, P S; Barry, K; Benitez-Medina, C; Breidenbach, M; Cook, S; Counts, I; Daniels, T; DeVoe, R; Dolinski, M J; Donato, K; Fairbank, W; Farine, J; Giroux, G; Gornea, R; Graham, K; Gratta, G; Green, M; Hagemann, C; Hall, K; Hallman, D; Hargrove, C; Karelin, A; Kaufman, L J; Kuchenkov, A; Kumar, K; Lacey, J; Leonard, D S; LePort, F; Mackay, D; MacLellan, R; Mong, B; Diez, M Montero; Muller, A R; Neilson, R; Niner, E; O'Sullivan, K; Piepke, A; Pocar, A; Pushkin, K; Rollin, E; Sinclair, D; Slutsky, S; Stekhanov, V; Twelker, K; Voskanian, N; Vuilleumier, J -L; Wichoski, U; Wodin, J; Yang, L; Yen, Y -R

    2011-01-01

    We discuss the design, operation, and calibration of two versions of a xenon gas purity monitor (GPM) developed for the EXO double beta decay program. The devices are sensitive to concentrations of oxygen well below 1 ppb at an ambient gas pressure of one atmosphere or more. The theory of operation of the GPM is discussed along with the interactions of oxygen and other impurities with the GPM's tungsten filament. Lab tests and experiences in commissioning the EXO-200 double beta decay experiment are described. These devices can also be used on other noble gases.

  5. Protocol for Monitoring Fish Assemblages in Pacific Northwest National Parks

    Science.gov (United States)

    Brenkman, Samuel J.; Connolly, Patrick J.

    2008-01-01

    Rivers and streams that drain from Olympic, Mount Rainier, and North Cascades National Parks are among the most protected corridors in the lower 48 States, and represent some of the largest tracts of contiguous, undisturbed habitat throughout the range of several key fish species of the Pacific Northwest. These watersheds are of high regional importance as freshwater habitat sanctuaries for native fish, where habitat conditions are characterized as having little to no disturbance from development, channelization, impervious surfaces, roads, diversions, or hydroelectric projects. Fishery resources are of high ecological and cultural importance in Pacific Northwest National Parks, and significantly contribute to economically important recreational, commercial, and tribal fisheries. This protocol describes procedures to monitor trends in fish assemblages, fish abundance, and water temperature in eight rivers and five wadeable streams in Olympic National Park during summer months, and is based on 4 years of field testing. Fish assemblages link freshwater, marine, and terrestrial ecosystems. They also serve as focal resources of national parks and are excellent indicators of ecological conditions of rivers and streams. Despite the vital importance of native anadromous and resident fish populations, there is no existing monitoring program for fish assemblages in the North Coast and Cascades Network. Specific monitoring objectives of this protocol are to determine seasonal and annual trends in: (1) fish species composition, (2) timing of migration of adult fish, (3) relative abundance, (4) age and size structure, (5) extent of non-native and hatchery fish, and (6) water temperature. To detect seasonal and annual trends in fish assemblages in reference sites, we rely on repeated and consistent annual sampling at each monitoring site. The general rationale for the repeated sampling of reference sites is to ensure that we account for the high interannual variability in fish

  6. Apparatus and method for monitoring of gas having stable isotopes

    Science.gov (United States)

    Clegg, Samuel M; Fessenden-Rahn, Julianna E

    2013-03-05

    Gas having stable isotopes is monitored continuously by using a system that sends a modulated laser beam to the gas and collects and transmits the light not absorbed by the gas to a detector. Gas from geological storage, or from the atmosphere can be monitored continuously without collecting samples and transporting them to a lab.

  7. Apparatus and method for monitoring of gas having stable isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Clegg, Samuel M; Fessenden-Rahn, Julianna E

    2013-03-05

    Gas having stable isotopes is monitored continuously by using a system that sends a modulated laser beam to the gas and collects and transmits the light not absorbed by the gas to a detector. Gas from geological storage, or from the atmosphere can be monitored continuously without collecting samples and transporting them to a lab.

  8. [Multi-bed & multi-parameter central monitoring system based on TCP/IP protocol].

    Science.gov (United States)

    Lian, S J; Hu, D K; Zhao, M H; Tang, L H

    2000-02-01

    Communication is one of the key problems to a central monitoring system. In this paper we put forward a central monitoring system using TCP/IP as the network protocol, Windows NT4.0 as the platform, forming a Intranet in a hospital. We also discussed the communication problem between the bed-side monitoring station and the central monitoring station in detail and then put forward a new protocol--Hospital Central Monitor Protocol (HCMP) based on TCP/IP to transfer monitoring data. It is easy to achieve tele-monitoring through the current communication subsystem.

  9. Prairie Monitoring Protocol Development: North Coast and Cascades Network

    Science.gov (United States)

    McCoy, Allen; Dalby, Craig

    2009-01-01

    The purpose of the project was to conduct research that will guide development of a standard approach to monitoring several components of prairies within the North Coast and Cascades Network (NCCN) parks. Prairies are an important element of the natural environment at many parks, including San Juan Island National Historical Park (NHP) and Ebey's Landing National Historical Reserve (NHR). Forests have been encroaching on these prairies for many years, and so monitoring of the prairies is an important resource issue. This project specifically focused on San Juan Island NHP. Prairies at Ebey's Landing NHR will be monitored in the future, but that park was not mapped as part of this prototype project. In the interest of efficiency, the Network decided to investigate two main issues before launching a full protocol development effort: (1) the imagery requirements for monitoring prairie components, and (2) the effectiveness of software to assist in extracting features from the imagery. Several components of prairie monitoring were initially identified as being easily tracked using aerial imagery. These components included prairie/forest edge, broad prairie composition (for example, shrubs, scattered trees), and internal exclusions (for example, shrubs, bare ground). In addition, we believed that it might be possible to distinguish different grasses in the prairies if the imagery were of high enough resolution. Although the areas in question at San Juan Island NHP are small enough that mapping on the ground with GPS (Global Positioning System) would be feasible, other applications could benefit from aerial image acquisition on a regular, recurring basis and thereby make the investment in aerial imagery worthwhile. The additional expense of orthorectifying the imagery also was determined to be cost-effective.

  10. A MAC Protocol to Support Monitoring of Underwater Spaces †

    Science.gov (United States)

    Santos, Rodrigo; Orozco, Javier; Ochoa, Sergio F.; Meseguer, Roc; Eggly, Gabriel; Pistonesi, Marcelo F.

    2016-01-01

    Underwater sensor networks are becoming an important field of research, because of their everyday increasing application scope. Examples of their application areas are environmental and pollution monitoring (mainly oil spills), oceanographic data collection, support for submarine geolocalization, ocean sampling and early tsunamis alert. The challenge of performing underwater communications is well known, provided that radio signals are useless in this medium, and a wired solution is too expensive. Therefore, the sensors in these networks transmit their information using acoustic signals that propagate well under water. This data transmission type not only brings an opportunity, but also several challenges to the implementation of these networks, e.g., in terms of energy consumption, data transmission and signal interference. In order to help advance the knowledge in the design and implementation of these networks for monitoring underwater spaces, this paper proposes a MAC protocol for acoustic communications between the nodes, based on a self-organized time division multiple access mechanism. The proposal was evaluated using simulations of a real monitoring scenario, and the obtained results are highly encouraging. PMID:27355950

  11. A MAC Protocol to Support Monitoring of Underwater Spaces

    Directory of Open Access Journals (Sweden)

    Rodrigo Santos

    2016-06-01

    Full Text Available Underwater sensor networks are becoming an important field of research, because of their everyday increasing application scope. Examples of their application areas are environmental and pollution monitoring (mainly oil spills, oceanographic data collection, support for submarine geolocalization, ocean sampling and early tsunamis alert. The challenge of performing underwater communications is well known, provided that radio signals are useless in this medium, and a wired solution is too expensive. Therefore, the sensors in these networks transmit their information using acoustic signals that propagate well under water. This data transmission type not only brings an opportunity, but also several challenges to the implementation of these networks, e.g., in terms of energy consumption, data transmission and signal interference. In order to help advance the knowledge in the design and implementation of these networks for monitoring underwater spaces, this paper proposes a MAC protocol for acoustic communications between the nodes, based on a self-organized time division multiple access mechanism. The proposal was evaluated using simulations of a real monitoring scenario, and the obtained results are highly encouraging.

  12. A MAC Protocol to Support Monitoring of Underwater Spaces.

    Science.gov (United States)

    Santos, Rodrigo; Orozco, Javier; Ochoa, Sergio F; Meseguer, Roc; Eggly, Gabriel; Pistonesi, Marcelo F

    2016-01-01

    Underwater sensor networks are becoming an important field of research, because of their everyday increasing application scope. Examples of their application areas are environmental and pollution monitoring (mainly oil spills), oceanographic data collection, support for submarine geolocalization, ocean sampling and early tsunamis alert. The challenge of performing underwater communications is well known, provided that radio signals are useless in this medium, and a wired solution is too expensive. Therefore, the sensors in these networks transmit their information using acoustic signals that propagate well under water. This data transmission type not only brings an opportunity, but also several challenges to the implementation of these networks, e.g., in terms of energy consumption, data transmission and signal interference. In order to help advance the knowledge in the design and implementation of these networks for monitoring underwater spaces, this paper proposes a MAC protocol for acoustic communications between the nodes, based on a self-organized time division multiple access mechanism. The proposal was evaluated using simulations of a real monitoring scenario, and the obtained results are highly encouraging.

  13. Towards a protocol for community monitoring of caribou body condition

    Directory of Open Access Journals (Sweden)

    Gary Kofinas

    2003-04-01

    Full Text Available Effective ecological monitoring is central to the sustainability of subsistence resources of indigenous communities. For caribou, Arctic indigenous people's most important terrestrial subsistence resource, body condition is a useful measure because it integrates many ecological factors that influence caribou productivity and is recognized by biologists and hunters as meaningful. We draw on experience working with indigenous communities to develop a body condition monitoring protocol for harvested animals. Local indigenous knowledge provides a broad set of caribou health indicators and explanations of how environmental conditions may affect body condition. Scientific research on caribou body condition provides a basis to develop a simple dichotomous key that includes back fat, intestinal fat, kidney fat and marrow¬fat, as measures of body fat, which in autumn to early winter correlates with the likelihood of pregnancy. The dichotomous key was formulated on "expert knowledge" and validated against field estimates of body composition. We compare local indigenous knowledge indicators with hunter documented data based on the dichotomous key. The potential con¬tribution of community body condition monitoring can be realized through the continued comparative analysis of datasets. Better communication among hunters and scientists, and refinement of data collection and analysis methods are recommended. Results suggest that specific local knowledge may become generalized and integrated between regions if the dichotomous key is used as a generalized (semi-quantitative index and complemented with other science and community-based assessments.

  14. Monitoring protocol for field testing. Monitoring of heating techniques under practical conditions; Monitoringsprotocol voor veldtesten. Monitoring van warmtetechnieken onder praktijkomstandigheden

    Energy Technology Data Exchange (ETDEWEB)

    Fennema, E.; Jansen, C.

    2009-12-15

    Incentivisation of renewable energy requires large-scale implementation of technologies such as heat-cold storage, heat pumps, cogeneration, solar boilers and waste heat utilization. In practice, the performances of such systems often turn out to deviate from the manufacturer's specifications. Therefore it is important to obtain objective data from practice to gain insight in the differences between theoretical and practical performances and items for improvement of various technologies. The aim of monitoring practice is formulated as: 'gaining insight in the energetic performances of heating techniques under practical circumstances by means of monitoring'. Large-scale measuring in a uniform manner requires a monitoring protocol. Such a protocol safeguards the quality, objectivity, uniformity and hence the reliability of the measuring data. [Dutch] Stimulering van duurzame energie vraagt om grootschalige toepassingen van technologieen zoals warmte-koude opslag, warmtepompen, warmtekracht, zonneboilers en restwarmtebenutting. Het blijkt dat de prestaties van dergelijke systemen in de praktijk vaak afwijken van de fabrikantspecificaties. Daarom is het van belang om objectieve praktijkgegevens te verkrijgen waarmee inzicht wordt verkregen in het verschil tussen theoretische en praktische prestaties, en de verbeterpunten van verschillende technologieen. Het doel van praktijkmonitoring is als volgt geformuleerd: via monitoring het inzicht te verkrijgen in de energetische prestaties van warmtetechnieken onder praktijkomstandigheden. Het uitvoeren van grootschalige metingen op een uniforme wijze vereist een monitoring protocol. Zo'n protocol waarborgt de kwaliteit, objectiviteit, uniformiteit en daarmee de betrouwbaarheid van de meetdata.

  15. Computer monitors natural-gas-liquids line

    Energy Technology Data Exchange (ETDEWEB)

    Muldoon, J.F.; Wilson, W.O.

    1974-12-09

    A new computer-based system continuously monitors composition, flow, and specific gravity of natural-gas liquids flowing in a pipeline. Compositional analysis is performed automatically, under computer control, by a process gas chromatograph. The chromatograph is tailored for hydrocarbon analysis and will separate these compounds into individual components: nitrogen, carbon dioxide, methane, ethane, propane, n-butane, isobutane, n-pentane, isopentane, 1-hexane, 2-hexane, 3-hexane, 4-hexane, and heptanes-and-heavier. At the completion of the analysis, the compositional totals, barrels, and pounds, are updated based on flow and average specific gravity. Reports generated include a compositional report, a subtotal ticket report, and a ticket report. The new system, designated Pro-PACE-100, has been successfully installed in several pipeline applications, including one for Mid-America Pipeline Co. in New Mexico.

  16. Inherently safe passive gas monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Cordaro, Joseph V.; Bellamy, John Stephen; Shuler, James M.; Shull, Davis J.; Leduc, Daniel R.

    2016-09-06

    Generally, the present disclosure is directed to gas monitoring systems that use inductive power transfer to safely power an electrically passive device included within a nuclear material storage container. In particular, the electrically passive device can include an inductive power receiver for receiving inductive power transfer through a wall of the nuclear material storage container. The power received by the inductive power receiver can be used to power one or more sensors included in the device. Thus, the device is not required to include active power generation components such as, for example, a battery, that increase the risk of a spark igniting flammable gases within the container.

  17. Weather and Climate Monitoring Protocol, Channel Islands National Park, California

    Science.gov (United States)

    McEachern, Kathryn; Power, Paula; Dye, Linda; Rudolph, Rocky

    2008-01-01

    Weather and climate are strong drivers of population dynamics, plant and animal spatial distributions, community interactions, and ecosystem states. Information on local weather and climate is crucial in interpreting trends and patterns in the natural environment for resource management, research, and visitor enjoyment. This document describes the weather and climate monitoring program at the Channel Islands National Park (fig. 1), initiated in the 1990s. Manual and automated stations, which continue to evolve as technology changes, are being used for this program. The document reviews the history of weather data collection on each of the five Channel Islands National Park islands, presents program administrative structure, and provides an overview of procedures for data collection, archival, retrieval, and reporting. This program overview is accompanied by the 'Channel Islands National Park Remote Automated Weather Station Field Handbook' and the 'Channel Islands National Park Ranger Weather Station Field Handbook'. These Handbooks are maintained separately at the Channel Island National Park as 'live documents' that are updated as needed to provide a current working manual of weather and climate monitoring procedures. They are available on request from the Weather Program Manager (Channel Islands National Park, 1901 Spinnaker Dr., Ventura, CA 93001; 805.658.5700). The two Field Handbooks describe in detail protocols for managing the four remote automated weather stations (RAWS) and the seven manual Ranger Weather Stations on the islands, including standard operating procedures for equipment maintenance and calibration; manufacturer operating manuals; data retrieval and archiving; metada collection and archival; and local, agency, and vendor contracts.

  18. Noble gas atmospheric monitoring at reprocessing facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nakhleh, C.W.; Perry, R.T. Jr.; Poths, J.; Stanbro, W.D.; Wilson, W.B.; Fearey, B.L.

    1997-05-01

    The discovery in Iraq after the Gulf War of the existence of a large clandestine nuclear-weapon program has led to an across-the-board international effort, dubbed Programme 93+2, to improve the effectiveness and efficiency of International Atomic Energy Agency (IAEA) safeguards. One particularly significant potential change is the introduction of environmental monitoring (EM) techniques as an adjunct to traditional safeguards methods. Monitoring of stable noble gas (Kr, Xe) isotopic abundances at reprocessing plant stacks appears to be able to yield information on the burnup and type of the fuel being processed. To estimate the size of these signals, model calculations of the production of stable Kr, Xe nuclides in reactor fuel and the subsequent dilution of these nuclides in the plant stack are carried out for two case studies: reprocessing of PWR fuel with a burnup of 35 GWd/tU, and reprocessing of CAND fuel with a burnup of 1 GWd/tU. For each case, a maximum-likelihood analysis is used to determine the fuel burnup and type from the isotopic data.

  19. Suggested guidelines for gas emission monitoring at danish landfills

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Scheutz, Charlotte

    2015-01-01

    Landfill gas is produced on waste disposal sites receiving organic waste resulting in emission of methane. Regulation requires that the landfill gas is managed in order to reduce emissions, but very few suggestions exist to how the landfill gas management activities are monitored, what requirements...... measures to determine the efficiency of the performed emission mitigation is defined. Finally, several principles are presented for how criteria can be developed for when a monitoring program can be terminated....

  20. A Microprocessor-Based System for Monitoring Gas Turbines

    Directory of Open Access Journals (Sweden)

    P. K.S. Shrivastava

    1989-04-01

    Full Text Available The development and testing of hardware and software for a microprocessor-based monitoring system for gas turbines is described in this paper. The operators of gas turbines can be trained to monitor running hours, slip between high and low pressure compressor spools and torque on the reduction gear-box under various conditions ofoperation. The system will replace the traditional method of monitoring these parameters which are more time consuming and error prone.

  1. Calibration of Community-based Coral Reef Monitoring Protocols ...

    African Journals Online (AJOL)

    Keywords: coral reef monitoring, community-based, calibration. Abstract—Coral reef monitoring (CRM) has been recognised as an important management tool and has ..... Pollution Bulletin 40: 537-550. Wilkinson, C., Green, A., Almany, J. &.

  2. Riparian Monitoring of Wadeable Streams Protocol for the Park Units in the Northern Colorado Plateau Network

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A quick reviewed survey protocol framework developed by the National Park Service (NPS) and U.S. Geological Survey (USGS) for riparian monitoring of wadeable streams...

  3. National Wildlife Refuge System Protocol Framework for the Inventory and Monitoring of Secretive Marsh Birds

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This survey protocol provides standardized methods for monitoring secretive marsh birds during the breeding season on National Wildlife Refuges across North America....

  4. An ad-hoc opportunistic dissemination protocol for smartphone-based participatory traffic monitoring

    NARCIS (Netherlands)

    Türkes, Okan; Seraj, Fatjon; Scholten, Hans; Meratnia, Nirvana; Havinga, Paul J.M.

    2015-01-01

    This study introduces an ad-hoc opportunistic data dissemination protocol, called VADISS, that facilitates participatory traffic monitoring applications with smartphones. As a ubiquitous alternative to existing vehicular networking methods, VADISS uses the default WiFi interfaces universally adopted

  5. Investigating Long-Term Monitoring Protocols in support of Quivira NWR Habitat Objectives

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The project purpose is to investigate long-term monitoring protocols in support of Quivira NWR habitat objectives as described in the Refuge’s recently approved CCP...

  6. National Protocol Framework for the Inventory and Monitoring of Breeding Landbirds Using Point Counts

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This protocol framework provides a tool for deleoping site-specific guidance on how to inventory or monitor breeding landbirds in North America by use of point...

  7. National Protocol Framework for the Inventory and Monitoring of Migratory Shorebirds [In Review

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This protocol framework provides guidance for conducting inventory and monitoring of migrating and wintering shorebirds in all potential habitats at multiple...

  8. National Protocol Framework for the Inventory and Monitoring of Bees Ver 2.0

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This national protocol framework is a standardized tool for the inventory and monitoring of the approximately 4,200 species of native and non-native bee species that...

  9. Engineering considerations for corrosion monitoring of gas gathering pipeline systems

    Energy Technology Data Exchange (ETDEWEB)

    Braga, T.G.; Asperger, R.G.

    1987-01-01

    Proper corrosion monitoring of gas gathering pipelines requires a system review to determine the appropriate monitor locations and types of monitoring techniques. This paper develops and discusses a classification of conditions such as flow regime and gas composition. Also discussed are junction categories which, for corrosion monitoring, need to be considered from two points of view. The first is related to fluid flow in the line and the second is related corrosion inhibitor movement along the pipeline. The appropriate application of the various monitoring techniques such as coupons, hydrogen detectors, electrical resistance probe and linear polarization probes are discussed in relation to flow regime and gas composition. Problems caused by semi-conduction from iron sulfide are considered. Advantages and disadvantages of fluid gathering methods such as pots and flow-through drips are discussed in relation to their reliability as on-line monitoring locations.

  10. Hydrogen and Oxygen Gas Monitoring System Design and Operation

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader; Kevin G. DeWall; J. Stephen Herring

    2007-06-01

    This paper describes pertinent design practices of selecting types of monitors, monitor unit placement, setpoint selection, and maintenance considerations for gas monitors. While hydrogen gas monitors and enriched oxygen atmosphere monitors as they would be needed for hydrogen production experiments are the primary focus of this paper, monitors for carbon monoxide and carbon dioxide are also discussed. The experiences of designing, installing, and calibrating gas monitors for a laboratory where experiments in support of the DOE Nuclear Hydrogen Initiative (NHI) are described along with codes, standards, and regulations for these monitors. Information from the literature about best operating practices is also presented. The NHI program has two types of activities. The first, near-term activity is laboratory and pilot-plant experimentation with different processes in the kilogram per day scale to select the most promising types of processes for future applications of hydrogen production. Prudent design calls for indoor gas monitors to sense any hydrogen leaks within these laboratory rooms. The second, longer-term activity is the prototype, or large-scale plants to produce tons of hydrogen per day. These large, outdoor production plants will require area (or “fencepost”) monitoring of hydrogen gas leaks. Some processes will have oxygen production with hydrogen production, and any oxygen releases are also safety concerns since oxygen gas is the strongest oxidizer. Monitoring of these gases is important for personnel safety of both indoor and outdoor experiments. There is some guidance available about proper placement of monitors. The fixed point, stationary monitor can only function if the intruding gas contacts the monitor. Therefore, monitor placement is vital to proper monitoring of the room or area. Factors in sensor location selection include: indoor or outdoor site, the location and nature of potential vapor/gas sources, chemical and physical data of the

  11. Coal mine gas monitoring system based on wireless sensor network

    Institute of Scientific and Technical Information of China (English)

    WANG Jian; WANG Ru-lin; WANG Xue-min; SHEN Chuan-he

    2007-01-01

    Based on the nowadays'condition.it is urgent that the gas detection cable communication system must be replaced by the wireless communication systems.The wireless sensors distributed in the environment can achieve the intelligent gas monitoring system.Apply with multilayer data fuse to design working tactics,and import the artificial neural networks to analyze detecting result.The wireless sensors system communicates with the controI center through the optical fiber cable.All the gas sensor nodes distributed in coal mine are combined into an intelligent,flexible structure wireless network system.forming coal mine gas monitoring system based on wireless sensor network.

  12. Unraveling fabrication and calibration of wearable gas monitor for use under free-living conditions.

    Science.gov (United States)

    Yue Deng; Cheng Chen; Tsow, Francis; Xiaojun Xian; Forzani, Erica

    2016-08-01

    Volatile organic compounds (VOC) are organic chemicals that have high vapor pressure at regular conditions. Some VOC could be dangerous to human health, therefore it is important to determine real-time indoor and outdoor personal exposures to VOC. To achieve this goal, our group has developed a wearable gas monitor with a complete sensor fabrication and calibration protocol for free-living conditions. Correction factors for calibrating the sensors, including sensitivity, aging effect, and temperature effect are implemented into a Quick Response Code (QR code), so that the pre-calibrated quartz tuning fork (QTF) sensor can be used with the wearable monitor under free-living conditions.

  13. Field Monitoring Protocol. Mini-Split Heat Pumps

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, Dane [National Renewable Energy Lab. (NREL), Golden, CO (United States); Fang, Xia [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tomerlin, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States); Winkler, Jon [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hancock, E. [Mountain Energy Partnership, Longmont, CO (United States)

    2011-03-01

    This Building America program report provides a detailed method for accurately measuring and monitoring performance of a residential mini-split heat pump, which will be used in high-performance retrofit applications.

  14. Clinical validation protocols for noninvasive blood pressure monitors and their recognition by regulatory authorities and professional organizations: rationale and considerations for a single unified protocol or standard.

    Science.gov (United States)

    Ng, Kim-Gau

    2013-10-01

    Standardized protocols for validating the clinical accuracy of noninvasive blood pressure (NIBP) monitors have been available since 1987. Some of them were developed by standards bodies and others by professional organizations. They have been well-tested through use and progressively improved through multiple revisions; however, many methodological differences exist between them. In addition, for the purpose of regulatory approval or marketing clearance, some protocols are recognized in some countries but not in others; thus, manufacturers have to validate their NIBP monitors to more than one protocol in order to market them worldwide. The use of different protocols not only makes it difficult to compare one device with another but also complicates the validation, regulatory approval, marketing, and public acceptance of NIBP monitors, creating undue burden on manufacturers and unnecessary confusion among users. There is a need for protocol developers, standards bodies, and regulatory authorities to work together to develop and agree on a single unified protocol or standard, one that builds on the strengths of the various protocols that have been developed so far. It is apparent that there is already a trend toward convergence of the various protocols into two protocols, namely, the ISO 81060-2:2009 standard and the 2010 European Society of Hypertension International Protocol. With further reconciliation and consensus, it should be possible to integrate the best features of the ISO, European Society of Hypertension, and other protocols, along with further improvements, into a single unified protocol or standard.

  15. High-rangeability ultrasonic gas flowmeter for monitoring flare gas.

    Science.gov (United States)

    Mylvaganam, K S

    1989-01-01

    A transit-time ultrasonic gas flowmeter for high-rangeability requirements, such as those encountered in flare-gas flow-metering, is presented. The concept of ray rescue angle for the orientation of the ultrasonic transducers in single-beam transit-time ultrasonic flowmeters is introduced to overcome the problem of ultrasonic beam drift in high-velocity flows. To overcome problems associated with noise at high velocities, a chirp signal is used. To preserve the accuracy of the meter at low velocities near zero flow, a combination of chirp and continuous-wave signals is used to interrogate the flow. Overall system performance is presented, based on results from extensive wind-tunnel tests.

  16. New mud gas monitoring system aboard D/V Chikyu

    Science.gov (United States)

    Kubo, Yusuke; Inagaki, Fumio; Eguchi, Nobuhisa; Igarashi, Chiaki

    2013-04-01

    Mud gas logging has been commonly used in oil industry and continental scientific drilling to detect mainly hydrocarbon gases from the reservoir formation. Quick analysis of the gas provides almost real-time information which is critical to evaluate the formation and, in particular, safety of drilling operation. Furthermore, mud gas monitoring complements the lack of core or fluid samples particularly in a deep hole, and strengthen interpretations of geophysical logs. In scientific ocean drilling, on the other hand, mud gas monitoring was unavailable in riserless drilling through the history of DSDP and ODP, until riser drilling was first carried out in 2009 by D/V Chikyu. In IODP Exp 319, GFZ installed the same system with that used in continental drilling aboard Chikyu. High methane concentrations are clearly correlated with increased wood content in the cuttings. The system installation was, however, temporary and gas separator was moved during the expedition for a technical reason. In 2011, new mud gas monitoring system was installed aboard Chikyu and was used for the first time in Exp 337. The gas separator was placed on a newly branched bypass mud flow line, and the gas sample was sent to analysis unit equipped with methane carbon isotope analyzer in addition to mass spectrometer and gas chromatograph. The data from the analytical instruments is converted to depth profiles by calculating the lag effects due to mud circulation. Exp 337 was carried out from July 26 to Sep 30, 2011, at offshore Shimokita peninsula, northeast Japan, targeting deep sub-seafloor biosphere in and around coal bed. Data from the hole C0020A, which was drilled to 2466 mbsf with riser drilling, provided insights into bio-geochemical process through the depth of the hole. In this presentation, we show the design of Chikyu's new mud gas monitoring system, with preliminary data from Exp 337.

  17. A Gas Monitoring and Control System in a Coal and Gas Outburst Laboratory

    Directory of Open Access Journals (Sweden)

    W. Nie

    2014-01-01

    Full Text Available Coal and gas outburst is a phenomenon characterized by the ejection of gas and coal from the solid face of a mine. Physical minioutburst experiments are a very important tool for analyzing outbursts of coal and gas. However, few reports have focused on the safety problem produced by gas concentration or the role of gas spread during the physical experiments. In this study, we designed a simple monitoring and control system for the safety of staff during the minioutburst experiments. The results showed that, in the simulation of four dangerous situations, the system based on a sensors feedback loop can monitor the development of gas content in the temporal and spatial domains for the enhancement of accurate warnings. The system also automatically chooses the appropriate ventilation measures to lower the gas content considering different degrees of danger.

  18. Field Monitoring Protocol: Mini-Split Heat Pumps

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, D.; Fang, X.; Tomerlin, J.; Winkler, J.; Hancock, E.

    2011-03-01

    The report provides a detailed method for accurately measuring and monitoring performance of a residential Mini-Split Heat Pump. It will be used in high-performance retrofit applications, and as part of DOE's Building America residential research program.

  19. Draft Plan to Develop Non-Intrusive Load Monitoring Test Protocols

    Energy Technology Data Exchange (ETDEWEB)

    Mayhorn, Ebony T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sullivan, Greg P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Petersen, Joseph M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Baechler, Michael C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-29

    This document presents a Draft Plan proposed to develop a common test protocol that can be used to evaluate the performance requirements of Non-Intrusive Load Monitoring. Development on the test protocol will be focused on providing a consistent method that can be used to quantify and compare the performance characteristics of NILM products. Elements of the protocols include specifications for appliances to be used, metrics, instrumentation, and a procedure to simulate appliance behavior during tests. In addition, three priority use cases for NILM will be identified and their performance requirements will specified.

  20. Operating experience review of an INL gas monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, Lee C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); DeWall, K. G. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Herring, J. S. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-12

    This article describes the operations of several types of gas monitors in use at the Idaho National Laboratory (INL) High Temperature Electrolysis Experiment (HTE) laboratory. The gases monitored in the lab room are hydrogen, carbon monoxide, carbon dioxide, and oxygen. The operating time, calibration, and both actual and unwanted alarms are described. The calibration session time durations are described. In addition, some simple calculations are given to estimate the reliability of these monitors and the results are compared to operating experiences of other types of monitors.

  1. 76 FR 20536 - Protocol Gas Verification Program and Minimum Competency Requirements for Air Emission Testing

    Science.gov (United States)

    2011-04-13

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 75 RIN 2060-AQ06 Protocol Gas Verification Program and Minimum Competency Requirements for Air Emission Testing Correction In rule document 2011-6216 appearing on pages 17288-17325 in...

  2. 76 FR 50164 - Protocol Gas Verification Program and Minimum Competency Requirements for Air Emission Testing...

    Science.gov (United States)

    2011-08-12

    ... AGENCY 40 CFR Parts 72 and 75 RIN 2060-AQ06 Protocol Gas Verification Program and Minimum Competency... Program and Minimum Competency Requirements for Air Emission Testing rule. EPA published in the Federal... Program (PGVP) and the minimum competency requirements for Air Emission Testing Bodies (AETBs), and...

  3. 76 FR 50129 - Protocol Gas Verification Program and Minimum Competency Requirements for Air Emission Testing...

    Science.gov (United States)

    2011-08-12

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 72 and 75 RIN 2060-AQ06 Protocol Gas Verification Program and Minimum Competency... Verification Program and Minimum Competency Requirements for Air Emission Testing final rule, which...

  4. Indicators and protocols for monitoring impacts of formal and informal trails in protected areas

    Science.gov (United States)

    Marion, Jeffrey L.; Leung, Yu-Fai

    2011-01-01

    Trails are a common recreation infrastructure in protected areas and their conditions affect the quality of natural resources and visitor experiences. Various trail impact indicators and assessment protocols have been developed in support of monitoring programs, which are often used for management decision-making or as part of visitor capacity management frameworks. This paper reviews common indicators and assessment protocols for three types of trails, surfaced formal trails, unsurfaced formal trails, and informal (visitor-created) trails. Monitoring methods and selected data from three U.S. National Park Service units are presented to illustrate some common trail impact indicators and assessment options.

  5. Development of oil and gas sector monitoring in Perm territory

    Directory of Open Access Journals (Sweden)

    Galina Vasil'evna Kutergina

    2012-03-01

    Full Text Available This paper reviews current approaches to the definition of «regional monitoring» and its contents. The work is based on the use of a systematic approach to the analysis of regional monitoring, reviewing it as part of the overall control system and risk management in the region.Organization of regional monitoring is considered on the example of oil and gas complex (OGC of Perm territory. This paper summarizes the structure of the OGC, the specific features of the activities of the enterprises that have the most significant impact on the organization of monitoring. The findings are based on an analysis and compilation of statistics. Authors consider in most details the subjects and objects of state and corporate level monitoring of the regional OGC in Perm territory, their main function of monitoring, interoperability issues, methodological support of various institutions in the periodic monitoring of OGC - the audit committees and internal audit units. Proposals for the development in most parts refer to the use of risk-oriented approach to organizing periodic monitoring of oil and gas industry in the territory on the basis of a common methodology for assessing its effectiveness. The proposals to expand cooperation between state agencies and regional bodies of governance of OGC enterprises in Perm territory on a wide range of areas of the organization of monitoring: the exchange of professional information, methodology, activities, staff and others.

  6. Infrared spectroscopy for monitoring gas hydrates in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Dobbs, G.T.; Luzinova, Y.; Mizaikoff, B. [Georgia Inst. of Technology, Atlanta, GA (United States). School of Chemistry and Biochemistry; Raichlin, Y.; Katzir, A. [Tel-Aviv Univ., Tel-Aviv (Israel). Shool of Physics and Astronomy

    2008-07-01

    This paper introduced the first principles for monitoring gas hydrate formation and dissociation in aqueous solution by evaluating state-responsive infrared (IR) absorption features of water with fiberoptic evanescent field spectroscopy. A first order linear functional relationship was also derived according to Lambert Beer's law in order to quantify the percentage gas hydrate within the volume of water probed via the evanescent field. In addition, spectroscopic studies evaluating seafloor sediments collected from a gas hydrate site in the Gulf of Mexico revealed minimal spectral interferences from sediment matrix components. As such, evanescent field sensing strategies were established as a promising perspective for monitoring the dynamics of gas hydrates in oceanic environments. 21 refs., 5 figs.

  7. Real-time trend monitoring of gas compressor stations

    Energy Technology Data Exchange (ETDEWEB)

    Van Hardeveld, T. (Nova, an Alberta Corp., AB (Canada))

    1991-02-01

    The authors' company has developed a machinery health monitoring system (MHealth) for short-term and long-term historical trending and analysis of data from its 40 gas compressor stations. The author discusses the benefits of real-time trending in troubleshooting operations, in preventative maintenance scheduling and cites specific applications in the startup operations of several new gas compressor/centrifugal compressor units.

  8. [Point-of-Care-Monitoring: Blood gas analysis].

    Science.gov (United States)

    Bickenbach, Johannes; Marx, Gernot

    2010-11-01

    Electrolyte- and acid-base-balance are relevant determinants for metabolic processes whose real time analysis is obligatory particularly in perioperative and intensive care treated patients. Also, the oxygenation status of the blood as a determinant for the oxygen supply of an organism and for the gas exchange is measured. By use of "point-of-care" (POC) monitoring, these important variables of blood gas analysis (BGA) can be measured real-time, potential mechanisms of compensation identified and disorder of homoeostasis reconstituted quickly. This article deals with the presentation of relevant parameters of blood gas analysis, potential pathologies and their treatment. © Georg Thieme Verlag Stuttgart · New York.

  9. Landbird Monitoring Protocol for National Parks in the North Coast and Cascades Network

    Science.gov (United States)

    Siegel, Rodney B.; Wilkerson, Robert L.; Jenkins, Kurt J.; Kuntz, Robert C.; Boetsch, John R.; Schaberl, James P.; Happe, Patricia J.

    2007-01-01

    This protocol narrative outlines the rationale, sampling design and methods for monitoring landbirds in the North Coast and Cascades Network (NCCN) during the breeding season. The NCCN, one of 32 networks of parks in the National Park System, comprises seven national park units in the Pacific Northwest, including three large, mountainous, natural area parks (Mount Rainier [MORA] and Olympic [OLYM] National Parks, North Cascades National Park Service Complex [NOCA]), and four small historic cultural parks (Ebey's Landing National Historical Reserve [EBLA], Lewis and Clark National Historical Park [LEWI], Fort Vancouver National Historical Park [FOVA], and San Juan Island National Historical Park [SAJH]). The protocol reflects decisions made by the NCCN avian monitoring group, which includes NPS representatives from each of the large parks in the Network as well as personnel from the U.S. Geological Survey Forest and Rangeland Ecosystem Science Center (USGS-FRESC) Olympic Field Station, and The Institute for Bird Populations, at meetings held between 2000 (Siegel and Kuntz, 2000) and 2005. The protocol narrative describes the monitoring program in relatively broad terms, and its structure and content adhere to the outline and recommendations developed by Oakley and others (2003) and adopted by NPS. Finer details of the methodology are addressed in a set of standard operating procedures (SOPs) that accompany the protocol narrative. We also provide appendixes containing additional supporting materials that do not clearly belong in either the protocol narrative or the standard operating procedures.

  10. Parameter monitoring system of the Dubna Gas-Filled Recoil Separator

    CERN Document Server

    Tsyganov, Y S; Sukhov, A M

    2015-01-01

    PC-based one-crate monitoring and control system of the Dubna Gas Filled Recoil Separator (DGFRS) is considered. It is developed for the long-term experiments at the U400 FLNR cyclotron and is aimed at the synthesis of super heavy nuclei in heavy ion induced complete fusion reactions. Parameters related to: a) beam and cyclotron; b) separator by itself, c) detection system, d) target and entrance window are measured and stored in the protocol file of the experiment. Special attention is paid to generating the alarm signals and implementing further the appropriate procedures

  11. A Novel Smart Routing Protocol for Remote Health Monitoring in Medical Wireless Networks

    Directory of Open Access Journals (Sweden)

    T. V. P. Sundararajan

    2014-01-01

    Full Text Available In a Medical Wireless Network (MWN, sensors constantly monitor patient's physiological condition and movement. Inter-MWN communications are set up between the Patient Server and one or more Centralized Coordinators. However, MWNs require protocols with little energy consumption and the self-organizing attribute perceived in ad-hoc networks. The proposed Smart Routing Protocol (SRP selects only the nodes with a higher residual energy and lower traffic density for routing. This approach enhances cooperation among the nodes of a Mobile Ad Hoc Network. Consequently, SRP produces better results than the existing protocols, namely Conditional Min-Max Battery Cost Routing, Min-Max Battery Cost Routing and AdHoc On-demand Distance Vector in terms of network parameters. The performance of the erstwhile schemes for routing protocols is evaluated using the network simulator Qualnet v 4.5.

  12. A novel Smart Routing Protocol for remote health monitoring in Medical Wireless Networks.

    Science.gov (United States)

    Sundararajan, T V P; Sumithra, M G; Maheswar, R

    2014-01-01

    In a Medical Wireless Network (MWN), sensors constantly monitor patient's physiological condition and movement. Inter-MWN communications are set up between the Patient Server and one or more Centralized Coordinators. However, MWNs require protocols with little energy consumption and the self-organizing attribute perceived in ad-hoc networks. The proposed Smart Routing Protocol (SRP) selects only the nodes with a higher residual energy and lower traffic density for routing. This approach enhances cooperation among the nodes of a Mobile Ad Hoc Network. Consequently, SRP produces better results than the existing protocols, namely Conditional Min-Max Battery Cost Routing, Min-Max Battery Cost Routing and AdHoc On-demand Distance Vector in terms of network parameters. The performance of the erstwhile schemes for routing protocols is evaluated using the network simulator Qualnet v 4.5.

  13. Protocols for Monitoring Habitat Restoration Projects in the Lower Columbia River and Estuary

    Energy Technology Data Exchange (ETDEWEB)

    Roegner, G. Curtis; Diefenderfer, Heida L.; Borde, Amy B.; Thom, Ronald M.; Dawley, Earl M.; Whiting, Allan H.; Zimmerman, Shon A.; Johnson, Gary E.

    2008-04-25

    Protocols for monitoring salmon habitat restoration projects are essential for the U.S. Army Corps of Engineers' environmental efforts in the Columbia River estuary. This manual provides state-of-the science data collection and analysis methods for landscape features, water quality, and fish species composition, among others.

  14. Robowell: An automated process for monitoring ground water quality using established sampling protocols

    Science.gov (United States)

    Granato, G.E.; Smith, K.P.

    1999-01-01

    Robowell is an automated process for monitoring selected ground water quality properties and constituents by pumping a well or multilevel sampler. Robowell was developed and tested to provide a cost-effective monitoring system that meets protocols expected for manual sampling. The process uses commercially available electronics, instrumentation, and hardware, so it can be configured to monitor ground water quality using the equipment, purge protocol, and monitoring well design most appropriate for the monitoring site and the contaminants of interest. A Robowell prototype was installed on a sewage treatment plant infiltration bed that overlies a well-studied unconfined sand and gravel aquifer at the Massachusetts Military Reservation, Cape Cod, Massachusetts, during a time when two distinct plumes of constituents were released. The prototype was operated from May 10 to November 13, 1996, and quality-assurance/quality-control measurements demonstrated that the data obtained by the automated method was equivalent to data obtained by manual sampling methods using the same sampling protocols. Water level, specific conductance, pH, water temperature, dissolved oxygen, and dissolved ammonium were monitored by the prototype as the wells were purged according to U.S Geological Survey (USGS) ground water sampling protocols. Remote access to the data record, via phone modem communications, indicated the arrival of each plume over a few days and the subsequent geochemical reactions over the following weeks. Real-time availability of the monitoring record provided the information needed to initiate manual sampling efforts in response to changes in measured ground water quality, which proved the method and characterized the screened portion of the plume in detail through time. The methods and the case study described are presented to document the process for future use.

  15. The first experience with LHC beam gas ionization monitor

    CERN Document Server

    Sapinski, M; Dehning, B; Guerrero, A; Patecki, M; Versteegen, R

    2012-01-01

    The Beam Gas Ionization Monitors (BGI) are used to measure beam emittance on LHC. This paper describes the detectors and their operation and discusses the issues met during the commissioning. It also discusses the various calibration procedures used to correct for non-uniformity of Multi-Channel plates and to correct the beam size for effects affecting the electron trajectory after ionization.

  16. Development of an Exhaled Breath Monitoring System with Semiconductive Gas Sensors, a Gas Condenser Unit, and Gas Chromatograph Columns

    Directory of Open Access Journals (Sweden)

    Toshio Itoh

    2016-11-01

    Full Text Available Various volatile organic compounds (VOCs in breath exhaled by patients with lung cancer, healthy controls, and patients with lung cancer who underwent surgery for resection of cancer were analyzed by gas condenser-equipped gas chromatography-mass spectrometry (GC/MS for development of an exhaled breath monitoring prototype system involving metal oxide gas sensors, a gas condenser, and gas chromatography columns. The gas condenser-GC/MS analysis identified concentrations of 56 VOCs in the breath exhaled by the test population of 136 volunteers (107 patients with lung cancer and 29 controls, and selected four target VOCs, nonanal, acetoin, acetic acid, and propanoic acid, for use with the condenser, GC, and sensor-type prototype system. The prototype system analyzed exhaled breath samples from 101 volunteers (74 patients with lung cancer and 27 controls. The prototype system exhibited a level of performance similar to that of the gas condenser-GC/MS system for breath analysis.

  17. Development of an Exhaled Breath Monitoring System with Semiconductive Gas Sensors, a Gas Condenser Unit, and Gas Chromatograph Columns.

    Science.gov (United States)

    Itoh, Toshio; Miwa, Toshio; Tsuruta, Akihiro; Akamatsu, Takafumi; Izu, Noriya; Shin, Woosuck; Park, Jangchul; Hida, Toyoaki; Eda, Takeshi; Setoguchi, Yasuhiro

    2016-11-10

    Various volatile organic compounds (VOCs) in breath exhaled by patients with lung cancer, healthy controls, and patients with lung cancer who underwent surgery for resection of cancer were analyzed by gas condenser-equipped gas chromatography-mass spectrometry (GC/MS) for development of an exhaled breath monitoring prototype system involving metal oxide gas sensors, a gas condenser, and gas chromatography columns. The gas condenser-GC/MS analysis identified concentrations of 56 VOCs in the breath exhaled by the test population of 136 volunteers (107 patients with lung cancer and 29 controls), and selected four target VOCs, nonanal, acetoin, acetic acid, and propanoic acid, for use with the condenser, GC, and sensor-type prototype system. The prototype system analyzed exhaled breath samples from 101 volunteers (74 patients with lung cancer and 27 controls). The prototype system exhibited a level of performance similar to that of the gas condenser-GC/MS system for breath analysis.

  18. Remote Real-Time Monitoring of Subsurface Landfill Gas Migration

    Directory of Open Access Journals (Sweden)

    Alan F. Smeaton

    2011-06-01

    Full Text Available The cost of monitoring greenhouse gas emissions from landfill sites is of major concern for regulatory authorities. The current monitoring procedure is recognised as labour intensive, requiring agency inspectors to physically travel to perimeter borehole wells in rough terrain and manually measure gas concentration levels with expensive hand-held instrumentation. In this article we present a cost-effective and efficient system for remotely monitoring landfill subsurface migration of methane and carbon dioxide concentration levels. Based purely on an autonomous sensing architecture, the proposed sensing platform was capable of performing complex analytical measurements in situ and successfully communicating the data remotely to a cloud database. A web tool was developed to present the sensed data to relevant stakeholders. We report our experiences in deploying such an approach in the field over a period of approximately 16 months.

  19. Silicon microring refractometric sensor for atmospheric CO(2) gas monitoring.

    Science.gov (United States)

    Mi, Guangcan; Horvath, Cameron; Aktary, Mirwais; Van, Vien

    2016-01-25

    We report a silicon photonic refractometric CO(2) gas sensor operating at room temperature and capable of detecting CO(2) gas at atmospheric concentrations. The sensor uses a novel functional material layer based on a guanidine polymer derivative, which is shown to exhibit reversible refractive index change upon absorption and release of CO(2) gas molecules, and does not require the presence of humidity to operate. By functionalizing a silicon microring resonator with a thin layer of the polymer, we could detect CO(2) gas concentrations in the 0-500ppm range with a sensitivity of 6 × 10(-9) RIU/ppm and a detection limit of 20ppm. The microring transducer provides a potential integrated solution in the development of low-cost and compact CO(2) sensors that can be deployed as part of a sensor network for accurate environmental monitoring of greenhouse gases.

  20. IMPLEMENTATION OF SELF DIAGNOSTIC AND INTELLIGENT POWER MANAGEMENT PROTOCOLS ON WIRELESS GAS SENSOR NODE

    Directory of Open Access Journals (Sweden)

    Dipanjan Bhattacharjee,

    2011-04-01

    Full Text Available This paper presents implementation of self diagnostic, power management protocols and hardware design to enhance the hardware flexibility and sensing accuracy of sensor node. We have come withsolutions for various design challenges faced on gas sensor. The embedded intelligent protocols over comes the problems of heater voltage dependency on gas sensors. Here we deal with sensors which arecapable of detecting different part per million (ppm of gases. The main aim of the work is to implement various intelligent protocols like auto error detection and correction, smart sensor triggering, sensor handover etc. We have designed hardware by which base station can remotely configure the operating modes of the node by sending various command signals wirelessly. Base station can come to know about health status of the sensor node by sending various enquiry signals. The two-way wireless communication is achieved by a pair of amplitude shift keying (ASK transceiver; data is encoded before transmission and decoded after reception which provides high security to the data. The build in self-test and power management protocols make the node highly intelligent which enhance the life time of the node. All the signals are digitized and processed by a centralized programmable interface controller (PIC based embedded platform and finally store in computer via serial port.

  1. Continuous intra-arterial blood-gas monitoring

    Science.gov (United States)

    Divers, George A.; Riccitelli, Samuel D.; Blais, Maurice; Hui, Henry K.

    1993-05-01

    Fiber optic technology and optical fluorescence have made the continuous monitoring of arterial blood gases a reality. Practical products that continuously monitor blood gases by use of an invasive sensor are now available. Anesthesiologists and intensive care physicians are beginning to explore the practical implications of this technology. With the advent of intra- arterial blood gas monitors it is possible to assess arterial blood gas values without the labor intensive steps of drawing blood and transporting a blood sample to the lab followed by the actual analysis. These intra-arterial blood gas monitors use new optical sensor technologies that can be reduced in size to the point that the sensor can be inserted into the arterial blood flow through a 20-gauge arterial cannula. In the best of these technologies the sensors accuracy and precision are similar to those in vitro analyzers. This presentation focuses on background technology and in vivo performance of a device developed, manufactured, and marketed by Puritan-Bennett Corporation.

  2. Reactive intermediates in the gas phase generation and monitoring

    CERN Document Server

    Setser, D W

    2013-01-01

    Reactive Intermediates in the Gas Phase: Generation and Monitoring covers methods for reactive intermediates in the gas phase. The book discusses the generation and measurement of atom and radical concentrations in flow systems; the high temperature flow tubes, generation and measurement of refractory species; and the electronically excited long-lived states of atoms and diatomic molecules in flow systems. The text also describes the production and detection of reactive species with lasers in static systems; the production of small positive ions in a mass spectrometer; and the discharge-excite

  3. Integrating volcanic gas monitoring with other geophysical networks in Iceland

    Science.gov (United States)

    Pfeffer, Melissa A.

    2017-04-01

    The Icelandic Meteorological Office/Icelandic Volcano Observatory is rapidly developing and improving the use of gas measurements as a tool for pre- and syn-eruptive monitoring within Iceland. Observations of deformation, seismicity, hydrological properties, and gas emissions, united within an integrated approach, can provide improved understanding of subsurface magma movements. This is critical to evaluate signals prior to and during volcanic eruptions, issue timely eruption warnings, forecast eruption behavior, and assess volcanic hazards. Gas measurements in Iceland need to be processed to account for the high degree of gas composition alteration due to interaction with external water and rocks. Deeply-sourced magmatic gases undergo reactions and modifications as they move to the surface that exercise a strong control on the composition of surface emissions. These modifications are particularly strong at ice-capped volcanoes where most surface gases are dissolved in glacial meltwater. Models are used to project backwards from surface gas measurements to what the magmatic gas composition was prior to upward migration. After the pristine magma gas composition has been determined, it is used together with fluid compositions measured in mineral hosted melt inclusions to calculate magmatic properties to understand magma storage and migration and to discern if there have been changes in the volcanic system. The properties derived from surface gas measurements can be used as input to models interpreting deformation and seismic observations, and can be used as an additional, independent observation when interpreting hydrological and seismic changes. An integrated approach aids with determining whether observed hydro/geological changes can be due to the presence of shallow magma. Constraints on parameters such as magma gas content, viscosity and compressibility can be provided by the approach described above, which can be utilized syn-eruptively to help explain

  4. Development of environmental impact monitoring protocol for offshore carbon capture and storage (CCS): A biological perspective

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyewon, E-mail: hyewon@ldeo.columbia.edu [Division of Biology and Paleo Environment, Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964 (United States); Kim, Yong Hoon, E-mail: Yong.Kim@rpsgroup.com [RPS ASA, 55 Village Square Drive, South Kingstown, RI 02879 (United States); Kang, Seong-Gil, E-mail: kangsg@kriso.re.kr [Offshore CCS Research Unit, Korea Research Institute of Ships and Ocean Engineering, 32 1312 Beon-gil, Yuseong-daero, Yuseong-gu, Deaejeon (Korea, Republic of); Park, Young-Gyu, E-mail: ypark@kiost.ac.kr [Ocean Circulation and Climate Change Research Center, Korea Institute of Ocean Science and Technology, 787 Haeanro, Ansan (Korea, Republic of)

    2016-02-15

    Offshore geologic storage of carbon dioxide (CO{sub 2}), known as offshore carbon capture and sequestration (CCS), has been under active investigation as a safe, effective mitigation option for reducing CO{sub 2} levels from anthropogenic fossil fuel burning and climate change. Along with increasing trends in implementation plans and related logistics on offshore CCS, thorough risk assessment (i.e. environmental impact monitoring) needs to be conducted to evaluate potential risks, such as CO{sub 2} gas leakage at injection sites. Gas leaks from offshore CCS may affect the physiology of marine organisms and disrupt certain ecosystem functions, thereby posing an environmental risk. Here, we synthesize current knowledge on environmental impact monitoring of offshore CCS with an emphasis on biological aspects and provide suggestions for better practice. Based on our critical review of preexisting literatures, this paper: 1) discusses key variables sensitive to or indicative of gas leakage by summarizing physico-chemical and ecological variables measured from previous monitoring cruises on offshore CCS; 2) lists ecosystem and organism responses to a similar environmental condition to CO{sub 2} leakage and associated impacts, such as ocean acidification and hypercapnia, to predict how they serve as responsive indicators of short- and long-term gas exposure, and 3) discusses the designs of the artificial gas release experiments in fields and the best model simulation to produce realistic leakage scenarios in marine ecosystems. Based on our analysis, we suggest that proper incorporation of biological aspects will provide successful and robust long-term monitoring strategies with earlier detection of gas leakage, thus reducing the risks associated with offshore CCS. - Highlights: • This paper synthesizes the current knowledge on environmental impact monitoring of offshore Carbon Capture and Sequestration (CCS). • Impacts of CO{sub 2} leakage (ocean acidification

  5. A MAC protocol for medical monitoring applications of wireless body area networks.

    Science.gov (United States)

    Shu, Minglei; Yuan, Dongfeng; Zhang, Chongqing; Wang, Yinglong; Chen, Changfang

    2015-06-03

    Targeting the medical monitoring applications of wireless body area networks (WBANs), a hybrid medium access control protocol using an interrupt mechanism (I-MAC) is proposed to improve the energy and time slot utilization efficiency and to meet the data delivery delay requirement at the same time. Unlike existing hybrid MAC protocols, a superframe structure with a longer length is adopted to avoid unnecessary beacons. The time slots are mostly allocated to nodes with periodic data sources. Short interruption slots are inserted into the superframe to convey the urgent data and to guarantee the real-time requirements of these data. During these interruption slots, the coordinator can break the running superframe and start a new superframe. A contention access period (CAP) is only activated when there are more data that need to be delivered. Experimental results show the effectiveness of the proposed MAC protocol in WBANs with low urgent traffic.

  6. A SIGNAL ENHANCED PORTABLE RAMAN PROBE FOR ANESTHETIC GAS MONITORING

    Directory of Open Access Journals (Sweden)

    S. Schlüter

    2015-03-01

    Full Text Available The spontaneous Raman scattering technique is an excellent tool for a quantitative analysis of multi-species gas mixtures. It is a noninvasive optical method for species identification and gas phase concentration measurement of all Raman active molecules, since the intensity of the species specific Raman signal is linearly dependent on the concentration. Applying a continuous wave (CW laser it typically takes a few seconds to capture a gas phase Raman spectrum at room temperature. Nevertheless in contrast to these advantages the weak Raman signal intensity is a major drawback. Thus, it is still challenging to detect gas phase Raman spectra in alow-pressure regime with a temporal resolution of only a few 100 ms. In this work a fully functional gas phase Raman system for measurements in the low-pressure regime (p ≥ 980 hPa (absolute is presented. It overcomes the drawback of a weak Raman signal by using a multipass cavity. A description of the sensor setup and of the multipass arrangement will be presented. Moreover the complete functionality of the sensor system will be demonstrated by measurements at an anesthesia simulator under clinical relevant conditions and in comparison to a conventional gas monitor.

  7. Clinical assessment of intraarterial blood gas monitor accuracy

    Science.gov (United States)

    Aziz, Salim; Spiess, R.; Roby, Paul; Kenny, Margaret

    1993-08-01

    The accuracy of intraarterial blood gas monitoring (IABGM) devices is challenging to assess under routine clinical conditions. When comparing discrete measurements by blood gas analyzer (BGA) to IABGM values, it is important that the BGA determinations (reference method) be as accurate as possible. In vitro decay of gas tensions caused by delay in BGA analysis is particularly problematic for specimens with high arterial oxygen tension (PaO2) values. Clinical instability of blood gases in the acutely ill patient may cause disagreement between BGA and IABGM values because of IABGM response time lag, particularly in the measurement of arterial blood carbon dioxide tension (PaCO2). We recommend that clinical assessments of IABGM accuracy by comparison with BGA use multiple bedside BGA instruments, and that blood sampling only occur during periods when IABGM values appear stable.

  8. Microfabricated BTU monitoring device for system-wide natural gas monitoring.

    Energy Technology Data Exchange (ETDEWEB)

    Einfeld, Wayne; Manginell, Ronald Paul; Robinson, Alex Lockwood; Moorman, Matthew Wallace

    2005-11-01

    The natural gas industry seeks inexpensive sensors and instrumentation to rapidly measure gas heating value in widely distributed locations. For gas pipelines, this will improve gas quality during transfer and blending, and will expedite accurate financial accounting. Industrial endusers will benefit through continuous feedback of physical gas properties to improve combustion efficiency during use. To meet this need, Sandia has developed a natural gas heating value monitoring instrument using existing and modified microfabricated components. The instrument consists of a silicon micro-fabricated gas chromatography column in conjunction with a catalytic micro-calorimeter sensor. A reference thermal conductivity sensor provides diagnostics and surety. This combination allows for continuous calorimetric determination with a 1 minute analysis time and 1.5 minute cycle time using air as a carrier gas. This system will find application at remote natural gas mining stations, pipeline switching and metering stations, turbine generators, and other industrial user sites. Microfabrication techniques will allow the analytical components to be manufactured in production quantities at a low per-unit cost.

  9. Water quality monitoring protocol for wadeable streams and rivers in the Northern Great Plains Network

    Science.gov (United States)

    Marcia H. Wilson,; Rowe, Barbara L.; Robert A. Gitzen,; Stephen K. Wilson,; Kara J. Paintner-Green,

    2014-01-01

    Preserving the national parks unimpaired for the enjoyment of future generations is a fundamental purpose of the National Park Service (NPS). To address growing concerns regarding the overall physical, chemical, and biological elements and processes of park ecosystems, the NPS implemented science-based management through “Vital Signs” monitoring in 270 national parks (NPS 2007). The Northern Great Plains Network (NGPN) is among the 32 National Park Service Networks participating in this monitoring effort. The NGPN will develop protocols over the next several years to determine the overall health or condition of resources within 13 parks located in Nebraska, North Dakota, South Dakota, and Wyoming.

  10. Serial Interface through Stream Protocol on EPICS Platform for Distributed Control and Monitoring

    Science.gov (United States)

    Das Gupta, Arnab; Srivastava, Amit K.; Sunil, S.; Khan, Ziauddin

    2017-04-01

    Remote operation of any equipment or device is implemented in distributed systems in order to control and proper monitoring of process values. For such remote operations, Experimental Physics and Industrial Control System (EPICS) is used as one of the important software tool for control and monitoring of a wide range of scientific parameters. A hardware interface is developed for implementation of EPICS software so that different equipment such as data converters, power supplies, pump controllers etc. could be remotely operated through stream protocol. EPICS base was setup on windows as well as Linux operating system for control and monitoring while EPICS modules such as asyn and stream device were used to interface the equipment with standard RS-232/RS-485 protocol. Stream Device protocol communicates with the serial line with an interface to asyn drivers. Graphical user interface and alarm handling were implemented with Motif Editor and Display Manager (MEDM) and Alarm Handler (ALH) command line channel access utility tools. This paper will describe the developed application which was tested with different equipment and devices serially interfaced to the PCs on a distributed network.

  11. Bedside arterial blood gas monitoring system using fluorescent optical sensors

    Science.gov (United States)

    Bartnik, Daniel J.; Rymut, Russell A.

    1995-05-01

    We describe a bedside arterial blood gas (ABG) monitoring system which uses fluorescent optical sensors in the measurement of blood pH, PCO2 and PO2. The Point-of-Care Arterial Blood Gas Monitoring System consists of the SensiCathTM optical sensor unit manufactured by Optical Sensors Incorporated and the TramTM Critical Care Monitoring System with ABG Module manufactured by Marquette Electronics Incorporated. Current blood gas measurement techniques require a blood sample to be removed from the patient and transported to an electrochemical analyzer for analysis. The ABG system does not require removal of blood from the patient or transport of the sample. The sensor is added to the patient's existing arterial line. ABG measurements are made by drawing a small blood sample from the arterial line in sufficient quantity to ensure an undiluted sample at the sensor. Measurements of pH, PCO2 and PO2 are made within 60 seconds. The blood is then returned to the patient, the line flushed and results appear on the bedside monitor. The ABG system offers several advantages over traditional electrochemical analyzers. Since the arterial line remains closed during the blood sampling procedure the patient's risk of infection is reduced and the caregiver's exposure to blood is eliminated. The single-use, disposable sensor can be measure 100 blood samples over 72 hours after a single two-point calibration. Quality Assurance checks are also available and provide the caregiver the ability to assess system performance even after the sensor is patient attached. The ABG module integrates with an existing bedside monitoring system. This allows ABG results to appear on the same display as ECG, respiration, blood pressure, cardiac output, SpO2, and other clinical information. The small module takes up little space in the crowded intensive care unit. Performance studies compare the ABG system with an electrochemical blood gas analyzer. Study results demonstrated accurate and precise blood

  12. Long-term monitoring of marine gas leakage

    Science.gov (United States)

    Spickenbom, Kai; Faber, Eckhard; Poggenburg, Jürgen; Seeger, Christian; Furche, Markus

    2010-05-01

    The sequestration of CO2 in sub-seabed geological formations is one of the Carbon Capture and Storage (CCS) strategies currently under study. Although offshore operations are significantly more expensive than comparable onshore operations, the growing public resistance against onshore CCS projects makes sub-seabed storage a promising option. Even after a thorough review of the geological setting, there is always the possibility of leakage from the reservoir. As part of the EU-financed project CO2ReMoVe (Research, Monitoring, Verification), which aims to develop innovative research and technologies for monitoring and verification of carbon dioxide geological storage, we are working on the development of submarine long-term gas flow monitoring systems. The basic design of the monitoring system builds on our experience in volcano monitoring. Early prototypes were composed of a raft floating on the surface of a mud volcano, carrying sensors for CO2 flux and concentration, data storage and transmission, and power supply by battery-buffered solar panels. The system was modified for installation in open sea by using a buoy instead of a raft and a funnel on the seafloor to collect the gas, connected by a flexible tube. This setup provides a cost-effective solution for shallow waters. However, a buoy interferes with ship traffic, and it is also difficult to adapt this design to greater water depths. These requirements can best be complied by a completely submersed system. A system for unattended long-term monitoring in a marine environment has to be extremely durable. Therefore, we focussed on developing a mechanically and electrically as simple setup as possible, which has the additional advantage of low cost. The system consists of a funnel-shaped gas collector, a sensor head and pressure housings for electronics and power supply. Since this setup is inexpensive, it can be deployed in numbers to cover larger areas. By addition of multi-channel data loggers, data

  13. Long-term flow monitoring of submarine gas emanations

    Science.gov (United States)

    Spickenbom, K.; Faber, E.; Poggenburg, J.; Seeger, C.

    2009-04-01

    One of the Carbon Capture and Storage (CCS) strategies currently under study is the sequestration of CO2 in sub-seabed geological formations. Even after a thorough review of the geological setting, there is the possibility of leaks from the reservoirs. As part of the EU-financed project CO2ReMoVe (Research, Monitoring, Verification), which aims to develop innovative research and technologies for monitoring and verification of carbon dioxide geological storage, we are working on the development of submarine long-term gas flow monitoring systems. Technically, however, these systems are not limited to CO2 but can be used for monitoring of any free gas emission (bubbles) on the seafloor. The basic design of the gas flow sensor system was derived from former prototypes developed for monitoring CO2 and CH4 on mud volcanoes in Azerbaijan. This design was composed of a raft floating on the surface above the gas vent to collect the bubbles. Sensors for CO2 flux and concentration and electronics for data storage and transmission were mounted on the raft, together with battery-buffered solar panels for power supply. The system was modified for installation in open sea by using a buoy instead of a raft and a funnel on the seafloor to collect the gas, which is then guided above water level through a flexible tube. Besides some technical problems (condensed water in the tube, movement of the buoys due to waves leading to biased measurement of flow rates), this setup provides a cost-effective solution for shallow waters. However, a buoy interferes with ship traffic, and it is also difficult to adapt this design to greater water depths. These requirements can best be complied by a completely submersed system. To allow unattended long-term monitoring in a submarine environment, such a system has to be extremely durable. Therefore, we focussed on developing a mechanically and electrically as simple setup as possible, which has the additional advantage of low cost. The system

  14. Physics Simulation Software for Autonomous Propellant Loading and Gas House Autonomous System Monitoring

    Science.gov (United States)

    Regalado Reyes, Bjorn Constant

    2015-01-01

    1. Kennedy Space Center (KSC) is developing a mobile launching system with autonomous propellant loading capabilities for liquid-fueled rockets. An autonomous system will be responsible for monitoring and controlling the storage, loading and transferring of cryogenic propellants. The Physics Simulation Software will reproduce the sensor data seen during the delivery of cryogenic fluids including valve positions, pressures, temperatures and flow rates. The simulator will provide insight into the functionality of the propellant systems and demonstrate the effects of potential faults. This will provide verification of the communications protocols and the autonomous system control. 2. The High Pressure Gas Facility (HPGF) stores and distributes hydrogen, nitrogen, helium and high pressure air. The hydrogen and nitrogen are stored in cryogenic liquid state. The cryogenic fluids pose several hazards to operators and the storage and transfer equipment. Constant monitoring of pressures, temperatures and flow rates are required in order to maintain the safety of personnel and equipment during the handling and storage of these commodities. The Gas House Autonomous System Monitoring software will be responsible for constantly observing and recording sensor data, identifying and predicting faults and relaying hazard and operational information to the operators.

  15. Monitoring underground gas storage for seismic risk assessment

    Science.gov (United States)

    Guido, Francesco Luigi; Picotti, Vincenzo; Antonellini, Marco

    2013-04-01

    Temporary gas storage facilities play a fundamental role in the design of energy supply. The evaluation and recognition of induced seismicity, geodetic displacements and wellbores damages are their main associated risks that should be minimized for a safe management of these facilities, especially in densely populated areas. Injection and withdrawal of gas into/from a porous reservoir generally lead reservoir rocks to deform. Rock deformation is due to variations of the state of stress of rocks, both in the reservoir and the surrounding: subsidence, wellbore damages and induced or activated seismicity are primary consequences of these variations. In this paper we present a case study on induced deformation by an exploited gas reservoir, converted to temporary natural gas storage since 1994, in North-Eastern Italy. The reservoir, composed by 2 independent carbonatic sandstone intervals, approximately 10 meters thick, and 1400 meters deep, has been exploited since 1983, recording a pressure drop of about 16 MPa. The inversion of gas pressure and volume data, together with a 26 year ground displacement dataset monitoring, allow us to define reservoir deformations, modelled by a semi-analytical method based on an equivalent Eshelby's inclusion problem, able to account for mechanical differences between reservoir and surrounding rocks. Stress field changes, and displacement fields around the reservoir and on the ground mainly represent the results of this modelling. A Coulomb Failure Stress analysis, performed by FEA, was applied to define and evaluate the influence of magnitude and shape of stress field changes on rock stability, highlighting rock volumes that mainly suffer stress changes eventually leading to induced/activated earthquakes. The microseismic monitoring provides then the control on failures and their location. The methodology here used provide a solid base for induced or activated seismicity risk assessment: it provides an easy tool to quantify magnitude

  16. Comparative evaluation of potential indicators and temporal sampling protocols for monitoring genetic erosion.

    Science.gov (United States)

    Hoban, Sean; Arntzen, Jan A; Bruford, Michael W; Godoy, José A; Rus Hoelzel, A; Segelbacher, Gernot; Vilà, Carles; Bertorelle, Giorgio

    2014-11-01

    Genetic biodiversity contributes to individual fitness, species' evolutionary potential, and ecosystem stability. Temporal monitoring of the genetic status and trends of wild populations' genetic diversity can provide vital data to inform policy decisions and management actions. However, there is a lack of knowledge regarding which genetic metrics, temporal sampling protocols, and genetic markers are sufficiently sensitive and robust, on conservation-relevant timescales. Here, we tested six genetic metrics and various sampling protocols (number and arrangement of temporal samples) for monitoring genetic erosion following demographic decline. To do so, we utilized individual-based simulations featuring an array of different initial population sizes, types and severity of demographic decline, and DNA markers [single nucleotide polymorphisms (SNPs) and microsatellites] as well as decline followed by recovery. Number of alleles markedly outperformed other indicators across all situations. The type and severity of demographic decline strongly affected power, while the number and arrangement of temporal samples had small effect. Sampling 50 individuals at as few as two time points with 20 microsatellites performed well (good power), and could detect genetic erosion while 80-90% of diversity remained. This sampling and genotyping effort should often be affordable. Power increased substantially with more samples or markers, and we observe that power of 2500 SNPs was nearly equivalent to 250 microsatellites, a result of theoretical and practical interest. Our results suggest high potential for using historic collections in monitoring programs, and demonstrate the need to monitor genetic as well as other levels of biodiversity.

  17. Informal trail monitoring protocols: Denali National Park and Preserve. Final Report, October 2011

    Science.gov (United States)

    Marion, Jeffrey L.; Wimpey, Jeremy F.

    2011-01-01

    Managers at Alaska?s Denali National Park and Preserve (DENA) sponsored this research to assess and monitor visitor-created informal trails (ITs). DENA is located in south-central Alaska and managed as a six million acre wilderness park. This program of research was guided by the following objectives: (1) Investigate alternative methods for monitoring the spatial distribution, aggregate lineal extent, and tread conditions of informal (visitor-created) trails within the park. (2) In consultation with park staff, develop, pilot test, and refine cost-effective and scientifically defensible trail monitoring procedures that are fully integrated with the park?s Geographic Information System. (3) Prepare a technical report that compiles and presents research results and their management implications. This report presents the protocol development and field testing process, illustrates the types of data produced by their application, and provides guidance for their application and use. The protocols described provide managers with an efficient means to document and monitor IT conditions in settings ranging from pristine to intensively visited.

  18. GasQuant-hydroacoustic monitoring of a natural gas seep field, Tommeliten, North Sea

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, J.; Von Deimling, J. [Leibniz Inst. for Baltic Sea Research, Rostock (Germany); Greinert, J. [Ghent Univ., Ghent (Belgium). Renard Centre of Marine Geology; Linke, P. [Leibniz Inst. of Marine Science, Kiel (Germany)

    2008-07-01

    Marine gas seeps can cause significant releases of greenhouse gases (GHGs) into the atmosphere. Gas bubbles rising up from the sea floor are thought to be strong indicators of underlying gas hydrates in sea floor sediments. This paper described a new tool developed to monitor gas bubbles. The GasQuant monitor was comprised of a multibeam system, a 180 kHz transducer and a data storage and computerized control system. The transducer was placed 3 meters above the sea floor. Its swath covered a range of between 13 and 63 meters. Received echo time series for the beams were divided into 512 samples. The system was adapted to sequentially scan the water column and correct backscatter for geometrical spreading and absorption. The study showed that the system accurately localized and analyzed bubble releases from the sea floor with a higher spatial and temporal resolution than other currently available optical systems. Sixty-one gas releasing point sources were identified within an area of 2075 m{sup 2}. Data obtained from the study showed that miscellaneous bubble release patterns occurred in close proximity to each other. Constant, tidal-dominated, periodic and erratic bubble release patterns co-existed a few meters apart from each other. Tidal and pressure effects accounted for 8 per cent of all gas releases from seep holes. The system will also be calibrated in order to enable gas flux estimates for seepage research. Bubble detection algorithms are now being designed to analyze data obtained from the system. 21 refs., 1 tab., 6 figs.

  19. The Gas Sampling Interval Effect on V˙O2peak Is Independent of Exercise Protocol.

    Science.gov (United States)

    Scheadler, Cory M; Garver, Matthew J; Hanson, Nicholas J

    2017-09-01

    There is a plethora of gas sampling intervals available during cardiopulmonary exercise testing to measure peak oxygen consumption (V˙O2peak). Different intervals can lead to altered V˙O2peak. Whether differences are affected by the exercise protocol or subject sample is not clear. The purpose of this investigation was to determine whether V˙O2peak differed because of the manipulation of sampling intervals and whether differences were independent of the protocol and subject sample. The first subject sample (24 ± 3 yr; V˙O2peak via 15-breath moving averages: 56.2 ± 6.8 mL·kg·min) completed the Bruce and the self-paced V˙O2max protocols. The second subject sample (21.9 ± 2.7 yr; V˙O2peak via 15-breath moving averages: 54.2 ± 8.0 mL·kg·min) completed the Bruce and the modified Astrand protocols. V˙O2peak was identified using five sampling intervals: 15-s block averages, 30-s block averages, 15-breath block averages, 15-breath moving averages, and 30-s block averages aligned to the end of exercise. Differences in V˙O2peak between intervals were determined using repeated-measures ANOVAs. The influence of subject sample on the sampling effect was determined using independent t-tests. There was a significant main effect of sampling interval on V˙O2peak (first sample Bruce and self-paced V˙O2max P V˙O2peak between sampling intervals followed a similar pattern for each protocol and subject sample, with 15-breath moving average presenting the highest V˙O2peak. The effect of manipulating gas sampling intervals on V˙O2peak appears to be protocol and sample independent. These findings highlight our recommendation that the clinical and scientific community request and report the sampling interval whenever metabolic data are presented. The standardization of reporting would assist in the comparison of V˙O2peak.

  20. Laser Gas-Analyser for Monitoring a Source of Gas Pollution

    Directory of Open Access Journals (Sweden)

    V. A. Gorodnichev

    2015-01-01

    Full Text Available Currently, the problem of growing air pollution of the Earth is of relevance. Many countries have taken measures to protect the environment in order to limit the negative anthropogenic impacts.In such a situation an objective information on the actual content of pollutants in the atmosphere is of importance. For operational inspection of the pollutant concentrations and for monitoring pollution sources, it is necessary to create high-speed high-sensitivity gas analysers.Laser meters are the most effective to provide operational remote and local inspection of gas pollution of the Earth atmosphere.Laser meter for routine gas analysis should conduct operational analysis of the gas mixture (air. For this a development of appropriate information support is required.Such information support should include a database with absorption coefficients of pollutants (specific to potential sources of pollution at possible measuring wavelengths (holding data for a particular emitter of the laser meter and an efficient algorithms to search the measuring wavelengths and conduct a quantitative analysis of gas mixtures.Currently, the issues, important for practice and related to the development of information support for the laser gas analyzer to conduct important for practice routine measurements remain unclear.In this paper we develop an algorithm to provide an operational search of the measuring wavelengths of laser gas analyser and an algorithm to recover quantitively the gaseous component concentrations of controlled gas mixture from the laser multi-spectral measurements that take into account a priori information about the source-controlled gas pollution and do not require a large amount of computation. The method of mathematical simulation shows the effectiveness of the algorithms described both for seach of measuring wavelengths and for quantitative analysis of gas releases.

  1. National Protocol Framework for the Inventory and Monitoring of Waterbirds and their Habitats:An Integrated Waterbird Management and Monitoring (IWMM) Approach [In Review

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This protocol framework provides guidance for conducting inventories or monitoring surveys of waterbird habitat conditions and use at local scale in a way that will...

  2. National Protocol Framework for the Inventory and Monitoring of Waterbirds and their Habitats:An Integrated Waterbird Management and Monitoring (IWMM) Approach

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This protocol framework provides guidance for conducting inventories or monitoring surveys of waterbird habitat conditions and use at local scale in a way that will...

  3. Site-specific Protocol for Monitoring Marsh Birds : Don Edwards San Francisco Bay and San Pablo Bay National Wildlife Refuges

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This site-specific survey protocol provides standardized methods for monitoring marsh birds and was designed for use by the U.S. Fish and Wildlife Service (USFWS) on...

  4. Remote Sensing and the Kyoto Protocol: A Review of Available and Future Technology for Monitoring Treaty Compliance

    Science.gov (United States)

    Imhoff, Marc L.; Rosenquist, A.; Milne, A. K.; Dobson, M. C.; Qi, J.

    2000-01-01

    An International workshop was held to address how remote sensing technology could be used to support the environmental monitoring requirements of the Kyoto Protocol. An overview of the issues addressed and the findings of the workshop are discussed.

  5. [2015 survey overview and future plans : Investigating Long-Term Monitoring Protocols in support of Quivira NWR Habitat Objectives

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report is an overview of 2015 surveying for the Investigating Long-Term Monitoring Protocols in support of Quivira NWR Habitat Objectives project led by Fort...

  6. Greenhouse gas reporting of the LULUCF sector for the UNFCCC and Kyoto Protocol : background to the Dutch NIR 2013

    NARCIS (Netherlands)

    Arets, E.J.M.M.; Hoek, van der K.W.; Kramer, H.; Kuikman, P.J.; Lesschen, J.P.

    2013-01-01

    This report provides a complete description and background information of the Dutch National System for Greenhouse gas Reporting of the LULUCF sector and the Dutch LULUCF submission under the Kyoto Protocol for the 2013 submission of The Netherlands. The 2013 submission reports greenhouse gas emissi

  7. Analysis of Chinese emissions trends of major halocarbons in monitoring the impacts of the Montreal Protocol

    Science.gov (United States)

    Li, S.; Park, S.; Park, M.; Kim, J.; Muhle, J.; Fang, X.; Stohl, A.; Weiss, R. F.; Kim, K.

    2013-12-01

    nationwide effort for the Clean Development Mechanism project benefit of the Kyoto protocol. Emission rates of the halocarbons determined from the empirical emission strengths will certainly vary according to emission trend of our reference species, HCFC-22 in China from 2008 and 2012. Annual and average of HCFC-22 emissions from 2008 to 2012 will be calculated with an inverse method based on FLEXPART transport model. More detailed discussion on the emission rate estimation and its related caveats will be made in the presentation, but overall our analysis highlights the significance of long-term continuous monitoring for CFCs, HCFCs and HFCs in China to investigate impacts of Montreal Protocol regulations.

  8. Bird interactions with offshore oil and gas platforms: review of impacts and monitoring techniques.

    Science.gov (United States)

    Ronconi, Robert A; Allard, Karel A; Taylor, Philip D

    2015-01-01

    Thousands of oil and gas platforms are currently operating in offshore waters globally, and this industry is expected to expand in coming decades. Although the potential environmental impacts of offshore oil and gas activities are widely recognized, there is limited understanding of their impacts on migratory and resident birds. A literature review identified 24 studies and reports of bird-platform interactions, most being qualitative and half having been peer-reviewed. The most frequently observed effect, for seabirds and landbirds, is attraction and sometimes collisions associated with lights and flares; episodic events have caused the deaths of hundreds or even thousands of birds. Though typically unpredictable, anecdotally, it is known that poor weather, such as fog, precipitation and low cloud cover, can exacerbate the effect of nocturnal attraction to lights, especially when coincidental with bird migrations. Other effects include provision of foraging and roosting opportunities, increased exposure to oil and hazardous environments, increased exposure to predators, or repulsion from feeding sites. Current approaches to monitoring birds at offshore platforms have focused on observer-based methods which can offer species-level bird identification, quantify seasonal patterns of relative abundance and distribution, and document avian mortality events and underlying factors. Observer-based monitoring is time-intensive, limited in spatial and temporal coverage, and suffers without clear protocols and when not conducted by trained, independent observers. These difficulties are exacerbated because deleterious bird-platform interaction is episodic and likely requires the coincidence of multiple factors (e.g., darkness, cloud, fog, rain conditions, occurrence of birds in vicinity). Collectively, these considerations suggest a need to implement supplemental systems for monitoring bird activities around offshore platforms. Instrument-based approaches, such as radar

  9. Beam Impedance Studies of the PS Beam Gas Ionization Monitor

    CERN Document Server

    Avgidis, Fotios

    2016-01-01

    The Beam Gas Ionization monitor (BGI) is a device for continuous beam size monitoring that is intended to be installed in the CERN Proton Synchrotron (PS) during the extended year-end technical stop from December 2016 to April 2017. With the objective of determining the impedance contribution of the BGI vacuum chamber to the overall beam impedance, we report on RF measurements on the device in a laboratory frame, measurement data analysis, and RF simulations of the structure under investigation. For the impedance contribution characterization of the BGI, the following approach has been followed: First, the EM fields inside a simplified BGI model that doesn’t include any of the internal components of the vacuum chamber have been simulated. RF measurements have been performed on the same empty structure showing great agreement between measurement and simulation and thus verifying the validity of the model. Second, simulations have been executed on a fully assembled BGI model that includes all the internal ele...

  10. Laser Spectroscopy Based Multi-Gas Monitor Technology Demonstration

    Science.gov (United States)

    Mudgett, Paul D.; Pilgrim, Jeffrey S.

    2016-01-01

    The timing was right in the “evolution” of low power tunable diode laser spectroscopy (TDLS) to design a spacecraft cabin air monitor around technology being developed at a small company funded by SBIR grants. NASA Centers had been monitoring their progress hoping that certain key gaps in the long term gas monitoring development roadmap could be filled by TDLS. The first iteration of a monitor for multiple gases called the Multi-Gas Monitor (MGM) which measures oxygen, carbon dioxide, ammonia and water vapor, as well as temperature and pressure. In January 2013, the ISS Program being particularly interested in ammonia funded a technology demonstration of MGM. The project was a joint effort between Vista Photonics for the sensor, NASA-JSC for project management and laboratory calibration, and Nanoracks for the enclosure and payload certification/integration. Nanoracks was selected in order to use their new experimental infrastructure located in an EXPRESS rack in the JEM. The MGM enclosure has multiple power supply options including 5VDC USB interface to the Nanoracks Frame, 28VDC Express Rack power and internal rechargeable batteries. MGM was calibrated at NASA-JSC in July 2013, delivered to ISS on 37 Soyuz in November 2013 and was installed and activated in February 2014. MGM resided in the Nanoracks Frame making continuous measurements the majority of the time, but also spent a day in Node 3 on battery power, and a month in the US Lab Module on 28VDC power, as part of the demonstration. Data was downloaded via Nanoracks on roughly a weekly basis. Comparisons were made with data from the Major Constituents Analyzer (MCA) which draws and analyzes air from JEM and other modules several times per hour. A crewmember challenged the carbon dioxide channel by breathing into the intake upon startup, and challenged the ammonia channel later using a commercial ammonia inhalant. Many interesting phenomena in the cabin atmosphere were detected during the tech demo

  11. RESIDUAL-GAS-IONIZATION BEAM PROFILE MONITORS IN RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    CONNOLLY, R.; MICHNOFF, R.; TEPIKIAN, S.

    2005-05-16

    Four ionization profile monitors (IPMs) in RHIC measure vertical and horizontal beam profiles in the two rings by measuring the distribution of electrons produced by beam ionization of residual gas. During the last three years both the collection accuracy and signal/noise ratio have been improved. An electron source is mounted across the beam pipe from the collector to monitor microchannel plate (MCP) aging and the signal electrons are gated to reduce MCP aging and to allow charge replenishment between single-turn measurements. Software changes permit simultaneous measurements of any number of individual bunches in the ring. This has been used to measure emittance growth rates on six bunches of varying intensities in a single store. Also the software supports FFT analysis of turn-by-turn profiles of a single bunch at injection to detect dipole and quadrupole oscillations.

  12. Active Geophysical Monitoring in Oil and Gas Industry

    Science.gov (United States)

    Bakulin, A.; Calvert, R.

    2005-12-01

    Effective reservoir management is a Holy Grail of the oil and gas industry. Quest for new technologies is never ending but most often they increase effectiveness and decrease the costs. None of the newcomers proved to be a silver bullet in such a key metric of the industry as average oil recovery factor. This factor is still around 30 %, meaning that 70 % of hydrocarbon reserves are left in the ground in places where we already have expensive infrastructure (platforms, wells) to extract them. Main reason for this inefficiency is our inability to address realistic reservoir complexity. Most of the time we fail to properly characterize our reservoirs before production. As a matter of fact, one of the most important parameters -- permeability -- can not be mapped from remote geophysical methods. Therefore we always start production blind even though reservoir state before production is the simplest one. Once first oil is produced, we greatly complicate the things and quickly become unable to estimate the state and condition of the reservoir (fluid, pressures, faults etc) or oilfield hardware (wells, platforms, pumps) to make a sound next decision in the chain of reservoir management. Our modeling capabilities are such that if we know true state of the things - we can make incredibly accurate predictions and make extremely efficient decisions. Thus the bottleneck is our inability to properly describe the state of the reservoirs in real time. Industry is starting to recognize active monitoring as an answer to this critical issue. We will highlight industry strides in active geophysical monitoring from well to reservoir scale. It is worth noting that when one says ``monitoring" production technologists think of measuring pressures at the wellhead or at the pump, reservoir engineers think of measuring extracted volumes and pressures, while geophysicist may think of change in elastic properties. We prefer to think of monitoring as to measuring those parameters of the

  13. A reliable transmission protocol for ZigBee-based wireless patient monitoring.

    Science.gov (United States)

    Chen, Shyr-Kuen; Kao, Tsair; Chan, Chia-Tai; Huang, Chih-Ning; Chiang, Chih-Yen; Lai, Chin-Yu; Tung, Tse-Hua; Wang, Pi-Chung

    2012-01-01

    Patient monitoring systems are gaining their importance as the fast-growing global elderly population increases demands for caretaking. These systems use wireless technologies to transmit vital signs for medical evaluation. In a multihop ZigBee network, the existing systems usually use broadcast or multicast schemes to increase the reliability of signals transmission; however, both the schemes lead to significantly higher network traffic and end-to-end transmission delay. In this paper, we present a reliable transmission protocol based on anycast routing for wireless patient monitoring. Our scheme automatically selects the closest data receiver in an anycast group as a destination to reduce the transmission latency as well as the control overhead. The new protocol also shortens the latency of path recovery by initiating route recovery from the intermediate routers of the original path. On the basis of a reliable transmission scheme, we implement a ZigBee device for fall monitoring, which integrates fall detection, indoor positioning, and ECG monitoring. When the triaxial accelerometer of the device detects a fall, the current position of the patient is transmitted to an emergency center through a ZigBee network. In order to clarify the situation of the fallen patient, 4-s ECG signals are also transmitted. Our transmission scheme ensures the successful transmission of these critical messages. The experimental results show that our scheme is fast and reliable. We also demonstrate that our devices can seamlessly integrate with the next generation technology of wireless wide area network, worldwide interoperability for microwave access, to achieve real-time patient monitoring.

  14. Development of monitoring and control technology based on trace gas monitoring. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Liebowitz, B.

    1997-07-01

    Trace gases are generated by many biological reactions. During anaerobic decomposition, trace levels of hydrogen (H{sub 2}) and carbon monoxide (CO) gases are produced. It was shown previously that these trace gases are intrinsically related to the biochemical reactions occurring and, therefore, offer promise for on-line process monitoring and control. This work was designed to test how effectively hydrogen and CO could be to monitor high-rate anaerobic systems that has significant mass transfer and complex hydraulics. An experimental program was designed to examine the behavior of an upflow anaerobic sludge blanket (UASB) reactor system under steady state and in response to organic loading perturbations. The responses of trace gases CO and H{sub 2} were tracked using an on-line, real-time gas-monitoring system linked to a computer-controlled data acquisition package. Data on conventional process parameters such as pH, chemical oxygen demand (COD), volatile fatty acids (VFAs) were concurrently collected. Monitoring of conventional process indicators (i.e., pH, VFA, gas production) and trace gas (H{sub 2} and CO) indicators was conducted using a matrix of nine different steady-state OLRs (4-23 kg COD/m{sup 3} -d) and system HRTs (0.5 to 2.5 days) was performed to determine any correlation among the indicators. Of OLR, HRT, and influent COD, only OLR had any significant influence on the process indicators examined. All parameters except methane increased with increases in OLR; methane decreased with increased OLR. The OLR and gas production rate (GP) were observed to be linearly correlated.

  15. Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring

    Directory of Open Access Journals (Sweden)

    George F. Fine

    2010-06-01

    Full Text Available Metal oxide semiconductor gas sensors are utilised in a variety of different roles and industries. They are relatively inexpensive compared to other sensing technologies, robust, lightweight, long lasting and benefit from high material sensitivity and quick response times. They have been used extensively to measure and monitor trace amounts of environmentally important gases such as carbon monoxide and nitrogen dioxide. In this review the nature of the gas response and how it is fundamentally linked to surface structure is explored. Synthetic routes to metal oxide semiconductor gas sensors are also discussed and related to their affect on surface structure. An overview of important contributions and recent advances are discussed for the use of metal oxide semiconductor sensors for the detection of a variety of gases—CO, NOx, NH3 and the particularly challenging case of CO2. Finally a description of recent advances in work completed at University College London is presented including the use of selective zeolites layers, new perovskite type materials and an innovative chemical vapour deposition approach to film deposition.

  16. Rancang Bangun Aplikasi Monitoring Jaringan dengan Menggunakan Simple Network Management Protocol

    Directory of Open Access Journals (Sweden)

    Reza Pradikta

    2013-03-01

    Full Text Available Semakin meningkatnya ukuran dan jumlah perangkat jaringan akan semakin kompleks masalah pada jaringan sehingga diperlukan adanya pengawasan secara terus-menerus untuk menjamin ketersediaan atau availability layanan. Simple Network Management Protocol (SNMP merupakan protokol aplikasi yang mampu menjalankan tugas untuk memonitoring kondisi jaringan. Pada tugas akhir ini akan dilakukan perancangan dan pembuatan Aplikasi monitoring jaringan dengan menggunakan protokol SNMP yang dilengkapi dengan sistem database untuk menyimpan dan mengolah nilai SNMP. Kemudian dilakukan pengujian untuk mengetahui tampilan dan fungsi dari Aplikasi yang telah dibuat. Pengujian juga dilakukan terhadap hasil aplikasi untuk mengetahui keakuratan. Hasil pengujian availability device dan availability sistem menunjukan bahwa aplikasi yang dibuat memiliki tingkat kesalahan 0 % jika dibandingkan dengan hasil perhitungan. Hasil pengujian trafik TCP menunjukkan bahwa aplikasi yang dibuat cukup akurat jika dibandingkan dengan software Wireshark dan Netstat dengan nilai selisih terbesar untuk hasil monitoring adalah 0,2784%.

  17. Condition Based Monitoring of Gas Turbine Combustion Components

    Energy Technology Data Exchange (ETDEWEB)

    Ulerich, Nancy; Kidane, Getnet; Spiegelberg, Christine; Tevs, Nikolai

    2012-09-30

    The objective of this program is to develop sensors that allow condition based monitoring of critical combustion parts of gas turbines. Siemens teamed with innovative, small companies that were developing sensor concepts that could monitor wearing and cracking of hot turbine parts. A magnetic crack monitoring sensor concept developed by JENTEK Sensors, Inc. was evaluated in laboratory tests. Designs for engine application were evaluated. The inability to develop a robust lead wire to transmit the signal long distances resulted in a discontinuation of this concept. An optical wear sensor concept proposed by K Sciences GP, LLC was tested in proof-of concept testing. The sensor concept depended, however, on optical fiber tips wearing with the loaded part. The fiber tip wear resulted in too much optical input variability; the sensor could not provide adequate stability for measurement. Siemens developed an alternative optical wear sensor approach that used a commercial PHILTEC, Inc. optical gap sensor with an optical spacer to remove fibers from the wearing surface. The gap sensor measured the length of the wearing spacer to follow loaded part wear. This optical wear sensor was developed to a Technology Readiness Level (TRL) of 5. It was validated in lab tests and installed on a floating transition seal in an F-Class gas turbine. Laboratory tests indicate that the concept can measure wear on loaded parts at temperatures up to 800{degrees}C with uncertainty of < 0.3 mm. Testing in an F-Class engine installation showed that the optical spacer wore with the wearing part. The electro-optics box located outside the engine enclosure survived the engine enclosure environment. The fiber optic cable and the optical spacer, however, both degraded after about 100 operating hours, impacting the signal analysis.

  18. Elk Monitoring Protocol for Lewis and Clark National Historical Park, Version 1.0

    Science.gov (United States)

    Jenkins, Kurt J.; Griffin, Paul C.; Boetsch, John R.; Cole, Carla

    2011-01-01

    Maintaining elk (Cervus elaphus roosevelti) herds that frequent Lewis and Clark National Historical Park (NHP) is central to the park’s purpose of preserving the historic, cultural, scenic, and natural resources. Elk were critical to sustaining the members of the Lewis and Clark expedition by providing food and clothing over the winter of 1805-1806. Today, elk viewing opportunities in the park and surrounding region generate broad appeal with the visiting public, which number over 250,000 per year at the Fort Clatsop visitor center. This protocol describes procedures for monitoring trends in the use of the Fort Clatsop area by Roosevelt elk. Specific objectives of elk monitoring in Lewis and Clark NHP are to measure the relative use and proportion of area used by elk during winter in the Fort Clatsop Unit of the park, and the rate at which elk are sighted from roads in and around the park. Relative use and the proportion of area used by elk are determined from elk fecal pellet surveys conducted every other year in the Fort Clatsop park unit. Pairs of observers visit a systematic array of permanent plots in the fall to clear them of elk fecal pellets, and return to the plots in late winter to count elk fecal pellets that have accumulated during winter. Half of the subplots are counted by two independent observers, which allows for the estimation of relative use and proportion of area occupied by elk with analyses of detection biases that account for unseen elk pellet groups. Standardized road surveys are conducted in and near the Fort Clatsop park unit three or four times monthly during alternate months. Data from road surveys are used to quantify the rate that park visitors would be expected to see elk, when driving the selected set of routes. The monitoring protocol is based on three field seasons of development and testing. The protocol narrative describes the background, rationale, sampling design, field methods, analytical methods, data management, reporting

  19. Trace gas detection and monitoring with the Digital Array Gas-correlation Radiometer (DAGR)

    Science.gov (United States)

    Gordley, Larry L.; Hervig, Mark E.; Fish, Chad; McHugh, Martin J.

    2011-05-01

    We present the first results from a Digital Array Gas-correlation Radiometer (DAGR) prototype sensor, and discuss applications in remote sensing of trace gases. The sensor concept is based on traditional and reliable Gas Filter Correlation Radiometry (GFCR), but overcomes the limitations in solar backscatter applications. The DAGR sensor design can be scaled to the size of a digital camera and is ideal for downlooking detection of gases in the boundary layer, where solar backscatter measurements are needed to overcome the lack of thermal contrast in the IR. Ground-based portable DAGR sensors can monitor carbon sequestration sites or industrial facilities. Aircraft or UAV deployment can quickly survey large areas and are particularly well suited for gas leak detection or carbon monitoring. From space-based platforms, Doppler modulation can be exploited to produce an extremely fine spectral resolution with effective resolving power exceeding 100,000. Such space-based DAGR observations could provide near-global sensing of climatically important species such as such as CO2, CO, CH4, O3 and N2O. Planetary science applications include detection and mapping of biomarkers in the Martian atmosphere.

  20. Development and Evaluation of a Hyperbaric Toxic Gas Monitor (SUBTOX) for Disabled Submarines

    Science.gov (United States)

    2013-08-01

    DEVELOPMENT AND EVALUATION OF A HYPERBARIC TOXIC GAS MONITOR (SUBTOX) FOR DISABLED SUBMARINES... HYPERBARIC TOXIC GAS MONITOR (SUBTOX) FOR DISABLED SUBMARINES 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) R. S. Lillo...period (2004–2012), Navy Experimental Diving Unit (NEDU) helped ENMET Corp. to develop the first hyperbaric toxic gas analyzer (SubTox) to monitor

  1. Gas Analysis and Monitoring Systems for the RPC Detector of CMS at LHC

    CERN Document Server

    Abbrescia, M; Guida, R; Iaselli, G; Liuzzi, R; Loddo, F; Maggi, M; Marangelli, B; Natali, S; Nuzzo, S; Pugliese, G; Ranieri, A; Romano, F; Trentadue, R; Benussi, L; Bertani, M; Bianco, S; Caponero, M A; Colonna, D; Donisi, D; Fabbri, F L; Felli, F; Ortenzi, M G B; Pallotta, M; Paolozzi, A; Passamonti, L; Ponzio, B; Pucci, C; Polese, G S G; Segoni, I; Cavallo, N; Fabozzi, F; Paolucci, P; Piccolo, D; Belli, C S G; Grelli, A; Necchi, M; Ratti, S P; Riccardi, C; Torre, P; Vitulo, P

    2006-01-01

    The Resistive Plate Chambers (RPC) detector of the CMS experiment at the LHC proton collider (CERN, Switzerland) will employ an online gas analysis and monitoring system of the freon-based gas mixture used. We give an overview of the CMS RPC gas system, describe the project parameters and first results on gas-chromatograph analysis. Finally, we report on preliminary results for a set of monitor RPC.

  2. Upgrade to the Cryogenic Hydrogen Gas Target Monitoring System

    Science.gov (United States)

    Slater, Michael; Tribble, Robert

    2013-10-01

    The cryogenic hydrogen gas target at Texas A&M is a vital component for creating a secondary radioactive beam that is then used in experiments in the Momentum Achromat Recoil Spectrometer (MARS). A stable beam from the K500 superconducting cyclotron enters the gas cell and some incident particles are transmuted by a nuclear reaction into a radioactive beam, which are separated from the primary beam and used in MARS experiments. The pressure in the target chamber is monitored so that a predictable isotope production rate can be assured. A ``black box'' received the analog pressure data and sent RS232 serial data through an outdated serial connection to an outdated Visual Basic 6 (VB6) program, which plotted the chamber pressure continuously. The black box has been upgraded to an Arduino UNO microcontroller [Atmel Inc.], which can receive the pressure data and output via USB to a computer. It has been programmed to also accept temperature data for future upgrade. A new computer program, with updated capabilities, has been written in Python. The software can send email alerts, create audible alarms through the Arduino, and plot pressure and temperature. The program has been designed to better fit the needs of the users. Funded by DOE and NSF-REU Program.

  3. Noble Gas Measurement and Analysis Technique for Monitoring Reprocessing Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Charlton, William S [Univ. of California, Berkeley, CA (United States)

    1999-09-01

    An environmental monitoring technique using analysis of stable noble gas isotopic ratios on-stack at a reprocessing facility was developed. This technique integrates existing technologies to strengthen safeguards at reprocessing facilities. The isotopic ratios are measured using a mass spectrometry system and are compared to a database of calculated isotopic ratios using a Bayesian data analysis method to determine specific fuel parameters (e.g., burnup, fuel type, fuel age, etc.). These inferred parameters can be used by investigators to verify operator declarations. A user-friendly software application (named NOVA) was developed for the application of this technique. NOVA included a Visual Basic user interface coupling a Bayesian data analysis procedure to a reactor physics database (calculated using the Monteburns 3.01 code system). The integrated system (mass spectrometry, reactor modeling, and data analysis) was validated using on-stack measurements during the reprocessing of target fuel from a U.S. production reactor and gas samples from the processing of EBR-II fast breeder reactor driver fuel. These measurements led to an inferred burnup that matched the declared burnup with sufficient accuracy and consistency for most safeguards applications. The NOVA code was also tested using numerous light water reactor measurements from the literature. NOVA was capable of accurately determining spent fuel type, burnup, and fuel age for these experimental results. Work should continue to demonstrate the robustness of this system for production, power, and research reactor fuels.

  4. [Monitor of ECG signal and heart rate using a mobile phone with Bluetooth communication protocol].

    Science.gov (United States)

    Becerra-Luna, Brayans; Dávila-García, Rodrigo; Salgado-Rodríguez, Paola; Martínez-Memije, Raúl; Infante-Vázquez, Oscar

    2012-01-01

    To develop a portable signal monitoring equipment for electrocardiography (ECG) and heart rate (HR), communicated with a mobile phone using the Bluetooth (BT) communication protocol for display of the signal on screen. A monitoring system was designed in which the electronic section performs the ECG signal acquisition, as well as amplification, filtering, analog to digital conversion and transmission of the ECG and HR using BT. Two programs were developed for the system. The first one calculates HR through QRS identification and sends the ECG signals and HR to the mobile, and the second program is an application to acquire and display them on the mobile screen. We developed a portable electronic system powered by a 9 volt battery, with amplification and bandwidth meeting the international standards for ECG monitoring. The QRS complex identification was performed using the second derivative algorithm, while the programs allow sending and receiving information from the ECG and HR via BT, and viewing it on the mobile screen. The monitoring is feasible within distances of 15 m and it has been tested in various mobiles telephones of brands Nokia®, Sony Ericsson® and Samsung®. This system shows an alternative for mobile monitoring using BT and Java 2 Micro Edition (J2ME) programming. It allows the register of the ECG trace and HR, and it can be implemented in different phones. Copyright © 2011 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  5. An Adaptive Framework for Selecting Environmental Monitoring Protocols to Support Ocean Renewable Energy Development

    Directory of Open Access Journals (Sweden)

    Emily J. Shumchenia

    2012-01-01

    Full Text Available Offshore renewable energy developments (OREDs are projected to become common in the United States over the next two decades. There are both a need and an opportunity to guide efforts to identify and track impacts to the marine ecosystem resulting from these installations. A monitoring framework and standardized protocols that can be applied to multiple types of ORED would streamline scientific study, management, and permitting at these sites. We propose an adaptive and reactive framework based on indicators of the likely changes to the marine ecosystem due to ORED. We developed decision trees to identify suites of impacts at two scales (demonstration and commercial depending on energy (wind, tidal, and wave, structure (e.g., turbine, and foundation type (e.g., monopile. Impacts were categorized by ecosystem component (benthic habitat and resources, fish and fisheries, avian species, marine mammals, and sea turtles and monitoring objectives were developed for each. We present a case study at a commercial-scale wind farm and develop a monitoring plan for this development that addresses both local and national environmental concerns. In addition, framework has provided a starting point for identifying global research needs and objectives for understanding of the potential effects of ORED on the marine environment.

  6. Greenhouse gas reporting of the LULUCF sector for the UNFCCC and Kyoto Protocol : background to the Dutch NIR 2013

    OpenAIRE

    Arets, E. J. M. M.; Hoek, van der, D.J.; Kramer, H.; P. J. Kuikman; J. P. Lesschen

    2013-01-01

    This report provides a complete description and background information of the Dutch National System for Greenhouse gas Reporting of the LULUCF sector and the Dutch LULUCF submission under the Kyoto Protocol for the 2013 submission of The Netherlands. The 2013 submission reports greenhouse gas emissions over the year 2011. It includes detailed description of the methodologies used to calculate activity data and emissions and it gives the full text of the NIR-II for KP-LULUCF, as well as a desc...

  7. Development of a Test Protocol for Spacecraft Post-Fire Atmospheric Cleanup and Monitoring

    Science.gov (United States)

    Zuniga, David; Hornung, Steven D.; Haas, Jon P.; Graf, John C.

    2009-01-01

    Detecting and extinguishing fires, along with post-fire atmospheric cleaning and monitoring, are vital components of a spacecraft fire response system. Preliminary efforts focused on the technology evaluation of these systems under realistic conditions are described in this paper. While the primary objective of testing is to determine a smoke mitigation filter s performance, supplemental evaluations measuring the smoke-filled chamber handheld commercial off-the-shelf (COTS) atmospheric monitoring devices (combustion product monitors) are also conducted. The test chamber consists of a 1.4 cubic meter (50 cu. ft.) volume containing a smoke generator. The fuel used to generate the smoke is a mixture of polymers in quantities representative of materials involved in a circuit board fire as a typical spacecraft fire. Two fire conditions were examined: no flame and flame. No flame events are produced by pyrolyzing the fuel mixture in a quartz tube furnace with forced ventilation to produce a white, lingering-type smoke. Flame events ignite the smoke at the outlet of the tube furnace producing combustion characterized by a less opaque smoke with black soot. Electrochemical sensor measurements showed carbon monoxide is a major indicator of each fire. Acid gas measurements were recorded, but cross interferents are currently uncharacterized. Electrochemical sensor measurements and sample acquisition techniques from photoacoustic sensors are being improved. Overall, this research shows fire characterization using traditional analytical chemistry techniques is required to verify measurements recorded using COTS atmospheric monitoring devices.

  8. Contiuous gas monitoring at the volcano Galeras, Colombia

    Science.gov (United States)

    Faber, E.; Morán, C.; Poggenburg, J.; Garzón, G.; Teschner, M.; Weinlich, F. H.

    2003-04-01

    (1) Federal Institute for Geosciences and Natural Resources, Hannover, Germany (e.faber@bgr.de), (2) Instituto de Investigación en Geocientifica, Mineroambiental y Nuclear - INGEOMINAS, San Juan de Pasto, Colombia (3) Instituto de Investigación en Geocientifica, Mineroambiental y Nuclear - INGEOMINAS, Manizales, Colombia A gas monitoring system has been installed on the volcano Galeras in Colombia as part of a multi-parameter station. Gases are extracted from the fumarolic vapour through a short pipe. After the water has been condensed the gas passes over sensors for carbon dioxide, sulphur dioxide and radon. Other parameters measured are temperature of the fumarolic vapour, fumarolic pressure, temperature of the ambient air and the ambient atmospheric pressure. The signals of the sensors are digitised in the electronics. The digital data are transmitted every 6 seconds by a telemetry system to the observatory down in the city of Pasto via a repeater station at the rim of the Galeras. The system at the volcano is powered by batteries connected to solar panels. Data are stored in the observatory, they are plotted and compared with all the other information of the multi-parameter station. Although the various compounds of the gas system are well preserved for the very aggressive environment close to the fumarole some problems still remain: Sulphur often plugs the pipe to the sensors and requires maintenance more often than desired. As the volcano is most of the time in clouds the installed solar power system (about 400 Watts maximum power) does not enable to run the system at the fumarole (consumption about 15 Watts) continuously during all nights. Despite these still existing problems some results have been obtained encouraging us to continue the operation of the system, to further develop the technical quality and to increase the number of fumaroles included into a growing monitoring network. In March 2000 seismic activity in the crater increased accompanied by a

  9. Silanization of silica and glass slides for DNA microarrays by impregnation and gas phase protocols: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Phaner-Goutorbe, Magali, E-mail: Magali.Phaner@ec-lyon.fr [Universite de Lyon, Institut des Nanotechnologies de Lyon UMR 5270, Ecole Centrale de Lyon, 36 avenue Guy de Collongue, 69134 Ecully (France); Dugas, Vincent, E-mail: Vincent.Dugas@univ-lyon1.fr [Universite de Lyon, Universite Claude Bernard Lyon 1, Laboratoire des sciences analytiques UMR 5180, 43, bd du 11 Novembre 1918, 69622 Villeurbanne cedex (France); Chevolot, Yann, E-mail: Yann.Chevolot@ec-lyon.fr [Universite de Lyon, Institut des Nanotechnologies de Lyon UMR 5270, Ecole Centrale de Lyon, 36 avenue Guy de Collongue, 69134 Ecully (France); Souteyrand, Eliane, E-mail: Eliane.Souteyrand@ec-lyon.fr [Universite de Lyon, Institut des Nanotechnologies de Lyon UMR 5270, Ecole Centrale de Lyon, 36 avenue Guy de Collongue, 69134 Ecully (France)

    2011-03-12

    Surface immobilization of oligonucleotide probes (oligoprobes) is a key issue in the development of DNA-chips. The immobilization protocol should guarantee good availability of the probes, low non-specific adsorption and reproducibility. We have previously reported a silanization protocol with tert-butyl-11-(dimethylamino)silylundecanoate performed by impregnation (Impregnation Protocol, IP) of silica substrates from dilute silane solutions, leading to surfaces bearing carboxylic groups. In this paper, the Impregnation protocol is compared with a Gas phase Protocol (GP) which is more suited to industrial requirements such as reliable and robust processing, cost efficiency, etc.... The morphology of the oligoprobe films at the nanoscale (characterized by Atomic Force Microscopy) and the reproducibility of subsequent oligoprobes immobilization steps have been investigated for the two protocols on thermal silica (Si/SiO{sub 2}) and glass slide substrates. IP leads to smooth surfaces whereas GP induces the formation of islands features suggesting a non-continuous silane layer. The reproducibility of the overall surface layer (18.75 mm{sup 2}) has been evaluated through the covalent immobilization of a fluorescent oligoprobes. Average fluorescent signals of 6 (a.u.) and 4 (a.u.) were observed for IP and GP, respectively, with a standard deviation of 1 for both protocols. Thus, despite a morphological difference of the silane layer at the nanometer scale, the density of the immobilized probes remained similar.

  10. The FOBIMO (FOraminiferal BIo-MOnitoring) initiative—Towards a standardised protocol for soft-bottom benthic foraminiferal monitoring studies

    Science.gov (United States)

    Schoenfeld, Joachim; Alve, Elisabeth; Geslin, Emmanuelle; Jorissen, Frans; Korsun, Sergei; Spezzaferri, Silva; Abramovich, Sigal; Almogi-Labin, Ahuva; Armynot du Chatelet, Eric; Barras, Christine; Bergamin, Luisa; Bicchi, Erica; Bouchet, Vincent; Cearreta, Alejandro; Di Bella, Letizia; Dijkstra, Noortje; Trevisan Disaro, Sibelle; Ferraro, Luciana; Frontalini, Fabrizio; Gennari, Giordana; Golikova, Elena; Haynert, Kristin; Hess, Silvia; Husum, Katrine; Martins, Virginia; McGann, Mary; Oron, Shai; Romano, Elena; Mello Sousa, Silvia; Tsujimoto, Akira

    2012-01-01

    63-μm screen, and the living benthic foraminiferal fauna of the > 125 μm fraction is to be analysed. Splits are to be picked and counted entirely, and all counted foraminifera from at least one replicate per station have to be stored in micropalaeontological slides. Census data, supplementary laboratory data and microslides have to be archived. Advisory recommendations are to sample in autumn, to have a sample size of 50 cm2 or a tube of 8 cm inner diameter, to use > 70% ethanol as a preservative, rose Bengal at a concentration of 2 grams per litre for staining, and a staining time of at least 14 days. The split size should be defined by a target value of 300 specimens, heavy liquid separation should be avoided, and the 63–125 μm fraction or deeper sediment levels may be considered in some environments. We are convinced that the application of this protocol by a large number of scientists is a necessary first step to a general acceptance of benthic foraminifera as a reliable tool in bio-monitoring studies.

  11. 78 FR 25392 - Greenhouse Gas Reporting Rule: Revision to Best Available Monitoring Method Request Submission...

    Science.gov (United States)

    2013-05-01

    ... AGENCY 40 CFR Part 98 RIN 2060-AR74 Greenhouse Gas Reporting Rule: Revision to Best Available Monitoring... Greenhouse Gas Reporting Rule must submit requests for use of best available monitoring methods to the... INFORMATION CONTACT: Carole Cook, Climate Change Division, Office of Atmospheric Programs...

  12. Performance of the gas gain monitoring system of the CMS RPC muon detector

    CERN Document Server

    Benussi, L; Passamonti, L; Piccolo, D; Pierluigi, D; Raffone, G; Russo, A; Saviano, G; Ban, Y; Cai, J; Li, Q; Qian, S; Wang, D; Xu, Z; Zhang, F; Choi, Y; Kim, D; Choi, S; Hong, B; Kang, J W; Kang, M; Kwon, J H; Lee, K S; Park, S K; Pant, L; Singh, V B J; Kumar, A M R; Kumar, S; Chand, S; Singh, A; Bhandari, V K; Cimmino, A; Ocampo, A; Thyssen, F; Tytgat, M; Van Doninck, W; Ahmad, A; Muhamma, S; Shoaib, M; Hoorani, H; Awan, I; Ali, I; Ahmed, W; Asqhar, M I; Shahzad, H; Sayed, A; Ibrahim, A; Ali, S; Ali, R; Radi, A; Elkafrawi, T; Sharma, A; Colafranceschi, S; Abbrescia, M; Verwilligen, P; Meola, S; Cavallo, N; Braghieri, A; Montagna, P; Riccardi, C; Salvini, P; Vitulo, P; Dimitrov, A; Hadjiiska, R; Litov, L; Pavlov, B; Petkov, P; Aleksandrov, A; Genchev, V; Iaydjiev, P; Rodozov, M; Sultanov, G; Vutova, M; Stoykova, S; Ibarguen, H S; Pedraza Morales, M I; Bernardino, S Carpinteyro; Bagaturia, I

    2015-01-01

    The RPC muon detector of the CMS experiment at the LHC (CERN, Geneva, Switzerland) is equipped with a Gas Gain Monitoring (GGM) system. A report on the stability of the system during the 2011-2012 data taking run is given, as well as the observation of an effect which suggests a novel method for the monitoring of gas mixture composition.

  13. 78 FR 11619 - Greenhouse Gas Reporting Rule: Revision to Best Available Monitoring Method Request Submission...

    Science.gov (United States)

    2013-02-19

    ... protection, Administrative practice and procedures, Air pollution control, Greenhouse gases, Monitoring... AGENCY 40 CFR Part 98 RIN 2060-AR74 Greenhouse Gas Reporting Rule: Revision to Best Available Monitoring... category of the Greenhouse Gas Reporting Rule must submit requests for use of best available...

  14. Results of Vapor Space Monitoring of Flammable Gas Watch List Tanks

    Energy Technology Data Exchange (ETDEWEB)

    MCCAIN, D.J.

    2000-09-27

    This report documents the measurement of headspace gas concentrations and monitoring results from the Hanford tanks that have continuous flammable gas monitoring. The systems used to monitor the tanks are Standard Hydrogen Monitoring Systems. Further characterization of the tank off-gases was done with Gas Characterization systems and vapor grab samples. The background concentrations of all tanks are below the action level of 6250 ppm. Other information which can be derived from the measurements (such as generation rate, released rate, and ventilation rate) is also discussed.

  15. A protocol for detecting and scavenging gas-phase free radicals in mainstream cigarette smoke.

    Science.gov (United States)

    Yu, Long-Xi; Dzikovski, Boris G; Freed, Jack H

    2012-01-02

    Cigarette smoking is associated with human cancers. It has been reported that most of the lung cancer deaths are caused by cigarette smoking (5,6,7,12). Although tobacco tars and related products in the particle phase of cigarette smoke are major causes of carcinogenic and mutagenic related diseases, cigarette smoke contains significant amounts of free radicals that are also considered as an important group of carcinogens(9,10). Free radicals attack cell constituents by damaging protein structure, lipids and DNA sequences and increase the risks of developing various types of cancers. Inhaled radicals produce adducts that contribute to many of the negative health effects of tobacco smoke in the lung(3). Studies have been conducted to reduce free radicals in cigarette smoke to decrease risks of the smoking-induced damage. It has been reported that haemoglobin and heme-containing compounds could partially scavenge nitric oxide, reactive oxidants and carcinogenic volatile nitrosocompounds of cigarette smoke(4). A 'bio-filter' consisted of haemoglobin and activated carbon was used to scavenge the free radicals and to remove up to 90% of the free radicals from cigarette smoke(14). However, due to the cost-ineffectiveness, it has not been successfully commercialized. Another study showed good scavenging efficiency of shikonin, a component of Chinese herbal medicine(8). In the present study, we report a protocol for introducing common natural antioxidant extracts into the cigarette filter for scavenging gas phase free radicals in cigarette smoke and measurement of the scavenge effect on gas phase free radicals in mainstream cigarette smoke (MCS) using spin-trapping Electron Spin Resonance (ESR) Spectroscopy(1,2,14). We showed high scavenging capacity of lycopene and grape seed extract which could point to their future application in cigarette filters. An important advantage of these prospective scavengers is that they can be obtained in large quantities from byproducts of

  16. 40 CFR 60.107a - Monitoring of emissions and operations for fuel gas combustion devices.

    Science.gov (United States)

    2010-07-01

    ... this section will be considered inherently low in sulfur content. (i) Pilot gas for heaters and flares... content in the fuel gas stream going to the loading rack flare). (2) The effective date of the exemption... monitoring and recording the concentration of reduced sulfur in flare gas. The owner or operator of...

  17. Monitoring the Groningen gas field by seismic noise interferometry

    Science.gov (United States)

    Zhou, Wen; Paulssen, Hanneke

    2017-04-01

    The Groningen gas field in the Netherlands is the world's 7th largest onshore gas field and has been producing from 1963. Since 2013, the year with the highest level of induced seismicity, the reservoir has been monitored by two geophone strings at reservoir level at about 3 km depth. For borehole SDM, 10 geophones with a natural frequency of 15-Hz are positioned from the top to bottom of the reservoir with a geophone spacing of 30 m. We used seismic interferometry to determine, as accurately as possible, the inter-geophone P- and S-wave velocities from ambient noise. We used 1-bit normalization and spectral whitening, together with a bandpass filter from 3 to 400 Hz. After that, for each station pair, the normalized cross-correlation was calculated for 6 seconds segments with 2/3 overlap. These segmented cross-correlations were stacked for every 1 hour, 24(hours)*33(days) segments were obtained for each station pair. The cross-correlations show both day-and-night and weekly variations reflecting fluctuations in cultural noise. The apparent P-wave travel time for each geophone pair is measured from the maximum of the vertical component cross-correlation for each of the hourly stacks. Because the distribution of these (24*33) picked travel times is not Gaussian but skewed, we used Kernel density estimations to obtain probability density functions of the travel times. The maximum likelihood travel times of all the geophone pairs was subsequently used to determine inter-geophone P-wave velocities. A good agreement was found between our estimated P velocity structure and well logging data, with difference less than 5%. The S-velocity structure was obtained from the east-component cross-correlations. They show both the direct P- and S-wave arrivals and, because of the interference, the inferred S-velocity structure is less accurate. From the 9(3x3)-component cross-correlations for all the geophone pairs, not only the direct P and S waves can be identified, but also

  18. A Communication Protocol and Monitoring Policy for Input/Output Vehicles in an Automatic Storage and Retrieval System

    Institute of Scientific and Technical Information of China (English)

    LI Li; LI Wenfeng; LIAO Xiaoping; SU Wengui; LIN Yizhong

    2006-01-01

    The acquisition and processing of equipment information is pivotal to control and management of the automated storage and retrieval system. The work of this paper is based on the automatic storage and retrieval experimental system of Wuhan University of Technology. First, the output/input flow and the control information of storage/retrieval vehicle are studied and the plotting finite state machine model of the stacking crane is established. Then, the communication protocol between the center control management computer and the PLC of stacking crane is designed. Finally, the stacking crane's monitoring data, which include operating time, running states and real-time position status, are gained by analyzing the communication protocol. The detailed program for the acquisition and processing of monitoring information is developed. This method is suitable for the equipment monitoring of the whole system, and provides a platform for studying the intelligent control and optimal scheduling strategies of AS/RS.

  19. Improving the gas gain monitoring system in multiwire proportional chambers for MUON detector of LHCb experiment.

    CERN Document Server

    Ruvinskaia, Ekaterina

    2016-01-01

    The gas gain monitoring system in multi-wire proportional chambers for MUON detector of LHCb has been constructed and commissioned. It includes an online- monitoring, tools for analysis the archived data and an alarm system on the quality of the gas mixture. Finally, it will be implemented in the main ECS of LHCb for MUON detector and as a part of safety system of LHCb as a permanent online monitor of the quality of the gas mixture in MWPCs. The main advantage of this setup is a monitoring of Gas Gain (GG) in MWPCs with radioactive sources independently from the presence of beam at LHC. It also provides an option for prompt reaction in case of a problem with the gas.

  20. Absorbable energy monitoring scheme: new design protocol to test vehicle structural crashworthiness

    Directory of Open Access Journals (Sweden)

    Sunday M. Ofochebe

    2016-05-01

    Full Text Available In vehicle crashworthiness design optimization detailed system evaluation capable of producing reliable results are basically achieved through high-order numerical computational (HNC models such as the dynamic finite element model, mesh-free model etc. However the application of these models especially during optimization studies is basically challenged by their inherent high demand on computational resources, conditional stability of the solution process, and lack of knowledge of viable parameter range for detailed optimization studies. The absorbable energy monitoring scheme (AEMS presented in this paper suggests a new design protocol that attempts to overcome such problems in evaluation of vehicle structure for crashworthiness. The implementation of the AEMS involves studying crash performance of vehicle components at various absorbable energy ratios based on a 2DOF lumped-mass-spring (LMS vehicle impact model. This allows for prompt prediction of useful parameter values in a given design problem. The application of the classical one-dimensional LMS model in vehicle crash analysis is further improved in the present work by developing a critical load matching criterion which allows for quantitative interpretation of the results of the abstract model in a typical vehicle crash design. The adequacy of the proposed AEMS for preliminary vehicle crashworthiness design is demonstrated in this paper, however its extension to full-scale design-optimization problem involving full vehicle model that shows greater structural detail requires more theoretical development.

  1. Absorbable energy monitoring scheme: new design protocol to test vehicle structural crashworthiness.

    Science.gov (United States)

    Ofochebe, Sunday M; Enibe, Samuel O; Ozoegwu, Chigbogu G

    2016-05-01

    In vehicle crashworthiness design optimization detailed system evaluation capable of producing reliable results are basically achieved through high-order numerical computational (HNC) models such as the dynamic finite element model, mesh-free model etc. However the application of these models especially during optimization studies is basically challenged by their inherent high demand on computational resources, conditional stability of the solution process, and lack of knowledge of viable parameter range for detailed optimization studies. The absorbable energy monitoring scheme (AEMS) presented in this paper suggests a new design protocol that attempts to overcome such problems in evaluation of vehicle structure for crashworthiness. The implementation of the AEMS involves studying crash performance of vehicle components at various absorbable energy ratios based on a 2DOF lumped-mass-spring (LMS) vehicle impact model. This allows for prompt prediction of useful parameter values in a given design problem. The application of the classical one-dimensional LMS model in vehicle crash analysis is further improved in the present work by developing a critical load matching criterion which allows for quantitative interpretation of the results of the abstract model in a typical vehicle crash design. The adequacy of the proposed AEMS for preliminary vehicle crashworthiness design is demonstrated in this paper, however its extension to full-scale design-optimization problem involving full vehicle model that shows greater structural detail requires more theoretical development.

  2. Design of the Network Monitoring Applications Using SNMP (Simple Network Management Protocol with Early Warning System and Network Mapping

    Directory of Open Access Journals (Sweden)

    Muazam Nugroho

    2014-03-01

    Full Text Available Simple Network Management Protocol (SNMP adalah sebuah protokol yang digunakan untuk kebutuhan monitoring pada jaringan komputer. Dalam bekerja, SNMP terdiri dari Network Management Station (NMS atau manager dan SNMP agent. NMS berfungsi sebagai mesin pengolahan informasi dari perangkat-perangkat jaringan yang dipantau (yang disebut sebagai SNMP agent. SNMP agent  terimplementasi  pada manageable node seperti router, server, dan perangkat jaringan lainnya.Pada periode sebelumnya,di Laboratorium Jaringan Telekomunikasi Jurusan Teknik Elektro ITS telah dibuat tiga sistem monitoring jaringan, yaitu network monitor yang dilengkapi dengan database, sistem peringatan dini, dan pemetaan jaringan (Network Mapping. Ketiga sistem ini masih berdiri sendiri, sehingga perlu dilakukan integrasi agar didapat suatu sistem yang memiliki fungsi lengkap.Dalam tugas akhir ini dilakukan perancangan dan pembuatan suatu Network Monitoring System yang merupakan integrasi antara Network Monitoring, Network Mapping, dan Sistem Peringatan Dini.

  3. Long-term autonomous volcanic gas monitoring with Multi-GAS at Mount St. Helens, Washington, and Augustine Volcano, Alaska

    Science.gov (United States)

    Kelly, P. J.; Ketner, D. M.; Kern, C.; Lahusen, R. G.; Lockett, C.; Parker, T.; Paskievitch, J.; Pauk, B.; Rinehart, A.; Werner, C. A.

    2015-12-01

    In recent years, the USGS Volcano Hazards Program has worked to implement continuous real-time in situ volcanic gas monitoring at volcanoes in the Cascade Range and Alaska. The main goal of this ongoing effort is to better link the compositions of volcanic gases to other real-time monitoring data, such as seismicity and deformation, in order to improve baseline monitoring and early detection of volcanic unrest. Due to the remote and difficult-to-access nature of volcanic-gas monitoring sites in the Cascades and Alaska, we developed Multi-GAS instruments that can operate unattended for long periods of time with minimal direct maintenance from field personnel. Our Multi-GAS stations measure H2O, CO2, SO2, and H2S gas concentrations, are comprised entirely of commercial off-the-shelf components, and are powered by small solar energy systems. One notable feature of our Multi-GAS stations is that they include a unique capability to perform automated CO2, SO2, and H2S sensor verifications using portable gas standards while deployed in the field, thereby allowing for rigorous tracking of sensor performances. In addition, we have developed novel onboard data-processing routines that allow diagnostic and monitoring data - including gas ratios (e.g. CO2/SO2) - to be streamed in real time to internal observatory and public web pages without user input. Here we present over one year of continuous data from a permanent Multi-GAS station installed in August 2014 in the crater of Mount St. Helens, Washington, and several months of data from a station installed near the summit of Augustine Volcano, Alaska in June 2015. Data from the Mount St. Helens Multi-GAS station has been streaming to a public USGS site since early 2015, a first for a permanent Multi-GAS site. Neither station has detected significant changes in gas concentrations or compositions since they were installed, consistent with low levels of seismicity and deformation.

  4. Protocol for monitoring forest-nesting birds in National Park Service parks

    Science.gov (United States)

    Dawson, Deanna K.; Efford, Murray G.

    2013-01-01

    These documents detail the protocol for monitoring forest-nesting birds in National Park Service parks in the National Capital Region Network (NCRN). In the first year of sampling, counts of birds should be made at 384 points on the NCRN spatially randomized grid, developed to sample terrestrial resources. Sampling should begin on or about May 20 and continue into early July; on each day the sampling period begins at sunrise and ends five hours later. Each point should be counted twice, once in the first half of the field season and once in the second half, with visits made by different observers, balancing the within-season coverage of points and their spatial coverage by observers, and allowing observer differences to be tested. Three observers, skilled in identifying birds of the region by sight and sound and with previous experience in conducting timed counts of birds, will be needed for this effort. Observers should be randomly assigned to ‘routes’ consisting of eight points, in close proximity and, ideally, in similar habitat, that can be covered in one morning. Counts are 10 minutes in length, subdivided into four 2.5-min intervals. Within each time interval, new birds (i.e., those not already detected) are recorded as within or beyond 50 m of the point, based on where first detected. Binomial distance methods are used to calculate annual estimates of density for species. The data are also amenable to estimation of abundance and detection probability via the removal method. Generalized linear models can be used to assess between-year changes in density estimates or unadjusted count data. This level of sampling is expected to be sufficient to detect a 50% decline in 10 years for approximately 50 bird species, including 14 of 19 species that are priorities for conservation efforts, if analyses are based on unadjusted count data, and for 30 species (6 priority species) if analyses are based on density estimates. The estimates of required sample sizes are

  5. Monitoring gas emissions can help forecast volcanic eruptions

    Science.gov (United States)

    Kern, Christoph; Maarten de Moor,; Bo Galle,

    2015-01-01

    As magma ascends in active volcanoes, dissolved volatiles partition from melt into a gas phase, rise, and are released into the atmosphere from volcanic vents. The major components of high-temperature volcanic gas are typically water vapor, carbon dioxide, and sulfur dioxide. 

  6. Ada-MAC: An Adaptive MAC Protocol for Real-time and Reliable Health Monitoring,

    OpenAIRE

    Xia, Feng; Wang, Linqiang; Zhang, Daqiang; Zhang, Xue(Department of Physics, Liaoning Normal University, Dalian, 116029, China); Gao, Ruixia

    2013-01-01

    IEEE 802.15.4 is regarded as one of the most suitable communication protocols for cyber-physical applications of wireless sensor and actuator networks. This is because this protocol is able to achieve low-power and low-cost transmission in wireless personal area networks. But most cyber-physical systems (CPSs) require a degree of real-time and reliability from the underlying communication protocol. Some of them are stricter than the others. However, IEEE 802.15.4 protocol cannot provide relia...

  7. Combustion/Emission Species Monitoring Ground and Flight Aeronautical Research Using a Gas Microsensor Array Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this program is to develop a miniaturized and in-situ operated gas microsensor array for the real time monitoring of chemical composition of turbine...

  8. ADNP-CSMA Random Multiple Access protocol application with the function of monitoring in Ad Hoc network

    Directory of Open Access Journals (Sweden)

    Zhan Gang

    2016-01-01

    Full Text Available In Ad Hoc networks,the net work of mobile nodes exchange information with their wireless transceiver equipment,the network throughput is in increased,compared to other such multiple hops network.Moreover along with the rapid development of modern information,communication business also will be increase.However,the access and adaptive of previous CSMA protocol are insufficient.According to these properties,this paper presents a kind of adaptive dual clock with monitoring function P-CSMA random multiple access protocol(ADNP-CSMA,and discusses two kinds of P-CSMA.ACK with monitoring function is introduced to maintain the stability of the whole system,and the introduction of dual clock mechanism reduces the channel of idle period.It calculate the system throughput expression through the method of average period,and the simulation results show that the system is constant in the case of high load throughput.

  9. 基于Modbus RTU协议的燃气锅炉监控系统%DCS control system of gas boiler based on Modbus RTU protocol

    Institute of Scientific and Technical Information of China (English)

    张庆国; 林明

    2013-01-01

    在燃气锅炉监控系统中,DCS作为主站基于Modbus RTU协议,通过RS485总线与西门子S7-200 PLC、网络电力仪表ACR320E实现无缝连接,读取锅炉本体参数。DCS还作为从站基于Modbus RTU协议、以RS485总线方式与燃气调压站RTU通讯连接,被动接收燃气系统参数。DCS与S7-200 PLC、网络电力仪表ACR320E及燃气调压站RTU三者的互联,实现了燃气锅炉系统的全方位动态监控,运行效果良好。%In the control system of gas boiler,as a master station,DCS reads the boiler's parameter,achieves the seamless connection with Siemens S7-200 PLC and network power meter ACR320E by Modbus RTU protocol and RS485.In the other hand,being the slave station,DCS communicates with the gas regulator station's RTU by Modbus RTU and RS485,and receives gas system data passively.The network of DCS, S7-200 PLC,network power meters and gas regulator station's RTU ACR320E realizes the general and dynamic monitoring of gas boiler system,and has reliable operation status.

  10. Protocol for Measuring the Thermal Properties of a Supercooled Synthetic Sand-water-gas-methane Hydrate Sample.

    Science.gov (United States)

    Muraoka, Michihiro; Susuki, Naoko; Yamaguchi, Hiroko; Tsuji, Tomoya; Yamamoto, Yoshitaka

    2016-03-21

    Methane hydrates (MHs) are present in large amounts in the ocean floor and permafrost regions. Methane and hydrogen hydrates are being studied as future energy resources and energy storage media. To develop a method for gas production from natural MH-bearing sediments and hydrate-based technologies, it is imperative to understand the thermal properties of gas hydrates. The thermal properties' measurements of samples comprising sand, water, methane, and MH are difficult because the melting heat of MH may affect the measurements. To solve this problem, we performed thermal properties' measurements at supercooled conditions during MH formation. The measurement protocol, calculation method of the saturation change, and tips for thermal constants' analysis of the sample using transient plane source techniques are described here. The effect of the formation heat of MH on measurement is very small because the gas hydrate formation rate is very slow. This measurement method can be applied to the thermal properties of the gas hydrate-water-guest gas system, which contains hydrogen, CO2, and ozone hydrates, because the characteristic low formation rate of gas hydrate is not unique to MH. The key point of this method is the low rate of phase transition of the target material. Hence, this method may be applied to other materials having low phase-transition rates.

  11. Application network for monitoring of green house gas emission from lithosphere in Khibina territories

    Science.gov (United States)

    Asavin, Alex; Nivin, Valentin; Litvinov, Artur; Chesalova, Elena; Baskov, Sergey

    2015-04-01

    The aim of project is to estimate the contribution of lithospheric flue gas emission of gases CH4, CO2, H2 in the general composition of atmospheric pollution of Arctic zone. The main task is organization of the ecological monitoring in the area of exploitation of large apatite and rare earth ore deposit from Khibine massive on the base of modern WSN (wireless sensor network) technologies. Application network consist from sensors of gas H2, CH4, CO2, complex autonomous equipment for measurement temperature, pressure, humidity and network of telecommunications (used ZigBee protocol). Our project offer technical decisions for experimentally-methodical monitoring network on the base of WSN and the high-sensitive sensors of hydrogen and methane, software and electronic equipment with a transmitter network. This work is the first project in Russia. The advantages of this technology is autonomous work (to several months and more), high-frequency programmable measurement of gas sensor, low cost (on one node of network), possibility to connect to one node of supervision a several types of sensors. And as a result is complex monitoring of environment. It has long been known that the pollution in Arctic Khibine and Lovosero region contains unusually high levels of hydrocarbon gases (HCG) [Petersilie,1964]. The presence of these gases has a number of practical implications and it is therefore important to understand their source and distribution. Among alkaline intrusive complexes with high (for magmatic rocks) concentrations of hydrocarbon and hydrogen- hydrocarbon gases occluded as fluid inclusions in minerals. The Khibina and Lovozero massives are well known, as region of spontaneous emissions of these gases from lithosphere [Khitarov et al., 1979; Ikorskii et al., 1992; Beeskow 2007; Nivin 2005, 2009]. The presence of the HCG, however, raises a number of questions and possibilities. It is unclear how homogeneously the HCG are distributed through the complex? What is the

  12. Ecological thresholds in the savanna landscape: developing a protocol for monitoring the change in composition and utilisation of large trees.

    Directory of Open Access Journals (Sweden)

    Dave J Druce

    Full Text Available BACKGROUND: Acquiring greater understanding of the factors causing changes in vegetation structure -- particularly with the potential to cause regime shifts -- is important in adaptively managed conservation areas. Large trees (> or =5 m in height play an important ecosystem function, and are associated with a stable ecological state in the African savanna. There is concern that large tree densities are declining in a number of protected areas, including the Kruger National Park, South Africa. In this paper the results of a field study designed to monitor change in a savanna system are presented and discussed. METHODOLOGY/PRINCIPAL FINDINGS: Developing the first phase of a monitoring protocol to measure the change in tree species composition, density and size distribution, whilst also identifying factors driving change. A central issue is the discrete spatial distribution of large trees in the landscape, making point sampling approaches relatively ineffective. Accordingly, fourteen 10 m wide transects were aligned perpendicular to large rivers (3.0-6.6 km in length and eight transects were located at fixed-point photographic locations (1.0-1.6 km in length. Using accumulation curves, we established that the majority of tree species were sampled within 3 km. Furthermore, the key ecological drivers (e.g. fire, herbivory, drought and disease which influence large tree use and impact were also recorded within 3 km. CONCLUSIONS/SIGNIFICANCE: The technique presented provides an effective method for monitoring changes in large tree abundance, size distribution and use by the main ecological drivers across the savanna landscape. However, the monitoring of rare tree species would require individual marking approaches due to their low densities and specific habitat requirements. Repeat sampling intervals would vary depending on the factor of concern and proposed management mitigation. Once a monitoring protocol has been identified and evaluated, the next

  13. Non-Intrusive Load Monitoring Assessment: Literature Review and Laboratory Protocol

    Energy Technology Data Exchange (ETDEWEB)

    Butner, R. Scott; Reid, Douglas J.; Hoffman, Michael G.; Sullivan, Greg; Blanchard, Jeremy

    2013-07-01

    To evaluate the accuracy of NILM technologies, a literature review was conducted to identify any test protocols or standardized testing approaches currently in use. The literature review indicated that no consistent conventions were currently in place for measuring the accuracy of these technologies. Consequently, PNNL developed a testing protocol and metrics to provide the basis for quantifying and analyzing the accuracy of commercially available NILM technologies. This report discusses the results of the literature review and the proposed test protocol and metrics in more detail.

  14. Applications of ZigBee Technology in the Safety Monitoring System of Low Gas Pipeline Transportation

    Directory of Open Access Journals (Sweden)

    Wei Deyu

    2015-01-01

    Full Text Available The existing safety monitoring system of low gas pipeline transportation establishes a wired communication network monitoring system mainly on the basis of industrial bus. It has problems such as large transmission signal attenuation, complex wiring, high-labor intensity, inconvenient installation and maintenance, high maintenance cost, and so on. Featuring low cost, power-saving, reliability, stability and flexibility, the wireless sensor network established by ZigBee wireless communication technology can realize the real-time all-dimensional dynamic monitoring on parameters of low gas pipeline transportation system and overcome the shortcomings and deficiencies of wired network system.

  15. Gas monitoring data anomaly identification based on spatio-temporal correlativity analysis

    Institute of Scientific and Technical Information of China (English)

    Shi-song ZHU; Yun-jia WANG; Lian-jiang WEI

    2013-01-01

    Based on spatio-temporal correlativity analysis method,the automatic identification techniques for data anomaly monitoring of coal mining working face gas are presented.The asynchronous correlative characteristics of gas migration in working face airflow direction are qualitatively analyzed.The calculation method of asynchronous correlation delay step and the prediction and inversion formulas of gas concentration changing with time and space after gas emission in the air return roadway are provided.By calculating one hundred and fifty groups of gas sensors data series from a coal mine which have the theoretical correlativity,the correlative coefficient values range of eight kinds of data anomaly is obtained.Then the gas monitoring data anomaly identification algorithm based on spatio-temporal correlativity analysis is accordingly presented.In order to improve the efficiency of analysis,the gas sensors code rules which can express the spatial topological relations are suggested.The experiments indicate that methods presented in this article can effectively compensate the defects of methods based on a single gas sensor monitoring data.

  16. Gas dynamics considerations in a non-invasive profile monitor for charged particle beams

    CERN Document Server

    Tzoganis, Vasilis; Welsch, Carsten P

    2014-01-01

    A non-invasive, gas jet-based, beam profile monitor has been developed in the QUASAR Group at the Cockcroft Institute, UK. This allows on-line measurement of the 2-dimensional transverse profile of particle beams with negligible disturbance to either primary beam or accelerator vacuum. The monitor is suitable for use with beams across a wide range of energies and intensities. In this setup a nozzle-skimmer system shapes a thin supersonic gas jet into a curtain. However, the small dimensions of the gas inlet nozzle and subsequent skimmers were shown to be the cause of many operational problems. In this paper, the dynamics of gas jet formation transport and shaping is discussed before an image-processing based alignment technique is introduced. Furthermore, experimental results obtained with a 5 keV electron beam are discussed and the effects of gas stagnation pressure on the acquired beam are presented.

  17. Optimized Protocol for Quantitative Multiple Reaction Monitoring-Based Proteomic Analysis of Formalin-Fixed, Paraffin-Embedded Tissues.

    Science.gov (United States)

    Kennedy, Jacob J; Whiteaker, Jeffrey R; Schoenherr, Regine M; Yan, Ping; Allison, Kimberly; Shipley, Melissa; Lerch, Melissa; Hoofnagle, Andrew N; Baird, Geoffrey Stuart; Paulovich, Amanda G

    2016-08-01

    Despite a clinical, economic, and regulatory imperative to develop companion diagnostics, precious few new biomarkers have been successfully translated into clinical use, due in part to inadequate protein assay technologies to support large-scale testing of hundreds of candidate biomarkers in formalin-fixed paraffin-embedded (FFPE) tissues. Although the feasibility of using targeted, multiple reaction monitoring mass spectrometry (MRM-MS) for quantitative analyses of FFPE tissues has been demonstrated, protocols have not been systematically optimized for robust quantification across a large number of analytes, nor has the performance of peptide immuno-MRM been evaluated. To address this gap, we used a test battery approach coupled to MRM-MS with the addition of stable isotope-labeled standard peptides (targeting 512 analytes) to quantitatively evaluate the performance of three extraction protocols in combination with three trypsin digestion protocols (i.e., nine processes). A process based on RapiGest buffer extraction and urea-based digestion was identified to enable similar quantitation results from FFPE and frozen tissues. Using the optimized protocols for MRM-based analysis of FFPE tissues, median precision was 11.4% (across 249 analytes). There was excellent correlation between measurements made on matched FFPE and frozen tissues, both for direct MRM analysis (R(2) = 0.94) and immuno-MRM (R(2) = 0.89). The optimized process enables highly reproducible, multiplex, standardizable, quantitative MRM in archival tissue specimens.

  18. A new online exhaust gas monitoring system in hydrochloric acid regeneration of cold rolling mills.

    Science.gov (United States)

    Tuo, Long; Zheng, Xiang; Chen, Xiong

    2015-07-07

    Measuring the content of hydrogen chloride (HCl) in exhaust gas used to take time and energy. In this paper, we introduce a new online monitoring system which can output real-time data to the monitoring center. The system samples and cools exhaust gas, and after a series of processing, it will be analyzed by a specific instrument. The core part of this system is remote terminal unit (RTU) which is designed on Cortex-A8 embedded architecture. RTU runs a scaled-down version of Linux which is a good choice of OS for embedded applications. It controls the whole processes, does data acquisition and data analysis, and communicates with monitoring center through Ethernet. In addition, through a software developed for windows, the monitoring process can be remotely controlled. The new system is quite beneficial for steel industry to do environment monitoring.

  19. Environmental Monitoring and the Gas Industry: Program Manager Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Gregory D. Gillispie

    1997-12-01

    This document has been developed for the nontechnical gas industry manager who has the responsibility for the development of waste or potentially contaminated soil and groundwater data or must make decisions based on such data for the management or remediation of these materials. It explores the pse of common analytical chemistry instrumentation and associated techniques for identification of environmentally hazardous materials. Sufficient detail is given to familiarize the nontechnical reader with the principles behind the operation of each technique. The scope and realm of the techniques and their constituent variations are portrayed through a discussion of crucial details and, where appropriate, the depiction of real-life data. It is the author's intention to provide an easily understood handbook for gas industry management. Techniques which determine the presence, composition, and quantification of gas industry wastes are discussed. Greater focus is given to traditional techniques which have been the mainstay of modem analytical benchwork. However, with the continual advancement of instrumental principles and design, several techniques have been included which are likely to receive greater attention in fiture considerations for waste-related detection. Definitions and concepts inherent to a thorough understanding of the principles common to analytical chemistry are discussed. It is also crucial that gas industry managers understand the effects of the various actions which take place before, during, and after the actual sampling step. When a series of sample collection, storage, and transport activities occur, new or inexperienced project managers may overlook or misunderstand the importance of the sequence. Each step has an impact on the final results of the measurement process; errors in judgment or decision making can be costly. Specific techniques and methodologies for the collection, storage, and transport of environmental media samples are not

  20. Development and test of an evaluation protocol for heavy gas dispersion models

    NARCIS (Netherlands)

    Duijm, N.J.; Carissimo, B.; Mercer, A.; Bartholome, C.; Giesbrecht, H.

    1997-01-01

    In order to improve the quality (i.e. fitness-for-purpose) of models used to describe the atmospheric dispersion of heavy gas, an evaluation methodology has been developed and tested through a small evaluation exercise. This activity was carried out by the Heavy Gas Dispersion Expert Group, which wa

  1. An in situ method for real-time monitoring of soil gas diffusivity

    Science.gov (United States)

    Laemmel, Thomas; Maier, Martin; Schack-Kirchner, Helmer; Lang, Friederike

    2016-04-01

    Soil aeration is an important factor for the biogeochemistry of soils. Generally, gas exchange between soil and atmosphere is assumed to be governed by molecular diffusion and by this way fluxes can be calculated using by Fick's Law. The soil gas diffusion coefficient DS represents the proportional factor between the gas flux and the gas concentration gradient in the soil and reflects the ability of the soil to "transport passively" gas through the soil. One common way to determine DS is taking core samples in the field and measuring DS in the lab. Unfortunately this method is destructive and laborious and it can only reflect a small fraction of the whole soil. As a consequence, uncertainty about the resulting effective diffusivity on the profile scale, i.e. the real aeration status remains. We developed a method to measure and monitor DS in situ. The set-up consists of a custom made gas sampling device, the continuous injection of an inert tracer gas and inverse gas transport modelling in the soil. The gas sampling device has seven sampling depths (from 0 to -43 cm of depth) and can be easily installed into vertical holes drilled by an auger, which allows for fast installation of the system. Helium (He) as inert tracer gas was injected continuously at the lower end of the device. The resulting steady state distribution of He was used to deduce the DS depth distribution of the soil. For Finite Element Modeling of the gas-sampling-device/soil system the program COMSOL was used. We tested our new method both in the lab and in a field study and compared the results with a reference lab method using soil cores. DS profiles obtained by our in-situ method were consistent with DS profiles determined based on soil core analyses. Soil gas profiles could be measured with a temporal resolution of 30 minutes. During the field study, there was an important rain event and we could monitor the decrease in soil gas diffusivity in the top soil due to water infiltration. The effect

  2. Promising Data for Public Empowerment: The Making of Data Culture and Water Monitoring Infrastructures in the Marcellus Shale Gas Rush

    Science.gov (United States)

    Jalbert, Kirk

    A recent wave of advanced technologies for collecting and interpreting data offer new opportunities for laypeople to contribute to environmental monitoring science. This dissertation examines the conditions in which building knowledge infrastructures and embracing data "cultures" empowers and disempowers communities to challenge polluting industries. The processes and technologies of data cultures give people new capacities to understand their world, and to formulate powerful scientific arguments. However, data cultures also make many aspects of social life invisible, and elevate quantitative objective analysis over situated, subjective observation. This study finds that data cultures can empower communities when concerned citizens are equal contributors to research partnerships; ones that enable them to advocate for more nuanced data cultures permitting of structural critiques of status-quo environmental governance. These arguments are developed through an ethnographic study of participatory watershed monitoring projects that seek to document the impacts of shale gas extraction in Pennsylvania, New York, and West Virginia. Energy companies are drilling for natural gas using highly controversial methods of extraction known as hydraulic fracturing. Growing evidence suggests that nearby watersheds can be impacted by a myriad of extraction related problems including seepage from damaged gas well casing, improper waste disposal, trucking accidents, and the underground migration of hydraulic fracking fluids. In response to these risks, numerous organizations are coordinating and carrying out participatory water monitoring efforts. All of these projects embrace data culture in different ways. Each monitoring project has furthermore constructed its own unique infrastructure to support the sharing, aggregation, and analysis of environmental data. Differences in data culture investments and infrastructure building make some projects more effective than others in empowering

  3. The EMCDDA/Pompidou Group treatment demand indicator protocol: a European core item set for treatment monitoring and reporting.

    Science.gov (United States)

    Simon, R; Donmall, M; Hartnoll, R; Kokkevi, A; Ouwehand, A W; Stauffacher, M; Vicente, J

    1999-12-01

    Over the last decades inside and outside of Europe, treatment-based data have been used in epidemiological research on drugs and drug abuse. They offer information on hidden populations and allow to follow socially stigmatised behaviour. As this type of research can be done on rather low budgets, there are long-term projects run in many countries. Experts from the national systems in several EU member states have been working together to develop a common standard on the basis of the Pompidou Group (PG) Definitive Protocol. The items and basic definitions of the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA)/PG Treatment Demand Indicator Protocol are described, which plays an important role in the process of harmonisation of data collection for the EMCDDA. Implementation strategies are described, and future steps are discussed.

  4. Protocol of specific health monitoring: ionizing radiation, 11 years later; Protocolo de vigilancia sanitaria especifica: radiaciones ionizantes, 11 anos despues

    Energy Technology Data Exchange (ETDEWEB)

    Castillejo Puertas, F. M.

    2016-08-01

    Since the approval on November 11{sup t}h 2003 of the Protocol of Specific Health Monitoring for Workers Exposed to Ionizing Radiation a study has been carried out to discover its effectiveness. These areas were examined: the daily practice od accupational medicine and, in particular, its specific task in the application of the different clinical/labour criteria for workers exposed to ionizing radiation or at risk of radioactive contamination; the degree of its uses as well as the updates and improvements. For that purpose, a descriptive bibliographic revision has been used for the last 11 years. The results revealed the lack of updates of the Protocol as well as the few usable objective criteria, when the clinical/labour aptitudes are reflected upon. (Author)

  5. Real-Time Monitoring of Trace Gas Concentrations in Syngas

    Directory of Open Access Journals (Sweden)

    Herbig J.

    2013-08-01

    Full Text Available A Proton Transfer Reaction Mass Spectrometer (PTR-MS was used for the analysis of syngas in an industrial Fischer-Tropsch process. A PTR-MS can detect a variety of volatile organic and inorganic compounds in real-time and with high sensitivity. Together with a multiplexer, this allows for online (real-time monitoring of the trace contaminations at different stages of a Fischer-Tropsch process. Several volatile compounds, such as HCN, H2S, RSH, carbonyls, acids, alcohols and others have been measured in Syngas. This paper describes the setup to monitor syngas using PTR-MS and summarizes the result of this proof-of-principle project.

  6. Analytical methods and monitoring system for E-beam flue gas treatment process

    Science.gov (United States)

    Licki, J.; Chmielewski, A. G.; Iller, E.; Zakrzewska-Trznadel, G.; Tokunaga, O.; Hashimoto, S.

    1998-06-01

    The results of reliable and precise measurement of gas composition in different key points of e-beam installation are necessary for its proper operation and control. Only the composition of flue gas coming into installation is adequate to composition of flue gas emitted from coal-fired boiler. At other points of e-b installation the gas composition is strongly modified by process conditions therefore specific measuring system (sampling and conditioning system and set of gas analyzers) for its determination are required. In the paper system for gas composition measurement at inlet and outlet of e-b installation are described. Process parameters are continuously monitoring by CEM system and occasionally by the grab sample system. Both system have been tested at pilot plant at EPS Kawȩczyn.

  7. The impact of economic activity in Asturias on greenhouse gas emissions: consequences for environmental policy within the Kyoto Protocol framework.

    Science.gov (United States)

    Argüelles, Margarita; Benavides, Carmen; Junquera, Beatriz

    2006-11-01

    Climate change is one of the major worldwide environmental concerns. It is especially the case in many developed countries, where the greenhouse gas emissions responsible for this change are mainly concentrated. For the first time, the Kyoto Protocol includes an international agreement for the reduction of the net emissions of these gases. To fulfil this agreement measures designed to reduce or limit current emissions have to be brought into force. Consequently, fears have arisen about possible consequences on competitiveness and future development of manufacturing activities and the need for support mechanisms for the affected sectors is obvious. In this paper, we carry out a study of the emissions of gases responsible for climate change in Asturias (Spain), a region with an important economic presence of sectors with intensive emissions of CO(2), the chief greenhouse gas. To be precise, in the first place, the volumes of direct emissions of the said gases in 1995 were calculated, showing that the sectors most affected by the Kyoto Protocol in Asturias are iron and steel and electricity production. Secondly, input-output analysis was applied to determine the direct and indirect emissions and the direct, indirect and induced emissions of the different production sectors, respectively. The results derived from the direct and indirect emissions analysis and their comparison with the results of the former allow us to reach some conclusions and environmental policy implications.

  8. Comparative study of gas-analyzing systems designed for continuous monitoring of TPP emissions

    Science.gov (United States)

    Kondrat'eva, O. E.; Roslyakov, P. V.

    2017-06-01

    Determining the composition of combustion products is important in terms of both control of emissions into the atmosphere from thermal power plants and optimization of fuel combustion processes in electric power plants. For this purpose, the concentration of oxygen, carbon monoxide, nitrogen, and sulfur oxides in flue gases is monitored; in case of solid fuel combustion, fly ash concentration is monitored as well. According to the new nature conservation law in Russia, all large TPPs shall be equipped with continuous emission monitoring and measurement systems (CEMMS) into the atmosphere. In order to ensure the continuous monitoring of pollutant emissions, direct round-the-clock measurements are conducted with the use of either domestically produced or imported gas analyzers and analysis systems, the operation of which is based on various physicochemical methods and which can be generally used when introducing CEMMS. Depending on the type and purposes of measurement, various kinds of instruments having different features may be used. This article represents a comparative study of gas-analysis systems for measuring the content of polluting substances in exhaust gases based on various physical and physicochemical analysis methods. It lists basic characteristics of the methods commonly applied in the area of gas analysis. It is proven that, considering the necessity of the long-term, continuous operation of gas analyzers for monitoring and measurement of pollutant emissions into the atmosphere, as well as the requirements for reliability and independence from aggressive components and temperature of the gas flow, it is preferable to use optical gas analyzers for the aforementioned purposes. In order to reduce the costs of equipment comprising a CEMMS at a TPP and optimize the combustion processes, electrochemical and thermomagnetic gas analyzers may also be used.

  9. A comparison of real-time PCR protocols for the quantitative monitoring of asymptomatic olive infections by Verticillium dahliae pathotypes.

    Science.gov (United States)

    Gramaje, D; Pérez-Serrano, V; Montes-Borrego, M; Navas-Cortés, J A; Jiménez-Díaz, R M; Landa, B B

    2013-10-01

    Early, specific, and accurate in planta detection and quantification of Verticillium dahliae are essential to prevent the spread of Verticillium wilt in olive using certified pathogen-free planting material and development of resistance. We comparatively assessed the accuracy, specificity, and efficiency of eight real-time quantitative polymerase chain reaction protocols published since 2002 for the specific detection and quantification of V. dahliae in various host plant species and in soil, using a background of DNAs extracted from olive roots, stems, and leaves. Results showed that some of those protocols were not specific for V. dahliae or were inhibited when using backgrounds other than water. Ranking of protocols according to a weighted score system placed protocols TAQ (based on intergenic spacer ribosomal DNA target gene) and SYBR-4 (based on the β-tubulin 2 target gene) first in sensitivity and efficiency for the quantification of V. dahliae DNA in small amounts and different types of olive tissues (root and stem) tested. Use of TAQ and SYBR-4 protocols allowed accurate quantification of V. dahliae DNA regardless of the background DNA, with a detection limit being fixed at a cycle threshold of 36 (≈18 fg for SYBR-4 and 15 fg for TAQ) of V. dahliae. The amount of DNA from defoliating (D) and nondefoliating (ND) V. dahliae pathotypes was monitored in Verticillium wilt-resistant 'Frantoio' olive using the TAQ and SYBR-4 protocols. In the infection bioassay, higher amounts of D V. dahliae DNA were measured in olive stems, whereas the average amount of fungal DNA in roots was higher for ND-infected plants than D-infected ones. Overall, V. dahliae DNA amounts in all olive tissues tested tended to slightly decrease or remain stable by the end of the experiment (35 days after inoculation). The SYBR-4 and TAQ protocols further enabled detection of V. dahliae in tissues of symptomless plants, suggesting that both techniques can be useful for implementing

  10. Systematic study of RPC performances in polluted or varying gas mixtures compositions: an online monitor system for the RPC gas mixture at LHC

    CERN Document Server

    Capeans, M; Mandelli, B

    2012-01-01

    The importance of the correct gas mixture for the Resistive Plate Chamber (RPC) detector systems is fundamental for their correct and safe operation. A small change in the percentages of the gas mixture components can alter the RPC performance and this will rebound on the data quality in the ALICE, ATLAS and CMS experiments at CERN. A constant monitoring of the gas mixture injected in the RPCs would avoid such kind of problems. A systematic study has been performed to understand RPC performances with several gas mixture compositions and in the presence of common gas impurities. The systematic analysis of several RPC performance parameters in different gas mixtures allows the rapid identification of any variation in the RPC gas mixture. A set-up for the online monitoring of the RPC gas mixture in the LHC gas systems is also proposed.

  11. Water management in capillary gas chromatographic air monitoring systems

    Energy Technology Data Exchange (ETDEWEB)

    Tipler, A. [Perkin Elmer Corp., Norwalk, CT (United States). Fresh Aire Lab.

    1994-12-31

    Capillary gas chromatography is an excellent technique for the speciated quantitation of low-level volatile organic compounds (VOCs) in ambient air. Although GC detectors have excellent sensitivity, some sample pre-concentration will be necessary to enable detection of VOCs at sub-ppb levels. This process normally employs a cooled and/or adsorbent trap to retain the analytes from a large volume of sample air. For very volatile VOCs, a very retentive trap is used and this may also retain water present as vapor in the sample. This trapped water causes significant problems with the chromatography and detector operation and methods must be sought to remove it or eliminate its effects. This paper investigates the magnitude of the problem and examines the various alternatives for managing the trapped water. The application of some of these techniques is demonstrated in a method for the determination of volatile polar and non-polar toxic organic compounds in ambient air.

  12. The CMS RPC gas gain monitoring system: an overview and preliminary results

    CERN Document Server

    Benussi, L; Colafranceschi, S; Colonna, D; Daniello, L; Fabbri, F L; Giardoni, M; Ortenzi, B; Paolozzi, A; Passamonti, L; Pierluigi, D; Ponzio, B; Pucci, C; Russo, A; Roselli, G; Colaleo, A; Loddo, F; Maggi, M; Ranieri, A; Abbrescia, M; Iaselli, G; Marangelli, B; Natali, S; Nuzzo, S; Pugliese, G; Romano, F; Trentadue, R; Tupputi, S; Guida, R; Polese, G; Cavallo, N; Cimmino, A; Lomidze, D; Noli, P; Paolucci, D; Piccolo, P; Sciacca, C; Baesso, P; Necchi, M; Pagano, D; Ratti, S P; Vitulo, P; Viviani, C

    2009-01-01

    The status of the CMS RPC Gas Gain Monitoring (GGM) system developed at the Frascati Laboratory of INFN (Istituto Nazionale di Fisica Nucleare) is reported on. The GGM system is a cosmic ray telescope based on small RPC detectors operated with the same gas mixture used by the CMS RPC system. The GGM gain and efficiency are continuously monitored on-line, thus providing a fast and accurate determination of any shift in working point conditions. The construction details and the first result of GGM commissioning are described.

  13. A simple protocol using underwater epoxy to install annual temperature monitoring sites in rivers and streams

    Science.gov (United States)

    Daniel J. Isaak; Dona L. Horan; Sherry P. Wollrab

    2013-01-01

    Thermal regimes in rivers and streams are fundamental determinants of biological processes and are often monitored for regulatory compliance. Here, we describe a simple technique for establishing annual monitoring sites that uses underwater epoxy to attach miniature sensors to large rocks and cement bridge supports, which then serve as protective anchors. More than 500...

  14. A compact x-ray beam intensity monitor using gas amplified sample current measurement

    Science.gov (United States)

    Hayakawa, Shinjiro; Kobayashi, Kazuo; Gohshi, Yohichi

    2000-01-01

    Development of a compact beam intensity monitor using gas amplified sample current measurement is described. The monitor can be a powerful tool for x-ray spectroscopy and microscopy when the beam is defined by a small pinhole or slits and when the workspace around the sample is limited. The thickness of the monitor is as small as approximately 3 mm, and the dimension is 10 mm square. The photon flux is monitored by measuring x-ray excited current from an Al foil under atmospheric conditions. Emitted electrons from the Al foil can ionize surrounding air molecules, and the gas amplified current can be measured with the use of a biased grid that prevents created ion pairs from recombination.

  15. Evaluation of a realtime, remote monitoring telemedicine system using the Bluetooth protocol and a mobile phone network.

    Science.gov (United States)

    Jasemian, Yousef; Arendt-Nielsen, Lars

    2005-01-01

    A generic, realtime wireless telemedicine system has been developed that uses the Bluetooth protocol and the general packet radio service for mobile phones. The system was tested on 10 healthy volunteers, by continuous monitoring of their electrocardiograms (ECGs). Under realistic conditions, the system had 96.5% uptime, a data throughput of 3.3 kbit/s, a mean packet error rate of 8.5x10(-3) packet/s and a mean packet loss rate of 8.2x10(-3) packet/s. During 24 h testing, the total average downtime was 66 min and 90% of the periods of downtime were of only 1-3 min duration. Less than 10% of the ECGs were of unacceptable quality. Thus, the generic telemedicine system showed high reliability and performance, and the design may provide a foundation for realtime monitoring in clinical practice, for example in cardiology.

  16. Feasibility of Implementing a Patient-Centered Postoperative Wound Monitoring Program Using Smartphone Images: A Pilot Protocol

    Science.gov (United States)

    2017-01-01

    Background Surgical site infections (SSI) represent a significant public health problem as the most common nosocomial infection and a leading cause of unplanned hospital readmissions among surgical patients. Many develop following hospital discharge and often go unrecognized by patients. Telemedicine offers the opportunity to leverage the mobile technology to remotely monitor wound recovery in the transitional period between hospital discharge and routine clinic follow-up. However, many existing telemedicine platforms are episodic, replacing routine follow-up, rather than equipped for continued monitoring; they include only low-risk patient populations and those who already have access to and comfort with the necessary technology; and transmit no visual information. Objective Drawing upon the Coleman model for care transitions and the Proctor model for implementation, we propose a protocol of postoperative wound monitoring using smartphone digital images. In this study, we will establish the feasibility of such a program, both for patients and for the clinical care team. Methods We will recruit 40 patients or patient/caregiver pairs from our inpatient vascular surgery service. Eligible patients will be English-speaking, 18 years of age or older, and have an incision at least 3 cm in length. Participants will receive a training session, during which they will learn to use the device and the wound monitoring smartphone app. Following hospital discharge, they will submit digital images of their wound and responses to a survey about their recovery for 14 days. Experienced health care providers on the vascular surgery inpatient service will review transmitted data daily and contact patients for any concerning findings. Results Primary outcomes will include participant adherence to the protocol, time required for providers to review submissions, time from submission to provider review, and participant satisfaction. Secondary outcomes will include SSI detection and

  17. Chemical gas sensors for car exhaust and cabin air monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kalman, E.-L.; Winquist, F. [Department of Physics and Measurement Technology, Laboratory of Applied Physics, Linkoeping University, Gothenburg (Sweden); Rudell, B. [Department of Occupational and Environmental Medicine, Centre of Public Health Sciences, Linkoeping, Gothenburg (Sweden); Loefvendahl, A. [Volvo Car Corporation, Gothenburg (Sweden); Wass, U. [Volvo Technological Development Corporation, Gothenburg (Sweden)

    2002-07-01

    A combination of charcoal and particle filters has previously been shown to reduce effectively the smell of diesel exhaust. In this paper it is shown that the smell of diesel exhaust can successfully be predicted by the concentration of total volatile organic compounds and the concentration of certain carbonyl compounds. Projection to latent structures was utilised for model building. An electronic nose consisting of MOFSET and MOS sensors could less successfully predict the smell, but identified the same filter combination as being most efficient. The car cabin during urban driving was also monitored, both by the means of MOFSET sensors and by chemiluminescence. The pollution level inside the car is shown to be elevated by about 30% compared to outside the car. A combination filter together with an air inlet sensor switch is shown to reduce the NO{sub x} levels inside te car by 30% compared to outside, with the ability to significantly decrease the peak levels. (author)

  18. Isotope Ratio Monitoring Gas Chromatography Mass Spectrometry (IRM-GCMS)

    Science.gov (United States)

    Freeman, K. H.; Ricci, S. A.; Studley, A.; Hayes, J. M.

    1989-01-01

    On Earth, the C-13 content of organic compounds is depleted by roughly 13 to 23 permil from atmospheric carbon dioxide. This difference is largely due to isotope effects associated with the fixation of inorganic carbon by photosynthetic organisms. If life once existed on Mars, then it is reasonable to expect to observe a similar fractionation. Although the strongly oxidizing conditions on the surface of Mars make preservation of ancient organic material unlikely, carbon-isotope evidence for the existence of life on Mars may still be preserved. Carbon depleted in C-13 could be preserved either in organic compounds within buried sediments, or in carbonate minerals produced by the oxidation of organic material. A technique is introduced for rapid and precise measurement of the C-13 contents of individual organic compounds. A gas chromatograph is coupled to an isotope-ratio mass spectrometer through a combustion interface, enabling on-line isotopic analysis of isolated compounds. The isotope ratios are determined by integration of ion currents over the course of each chromatographic peak. Software incorporates automatic peak determination, corrections for background, and deconvolution of overlapped peaks. Overall performance of the instrument was evaluated by the analysis of a mixture of high purity n-alkanes of know isotopic composition. Isotopic values measured via IRM-GCMS averaged withing 0.55 permil of their conventionally measured values.

  19. The Surface Elevation Table and Marker Horizon Technique: A Protocol for Monitoring Wetland Elevation Dynamics

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The National Park Service, in response to the growing evidence and awareness of the effects of climate change on federal lands, determined that monitoring wetland...

  20. 76 FR 17287 - Protocol Gas Verification Program and Minimum Competency Requirements for Air Emission Testing

    Science.gov (United States)

    2011-03-28

    ... Reconsideration, clearly labeled as such, to the Office of the Administrator, U.S. EPA, Room 3000, Ariel Rios... ] 4. Recordkeeping/Reporting 5. ISO 17025 6. Credit/Invoice Cancellation 7. Gas Type Codes 8. Use of... emission test reports, when such reports are requested. 5. ISO 17025 Background The Agency proposed to...

  1. Validation of the Oregon Scientific BPU 330 for self-monitoring of blood pressure according to the International Protocol

    Directory of Open Access Journals (Sweden)

    Li Li

    2008-10-01

    Full Text Available Li Li1, XinYu Zhang1, ChunHong Yan1, QingXiang Liang21Biomedical Engineering Lab, Faculty of Information Engineering, ShenZhen University, ShenZhen, China; 2Bao An People’s Hospital, ShenZhen, ChinaObjective: Extensive marketing of devices for self-measurement of blood pressure has created a need for purchasers to be able to satisfy themselves that such devices have been evaluated according to agreed criteria. The Oregon Scientific BPU 330 blood pressure monitor is an electronic device for upper arm measurement. This study assessed the accuracy of the Oregon Scientific BPU 330 blood pressure monitor according to the International Protocol by the Working Group on Blood Pressure Monitoring of the European Society of Hypertension for validation of blood pressure measuring devices.Method: 52 participants over 30 years of age were studied in the validation. Nine blood pressure measurements were taken alternately with a mercury sphygmomanometer by two observers, and by the supervisor, using the BPU 330 device. A total of 33 participants were selected for the analysis. The validation was divided into two phases. Phase 1 included 15 participants. If the device passed phase 1, 18 more participants were included. The 99 pairs of measurements were compared according to the International Protocol. The device was given a pass/fail recommendation based on its accuracy compared with the mercury standard (within 5, 10, and 15 mmHg, as well as the number met in the ranges specified by the International Protocol.Results: The mean and standard deviation of the difference between the mean of the observers and the BPU 330 device were 1.7 ± 4.7 mmHg and 2.8 ± 3.9 mmHg for systolic blood pressure (SBP and diastolic blood pressure (DBP, respectively. In phase 1, the device passed with a total of 33, 43, and 44 SBP readings; 38, 44, and 45 DBP readings were within 5, 10, and 15 mmHg, respectively. In phase 2.1, 81, 95, and 96 for SBP, and 83, 95, and 98 for DBP

  2. Application of Condition-Based Monitoring Techniques for Remote Monitoring of a Simulated Gas Centrifuge Enrichment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, David A [ORNL; Henkel, James J [ORNL; Whitaker, Michael [ORNL

    2012-01-01

    This paper presents research into the adaptation of monitoring techniques from maintainability and reliability (M&R) engineering for remote unattended monitoring of gas centrifuge enrichment plants (GCEPs) for international safeguards. Two categories of techniques are discussed: the sequential probability ratio test (SPRT) for diagnostic monitoring, and sequential Monte Carlo (SMC or, more commonly, particle filtering ) for prognostic monitoring. Development and testing of the application of condition-based monitoring (CBM) techniques was performed on the Oak Ridge Mock Feed and Withdrawal (F&W) facility as a proof of principle. CBM techniques have been extensively developed for M&R assessment of physical processes, such as manufacturing and power plants. These techniques are normally used to locate and diagnose the effects of mechanical degradation of equipment to aid in planning of maintenance and repair cycles. In a safeguards environment, however, the goal is not to identify mechanical deterioration, but to detect and diagnose (and potentially predict) attempts to circumvent normal, declared facility operations, such as through protracted diversion of enriched material. The CBM techniques are first explained from the traditional perspective of maintenance and reliability engineering. The adaptation of CBM techniques to inspector monitoring is then discussed, focusing on the unique challenges of decision-based effects rather than equipment degradation effects. These techniques are then applied to the Oak Ridge Mock F&W facility a water-based physical simulation of a material feed and withdrawal process used at enrichment plants that is used to develop and test online monitoring techniques for fully information-driven safeguards of GCEPs. Advantages and limitations of the CBM approach to online monitoring are discussed, as well as the potential challenges of adapting CBM concepts to safeguards applications.

  3. Designing optimal greenhouse gas monitoring networks for Australia

    Science.gov (United States)

    Ziehn, T.; Law, R. M.; Rayner, P. J.; Roff, G.

    2016-01-01

    Atmospheric transport inversion is commonly used to infer greenhouse gas (GHG) flux estimates from concentration measurements. The optimal location of ground-based observing stations that supply these measurements can be determined by network design. Here, we use a Lagrangian particle dispersion model (LPDM) in reverse mode together with a Bayesian inverse modelling framework to derive optimal GHG observing networks for Australia. This extends the network design for carbon dioxide (CO2) performed by Ziehn et al. (2014) to also minimise the uncertainty on the flux estimates for methane (CH4) and nitrous oxide (N2O), both individually and in a combined network using multiple objectives. Optimal networks are generated by adding up to five new stations to the base network, which is defined as two existing stations, Cape Grim and Gunn Point, in southern and northern Australia respectively. The individual networks for CO2, CH4 and N2O and the combined observing network show large similarities because the flux uncertainties for each GHG are dominated by regions of biologically productive land. There is little penalty, in terms of flux uncertainty reduction, for the combined network compared to individually designed networks. The location of the stations in the combined network is sensitive to variations in the assumed data uncertainty across locations. A simple assessment of economic costs has been included in our network design approach, considering both establishment and maintenance costs. Our results suggest that, while site logistics change the optimal network, there is only a small impact on the flux uncertainty reductions achieved with increasing network size.

  4. Designing optimal greenhouse gas monitoring networks for Australia

    Directory of Open Access Journals (Sweden)

    T. Ziehn

    2015-08-01

    Full Text Available Atmospheric transport inversion is commonly used to infer greenhouse gas (GHG flux estimates from concentration measurements. The optimal location of ground based observing stations that supply these measurements can be determined by network design. Here, we use a Lagrangian particle dispersion model (LPDM in reverse mode together with a Bayesian inverse modelling framework to derive optimal GHG observing networks for Australia. This extends the network design for carbon dioxide (CO2 performed by Ziehn et al. (2014 to also minimize the uncertainty on the flux estimates for methane (CH4 and nitrous oxide (N2O, both individually and in a combined network using multiple objectives. Optimal networks are generated by adding up to 5 new stations to the base network, which is defined as two existing stations, Cape Grim and Gunn Point, in southern and northern Australia respectively. The individual networks for CO2, CH4 and N2O and the combined observing network show large similarities because the flux uncertainties for each GHG are dominated by regions of biologically productive land. There is little penalty, in terms of flux uncertainty reduction, for the combined network compared to individually designed networks. The location of the stations in the combined network is sensitive to variations in the assumed data uncertainty across locations. A simple assessment of economic costs has been included in our network design approach, considering both establishment and maintenance costs. Our results suggest that while site logistics change the optimal network, there is only a small impact on the flux uncertainty reductions achieved with increasing network size.

  5. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks

    Directory of Open Access Journals (Sweden)

    Guangwen Fan

    2015-09-01

    Full Text Available Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications.

  6. A BEAM PROFILE MONITOR USING THE IONIZATION OF RESIDUAL-GAS IN THE BEAM PIPE

    NARCIS (Netherlands)

    SCHIPPERS, JM; KIEWIET, HH; ZIJLSTA, J

    1991-01-01

    A beam profile monitor for high energy beams, which has no intercepting parts in the beam pipe, is described. It makes use of the ionization of the residual gas, which is still present in the vacuum chamber of the beam guiding system. The detection of the ionization products is performed with microc

  7. Feasibility of monitoring gas hydrate production with time-lapse VSP

    Energy Technology Data Exchange (ETDEWEB)

    Kowalsky, M.B.; Nakagawa, S.; Moridis, G.J.

    2009-11-01

    In this work we begin to examine the feasibility of using time-lapse seismic methods-specifically the vertical seismic profiling (VSP) method-for monitoring changes in hydrate accumulations that are predicted to occur during production of natural gas.

  8. New Hadron Monitor By Using A Gas-Filled RF Resonator

    Energy Technology Data Exchange (ETDEWEB)

    Yonehara, Katsuya [Fermilab; Fasce, Giorgio [ECONA, Rome; Flanagan, Gene [MUONS Inc., Batavia; Johnson, Rolland [MUONS Inc., Batavia; Tollestrup, Alvin [Fermilab; Zwaska, Robert [Fermilab

    2015-05-01

    It is trend to build an intense neutrino beam facility for the fundamental physics research, e.g. LBNF at Fermilab, T2K at KEK, and CNGS at CERN. They have investigated a hadron monitor to diagnose the primary/secondary beam quality. The existing hadron monitor based on an ionization chamber is not robust in the high-radiation environment vicinity of MW-class secondary particle production targets. We propose a gas-filled RF resonator to use as the hadron monitor since it is simple and hence radiation robust in this environment. When charged particles pass through the resonator they produce ionized plasma via the Coulomb interaction with the inert gas. The beam-induced plasma changes the permittivity of inert gas. As a result, a resonant frequency in the resonator shifts with the amount of ionized electrons. The radiation sensitivity is adjustable by the inert gas pressure and the RF amplitude. The hadron profile will be reconstructed with a tomography technique in the hodoscope which consists of X, Y, and theta layers by using a strip-shaped gas resonator. The sensitivity and possible system design will be shown in this presentation.

  9. Using Wireless Sensor Networks to Achieve Intelligent Monitoring for High-Temperature Gas-Cooled Reactor

    Directory of Open Access Journals (Sweden)

    Jianghai Li

    2017-01-01

    Full Text Available High-temperature gas-cooled reactors (HTGR can incorporate wireless sensor network (WSN technology to improve safety and economic competitiveness. WSN has great potential in monitoring the equipment and processes within nuclear power plants (NPPs. This technology not only reduces the cost of regular monitoring but also enables intelligent monitoring. In intelligent monitoring, large sets of heterogeneous data collected by the WSN can be used to optimize the operation and maintenance of the HTGR. In this paper, WSN-based intelligent monitoring schemes that are specific for applications of HTGR are proposed. Three major concerns regarding wireless technology in HTGR are addressed: wireless devices interference, cybersecurity of wireless networks, and wireless standards selected for wireless platform. To process nonlinear and non-Gaussian data obtained by WSN for fault diagnosis, novel algorithms combining Kernel Entropy Component Analysis (KECA and support vector machine (SVM are developed.

  10. Monitoring 222 Rn in soil gas of Garfagnana (Tuscany aimed at earthquake prediction

    Directory of Open Access Journals (Sweden)

    A. Pescia

    1994-06-01

    Full Text Available 222 Rn concentration in soil gas from nineteen stations of Garfagnana valley (Central ltaly was continuously monitored from December 1990 to May 1993. 222 Rn activity was measured by solid state nuclear track detector (SSNTD. Tracks detected by spark-counter and by optical microscope were proportionally constant for track densities lower than 2500 tracks/cm2. Since time variations in track density both for the same monitoring station and for different stations are significanfly higher than fluctuations in the experimental conditions, the validity of spark-counter for radon activity measurements is confirmed. Data collected in the period of monitoring indicate significant seasonal variations in radon concentration for every monitoring station. Moreover, the soil characteristics play an important role in determining the observed patterns. No significant correlation could be found between radon emission and seismicity. However, it should be noted that no earthquake with a magnitude higher than 3.5 occurred in Garfagnana during the monitoring period.

  11. Satellite Monitoring Systems for Shipping and Offshore Oil and Gas Industry in the Baltic Sea

    Directory of Open Access Journals (Sweden)

    Kostianoy A.G.

    2015-06-01

    Full Text Available Shipping activities, oil production and transport in the sea, oil handled in harbors, construction and exploitation of offshore oil and gas pipelines have a number of negative impacts on the marine environment and coastal zone of the seas. In 2004-2014 we elaborated several operational satellite monitoring systems for oil and gas companies in Russia and performed integrated satellite monitoring of the ecological state of coastal waters in the Baltic, Black, Caspian, and Kara seas, which included observation of oil pollution, suspended matter, and algae bloom at a fully operational mode. These monitoring systems differ from the existing ones by the analysis of a wide spectrum of satellite, meteorological and oceanographic data, as well as by a numerical modeling of oil spill transformation and transport in real weather conditions. Our experience in the Baltic Sea includes: (1 integrated satellite monitoring of oil production at the LUKOIL-KMN Ltd. D-6 oil rig in the Southeastern Baltic Sea (Kravtsovskoe oil field in 2004-2014; (2 integrated satellite monitoring of the “Nord Stream” underwater gas pipeline construction and exploitation in the Gulf of Finland (2010-2013; (3 numerical modeling of risks of oil pollution caused by shipping along the main maritime shipping routes in the Gulf of Finland, the Baltic Proper, and in the Southeastern Baltic Sea; (4 numerical modeling of risks of oil pollution caused by oil production at D-6 oil rig and oil transportation on shore via the connecting underwater oil pipeline.

  12. Artificial neural networks for monitoring the gas turbine; Artificiella neuronnaet foer gasturbinoevervakning

    Energy Technology Data Exchange (ETDEWEB)

    Fast, Magnus; Thern, Marcus [Inst. foer Energivetenskaper, Lunds Univ. (Sweden)

    2011-10-15

    Through available historical operational data from gas turbines, fast, accurate, easy to use and reliable models can be developed. These models can be used for monitoring of gas turbines and assist in the transition from today's time-based maintenance to condition based maintenance. For the end user this means that, because only operational data is needed, they can easily develop their own tools independent of the manufacturer. Traditionally these types of models are constructed with physical relations for e.g., mass, energy and momentum. To develop a model with physical relations is often laborious and requires classified information which the end user does not have access to. Research has shown that by producing models using operational data a very high model precision can be achieved. When implementing these models in a power plant computer system the gas turbine's performance can be monitored in real time. This can facilitate fault detection at an early stage, and if necessary, stop the gas turbine before major damage occurs. For the power plant owner, this means that the gas turbine reliability is increased since the need for maintenance is minimized and the downtime is reduced. It also means that a measure of the gas turbine's overall status is continuously available, with respect to e.g. degradation, which helps in the planning of service intervals. The tool used is called artificial neural networks (ANN), a collective name for a number of algorithms for information processing that attempts to mimic the nerve cell function. Just like real networks of neurons in a brain, these artificial neural networks have the ability to learn. In this case, neural networks are trained to mimic the behavior of gas turbines by introducing them to data from real gas turbines. After a neural network is trained it represents a very accurate model of the gas turbine that it is trained to emulate.

  13. Monitoring off-gas O2/CO2 to predict nitrification performance in activated sludge processes.

    Science.gov (United States)

    Leu, Shao-Yuan; Libra, Judy A; Stenstrom, Michael K

    2010-06-01

    Nitrification/denitrification (NDN) processes are the most widely used technique to remove nitrogenous pollutants from municipal wastewater. The performance of nitrogen removal in the NDN process depends on the metabolism of nitrifying bacteria, and is dependent on adequate oxygen supply. Off-gas testing is a convenient and popular method for measuring oxygen transfer efficiency (OTE) under process conditions and can be performed in real-time. Since carbon dioxide is produced by carbonaceous oxidizing organism and not by nitrifiers, it should be possible to use the off-gas carbon dioxide mole fraction to estimate nitrification performance independently of the oxygen uptake rate (OUR) or OTE. This paper used off-gas data with a dynamic model to estimate nitrifying efficiency for various activated sludge process conditions. The relationship among nitrification, oxygen transfer, carbon dioxide production, and pH change was investigated. Experimental results of an online off-gas monitoring for a full-scale treatment plant were used to validate the model. The results showed measurable differences in OUR and carbon dioxide transfer rate (CTR) and the simulations successfully predicted the effluent ammonia by using the measured CO(2) and O(2) contents in off-gas as input signal. Carbon dioxide in the off-gas could be a useful technique to control aeration and to monitor nitrification rate.

  14. On-line monitoring of dissolved gas-in-oil with FTIR spectra

    Institute of Scientific and Technical Information of China (English)

    Xianyong Liu; Yunluo Liu; Li Yue

    2003-01-01

    To overcome the disadvantages of conventional DGA (dissolved gas-in-oil) analysis using gas chromatography and other electrochemical sensors, initial researches were completed to realize on-line monitoring of dissolved gas-in-oil of power transformers using FTIR (Fourier Transform InfraRed) spectroscopy. Gas cell method is used to determine the characteristic absorption peaks of each diagnostic gas; simple and novel devices and procedures were designed in order to get measurable samples and spectra of mixed diagnostic gases with known concentration are taken using long optical path gas cell. The range of wavelength is estimated to be 3.0-13.9 μm from experimental spectra data. Hence the corresponding sampling frequency range should be in 536-4288 Hz and usable optical materials are suggested. It is concluded that a resolution of 10 cm-1 may well satisfy the monitoring of all diagnostic gases and water content except hydrogen, and the lowest detection limit may be as low as 2×l0-8 to acetylene with a 2.4-meter-long optical length.

  15. Gas Filled RF Resonator Hadron Beam Monitor for Intense Neutrino Beam Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yonehara, Katsuya [Fermilab; Abrams, Robert [MUONS Inc., Batavia; Dinkel, Holly [U. Missouri, Columbia; Freemire, Ben [IIT, Chicago; Johnson, Rolland [MUONS Inc., Batavia; Kazakevich, Grigory [MUONS Inc., Batavia; Tollestrup, Alvin [Fermilab; Zwaska, Robert [Fermilab

    2016-06-01

    MW-class beam facilities are being considered all over the world to produce an intense neutrino beam for fundamental particle physics experiments. A radiation-robust beam monitor system is required to diagnose the primary and secondary beam qualities in high-radiation environments. We have proposed a novel gas-filled RF-resonator hadron beam monitor in which charged particles passing through the resonator produce ionized plasma that changes the permittivity of the gas. The sensitivity of the monitor has been evaluated in numerical simulation. A signal manipulation algorithm has been designed. A prototype system will be constructed and tested by using a proton beam at the MuCool Test Area at Fermilab.

  16. Membrane-Coated Electrochemical Sensor for Corrosion Monitoring in Natural Gas Pipelines

    Directory of Open Access Journals (Sweden)

    J. Beck

    2017-07-01

    Full Text Available Electrochemical sensors can be used for a wide range of online in- situ process monitoring applications. However, the lack of a consistent electrolyte layer has previously limited electrochemical monitoring in gas and supercritical fluid streams. A solid state sensor is being designed that uses an ion conducting membrane to perform conductivity and corrosion measurements in natural gas pipelines up to 1000 psi. Initial results show that membrane conductivity measurements can be correlated directly to water content down to dew points of 1°C with good linearity. Corrosion monitoring can also be performed using methods such as linear polarization resistance and electrochemical impedance spectroscopy (EIS, though care must be taken in the electrode design to minimize deviation between sensors.

  17. Shale gas impacts on groundwater resources: insights from monitoring a fracking site in Poland

    Science.gov (United States)

    Montcoudiol, Nelly; Isherwood, Catherine; Gunning, Andrew; Kelly, Thomas; Younger, Paul

    2017-04-01

    Exploitation of shale gas by hydraulic fracturing (fracking) is highly controversial and concerns have been raised regarding induced risks from this technique. The SHEER project, an EU Horizon 2020-funded project, is looking into developing best practice to understand, prevent and mitigate the potential short- and long-term environmental impacts and risks from shale gas exploration and exploitation. Three major potential impacts were identified: groundwater contamination, air pollution and induced seismicity. This presentation will deal with the hydrogeological aspect. As part of the SHEER project, four monitoring wells were installed at a shale gas exploration site in Northern Poland. They intercept the main drinking water aquifer located in Quaternary sediments. Baseline monitoring was carried out from mid-December 2015 to beginning of June 2016. Fracking operations occurred in two horizontal wells, in two stages, in June and July 2016. The monitoring has continued after fracking was completed, with site visits every 4-6 weeks. Collected data include measurements of groundwater level, conductivity and temperature at 15-minute intervals, frequent sampling for laboratory analyses and field measurements of groundwater physico-chemical parameters. Groundwater samples are analysed for a range of constituents including dissolved gases and isotopes. The presentation will focus on the interpretation of baseline monitoring data. The insights gained into the behaviour of the Quaternary aquifer will allow a greater perspective to be place on the initial project understanding draw from previous studies. Short-term impacts will also be discussed in comparison with the baseline monitoring results. The presentation will conclude with discussion of challenges regarding monitoring of shale gas fracking sites.

  18. The monitoring, evaluation, reporting, and verification of climate change mitigation projects: Discussion of issues and methodologies and review of existing protocols and guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Vine, E.; Sathaye, J.

    1997-12-01

    Because of concerns with the growing threat of global climate change from increasing emissions of greenhouse gases, the US and other countries are implementing, by themselves or in cooperation with one or more other nations (i.e., joint implementation), climate change mitigation projects. These projects will reduce greenhouse gas (GHG) emissions or sequester carbon, and will also result in non-GHG impacts (i.e., environmental, economic, and social impacts). Monitoring, evaluating, reporting, and verifying (MERV) guidelines are needed for these projects in order to accurately determine their net GHG, and other, benefits. Implementation of MERV guidelines is also intended to: (1) increase the reliability of data for estimating GHG benefits; (2) provide real-time data so that mid-course corrections can be made; (3) introduce consistency and transparency across project types and reporters; and (4) enhance the credibility of the projects with stakeholders. In this paper, the authors review the issues and methodologies involved in MERV activities. In addition, they review protocols and guidelines that have been developed for MERV of GHG emissions in the energy and non-energy sectors by governments, nongovernmental organizations, and international agencies. They comment on their relevance and completeness, and identify several topics that future protocols and guidelines need to address, such as (1) establishing a credible baseline; (2) accounting for impacts outside project boundaries through leakage; (3) net GHG reductions and other impacts; (4) precision of measurement; (5) MERV frequency; (6) persistence (sustainability) of savings, emissions reduction, and carbon sequestration; (7) reporting by multiple project participants; (8) verification of GHG reduction credits; (9) uncertainty and risk; (10) institutional capacity in conducting MERV; and (11) the cost of MERV.

  19. Ketamine-Based Anesthetic Protocols and Evoked Potential Monitoring: A Risk/Benefit Overview

    Science.gov (United States)

    Stoicea, Nicoleta; Versteeg, Gregory; Florescu, Diana; Joseph, Nicholas; Fiorda-Diaz, Juan; Navarrete, Víctor; Bergese, Sergio D.

    2016-01-01

    Since its discovery, ketamine, a non-competitive N-methyl D-aspartate (NMDA) receptor antagonist related to phencyclidine, has been linked to multiple adverse reactions sometimes described as “out of body” and “near death experiences,” including emergence phenomena, delusions, hallucinations, delirium, and confusion. Due to these effects, ketamine has been withdrawn from mainstream anesthetic use in adult patients. Evoked potentials (EPs) are utilized to monitor neural pathways during surgery, detect intraoperative stress or damage, detect and define the level of neural lesions, and define abnormalities. Unfortunately, many of the volatile anesthetics commonly used during spinal and neurologic procedures suppress EP amplitude and monitoring. Ketamine has been found in several preclinical and clinical studies to actually increase EP amplitude and thus has been used as an analgesic adjunct in procedures where EP monitoring is critical. Once the gap in our knowledge of ketamine's risks has been sufficiently addressed in animal models, informed clinical trials should be conducted in order to properly incorporate ketamine-based anesthetic regimens during EP-monitored neurosurgeries. PMID:26909017

  20. Protocol and Demonstrations of Probabilistic Reliability Assessment for Structural Health Monitoring Systems (Preprint)

    Science.gov (United States)

    2011-11-01

    location. Keywords: Model-assisted POD evaluation, probability of detection (POD), reliability, structural health monitoring 1. Introduction The...damage detection method. An ETrema brand Terfenol-D magnetostrictive actuator was used for band- limited pseudo-random excitation up to 1200 Hz, and

  1. Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth A. Yackly

    2005-12-01

    The ''Enabling & Information Technology To Increase RAM for Advanced Powerplants'' program, by DOE request, was re-directed, de-scoped to two tasks, shortened to a 2-year period of performance, and refocused to develop, validate and accelerate the commercial use of enabling materials technologies and sensors for coal/IGCC powerplants. The new program was re-titled ''Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants''. This final report summarizes the work accomplished from March 1, 2003 to March 31, 2004 on the four original tasks, and the work accomplished from April 1, 2004 to July 30, 2005 on the two re-directed tasks. The program Tasks are summarized below: Task 1--IGCC Environmental Impact on high Temperature Materials: The first task was refocused to address IGCC environmental impacts on high temperature materials used in gas turbines. This task screened material performance and quantified the effects of high temperature erosion and corrosion of hot gas path materials in coal/IGCC applications. The materials of interest included those in current service as well as advanced, high-performance alloys and coatings. Task 2--Material In-Service Health Monitoring: The second task was reduced in scope to demonstrate new technologies to determine the inservice health of advanced technology coal/IGCC powerplants. The task focused on two critical sensing needs for advanced coal/IGCC gas turbines: (1) Fuel Quality Sensor to rapidly determine the fuel heating value for more precise control of the gas turbine, and detection of fuel impurities that could lead to rapid component degradation. (2) Infra-Red Pyrometer to continuously measure the temperature of gas turbine buckets, nozzles, and combustor hardware. Task 3--Advanced Methods for Combustion Monitoring and Control: The third task was originally to develop and validate advanced monitoring and control methods for coal/IGCC gas

  2. Protocol for the BAG-RECALL clinical trial: a prospective, multi-center, randomized, controlled trial to determine whether a bispectral index-guided protocol is superior to an anesthesia gas-guided protocol in reducing intraoperative awareness with explicit recall in high risk surgical patients.

    Science.gov (United States)

    Avidan, Michael S; Palanca, Ben J; Glick, David; Jacobsohn, Eric; Villafranca, Alex; O'Connor, Michael; Mashour, George A

    2009-11-30

    Awareness with explicit recall of intra-operative events is a rare and distressing complication that may lead to severe psychological symptoms. Candidate depth of anesthesia monitors have been developed, partly with the aim of preventing this complication. Despite conflicting results from clinical trials and the lack of incisive validation, such monitors have enjoyed widespread clinical adoption, in particular the bispectral index. The American Society of Anesthesiologists has called for adequately powered and rigorously designed clinical trials to determine whether the use of such monitors decreases the incidence of awareness in various settings. The aim of this study is to determine with increased precision whether incorporating the bispectral index into a structured general anesthesia protocol decreases the incidence of awareness with explicit recall among a subset of surgical patients at increased risk for awareness and scheduled to receive an inhalation gas-based general anesthetic. BAG-RECALL is a multi-center, randomized, controlled clinical trial, in which 6,000 patients are being assigned to bispectral index-guided anesthesia (target range, 40 to 60) or end-tidal anesthetic gas-guided anesthesia (target range, 0.7 to 1.3 age-adjusted minimum alveolar concentration). Postoperatively, patients are being assessed for explicit recall at two intervals (0 to 72 hours, and 30 days after extubation). The primary outcome of the trial is awareness with explicit recall. Secondary outcomes include postoperative mortality, psychological symptoms, intensive care and hospital length of stay, average anesthetic gas administration, postoperative pain and nausea and vomiting, duration of stay in the recovery area, intra-operative dreaming, and postoperative delirium. This trial has been designed to complement two other clinical trials: B-Unaware and MACS (ClinicalTrials.gov numbers, NCT00281489 and NCT00689091). With the large patient numbers and complementary rigorous

  3. Protocol for the BAG-RECALL clinical trial: a prospective, multi-center, randomized, controlled trial to determine whether a bispectral index-guided protocol is superior to an anesthesia gas-guided protocol in reducing intraoperative awareness with explicit recall in high risk surgical patients

    Directory of Open Access Journals (Sweden)

    Villafranca Alex

    2009-11-01

    Full Text Available Abstract Background Awareness with explicit recall of intra-operative events is a rare and distressing complication that may lead to severe psychological symptoms. Candidate depth of anesthesia monitors have been developed, partly with the aim of preventing this complication. Despite conflicting results from clinical trials and the lack of incisive validation, such monitors have enjoyed widespread clinical adoption, in particular the bispectral index. The American Society of Anesthesiologists has called for adequately powered and rigorously designed clinical trials to determine whether the use of such monitors decreases the incidence of awareness in various settings. The aim of this study is to determine with increased precision whether incorporating the bispectral index into a structured general anesthesia protocol decreases the incidence of awareness with explicit recall among a subset of surgical patients at increased risk for awareness and scheduled to receive an inhalation gas-based general anesthetic. Methods/Design BAG-RECALL is a multi-center, randomized, controlled clinical trial, in which 6,000 patients are being assigned to bispectral index-guided anesthesia (target range, 40 to 60 or end-tidal anesthetic gas-guided anesthesia (target range, 0.7 to 1.3 age-adjusted minimum alveolar concentration. Postoperatively, patients are being assessed for explicit recall at two intervals (0 to 72 hours, and 30 days after extubation. The primary outcome of the trial is awareness with explicit recall. Secondary outcomes include postoperative mortality, psychological symptoms, intensive care and hospital length of stay, average anesthetic gas administration, postoperative pain and nausea and vomiting, duration of stay in the recovery area, intra-operative dreaming, and postoperative delirium. Discussion This trial has been designed to complement two other clinical trials: B-Unaware and MACS (ClinicalTrials.gov numbers, NCT00281489 and NCT00689091

  4. Research on coal-mine gas monitoring system controlled by annealing simulating algorithm

    Science.gov (United States)

    Zhou, Mengran; Li, Zhenbi

    2007-12-01

    This paper introduces the principle and schematic diagram of gas monitoring system by means of infrared method. Annealing simulating algorithm is adopted to find the whole optimum solution and the Metroplis criterion is used to make iterative algorithm combination optimization by control parameter decreasing aiming at solving large-scale combination optimization problem. Experiment result obtained by the performing scheme of realizing algorithm training and flow of realizing algorithm training indicates that annealing simulating algorithm applied to identify gas is better than traditional linear local search method. It makes the algorithm iterate to the optimum value rapidly so that the quality of the solution is improved efficiently. The CPU time is shortened and the identifying rate of gas is increased. For the mines with much-gas gushing fatalness the regional danger and disaster advanced forecast can be realized. The reliability of coal-mine safety is improved.

  5. Ground gas monitoring: implications for hydraulic fracturing and CO2 storage.

    Science.gov (United States)

    Teasdale, Christopher J; Hall, Jean A; Martin, John P; Manning, David A C

    2014-12-02

    Understanding the exchange of carbon dioxide (CO2) and methane (CH4) between the geosphere and atmosphere is essential for the management of anthropogenic emissions. Human activities such as carbon capture and storage and hydraulic fracturing ("fracking") affect the natural system and pose risks to future global warming and to human health and safety if not engineered to a high standard. In this paper an innovative approach of expressing ground gas compositions is presented, using data derived from regulatory monitoring of boreholes in the unsaturated zone at infrequent intervals (typically 3 months) with data from a high frequency monitoring instrument deployed over periods of weeks. Similar highly variable trends are observed for time scales ranging from decades to hourly for boreholes located close to sanitary landfill sites. Additionally, high frequency monitoring data confirm the effect of meteorological controls on ground gas emissions; the maximum observed CH4 and CO2 concentrations in a borehole monitored over two weeks were 40.1% v/v and 8.5% v/v respectively, but for 70% of the monitoring period only air was present. There is a clear weakness in current point monitoring strategies that may miss emission events and this needs to be considered along with obtaining baseline data prior to starting any engineering activity.

  6. Monitoring environmental effects of shale gas exploitation at Wysin in Poland.

    Science.gov (United States)

    Lasocki, Stanislaw; Mirek, Janusz; Bialon, Wojciech; Cielesta, Szymon; Lasak, Mateusz; Cesca, Simone; Lopez Comino, Jose Angel; Dahm, Torsten; Scarpa, Roberto; Gunning, Andrew; Montcoudiol, Nelly; Isherwood, Catherine; Jaroslawski, Janusz; Guzikowski, Jakub

    2017-04-01

    Environmental effects of shale gas exploration and exploitation are extensively studied in the framework of "Shale Gas Exploration and Exploitation Induced Risks" project (SHEER, H2020-LCE 16-2014-1). One of the main component of this study is on-site monitoring of the effects at Wysin shale-gas play of Polish Oil and Gas Company in Poland. This includes monitoring of seismicity and water and air quality. Surface seismic monitoring network consists of 6 surface broadband (BB) seismometers and 25 surface short-period (SP) seismometers The SPs are assembled into three small aperture arrays with 9, 8 and 8 stations, respectively, distributed in a triangle geometry at a distance of about 2-4 km from the hydrofracturing rig. Each array is complemented with one BB station. The three remaining BBs are located up to about 5 km from the rig. In addition 3 borehole broadband seismometers are located in three shallow boreholes. The groundwater monitoring makes use of four wells, which reach a main underground water reservoir. Three complementary datasets are collected: continuous monitoring of borehole data, laboratory analyses of water samples and field monitoring of water quality parameters. The continuous monitoring makes use of down-hole probes, which have been installed in each borehole. The probes record absolute pressure, temperature and electrical conductivity. In addition, a barometric probe has been installed above ground to record atmospheric pressure in order to allow conversion of absolute pressure to a water level. After collection, water samples are sent to an accredited laboratory for analysis. The field monitoring is undertaken during the sampling visits. Whilst the borehole is being purged, physico-chemical parameters are monitored using a multi-parameter probe. This measures and records temperature, specific conductivity, pH, dissolved oxygen and oxidation-reduction potential within the water. Hydrocarbon gas content within the water is below detection

  7. Alleged Leakage of CO2 from the Weyburn-Midale CO2 Monitoring and Storage Project: Preliminary Findings from Implementation of the IPAC-CO2 Incident Response Protocol

    Science.gov (United States)

    Sherk, G. W.; Romanak, K.; Gilfillan, S. M.; Dale, J. E.; Wolaver, B. D.; Yang, C.

    2011-12-01

    In January of 2011, the owners of property located in the southwest portion of the Weyburn-Midale Unit in Saskatchewan, Canada, alleged that CO2 injected as part of the Weyburn-Midale CO2 Monitoring and Storage Project was leaking from their property. Prior to the property owners' allegations, the International Performance Assessment Centre for Geologic Storage of Carbon Dioxide (IPAC-CO2) had initiated development of an incident response protocol to be implemented when allegations arose of unintentional releases of anthropogenic CO2 from carbon capture and storage projects. IPAC-CO2 implemented this protocol to determine if CO2 concentrations as high as 11% result from an unintentional release of anthropogenic CO2 or if they form naturally from microbial CO2 production in the organic-rich wet environment that characterizes the property. This paper presents preliminary findings resulting from implementation of the IPAC-CO2 incident response protocol. Particular attention is paid to the results of both soil-gas and noble gas analyses.

  8. Gas Bubble Disease Monitoring and Research of Juvenile Salmonids : Annual Report 1996.

    Energy Technology Data Exchange (ETDEWEB)

    Maule, Alec G.; Beeman, John W.; Hans, Karen M.; Mesa, M.G.; Haner, P.; Warren, J.J. [Geological Survey, Cook, WA (United States). Columbia River Research Lab.

    1997-10-01

    This document describes the project activities 1996--1997 contract year. This report is composed of three chapters which contain data and analyses of the three main elements of the project: field research to determine the vertical distribution of migrating juvenile salmonids, monitoring of juvenile migrants at dams on the Snake and Columbia rivers, and laboratory experiments to describe the progression of gas bubble disease signs leading to mortality. The major findings described in this report are: A miniature pressure-sensitive radio transmitter was found to be accurate and precise and, after compensation for water temperature, can be used to determine the depth of tagged-fish to within 0.32 m of the true depth (Chapter 1). Preliminary data from very few fish suggest that depth protects migrating juvenile steelhead from total dissolved gas supersaturation (Chapter 1). As in 1995, few fish had any signs of gas bubble disease, but it appeared that prevalence and severity increased as fish migrated downstream and in response to changing gas supersaturation (Chapter 2). It appeared to gas bubble disease was not a threat to migrating juvenile salmonids when total dissolved gas supersaturation was < 120% (Chapter 2). Laboratory studies suggest that external examinations are appropriate for determining the severity of gas bubble disease in juvenile salmonids (Chapter 3). The authors developed a new method for examining gill arches for intravascular bubbles by clamping the ventral aorta to reduce bleeding when arches were removed (Chapter 3). Despite an outbreak of bacterial kidney disease in the experimental fish, the data indicate that gas bubble disease is a progressive trauma that can be monitored (Chapter 3).

  9. Can we Replace Arterial Blood Gas Analysis by Pulse Oximetry in Neonates with Respiratory Distress Syndrome, who are Treated According to INSURE Protocol?

    Science.gov (United States)

    Niknafs, Pedram; Norouzi, Elahe; Bahman Bijari, Bahareh; Baneshi, Mohammad Reza

    2015-05-01

    Neonates with respiratory distress syndrome (RDS), who are treated according to INSURE protocol; require arterial blood gas (ABG) analysis to decide on appropriate management. We conducted this study to investigate the validity of pulse oximetry instead of frequent ABG analysis in the evaluation of these patients. From a total of 193 blood samples obtained from 30 neonates blood gas analysis. However, the validity of pulse oximetry was not good enough to detect acidosis, hypercapnia, and hypoxemia.

  10. Validation protocol for multiple blood gas analyzers in accordance with laboratory accreditation programs

    Directory of Open Access Journals (Sweden)

    Pérsio A. R. Ebner

    2015-10-01

    Full Text Available ABSTRACTIntroduction:The results of blood gas analysis using different instrumentation can vary widely due to the methodological differences, the calibration procedures and the use of different configurations for each type of instrument.Objective:The objective of this study was to evaluate multiple analytical systems for measurement of blood gases, electrolytes and metabolites in accordance with the accreditation program (PALC of Sociedade Brasileira de Patologia Clínica/Medicina Laboratorial (SBPC/ML.Materials and methods:20 samples were evaluated in three ABL800 Flex (Radiometer Medical ApS, Denmark blood gas analyzers, and the results were compared with those of the device in use, which was considered the reference. The analysis of variance (Anova was applied for statistical purposes, as well as the calculation of mean, standard deviation and coefficient of variation.Results:The p values obtained in the statistical analysis were: pH = 0.983, pO2 = 0.991, pCO2 = 0.353, lactate = 0.584, glucose = 0.995, ionized calcium = 0.983, sodium = 0.991, potassium = 0.926, chlorine = 0.029.Conclusion:The evaluation of multiple analytical systems is an essential procedure in the clinical laboratory for quality assurance and accuracy of the results.

  11. Understanding controls on biotic assemblages and ecological status in Zambian rivers for the development of sustainable monitoring protocols

    Science.gov (United States)

    Kennedy, Michael; Gibbins, Chris; Lowe, Steven; Dallas, Helen; Taylor, Jonathan; Lang, Pauline; Saili, Kothelani; Sichingabula, Henry; Murphy, Kevin

    2014-05-01

    The water resources of Zambia are likely to experience increasing multiple pressures in the future as a result of very high predicted population growth, industrial development, land use change, and potentially, altered regional rainfall patterns. It is well known that rivers in tropical regions typically have a rich biodiversity, controlled in part by inter-annual variability in climate and discharge, and in part by local catchment conditions. However, till recently little country-wide work had had been carried out on the biota of Zambian rivers, and little was therefore known about the ecological status, or degree of catchment alteration of many of the rivers. To underpin sustainable water management, protocols have been developed to assess the ecological status of Zambian rivers. This paper describes the development of the protocols and their application to provide the first extensive assessment of the ecological status of rivers in the country. The protocols were designed to be simple, and hence rapid, easy and relatively inexpensive to apply. Status scores were derived for individual sites using sensitivity weightings from 3 major groups (macrophytes, diatoms and macroinvertebrates). The general approach was based on schemes used successfully elsewhere, with species and family sensitivity weightings modified so as be appropriate to Zambia. Modifications were based on a survey of 140 Zambian rivers, incorporating data on species distributions, physical habitat conditions and water quality. Analysis of historical data suggests that established Freshwater Ecoregions reflect hydro-climatic variability across Zambia. Survey data indicate that most of the spatial variation in biological assemblages across the country reflects these same hydro-climatic gradients, in addition to hydrochemical differences linked to geology. Site status scores suggest that rivers are generally in good health, although exceptions occur in some large urban areas and a small number of

  12. Considerable contribution of the Montreal Protocol to declining greenhouse gas emissions from the United States

    Science.gov (United States)

    Hu, Lei; Montzka, Stephen A.; Lehman, Scott J.; Godwin, David S.; Miller, Benjamin R.; Andrews, Arlyn E.; Thoning, Kirk; Miller, John B.; Sweeney, Colm; Siso, Caroline; Elkins, James W.; Hall, Bradley D.; Mondeel, Debra J.; Nance, David; Nehrkorn, Thomas; Mountain, Marikate; Fischer, Marc L.; Biraud, Sébastien C.; Chen, Huilin; Tans, Pieter P.

    2017-08-01

    Ozone depleting substances (ODSs) controlled by the Montreal Protocol are potent greenhouse gases (GHGs), as are their substitutes, the hydrofluorocarbons (HFCs). Here we provide for the first time a comprehensive estimate of U.S. emissions of ODSs and HFCs based on precise measurements in discrete air samples from across North America and in the remote atmosphere. Derived emissions show spatial and seasonal variations qualitatively consistent with known uses and largely confirm U.S. Environmental Protection Agency (EPA) national emissions inventories for most gases. The measurement-based results further indicate a substantial decline of ODS emissions from 2008 to 2014, equivalent to 50% of the CO2-equivalent decline in combined emissions of CO2 and all other long-lived GHGs inventoried by the EPA for the same period. Total estimated CO2-equivalent emissions of HFCs were comparable to the sum of ODS emissions in 2014, but can be expected to decline in the future in response to recent policy measures.

  13. Toward a protocol for quantifying the greenhouse gas balance and identifying mitigation options in smallholder farming systems

    Science.gov (United States)

    Rosenstock, T. S.; Rufino, M. C.; Butterbach-Bahl, K.; Wollenberg, E.

    2013-06-01

    GHG budgets for developing economies. This dearth of information constrains the capacity to transition to low-carbon agricultural development, opportunities for smallholders to capitalize on carbon markets, and the negotiating position of developing countries in global climate policy discourse. Concerns over the poor state of information, in terms of data availability and representation, have fueled appeals for new approaches to quantifying GHG emissions and removals from smallholder agriculture, for both existing conditions and mitigation interventions (Berry and Ryan 2013, Olander et al 2013). Considering the dependence of quantification approaches on data and the current data deficit for smallholder systems, it is clear that in situ measurements must be a core part of initial and future strategies to improve GHG inventories and develop mitigation measures for smallholder agriculture. Once more data are available, especially for farming systems of high priority (e.g., those identified through global and regional rankings of emission hotspots or mitigation leverage points), better cumulative estimates and targeted actions will become possible. Greenhouse gas measurements in agriculture are expensive, time consuming, and error prone. These challenges are exacerbated by the heterogeneity of smallholder systems and landscapes and the diversity of methods used. Concerns over methodological rigor, measurement costs, and the diversity of approaches, coupled with the demand for robust information suggest it is germane for the scientific community to establish standards of measurements—'a protocol'—for quantifying GHG emissions from smallholder agriculture. A standard protocol for use by scientists and development organizations will help generate consistent, comparable, and reliable data on emissions baselines and allow rigorous comparisons of mitigation options. Besides enhancing data utility, a protocol serves as a benchmark for non-experts to easily assess data

  14. Operations of cleanrooms during a forest fire including protocols and monitoring results

    Science.gov (United States)

    Matheson, Bruce A.; Egges, Joanne; Pirkey, Michael S.; Lobmeyer, Lynette D.

    2012-10-01

    Contamination-sensitive space flight hardware is typically built in cleanroom facilities in order to protect the hardware from particle contamination. Forest wildfires near the facilities greatly increase the number of particles and amount of vapors in the ambient outside air. Reasonable questions arise as to whether typical cleanroom facilities can adequately protect the hardware from these adverse environmental conditions. On Monday September 6, 2010 (Labor Day Holiday), a large wildfire ignited near the Boulder, Colorado Campus of Ball Aerospace. The fire was approximately 6 miles from the Boulder City limits. Smoke levels from the fire stayed very high in Boulder for the majority of the week after the fire began. Cleanroom operations were halted temporarily on contamination sensitive hardware, until particulate and non-volatile residue (NVR) sampling could be performed. Immediate monitoring showed little, if any effect on the cleanroom facilities, so programs were allowed to resume work while monitoring continued for several days and beyond in some cases. Little, if any, effect was ever noticed in the monitoring performed.

  15. A Data Acquisition Protocol for a Reactive Wireless Sensor Network Monitoring Application

    Directory of Open Access Journals (Sweden)

    Femi A. Aderohunmu

    2015-04-01

    Full Text Available Limiting energy consumption is one of the primary aims for most real-world deployments of wireless sensor networks. Unfortunately, attempts to optimize energy efficiency are often in conflict with the demand for network reactiveness to transmit urgent messages. In this article, we propose SWIFTNET: a reactive data acquisition scheme. It is built on the synergies arising from a combination of the data reduction methods and energy-efficient data compression schemes. Particularly, it combines compressed sensing, data prediction and adaptive sampling strategies. We show how this approach dramatically reduces the amount of unnecessary data transmission in the deployment for environmental monitoring and surveillance networks. SWIFTNET targets any monitoring applications that require high reactiveness with aggressive data collection and transmission. To test the performance of this method, we present a real-world testbed for a wildfire monitoring as a use-case. The results from our in-house deployment testbed of 15 nodes have proven to be favorable. On average, over 50% communication reduction when compared with a default adaptive prediction method is achieved without any loss in accuracy. In addition, SWIFTNET is able to guarantee reactiveness by adjusting the sampling interval from 5 min up to 15 s in our application domain.

  16. Continued Development of Compact Multi-gas Monitor for Life Support Systems Control in Space

    Science.gov (United States)

    Delgado-Alonso, Jesús; Phillips, Straun; Chullen, Cinda; Quinn, Gregory

    2016-01-01

    Miniature optic gas sensors (MOGS) based on luminescent materials have shown great potential as alternatives to Near-Infrared-based gas sensor systems for the advanced space suit portable life support system (PLSS). The unique capability of MOGS for carbon dioxide and oxygen monitoring under wet conditions has been reported, as has the fast recovery of MOGS humidity sensors after long periods of being wet. Lower volume and power requirements are also potential advantages of MOGS over both traditional and advanced Non-Dispersive Infrared (NDIR) gas sensors, which have shown so far longer life than luminescent sensors. This paper presents the most recent results in the development and analytical validation of a compact multi-gas sensor unit based on luminescent sensors for the PLSS. Results of extensive testing are presented, including studies conducted at Intelligent Optical Systems laboratories, a United Technology Corporation Aerospace Systems (UTAS) laboratory, and a Johnson Space Center laboratory. The potential of this sensor technology for gas monitoring in PLSSs and other life support systems and the advantages and limitations found through detailed sensor validation are discussed.

  17. A Gas-Jet Profile Monitor for the CLIC Drive Beam

    CERN Document Server

    Jeff, A; Lefevre, T; Tzoganis, V; Welsch, C P

    2013-01-01

    The Compact Linear Collider (CLIC) will use a novel acceleration scheme in which energy extracted from a very intense beam of relatively low-energy electrons (the Drive Beam) is used to accelerate a lower intensity Main Beam to very high energy. The high intensity of the Drive Beam, with pulses of more than 1015 electrons, poses a challenge for conventional profile measurements such as wire scanners. Thus, new non-invasive profile measurements are being investigated. Profile monitors using gas ionisation or fluorescence have been used at a number of accelerators. Typically, extra gas must be injected at the monitor and the rise in pressure spreads for some distance down the beam pipe. In contrast, a gas jet can be fired across the beam into a receiving chamber, with little gas escaping into the rest of the beam pipe. In addition, a gas jet shaped into a thin plane can be used like a screen on which the beam crosssectionis imaged. In this paper we present some arrangements for the generation of such a jet. In ...

  18. Monitoring of conditions inside gas aggregation cluster source during production of Ti/TiOx nanoparticles

    Science.gov (United States)

    Kousal, J.; Kolpaková, A.; Shelemin, A.; Kudrna, P.; Tichý, M.; Kylián, O.; Hanuš, J.; Choukourov, A.; Biederman, H.

    2017-10-01

    Gas aggregation sources are nowadays rather widely used in the research community for producing nanoparticles. However, the direct diagnostics of conditions inside the source are relatively scarce. In this work, we focused on monitoring the plasma parameters and the composition of the gas during the production of the TiOx nanoparticles. We studied the role of oxygen in the aggregation process and the influence of the presence of the particles on the plasma. The construction of the source allowed us to make a 2D map of the plasma parameters inside the source.

  19. Evaluation of a transcutaneous blood gas monitoring system in critically ill dogs.

    Science.gov (United States)

    Holowaychuk, Marie K; Fujita, Hiroshi; Bersenas, Alexa M E

    2014-01-01

    To describe the use of a transcutaneous blood gas monitoring system in critically ill dogs, determine if transcutaneous and arterial blood gas values have good agreement, and verify if clinical or laboratory variables are correlated with differences between transcutaneous and arterial blood gas measurements. Prospective observational study. University teaching hospital ICU. Twenty-three client-owned dogs. In critically ill dogs undergoing arterial blood gas monitoring, a transcutaneous blood gas monitor was used to measure transcutaneous partial pressure of carbon dioxide (PtcCO2 ) and transcutaneous partial pressure of oxygen (PtcO2 ) values 30 minutes after sensor placement, which were compared to PaCO2 and PaO2 values measured simultaneously. Clinical and laboratory variables were concurrently recorded to determine if they were correlated with the difference between transcutaneous and arterial blood gas measurements. Bland-Altman analysis revealed a mean bias of 4.6 ± 26.3 mm Hg (limits of agreement [LOA]: -46.9/+56.1 mm Hg) between PtcO2 and PaO2 and a mean bias of 9.3 ± 8.5 mm Hg (LOA: -7.5/+26.0 mm Hg) between PtcCO2 and PaCO2 . The difference between PtcCO2 -PaCO2 was strongly negatively correlated with HCO3 (-) (r(2) = 0.52, P blood pressure (r(2) = 0.21, P = 0.044), whereas the difference between PtcCO2 -PaCO2 was moderately negatively correlated with diastolic blood pressure (r(2) = 0.33, P = 0.008). Agreement between transcutaneous and arterial PO2 and PCO2 measurements in these critically ill dogs was inferior to that reported in similar adult and pediatric human studies. The transcutaneous monitor consistently over-estimated PaO2 and PaCO2 and should not be used to replace arterial blood gas measurements in critically ill dogs requiring blood gas interpretation. © Veterinary Emergency and Critical Care Society 2014.

  20. A monitoring protocol for vegetation change on Irish peatland and heath

    Science.gov (United States)

    O'Connell, J.; Connolly, J.; Holden, N. M.

    2014-09-01

    Amendments to Articles 3.3 and 3.4 of the Kyoto Protocol have meant that detection of vegetation change may now form an interracial part of national soil carbon stocks. In this study multispectral multi-platform satellite data was processed to detect change to the surface vegetation of four peatland sites and one heath in Ireland. Spectral and spatial thresholds were used on difference images between master and slave data in the extraction of temporally invariant targets for multi-platform cross calibration. The Kolmogorov-Smirnov test was used to evaluate any difference in the cumulative probability distributions of the master, slave and calibrated slave data as expressed by the D statistic, with values reduced by an average of 89.7% due to the cross calibration procedure. A change detection model was created which incorporated a spatial threshold of 9 pixels and a standard deviation (SD) spectral threshold. Kappa accuracy values for the five sites ranged from 80 to 97%, showing that 1.5 SD was the optimum spectral threshold for detecting vegetation change. Change detection results showed mean percentage change ranging from 2.11 to 3.28% of total area and cumulative change over the observed time period of between 15.24 and 49.27% of total area.

  1. R & D of a Gas-Filled RF Beam Profile Monitor for Intense Neutrino Beam Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yonehara, K. [Fermilab; Backfish, M. [Fermilab; Moretti, A. [Fermilab; Tollestrup, A. V. [Fermilab; Watts, A. [Fermilab; Zwaska, R. M. [Fermilab; Abrams, R. [MUONS Inc., Batavia; Cummings, M. A.; Dudas, A. [MUONS Inc., Batavia; Johnson, R. P. [MUONS Inc., Batavia; Kazakevich, G. [MUONS Inc., Batavia; Neubauer, M. [MUONS Inc., Batavia; Liu, Q. [Case Western Reserve U.

    2017-05-01

    We report the R&D of a novel radiation-robust hadron beam profile monitor based on a gas-filled RF cavity for intense neutrino beam experiments. An equivalent RF circuit model was made and simulated to optimize the RF parameter in a wide beam intensity range. As a result, the maximum acceptable beam intensity in the monitor is significantly increased by using a low-quality factor RF cavity. The plan for the demonstration test is set up to prepare for future neutrino beam experiments.

  2. Design and performance of a skid-mounted portable compartment fire gas furnace and monitoring system

    Directory of Open Access Journals (Sweden)

    Mueller K.

    2013-09-01

    Full Text Available A custom, portable natural gas fire furnace was designed and constructed for use at the University of Notre Dame to experimentally investigate the out-of-plane behavior of full-scale reinforced concrete (RC bearing walls under fire. The unique aspects of this furnace allowed the application of large mechanical loads and non-contact optical response monitoring to be done while subjecting the wall to elevated temperatures. The performance of the experimental furnace, mechanical loading, and response monitoring system is reported using the results from the first two RC wall test specimens.

  3. Evaluating a fish monitoring protocol using state-space hierarchical models

    Science.gov (United States)

    Russell, Robin E.; Schmetterling, David A.; Guy, Chris S.; Shepard, Bradley B.; McFarland, Robert; Skaar, Donald

    2012-01-01

    Using data collected from three river reaches in Montana, we evaluated our ability to detect population trends and predict fish future fish abundance. Data were collected as part of a long-term monitoring program conducted by Montana Fish, Wildlife and Parks to primarily estimate rainbow (Oncorhynchus mykiss) and brown trout (Salmo trutta) abundance in numerous rivers across Montana. We used a hierarchical Bayesian mark-recapture model to estimate fish abundance over time in each of the three river reaches. We then fit a state-space Gompertz model to estimate current trends and future fish populations. Density dependent effects were detected in 1 of the 6 fish populations. Predictions of future fish populations displayed wide credible intervals. Our simulations indicated that given the observed variation in the abundance estimates, the probability of detecting a 30% decline in fish populations over a five-year period was less than 50%. We recommend a monitoring program that is closely tied to management objectives and reflects the precision necessary to make informed management decisions.

  4. Near "real" time magnetic resonance images as a monitoring system for interstitial laser therapy: experimental protocols

    Science.gov (United States)

    Castro, Dan J.; Farahani, Keyvan; Soudant, Jacques; Zwarun, Andrew A.; Lufkin, Robert B.

    1992-06-01

    The failure rate of cancer treatment remains unacceptably high, still being a leading cause of mortality in adults and children despite major advances over the past 50 years in the fields of surgery, radiation therapy and, more recently, chemo and immunotherapy. Surgical access to some deep tumors of the head and neck and other areas often require extensive dissections with residual functional and cosmetic deformities. Repeated treatment is not possible after maximum dose radiotherapy and chemotherapy is still limited by its systemic toxicity. An attractive solution to these problems would be the development of a new adjunctive method combining the best features of interstitial laser therapy for selective tumor destruction via minimally invasive techniques for access and 3-D magnetic resonance imaging (MRI) as a monitoring system for laser-tissue interactions. Interstitial laser therapy (ILT) via fiberoptics allow laser energy to be delivered directly into deeper tissues. However, this concept will become clinically useful only when noninvasive, accurate, and reproducible monitoring methods are developed to measure energy delivery to tissues. MRI has numerous advantages in evaluating the irreversible effects of laser treatment in tissues, since laser energy includes changes not only in the thermal motions of hydrogen protons within the tissue, but also in the distribution and mobility of water and lipids. These techniques should greatly improve the use of ILT in combination with MRI to allow treatment of deeper, more difficult to reach tumors of head and neck and other anatomical areas with a single needle stick.

  5. Early action to reduce greenhouse gas emissions before the commitment period of the Kyoto protocol: advantages and disadvantages.

    Science.gov (United States)

    Michaelowa, A; Rolfe, C

    2001-09-01

    Current "business as usual" projections suggest greenhouse gas emissions from industrialized nations will grow substantially over the next decade. However, if it comes into force, the Kyoto Protocol will require industrialized nations to reduce emissions to an average of 5% below 1990 levels in the 2008-2012 period. Taking early action to close this gap has a number of advantages. It reduces the risks of passing thresholds that trigger climate change "surprises." Early action also increases future generations' ability to choose greater levels of climate protection, and it leads to faster reductions of other pollutants. From an economic sense, early action is important because it allows shifts to less carbon-intensive technologies during the course of normal capital stock turnover. Moreover, many options for emission reduction have negative costs, and thus are economically worthwhile, because of paybacks in energy costs, healthcare costs, and other benefits. Finally, early emission reductions enhance the probability of successful ratification and lower the risk of noncompliance with the protocol. We discuss policy approaches for the period prior to 2008. Disadvantages of the current proposals for Credit for Early Action are the possibility of adverse selection due to problematic baseline calculation methods as well as the distributionary impacts of allocating a part of the emissions budget already before 2008. One simple policy without drawbacks is the so-called baseline protection, which removes the disincentive to early action due to the expectation that businesses may, in the future, receive emission rights in proportion to past emissions. It is particularly important to adopt policies that shift investment in long-lived capital stock towards less carbon-intensive technologies and to encourage innovation and technology development that will reduce future compliance costs.

  6. Fructosamine measurement for diabetes mellitus diagnosis and monitoring: a systematic review and meta-analysis protocol.

    Science.gov (United States)

    Nansseu, Jobert Richie N; Fokom-Domgue, Joël; Noubiap, Jean Jacques N; Balti, Eric V; Sobngwi, Eugène; Kengne, André Pascal

    2015-05-15

    Fructosamine is a marker of glucose control reflecting the average glycaemic level over the preceding 2-3 weeks. Fructosamine has not gained as much popularity as glycated haemoglobin (HbA1c) for diabetes mellitus (DM) control monitoring, and the related underlying reasons remain unclear. We aim to search for and summarise available evidence on the accuracy of fructosamine measurements to diagnose and monitor DM. This systematic review will include randomised control trials, controlled before-and-after studies, time series designs, cohort studies, case-control studies and cross-sectional surveys reporting the diagnosis and/or monitoring of DM (type 1 DM, type 2 DM and gestational DM) with fructosamine compared with other measures of glycaemia (fasting glucose, oral glucose tolerance test, random glucose, HbA1c), without any language restriction. We will perform electronic searches in PubMed, Scopus and other databases, supplemented with manual searches. Articles published from 1 January 1980 to 30 June 2015 will be eligible for inclusion in this review. Two authors will independently screen, select studies, extract data and assess the risk of bias with discrepancies resolved by consensus. We will assess clinical heterogeneity by examining the types of interventions and outcomes in each study, and pool studies judged to be clinically homogeneous. We will also assess statistical heterogeneity using the χ(2) test of homogeneity and quantify it using the I(2) statistic. Absolute accuracy measures (sensitivity, specificity) will be pooled in a bivariate random-effects model, allowing for intersetting variability. Negative and positive predictive values will be computed for fructosamine, compared with another measure of glycaemia from the pooled estimates of sensitivity and specificity, using Bayes' theorem. This systematic review will use data from published studies and does not require ethics approval. Findings will be published in a peer-reviewed journal and

  7. Monitoring and manipulating Higgs and Goldstone modes in a supersolid quantum gas

    OpenAIRE

    Léonard, Julian; Morales, Andrea; Zupancic, Philip; Donner, Tobias; Esslinger, Tilman

    2017-01-01

    Access to collective excitations lies at the heart of our understanding of quantum many-body systems. We study the Higgs and Goldstone modes in a supersolid quantum gas that is created by coupling a Bose-Einstein condensate symmetrically to two optical cavities. The cavity fields form a U(1)-symmetric order parameter that can be modulated and monitored along both quadratures in real time. This enables us to measure the excitation energies across the superfluid-supersolid phase transition, est...

  8. The action of Japan for the limitation of greenhouse gas emissions following the Kyoto protocol; L'action du Japon sur la limitation des emissions a effet de serre suite au protocole de Kyoto

    Energy Technology Data Exchange (ETDEWEB)

    Rossignol, A.

    2000-06-01

    At the COP3 conference, Japan committed himself to reduce its greenhouse gas emissions to 6%. However, the reduction of the nuclear program has led to serious problems in the fulfillment of this objective and all sectors have to carry out additional efforts. Despite a recent decay of emissions due to the economical situation, the 2010 forecasts are pessimistic with a 20% expected increase of emissions. The Japan environment agency estimates that Japan will win his bet using carbon dioxide wells and flexibility mechanisms developed in the Kyoto protocol. Thus, the real environmental effect of the final abatement of the greenhouse gas emissions remains doubtful. (J.S.)

  9. Virtual reality transfer protocol (VRTP): implementing a monitor application for the Real-time Transport Protocol (RTP) using the Java Media Framework (JMF)

    OpenAIRE

    Afonso, Francisco Carlos

    1999-01-01

    Approved for public release; distribution is unlimited The Real-time Transport Protocol (RTP) supports the transmission of time-based media, such as audio and video, over wide-area networks (WANs), by adding synchronization and quality-of-service (QoS) feedback capabilities to the existing transport protocol. RTP has been widely used in the Multicast Backbone (MBone), a virtual network that has become a shared worldwide medium for Internet multicast communications. This work presents the d...

  10. Laser Spectroscopy Multi-Gas Monitor: Results of Technology Demonstration on ISS

    Science.gov (United States)

    Mudgett, Paul D.; Pilgrim, Jeffrey S.

    2015-01-01

    Tunable diode laser spectroscopy (TDLS) is an up and coming trace and major gas monitoring technology with unmatched selectivity, range and stability. The technology demonstration of the 4 gas Multi-Gas Monitor (MGM), reported at the 2014 ICES conference, operated continuously on the International Space Station (ISS) for nearly a year. The MGM is designed to measure oxygen, carbon dioxide, ammonia and water vapor in ambient cabin air in a low power, relatively compact device. While on board, the MGM experienced a number of challenges, unplanned and planned, including a test of the ammonia channel using a commercial medical ammonia inhalant. Data from the unit was downlinked once per week and compared with other analytical resources on board, notably the Major Constituent Analyzer (MCA), a magnetic sector mass spectrometer. MGM spent the majority of the time installed in the Nanoracks Frame 2 payload facility in front breathing mode (sampling the ambient environment of the Japanese Experiment Module), but was also used to analyze recirculated rack air. The capability of the MGM to be operated in portable mode (via internal rechargeable lithium ion polymer batteries or by plugging into any Express Rack 28VDC connector) was a part of the usability demonstration. Results to date show unprecedented stability and accuracy of the MGM vs. the MCA for oxygen and carbon dioxide. The ammonia challenge (approx. 75 ppm) was successful as well, showing very rapid response time in both directions. Work on an expansion of capability in a next generation MGM has just begun. Combustion products and hydrazine are being added to the measurable target analytes. An 8 to 10 gas monitor (aka Gas Tricorder 1.0) is envisioned for use on ISS, Orion and Exploration missions.

  11. A plunger lift and monitoring system for gas wells based on deployment-retrievement integration

    Directory of Open Access Journals (Sweden)

    Zheng Tong

    2015-11-01

    Full Text Available As a necessary step, removing liquid in the wellbore plays an important role during the production of gas wells. Plunger lift is a widely-used intermittent deliquification process for gas wells. However, the manual control way and wire logging are still utilized as a downhole monitoring way for plunger lift, which is not efficient in terms of interrupting the production. This paper presents an improved solution that logging instruments canister are deployed and retrieved by means of a new assembly. With the reciprocating plunger, logging instruments canister can be carried and deployed to the bottom of a gas well to carry out logging and sampling tasks on the production demand of a field. After the deployment and logging tasks are performed, logging instruments canister is carried back to the surface by the plunger and then data is transferred to the wellhead device near field wireless communication technology. This newly developed plunger lift system comprises plunger body, deployment sub-assembly, retrieve sub-assembly and logging instruments canister. The surface device comprises RF antenna, reader and writer. Based upon the method of deployment-retrieve integration, the new deliquification process is introduced and on-line monitoring of production dynamics can be performed including P/T measurement, downhole fluid sampling, pressure build-up, etc. without interrupting production. The general solution and engineering design parameters have been confirmed by research teams, while system prototype manufacture and workbench tests are being performed. The cost-effective way combining deliquification with dynamic monitoring is developed and contributes to increasing production and the stable productivity of gas wells. It is very significant for low-pressure and low-production gas fields to achieve automation production and management.

  12. Pollution Monitoring System Using Gas Sensor based on Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    M. Udin Harun Al Rasyid

    2016-01-01

    Full Text Available Carbon monoxide (CO and carbon dioxide (CO2 gases are classified as colorless and odorless gas so we need special tools to monitor their concentration in the air. Concentration of air pollution of CO and CO2 that are high in the air will give serious effects for health status. CO is a poisonous gas that damages the circulation of oxygen in the blood when inhaled, while CO2 is one of the gases that causes global warming. In this paper, we developed an integrated pollution monitoring (IPOM system to monitor the concentration of air pollution. This research implemented three sensor nodes (end-device which each node contains CO and CO2 sensors on the gas sensors board to perform sensing from the environment. Furthermore, the data taken from the environment by the sensor will be sent to the meshlium gateway using IEEE 802.15.4 Zigbee communications and processed by the gateway in order to be sent to the computer server. The data is stored in meshlium gateway using MySQL database as a backup, and it will be synchronized to the MySQL database in the computer server. We provide services for public to access the information in database server through a desktop and website application.

  13. Optical Multi-Gas Monitor Technology Demonstration on the International Space Station

    Science.gov (United States)

    Pilgrim, Jeffrey S.; Wood, William R.; Casias, Miguel E.; Vakhtin, Andrei B.; Johnson, Michael D.; Mudgett, Paul D.

    2014-01-01

    The International Space Station (ISS) employs a suite of portable and permanently located gas monitors to insure crew health and safety. These sensors are tasked with functions ranging from fixed mass spectrometer based major constituents analysis to portable electrochemical sensor based combustion product monitoring. An all optical multigas sensor is being developed that can provide the specificity of a mass spectrometer with the portability of an electrochemical cell. The technology, developed under the Small Business Innovation Research program, allows for an architecture that is rugged, compact and low power. A four gas version called the Multi-Gas Monitor was launched to ISS in November 2013 aboard Soyuz and activated in February 2014. The portable instrument is comprised of a major constituents analyzer (water vapor, carbon dioxide, oxygen) and high dynamic range real-time ammonia sensor. All species are sensed inside the same enhanced path length optical cell with a separate vertical cavity surface emitting laser (VCSEL) targeted at each species. The prototype is controlled digitally with a field-programmable gate array/microcontroller architecture. The optical and electronic approaches are designed for scalability and future versions could add three important acid gases and carbon monoxide combustion product gases to the four species already sensed. Results obtained to date from the technology demonstration on ISS are presented and discussed.

  14. High-Density Fiber Optical Sensor and Instrumentation for Gas Turbine Operation Condition Monitoring

    Directory of Open Access Journals (Sweden)

    Hua Xia

    2013-01-01

    Full Text Available Gas turbine operation control is normally based on thermocouple-measured exhaust temperatures. Due to radiation shielding and bulky package, it is difficult to provide high spatial resolution for measuring can-to-can combustion temperature profile at the exhaust duct. This paper has demonstrated that wavelength-division-multiplexing-based fiber Bragg grating sensors could provide high spatial resolution steady and dynamic temperature measurements. A robust sensor package can be designed with either circumferential sensing cable or radial sensing rake for quasi-distributing multiple fiber sensors in the gas turbine environment. The field validations have demonstrated that quasi-distributed fiber sensors have not only demonstrated its temperature measurement accuracy compared to existing thermocouple sensors but also shown its unique dynamic response amplitude and power spectra that could be utilized for gas turbine transient operation condition monitoring and diagnostics.

  15. Development of an online biosensor for in situ monitoring of chlorine dioxide gas disinfection efficacy

    Energy Technology Data Exchange (ETDEWEB)

    Del Busto-Ramos, M.; Budzik, M.; Corvalan, C.; Morgan, M.; Nivens, D.; Applegate, B. [Purdue Univ., West Lafayette, IN (United States). Dept. of Food Science; Turco, R. [Purdue Univ., West Lafayette, IN (United States). Dept. of Agronomy

    2008-03-15

    A prototype bioluminescence-based biosensor was designed and constructed to evaluate the antimicrobial efficacy of chlorine dioxide (ClO{sub 2}) gas under various treatment conditions. The biosensor consisted of a bioluminescent bioreporter (Pseudomonas fluorescens 5RL), an optical transducer (photomultiplier tube), and a light-tight chamber housing, the bioreporter and the transducer. The bioluminescent recombinant P. fluorescens 5RL in the biosensor allowed for online monitoring of bioluminescence during ClO{sub 2} gas disinfection. Experiments were performed to evaluate the effects of the two key physical parameters associated with ClO{sub 2} disinfection: relative humidity (40, 60, 80%) and ClO{sub 2} gas concentration (0.5, 1.0, 1.6, 2.1 mg/l) on the bioreporter. Results showed that increasing concentrations of ClO{sub 2} gas corresponded to a faster decrease in luminescence. The rates of luminescence decrease from P. fluorescens 5RL, and the log reduction time (LRT, time required to obtain 1-log reduction in luminescence) were calculated for each treatment tested. The LRT values of luminescence were 103, 78, 53, and 35 s for 0.5, 1.0, 1.6, and 2.1 mg/l of ClO{sub 2} gas treatment, respectively, at 78% relative humidity. The gas concentration which caused a tenfold change in LRT (z value) for luminescence of P. fluorescens 5RL was 3.4 mg/l of ClO{sub 2}. The prototype biosensor showed potential for many applications, such as monitoring real-time microbial inactivation and understanding parameters that influence the efficacy of gaseous decontamination procedures. (orig.)

  16. Supportive Mental Health Self-Monitoring among Smartphone Users with Psychological Distress: Protocol for a Fully Mobile Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Till Beiwinkel

    2017-09-01

    Full Text Available Mobile health (mHealth could be widely used in the population to improve access to psychological treatment. In this paper, we describe the development of a mHealth intervention on the basis of supportive self-monitoring and describe the protocol for a randomized controlled trial to evaluate its effectiveness among smartphone users with psychological distress. Based on power analysis, a representative quota sample of N = 186 smartphone users will be recruited, with an over-sampling of persons with moderate to high distress. Over a 4-week period, the intervention will be compared to a self-monitoring without intervention group and a passive control group. Telephone interviews will be conducted at baseline, post-intervention (4 weeks, and 12-week follow-up to assess study outcomes. The primary outcome will be improvement of mental health. Secondary outcomes will include well-being, intentions toward help-seeking and help-seeking behavior, user activation, attitudes toward mental-health services, perceived stigmatization, smartphone app quality, user satisfaction, engagement, and adherence with the intervention. Additionally, data from the user’s daily life as collected during self-monitoring will be used to investigate risk and protective factors of mental health in real-world settings. Therefore, this study will allow us to demonstrate the effectiveness of a smartphone application as a widely accessible and low-cost intervention to improve mental health on a population level. It also allows to identify new assessment approaches in the field of psychiatric epidemiology.

  17. The Development of Smart Home System for Controlling and Monitoring Energy Consumption using WebSocket Protocol

    Science.gov (United States)

    Witthayawiroj, Niti; Nilaphruek, Pongpon

    2017-03-01

    Energy consumption especially electricity is considered one of the most serious problems in households these days. It is because the amount of electricity consumed is more than the amount that people actually need. This means that there is an overusing which resulted from the inconvenience of moving to the switch to turn off the light or any appliances and it is often that closing the light is forgettable, for instance; in addition, there are no tools for monitoring how much energy that is consumed in residents. From this, it can be easily seen that people are having a problem in energy usage monitor and control. There are two main objectives of this study including 1) creating the communication framework among server, clients and devices, and 2) developing the prototype system that try to solve the mentioned problems which gives the user an opportunity to know the amount of electricity they have used in their houses and also the ability to turn appliances on and off through the Internet on smart devices such as smart phones and tablets that support Android platform or any web browser. Raspberry Pi is used as a microcontroller and the data is transferred to the smart device by WebSocket protocol which is strongly recommended for real-time communication. The example features on the device’s screen are user management, controlling and monitoring of appliances. The result expresses that the system is very effective and not difficult to use from users’ satisfaction. However, current sensors may be used for a more accurate electricity measurement and Wi-Fi module for more appliances to calculate its power in the future.

  18. NDIR Gas Sensor for Spatial Monitoring of Carbon Dioxide Concentrations in Naturally Ventilated Livestock Buildings

    Directory of Open Access Journals (Sweden)

    Luciano B. Mendes

    2015-05-01

    Full Text Available The tracer gas ratio method, using CO2 as natural tracer, has been suggested as a pragmatic option to measure emissions from naturally ventilated (NV barns without the need to directly estimate the ventilation rate. The aim of this research was to assess the performance of a low-cost Non-Dispersive Infra-Red (NDIR sensor for intensive spatial field monitoring of CO2 concentrations in a NV dairy cow house. This was achieved by comparing NDIR sensors with two commonly applied methods, a Photo-Acoustic Spectroscope (PAS Gas Monitor and an Open-Path laser (OP-laser. First, calibrations for the NDIR sensors were obtained in the laboratory. Then, the NDIR sensors were placed in a dairy cow barn for comparison with the PAS and OP-laser methods. The main conclusions were: (a in order to represent the overall barn CO2 concentration of the dairy cow barn, the number of NDIR sensors to be accounted for average concentration calculation was dependent on barn length and on barn area occupation; and (b the NDIR CO2 sensors are suitable for multi-point monitoring of CO2 concentrations in NV livestock barns, being a feasible alternative for the PAS and the OP-laser methods to monitor single-point or averaged spatial CO2 concentrations in livestock barns.

  19. Design and first operation of a supersonic gas jet based beam profile monitor

    Directory of Open Access Journals (Sweden)

    Vasilis Tzoganis

    2017-06-01

    Full Text Available Noninterceptive beam profile monitors are of great importance for many particle accelerators worldwide. Extra challenges are posed by high energy, high intensity machines and low energy low intensity accelerators. For these applications, existing diagnostics are no longer suitable due to the high power of the beam or the very low intensity. In addition, many other accelerators, from medical to industrial will benefit from a noninvasive, real time beam profile monitor. In this paper we present a new beam profile monitor with a novel design for the nozzle and skimmer configuration to generate a supersonic gas jet meeting ultrahigh vacuum conditions and we describe the first results for such a beam profile monitor at the Cockcroft Institute. This monitor is able to measure two-dimensional profiles of the particle beam while causing negligible disturbance to the beam or to the accelerator vacuum. The ultimate goal for this diagnostic is to provide a versatile and universal beam profile monitor suitable for measuring any beams.

  20. Idaho National Laboratory (INL) Site Greenhouse Gas (GHG) Monitoring Plan - 40 CFR 98

    Energy Technology Data Exchange (ETDEWEB)

    Deborah L. Layton; Kimberly Frerichs

    2010-07-01

    The purpose of this Greenhouse Gas (GHG) Monitoring Plan is to meet the monitoring plan requirements of Title 40 of the Code of Federal Regulations Part 98.3(g)(5). This GHG Monitoring Plan identifies procedures and methodologies used at the Idaho National Laboratory Site (INL Site) to collect data used for GHG emissions calculations and reporting requirements from stationary combustion and other regulated sources in accordance with 40 CFR 98, Subparts A and other applicable subparts. INL Site Contractors determined subpart applicability through the use of a checklist (Appendix A). Each facility/contractor reviews operations to determine which subparts are applicable and the results are compiled to determine which subparts are applicable to the INL Site. This plan is applicable to the 40 CFR 98-regulated activities managed by the INL Site contractors: Idaho National Laboratory (INL), Idaho Cleanup Project (ICP), Advanced Mixed Waste Treatment Project (AMWTP), and Naval Reactors Facilities (NRF).

  1. Idaho National Laboratory (INL) Site Greenhouse Gas (GHG) Monitoring Plan - 40 CFR 98

    Energy Technology Data Exchange (ETDEWEB)

    Deborah L. Layton; Kimberly Frerichs

    2011-12-01

    The purpose of this Greenhouse Gas (GHG) Monitoring Plan is to meet the monitoring plan requirements of Title 40 of the Code of Federal Regulations Part 98.3(g)(5). This GHG Monitoring Plan identifies procedures and methodologies used at the Idaho National Laboratory Site (INL Site) to collect data used for GHG emissions calculations and reporting requirements from stationary combustion and other regulated sources in accordance with 40 CFR 98, Subparts A and other applicable subparts. INL Site Contractors determined subpart applicability through the use of a checklist (Appendix A). Each facility/contractor reviews operations to determine which subparts are applicable and the results are compiled to determine which subparts are applicable to the INL Site. This plan is applicable to the 40 CFR 98-regulated activities managed by the INL Site contractors: Idaho National Laboratory (INL), Idaho Cleanup Project (ICP), Advanced Mixed Waste Treatment Project (AMWTP), and Naval Reactors Facilities (NRF).

  2. Forest bird monitoring protocol for strategic habitat conservation and endangered species management on O'ahu Forest National Wildlife Refuge, Island of O'ahu, Hawai'i

    Science.gov (United States)

    Camp, Richard J.; Gorresen, P. Marcos; Banko, Paul C.

    2011-01-01

    This report describes the results of a pilot forest bird survey and a consequent forest bird monitoring protocol that was developed for the O'ahu Forest National Wildlife Refuge, O'ahu Island, Hawai'i. The pilot survey was conducted to inform aspects of the monitoring protocol and to provide a baseline with which to compare future surveys on the Refuge. The protocol was developed in an adaptive management framework to track bird distribution and abundance and to meet the strategic habitat conservation requirements of the Refuge. Funding for this research was provided through a Science Support Partnership grant sponsored jointly by the U.S. Geological Survey (USGS) and the U.S. Fish and Wildlife Service (USFWS).

  3. Preliminary results of the Gas Electron Multiplier (GEM) as real-time beam monitor in hadron therapy

    Science.gov (United States)

    Aza, E.; Ciocca, M.; Murtas, F.; Puddu, S.; Pullia, M.; Silari, M.

    2017-01-01

    The use of proton and carbon ion beams in cancer therapy (also known as hadron therapy) is progressively growing worldwide due to their improved dose distributions, sparing of healthy tissues and (for carbon ions) increased radiobiological effectiveness especially for radio-resistant tumours. Strict Quality Assurance (QA) protocols need to be followed for guaranteeing the clinical beam specifications. The aim of this study was to assess the performance of a gaseous detector based on the Gas Electron Multiplier (GEM) technology for measuring the beam spot dimensions and the homogeneity of the scanned irradiation field, which are daily QA tasks commonly performed using radiochromic films. Measurements performed at the National Centre for Oncological Hadron Therapy (CNAO) in Pavia (Italy) showed that the detector is able to monitor the 2D beam image on-line with a pad granularity of 2 mm and a response proportional to the number of delivered particles. The dose homogeneity was measured with low deviation from the results obtained with radiochromic films.

  4. Integrated sUAS Greenhouse Gas Measurements and Imagery for Land Use Emissions Monitoring

    Science.gov (United States)

    Barbieri, L.; Wyngaard, J.; Galford, G. L.; Adair, C.

    2016-12-01

    Agriculture, Forestry and Other Land Uses (AFOLU) constitute the second largest anthropogenic source of greenhouse gas (GHG) emissions globally. Agriculture is the dominant source of emissions within that sector. There are a variety of agricultural land management strategies that can be implemented to reduce GHG emissions, but determining the best strategies is challenging. Emissions estimates are currently derived from GHG monitoring methods (e.g., static chambers, eddy flux towers) that are time and labor intensive, expensive, and use in-situ equipment. These methods lack the flexible, spatio-temporal monitoring necessary to reduce the high uncertainty in regional GHG emissions estimates. Small Unmanned Aerial Systems (sUAS) provide the rapid response data collection needed to monitor important field management events (e.g., manure spreading). Further, the ease of deployment of sUAS makes monitoring large regional extents over full-seasons more viable. To our knowledge, we present the first integration of sUAS remotely sensed imagery and GHG concentrations in agriculture and land use monitoring. We have developed and tested open-source hardware and software utilizing low-cost equipment (e.g., NDIR gas sensors and Canon cameras). Initial results show agreement with more traditional, proprietary equipment but at a fraction of the costs. Here we present data from test flights over agricultural areas under various management practices. The suite of data includes sUAS overpasses for imagery and CO2 concentration measurements, paired with field-based GHG measurements (static chambers). We have developed a set of best practices for sUAS data collection (e.g., time of day effects variability in localized atmospheric GHG concentrations) and discuss currently known challenges (e.g., accounting for external environmental factors such as wind speed). We present results on all sUAS GHG sampling methods paired with imagery and simultaneous static chamber monitoring for a

  5. Novel monitoring protocol for the Monte Cotugno Dam (Southern Italy) healthiness

    Science.gov (United States)

    Soldovieri, Francesco; Loperte, Antonio

    2015-04-01

    This work is concerned with the application of an integrated approach based on a non-invasive geophysical technique, as the Electrical Resistivity Tomography (ERT) and geotechnical and visual inspections for the monitoring of the Monte Cotugno dam, the largest rock fill dam in Europe. Monte Cotugno dam is located on the Sinni river (Basilicata District, South Italy) and represents the nodal point of the whole hydraulic system on the Ionic side of Italy. In fact, the dam allows harnessing of the Sinni river water for agricultural, industrial, drinking and domestic purposes. The dam consists of a central core in sandy silt and of gravelly-sandy shoulders; its water tightness is ensured by a bituminous conglomerate facing on the upstream side, welded at the bottom to the foundation sealing system. The latter is about 1,900m long and consist of a massive concrete cut-off wall based on the marly-clay formation, 300m long on the right and 600 m long on the left side. On the valley bottom, dam is made up of a reinforced concrete cut-off wall that is inserted in the marly-clay formation and is surmounted by an inspection and percolation water collection tunnel. The watertight face consists of different layers and the shallowest layers have been affected by incipient small detachments due to thermal solicitations; These detachments affect the structural behavior of the dam, since they are way for water infiltration in the dam. For this reason, on 2010 dam's owner decided to activate an integrated geophysical survey based on the integrated use of Infrared Termography, ERT and Ground Penetrating Radar, with the aim to identify and evaluate the potential loss of water through small cracks in the bituminous concrete dam [1]. Following the results achieved by this non-invasive integrated approach, it was decided to activate a long term monitoring based on periodic ERT surveys. In particular, ERT surveys were carried out for two years at two specific times of the year, in order

  6. Monitoring induced seismicity from underground gas storage: first steps in Italy

    Science.gov (United States)

    Mucciarelli, Marco; Priolo, Enrico

    2013-04-01

    The supply of natural gas and its storage are focal points of the Italian politics of energy production and will have increasing importance in the coming years. About a dozen reservoirs are currently in use and fifteen are in development or awaiting approval. Some of these are found in the vicinity of geological structures that are seismically active. The assessment of seismic hazard (both for natural background and induced seismicity) for a geological gas storage facility has a number of unconventional aspects that must be recognized and traced in a clear, ordered way and using guidelines and rules that leave less room as possible for interpretation by the individual applicant / verification body. Similarly, for control and monitoring there are not clearly defined procedures or standard instrumentation, let alone tools for analysing and processing data. Finally, governmental organizations in charge of permission grants and operative control tend to have appropriate scientific knowledge only in certain areas and not in others (e.g. the seismic one), and the establishment of an independent multidisciplinary inspection body appears desirable. The project StoHaz (https://sites.google.com/site/s2stohaz/home) aims to initiate a series of actions to overcome these deficiencies and allow to define procedures and standards for the seismic hazard assessment and control of the activities of natural gas storage in underground reservoirs. OGS will take advantage of the experience gained with the design, installation and maintenance of the seismic network monitoring the Collalto reservoir, at the moment the only example in Italy of a public research institution monitoring independently the activities of a private gas storage company.

  7. Monitoring the impact of the DRG payment system on nursing service context factors in Swiss acute care hospitals: Study protocol.

    Science.gov (United States)

    Spirig, Rebecca; Spichiger, Elisabeth; Martin, Jacqueline S; Frei, Irena Anna; Müller, Marianne; Kleinknecht, Michael

    2014-01-01

    With this study protocol, a research program is introduced. Its overall aim is to prepare the instruments and to conduct the first monitoring of nursing service context factors at three university and two cantonal hospitals in Switzerland prior to the introduction of the reimbursement system based on Diagnosis Related Groups (DRG) and to further develop a theoretical model as well as a methodology for future monitoring following the introduction of DRGs. DRG was introduced to all acute care hospitals in Switzerland in 2012. In other countries, DRG introduction led to rationing and subsequently to a reduction in nursing care. As result, nursing-sensitive patient outcomes were seriously jeopardised. Switzerland has the opportunity to learn from the consequences experienced by other countries when they introduced DRGs. Their experiences highlight that DRGs influence nursing service context factors such as complexity of nursing care or leadership, which in turn influence nursing-sensitive patient outcomes. For this reason, the monitoring of nursing service context factors needs to be an integral part of the introduction of DRGs. However, most acute care hospitals in Switzerland do not monitor nursing service context data. Nursing managers and hospital executive boards will be in need of this data in the future, in order to distribute resources effectively. A mixed methods design in the form of a sequential explanatory strategy was chosen. During the preparation phase, starting in spring 2011, instruments were selected and prepared, and the access to patient and nursing data in the hospitals was organized. Following this, online collection of quantitative data was conducted in fall 2011. In summer 2012, qualitative data was gathered using focus group interviews, which helped to describe the processes in more detail. During 2013 and 2014, an integration process is being conducted involving complementing, comparing and contrasting quantitative and qualitative findings

  8. Monitoring the ripening process of Cheddar cheese based on hydrophilic component profiling using gas chromatography-mass spectrometry

    National Research Council Canada - National Science Library

    Ochi, H; Sakai, Y; Koishihara, H; Abe, F; Bamba, T; Fukusaki, E

    2013-01-01

    ... cheese to make practical use of hydrophilic low-molecular-weight compound profiling using gas chromatography-mass spectrometry to design optimal conditions and quality monitoring of the cheese ripening process...

  9. Review of Quantitative Monitoring Methodologies for Emissions Verification and Accounting for Carbon Dioxide Capture and Storage for California’s Greenhouse Gas Cap-and-Trade and Low-Carbon Fuel Standard Programs

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, Curtis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division; Birkholzer, Jens T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division

    2014-12-23

    The Cap-and-Trade and Low Carbon Fuel Standard (LCFS) programs being administered by the California Air Resources Board (CARB) include Carbon Dioxide Capture and Storage (CCS) as a potential means to reduce greenhouse gas (GHG) emissions. However, there is currently no universal standard approach that quantifies GHG emissions reductions for CCS and that is suitable for the quantitative needs of the Cap-and-Trade and LCFS programs. CCS involves emissions related to the capture (e.g., arising from increased energy needed to separate carbon dioxide (CO2) from a flue gas and compress it for transport), transport (e.g., by pipeline), and storage of CO2 (e.g., due to leakage to the atmosphere from geologic CO2 storage sites). In this project, we reviewed and compared monitoring, verification, and accounting (MVA) protocols for CCS from around the world by focusing on protocols specific to the geologic storage part of CCS. In addition to presenting the review of these protocols, we highlight in this report those storage-related MVA protocols that we believe are particularly appropriate for CCS in California. We find that none of the existing protocols is completely appropriate for California, but various elements of all of them could be adopted and/or augmented to develop a rigorous, defensible, and practical surface leakage MVA protocol for California. The key features of a suitable surface leakage MVA plan for California are that it: (1) informs and validates the leakage risk assessment, (2) specifies use of the most effective monitoring strategies while still being flexible enough to accommodate special or site-specific conditions, (3) quantifies stored CO2, and (4) offers defensible estimates of uncertainty in monitored properties. California’s surface leakage MVA protocol needs to be applicable to the main CO2 storage opportunities (in California and in other states with entities participating in California

  10. On0Line Fuel Failure Monitor for Fuel Testing and Monitoring of Gas Cooled Very High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ayman I. Hawari; Mohamed A. Bourham

    2010-04-22

    IVery High Temperature Reactors (VHTR) utilize the TRISO microsphere as the fundamental fuel unit in the core. The TRISO microsphere (~ 1- mm diameter) is composed of a UO2 kernel surrounded by a porous pyrolytic graphite buffer, an inner pyrolytic graphite layer, a silicon carbide (SiC) coating, and an outer pyrolytic graphite layer. The U-235 enrichment of the fuel is expected to range from 4% – 10% (higher enrichments are also being considered). The layer/coating system that surrounds the UO2 kernel acts as the containment and main barrier against the environmental release of radioactivity. To understand better the behavior of this fuel under in-core conditions (e.g., high temperature, intense fast neutron flux, etc.), the US Department of Energy (DOE) is launching a fuel testing program that will take place at the Advanced Test Reactor (ATR) located at Idaho National Laboratory (INL). During this project North Carolina State University (NCSU) researchers will collaborate with INL staff for establishing an optimized system for fuel monitoring for the ATR tests. In addition, it is expected that the developed system and methods will be of general use for fuel failure monitoring in gas cooled VHTRs.

  11. Monitoring greenhouse gas emissions in Australian landscapes: Comparing ground based mobile surveying data to GOSAT observations

    Science.gov (United States)

    Bashir, S.; Iverach, C.; Kelly, B. F. J.

    2016-12-01

    Climate change is threatening the health and stability of the natural world and human society. Such concerns were emphasized at COP21 conference in Paris 2015 which highlighted the global need to improve our knowledge of sources of greenhouse gas and to develop methods to mitigate the effects of their emissions. Ongoing spatial and temporal measurements of greenhouse gases at both point and regional scales is important for clarification of climate change mechanisms and accounting. The Greenhouse gas Observing SATellite (GOSAT) is designed to monitor the global distribution of carbon dioxide (CO2) and methane (CH4) from orbit. As existing ground monitoring stations are limited and still unevenly distributed, satellite observations provide important frequent, spatially extensive, but low resolution observations. Recent developments in portable laser based greenhouse gas measurement systems have enabled the rapid measurement of greenhouse gases in ppb at the ground surface. This study was conducted to map major sources of CO2 and CH4 in the eastern states of Australia at the landscape scale and to compare the results to GOSAT observations. During April 2016 we conducted a regional CH4 and CO2 mobile survey, using an LGR greenhouse gas analyzer. Measurements were made along a 4000 KM circuit through major cities, country towns, dry sclerophyll forests, coastal wetlands, coal mining regions, coal seam gas developments, dryland farming and irrigated agricultural landscapes. The ground-based survey data were then compared with the data (L2) from GOSAT. Ground-based mobile surveys showed that there are clear statistical differences in the ground level atmospheric concentration of CH4 and CO2 associated with all major changes in land use. These changes extend for kilometers, and cover one or more GOSAT pixels. In the coal mining districts the ground-level atmospheric concentration of CH4 exceeded 2 ppm for over 40 km, yet this was not discernable in the retrieved data (L2

  12. Protocol-driven remote monitoring of cardiac resynchronization therapy as part of a heart failure disease management strategy.

    Science.gov (United States)

    Smeets, Christophe J P; Verbrugge, Frederik H; Vranken, Julie; Van der Auwera, Jo; Mullens, Wilfried; Dupont, Matthias; Grieten, Lars; De Cannière, Hélène; Lanssens, Dorien; Vandenberk, Thijs; Storms, Valerie; Thijs, Inge M; Vandervoort, Pieter

    2017-08-14

    Cardiac resynchronisation therapy (CRT) is an established treatment for heart failure (HF) with reduced ejection fraction. CRT devices are equipped with remote monitoring functions, which are pivotal in the detection of device problems, but may also facilitate disease management. The aim of this study was to provide a comprehensive overview of the clinical interventions taken based on remote monitoring. This is a single centre observational study of consecutive CRT patients (n = 192) participating in protocol-driven remote follow-up. Incoming technical- and disease-related alerts were analysed together with subsequently triggered interventions. During 34 ± 13 months of follow-up, 1372 alert-containing notifications were received (2.53 per patient-year of follow-up), comprising 1696 unique alerts (3.12 per patient-year of follow-up). In 60%, notifications resulted in a phone contact. Technical alerts constituted 8% of incoming alerts (0.23 per patient-year of follow-up). Rhythm (1.43 per patient-year of follow-up) and bioimpedance alerts (0.98 per patient-year of follow-up) were the most frequent disease-related alerts. Notifications included a rhythm alert in 39%, which triggered referral to the emergency room (4%), outpatient cardiology clinic (36%) or general practitioner (7%), or resulted in medication changes (13%). Sole bioimpedance notifications resulted in a telephone contact in 91%, which triggered outpatient evaluation in 8% versus medication changes in 10%. Clinical outcome was excellent with 97% 1-year survival. Remote CRT follow-up resulted in 0.23 technical- versus 2.64 disease-related alerts annually. Rhythm and bioimpedance notifications constituted the majority of incoming notifications which triggered an actual intervention in 22% and 15% of cases, respectively.

  13. Monitoring system of depressurization valves of migrated gas in annular space of flexible risers

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Luiz A.; Santos, Joilson M.; Carvalho, Antonio L.; Loureiro, Patricia [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2005-07-01

    PETROBRAS Research and Development Center - CENPES developed an automatic system for monitoring pressure of annular space due to permeation of gas in flexible risers to inspect continuously integrity of such lines. To help maintaining physical integrity of flexible risers, two PSV's are installed to end fittings on top of riser, so that operation of any valve grants the maximum admissible gas pressure within the riser annular space, as overpressure might cause damages to external polymeric layer of flexible riser. Due to the fact that there is no mechanism allowing operation to verify correct PSV performance and frequency of valve's closings and openings, we felt to be necessary the development and implement an automatic instrumented system, integrated to platform's automation and control infrastructure. The objective of this instrumentation is to monitor and register pressure of annular space in flexible riser, as well as XV's depressurization frequency. Having such information registered and monitored, can infer some riser structural conditions, anticipating repairs and preventive maintenance. In this paper we present developed system details including instruments required, application, operation of associated screens that are used in the ECOS, with events, alarms and industrial automation services required (Application development and system integration). (author)

  14. Renewable Energy Monitoring Protocol. Update 2010. Methodology for the calculation and recording of the amounts of energy produced from renewable sources in the Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Te Buck, S.; Van Keulen, B.; Bosselaar, L.; Gerlagh, T.; Skelton, T.

    2010-07-15

    This is the fifth, updated edition of the Dutch Renewable Energy Monitoring Protocol. The protocol, compiled on behalf of the Ministry of Economic Affairs, can be considered as a policy document that provides a uniform calculation method for determining the amount of energy produced in the Netherlands in a renewable manner. Because all governments and organisations use the calculation methods described in this protocol, this makes it possible to monitor developments in this field well and consistently. The introduction of this protocol outlines the history and describes its set-up, validity and relationship with other similar documents and agreements. The Dutch Renewable Energy Monitoring Protocol is compiled by NL Agency, and all relevant parties were given the chance to provide input. This has been incorporated as far as is possible. Statistics Netherlands (CBS) uses this protocol to calculate the amount of renewable energy produced in the Netherlands. These data are then used by the Ministry of Economic Affairs to gauge the realisation of policy objectives. In June 2009 the European Directive for energy from renewable sources was published with renewable energy targets for the Netherlands. This directive used a different calculation method - the gross energy end-use method - whilst the Dutch definition is based on the so-called substitution method. NL Agency was asked to add the calculation according to the gross end use method, although this is not clearly defined on a number of points. In describing the method, the unanswered questions become clear, as do, for example, the points the Netherlands should bring up in international discussions.

  15. Field Laboratory in the Osage Reservation -- Determination of the Status of Oil and Gas Operations: Task 1. Development of Survey Procedures and Protocols

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, Herbert B.; Johnson, William I.

    1999-04-27

    Procedures and protocols were developed for the determination of the status of oil, gas, and other mineral operations on the Osage Mineral Reservation Estate. The strategy for surveying Osage County, Oklahoma, was developed and then tested in the field. Two Osage Tribal Council members and two Native American college students (who are members of the Osage Tribe) were trained in the field as a test of the procedures and protocols developed in Task 1. Active and inactive surface mining operations, industrial sites, and hydrocarbon-producing fields were located on maps of the county, which was divided into four more or less equal areas for future investigation. Field testing of the procedures, protocols, and training was successful. No significant damage was found at petroleum production operations in a relatively new production operation and in a mature waterflood operation.

  16. Wearable autonomous microsystem with electrochemical gas sensor array for real-time health and safety monitoring.

    Science.gov (United States)

    Li, Haitao; Mu, Xiaoyi; Wang, Zhe; Liu, Xiaowen; Guo, Min; Jin, Rong; Zeng, Xiangqun; Mason, Andrew J

    2012-01-01

    Airborne pollution and explosive gases threaten human health and occupational safety, therefore generating high demand for a wearable autonomous multi-analyte gas sensor system for real-time environmental monitoring. This paper presents a system level solution through synergistic integration of sensors, electronics, and data analysis algorithms. Electrochemical sensors featuring ionic liquids were chosen to provide low-power room-temperature operation, rapid response, high sensitivity, good selectivity, and a long operating life with low maintenance. The system utilizes a multi-mode electrochemical instrumentation circuit that combines all signal condition functions within a single microelectronics chip to minimize system cost, size and power consumption. Embedded sensor array signal processing algorithms enable gas classification and concentration estimation within a real-world mixture of analytes. System design and integration methodologies are described, and preliminary results are shown for a first generation SO(2) sensor and a thumb-drive sized prototype system.

  17. Mobile Monitoring of Methane During and After the Aliso Canyon Natural Gas Leak

    Science.gov (United States)

    Polidori, A.; Pikelnaya, O.; Low, J.; Wimmer, R.; Zhou, Q.

    2016-12-01

    The Aliso Canyon gas leak was discovered inside the SoCalGas (SCG) facility on October 23, 2015. This incident represented the worst natural gas leak in the US history, and spurred a number of odor nuisance complaints from local residents. The community of Porter Ranch, located directly south of the SCG Aliso Canyon facility, was the most affected by the leak although complaints have been also reported in other neighboring communities of the San Fernando Valley. Therefore, monitoring of air quality was and remains crucial for measuring the impact of methane emissions from this leak and assessing the well-being of all residents. As the main local air quality agency for this area, South Coast Air Quality Management District (SCAQMD) organized a set of monitoring activities in response to the leak. Since December 21, 2015 SCAQMD has been conducting mobile survey measurements in and around Porter Ranch to characterize methane levels and concentration gradients within the community. For this purpose, a fast-response optical methane analyzer (LI-COR 7700) and a Global Positioning System (GPS) were mounted on top of a hybrid vehicle and driven around Porter Ranch and other surrounding areas. Following the permanent seal of the leaking well on February 18, 2016 mobile measurements have also been expanded to inside the Aliso Canyon SCG facility. During this presentation we will describe the experimental setup designed for mobile methane surveys and the monitoring strategy used for this study. We will discuss the main results of our mobile measurements including long-term methane trends since the end of the leak.

  18. On-line combustion monitoring on dry low NOx industrial gas turbines

    Science.gov (United States)

    Rea, S.; James, S.; Goy, C.; Colechin, M. J. F.

    2003-07-01

    To reduce the NOx emissions levels produced by industrial gas turbines most manufacturers have adopted a lean premixed approach to combustion. Such combustion systems are susceptible to combustion-driven oscillations, and much of the installed modern gas turbines continue to suffer from reduced reliability due to instability-related problems. The market conditions which now exist under the New Electricity Trading Arrangements provide a strong driver for power producers to improve the reliability and availability of their generating units. With respect to low-emission gas turbines, such improvements can best be achieved through a combination of sophisticated monitoring, combustion optimization and, where appropriate, plant modifications to reduce component failure rates. On-line combustion monitoring (OLCM) provides a vital contribution to each of these by providing the operator with increased confidence in the health of the combustion system and also by warning of the onset of combustion component deterioration which could cause significant downstream damage. The OLCM systems installed on Powergen's combined cycle gas turbine plant utilize high-temperature dynamic pressure transducers mounted close to the combustor to enable measurement of the fluctuating pressures experienced within the combustion system. Following overhaul, a reference data set is determined over a range of operating conditions. Real-time averaged frequency spectra are then compared to the reference data set to enable identification of abnormalities. Variations in the signal may occur due to changes in ambient conditions, fuel composition, operating conditions, and the onset of component damage. The systems on Powergen's plant have been used successfully to detect each of the above, examples of which are presented here.

  19. Remote sensing for gas plume monitoring using state-of-the-art infrared hyperspectral imaging

    Science.gov (United States)

    Hinnrichs, Michele

    1999-02-01

    Under contract to the US Air Force and Navy, Pacific Advanced Technology has developed a very sensitive hyperspectral imaging infrared camera that can perform remote imaging spectro-radiometry. One of the most exciting applications for this technology is in the remote monitoring of gas plume emissions. Pacific Advanced Technology (PAT) currently has the technology available to detect and identify chemical species in gas plumes using a small light weight infrared camera the size of a camcorder. Using this technology as a remote sensor can give advanced warning of hazardous chemical vapors undetectable by the human eye as well as monitor the species concentrations in a gas plume from smoke stack and fugitive leaks. Some of the gas plumes that have been measured and species detected using an IMSS imaging spectrometer are refinery smoke stacks plumes with emission of CO2, CO, SO2, NOx. Low concentration vapor unseen by the human eye that has been imaged and measured is acetone vapor evaporating at room temperature. The PAT hyperspectral imaging sensor is called 'Image Multi-spectral Sensing or IMSS.' The IMSS instrument uses defractive optic technology and exploits the chromatic aberrations of such lenses. Using diffractive optics for both imaging and dispersion allows for a very low cost light weight robust imaging spectrometer. PAT has developed imaging spectrometers that span the spectral range from the visible, midwave infrared (3 to 5 microns) and longwave infrared (8 to 12 microns) with this technology. This paper will present the imaging spectral data that we have collected on various targets with our hyperspectral imaging instruments as will also describe the IMSS approach to imaging spectroscopy.

  20. Autonomous corrosion detection in gas pipelines: a hybrid-fuzzy classifier approach using ultrasonic nondestructive evaluation protocols.

    Science.gov (United States)

    Qidwai, Uvais A

    2009-12-01

    In this paper, a customized classifier is presented for the industry-practiced nondestructive evaluation (NDE) protocols using a hybrid-fuzzy inference system (FIS) to classify the corrosion and distinguish it from the geometric defects or normal/healthy state of the steel pipes used in the gas/petroleum industry. The presented system is hybrid in the sense that it utilizes both soft computing through fuzzy set theory, as well as conventional parametric modeling through H(infinity) optimization methods. Due to significant uncertainty in the power spectral density of the noise in ultrasonic NDE procedures, the use of optimal H(2) estimators for defect characterization is not so accurate. A more appropriate criterion is the H(infinity) norm of the estimation error spectrum which is based on minimization of the magnitude of this spectrum and hence produces more robust estimates. A hybrid feature set is developed in this work that corresponds to a) geometric features extracted directly from the raw ultrasonic A-scan data (which are the ultrasonic echo pulses in 1-Dtraveling inside the metal perpendicular to its 2 surfaces) and b) mapped features from the impulse response of the estimated model of the defect waveform under study. An experimental strategy is first outlined, through which the necessary data are collected as A-scans. Then, using the H(infinity) estimation approach, a parametric transfer function is obtained for each pulse. In this respect, each A-scan is treated as output from a defining function when a pure/healthy metal's A-scan is used as its input. Three defining states are considered in the paper; healthy, corroded, and defective, where the defective class represents metal with artificial or other defects. The necessary features are then calculated and are then supplied to the fuzzy inference system as input to be used in the classification. The resulting system has shown excellent corrosion classification with very low misclassification and false

  1. Monitoring and Control of the Hybrid Laser-Gas Metal-Arc Welding Process

    Energy Technology Data Exchange (ETDEWEB)

    Kunerth, D. C.; McJunkin, T. R.; Nichol, C. I.; Clark, D.; Todorov, E.; Couch, R. D.; Yu, F.

    2013-07-01

    Methods are currently being developed towards a more robust system real time feedback in the high throughput process combining laser welding with gas metal arc welding. A combination of ultrasonic, eddy current, electronic monitoring, and visual techniques are being applied to the welding process. Initial simulation and bench top evaluation of proposed real time techniques on weld samples are presented along with the concepts to apply the techniques concurrently to the weld process. Consideration for the eventual code acceptance of the methods and system are also being researched as a component of this project. The goal is to detect defects or precursors to defects and correct when possible during the weld process.

  2. GULF OF MEXICO SEAFLOOR STABILITY AND GAS HYDRATE MONITORING STATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    J. Robert Woolsey; Thomas M. McGee; Robin C. Buchannon

    2004-11-01

    The gas hydrates research Consortium (HRC), established and administered at the University if Mississippi's Center for Marine Research and Environmental Technology (CMRET) has been active on many fronts in FY 03. Extension of the original contract through March 2004, has allowed completion of many projects that were incomplete at the end of the original project period due, primarily, to severe weather and difficulties in rescheduling test cruises. The primary objective of the Consortium, to design and emplace a remote sea floor station for the monitoring of gas hydrates in the Gulf of Mexico by the year 2005 remains intact. However, the possibility of levering HRC research off of the Joint Industries Program (JIP) became a possibility that has demanded reevaluation of some of the fundamental assumptions of the station format. These provisions are discussed in Appendix A. Landmark achievements of FY03 include: (1) Continuation of Consortium development with new researchers and additional areas of research contribution being incorporated into the project. During this period, NOAA's National Undersea Research Program's (NURP) National Institute for Undersea Science and Technology (NIUST) became a Consortium funding partner, joining DOE and Minerals Management Service (MMS); (2) Very successful annual and semiannual meetings in Oxford Mississippi in February and September, 2003; (3) Collection of piston cores from MC798 in support of the effort to evaluate the site for possible monitoring station installation; (4) Completion of the site evaluation effort including reports of all localities in the northern Gulf of Mexico where hydrates have been documented or are strongly suspected to exist on the sea floor or in the shallow subsurface; (5) Collection and preliminary evaluation of vent gases and core samples of hydrate from sites in Green Canyon and Mississippi Canyon, northern Gulf of Mexico; (6) Monitoring of gas activity on the sea floor, acoustically

  3. Total on-line monitoring system of Tokyo gas transmission pipelines; Systeme global de controle et de surveillance des canalisations de transport du gaz developpe par Tokyo gas

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, M. [Tokyo Gas Co., Ltd (Japan)

    2000-07-01

    As Tokyo Gas transmission pipeline is located in residential areas of Metropolitan Tokyo, more precise and advanced maintenance and inspection methods become necessary. A more efficient maintenance and inspection management system is being sought in line with the extension of gas transmission pipelines. Research and development is underway for various types of maintenance /monitoring systems that predict or detect pipeline damage or failure. Some systems have already been put to practical use. Tokyo Gas has developed a total online monitoring system featuring upgraded performance and centralized data processing. This system carries out 24-hour monitoring for damage and failure, and sends warnings to operators at the Pipeline Regional Network Office. This paper introduces the functions of the system, as well as the functions which are currently in the R and D stage. (author)

  4. Development of quality indicators for monitoring outcomes of frail elderly hospitalised in acute care health settings: Study Protocol

    Directory of Open Access Journals (Sweden)

    Travers Catherine M

    2011-10-01

    Full Text Available Abstract Background Frail older people admitted to acute care hospitals are at risk of a range of adverse outcomes, including geriatric syndromes, although targeted care strategies can improve health outcomes for these patients. It is therefore important to assess inter-hospital variation in performance in order to plan and resource improvement programs. Clinical quality outcome indicators provide a mechanism for identifying variation in performance over time and between hospitals, however to date there has been no routine use of such indicators in acute care settings. A barrier to using quality indicators is lack of access to routinely collected clinical data. The interRAI Acute Care (AC assessment system supports comprehensive geriatric assessment of older people within routine daily practice in hospital and includes process and outcome data pertaining to geriatric syndromes. This paper reports the study protocol for the development of aged care quality indicators for acute care hospitals. Methods/Design The study will be conducted in three phases: 1. Development of a preliminary inclusive set of quality indicators set based on a literature review and expert panel consultation, 2. A prospective field study including recruitment of 480 patients aged 70 years or older across 9 Australian hospitals. Each patient will be assessed on admission and discharge using the interRAI AC, and will undergo daily monitoring to observe outcomes. Medical records will be independently audited, and 3. Analysis and compilation of a definitive quality indicator set, including two anonymous voting rounds for quality indicator inclusion by the expert panel. Discussion The approach to quality indicators proposed in this protocol has four distinct advantages over previous efforts: the quality indicators focus on outcomes; they can be collected as part of a routinely applied clinical information and decision support system; the clinical data will be robust and will

  5. US Navy Submarine Sea Trial of NASA developed Multi-Gas Monitor

    Science.gov (United States)

    Mudgett, Paul D.; Manney, Joshua A.; Smith, Matthew J.; O'Connor, Sara Jane; Pilgrim, Jeffrey S.

    2017-01-01

    During a successful 2 year technology demonstration of the tunable diode laser spectroscopy (TDLS) based Multi-Gas Monitor (MGM) on the International Space Station (ISS), we began discussing with the US Navy the possibility of conducting a sea trial of an MGM on a submarine. The sea trial would also include a gas chromatography/differential mobility spectrometer based Air Quality Monitor (AQM), which is used operationally on ISS for volatile organic compound analysis. AQM preparation and results will be the subject of a separate paper. The Navy's interest in testing NASA equipment in general relates to their ongoing search for better air monitoring technology. NASA's goal is studying submarines as closed environment analogs to spacecraft. MGM's core technology was developed by Vista Photonics Inc. using Small Business Innovation Research (SBIR) grants and expanded for various applications using NASA program funding. The MGM measures oxygen, carbon dioxide, ammonia and water vapor in ambient air, displays concentrations with temperature and pressure, and stores 30 second moving averages. The sea trial involves collocating the instrument with the Central Atmosphere Monitoring System (CAMS Mk II) of the submarine, connecting it to rack power prior to departure, and letting it run during the entire 90 day patrol. All data is stored within MGM, with no connection to the vessel data bus. Crew intervention is limited to checking MGM periodically to see that it is working and power cycling if necessary. After the trial is over, the unit with its data will be retrieved. Post sea trial calibration check and data analysis are planned and results will be compared with both CAMS Mk II data and results from MGM's ISS technology demonstration. Since the sea trial itself has been delayed, this paper describes the preparation of MGM for the sea trial and also provides a summary of the latest data from the ISS MGM technology demonstration.

  6. US Navy Submarine Sea Trial of NASA developed Multi-Gas Monitor

    Science.gov (United States)

    Mudgett, Paul D.; Manney, Joshua A.; Pilgrim, Jeffrey S.

    2017-01-01

    During a successful 2 year technology demonstration of the tunable diode laser spectroscopy (TDLS) based Multi-Gas Monitor (MGM) on the International Space Station (ISS), we began discussing with the US Navy the possibility of conducting a sea trial of an MGM on a submarine. The sea trial would also include a gas chromatography/differential mobility spectrometer based Air Quality Monitor (AQM), which is used operationally on ISS for select volatile organic compounds. AQM results will be the subject of a separate paper. The Navy’s interest in testing NASA equipment is in a planned update to the environmental monitoring equipment used aboard submarines. NASA’s goal is studying submarines as closed environment analogs to spacecraft. MGM’s core technology was developed by Vista Photonics Inc using Small Business Innovation Research (SBIR) grants and expanded for various applications using NASA program funding. The MGM measures oxygen, carbon dioxide, ammonia and water vapor in ambient air, displays concentrations with temperature and pressure, and stores 30 second moving averages. The sea trial involves colocating the instrument with the Central Air Monitor (CAM) and connecting it to rack power prior to departure, and letting it run during the entire sea trial of a few months duration. All data stored is inside MGM, with no connection to the vessel data bus. Crew intervention is limited to checking MGM periodically to see that it is working and power cycling if the display is OFF. After the trial is over, the unit with its data will be retrieved. Post sea trial calibration check and data analysis are planned and results will be compared with both CAM data and results from MGM’s ISS technology demonstration.

  7. Monitoring and Protection of Oil and Gas Condition in Industrial Using Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Y. Chalapathi Rao

    2012-09-01

    Full Text Available Wireless Sensor Networks (WSNs are one of the fastest growing and emerging technologies in the field of Wireless networking today. WSNs have a vast amount of applications including environmental monitoring, military, ecology, agriculture, inventory control, robotics and health care. This paper focuses on monitoring and protection of oil and gas operations using WSNs that are optimized to decrease installation, and maintenance cost, energy requirements, increase reliability and improve communication efficiency. In addition, simulation experiments using the proposed model are presented. Such models could provide new tools for research in predictive maintenance and condition-based monitoring of factory machinery in general and for open architecture machining systems in particular. Wireless sensing no longer needs to be relegated to locations where access is difficult or where cabling is not practical. Wireless condition monitoring systems can be cost effectively implemented in extensive applications that were historically handled by running routes with data collectors. The result would be a lower cost program with more frequent data collection, increased safety, and lower spare parts inventories. Facilities would be able to run leaner because they will have more confidence in their ability to avoid downtime

  8. Validation of the BPLab® 24-hour blood pressure monitoring system in a pediatric population according to the 1993 British Hypertension Society protocol

    Directory of Open Access Journals (Sweden)

    Ledyaev MY

    2015-02-01

    Full Text Available Mikhail Y Ledyaev, Olga V Stepanova, Anastasia M Ledyaeva Department of Pediatric Disease, Volgograd State Medical University, Volgograd, Russian Federation Background: Automatic 24-hour ambulatory blood pressure (BP monitoring (ABPM is a basic procedure performed in adults with arterial hypertension, but ABPM monitors have become widely used in pediatric practice only recently. The main problem is the lack of common normative data sets for ABPM in children and the small number of appropriate monitors that can be used for analysis of the 24-hour BP profile in this age group. The aim of this study was to validate the BPLab® ABPM monitor according to the 1993 British Hypertension Society (BHS-93 protocol, as well as to work out solutions regarding the feasibility of this device in pediatric practice. Methods: Our study included 30 children of both sexes and aged 5–15 years, ie, “older” children according to the BHS-93 protocol. Before starting the study, we obtained ethical approval from the regional scientific ethics committee. All participants and their parents signed their written consent for participation in the study. The data were simultaneously obtained by three experts, who had completed a noninvasive BP measurement training course. BP values were measured using the Korotkoff auscultatory method (Phase I for systolic BP and Phase V for diastolic BP. Discrepancies in the systolic and diastolic BP measurements (n=180; 90 for each expert were analyzed according to the criteria specified in the BHS-93 protocol. Results: The device was graded “A” for both systolic BP and diastolic BP according to the criteria of the BHS-93 protocol. Conclusion: The BPLab ABPM device may be recommended for extensive pediatric use. Keywords: ambulatory blood pressure monitoring, children, device, validation 

  9. [A security protocol for the exchange of personal medical data via Internet: monitoring treatment and drug effects].

    Science.gov (United States)

    Viviani, R; Fischer, J; Spitzer, M; Freudenmann, R W

    2004-04-01

    We present a security protocol for the exchange of medical data via the Internet, based on the type/domain model. We discuss two applications of the protocol: in a system for the exchange of data for quality assurance, and in an on-line database of adverse reactions to drug use. We state that a type/domain security protocol can successfully comply with the complex requirements for data privacy and accessibility typical of such applications.

  10. Monitoring and modeling wetland chloride concentrations in relationship to oil and gas development

    Science.gov (United States)

    Post van der Burg, Max; Tangen, Brian A.

    2015-01-01

    Extraction of oil and gas via unconventional methods is becoming an important aspect of energy production worldwide. Studying the effects of this development in countries where these technologies are being widely used may provide other countries, where development may be proposed, with some insight in terms of concerns associated with development. A fairly recent expansion of unconventional oil and gas development in North America provides such an opportunity. Rapid increases in energy development in North America have caught the attention of managers and scientists as a potential stressor for wildlife and their habitats. Of particular concern in the Northern Great Plains of the U.S. is the potential for chloride-rich produced water associated with unconventional oil and gas development to alter the water chemistry of wetlands. We describe a landscape scale modeling approach designed to examine the relationship between potential chloride contamination in wetlands and patterns of oil and gas development. We used a spatial Bayesian hierarchical modeling approach to assess multiple models explaining chloride concentrations in wetlands. These models included effects related to oil and gas wells (e.g. age of wells, number of wells) and surficial geology (e.g. glacial till, outwash). We found that the model containing the number of wells and the surficial geology surrounding a wetland best explained variation in chloride concentrations. Our spatial predictions showed regions of localized high chloride concentrations. Given the spatiotemporal variability of regional wetland water chemistry, we do not regard our results as predictions of contamination, but rather as a way to identify locations that may require more intensive sampling or further investigation. We suggest that an approach like the one outlined here could easily be extended to more of an adaptive monitoring approach to answer questions about chloride contamination risk that are of interest to managers.

  11. Accuracy of gas exchange monitoring during noninvasive ventilation: an in vitro metabolic simulation.

    Science.gov (United States)

    Smallwood, Craig D; Mehta, Nilesh M

    2014-01-01

    Gas exchange monitoring by indirect calorimetry (IC) during noninvasive ventilation (NIV) is desirable but currently not available. Leaks around the mask preclude reliable measurements of carbon dioxide production (VCO2) and oxygen consumption (VO2) in this population. We aimed to examine the impact of system leaks and gas flows on the accuracy of gas exchange measurements during NIV using an in vitro metabolic simulation. We examined the agreement between VCO2 and VO2 measurements by IC (using a novel canopy device) and reference values generated during an in vitro metabolic simulation of NIV at room air. The flow rate of gas sampled by the IC device (VIC) was set relative to the output flow of the ventilator (VVENT) to obtain a range of sample factors (SF = VIC/VVENT). Linear regression was used to determine the effect of SF on the accuracy of the system. An acceptable agreement between measured and reference values was observed, with mean bias (limits of agreement) of -3.3% (-6.9% to 0.3%) and -10.6% (-14.9% to -6.4%) for VCO2 and VO2, respectively. An SF of 1.25 was associated with the highest accuracy of measurement. VO2 measurement accuracy deteriorated with system leak and at SF >1.25 and was linearly related to sample dilution by ambient air entrainment. A novel canopy device with titration of IC sample flow in relation to the ventilator flow allowed in vitro gas exchange measurements during simulated NIV with acceptable accuracy. This model needs to be tested in clinical settings.

  12. Gas monitoring during the CO2 back production field test at the Ketzin pilot site

    Science.gov (United States)

    Szizybalski, Alexandra; Zimmer, Martin; Kujawa, Christian; Erzinger, Jörg

    2015-04-01

    fluids before the injection of CO2 showed that CH4, CO2, H2 and N2 are present in the original formation fluid (0.17 mg/l, 0.08 mg/l, 0.14 mg/l, 17.9 mg/l fluid; Morozova et al., 2010). The observed N2 concentrations in the back-produced gas may, therefore, result from the field tests and from injection management or from the original formation fluid. Results of the isotopic measurements are in preparation. Morozova, D., Wandrey, M., Alawi, M., Zimmer, M., Vieth, A., Zettlitzer, M., Wuerdemann, H. (2010): Monitoring of the microbial community composition in saline aquifers during CO2 storage by fluorescence in situ hybridisation. International Journal of Greenhouse Gas Control, Volume 4, Pages 981-989. doi:10.1016/j.ijggc.2009.11.014.

  13. VALIDATION OF THE MECG-DP-NS-01 MONITOR IN OSCILLOMETRY AND AUSCULTATION MODES IN CHILDREN AND ADOLESCENTS, ACCORDING TO ESH-IP2, BHS AND AAMI PROTOCOLS

    Directory of Open Access Journals (Sweden)

    S. I. Fedorova

    2015-01-01

    Full Text Available Background: High blood pressure in childhood and adolescence is associated with a 2 to 3-fold increase of the risk of arterial hypertension. According to the Russian guidelines, only devices that have been tested by international protocols can be used for the main diagnostic method of arterial hypertension in children and adolescents, i.e. ambulatory 24-hour blood pressure monitoring.Aim: To validate the MECG-DP-NS-01 upper arm BP monitor in oscillometry and auscultation modes within the “Soyuz” complex, in children and adolescents aged from 5 to 15 years according to the international protocol of the European Society of Hypertension (ESH from 2010 (ESH-IP2, the protocol of the British Hypertension Society (BHS from 1993 and the standard of the Association for the Advancement of Medical Instrumentation (AAMI.Materials and methods: We recruited 99 children and adolescents (49 male, 50 female aged from 5 to 15 years (33 children, from 5 to 7 years, 33, from 8 to 11 years, 33, from 12 to 15 years. Expert and device blood pressure measurements were performed in each patient according to the protocols.Results: The MECG-DP-NS-01 upper arm blood pressure monitor was validated and its accuracy in blood pressure measurement in children and adolescents according to ESH-IP2, BHS and AAMI protocols confirmed. According to BHS 1993 protocol, its accuracy corresponded to A/A both in the oscillometry and auscultation modes.Conclusion: According to ESH-IP2, BHS and AAMI protocols, MEGC-DP-NS-01 within the “Soyuz” complex could be recommended for 24-hour ambulatory blood pressure monitoring in children and adolescents aged from 5 to 15 years, both in the oscillometry and auscultation modes. According to the Declaration of blood pressure Measuring Device Equivalence signed by the manufacturer for the devices MDP-NS-02s “Voshod” and MEGCDPNS-01, and to the equivalence criteria for blood pressure measuring devices, the results of testing and its

  14. Spalax™ new generation: A sensitive and selective noble gas system for nuclear explosion monitoring.

    Science.gov (United States)

    Le Petit, G; Cagniant, A; Gross, P; Douysset, G; Topin, S; Fontaine, J P; Taffary, T; Moulin, C

    2015-09-01

    In the context of the verification regime of the Comprehensive nuclear Test ban Treaty (CTBT), CEA is developing a new generation (NG) of SPALAX™ system for atmospheric radioxenon monitoring. These systems are able to extract more than 6cm(3) of pure xenon from air samples each 12h and to measure the four relevant xenon radioactive isotopes using a high resolution detection system operating in electron-photon coincidence mode. This paper presents the performances of the SPALAX™ NG prototype in operation at Bruyères-le-Châtel CEA centre, integrating the most recent CEA developments. It especially focuses on an innovative detection system made up of a gas cell equipped with two face-to-face silicon detectors associated to one or two germanium detectors. Minimum Detectable activity Concentrations (MDCs) of environmental samples were calculated to be approximately 0.1 mBq/m(3) for the isotopes (131m)Xe, (133m)Xe, (133)Xe and 0.4 mBq/m(3) for (135)Xe (single germanium configuration). The detection system might be used to simultaneously measure particulate and noble gas samples from the CTBT International Monitoring System (IMS). That possibility could lead to new capacities for particulate measurements by allowing electron-photon coincidence detection of certain fission products.

  15. Monitoring internal corrosion in natural gas pipelines; Monitoracao da corrosao interna em gasodutos

    Energy Technology Data Exchange (ETDEWEB)

    Nobrega, Ana C.V.; Silva, Djalma R.; Pimenta, Gutemberg S. [Universidade Federal do Rio Grande do Norte, Natal, RN (Brazil); Barbosa, Andrea F.F. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2003-07-01

    For susceptibilities to the corrosion of the pipelines and equipment made in carbon steel and used by the natural gas, it makes be necessary to identify the acting corrosive agents and monitoring them along time, controlling failures for internal corrosion. Also, of that process it origins the black powder (solid particles) that can not commit the structural integrity of the equipment, but it can also bring the company other implications very serious, like quality of the sold product, as well as stops due to blockages and wastes for erosion of the equipment. The monitoring methodology and control of the corrosion in field consisted of the use of corrosion test equipment, chemical characterization of samples of black powder and liquids and analysis of the operational data of processes and plants. Like this, it was identified for the gas pipeline in analysis the most responsible parameters for the corrosive action of the fluid, establishing a controlling methodology and operational actions to maintain the corrosion rates at safe levels and structural warranty of the same. (author)

  16. Response of CO2 Concentration in Andisol to Rainfall Events by Using Buried Tubing Gas Monitoring System

    Science.gov (United States)

    Endo, Toshifumi; Tokida, Takeshi; Imoto, Hiromi; Nishimura, Taku; Miyazaki, Tsuyoshi

    For the purpose of continuous soil CO2 gas monitoring, gas permeable resins were evaluated. Among polytetrafluoroethylen (PTFE), polyfluoroethylene propylene (PFEP) and silicone, the silicone rubber tube had highest permeability for oxygen gas. Buried Tubing Gas Monitoring System (BT-GMS) consisting of silicone rubber tube connected to a Non-diffuse infrared (NDIR) -CO2 gas and galvanic cell O2 gas sensors were constructed, and buried into an Andisol upland field at a depth of 20cm. Thermo-couples and EC-5 soil moisture sensors were inserted into 10 and 20cm deep layers. Soil CO2 gas concentration, temperature and moisture were continuously monitored for 5 months. Soil CO2 concentration was sensitive to rainfall events and soil moisture change. Responses were keen during summer until early autumn when soil temperature was higher than 20°C. Then, when soil temperature got lower the response tended to be dull. This suggested quick CO2 gas concentration change following a rainfall event was mostly due to enhancement in soil respiration with soil moisture rise.

  17. Assessment of a continuous blood gas monitoring system in animals during circulatory stress

    Directory of Open Access Journals (Sweden)

    Renzulli Attilio

    2011-01-01

    Full Text Available Abstract Background The study was aimed to determine the measurement accuracy of The CDI™ blood parameter monitoring system 500 (Terumo Cardiovascular Systems Corporation, Ann Arbor MI in the real-time continuous measurement of arterial blood gases under different cardiocirculatory stress conditions Methods Inotropic stimulation (Dobutamine 2.5 and 5 μg/kg/min, vasoconstriction (Arginine-vasopressin 4, 8 and 16 IU/h, hemorrhage (-10%, -20%, -35%, and -50% of the theoretical volemia, and volume resuscitation were induced in ten swine (57.4 ± 10.7 Kg.Intermittent blood gas assessments were carried out using a routine gas analyzer at any experimental phase and compared with values obtained at the same time settings during continuous monitoring with CDI™ 500 system. The Bland-Altman analysis was employed. Results Bias and precision for pO2 were - 0.06 kPa and 0.22 kPa, respectively (r2 = 0.96; pCO2 - 0.02 kPa and 0.15 kPa, respectively; pH -0.001 and 0.01 units, respectively ( r2 = 0.96. The analysis showed very good agreement for SO2 (bias 0.04,precision 0.33, r2 = 0.95, Base excess (bias 0.04,precision 0.28, r2 = 0.98, HCO3 (bias 0.05,precision 0.62, r2 = 0.92,hemoglobin (bias 0.02,precision 0.23, r2 = 0.96 and K+ (bias 0.02, precision 0.27, r2 = 0.93. The sensor was reliable throughout the experiment during hemodynamic variations. Conclusions Continuous blood gas analysis with the CDI™ 500 system was reliable and it might represent a new useful tool to accurately and timely monitor gas exchange in critically ill patients. Nonetheless, our findings need to be confirmed by larger studies to prove its reliability in the clinical setting.

  18. High sensitive gas detection and isotopic measurement for the applications of industrial emission online monitoring and air pollution source tracking

    Science.gov (United States)

    Dong, Fengzhong; Zhang, Zhirong; Xia, Hua; Cui, Xiaojuan; Pang, Tao; Wu, Bian; Chen, Weidong; Sigrist, Markus

    2015-04-01

    High sensitive gas detection and isotopic measurements have been widely employed in the industrial and safety production. The recent progress made by our group on high sensitive gas detection with technologies of TDLAS, off-axis integrated cavity output spectroscopy (OA-ICOS) and cavity ring-down spectroscopy (CRDS) will be briefly summarized in this report. Some works for field applications of industrial emission online monitoring and gas leakage detection in oil tank farm with TDLAS are first presented, and then part of our most recent researches on isotopic gas detection with OA-ICOS and CRDS for tracking of pollution sources are also introduced.

  19. Commissioning of the KATRIN Raman system for monitoring of the WGTS gas composition

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Sebastian; Bornschein, Beate; James, Timothy M.; Off, Andreas; Rupp, Simone; Seitz-Moskaliuk, Hendrik; Sturm, Michael; Wecker, Matthias [Karlsruhe Institute of Technology (Germany); Schloesser, Magnus [Universidad Complutense de Madrid (Spain); Karlsruhe Institute of Technology (Germany); Telle, Helmut H. [Universidad Complutense de Madrid (Spain)

    2015-07-01

    The Karlsruhe Tritium Neutrino (KATRIN) Experiment aims at determining the neutrino mass by the investigation of the endpoint energy-region of the tritium β-spectrum. Tritium in its molecular form ({sup 3}H{sub 2}) is injected into the Windowless Gaseous Tritium Source (WGTS) of KATRIN, and thus molecular effects, e.g. ro-vibrational excitations levels, have to be considered in the neutrino mass analysis in order to reach the design sensitivity of 200 meV/c{sup 2} (90% C.L.). As the source gas also contains impurities of the other hydrogen isotopes protium and deuterium - giving rise to different molecular excitation levels - continuous and precise monitoring of the source gas composition is required. Raman spectroscopy is the method of choice for this task as it is an inline and non-contact analysis method. In this talk, results from the recently performed commissioning phase of the KATRIN Raman system are presented: over the course of more than 50 days, consecutive Raman spectra (recorded with acquisition times of 60 s) of circulating tritium gas were acquired and analysed in real-time. In addition, valuable information on the system performance during long-term operation was gained.

  20. [Monitoring the flux of carbon dioxide gas with tunable diode laser absorption spectroscopy].

    Science.gov (United States)

    Song, Xue-Mei; Liu, Jian-Guo; Zhang, Yu-Jun; Zeng, Zong-Yong; He, Ying; Cui, Yi-Ben; Chen, Yin; Tian, Yong-Zhi; Zhang, Liang

    2011-01-01

    The greenhouse effect exacerbated by the increase of Carbon-containing gases is the more important causes of the climate change, It is very meaningful to the large-scale flux of carbon dioxide detection for the estimate the contributions of the main greenhouse gases in the atmosphere of various errestrial eco-systems. Tunable diode laser absorption spectroscopy (TDLAS) is a highly sensitive, highly selective and fast time response trace gas detection technique. In the present paper, the authors used a DFB laser was used as the light source, and by employing wavelength modulation method, and measuring the second harmonic signal of one absorption line near 1.573 microm of carbon dioxide molecule, the authors built a system for online monitoring of carbon dioxide concentration within the optical path of more than 700 meters at different heights. Combined with Alonzo Mourning -Obukhov length and characteristic velocity detected by large aperture scintillometer, the flux of carbon dioxide gas within one day calculated by the formula is within--1.5-2.5, breaking through the phenomenon of only providing the flux of trace gases near the ground at present, makking the measurement of trace gas fluxes within a large area possible.

  1. Stable carbon isotopic composition of gasolines determined by isotope ratio monitoring gas chromatography mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Smallwood, B.J.; Philp, R.P.; Allen, J.D. [University of Oklahoma, Norman, OK (United States). School of Geology and Geophysics

    2002-07-01

    A large number of underground gasoline storage facilities in the United States continuously leak gasoline into the subsurface, which makes gasoline a major groundwater contaminant. Gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) are used currently to characterize contaminated groundwater and soils. Correlations of contaminants with suspected source(s) are extremely difficult by these techniques because many gasolines have similar hydrocarbon distributions. The present study applied the technique of isotope ratio monitoring gas chromatography-mass spectrometry (irmGC-MS) to 19 gasoline samples from different areas of the USA. This allows a much better correlation of gasoline contaminants to source. Data obtained indicate a wide range of {sup {delta}}{sup 13}C values for 16 ubiquitous compounds in the gasolines. The majority of samples could be distinguished from each other on the basis of {sup {delta}}{sup 13}C hydrocarbon composition. The oxygenated additive methyl tertiary butyl ether (MTBE) was present in ten of the gasolines analyzed, and had a relatively narrow range of {sup {delta}}{sup 13}C values (-30.4 to -28.3 per mille). Preliminary investigations were also made to determine the extent of carbon isotopic fractionation after simple water washing and evaporation experiments. Results indicate that the majority of compounds did not undergo significant carbon isotopic fractionation as a result of these processes. (author)

  2. In Situ Monitoring of the Deposition of Flame-Made Chemoresistive Gas-Sensing Films.

    Science.gov (United States)

    Blattmann, Christoph O; Güntner, Andreas T; Pratsinis, Sotiris E

    2017-07-19

    Flame-deposited semiconducting nanomaterials on microelectronic circuitry exhibit exceptional performance as chemoresistive gas sensors. Current manufacturing technology, however, does not monitor in situ the formation of such nanostructured films, even though this can facilitate the controlled and economic synthesis of these sensors. Here, the resistance of such growing films is measured in situ during fabrication to monitor the creation of a semiconducting nanoparticle network for gas sensors. Upon formation of that network, the film resistance drops drastically to an asymptotic value that depends largely on the film structure or morphology rather than on its thickness and size of nanoparticle building blocks. Precursor solutions of various concentrations enable the flame deposition of Sb-doped SnO2 sensing films of different morphologies, each of which exhibit a characteristic in situ resistance pattern. Low precursor concentrations (1 mM) lead to thin (ca. 0.16 μm) films with slender columnar structures of increasing diameter (up to 25 nm) after prolonged deposition (up to 6 min) and show an oscillating in situ resistance during their fabrication. On the other extreme, high precursor concentrations (100 mM) lead to thick (up to 80 μm) dendritic and porous films consisting of nanoparticles with relatively small primary particle diameter (around 7 nm) that remain invariant of deposition duration, which is in agreement with the stable in situ resistance. Such dendritic films exhibit a sensor recovery time that is an order of magnitude longer than that of those made at lower concentrations. The above understanding enables the rapid and economic flame synthesis of thin gas sensors consisting of minimal semiconducting nanomaterial mass possessing a tuned baseline resistance and exhibiting excellent response to ethanol vapor.

  3. Gas Bubble Trauma Monitoring and Research of Juvenile Salmonids, 1994-1995 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hans, Karen M.

    1997-07-01

    This report describes laboratory and field monitoring studies of gas bubble trauma (GBT) in migrating juvenile salmonids in the Snake and Columbia rivers. The first chapter describes laboratory studies of the progression of GBT signs leading to mortality and the use of the signs for GBT assessment. The progression and severity of GBT signs in juvenile salmonids exposed to different levels of total dissolved gas (TDG) and temperatures was assessed and quantified. Next, the prevalence, severity, and individual variation of GBT signs was evaluated to attempt to relate them to mortality. Finally, methods for gill examination in fish exposed to high TDG were developed and evaluated. Primary findings were: (1) no single sign of GBT was clearly correlated with mortality, but many GBT signs progressively worsened; (2) both prevalence and severity of GBT signs in several tissues is necessary; (3) bubbles in the lateral line were the earliest sign of GBT, showed progressive worsening, and had low individual variation but may develop poorly during chronic exposures; (4) fin bubbles had high prevalence, progressively worsened, and may be a persistent sign of GBT; and (5) gill bubbles appear to be the proximate cause of death but may only be relevant at high TDG levels and are difficult to examine. Chapter Two describes monitoring results of juvenile salmonids for signs of GBT. Emigrating fish were collected and examined for bubbles in fins and lateral lines. Preliminary findings were: (1) few fish had signs of GBT, but prevalence and severity appeared to increase as fish migrated downstream; (2) there was no apparent correlation between GBT signs in the fins, lateral line, or gills; (3) prevalence and severity of GBT was suggestive of long-term, non-lethal exposure to relatively low level gas supersaturated water; and (4) it appeared that GBT was not a threat to migrating juvenile salmonids. 24 refs., 26 figs., 3 tabs.

  4. Cassandra - D6.3 - final protocol: Seventh Framework Programme THEME Monitoring and Tracking of Shipping Containers Security

    NARCIS (Netherlands)

    Malenstein, J.; Schewe, W.; Zomer, G.; Klievink, A.J.; Nijdam, M.; Visscher, W.

    2014-01-01

    The Cassandra project addressed procedures and methods (protocols) for government supervision of international trade lanes. Specifically, it looked at the impact of the Cassandra innovations on the procedures and methods to assess risks (risk assessment protocols). This covers the way in which the

  5. Cassandra - D6.3 - final protocol: Seventh Framework Programme THEME Monitoring and Tracking of Shipping Containers Security

    NARCIS (Netherlands)

    Malenstein, J.; Schewe, W.; Zomer, G.; Klievink, A.J.; Nijdam, M.; Visscher, W.

    2014-01-01

    The Cassandra project addressed procedures and methods (protocols) for government supervision of international trade lanes. Specifically, it looked at the impact of the Cassandra innovations on the procedures and methods to assess risks (risk assessment protocols). This covers the way in which the b

  6. Provisional protocol for the sampling and analysis of tar and particulates in the gas from large-scale biomass gasifiers. Version 1998

    Energy Technology Data Exchange (ETDEWEB)

    Simell, P.; Stahlberg, P.; Kurkela, E. [VTT Energy (Finland); Albrecht, J. [Lurgi Umwelt GmbH, Frankfurt (Germany); Deutsch, S. [NREL, Golden, CO (United States); Sjostrom, K. [KTH, Stockholm (Sweden)

    2000-07-01

    This paper presents tar sampling protocols for pressurised and atmospheric large scale gasification processes. Methods for constructing sampling lines either to on-line analysers or into sampling systems are described. The tar sampling system consists of a heated probe, a particulate filter and a series of impinger bottles. Dichloromethane is used as the tar absorbing solvent. The solvent containing bottles are placed in a cold bath so that gradual cooling of the sampled gas from about O{sup o}C to the final temperature -79{sup o}C takes place in them. Recommendations for suitable sampling gas flow rates and gas temperatures are given. Tar characterisation methods based on different gravimetric measurements and GC analysis are described. (author)

  7. Developing monitoring plans to detect spills related to natural gas production.

    Science.gov (United States)

    Harris, Aubrey E; Hopkinson, Leslie; Soeder, Daniel J

    2016-11-01

    Surface water is at risk from Marcellus Shale operations because of chemical storage on drill pads during hydraulic fracturing operations, and the return of water high in total dissolved solids (up to 345 g/L) from shale gas production. This research evaluated how two commercial, off-the-shelf water quality sensors responded to simulated surface water pollution events associated with Marcellus Shale development. First, peak concentrations of contaminants from typical spill events in monitored watersheds were estimated using regression techniques. Laboratory measurements were then conducted to determine how standard in-stream instrumentation that monitor conductivity, pH, temperature, and dissolved oxygen responded to three potential spill materials: ethylene glycol (corrosion inhibitor), drilling mud, and produced water. Solutions ranging from 0 to 50 ppm of each spill material were assessed. Over this range, the specific conductivity increased on average by 19.9, 27.9, and 70 μS/cm for drilling mud, ethylene glycol, and produced water, respectively. On average, minor changes in pH (0.5-0.8) and dissolved oxygen (0.13-0.23 ppm) were observed. While continuous monitoring may be part of the strategy for detecting spills to surface water, these minor impacts to water quality highlight the difficulty in detecting spill events. When practical, sensors should be placed at the mouths of small watersheds where drilling activities or spill risks are present, as contaminant travel distance strongly affects concentrations in surface water systems.

  8. Monitoring of benzene, toluene, ethyl benzene, and xylene isomers emission from Shahreza gas stations in 2013

    Directory of Open Access Journals (Sweden)

    Farhad Esmaelnejad

    2015-01-01

    Full Text Available Aims: The aims of this study were to monitor the concentration of benzene, toluene, ethyl benzene and xylenes (BTEX in the ambient air of the city of Shahreza gas stations and to identify the spreading distance of the pollutants from the fueling stations. Materials and Methods: Sampling was carried out from the air of 10 existing fuel stations, (2 compressed natural gas and 8 gasoline and diesel stations and points of 50, 150 and 250 m away from the stations during cold and warm seasons in 2013. Air samples were taken via active sampling process using activated carbon tubes, extracted by carbon disulfide and analyzed by a gas chromatograph coupled to a flame ionization detector. Results: The averages of all achieved BTEX concentrations were under/around the permitted guideline levels for occupational exposure. According to the ambient air guidelines, the benzene level was much higher than the suggested levels in all the stations. However, the average concentrations of toluene, ethyl benzene, and xylene were not exceeded from the standards. The seasonal variation had no influence on the concentrations of BTEX. There was no significant difference between the pollutants concentrations at points 50, 150 and 250 m away from the stations. Conclusions: Fuel stations could be the main sources of volatile organic compounds emission in the city of Shahreza. The number and volume of refueling in the gas stations influence the emission rates. Therefore, it is suggested to take preventive actions such as repairing of pumps and tanks leak and installing vapor return systems at the time of fuel transferring.

  9. An Integrated Architecture for On-Board Aircraft Engine Performance Trend Monitoring and Gas Path Fault Diagnostics

    Science.gov (United States)

    Simon, Donald L.

    2010-01-01

    Aircraft engine performance trend monitoring and gas path fault diagnostics are closely related technologies that assist operators in managing the health of their gas turbine engine assets. Trend monitoring is the process of monitoring the gradual performance change that an aircraft engine will naturally incur over time due to turbomachinery deterioration, while gas path diagnostics is the process of detecting and isolating the occurrence of any faults impacting engine flow-path performance. Today, performance trend monitoring and gas path fault diagnostic functions are performed by a combination of on-board and off-board strategies. On-board engine control computers contain logic that monitors for anomalous engine operation in real-time. Off-board ground stations are used to conduct fleet-wide engine trend monitoring and fault diagnostics based on data collected from each engine each flight. Continuing advances in avionics are enabling the migration of portions of the ground-based functionality on-board, giving rise to more sophisticated on-board engine health management capabilities. This paper reviews the conventional engine performance trend monitoring and gas path fault diagnostic architecture commonly applied today, and presents a proposed enhanced on-board architecture for future applications. The enhanced architecture gains real-time access to an expanded quantity of engine parameters, and provides advanced on-board model-based estimation capabilities. The benefits of the enhanced architecture include the real-time continuous monitoring of engine health, the early diagnosis of fault conditions, and the estimation of unmeasured engine performance parameters. A future vision to advance the enhanced architecture is also presented and discussed

  10. Breath acetone monitoring by portable Si:WO{sub 3} gas sensors

    Energy Technology Data Exchange (ETDEWEB)

    Righettoni, Marco; Tricoli, Antonio; Gass, Samuel [Particle Technology Laboratory, Department of Mechanical and Process Engineering ETH Zurich, CH-8092 Zurich (Switzerland); Schmid, Alex; Amann, Anton [Univ.-Clinic for Anesthesia, Innsbruck Medical University, A-6020 Innsbruck (Austria); Breath Research Institute of the Austrian Academy of Sciences, A-6850 Dornbirn (Austria); Pratsinis, Sotiris E., E-mail: sotiris.pratsinis@ptl.mavt.ethz.ch [Particle Technology Laboratory, Department of Mechanical and Process Engineering ETH Zurich, CH-8092 Zurich (Switzerland)

    2012-08-13

    Highlights: Black-Right-Pointing-Pointer Portable sensors were developed and tested for monitoring acetone in the human breath. Black-Right-Pointing-Pointer Acetone concentrations down to 20 ppb were measured with short response times (<30 s). Black-Right-Pointing-Pointer The present sensors were highly selective to acetone over ethanol and water. Black-Right-Pointing-Pointer Sensors were applied to human breath: good agreement with highly sensitive PTR-MS. Black-Right-Pointing-Pointer Tests with people at rest and during physical activity showed the sensor robustness. - Abstract: Breath analysis has the potential for early stage detection and monitoring of illnesses to drastically reduce the corresponding medical diagnostic costs and improve the quality of life of patients suffering from chronic illnesses. In particular, the detection of acetone in the human breath is promising for non-invasive diagnosis and painless monitoring of diabetes (no finger pricking). Here, a portable acetone sensor consisting of flame-deposited and in situ annealed, Si-doped epsilon-WO{sub 3} nanostructured films was developed. The chamber volume was miniaturized while reaction-limited and transport-limited gas flow rates were identified and sensing temperatures were optimized resulting in a low detection limit of acetone ({approx}20 ppb) with short response (10-15 s) and recovery times (35-70 s). Furthermore, the sensor signal (response) was robust against variations of the exhaled breath flow rate facilitating application of these sensors at realistic relative humidities (80-90%) as in the human breath. The acetone content in the breath of test persons was monitored continuously and compared to that of state-of-the-art proton transfer reaction mass spectrometry (PTR-MS). Such portable devices can accurately track breath acetone concentration to become an alternative to more elaborate breath analysis techniques.

  11. Fission Product Monitoring of TRISO Coated Fuel For The Advanced Gas Reactor -1 Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Dawn M. Scates; John (Jack) K Hartwell; John B. Walter

    2008-09-01

    The US Department of Energy has embarked on a series of tests of TRISO-coated particle reactor fuel intended for use in the Very High Temperature Reactor (VHTR) as part of the Advanced Gas Reactor (AGR) program. The AGR-1 TRISO fuel experiment, currently underway, is the first in a series of eight fuel tests planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The AGR-1 experiment reached a peak compact averaged burn up of 9% FIMA with no known TRISO fuel particle failures in March 2008. The burnup goal for the majority of the fuel compacts is to have a compact averaged burnup greater than 18% FIMA and a minimum compact averaged burnup of 14% FIMA. At the INL the TRISO fuel in the AGR-1 experiment is closely monitored while it is being irradiated in the ATR. The effluent monitoring system used for the AGR-1 fuel is the Fission Product Monitoring System (FPMS). The FPMS is a valuable tool that provides near real-time data indicative of the AGR-1 test fuel performance and incorporates both high-purity germanium (HPGe) gamma-ray spectrometers and sodium iodide [NaI(Tl)] scintillation detector-based gross radiation monitors. To quantify the fuel performance, release-to-birth ratios (R/B’s) of radioactive fission gases are computed. The gamma-ray spectra acquired by the AGR-1 FPMS are analyzed and used to determine the released activities of specific fission gases, while a dedicated detector provides near-real time count rate information. Isotopic build up and depletion calculations provide the associated isotopic birth rates. This paper highlights the features of the FPMS, encompassing the equipment, methods and measures that enable the calculation of the release-to-birth ratios. Some preliminary results from the AGR-1 experiment are also presented.

  12. Operational benefits obtained by implementing a remote monitoring and control system at CEGAS (Gas Company of Ceara, Brazil)

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Rui C.O. [Companhia de Gas do Ceara (CEGAS), Fortaleza, CE (Brazil); Zamponha, Rogerio S. [SOFTBRASIL, Sao Paulo, SP (Brazil)

    2009-07-01

    CEGAS (Gas Company of Ceara) recently implemented an automated remote monitoring and control system at the Natural Gas Stations located within the city of Fortaleza. The main purposes to implement the project were to install a better operational platform, allowing CEGAS to analyze its operational conditions and to measure customer's consumption in real time. The data communication infra-structure chosen was GPRS/GSM, due to it's low deployment cost and coverage availability. The first phase of the project comprised 50 vehicular natural gas stations. The project was successfully installed, and became the 1{sup st} project at this type to run efficiently over a GPRS infra-structure in Brazil for gas monitoring, with reliable control and data communication. This document intends to present the reasons that lead CEGAS to invest in such a system, the technology deployed and the benefits achieved. (author)

  13. Real-time electronic monitoring of a pitted and leaking gas gathering pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, R.G.; Hewitt, P.G.

    1986-08-01

    Hydrogen patch, flush electrical resistance, and flush linear polarization proves wre used with flush coupons to monitor corrosion rates in a pitted and leaking sour gas gathering line. Four inhibitors were evaluated in stopping the leaks. Inhibitor residuals and the amount and ratio of water and condensate in the lines were measured at five locations along the line. The best inhibitor reduced reduced the pit-leak frequency by over a factor of 10. Inhibitor usage rate was optimized using the hydrogen patch current as a measure of the instantaneous corrosion rate. Improper pigging was identified as a cause of corrosion transients. This problem is discussed in relation to the pigging of pipelines in stratified flow where moving fluids are the carriers for continuously injected corrosion inhibitors.

  14. Investigations into sensing characteristics of circular thin-plate electrostatic sensors for gas path monitoring

    Institute of Scientific and Technical Information of China (English)

    Zhongsheng Chen; Xin Tang; Zheng Hu; Yongmin Yang

    2014-01-01

    Circular thin-plate electrostatic sensors are promising in gas path monitoring due to their advantages of non-intrusiveness and easy installation. The spatial sensitivity and filtering effect are two important performance parameters. In this paper, an analytically mathematical model of induced charge on a circular thin-plate electrode is first derived. Then the spatial sensitivity and fil-tering effect of the circular electrostatic sensor are investigated by numerical calculations. Finally, experimental studies are performed to testify the theoretical results. Both theoretical and experimen-tal results demonstrate that circular thin-plate electrostatic sensors act as a low-pass filter in the spa-tial frequency domain, and both the spatial filtering effect and the temporal frequency response characteristics depend strongly on the spatial position and velocity of the charged particle. These conclusions can provide guidelines for the optimal design of circular thin-plate electrostatic sensors.

  15. Expected trace gas and aerosol retrieval accuracy of the Geostationary Environment Monitoring Spectrometer

    Science.gov (United States)

    Jeong, U.; Kim, J.; Liu, X.; Lee, K. H.; Chance, K.; Song, C. H.

    2015-12-01

    The predicted accuracy of the trace gases and aerosol retrievals from the geostationary environment monitoring spectrometer (GEMS) was investigated. The GEMS is one of the first sensors to monitor NO2, SO2, HCHO, O3, and aerosols onboard geostationary earth orbit (GEO) over Asia. Since the GEMS is not launched yet, the simulated measurements and its precision were used in this study. The random and systematic component of the measurement error was estimated based on the instrument design. The atmospheric profiles were obtained from Model for Ozone And Related chemical Tracers (MOZART) simulations and surface reflectances were obtained from climatology of OMI Lambertian equivalent reflectance. The uncertainties of the GEMS trace gas and aerosol products were estimated based on the OE method using the atmospheric profile and surface reflectance. Most of the estimated uncertainties of NO2, HCHO, stratospheric and total O3 products satisfied the user's requirements with sufficient margin. However, about 26% of the estimated uncertainties of SO2 and about 30% of the estimated uncertainties of tropospheric O3 do not meet the required precision. Particularly the estimated uncertainty of SO2 is high in winter, when the emission is strong in East Asia. Further efforts are necessary in order to improve the retrieval accuracy of SO2 and tropospheric O3 in order to reach the scientific goal of GEMS. Random measurement error of GEMS was important for the NO2, SO2, and HCHO retrieval, while both the random and systematic measurement errors were important for the O3 retrievals. The degree of freedom for signal of tropospheric O3 was 0.8 ± 0.2 and that for stratospheric O3 was 2.9 ± 0.5. The estimated uncertainties of the aerosol retrieval from GEMS measurements were predicted to be lower than the required precision for the SZA range of the trace gas retrievals.

  16. Mobile monitoring of fugitive methane emissions from natural gas consumer industries

    Science.gov (United States)

    Zhou, X.; Albertson, J. D.; Gaylord, A.; von Fischer, J.; Rudek, J.; Thoma, E. D.

    2015-12-01

    Natural gas is used as a feedstock for major industrial processes, such as ammonia and fertilizer production. However, fugitive methane emissions from many major end-use sectors of the natural gas supply chain have not been quantified yet. This presentation introduces new tools for estimating emission rates from mobile methane measurements, and examines results from recent field measurements conducted downwind of several industrial plants using a specialized vehicle equipped with fast response methane sensor. Using these data along with local meteorological data measured by a 3-D sonic anemometer, a Bayesian approach is applied to probabilistically infer methane emission rates based on a modified Gaussian dispersion model. Source rates are updated recursively with repeated traversals of the downwind methane plume when the vehicle was circling around the targeted facilities. Data from controlled tracer release experiments are presented and used to validate the approach. With access via public roads, this mobile monitoring method is able to quickly assess the emission strength of facilities along the sensor path. This work is developing the capacity for efficient regional coverage of potential methane emission rates in support of leak detection and mitigation efforts.

  17. Design and Deployment of Low-Cost Plastic Optical Fiber Sensors for Gas Monitoring

    Directory of Open Access Journals (Sweden)

    Sabrina Grassini

    2014-12-01

    Full Text Available This paper describes an approach to develop and deploy low-cost plastic optical fiber sensors suitable for measuring low concentrations of pollutants in the atmosphere. The sensors are designed by depositing onto the exposed core of a plastic fiber thin films of sensitive compounds via either plasma sputtering or via plasma-enhanced chemical vapor deposition (PECVD. The interaction between the deposited layer and the gas alters the fiber’s capability to transmit the light, so that the sensor can simply be realized with a few centimeters of fiber, an LED and a photodiode. Sensors arranged in this way exhibit several advantages in comparison to electrochemical and optical conventional sensors; in particular, they have an extremely low cost and can be easily designed to have an integral, i.e., cumulative, response. The paper describes the sensor design, the preparation procedure and two examples of sensor prototypes that exploit a cumulative response. One sensor is designed for monitoring indoor atmospheres for cultural heritage applications and the other for detecting the presence of particular gas species inside the RPC (resistive plate chamber muon detector of the Compact Muon Solenoid (CMS experiment at CERN in Geneva.

  18. External cavity tunable quantum cascade lasers and their applications to trace gas monitoring.

    Science.gov (United States)

    Rao, Gottipaty N; Karpf, Andreas

    2011-02-01

    Since the first quantum cascade laser (QCL) was demonstrated approximately 16 years ago, we have witnessed an explosion of interesting developments in QCL technology and QCL-based trace gas sensors. QCLs operate in the mid-IR region (3-24 μm) and can directly access the rotational vibrational bands of most molecular species and, therefore, are ideally suited for trace gas detection with high specificity and sensitivity. These sensors have applications in a wide range of fields, including environmental monitoring, atmospheric chemistry, medical diagnostics, homeland security, detection of explosive compounds, and industrial process control, to name a few. Tunable external cavity (EC)-QCLs in particular offer narrow linewidths, wide ranges of tunability, and stable power outputs, which open up new possibilities for sensor development. These features allow for the simultaneous detection of multiple species and the study of large molecules, free radicals, ions, and reaction kinetics. In this article, we review the current status of EC-QCLs and sensor developments based on them and speculate on possible future developments.

  19. Strategy for monitoring and ensuring safe operation of Russian gas transportation systems

    Directory of Open Access Journals (Sweden)

    Dudin Sergey

    2017-01-01

    Full Text Available The authors examined the legislative framework of the Russian Federation operating in the field of industrial safety, and described how to obtain a license to operate hazardous production facilities. The paper demonstrates that the importance should be given to the quality and completeness of the background information, as well as the choice of inspection strategy in evaluating the technical condition of the line section of main gas pipelines. As a part of a package of measures to ensure industrial safety and technical reliability of existing gas pipelines it is proposed to carry out conditioning of their line sections. The paper describes general requirements for pipeline inspection, which include: detection efficiency of dangerous damages and major leaks, maximum accuracy of detection of the defect location, continuity of monitoring throughout the entire range of operation modes of the pipeline, cost recovery at the stages of development and operation of control systems, forecasting the state of the pipeline and the effects of accidents. In practice, these parameters have the prevailing significance.

  20. An observational study on patient admission in the anaesthesia gas monitor and minimum alveolar concentration monitoring: A deficiency with huge impact

    Directory of Open Access Journals (Sweden)

    Habib Md Reazaul Karim

    2017-01-01

    Full Text Available Background and Aims: Minimum alveolar concentration (MAC monitoring is an integral part of modern-day anaesthesia. Both MAC and MAC-awake are age dependant, and age of the patient needs to be entered in the monitor. This study was aimed to assess the practice of patient birth year entry in the anaesthesia monitor and its impact on MAC monitoring. Methods: Sixty volatile anaesthetic-based general anaesthetics (GAs were observed silently in two tertiary care teaching hospitals with regard to 'birth year' entry in the patient monitor. The impact on MAC for non-entry of age was assessed. The observed MAC reading and the MAC corrected for age (MACage of the patients were noted. Paired t-test was used to compare the differences in observed MAC and MACagevalues. P <0.05 was significant. Results: Sixty GAs of patients aged between 10 and 68 years were observed; 96.67% anaesthetics were conducted without entering 'birth year'. Thirty-four patients (mean age 35.14 ± 15.38 years were further assessed for impact of non-entry of age. The observed MAC was similar to MACage in patients aged 40 ± 5 years (36–45 years group. Nearly 79.41% of the observed MACs were incorrect; 55.88% patients were potentially underdosed whereas 23.53% were overdosed. Conclusion: Omitting patient age entry in the monitor results in erroneous MAC values, exposing patients <40 years to underdosing and older patients to overdose.

  1. Application of surface–downhole combined microseismic monitoring technology in the Fuling shale gas field and its enlightenment

    Directory of Open Access Journals (Sweden)

    Yaowen Liu

    2017-01-01

    Full Text Available The Fuling shale gas field in the Sichuan Basin, as a national shale gas demonstration area, is the largest commercially developed shale gas field in the world except those in North America. The fracturing technology in the mode of “well factory” has been applied widely in the gas field, but it is necessary to perform further investigation on the way to evaluate effectively the fracturing effect of multi-well platform “well factory” and the distribution laws of its induced fracture networks. In this paper, the fractures induced by the “well factory” at the JY 48 platform were real-time monitored by a surface–downhole combined microseismic monitoring technology. The geometric size and extension direction of artificial fractures induced in the model of “well factory” fracturing in the Jiaoshiba block of Fuling Shale Gas Field were preliminarily understood. Moreover, the fracturing parameters under the mode of “well factory” were recognized by using the comprehensive interpretation results of surface–downhole combined microseismic monitoring technology, together with the SRV fracturing prediction chart. Eventually, the distribution laws of artificial fractures during the “well-factory-zipper” fracturing in the Fuling Shale Gas Field were clarified definitely. This paper provides guidance for the optimization of fracturing parameters at the later stage.

  2. Experience of molecular monitoring techniques in upstream oil and gas operations

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Anthony F.; Anfindsen, Hilde; Liengen, Turid; Molid, Solfrid [Statoil ASA (Denmark)

    2011-07-01

    For a numbers of years, molecular monitoring tools have been used in upstream oil and gas operations but the results have given only limited added value. This paper discusses the various techniques available for upstream molecular monitoring which provides scope for identification of microbial influenced problems. The methodology, which consists of analyzing solid samples using traditional as well as molecular techniques, is detailed. Two cases were studied with the objective of determining if microbial contamination was contributing to the problem. The first case was a study of amorphous deposits in production wells and mainly iron sulphide was found. The second study was of amorphous deposits in water injection wells and the analysis showed typical components of drilling and completion fluids with some organic material. Two more cases, corrosion of tubing in a water injection well and flow line corrosion, are discussed and the results are given. From the study, it can be concluded that failure can be due to several factors, chemical and biological.

  3. Reducing greenhouse gas emissions from deforestation in developing countries : considerations for monitoring and measuring

    Energy Technology Data Exchange (ETDEWEB)

    DeFries, R. [Maryland Univ., College Park, MD (United States); Achard, F. [Joint Research Centre of the European Commission, Ispra (Italy); Brown, S. [Winrock International, Arlington, VA (United States). Ecosystem Services Unit; Herold, M. [Friedrich Schiller Univ., Jena (Germany). Dept. of Geography, GOFC-GOLD Land Cover Office; Murdiyarso, D. [CIFOR Headquarters, Jakarta (Indonesia); Schlamadinger, B. [Joanneum Research, Graz (Austria); De Souza, C.Jr. [Inst. Homem e Meio Ambiente da Amazonia, Belem (Brazil)

    2006-08-15

    The removal of forest cover through deforestation is a primary contributor to greenhouse gas (GHG) emissions. This report presented technical considerations for the measurement and monitoring of GHG emissions reductions from avoided deforestation. The process of quantifying GHG emissions averted from reduced deforestation requires the measurement of changes in forest cover and carbon stocks using remotely sensed data from aircraft and satellite. Methods for analyzing satellite data for changes in forest cover ranged from visual photo-interpretation to digital analysis, hot spot analysis, and statistical sampling. The study showed that new technologies are now being developed for monitoring changes in forest carbon stocks. International coordination is needed to implement the technologies, which use a combination of satellite and airborne images to reduce uncertainties in accounting for changes in GHG emissions. Coordination is also needed to ensure adequate coverage of forests around the world as there is limited capacity in many developing countries to both acquire and analyze deforestation and degradation data. It was concluded that data from the 1990s are now being used as historical reference points. 38 refs., 2 tabs., 2 figs.

  4. Hierarchical leak detection and localization method in natural gas pipeline monitoring sensor networks.

    Science.gov (United States)

    Wan, Jiangwen; Yu, Yang; Wu, Yinfeng; Feng, Renjian; Yu, Ning

    2012-01-01

    In light of the problems of low recognition efficiency, high false rates and poor localization accuracy in traditional pipeline security detection technology, this paper proposes a type of hierarchical leak detection and localization method for use in natural gas pipeline monitoring sensor networks. In the signal preprocessing phase, original monitoring signals are dealt with by wavelet transform technology to extract the single mode signals as well as characteristic parameters. In the initial recognition phase, a multi-classifier model based on SVM is constructed and characteristic parameters are sent as input vectors to the multi-classifier for initial recognition. In the final decision phase, an improved evidence combination rule is designed to integrate initial recognition results for final decisions. Furthermore, a weighted average localization algorithm based on time difference of arrival is introduced for determining the leak point's position. Experimental results illustrate that this hierarchical pipeline leak detection and localization method could effectively improve the accuracy of the leak point localization and reduce the undetected rate as well as false alarm rate.

  5. Tunable Diode Laser Sensors to Monitor Temperature and Gas Composition in High-Temperature Coal Gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Ronald [Stanford Univ., CA (United States); Whitty, Kevin [Univ. of Utah, Salt Lake City, UT (United States)

    2014-12-01

    The integrated gasification combined cycle (IGCC) when combined with carbon capture and storage can be one of the cleanest methods of extracting energy from coal. Control of coal and biomass gasification processes to accommodate the changing character of input-fuel streams is required for practical implementation of integrated gasification combined-cycle (IGCC) technologies. Therefore a fast time-response sensor is needed for real-time monitoring of the composition and ideally the heating value of the synthesis gas (here called syngas) as it exits the gasifier. The goal of this project was the design, construction, and demonstration an in situ laserabsorption sensor to monitor multiple species in the syngas output from practical-scale coal gasifiers. This project investigated the hypothesis of using laser absorption sensing in particulateladen syngas. Absorption transitions were selected with design rules to optimize signal strength while minimizing interference from other species. Successful in situ measurements in the dusty, high-pressure syngas flow were enabled by Stanford’s normalized and scanned wavelength modulation strategy. A prototype sensor for CO, CH4, CO2, and H2O was refined with experiments conducted in the laboratory at Stanford University, a pilot-scale at the University of Utah, and an engineering-scale gasifier at DoE’s National Center for Carbon Capture with the demonstration of a prototype sensor with technical readiness level 6 in the 2014 measurement campaign.

  6. Tidal control on gas flux from the Precambrian continental bedrock revealed by gas monitoring at the Outokumpu Deep Drill Hole, Finland

    Science.gov (United States)

    Kietäväinen, Riikka; Ahonen, Lasse; Wiersberg, Thomas; Korhonen, Kimmo; Pullinen, Arto

    2017-04-01

    Deep groundwaters within Precambrian shields are characteristically enriched in non-atmospheric gases. High concentrations of methane are frequently observed especially in graphite bearing metasedimentary rocks and accumulation of hydrogen and noble gases due to water-rock interaction and radioactive decay within the U, Th and K containing bedrock takes place. These gases can migrate not only through fractures and faults, but also through tunnels and boreholes, thereby potentially mobilizing hazardous compounds for example from underground nuclear waste repositories. Better understanding on fluid migration may also provide tools to monitor changes in bedrock properties such as fracture density or deterioration and failure of engineered barriers. In order to study gas migration mechanisms and variations with time, we conducted a gas monitoring campaign in eastern Finland within the Precambrian Fennoscandian Shield. At the study site, the Outokumpu Deep Drill Hole (2516 m), spontaneous bubbling of gases at the well head has been on-going since the drilling was completed in 2005, i.e. over a decade. The drill hole is open below 39 m. In the experiment an inflatable packer was placed 15 cm above the water table inside the collar (Ø 32.4 cm), gas from below the packer was collected and the gas flow in the pipe line carefully assisted by pumping (130 ml/min). Composition of gas was monitored on-line for one month using a quadrupole mass spectrometer (QMS) with measurement interval of one minute. Changes in the hydraulic head and in situ temperature were simultaneously recorded with two pressure sensors which were placed 1 m apart from each other below the packer such that they remained above and below the water table. In addition, data was compared with atmospheric pressure data and theoretical effect of Earth tides at the study site. Methane was the dominant gas emanating from the bedrock, however, relative gas composition fluctuated with time. Subsurface derived gases

  7. Research and Analysis on the Protocol Conversion of the Electric Communication Network Monitoring%电力通信网综合监控系统协议转换的研究与分析

    Institute of Scientific and Technical Information of China (English)

    刘军

    2011-01-01

    本文分析了协议转换在电力通信网监控中的地位和作用,并阐述了协议转换的原理和实现。简要介绍了综合监控协议和厂家协议,并在厂家协议中按照简单协议、复杂协议、高级协议、终端操作协议、旁听、破译、部分破译方法介绍等几方面分析协议转换。最后以实例的方式,按照简单电源协议,高级CORBA接口协议,破译ALCATELSDH协议三个方面总结了协议转换在电力通信网监控系统中的应用。%In this article, it analyzes the station and function of the protocol conversion in communication network monitoring , and expounds the principle and implementation of the protocol conversion. It briefly introduces the integrated monitoring protocol and manufacturer protocol, and analyzes the manufacturer protocol according to the simple protocol, the complex protocol, the senior protocol, the terminal operation protocol, the interception, the decode, some decode method. At the last, it summarizes the application of the protocol conversion in communication network monitoring according to the simple power protocol, the senior CORBA protocol, decoding of the ALCATEL SDH protocol.

  8. Charles M. Russell National Wildlife Refuge : Proposal for Developing a Sentinel Plant Inventory and Monitoring Protocol that is Complementary with Ecological Site Descriptions and The National Vegetation Classification System

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Proposal to develop an inventory and monitoring protocol for sentinel plants species on the Charles M. Russell National Wildlife Refuge. Sentinel species produce the...

  9. A fence line noble gas monitoring system for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Grasty, R.L.; Hovgaard, J.; LaMarre, J.R

    2001-07-01

    A noble gas monitoring system has been installed at Ontario Power Generations' Pickering Nuclear Generating Station (PNGS) near Toronto, Canada. This monitoring system allows a direct measure of air kerma from external radiation instead of calculating this based on plant emission data and meteorological models. This has resulted in a reduction in the reported effective dose from external radiation by a factor of at least ten. The system consists of nine self-contained units, each with a 7.6 cm x 7.6 cm (3 inch x 3 inch) NaI(Tl) detector that is calibrated for air kerma. The 512-channel gamma ray spectral information is downloaded daily from each unit to a central computer where the data are stored and processed. A spectral stripping procedure is used to remove natural background variations from the spectral windows used to monitor xenon-133 ({sup 133}Xe), xenon-135 ({sup 135}Xe), argon-41 ({sup 41}Ar), and skyshine radiation from the use of radiography sources. Typical monthly minimum detection limits in air kerma are 0.3 nGy for {sup 133}Xe, 0.7 nGy for {sup 135}Xe, 3 nGy for {sup 41}Ar and 2 nGy for skyshine radiation. Based on 9 months of continuous operation, the annualised air kerma due to {sup 133}Xe, {sup 135}Xe and {sup 41}Ar and skyshine radiation were 7 nGy, 8 nGy, 26 nGy and 107 nGy respectively. (author)

  10. Note: Real-time monitoring via second-harmonic interferometry of a flow gas cell for laser wakefield acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Brandi, F., E-mail: fernando.brandi@ino.it [Intense Laser Irradiation Laboratory (ILIL), Istituto Nazionale di Ottica (INO-CNR), Via Moruzzi 1, 56124 Pisa (Italy); Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova (Italy); Giammanco, F.; Conti, F. [Dipartimento di Fisica, Università degli Studi di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Plasma Diagnostics and Technologies Ltd., via Matteucci n.38/D, 56124 Pisa (Italy); Sylla, F. [SourceLAB SAS, 86 Rue de Paris, 91400 Orsay (France); Lambert, G. [LOA, ENSTA ParisTech, CNRS, Ecole Polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau Cedex (France); Gizzi, L. A. [Intense Laser Irradiation Laboratory (ILIL), Istituto Nazionale di Ottica (INO-CNR), Via Moruzzi 1, 56124 Pisa (Italy)

    2016-08-15

    The use of a gas cell as a target for laser wakefield acceleration (LWFA) offers the possibility to obtain stable and manageable laser-plasma interaction process, a mandatory condition for practical applications of this emerging technique, especially in multi-stage accelerators. In order to obtain full control of the gas particle number density in the interaction region, thus allowing for a long term stable and manageable LWFA, real-time monitoring is necessary. In fact, the ideal gas law cannot be used to estimate the particle density inside the flow cell based on the preset backing pressure and the room temperature because the gas flow depends on several factors like tubing, regulators, and valves in the gas supply system, as well as vacuum chamber volume and vacuum pump speed/throughput. Here, second-harmonic interferometry is applied to measure the particle number density inside a flow gas cell designed for LWFA. The results demonstrate that real-time monitoring is achieved and that using low backing pressure gas (<1 bar) and different cell orifice diameters (<2 mm) it is possible to finely tune the number density up to the 10{sup 19} cm{sup −3} range well suited for LWFA.

  11. Can we Replace Arterial Blood Gas Analysis by Pulse Oximetry in Neonates with Respiratory Distress Syndrome, who are Treated According to INSURE Protocol?

    Directory of Open Access Journals (Sweden)

    Pedram Niknafs

    2015-05-01

    Full Text Available Neonates with respiratory distress syndrome (RDS, who are treated according to INSURE protocol; require arterial blood gas (ABG analysis to decide on appropriate management. We conducted this study to investigate the validity of pulse oximetry instead of frequent ABG analysis in the evaluation of these patients. From a total of 193 blood samples obtained from 30 neonates <1500 grams with RDS, 7.2% were found to have one or more of the followings: acidosis, hypercapnia, or hypoxemia. We found that pulse oximetry in the detection of hyperoxemia had a good validity to appropriately manage patients without blood gas analysis. However, the validity of pulse oximetry was not good enough to detect acidosis, hypercapnia, and hypoxemia.

  12. Natural Gas Storage Seismic Monitoring Suivi sismique des stockages de gaz naturel

    Directory of Open Access Journals (Sweden)

    Mari J.L.

    2011-02-01

    Full Text Available IFP Energies nouvelles, CGGVeritas and GDF Suez have conducted together, since 1980, a series of seismic monitoring experiments in order to detect and follow the movements of the gas plume in natural gas geologic storages. Surface and well seismic surveys were carried out at different stages of the storage life. Permanent receiver arrays have been set down in wells. Permanent sources have been designed. Sources and receivers have been used to follow continuously the storage cycle during several years, providing time measurement accuracy within a tenth of a millisecond. Gas intrusion into an aquifer leads to an increase in the arrival times of reflections beneath the storage reservoir and to a variation of the reflection amplitudes at top and bottom of the reservoirs. Progressive variations of the seismic parameters may be followed during the initial infill period. Further movements of the gas plume with the annual in/out cycles are more difficult to follow, because of the simultaneous presence of gas and water in the pores. Arrival time variations of some tenths of a millisecond may be detected and measured. Saturations, using accurate picking of the arrival times, can be estimated in favourable cases. Because of the higher density of carbon dioxide, when stored in a supercritical phase, sensitivity of the seismic parameters, velocity, density and acoustic impedance to saturation variations will be about twice smaller for CO2 storages than it is for methane. IFP Energies nouvelles, la CGGVeritas et GDF Suez ont mené ensemble, depuis 1980, de nombreuses expériences de monitoring sismique afin de détecter et de suivre les mouvements du gaz dans des stockages géologiques de gaz naturel. Des acquisitions ont été réalisées à différents stades de la vie du stockage tant en sismique de surface qu’en sismique de puits. Des antennes de récepteurs permanentes ont été construites et implantées dans des puits. Des sources permanentes ont

  13. Strategies for Detecting Hidden Geothermal Systems by Near-Surface Gas Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Lewicki, Jennifer L.; Oldenburg, Curtis M.

    2004-12-15

    ''Hidden'' geothermal systems are those systems above which hydrothermal surface features (e.g., hot springs, fumaroles, elevated ground temperatures, hydrothermal alteration) are lacking. Emissions of moderate to low solubility gases (e.g., CO2, CH4, He) may be one of the primary near-surface signals from these systems. Detection of anomalous gas emissions related to hidden geothermal systems may therefore be an important tool to discover new geothermal resources. This study investigates the potential for CO2 detection and monitoring in the subsurface and above ground in the near-surface environment to serve as a tool to discover hidden geothermal systems. We focus the investigation on CO2 due to (1) its abundance in geothermal systems, (2) its moderate solubility in water, and (3) the wide range of technologies available to monitor CO2 in the near-surface environment. However, monitoring in the near-surface environment for CO2 derived from hidden geothermal reservoirs is complicated by the large variation in CO2 fluxes and concentrations arising from natural biological and hydrologic processes. In the near-surface environment, the flow and transport of CO2 at high concentrations will be controlled by its high density, low viscosity, and high solubility in water relative to air. Numerical simulations of CO2 migration show that CO2 concentrations can reach very high levels in the shallow subsurface even for relatively low geothermal source CO2 fluxes. However, once CO2 seeps out of the ground into the atmospheric surface layer, surface winds are effective at dispersing CO2 seepage. In natural ecological systems in the absence of geothermal gas emissions, near-surface CO2 fluxes and concentrations are primarily controlled by CO2 uptake by photosynthesis, production by root respiration, and microbial decomposition of soil/subsoil organic matter, groundwater degassing, and exchange with the atmosphere. Available technologies for monitoring CO2 in

  14. Application of epifluorescence scanning for monitoring the efficacy of protein removal by RF gas-plasma decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Helen C; Richardson, Patricia R; Campbell, Gaynor A; Jones, Anita C; Baxter, Robert L [School of Chemistry, Joseph Black Chemistry Building, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ (United Kingdom); Kovalev, Valeri I; Maier, Robert; Barton, James S [School of Engineering and Physical Science, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); DeLarge, Greg [Plasma Etch Inc, 3522 Arrowhead Drive, Carson City, NV 89706 (United States); Casey, Mark [Sterile Services Department, Royal Infirmary of Edinburgh, Edinburgh EH16 4AS (United Kingdom)], E-mail: r.baxter@ed.ac.uk

    2009-11-15

    The development of methods for measuring the efficiency of gas-plasma decontamination has lagged far behind application. An approach to measuring the efficiency of protein removal from solid surfaces using fluorescein-labelled bovine serum albumin and epifluorescence scanning (EFSCAN) is described. A method for fluorescently labelling proteins, which are adsorbed and denatured on metal surfaces, has been developed. Both approaches have been used to evaluate the efficiency of radio frequency (RF) gas-plasma decontamination protocols. Examples with 'real' surgical instruments demonstrate that an argon-oxygen RF gas-plasma treatment can routinely reduce the protein load by about three orders of magnitude beyond that achieved by current decontamination methods.

  15. ERPWS: An Energy Efficient Routing Protocol for Conductive Sensor based Water Level Monitoring and Control System using Zigbee and 74HC14 Inverter

    Directory of Open Access Journals (Sweden)

    Saima Maqbool

    2013-07-01

    Full Text Available In this paper we have shown how to use conductive sensor, Zigbee and 74HC14 Inverter to monitor the water level and to control the working of pump. This project is designed to automatically fill the over head tank when it gets empty and monitor the water level in it. The motor is switched ON when the water level in the overhead tank drops below a pre fixed low level (on point and puts off the motor when water level rises up to pre fixed high level (off point.The motor is also switched off during the following conditions: when the sump water is exhausted before filling overhead tank, pump running dry, mains voltage fluctuations. We also introduce an energy efficient routing protocol for Wireless Sensor Networks (ERPWS for Conductive Sensor based Water Level Monitoring and Control System using Zigbee (XBEE 802.15.4 in terms of energy consumptions, the packet loss ratio, network lifetime and the average delivery delay. The XBEE used here is XBEE Pro Series 1(XBP24-AWI-001 and IC used is 74HC14 Hex Inverting Schmitt trigger. Simulation results have been obtained by using NS2 simulator. The evaluation results show that the energy consumption of routing using ERPWS is significantly lower than LEACH and traditional routing protocols.

  16. Overview of microseismic monitoring of hydraulic fracturing for unconventional oil and gas plays

    Science.gov (United States)

    Shemeta, J. E.

    2011-12-01

    The exponential growth of unconventional resources for oil and gas production has been driven by the use of horizontal drilling and hydraulic fracturing. These drilling and completion methods increase the contact area of the low permeability and porosity hydrocarbon bearing formations and allow for economic production in what was previously considered uncommercial rock. These new resource plays have sparked an enormous interest in microseismic monitoring of hydraulic fracture treatments. As a hydraulic fracture is pumped, microseismic events are emitted in a volume of rock surrounding the stimulated fracture. The goal of the monitoring is to identify and locate the microseismic events to a high degree of precision and to map the position of the induced hydraulic fracture in time and space. The microseismic events are very small, typically having a moment-magnitude range of -4 to 0. The microseismic data are collected using a variety of seismic array designs and instrumentation, including borehole, shallow borehole, near-surface and surface arrays, using either of three-component clamped 15 Hz borehole sondes to simple vertical 10 Hz geophones for surface monitoring. The collection and processing of these data is currently under rapid technical development. Each monitoring method has technical challenges which include accurate velocity modeling, correct seismic phase identification and signal to noise issues. The microseismic locations are used to guide hydrocarbon exploration and production companies in crucial reservoir development decisions such as the direction to drill the horizontal well bores and the appropriate inter-well spacing between horizontal wells to optimally drain the resource. The fracture mapping is also used to guide fracture and reservoir engineers in designing and calibrating the fluid volumes and types, injection rates and pressures for the hydraulic fracture treatments. The microseismic data can be located and mapped in near real-time during

  17. Radon Monitoring in Soil Gas and Ground Water for Earthquake Prediction Studies in North West Himalayas, India

    Directory of Open Access Journals (Sweden)

    Surinder Singh

    2010-01-01

    Full Text Available Continuous monitoring of soil gas radon at Sarol and the daily monitoring of radon concentration in water at Banikhet is carried out in Chamba valley of North West Himalayas, India ¡§a well known seismic zone¡¨ to study the correlation of radon anomalies in relation to seismic activities of the region. Radon monitoring in soil gas was carried out by using Barasol probe manufactured by Algade France and the radon content in water was recorded using RAD7 radon monitoring system of Durridge Company, USA. The effect of meteorological parameters viz. temperature and pressure on soil gas radon emission has been studied. Correlation coefficient has been calculated between radon in soil gas, soil temperature and soil pressure. The radon anomalies observed in the region have been correlated with the seismic events in the magnitude range 2.2 to 5.0 recorded by Wadia Institute of Himalayan Geology Dehradun in NW Himalayan. Empirical equations between earthquake magnitude, epicentral distance and precursor time were examined, and respective constants were determined.

  18. Remote monitoring of a natural gas pipeline using fiber optic sensors

    Energy Technology Data Exchange (ETDEWEB)

    Cauchi, Sam; Morison, William Donald [Fiber Optic Systems Technology Inc. (FOX-TEK), Bedford, Nova Scotia (Canada)

    2009-07-01

    The pipeline network referred to herein transports natural gas from the NE part of British Columbia through Western Canada into the US Mid-West. Across over 2000 km of the operator's large diameter transmission pipeline system are numerous river crossings and other geotechnical hazards that are continuously identified and risk ranked using a variety of methods, including in line inspection and geotechnical surveys. One particular section of the operator's mainline near Edmonton, Alberta, where railway tracks have recently been installed overtop this vital natural gas transport pipeline, will be the focus of this paper. In order to protect the pipeline from soil stresses to be imposed by heavy cyclic loading during construction of the railway tracks and when trains begin passing overtop, protective concrete structures were constructed around the pipeline within the vicinity of the tracks. While these structures assist in maintaining the integrity of the pipeline in the presence of heavy loading forces, they simultaneously prevent any subsequent access to the pipeline for general inspection and repair. As a result, prior to the construction of the protective concrete structures, the operator made multiple modifications to the pipeline's integrity system within the area of the proposed tracks. This included the enhancement of the cathodic protection to further prevent external corrosion, and the installation of fiber optic strain gauges at multiple sites to ensure that strain levels remain within tolerable limits under the inaccessible area. Background information on operator's pipeline and the layout of the protective concrete structures and railways will be presented in addition to field data obtained using the fiber optic strain monitoring system. An introduction to fiber optic strain gauges will be given, followed by a discussion on the design and installation of the sensors themselves. The particular method used to analyze the strain data is

  19. Vibration Monitoring of Gas Turbine Engines: Machine-Learning Approaches and Their Challenges

    Directory of Open Access Journals (Sweden)

    Ioannis Matthaiou

    2017-09-01

    Full Text Available In this study, condition monitoring strategies are examined for gas turbine engines using vibration data. The focus is on data-driven approaches, for this reason a novelty detection framework is considered for the development of reliable data-driven models that can describe the underlying relationships of the processes taking place during an engine’s operation. From a data analysis perspective, the high dimensionality of features extracted and the data complexity are two problems that need to be dealt with throughout analyses of this type. The latter refers to the fact that the healthy engine state data can be non-stationary. To address this, the implementation of the wavelet transform is examined to get a set of features from vibration signals that describe the non-stationary parts. The problem of high dimensionality of the features is addressed by “compressing” them using the kernel principal component analysis so that more meaningful, lower-dimensional features can be used to train the pattern recognition algorithms. For feature discrimination, a novelty detection scheme that is based on the one-class support vector machine (OCSVM algorithm is chosen for investigation. The main advantage, when compared to other pattern recognition algorithms, is that the learning problem is being cast as a quadratic program. The developed condition monitoring strategy can be applied for detecting excessive vibration levels that can lead to engine component failure. Here, we demonstrate its performance on vibration data from an experimental gas turbine engine operating on different conditions. Engine vibration data that are designated as belonging to the engine’s “normal” condition correspond to fuels and air-to-fuel ratio combinations, in which the engine experienced low levels of vibration. Results demonstrate that such novelty detection schemes can achieve a satisfactory validation accuracy through appropriate selection of two parameters of the

  20. A greenhouse-gas information system monitoring and validating emissions reporting and mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Jonietz, Karl K [Los Alamos National Laboratory; Dimotakis, Paul E [JPL/CAL TECH; Roman, Douglas A [LLNL; Walker, Bruce C [SNL

    2011-09-26

    Current GHG-mitigating regimes, whether internationally agreed or self-imposed, rely on the aggregation of self-reported data, with limited checks for consistency and accuracy, for monitoring. As nations commit to more stringent GHG emissions-mitigation actions and as economic rewards or penalties are attached to emission levels, self-reported data will require independent confirmation that they are accurate and reliable, if they are to provide the basis for critical choices and actions that may be required. Supporting emissions-mitigation efforts and agreements, as well as monitoring energy- and fossil-fuel intensive national and global activities would be best achieved by a process of: (1) monitoring of emissions and emission-mitigation actions, based, in part, on, (2) (self-) reporting of pertinent bottom-up inventory data, (3) verification that reported data derive from and are consistent with agreed-upon processes and procedures, and (4) validation that reported emissions and emissions-mitigation action data are correct, based on independent measurements (top-down) derived from a suite of sensors in space, air, land, and, possibly, sea, used to deduce and attribute anthropogenic emissions. These data would be assessed and used to deduce and attribute measured GHG concentrations to anthropogenic emissions, attributed geographically and, to the extent possible, by economic sector. The validation element is needed to provide independent assurance that emissions are in accord with reported values, and should be considered as an important addition to the accepted MRV process, leading to a MRV&V process. This study and report focus on attributes of a greenhouse-gas information system (GHGIS) needed to support MRV&V needs. These needs set the function of such a system apart from scientific/research monitoring of GHGs and carbon-cycle systems, and include (not exclusively): the need for a GHGIS that is operational, as required for decision-support; the need for a

  1. Formation and migration of Natural Gases: gas composition and isotopes as monitors between source, reservoir and seep

    Science.gov (United States)

    Schoell, M.; Etiope, G.

    2015-12-01

    Natural gases form in tight source rocks at temperatures between 120ºC up to 200ºC over a time of 40 to 50my depending on the heating rate of the gas kitchen. Inferring from pyrolysis experiments, gases after primary migration, a pressure driven process, are rich in C2+ hydrocarbons (C2 to C5). This is consistent with gas compositions of oil-associated gases such as in the Bakken Shale which occur in immediate vicinity of the source with little migration distances. However, migration of gases along porous rocks over long distances (up to 200km in the case of the Troll field offshore Norway) changes the gas composition drastically as C2+ hydrocarbons tend to be retained/sequestered during migration of gas as case histories from Virginia and the North Sea will demonstrate. Similar "molecular fractionation" is observed between reservoirs and surface seeps. In contrast to gas composition, stable isotopes in gases are, in general, not affected by the migration process suggesting that gas migration is a steady state process. Changes in isotopic composition, from source to reservoir to surface seeps, is often the result of mixing of gases of different origins. Examples from various gas provinces will support this notion. Natural gas basins provide little opportunity of tracking and identifying gas phase separation. Future research on experimental phase separation and monitoring of gas composition and gas ratio changes e.g. various C2+ compound ratios over C1 or isomer ratios such as iso/n ratios in butane and pentane may be an avenue to develop tracers for phase separation that could possibly be applied to natural systems of retrograde natural condensate fields.

  2. Flue gas on-line monitoring techniques of continuous emission monitoring system.%烟气排放连续监测系统的烟气参数在线监测技术

    Institute of Scientific and Technical Information of China (English)

    朱卫东; 朱建平; 徐淮明; 范黎峰; 祖亮

    2011-01-01

    The flue gas monitoring techniques of continuous emission monitoring system are introduced briefly,including flue gas flow rate measurement, flue gas water content measurement and flue gas oxygen content measurement. The applications of the data obtained from flue gas monitoring and the future development of flue gas monitoring techniques are discussed.%简要介绍了烟气排放连续监测系统的烟气参数监测项目及技术要求,包括烟气流速、烟气水分含量、烟气含氧量在线监测技术.对烟气参数在线监测的应用与发展进行了探讨.

  3. Gas Monitoring System Based on ZigBee Pro and a New Method for Safety Grade Evaluation

    Directory of Open Access Journals (Sweden)

    Shutao Wang

    2012-11-01

    Full Text Available Aiming at the mine safety problem, this paper proposes a gas concentration monitoring system design scheme based on ZigBee Pro. The scheme designs a set of ZigBee Pro wireless network combined software with hardware based on KGS-20 gas sensor and CC2530 chip as the controller core. According to the fuzzy reasoning technology and multi-factors information fusion technology, a new method for the gas safety grade evaluation is put forward and achieves a high-precision prediction for gas safety grade. The system with the merits of security, anti-interference, high sensitivity, low power consumption, high life expectancy and easy application, has a huge advantage in practical applications.

  4. A Greenhouse-Gas Information System: Monitoring and Validating Emissions Reporting and Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Jonietz, Karl K. [Los Alamos National Laboratory; Dimotakis, Paul E. [JPL/CAL Tech; Rotman, Douglas A. [Lawrence Livermore National Laboratory; Walker, Bruce C. [Sandia National Laboratory

    2011-09-26

    This study and report focus on attributes of a greenhouse-gas information system (GHGIS) needed to support MRV&V needs. These needs set the function of such a system apart from scientific/research monitoring of GHGs and carbon-cycle systems, and include (not exclusively): the need for a GHGIS that is operational, as required for decision-support; the need for a system that meets specifications derived from imposed requirements; the need for rigorous calibration, verification, and validation (CV&V) standards, processes, and records for all measurement and modeling/data-inversion data; the need to develop and adopt an uncertainty-quantification (UQ) regimen for all measurement and modeling data; and the requirement that GHGIS products can be subjected to third-party questioning and scientific scrutiny. This report examines and assesses presently available capabilities that could contribute to a future GHGIS. These capabilities include sensors and measurement technologies; data analysis and data uncertainty quantification (UQ) practices and methods; and model-based data-inversion practices, methods, and their associated UQ. The report further examines the need for traceable calibration, verification, and validation processes and attached metadata; differences between present science-/research-oriented needs and those that would be required for an operational GHGIS; the development, operation, and maintenance of a GHGIS missions-operations center (GMOC); and the complex systems engineering and integration that would be required to develop, operate, and evolve a future GHGIS.

  5. A versatile integrating sphere based photoacoustic sensor for trace gas monitoring

    CERN Document Server

    Lassen, Mikael; Brusch, Anders; Petersen, Jan C

    2014-01-01

    A compact versatile photoacoustic (PA) sensor for trace gas detection is reported. The sensor is based on an integrating sphere as the PA absorption cell with an organ pipe tube attached to increase the sensitivity of the PA sensor. The versatility and enhancement of the sensitivity of the PA signal is investigated by monitoring specific ro-vibrational lines of CO2 in the 2 mm wavelength region and of NO2 in the 405 nm region. The measured enhancement factor of the PA signal exceeds 1200, which is due to the acoustic resonance of the tube and the absorption enhancement of the integrating sphere relatively to a non-resonant single pass cell. It is observed that the background absorption signals are highly attenuated due to the thermal conduction and diffusion effects in the polytetrafluoroethylene cell walls. This demonstrates that careful choice of cell wall materials can be highly beneficial to the sensitivity of the PA sensor. These properties makes the sensor suitable for various practical sensor applicati...

  6. Gas centrifuge enrichment plants inspection frequency and remote monitoring issues for advanced safeguards implementation

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Brian David [Los Alamos National Laboratory; Erpenbeck, Heather H [Los Alamos National Laboratory; Miller, Karen A [Los Alamos National Laboratory; Ianakiev, Kiril D [Los Alamos National Laboratory; Reimold, Benjamin A [Los Alamos National Laboratory; Ward, Steven L [Los Alamos National Laboratory; Howell, John [GLASGOW UNIV.

    2010-09-13

    Current safeguards approaches used by the IAEA at gas centrifuge enrichment plants (GCEPs) need enhancement in order to verify declared low enriched uranium (LEU) production, detect undeclared LEU production and detect high enriched uranium (BEU) production with adequate probability using non destructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and {sup 235}U enrichment of declared cylinders of uranium hexafluoride that are used in the process of enrichment at GCEPs. This paper contains an analysis of how possible improvements in unattended and attended NDA systems including process monitoring and possible on-site destructive analysis (DA) of samples could reduce the uncertainty of the inspector's measurements providing more effective and efficient IAEA GCEPs safeguards. We have also studied a few advanced safeguards systems that could be assembled for unattended operation and the level of performance needed from these systems to provide more effective safeguards. The analysis also considers how short notice random inspections, unannounced inspections (UIs), and the concept of information-driven inspections can affect probability of detection of the diversion of nuclear material when coupled to new GCEPs safeguards regimes augmented with unattended systems. We also explore the effects of system failures and operator tampering on meeting safeguards goals for quantity and timeliness and the measures needed to recover from such failures and anomalies.

  7. An observational study on patient admission in the anaesthesia gas monitor and minimum alveolar concentration monitoring: A deficiency with huge impact.

    Science.gov (United States)

    Karim, Habib Md Reazaul; Narayan, Anilkumar; Yunus, Md; Kumar, Sanjay; Prakash, Avinash; Sahoo, Sarasa Kumar

    2017-07-01

    Minimum alveolar concentration (MAC) monitoring is an integral part of modern-day anaesthesia. Both MAC and MAC-awake are age dependant, and age of the patient needs to be entered in the monitor. This study was aimed to assess the practice of patient birth year entry in the anaesthesia monitor and its impact on MAC monitoring. Sixty volatile anaesthetic-based general anaesthetics (GAs) were observed silently in two tertiary care teaching hospitals with regard to 'birth year' entry in the patient monitor. The impact on MAC for non-entry of age was assessed. The observed MAC reading and the MAC corrected for age (MACage) of the patients were noted. Paired t-test was used to compare the differences in observed MAC and MACage values. P MAC was similar to MACage in patients aged 40 ± 5 years (36-45 years group). Nearly 79.41% of the observed MACs were incorrect; 55.88% patients were potentially underdosed whereas 23.53% were overdosed. Omitting patient age entry in the monitor results in erroneous MAC values, exposing patients <40 years to underdosing and older patients to overdose.

  8. A Portable Gas Sensor System for Environmental Monitoring and Malodours Control: Data Assessment of an Experimental Campaign

    Science.gov (United States)

    Penza, Michele; Suriano, Domenico; Cassano, Gennaro; Rossi, Riccardo; Alvisi, Marco; Pfister, Valerio; Trizio, Livia; Brattoli, Magda; Amodio, Martino; De Gennaro, Gianluigi

    2011-09-01

    A portable sensor-system based on solid-state gas sensors has been designed and implemented as proof-of-concept for environmental air-monitoring applications, malodours olfactometric control and landfill gas monitoring. Commercial gas sensors and nanotechnology sensors are arranged in a configuration of array for multisensing and multiparameter devices. Wireless sensors at low-cost are integrated to implement a portable and mobile node, that can be used as early-detection system in a distributed sensor network. Real-time and continuous monitoring of hazardous air-contaminants (NO2, CO, PAH, BTEX, etc.) has been performed in field measurements by comparison of chemical analyzers from environmental protection governmental agency (ARPA-Puglia). In addition, experimental campaigns of the integrated portable sensor-system have been realized for assessment of malodours emitted from an urban waste site. The results demonstrate that the sensor-system has a potential capacity for real-time measurements of air-pollutants, malodours from waste site, and control of landfill gas.

  9. 基于Zigbee协议的SOFC无线监控系统%Wireless Monitoring System of SOFC Based on Zigbee Protocol

    Institute of Scientific and Technical Information of China (English)

    胡刚; 汪鑫; 李曦

    2012-01-01

    固态氧化物燃料电池(Solid Oxide Fuel Cell,SOFC)因其高效率、零污染而被誉为21世纪最有潜力的发电技术之一.文章针对SOFC实际运行需要,研发了一种基于Zigbee无线传输协议的远程监控系统;介绍了基于Zigbee协议的XBee Pro RF模块的使用方法;利用PLC做数据采集,随后PLC和PC间通过串口通信得到采集到的数据,最终在两个PC机之间利用Zigbee无线传输进行通信,从而构建了SOFC的无线远程监控系统.%Solid Oxide Fuel Cell is known as the most promising power generation technologies in the 21st century because of its high efficiency and zero pollution. In this paper, a remote monitoring system is designed for the SOFC based on the zigbee transport protocol. The Xbee Pro RF module based on the zigbee protocol is introduced in this paper. Finally, a wireless remote monitoring system of SOFC is set up to realize the wireless communication between PC and PC.

  10. Julia Butler Hansen NWR: Initial Survey Instructions for Columbian White-tailed Deer Monitoring – Population Status Protocol

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Recovery of the lower Columbia population of Columbian White-tailed Deer (CWTD) relies on specific population goals. As such, monitoring programs cannot be based on...

  11. Telemonitoring and/or self-monitoring of blood pressure in hypertension (TASMINH4): protocol for a randomised controlled trial.

    Science.gov (United States)

    Franssen, Marloes; Farmer, Andrew; Grant, Sabrina; Greenfield, Sheila; Heneghan, Carl; Hobbs, Richard; Hodgkinson, James; Jowett, Susan; Mant, Jonathan; Martin, Una; Milner, Siobhan; Monahan, Mark; Ogburn, Emma; Perera-Salazar, Rafael; Schwartz, Claire; Yu, Ly-Mee; McManus, Richard J

    2017-02-13

    Self-monitoring of hypertension is associated with lower systolic blood pressure (SBP). However, evidence for the use of self-monitoring to titrate antihypertensive medication by physicians is equivocal. Furthermore, there is some evidence for the efficacy of telemonitoring in the management of hypertension but it is not clear what this adds over and above self-monitoring. This trial aims to evaluate whether GP led antihypertensive titration using self-monitoring results in lower SBP compared to usual care and whether telemonitoring adds anything to self-monitoring alone. This will be a pragmatic primary care based, unblinded, randomised controlled trial of self-monitoring of BP with or without telemonitoring compared to usual care. Eligible patients will have poorly controlled hypertension (>140/90 mmHg) and will be recruited from primary care. Participants will be individually randomised to either usual care, self-monitoring alone, or self-monitoring with telemonitoring. The primary outcome of the trial will be difference in clinic SBP between intervention and control groups at 12 months adjusted for baseline SBP, gender, BP target and practice. At least 1110 patients will be sufficient to detect a difference in SBP between self-monitoring with or without telemonitoring and usual care of 5 mmHg with 90% power with an adjusted alpha of 0.017 (2-sided) to adjust for all three pairwise comparisons. Other outcomes will include adherence of anti-hypertensive medication, lifestyle behaviours, health-related quality of life, and adverse events. An economic analysis will consider both within trial costs and a model extrapolating the results thereafter. A qualitative sub study will gain insights into the views, experiences and decision making processes of patients and health care professionals focusing on the acceptability of self-monitoring and telemonitoring in the routine management of hypertension. The results of the trial will be directly applicable to primary

  12. Compact Multi-Gas Monitor for Life Support Systems Control in Space: Evaluation Under Realistic Environmental Conditions

    Science.gov (United States)

    Alonso, Jesus Delgado; Phillips, Straun; Chullen, Cinda; Mendoza, Edgar

    2014-01-01

    Advanced space life support systems require lightweight, low-power, durable sensors for monitoring critical gas components. A luminescence-based optical flow-through cell to monitor carbon dioxide, oxygen, and humidity has been developed and was demonstrated using bench-top instrumentation under environmental conditions relevant to portable life support systems, including initially pure oxygen atmosphere, temperature range from 50 F to 150 F, and humidity from dry to 100% RH and under conditions of water condensation. This paper presents the most recent progress in the development of this sensor technology. Trace gas contaminants in a space suit, originating from hardware and material off-gassing and crew member metabolism, are from many chemical families. The result is a gas mix much more complex than the pure oxygen fed into the space suit, and this complexity may interfere with gas sensor readings. This paper presents an evaluation of optical sensor performance when exposed to the most significant trace gases reported to be found in space suits. A study of the calibration stability of the sensors is also presented. For that purpose, a profile of temperature, pressure, humidity, and gas composition for the duration of an EVA has been defined, and the performance of sensors operated repeatedly under those conditions has been studied. Finally, this paper presents the first compact readout unit for these optical sensors, designed for the volume, power, and weight restrictions of a PLSS.

  13. Method of monitoring photoactive organic molecules in-situ during gas-phase deposition of the photoactive organic molecules

    Science.gov (United States)

    Forrest, Stephen R.; Vartanian, Garen; Rolin, Cedric

    2015-06-23

    A method for in-situ monitoring of gas-phase photoactive organic molecules in real time while depositing a film of the photoactive organic molecules on a substrate in a processing chamber for depositing the film includes irradiating the gas-phase photoactive organic molecules in the processing chamber with a radiation from a radiation source in-situ while depositing the film of the one or more organic materials and measuring the intensity of the resulting photoluminescence emission from the organic material. One or more processing parameters associated with the deposition process can be determined from the photoluminescence intensity data in real time providing useful feedback on the deposition process.

  14. Comparative evaluation of online oil and gas monitor; Avaliacao de monitores de teor de oleo e graxa em linha

    Energy Technology Data Exchange (ETDEWEB)

    Louvisse, Ana Maria Travalloni; Pereira Junior, Oswaldo de Aquino; Jesus, Rafael Ferreira de; Santos, Lino Antonio Duarte dos; Lopes, Humberto Eustaquio [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    Petroleum is predominantly recovered in form of water in oil emulsions, which are stabilised by petroleum resins and asphaltenes, the colloidal disperse components of crude oil. The water phase, separated during the production process, consists of a dilute oil in water emulsion, commonly called produced water.There are a wide variety of methods for determination of oil in produced water that are commercially based on a number of technique. On line continuously monitoring shall be particularly useful in providing information to assist in optimising the separation process and also to attend the environmental legislation for discharge the produced water. There are a wide variety of on line oil in water monitors that are commercially available based on a number of technique. In this paper, a comparative evaluation was made between some methods of on line oil in water detecting. These are light scattering and ultraviolet fluorescence technique. A brief description of the optical methods will be discussed and some of associated problems and limitation are pointed. The work was done in a specific experimental set up that allows the simultaneous pumping of crude oil and water through a calibrated restriction in a pipe has been used. A permanent pressure drop induced by the restriction leads to the dispersion of the oil droplets in the water phase. The monitors based on light scattering technique tested show good agreement between monitor reading and the oil dispersion used. Otherwise for ultraviolet fluorescence based monitors show a significant effect of the variation of oil type. (author)

  15. Monitoring fugitive methane and natural gas emissions, validation of measurement techniques.

    Science.gov (United States)

    Robinson, Rod; Innocenti, Fabrizio; Gardiner, Tom; Helmore, Jon; Finlayson, Andrew; Connor, Andy

    2017-04-01

    The detection and quantification of fugitive and diffuse methane emissions has become an increasing priority in recent years. As the requirements for routine measurement to support industry initiatives increase there is a growing requirement to assess and validate the performance of fugitive emission measurement technologies. For reported emissions traceability and comparability of measurements is important. This talk will present recent work addressing these needs. Differential Absorption Lidar (DIAL) is a laser based remote sensing technology, able to map the concentration of gases in the atmosphere and determine emission fluxes for fugitive emissions. A description of the technique and its application for determining fugitive emissions of methane from oil and gas operations and waste management sites will be given. As DIAL has gained acceptance as a powerful tool for the measurement and quantification of fugitive emissions, and given the rich data it produces, it is being increasingly used to assess and validate other measurement approaches. In addition, to support the validation of technologies, we have developed a portable controlled release facility able to simulate the emissions from area sources. This has been used to assess and validate techniques which are used to monitor emissions. The development and capabilities of the controlled release facility will be described. This talk will report on recent studies using DIAL and the controlled release facility to validate fugitive emission measurement techniques. This includes side by side comparisons of two DIAL systems, the application of both the DIAL technique and the controlled release facility in a major study carried out in 2015 by South Coast Air Quality Management District (SCAQMD) in which a number of optical techniques were assessed and the development of a prototype method validation approach for techniques used to measure methane emissions from shale gas sites. In conclusion the talk will provide an

  16. The Residual Gas Ionization Profile Monitor in the J-PARC 3-GeV Rapid Cycling Synchrotron

    Science.gov (United States)

    Harada, Hiroyuki; Kato, Shinichi

    The residual gas Ionization Profile Monitor (IPM) is developed in the J-PARC 3-GeV RCS. The IPM is a non-destructive beam profile monitor to observe a circulating transverse beam profile in the ring. It is very important to observe the beam profile turn-by-turn in the ring for identification of the beam loss and emittance growth source because beam loss is always issue in increasing the beam power in terms of keeping hands on maintenance. The IPM has been continuously upgraded since 2008. The recent progress of the IPM is reported together with the outline of IPM system.

  17. Quality assurance monitoring of a citywide transportation protocol improves clinical indicators of intravenous tissue plasminogen activator therapy: a community-based, longitudinal study.

    Science.gov (United States)

    Atsumi, Chihiro; Hasegawa, Yasuhiro; Tsumura, Kohtaro; Ueda, Toshihiro; Suzuki, Kazunari; Sugiyama, Makoto; Nozaki, Hiroyuki; Suzuki, Shinichi; Nakane, Makoto; Nagashima, Goro; Kitamura, Takayuki; Nikaido, Hirofumi; Sasanuma, Jinichi

    2015-01-01

    Stroke-bypass transportation to the stroke center by paramedics is important to maximize the efficiency of intravenous tissue plasminogen activator (iv-tPA) therapy. To improve access to stroke thrombolysis, a citywide protocol was launched on January 2007 in Kawasaki City (population 1.4 million) using the Maria Prehospital Stroke Scale (MPSS), and quality assurance monitoring has been performed every 6 months. The aim was to identify whether the citywide quality assurance monitoring improves the process and outcome of iv-tPA therapy. All of the MPSS-based transportation data prospectively recorded by the Kawasaki City Fire Department and the associated clinical data in the 11 hospitals that accept stroke-bypass transfers were merged every 6 months for the quality assurance monitoring. Clinical indicators such as ambulance call-to-door time, onset-to-needle time, door-to-needle time, frequency of thrombolytic use, and outcome of thrombolytic therapy were analyzed. These clinical indicators were also compared between patients transferred on weekdays and on weekends. A total of 2049 patients was registered from April 2009 to March 2013. Their mean age was 70.4 ± 13.2 (range, 24-98) years, and 64.3% were male. Ambulance call-to-door time decreased gradually from 37.5 ± 12.5 minutes to 33.9 ± 11.7 minutes over 4 years (P = .000, analysis of variance with the post hoc Dunnett test). Onset-to-needle time and door-to-needle time were similar over the 4 years. Good outcome (modified Rankin Scale score protocol significantly decreased the delay in the ambulance call-to-door time. The implementation of standardized cross-institutional quality assurance programs for acute stroke therapy may improve the process and outcome of iv-tPA therapy in the community. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  18. Infrared tunable diode laser applications: (i) atmospheric pollutants monitoring (ii) gas phase kinetics of elementary reactions; Application des diodes laser infrarouge accordables a deux problematiques: (i) la metrologie de polluants (ii) la cinetique des reactions elementaires

    Energy Technology Data Exchange (ETDEWEB)

    Dusanter, S.

    2002-12-15

    Infrared Tunable Diode Laser Absorption Spectroscopy provides sensibility, selectivity and high temporal resolution. We have applied this technique to atmospheric trace pollutants monitoring and to gas phase kinetics of elementary reactions. For metrology, we have developed a novel and effective protocol: pressure increase measurements. It has been applied to monitoring nitrous oxide, formaldehyde, acetaldehyde and 1,3-butadiene, in air or car exhausts. This work represents a first step toward the elaboration of a compact and portable instrument. The kinetic setup, where reactions are initiated by laser photolysis, has been validated with the well-known reactions of formyl and hydroxymethyl radicals with oxygen. A preliminary study of the rate constant for the unimolecular decomposition of pivaloyl radical has been performed. (author)

  19. Application of end-tidal carbon dioxide monitoring via distal gas samples in ventilated neonates.

    Science.gov (United States)

    Jin, Ziying; Yang, Maoying; Lin, Ru; Huang, Wenfang; Wang, Jiangmei; Hu, Zhiyong; Shu, Qiang

    2017-08-01

    Previous research has suggested correlations between the end-tidal partial pressure of carbon dioxide (PETCO2) and the partial pressure of arterial carbon dioxide (PaCO2) in mechanically ventilated patients, but both the relationship between PETCO2 and PaCO2 and whether PETCO2 accurately reflects PaCO2 in neonates and infants are still controversial. This study evaluated remote sampling of PETCO2 via an epidural catheter within an endotracheal tube to determine the procedure's clinical safety and efficacy in the perioperative management of neonates. Abdominal surgery was performed under general anesthesia in 86 full-term newborns (age 1-30 days, weight 2.55-4.0 kg, American Society of Anesthesiologists class I or II). The infants were divided into 2 groups (n = 43 each), and carbon dioxide (CO2) gas samples were collected either from the conventional position (the proximal end) or a modified position (the distal end) of the epidural catheter. The PETCO2 measured with the new method was significantly higher than that measured with the traditional method, and the difference between PETCO2 and PaCO2 was also reduced. The accuracy of PETCO2 measured increased from 78.7% to 91.5% when the modified sampling method was used. The moderate correlation between PETCO2 and PaCO2 by traditional measurement was 0.596, which significantly increased to 0.960 in the modified sampling group. Thus, the PETCO2 value was closer to that of PaCO2. PETCO2 detected via modified carbon dioxide monitoring had a better accuracy and correlation with PaCO2 in neonates. Copyright © 2017. Published by Elsevier B.V.

  20. Assessing the need for a protocol in monitoring weight loss and nutritional status in orthognathic surgery based on patients experiences.

    Science.gov (United States)

    Ruslin, Muhammad; Dekker, Hannah; Tuinzing, Dirk B; Forouzanfar, Tymour

    2017-02-01

    To investigate retrospectively the orthognathic surgery (OGS) patients experience in weight loss and the influence of gender, age, duration of the surgical procedure, length of hospital stay, location of surgery and use of intermaxillary fixation (IMF) or without IMF on postoperative weight loss. A total of 4487 patients treated by OGS where all patients visited the outpatient clinic one, three and six weeks after the surgical procedure. After six weeks, patients filled out a questionnaire in which weight loss was addressed. The patients were asked to give an estimate of their experiences weight loss. The population was first divided in two groups weight loss and no weight loss. In the weight loss group there is no significant difference in weight loss between patients with IMF and patients without IMF. In the weight loss group there were significantly more females then males. Further, in the subgroup IMF the operation time was significantly longer compared with the subgroup without IMF. The other parameters including age and hospital stay were not different in the groups. IMF in orthognathic treatment does not result in a difference self-reported loss of body weight compared to patients without IMF. Treatment protocols should include pre- and post-operative dietician consultations and possible indications for medical nutrition and vitamins. Key words:Assessing, protocol, weight loss, experiences, orthognathic surgery.

  1. Assessing the need for a protocol in monitoring weight loss and nutritional status in orthognathic surgery based on patients experiences

    Science.gov (United States)

    Dekker, Hannah; Tuinzing, Dirk B.; Forouzanfar, Tymour

    2017-01-01

    Background To investigate retrospectively the orthognathic surgery (OGS) patients experience in weight loss and the influence of gender, age, duration of the surgical procedure, length of hospital stay, location of surgery and use of intermaxillary fixation (IMF) or without IMF on postoperative weight loss. Material and Methods A total of 4487 patients treated by OGS where all patients visited the outpatient clinic one, three and six weeks after the surgical procedure. After six weeks, patients filled out a questionnaire in which weight loss was addressed. The patients were asked to give an estimate of their experiences weight loss. The population was first divided in two groups weight loss and no weight loss. Results In the weight loss group there is no significant difference in weight loss between patients with IMF and patients without IMF. In the weight loss group there were significantly more females then males. Further, in the subgroup IMF the operation time was significantly longer compared with the subgroup without IMF. The other parameters including age and hospital stay were not different in the groups. Conclusions IMF in orthognathic treatment does not result in a difference self-reported loss of body weight compared to patients without IMF. Treatment protocols should include pre- and post-operative dietician consultations and possible indications for medical nutrition and vitamins. Key words:Assessing, protocol, weight loss, experiences, orthognathic surgery. PMID:28210448

  2. Noninvasive cardiac output monitoring during exercise testing: Nexfin pulse contour analysis compared to an inert gas rebreathing method and respired gas analysis.

    Science.gov (United States)

    Bartels, Sebastiaan A; Stok, Wim J; Bezemer, Rick; Boksem, Remco J; van Goudoever, Jeroen; Cherpanath, Thomas G V; van Lieshout, Johannes J; Westerhof, Berend E; Karemaker, John M; Ince, Can

    2011-10-01

    Exercise testing is often used to assess cardiac function during physical exertion to obtain diagnostic information. However, this procedure is limited to measuring the electrical activity of the heart using electrocardiography and intermittent blood pressure (BP) measurements and does not involve the continuous assessment of heart functioning. In this study, we compared continuous beat-to-beat pulse contour analysis to monitor noninvasive cardiac output (CO) during exercise with inert gas rebreathing and respired gas analysis. Nineteen healthy male volunteers were subjected to bicycle ergometry testing with increasing workloads. Cardiac output was deter- mined noninvasively by continuous beat-to-beat pulse contour analysis (Nexfin) and by inert gas rebreathing, and estimated using the respired gas analysis method. The effects of the rebreathing maneuver on heart rate (HR), stroke volume (SV), and CO were evaluated. The CO values derived from the Nexfin- and inert gas rebreathing methods were well correlated (r = 0.88, P gas analysis-derived CO values correlated even better (r = 0.94, P < 0.01) and the limits of agreement were 21.5% with a measurement bias of -0.70 ± 1.6 L/min. At rest, the rebreathing maneuver increased HR by 13 beats/min (P < 0.01), SV remained unaffected (P = 0.7), while CO increased by 1.0 L/min (P < 0.01). Rebreathing did not affect these parameters during exercise. Nexfin continuous beat-to-beat pulse contour analysis is an appropriate method for noninvasive assessment of CO during exercise.

  3. Direct monitoring of the liquid and gas phases during a fermentation in a computer-mass-spectrometer-fermentor system

    Energy Technology Data Exchange (ETDEWEB)

    Pungor, E. Jr.; Schaefer, E.J.; Cooney, C.L.; Weaver, J.C.

    1983-01-01

    Measurement of chemical concentrations is a weak link in the monitoring of fermentations. The use of a computer-controlled mass-spectrometer (MS) has made possible the measurement of one or more volatile compounds on an essentially continuous basis, both in the liquid (broth) and the gas (headspace) phases. For our purposes, the MS was used, not as a spectrometer for chemical identification, but as a programmable detector for measuring concentrations of different compounds. Specifically, a computer-controlled MS was employed during the fermentation of Saccharomyces italicus, to monitor N/sub 2/, O/sub 2/, and CO/sub 2/ concentration in the gas phase, and N/sub 2/, O/sub 2/, CO/sub 2/, and ethanol in the liquid phase. The performance of the MS was carefully analyzed.

  4. Methane emissions from natural gas compressor stations in the transmission and storage sector: measurements and comparisons with the EPA greenhouse gas reporting program protocol.

    Science.gov (United States)

    Subramanian, R; Williams, Laurie L; Vaughn, Timothy L; Zimmerle, Daniel; Roscioli, Joseph R; Herndon, Scott C; Yacovitch, Tara I; Floerchinger, Cody; Tkacik, Daniel S; Mitchell, Austin L; Sullivan, Melissa R; Dallmann, Timothy R; Robinson, Allen L

    2015-03-03

    Equipment- and site-level methane emissions from 45 compressor stations in the transmission and storage (T&S) sector of the US natural gas system were measured, including 25 sites required to report under the EPA greenhouse gas reporting program (GHGRP). Direct measurements of fugitive and vented sources were combined with AP-42-based exhaust emission factors (for operating reciprocating engines and turbines) to produce a study onsite estimate. Site-level methane emissions were also concurrently measured with downwind-tracer-flux techniques. At most sites, these two independent estimates agreed within experimental uncertainty. Site-level methane emissions varied from 2-880 SCFM. Compressor vents, leaky isolation valves, reciprocating engine exhaust, and equipment leaks were major sources, and substantial emissions were observed at both operating and standby compressor stations. The site-level methane emission rates were highly skewed; the highest emitting 10% of sites (including two superemitters) contributed 50% of the aggregate methane emissions, while the lowest emitting 50% of sites contributed less than 10% of the aggregate emissions. Excluding the two superemitters, study-average methane emissions from compressor housings and noncompressor sources are comparable to or lower than the corresponding effective emission factors used in the EPA greenhouse gas inventory. If the two superemitters are included in the analysis, then the average emission factors based on this study could exceed the EPA greenhouse gas inventory emission factors, which highlights the potentially important contribution of superemitters to national emissions. However, quantification of their influence requires knowledge of the magnitude and frequency of superemitters across the entire T&S sector. Only 38% of the methane emissions measured by the comprehensive onsite measurements were reportable under the new EPA GHGRP because of a combination of inaccurate emission factors for leakers and

  5. A greenhouse-gas information system monitoring and validating emissions reporting and mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Jonietz, Karl K [Los Alamos National Laboratory; Dimotakis, Paul E [JPL/CAL TECH; Roman, Douglas A [LLNL; Walker, Bruce C [SNL

    2011-09-26

    Current GHG-mitigating regimes, whether internationally agreed or self-imposed, rely on the aggregation of self-reported data, with limited checks for consistency and accuracy, for monitoring. As nations commit to more stringent GHG emissions-mitigation actions and as economic rewards or penalties are attached to emission levels, self-reported data will require independent confirmation that they are accurate and reliable, if they are to provide the basis for critical choices and actions that may be required. Supporting emissions-mitigation efforts and agreements, as well as monitoring energy- and fossil-fuel intensive national and global activities would be best achieved by a process of: (1) monitoring of emissions and emission-mitigation actions, based, in part, on, (2) (self-) reporting of pertinent bottom-up inventory data, (3) verification that reported data derive from and are consistent with agreed-upon processes and procedures, and (4) validation that reported emissions and emissions-mitigation action data are correct, based on independent measurements (top-down) derived from a suite of sensors in space, air, land, and, possibly, sea, used to deduce and attribute anthropogenic emissions. These data would be assessed and used to deduce and attribute measured GHG concentrations to anthropogenic emissions, attributed geographically and, to the extent possible, by economic sector. The validation element is needed to provide independent assurance that emissions are in accord with reported values, and should be considered as an important addition to the accepted MRV process, leading to a MRV&V process. This study and report focus on attributes of a greenhouse-gas information system (GHGIS) needed to support MRV&V needs. These needs set the function of such a system apart from scientific/research monitoring of GHGs and carbon-cycle systems, and include (not exclusively): the need for a GHGIS that is operational, as required for decision-support; the need for a

  6. Protocols for vegetation and habitat monitoring with unmanned aerial vehicles: linking research to management on US public lands

    Science.gov (United States)

    Background/Question/Methods: Monitoring of the condition and trend of natural resources is critical for determining effectiveness of management actions and understanding ecosystem responses to broad-scale processes like climate change. While broad-scale remote sensing has generally improved the abi...

  7. Design and Implementation of a Web-based Greenhouse Remote Monitoring System with Zigbee Protocol and GSM Network

    Directory of Open Access Journals (Sweden)

    Abdolhamid Tabatabaeifar

    2014-10-01

    Full Text Available In modern and big greenhouses, it is necessary to measure several climate parameters to automate and control the greenhouse properly. Monitoring and transmitting by cable may lead to an expensive and stiff measurement system. Since, Wireless Sensor Network (WSN is a distributed system that consists of small-size wireless sensor nodes equipped with radio and one or several sensors; it is a low cost option to build the required monitoring system. In this paper, we introduce and implement an intelligent monitoring system based on WSN by using Xbee modules. The Xbee Series 2 hardware uses a microchip from Ember Networks that enables several different flavors of standards-based ZigBee mesh networking. All gathered information by sensors, are sent to a remote center in form of GPRS packets through a GSM network and viewed by monitoring software. The proposed system has low power consumption, low cost and simple driver circuits. Furthermore, it can support various types of digital and analog sensors.

  8. Determination of hydrazine in drinking water: Development and multivariate optimization of a rapid and simple solid phase microextraction-gas chromatography-triple quadrupole mass spectrometry protocol.

    Science.gov (United States)

    Gionfriddo, Emanuela; Naccarato, Attilio; Sindona, Giovanni; Tagarelli, Antonio

    2014-07-04

    In this work, the capabilities of solid phase microextraction were exploited in a fully optimized SPME-GC-QqQ-MS analytical approach for hydrazine assay. A rapid and easy method was obtained by a simple derivatization reaction with propyl chloroformate and pyridine carried out directly in water samples, followed by automated SPME analysis in the same vial without further sample handling. The affinity of the different derivatized compounds obtained towards five commercially available SPME coatings was evaluated, in order to achieve the best extraction efficiency. GC analyses were carried out using a GC-QqQ-MS instrument in selected reaction monitoring (SRM) acquisition mode which has allowed the achievement of high specificity by selecting appropriate precursor-product ion couples improving the capability in analyte identification. The multivariate approach of experimental design was crucial in order to optimize derivatization reaction, SPME process and tandem mass spectrometry parameters. Accuracy of the proposed protocol, tested at 60, 200 and 800 ng L(-1), provided satisfactory values (114.2%, 83.6% and 98.6%, respectively), whereas precision (RSD%) at the same concentration levels were of 10.9%, 7.9% and 7.7% respectively. Limit of detection and quantification of 4.4 and 8.3 ng L(-1) were obtained. The reliable application of the proposed protocol to real drinking water samples confirmed its capability to be used as analytical tool for routine analyses.

  9. Turmoil at Turrialba Volcano (Costa Rica): Degassing and eruptive processes inferred from high-frequency gas monitoring.

    Science.gov (United States)

    de Moor, J Maarten; Aiuppa, A; Avard, G; Wehrmann, H; Dunbar, N; Muller, C; Tamburello, G; Giudice, G; Liuzzo, M; Moretti, R; Conde, V; Galle, B

    2016-08-01

    Eruptive activity at Turrialba Volcano (Costa Rica) has escalated significantly since 2014, causing airport and school closures in the capital city of San José. Whether or not new magma is involved in the current unrest seems probable but remains a matter of debate as ash deposits are dominated by hydrothermal material. Here we use high-frequency gas monitoring to track the behavior of the volcano between 2014 and 2015 and to decipher magmatic versus hydrothermal contributions to the eruptions. Pulses of deeply derived CO2-rich gas (CO2/Stotal > 4.5) precede explosive activity, providing a clear precursor to eruptive periods that occurs up to 2 weeks before eruptions, which are accompanied by shallowly derived sulfur-rich magmatic gas emissions. Degassing modeling suggests that the deep magmatic reservoir is ~8-10 km deep, whereas the shallow magmatic gas source is at ~3-5 km. Two cycles of degassing and eruption are observed, each attributed to pulses of magma ascending through the deep reservoir to shallow crustal levels. The magmatic degassing signals were overprinted by a fluid contribution from the shallow hydrothermal system, modifying the gas compositions, contributing volatiles to the emissions, and reflecting complex processes of scrubbing, displacement, and volatilization. H2S/SO2 varies over 2 orders of magnitude through the monitoring period and demonstrates that the first eruptive episode involved hydrothermal gases, whereas the second did not. Massive degassing (>3000 T/d SO2 and H2S/SO2 > 1) followed, suggesting boiling off of the hydrothermal system. The gas emissions show a remarkable shift to purely magmatic composition (H2S/SO2 < 0.05) during the second eruptive period, reflecting the depletion of the hydrothermal system or the establishment of high-temperature conduits bypassing remnant hydrothermal reservoirs, and the transition from phreatic to phreatomagmatic eruptive activity.

  10. Utilization of on-line corrosion monitoring in the flue gas cleaning system

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Nielsen, Lars V.; Petersen, Michael B.

    2015-01-01

    The power plant unit 1 at Amager, Denmark is a 350 MWth multifuel suspension-fired plant commissioned in 2009 which uses biomass. Increasing corrosion problems in the flue gas cleaning system have been observed since 2011 in both the gas-gas preheater and the booster fan and booster fan duct...... fan. The corrosion rates measured with respect to time were correlated to plant data such as load, temperature, gas composition, water content as well as change in the fuel used. From these results it is clear that many shutdowns/start-ups influence corrosion and therefore cause decreased lifetime...

  11. Real-time monitoring of abnormal conditions based on Fuzzy Kohonen clustering network in gas metal arc welding

    Institute of Scientific and Technical Information of China (English)

    GAO Jinqiang; WU Chuansong; HU Jiakun

    2007-01-01

    A real-time monitoring system based on through-the-arc sensing is developed for detecting abnormal conditions in gas metal arc welding. The transient signals of welding voltage and current during the welding process are sampled and processed by statistical analysis methods. It is found that three statistical parameters (the standard deviation,variance, and kurtosis of welding current) show obvious variations during the step disturbance, which is intentionally introduced into the T-joint test pieces by cutting a gap in the vertical plane. A Fuzzy Kohonen clustering network (FKCN) is put forward to monitor the abnormal conditions in real-time. Ten robotic welding experiments are conducted to verify the real-time monitoring system. It is found that the correct identification rate is above 90%.

  12. Joint interpretation of geoelectrical and soil-gas measurements for monitoring CO2 releases at a natural analogue

    DEFF Research Database (Denmark)

    Sauer, U.; Watanabe, N.; Singh, Ashok

    2014-01-01

    The development and validation of hierarchic monitoring concepts is essential for detecting and assessing possible leakages from storage formations, especially for carbon capture and storage (CCS) applications. Joint interpretation of various techniques (such as carbon dioxide (CO2) concentration...... and flux measurements, self-potential (SP) and geoelectrical surveys) showed that the combination of geophysical methods with soil-gas analysis for mesoscale monitoring of the shallow subsurface above geologic CO2 storages can be a valuable tool for mapping and monitoring potential CO2 spread...... in the subsurface. Three measurement campaigns were undertaken - May 2011, July 2011 and April 2012 - at an analogue site in the Cheb Basin, Czech Republic, with the aim of studying CO2 leakages and their temporal and spatial behaviour. Results of geoelectrical investigations give an insight into the structural...

  13. On-line monitoring of the transesterification reaction between triglycerides and ethanol using near infrared spectroscopy combined with gas chromatography.

    Science.gov (United States)

    Richard, Romain; Li, Ying; Dubreuil, Brigitte; Thiebaud-Roux, Sophie; Prat, Laurent

    2011-06-01

    Many analytical procedures have been developed to determine the composition of reaction mixtures during transesterification of vegetable oils with alcohols. However, despite their accuracy, these methods are time consuming and cannot be easily used for on-line monitoring. In this work, a fast analytical method was developed to on-line monitor the transesterification reaction of high oleic sunflower oil with ethanol using Near InfraRed spectroscopy and a multivariate approach. The reactions were monitored through sequential scans of the reaction medium with a probe in a one-liter batch reactor without collecting and preparing samples. To calibrate the NIR analytical method, gas chromatography-flame ionization detection was used as a reference method. The method was validated by studying the kinetics of the EtONa-catalyzed transesterification reaction. Activation energy (51.0 kJ/mol) was also determined by considering a pseudo second order kinetics model. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Monitoring activities of teenagers to comprehend their habits: study protocol for a mixed-methods cohort study

    OpenAIRE

    Bélanger, Mathieu; Caissie, Isabelle; Beauchamp, Jacinthe; O’Loughlin, Jennifer; Sabiston, Catherine; Mancuso, Michelina

    2013-01-01

    Background Efforts to increase physical activity in youth need to consider which activities are most likely to be sustained over time in order to promote lifelong participation in physical activity. The Monitoring Activities of Teenagers to Comprehend their Habits (MATCH) study is a prospective cohort study that uses quantitative and qualitative methods to develop new knowledge on the sustainability of specific physical activities. Methods/design Eight hundred and forty-three grade 5 and 6 st...

  15. Surgery versus Active Monitoring in Intermittent Exotropia (SamExo): study protocol for a pilot randomised controlled trial.

    Science.gov (United States)

    Buck, Deborah; McColl, Elaine; Powell, Christine J; Shen, Jing; Sloper, John; Steen, Nick; Taylor, Robert; Tiffin, Peter; Vale, Luke; Clarke, Michael P

    2012-10-16

    Childhood intermittent exotropia [X(T)] is a type of strabismus (squint) in which one eye deviates outward at times, usually when the child is tired. It may progress to a permanent squint, loss of stereovision and/or amblyopia (reduced vision). Treatment options for X(T) include eye patches, glasses, surgery and active monitoring. There is no consensus regarding how this condition should be managed, and even when surgery is the preferred option clinicians disagree as to the optimal timing. Reports on the natural history of X(T) are limited, and there is no randomised controlled trial (RCT) evidence on the effectiveness or efficiency of surgery compared with active monitoring. The SamExo (Surgery versus Active Monitoring in Intermittent Exotropia) pilot study has been designed to test the feasibility of such a trial in the UK. an external pilot patient randomised controlled trial. four UK secondary ophthalmology care facilities at Newcastle NHS Hospitals Foundation Trust, Sunderland Eye Infirmary, Moorfields Eye Hospital and York NHS Trust. children aged between 6 months and 16 years referred with suspected and subsequently diagnosed X(T). Recruitment target is a total of 144 children over a 9-month period, with 120 retained by 9-month outcome visit.Randomisation: permuted blocks stratified by collaborating centre, age and severity of X(T). initial clinical assessment; randomisation (eye muscle surgery or active monitoring); 3-, 6- and 9-month (primary outcome) clinical assessments; participant/proxy completed questionnaire covering time and travel costs, health services use and quality of life (Intermittent Exotropia Questionnaire); qualitative interviews with parents to establish reasons for agreeing or declining participation in the pilot trial. recruitment and retention rates; nature and extent of participation bias; nature and extent of biases arising from crossover or loss to follow-up; reasons for agreeing/declining participation; variability of cure rates

  16. Surgery versus Active Monitoring in Intermittent Exotropia (SamExo: study protocol for a pilot randomised controlled trial

    Directory of Open Access Journals (Sweden)

    Buck Deborah

    2012-10-01

    Full Text Available Abstract Background Childhood intermittent exotropia [X(T] is a type of strabismus (squint in which one eye deviates outward at times, usually when the child is tired. It may progress to a permanent squint, loss of stereovision and/or amblyopia (reduced vision. Treatment options for X(T include eye patches, glasses, surgery and active monitoring. There is no consensus regarding how this condition should be managed, and even when surgery is the preferred option clinicians disagree as to the optimal timing. Reports on the natural history of X(T are limited, and there is no randomised controlled trial (RCT evidence on the effectiveness or efficiency of surgery compared with active monitoring. The SamExo (Surgery versus Active Monitoring in Intermittent Exotropia pilot study has been designed to test the feasibility of such a trial in the UK. Methods Design: an external pilot patient randomised controlled trial. Setting: four UK secondary ophthalmology care facilities at Newcastle NHS Hospitals Foundation Trust, Sunderland Eye Infirmary, Moorfields Eye Hospital and York NHS Trust. Participants: children aged between 6 months and 16 years referred with suspected and subsequently diagnosed X(T. Recruitment target is a total of 144 children over a 9-month period, with 120 retained by 9-month outcome visit. Randomisation: permuted blocks stratified by collaborating centre, age and severity of X(T. Interventions: initial clinical assessment; randomisation (eye muscle surgery or active monitoring; 3-, 6- and 9-month (primary outcome clinical assessments; participant/proxy completed questionnaire covering time and travel costs, health services use and quality of life (Intermittent Exotropia Questionnaire; qualitative interviews with parents to establish reasons for agreeing or declining participation in the pilot trial. Outcomes: recruitment and retention rates; nature and extent of participation bias; nature and extent of biases arising from crossover or

  17. Geochemical Monitoring Of The Gas Hydrate Production By CO2/CH4 Exchange In The Ignik Sikumi Gas Hydrate Production Test Well, Alaska North Slope

    Science.gov (United States)

    Lorenson, T. D.; Collett, T. S.; Ignik Sikumi, S.

    2012-12-01

    % respectively. Pumping below the gas hydrate stability phase boundary occurred in two periods with the composition of the produced gases continually increasing in methane reaching an excess of 96%, along with carbon dioxide decreasing to <1% and nitrogen to ~3%. The isotopic composition of all the gases was monitored. Methane carbon and hydrogen isotopic compositions remained stable throughout the test, while the carbon dioxide carbon became isotopically heavier. Nitrogen isotopic composition remained stable or became slightly isotopically depleted at the later phase of the test. These results imply that the produced methane was not isotopically fractionated, whereas carbon dioxide was fractionated becoming isotopically heavier at the end of each production phase. In addition, water samples were analyzed during the production phase documenting an increase in salinity.

  18. From Hype to an Operational Tool: Efforts to Establish a Long-Term Monitoring Protocol of Alluvial Sandbars using 'Structure-from-Motion' Photogrammetry

    Science.gov (United States)

    Rossi, R.; Buscombe, D.; Grams, P. E.; Wheaton, J. M.

    2015-12-01

    Despite recent advances in the use of 'Structure-from-Motion' (SfM) photogrammetry to accurately map landforms, its utility for reliably detecting and monitoring geomorphic change from repeat surveys remains underexplored in fluvial environments. It is unclear how the combination of various image acquisition platforms and techniques, survey scales, vegetation cover, and terrain complexities translate into accuracy and precision metrics for SfM-based construction of digital elevation models (DEMs) of fluvial landforms. Although unmanned aerial vehicles offer the potential to rapidly image large areas, they can be relatively costly, require skilled operators, are vulnerable in adverse weather conditions, and often rely on GPS-positioning to improve their stability. This research details image acquisition techniques for an underrepresented SfM platform: the pole-mounted camera. We highlight image acquisition and post-processing limitations of the SfM method for alluvial sandbars (10s to 100s m2) located in Marble and Grand Canyons in a remote, fluvial landscape with limited field access, strong light gradients, highly variable surface texture and limited ground control. We recommend a pole-based SfM protocol and evaluate it by comparing SfM-derived DEMs against concurrent, total station surveys and TLS derived DEMs. Error models of the sandbar surfaces are developed for a variety of surface characteristics (e.g., bare sand, steep slopes, and areas of shadow). The Geomorphic Change Detection (GCD) Software is used to compare SfM DEMs from before and after the 2014 high flow release from Glen Canyon Dam. Complementing existing total-station based sandbar surveys with potentially more efficient and cost-effective SfM methods will contribute to the understanding of morphodynamic responses of sandbars to high flow releases from Glen Canyon Dam. In addition, the development and implementation of a SfM-based operational protocol for monitoring geomorphic change will provide

  19. Measurements of the drift velocity using a small gas chamber for monitoring of the CMS muon system

    CERN Document Server

    Frangenheim, J

    This diploma thesis presents measurements of the drift velocity of electrons in gas. A small gas detector (VDC1 ) is used. This chamber is intended for measurement and monitoring of the drift velocity in the gas of the muon chambers of the gas detector system in the barrel area of the CMS-detector2 at the European Research Center for Particle Physics CERN near Geneva. The drift velocity is, together with the drift time, a key parameter for measurements with drift chambers. The aim of this thesis is to perform test measurements to determine parameters of the chamber and also to estimate systematic errors. Beside the drift velocity, further parameters of the gas like the pressure and the temperature are measured and accounted for. For the further work with the VDCs, analysis software has been created which is used for the analysis of the measurements. Parallel to this work, necessary improvements, e.g. for the high voltage robustness, were also implemented and tested. In addition, studies and test measurements ...

  20. A Gas Sensor Array For Environmental Air Monitoring: A Study Case Of Application Of Artificial Neural Networks

    Science.gov (United States)

    Penza, Michele; Suriano, Domenico; Cassano, Gennaro; Rossi, Riccardo; Alvisi, Marco; Pfister, Valerio; Trizio, Livia; Brattoli, Magda; De Gennaro, Gianluigi

    2011-09-01

    An array of commercial gas sensors and nanotechnology sensors has been integrated to quantify gas concentration of air-pollutants. A variety of chemoresistive gas sensors, commercial (Figaro and Fis) and developed at ENEA laboratories (metal-modified carbon nanotubes) were tested to implement a database useful for applied artificial neural networks (ANNs). The ANN algorithm used is the common perceptron multi-layer feed-forward network based on error back-propagation. Electronic Noses based on various sensor arrays related to mammalian olfactory systems have been largely reported [1,2]. Here, we reported on the perceptron-based ANNs applied to a large database of 3875 datapoints for environmental air monitoring. The ANNs performance has been individually assessed for any targeted gas. The response of the classifier has been measured for NO2, CO, CO2, SO2, and H2S gas. The NO2 characteristics exhibit that real concentrations and predicted concentrations are very close with a normalized mean square error (NMSE) in the test set as low as 6%.

  1. Radon gas monitoring survey for the determination of Radon Prone Areas in Lombardia

    Energy Technology Data Exchange (ETDEWEB)

    Bartolo, D. de; Alberici, A.; Gallini, R.; Maggioni, T.; Mondini, A.; Zini, E. [A.R.P.A. della Lombardia, Milano (Italy); Arrigoni, S.; Cazzaniga, P.; Cugini, A.; Gallinari, G.; Olivieri, F.; Romanelli, M. [A.R.P.A. della Lombardia, Dipt. di Bergamo, Bergamo (Italy)

    2006-07-01

    Region Lombardia has carried out a radon gas monitoring survey on its territory to localize radon prone areas as by law 241/00 enacted. To plan the survey, the Lombardia territory has been divided into two different types according to the morphology as well as the presence of a substratum of rock. The area with hills and mountains has been investigated with more attention compared to the plain because we can assume higher variability in radon concentration distribution due to the geological and morphological characteristics. The territory subdivision was based on the standard grid.. of the techniregional cartography (8 x 5 km). To perform radon indoor concentration measurements about 3600 measuring points were selected. They are located at the ground floor of buildings with the characteristics to ensure the tests are representative and comparable. It has also been taken into account evaluations done with previous surveys in accordance with the defined specification of the sites. The measurements were carried out using C.R. 39 trace detector technique. The detectors were contained in closed plastic canisters and they were positioned in situ for one year and measured each semester. The detectors were chemically treated and the traces counted using the automated optical system installed at the Radiometric Laboratory of the A.R.P.A. Department in Bergamo. The instrument accuracy and precision were evaluated using data obtained with different methods: using detectors exposed to radon known concentrations, participating to an international intercomparison as well as exposing the detector in a national calibration centre. Due to the large amount of detectors involved, a particular attention was taken for the detector homogeneity response and for the optimization of the analysis parameters. For further investigating the reliability of the measurements, two detectors were used in parallel in 10% of the tests. The results show higher values in the areas of Bergamo, Brescia

  2. Design of mini-multi-gas monitoring system based on IR absorption

    Science.gov (United States)

    Tan, Qiu-lin; Zhang, Wen-dong; Xue, Chen-yang; Xiong, Ji-jun; Ma, You-chun; Wen, Fen

    2008-07-01

    In this paper, a novel non-dispersive infrared ray (IR) gas detection system is described. Conventional devices typically include several primary components: a broadband source (usually an incandescent filament), a rotating chopper shutter, a narrow-band filter, a sample tube and a detector. But we mainly use the mini-multi-channel detector, electrical modulation means and mini-gas-cell structure. To solve the problems of gas accidents in coal mines, and for family safety that results from using gas, this new IR detection system with integration, miniaturization and non-moving parts has been developed. It is based on the principle that certain gases absorb infrared radiation at specific (and often unique) wavelengths. The infrared detection optics principle used in developing this system is mainly analyzed. The idea of multi-gas detection is introduced and guided through the analysis of the single-gas detection. Through researching the design of cell structure, a cell with integration and miniaturization has been devised. By taking a single-chip microcomputer (SCM) as intelligence handling, the functional block diagram of a gas detection system is designed with the analyzing and devising of its hardware and software system. The way of data transmission on a controller area network (CAN) bus and wireless data transmission mode is explained. This system has reached the technology requirement of lower power consumption, mini-volume, wide measure range, and is able to realize multi-gas detection.

  3. Vacuum ultraviolet absorption spectroscopy in combination with comprehensive two-dimensional gas chromatography for the monitoring of volatile organic compounds in breath gas: A feasibility study.

    Science.gov (United States)

    Gruber, Beate; Groeger, Thomas; Harrison, Dale; Zimmermann, Ralf

    2016-09-16

    Vacuum ultraviolet (VUV) absorption spectroscopy was recently introduced as a new detection system for one, as well as comprehensive two-dimensional gas chromatography (GC×GC) and successfully applied to the analysis of various analytes in several matrices. In this study, its suitability for the analysis of breath metabolites was investigated and the impact of a finite volume of the absorption cell and makeup gas pressure was evaluated for volatile analytes in terms of sensitivity and chromatographic resolution. A commercial available VUV absorption spectrometer was coupled to GC×GC and applied to the analysis of highly polar volatile organic compounds (VOCs). Breath gas samples were acquired by needle trap micro extraction (NTME) during a glucose challenge and analysed by the applied technique. Regarding qualitative and quantitative information, the VGA-100 is compatible with common GC×GC detection systems like FID and even TOFMS. Average peak widths of 300ms and LODs in the lower ng range were achieved using GC×GC-VUV. Especially small oxygenated breath metabolites show intense and characteristic absorption patterns in the VUV region. Challenge responsive VOCs could be identified and monitored during a glucose challenge. The new VUV detection technology might especially be of benefit for applications in clinical research.

  4. Simultaneous on-line monitoring of propofol and sevoflurane in balanced anesthesia by direct resistive heating gas chromatography.

    Science.gov (United States)

    Dong, Hao; Zhang, Feng Jiang; Wang, Fu Yuan; Wang, Ying Ying; Guo, Jing; Kanhar, G M; Chen, Jing; Liu, Jun; Zhou, Chen; Yan, Min; Chen, Xing

    2017-07-14

    In balanced anesthesia, sevoflurane and propofol are often used in combination to achieve a better anesthetic effect. However, methods for on-line monitoring of concentrations of the two anesthetics in patients are still rare in clinical. This study proposed a non-invasive method utilizing a fast gas chromatograph combined with a surface acoustic wave sensor (Fast GC-SAW) to simultaneously on-line monitor sevoflurane and propofol in patients' exhaled gas. By using the direct resistive heating capillary column, the single detection time of Fast GC-SAW system was significantly shortened to 90s, as well as the size reduced to (40cm×30cm×20cm). Besides, in the calibration of sevoflurane, Fast GC-SAW system showed a good linear correlation (R(2)=0.9925, P<0.01) with gas chromatography-mass spectrometer (GC-MS), which ensured the reliability and accuracy of the Fast GC-SAW system. Finally, clinical experiments on patients under balanced anesthesia were conducted. The varied concentrations measured by Fast GC-SAW extraordinarily matched the clinical usages of these two anesthetics. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Continuous arterial blood gas monitoring in rabbits: an efficient method for evaluation of ratio-based optrodes

    Science.gov (United States)

    Martin, Roy C.; Olstein, Alan D.; Malin, Stephen F.; Perkovich, Anne

    1992-04-01

    Laboratory bench testing of optical blood gas sensors is insufficient to completely predict capabilities. Sensor testing in animals offers advantages of known physiologic and regulatory mechanisms of hemodynamics to better predict sensor performance. The domestic rabbit, Oryctalogis Cuniculus, a lagomorph of the family Leporidae was used for sensor evaluation. The rabbits are ventilated and blood gases modulated by variations in FIO2 and rate adjustments. Twenty gauge catheters are placed in the dorsal aorta, cartoid, and femoral arteries. Pressures are monitored via transducers on the arterial lines. The optical blood gas sensors are fitted within the catheters and blood samples are collected over them for bench analysis. Sensors are on 125 micrometers glass optic fibers. Proprietary prepolymers are applied on the fiber tips through in fiber photopolymerization. These sensors are then calibrated in tonometered water and blood. Sensor monitoring is accomplished through OSR microfluorimetry systems. We have used this model in 26 studies over the past six months evaluating over fifty blood gas sensors. These studies have lasted from six to twenty-four hours. Our correlation of sensor readings to assayed blood samples is r2 equals .97 for pH values of 6.80 - 7.70, r2 equals .94 for PCO2 values of 10 - 175 mmHg and r2 equals .94 for PO2 values of 10 - 350 mmHg.

  6. Characterization and longitudinal monitoring of melanoma growth in ret-transgenic mice using a single-sequence MRI protocol.

    Science.gov (United States)

    Kerl, Hans U; Boll, Hanne; Ramacher, Marcel; Heilmann, Melanie; Groden, Christoph; Kramer, Martin; Umansky, Viktor; Brockmann, Marc A

    2012-11-01

    Spontaneous melanoma models in transgenic mice are increasingly used in preclinical research as they most closely match the progression of melanoma in humans. While optical inspection only allows analysis of tumors located on the skin, the accurate measurement and growth of subcutaneous tumors have not been adequately assessed. To improve the measurement accuracy of melanoma tumors, we used a fast single-sequence MRI protocol at 9.4 Tesla for longitudinal characterization of a ret-transgenic mouse model. Repeated MRI (average acquisition time 30 min per animal) of the trunk (excluding head and distal limbs) in six siblings revealed an increase in the mean total tumor volume (TTV) from 102.0 ± 80.5 mm(3) at 35 days of age to 434.8 ± 154.9 mm(3) by 77 days. The main tumor load was located within the pelvis (>40%), followed by the proximal hind limbs and groins (>30%). The smallest detectable tumor measured 0.07 mm(3). Inter-rater reliability between a radiologist and a veterinarian analysing MRI data was 0.993 for TTV and 0.840 for number of tumors (both p < 0.001). We thus conclude that because of the high variance of TTV of same-aged mice, MRI should be used (i) to establish treatment groups matched for TTV and (ii) for longitudinal examination of the TTV in mice over the course of treatments.

  7. Development of monitoring protocols to detect change in rocky intertidal communities of Glacier Bay National Park and Preserve

    Science.gov (United States)

    Irvine, Gail V.

    2010-01-01

    Glacier Bay National Park and Preserve in southeastern Alaska includes extensive coastlines representing a major proportion of all coastlines held by the National Park Service. The marine plants and invertebrates that occupy intertidal shores form highly productive communities that are ecologically important to a number of vertebrate and invertebrate consumers and that are vulnerable to human disturbances. To better understand these communities and their sensitivity, it is important to obtain information on species abundances over space and time. During field studies from 1997 to 2001, I investigated probability-based rocky intertidal monitoring designs that allow inference of results to similar habitat within the bay and that reduce bias. Aerial surveys of a subset of intertidal habitat indicated that the original target habitat of bedrock-dominated sites with slope less than or equal to 30 degrees was rare. This finding illustrated the value of probability-based surveys and led to a shift in the target habitat type to more mixed rocky habitat with steeper slopes. Subsequently, I investigated different sampling methods and strategies for their relative power to detect changes in the abundances of the predominant sessile intertidal taxa: barnacles -Balanomorpha, the mussel Mytilus trossulus and the rockweed Fucus distichus subsp. evanescens. I found that lower-intensity sampling of 25 randomly selected sites (= coarse-grained sampling) provided a greater ability to detect changes in the abundances of these taxa than did more intensive sampling of 6 sites (= fine-grained sampling). Because of its greater power, the coarse-grained sampling scheme was adopted in subsequent years. This report provides detailed analyses of the 4 years of data and evaluates the relative effect of different sampling attributes and management-set parameters on the ability of the sampling to detect changes in the abundances of these taxa. The intent was to provide managers with information

  8. Blood volume-monitored regulation of ultrafiltration in fluid-overloaded hemodialysis patients: study protocol for a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Hecking Manfred

    2012-06-01

    Full Text Available Abstract Background Data generated with the body composition monitor (BCM, Fresenius show, based on bioimpedance technology, that chronic fluid overload in hemodialysis patients is associated with poor survival. However, removing excess fluid by lowering dry weight can be accompanied by intradialytic and postdialytic complications. Here, we aim at testing the hypothesis that, in comparison to conventional hemodialysis, blood volume-monitored regulation of ultrafiltration and dialysate conductivity (UCR and/or regulation of ultrafiltration and temperature (UTR will decrease complications when ultrafiltration volumes are systematically increased in fluid-overloaded hemodialysis patients. Methods/design BCM measurements yield results on fluid overload (in liters, relative to extracellular water (ECW. In this prospective, multicenter, triple-arm, parallel-group, crossover, randomized, controlled clinical trial, we use BCM measurements, routinely introduced in our three maintenance hemodialysis centers shortly prior to the start of the study, to recruit sixty hemodialysis patients with fluid overload (defined as ≥15% ECW. Patients are randomized 1:1:1 into UCR, UTR and conventional hemodialysis groups. BCM-determined, ‘final’ dry weight is set to normohydration weight −7% of ECW postdialysis, and reached by reducing the previous dry weight, in steps of 0.1 kg per 10 kg body weight, during 12 hemodialysis sessions (one study phase. In case of intradialytic complications, dry weight reduction is decreased, according to a prespecified algorithm. A comparison of intra- and post-dialytic complications among study groups constitutes the primary endpoint. In addition, we will assess relative weight reduction, changes in residual renal function, quality of life measures, and predialysis levels of various laboratory parameters including C-reactive protein, troponin T, and N-terminal pro-B-type natriuretic peptide, before and after the first study

  9. Validation of Omron RS8, RS6, and RS3 home blood pressure monitoring devices, in accordance with the European Society of Hypertension International Protocol revision 2010

    Directory of Open Access Journals (Sweden)

    Takahashi H

    2013-05-01

    Full Text Available Hakuo Takahashi, Masamichi Yoshika, Toyohiko YokoiDepartment of Clinical Sciences and Laboratory Medicine, Kansai Medical University, Hirakata, Osaka, JapanBackground: Allowing patients to measure their blood pressure at home is recognized as being of clinical value. However, it is not known how often these measurements are taken correctly. Blood pressure monitors for home use fall into two types based on the position of the cuff, ie, at the upper arm or the wrist. The latter is particularly convenient, as measurements can be taken fully clothed. This study aimed to evaluate the performance of the wrist-type blood pressure monitors Omron RS8 (HEM-6310F-E, Omron RS6 (HEM-6221-E, and Omron RS3 (HEM-6130-E.Methods: A team of three trained doctors validated the performance of these devices by comparing the measurements obtained from these devices with those taken using a standard mercury sphygmomanometer. All the devices met the validation requirements of the European Society of Hypertension International Protocol revision 2010.Results: The difference in blood pressure readings between the tested device and the standard mercury sphygmomanometer was within 3 mmHg, which is acceptable according to the European Society of Hypertension guidelines.Conclusion: All the home devices tested were found to be suitable for measuring blood pressure at home because their performance fulfilled the requirement of the guidelines.Keywords: blood pressure, device, European Society of Hypertension, guideline, measurement, validation

  10. First time real-time mud gas monitoring during riser drilling in the Kumano Basin (IODP Exp 319)

    Science.gov (United States)

    Wiersberg, T.; Erzinger, J.; Horiguchi, K.; Saffer, D. M.; Byrne, T. B.; McNeill, L. C.; Araki, E.; Takahashi, K.; Eguchi, N. O.; Toczko, S.

    2009-12-01

    Chikyu Expedition 319 was the first cruise of the Integrated Ocean Drilling Program (IODP) where riser drilling was performed and real-time mud gas monitoring was conducted, because this technique requires drill-mud circulation. In contrast to conventional IODP drilling that uses drill water in combination with lost circulation, during riser drilling the drill mud returns back to the surface through a riser pipe which encases the drill pipe. The dissolved gas is extracted from returning drill mud, analyzed in real time and sampled for noble gas and stable isotopes studies. This technique has been applied in the past on scientific continental drilling projects of e.g. the International Continental Drilling Program. Expedition 319 is part of the NanTroSEIZE project, a multiexpedition, multistage IODP drilling program focused on understanding the mechanics of seismogenesis and ruptures propagation along the Nankai accretionary prism. Riser drilling was carried out on Hole C0009 that intersects the cover sediments of the Kumano Basin and probably penetrates into the accretionary prism below. Site NT2-11 is located approx. 60 km SE of the harbour of Shingu, Japan. Real-time mud gas monitoring was performed in Hole C0009 during drilling from 703 mbsf (meter below sea floor) down to 1594 mbsf and during hole enlargement from 703 mbsf to 1569 mbsf. Both datasets show similar gas distribution at depth. Gas was furthermore extracted, sampled and analyzed from drill cuttings. Drill mud gas is generally composed of air and gases that derive from the formation. The principal formation gas in drill mud from both drilling phases and in cuttings was methane. Up to 14 vol % CH4 was detected during drilling and up to 3 vol % during hole enlargement. Down to 800 mbsf and below 1280 mbsf, the methane concentration in drill mud is lower than in the surrounded interval, where methane peaks at several depths. At 1280 mbsf an unconformity is indicated from lihology, in seismic and

  11. Satellite Monitoring Systems for Shipping and Offshore Oil and Gas Industry in the Baltic Sea

    National Research Council Canada - National Science Library

    A.G. Kostianoy; E.V. Bulycheva; A.V. Semenov; A. Krainyukov

    2015-01-01

    Shipping activities, oil production and transport in the sea, oil handled in harbors, construction and exploitation of offshore oil and gas pipelines have a number of negative impacts on the marine...

  12. Combustion/Emission Species Monitoring Ground and Flight Aeronautical Research Using a Gas Microsensor Array Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Makel Engineering, Inc. (MEI) and the Ohio State University (OSU) propose to develop high sensitivity, miniaturized and in-situ operated gas sensors for the real...

  13. Soil gas Rn monitoring at Chã das Caldeiras prior the 2014-15 Fogo eruption, Cape Verde

    Science.gov (United States)

    Padilla, Germán; Barrancos, José; Dionis, Samara; Fernandes, Paulo; Pérez, Nemesio M.; Sagiya, Takeshi; Padrón, Eleazar; Melián, Gladys V.; Hernández, Pedro A.; Silva, Sónia; Pereira, José Manuel; Rodríguez, Fátima; Asensio-Ramos, María; Calvo, David; Semedo, Helio

    2015-04-01

    gas 222Rn activity were originated from fracturing of rock and/or from direct magma degassing. The positive temporal correlation between 222Rn/220Rn ratio and 222Rn activity supports the hypothesis that soil 222Rn activity variations acted as a long-term precursory signal of the volcanic unrest. These results show that monitoring soil gas 222Rn, together with other geochemical and geophysical data, can be a useful monitoring tool to detect early warning signals of magma pressurization.

  14. Validation of a real-time wireless telemedicine system, using bluetooth protocol and a mobile phone, for remote monitoring patient in medical practice.

    Science.gov (United States)

    Yousef, Jasemian; Lars, A N

    2005-06-22

    This paper validates the integration of a generic real-time wireless telemedicine system utilising Global System for Mobile Communications (GSM), BLUETOOTH protocol and General Packet Radio Service (GPRS) for cellular network in clinical practice. In the first experiment, the system was tested on 24 pacemaker patients at Aalborg Hospital (Denmark), in order to see if the pacemaker implant would be affected by the system. I the second experiment, the system was tested on 15 non risky arrhythmia heart patients, in order to evaluate and validate the system application in clinical practice, for patient monitoring. Electrocardiograms were selected as the continuously monitored parameter in the present study. The results showed that the system had no negative effects on the pacemaker implants. The experiment results showed, that in a realistic environment for the patients, the system had 96.1 % up-time, 3.2 (kbps) throughput, 10(-3) (packet/s) Packet Error Rate and 10(-3) (packet/s) Packet Lost Rate. During 24 hours test the network did not respond for 57 minutes, from which 83.1 % was in the range of 0-3 minutes, 15.4 % was in the range of 3-5 minutes, and only 0.7 % of the down-time was > or = 5 and < or = 6 minutes. By a subjective evaluation, it was demonstrated that the system is applicable and the patients as well as the healthcare personals were highly confident with the system. Moreover, the patients had high degree of mobility and freedom, employing the system. In conclusion, this generic telemedicine system showed a high reliability, quality and performance, and the design can provide a basic principle for real-time wireless remote monitoring systems used in clinical practice.

  15. Real-Time Optical Monitoring of Flow Kinetics and Gas Phase Reactions Under High-Pressure OMCVD Conditions

    Science.gov (United States)

    Dietz, N.; McCall, S.; Bachmann, K. J.

    2001-01-01

    This contribution addresses the real-time optical characterization of gas flow and gas phase reactions as they play a crucial role for chemical vapor phase depositions utilizing elevated and high pressure chemical vapor deposition (HPCVD) conditions. The objectives of these experiments are to validate on the basis of results on real-time optical diagnostics process models simulation codes, and provide input parameter sets needed for analysis and control of chemical vapor deposition at elevated pressures. Access to microgravity is required to retain high pressure conditions of laminar flow, which is essential for successful acquisition and interpretation of the optical data. In this contribution, we describe the design and construction of the HPCVD system, which include access ports for various optical methods of real-time process monitoring and to analyze the initial stages of heteroepitaxy and steady-state growth in the different pressure ranges. To analyze the onset of turbulence, provisions are made for implementation of experimental methods for in-situ characterization of the nature of flow. This knowledge will be the basis for the design definition of experiments under microgravity, where gas flow conditions, gas phase and surface chemistry, might be analyzed by remote controlled real-time diagnostics tools, developed in this research project.

  16. Bringing Information Credibility Back Into Transparency: The Case for a Global Monitoring System Of Green House Gas Emissions

    CERN Document Server

    Philippe, Sébastien

    2016-01-01

    The goal of climate change governance is to stabilize greenhouse gas concentrations. This requires the reduction of anthropogenic global net emissions. In the pursuit of such a reduction, knowledge of greenhouse gas sources and sinks is critical to define baselines, and assess the effectiveness of climate governance over time. Such information and the means to independently verify its credibility continue to remain out of reach including in the recent Paris agreement. This essay argues that to make real progress in mitigating future climate change, this status quo must be challenged both intellectually and practically. First, it proposes to acknowledge and address the inconsistency between the objectives of a climate regime and the role of transparency as a mean to achieve these objectives. It does so by redefining transparency as the addition of publicity and measurability, which turns it into a credible information generating mechanism for governance. Second, it shows how in practice, a global monitoring sy...

  17. Gas flushing through hyper-acidic crater lakes: the next steps within a reframed monitoring time window

    Science.gov (United States)

    Rouwet, Dmitri

    2016-04-01

    Tracking variations in the chemical composition, water temperature and pH of brines from peak-activity crater lakes is the most obvious way to forecast phreatic activity. Volcano monitoring intrinsically implies a time window of observation that should be synchronised with the kinetics of magmatic processes, such as degassing and magma intrusion. To decipher "how much time ago" a variation in degassing regime actually occurred before eventually being detected in a crater lake is key, and depends on the lake water residence time. The above reasoning assumes that gas is preserved as anions in the lake water (SO4, Cl, F anions), in other words, that scrubbing of acid gases is complete and irreversible. Less is true. Recent work has confirmed, by direct MultiGas measurement from evaporative plumes, that even the strongest acid in liquid medium (i.e. SO2) degasses from hyper-acidic crater lakes. The less strong acid HCl has long been recognised as being more volatile than hydrophyle in extremely acidic solutions (pH near 0), through a long-term steady increase in SO4/Cl ratios in the vigorously evaporating crater lake of Poás volcano. We now know that acidic gases flush through hyper-acidic crater lake brines, but we don't know to which extend (completely or partially?), and with which speed. The chemical composition hence only reflects a transient phase of the gas flushing through the lake. In terms of volcanic surveillance this brings the advantage that the monitoring time window is definitely shorter than defined by the water chemistry, but yet, we do not know how much shorter. Empirical experiments by Capaccioni et al. (in press) have tried to tackle this kinetic problem for HCl degassing from a "lab-lake" on the short-term (2 days). With this state of the art in mind, two new monitoring strategies can be proposed to seek for precursory signals of phreatic eruptions from crater lakes: (1) Tracking variations in gas compositions, fluxes and ratios between species in

  18. Ecological and economical efficiency of monitoring systems for oil and gas production on the shelf

    Science.gov (United States)

    Kurakin, A. L.; Lobkovsky, L. I.

    2014-02-01

    Requirements for signals' reliability of monitoring systems (with respect to the errors of the 1st and 2nd kinds, i.e., false alarms and skipping of danger) are deduced from the ratio of expenditures of different kinds (of exploitation expenses and losses due to accidents). The expressions obtained in the research may be used for economic foundations (and optimization) of specifications for monitoring systems. In cases when optimal parameters are not available, the sufficient condition of monitoring systems economical efficiency is presented.

  19. Automatic semi-continuous accumulation chamber for diffuse gas emissions monitoring in volcanic and non-volcanic areas

    Science.gov (United States)

    Lelli, Matteo; Raco, Brunella; Norelli, Francesco; Virgili, Giorgio; Continanza, Davide

    2016-04-01

    Since various decades the accumulation chamber method is intensively used in monitoring activities of diffuse gas emissions in volcanic areas. Although some improvements have been performed in terms of sensitivity and reproducibility of the detectors, the equipment used for measurement of gas emissions temporal variation usually requires expensive and bulky equipment. The unit described in this work is a low cost, easy to install-and-manage instrument that will make possible the creation of low-cost monitoring networks. The Non-Dispersive Infrared detector used has a concentration range of 0-5% CO2, but the substitution with other detector (range 0-5000 ppm) is possible and very easy. Power supply unit has a 12V, 7Ah battery, which is recharged by a 35W solar panel (equipped with charge regulator). The control unit contains a custom programmed CPU and the remote transmission is assured by a GPRS modem. The chamber is activated by DataLogger unit, using a linear actuator between the closed position (sampling) and closed position (idle). A probe for the measure of soil temperature, soil electrical conductivity, soil volumetric water content, air pressure and air temperature is assembled on the device, which is already arranged for the connection of others external sensors, including an automatic weather station. The automatic station has been tested on the field at Lipari island (Sicily, Italy) during a period of three months, performing CO2 flux measurement (and also weather parameters), each 1 hour. The possibility to measure in semi-continuous mode, and at the same time, the gas fluxes from soil and many external parameters, helps the time series analysis aimed to the identification of gas flux anomalies due to variations in deep system (e.g. onset of volcanic crises) from those triggered by external conditions.

  20. Utilisation of the GMES Sentinel satellites for off-shore platform oil spills and gas flaring monitoring

    Science.gov (United States)

    Di Erasmo, Daniele; Casadio, Stefano; Cardaci, Massimo; Del Frate, Fabio

    2013-04-01

    Oil spills and gas flaring are serious issues for ecosystem, economy and people working on the extraction sites. Oil spill is known. Gas Flaring is the disposal of poison waste gases generated in the oil extraction process. High volumes (every year gas flaring burns worldwide the equivalent of 25% of the overall gas burned in Europe), significantly contributing to the global carbon emission budget (0.5% of total, 2008). European and worldwide legislation pays an increasing attention to it. Our Sentinel1 and 3 SAR and SLSTR usage for this objective won the GMES Masters 2012 IDEAS Challenge. In this study, we use SAR and infrared/thermal (SLSTR) data to identify unexpected misbehaviours of oil platforms, like switch on of the flare and oil spill in the ocean. On one side, the detection and characterization of gas flaring is achieved by analysing the infrared/thermal radiances measured by the SLSTR instrument on-board SENTINEL-3. This technique has been developed and tested using the ENVISAT Along Track Scanning Radiometer (ATSR) dataset and proved to be adequate for long term monitoring of oil extraction for both off-shore and in-shore drilling stations. The spatial/temporal coverage provided by SENTINEL-3 will allow an unprecedented daily monitoring of the oil extraction platforms. On the other side, the detection of oil spills and ships can be performed using Synthetic Aperture Radar (SAR). Both for oil spills and ships, many techniques have been published in the dedicated literature and validated to make the process of detection from SAR automatic. The extension of these techniques to the future SENTINEL-1 data is feasible. The service is mainly addressed to governments (in charge of controlling respect of the rules), civil protection authorities (to promote prevention of pollution damages), oil companies (that want to prove their respect of rules and attention to the environment), and ONGs (involved in the monitoring of the environment). The methodology applied

  1. Developing a protocol for long-term population monitoring and habitat projections for a climate-sensitive sentinel species to track ecosystem change and species range shifts

    Science.gov (United States)

    Beers, A.

    2016-12-01

    As a response to ongoing climate change, many species have started to shift their ranges poleward and toward higher elevations and mountain environments are predicted to experience especially rapid climatic changes. Because of this, there is likely a greater risk of habitat loss and local extinctions for species at high elevations compared to species at lower elevations. Among those potentially threatened habitat specialists is the American pika (Ochotona princeps), a climate sensitive indicator of climate change effects which may already be experiencing climate driven extirpations. Pikas are considered sentinels, indicators of greater ecosystem change. Changes in their distribution speaks to changes in availability of resources they require and shifts in the environment. Pika presence is closely tied to sub-surface ice features that act as a temperature buffer and water source. Those sub-surface ice features are critical in water cycling and long-term water storage and drive downstream hydrological and ecological processes. Understanding how this species responds to climate change therefore provides a model to inform landscape level conservation and management decisions. Pikas may be particularly vulnerable in parts of Colorado, including Rocky Mountain National Park (ROMO) and the Niwot Ridge LTER (NWT), where they may face population collapse as habitat suitability and connectivity both decline in response to various possible climate change scenarios, in large part because of cold stress and declining functional connectivity. Because of their potential role as an ecosystem indicator, their risk for decline, and how limitations to their survival likely vary across their range, management groups can use place based models of habitat suitability for pikas or other sentinel species in designing long term monitoring protocols to detect ecosystem responses to climate change. In this project we used remotely sensed data, occupancy surveys, and a random tessellation

  2. Markers of achievement for assessing and monitoring gender equity in translational research organisations: a rationale and study protocol

    Science.gov (United States)

    Edmunds, Laurel D; Pololi, Linda H; Greenhalgh, Trisha; Kiparoglou, Vasiliki; Henderson, Lorna R; Williamson, Catherine; Grant, Jonathan; Lord, Graham M; Channon, Keith M; Lechler, Robert I; Buchan, Alastair M

    2016-01-01

    Introduction Translational research organisations (TROs) are a core component of the UK's expanding research base. Equity of career opportunity is key to ensuring a diverse and internationally competitive workforce. The UK now requires TROs to demonstrate how they are supporting gender equity. Yet, the evidence base for documenting such efforts is sparse. This study is designed to inform the acceleration of women's advancement and leadership in two of the UK's leading TROs—the National Institute for Health Research (NIHR) Biomedical Research Centres (BRCs) in Oxford and London—through the development, application and dissemination of a conceptual framework and measurement tool. Methods and analysis A cross-sectional retrospective evaluation. A conceptual framework with markers of achievement and corresponding candidate metrics has been specifically designed for this study based on an adapted balanced scorecard approach. It will be refined with an online stakeholder consultation and semistructured interviews to test the face validity and explore practices and mechanisms that influence gender equity in the given settings. Data will be collected via the relevant administrative databases. A comparison of two funding periods (2007–2012 and 2012–2017) will be carried out. Ethics and dissemination The University of Oxford Clinical Trials and Research Governance Team and the Research and Development Governance Team of Guy's and St Thomas’ National Health Service (NHS) Foundation Trust reviewed the study and deemed it exempt from full ethics review. The results of the study will be used to inform prospective planning and monitoring within the participating NIHR BRCs with a view to accelerating women's advancement and leadership. Both the results of the study and its methodology will be further disseminated to academics and practitioners through the networks of collaborating TROs, relevant conferences and articles in peer-reviewed journals. PMID:26743702

  3. e-Monitoring of Asthma Therapy to Improve Compliance in children using a real-time medication monitoring system (RTMM): the e-MATIC study protocol.

    Science.gov (United States)

    Vasbinder, Erwin C; Janssens, Hettie M; Rutten-van Mölken, Maureen P M H; van Dijk, Liset; de Winter, Brenda C M; de Groot, Ruben C A; Vulto, Arnold G; van den Bemt, Patricia M L A

    2013-03-21

    Many children with asthma do not have sufficient asthma control, which leads to increased healthcare costs and productivity loss of parents. One of the causative factors are adherence problems. Effective interventions improving medication adherence may therefore improve asthma control and reduce costs. A promising solution is sending real time text-messages via the mobile phone network, when a medicine is about to be forgotten. As the effect of real time text-messages in children with asthma is unknown, the primary aim of this study is to determine the effect of a Real Time Medication Monitoring system (RTMM) with text-messages on adherence to inhaled corticosteroids (ICS). The secondary objective is to study the effects of RTMM on asthma control, quality of life and cost-effectiveness of treatment. A multicenter, randomized controlled trial involving 220 children (4-11 years) using ICS for asthma. All children receive an RTMM-device for one year, which registers time and date of ICS doses. Children in the intervention group also receive tailored text-messages, sent only when a dose is at risk of omission. Primary outcome measure is the proportion of ICS dosages taken within the individually predefined time-interval. Secondary outcome measures include asthma control (monthly Asthma Control Tests), asthma exacerbations, healthcare use (collected from hospital records, patient reports and pharmacy record data), and disease-specific quality of life (PAQLQ questionnaire). Parental and children's acceptance of RTMM is evaluated with online focus groups and patient questionnaires. An economic evaluation is performed adopting a societal perspective, including relevant healthcare costs and parental productivity loss. Furthermore, a decision-analytic model is developed in which different levels of adherence are associated with clinical and financial outcomes. Also, sensitivity analyses are carried out on different price levels for RTMM. If RTMM with tailored text

  4. Turmoil at Turrialba Volcano (Costa Rica): Degassing and eruptive processes inferred from high‐frequency gas monitoring

    Science.gov (United States)

    Aiuppa, A.; Avard, G.; Wehrmann, H.; Dunbar, N.; Muller, C.; Tamburello, G.; Giudice, G.; Liuzzo, M.; Moretti, R.; Conde, V.; Galle, B.

    2016-01-01

    Abstract Eruptive activity at Turrialba Volcano (Costa Rica) has escalated significantly since 2014, causing airport and school closures in the capital city of San José. Whether or not new magma is involved in the current unrest seems probable but remains a matter of debate as ash deposits are dominated by hydrothermal material. Here we use high‐frequency gas monitoring to track the behavior of the volcano between 2014 and 2015 and to decipher magmatic versus hydrothermal contributions to the eruptions. Pulses of deeply derived CO2‐rich gas (CO2/Stotal > 4.5) precede explosive activity, providing a clear precursor to eruptive periods that occurs up to 2 weeks before eruptions, which are accompanied by shallowly derived sulfur‐rich magmatic gas emissions. Degassing modeling suggests that the deep magmatic reservoir is ~8–10 km deep, whereas the shallow magmatic gas source is at ~3–5 km. Two cycles of degassing and eruption are observed, each attributed to pulses of magma ascending through the deep reservoir to shallow crustal levels. The magmatic degassing signals were overprinted by a fluid contribution from the shallow hydrothermal system, modifying the gas compositions, contributing volatiles to the emissions, and reflecting complex processes of scrubbing, displacement, and volatilization. H2S/SO2 varies over 2 orders of magnitude through the monitoring period and demonstrates that the first eruptive episode involved hydrothermal gases, whereas the second did not. Massive degassing (>3000 T/d SO2 and H2S/SO2 > 1) followed, suggesting boiling off of the hydrothermal system. The gas emissions show a remarkable shift to purely magmatic composition (H2S/SO2 < 0.05) during the second eruptive period, reflecting the depletion of the hydrothermal system or the establishment of high‐temperature conduits bypassing remnant hydrothermal reservoirs, and the transition from phreatic to phreatomagmatic eruptive activity. PMID:27774371

  5. From the Lab to the real world : sources of error in UF {sub 6} gas enrichment monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, Marcie L.

    2012-03-01

    Safeguarding uranium enrichment facilities is a serious concern for the International Atomic Energy Agency (IAEA). Safeguards methods have changed over the years, most recently switching to an improved safeguards model that calls for new technologies to help keep up with the increasing size and complexity of today’s gas centrifuge enrichment plants (GCEPs). One of the primary goals of the IAEA is to detect the production of uranium at levels greater than those an enrichment facility may have declared. In order to accomplish this goal, new enrichment monitors need to be as accurate as possible. This dissertation will look at the Advanced Enrichment Monitor (AEM), a new enrichment monitor designed at Los Alamos National Laboratory. Specifically explored are various factors that could potentially contribute to errors in a final enrichment determination delivered by the AEM. There are many factors that can cause errors in the determination of uranium hexafluoride (UF{sub 6}) gas enrichment, especially during the period when the enrichment is being measured in an operating GCEP. To measure enrichment using the AEM, a passive 186-keV (kiloelectronvolt) measurement is used to determine the {sup 235}U content in the gas, and a transmission measurement or a gas pressure reading is used to determine the total uranium content. A transmission spectrum is generated using an x-ray tube and a “notch” filter. In this dissertation, changes that could occur in the detection efficiency and the transmission errors that could result from variations in pipe-wall thickness will be explored. Additional factors that could contribute to errors in enrichment measurement will also be examined, including changes in the gas pressure, ambient and UF{sub 6} temperature, instrumental errors, and the effects of uranium deposits on the inside of the pipe walls will be considered. The sensitivity of the enrichment calculation to these various parameters will then be evaluated. Previously, UF

  6. Using smartphones to decrease substance use via self-monitoring and recovery support: study protocol for a randomized control trial.

    Science.gov (United States)

    Scott, Christy K; Dennis, Michael L; Gustafson, David H

    2017-08-10

    Alcohol abuse, other substance use disorders, and risk behaviors associated with the human immunodeficiency virus (HIV) represent three of the top 10 modifiable causes of mortality in the US. Despite evidence that continuing care is effective in sustaining recovery from substance use disorders and associated behaviors, patients rarely receive it. Smartphone applications (apps) have been effective in delivering continuing care to patients almost anywhere and anytime. This study tests the effectiveness of two components of such apps: ongoing self-monitoring through Ecological Momentary Assessments (EMAs) and immediate recovery support through Ecological Momentary Interventions (EMIs). The target population, adults enrolled in substance use disorder treatment (n = 400), are being recruited from treatment centers in Chicago and randomly assigned to one of four conditions upon discharge in a 2 × 2 factorial design. Participants receive (1) EMAs only, (2) EMIs only, (3) combined EMAs + EMIs, or (4) a control condition without EMA or EMI for 6 months. People in the experimental conditions receive smartphones with the apps (EMA and/or EMI) specific to their condition. Phones alert participants in the EMA and EMA + EMI conditions at five random times per day and present participants with questions about people, places, activities, and feelings that they experienced in the past 30 min and whether these factors make them want to use substances, support their recovery, or have no impact. Those in the EMI and EMA + EMI conditions have continual access to a suite of support services. In the EMA + EMI condition, participants are prompted to use the EMI(s) when responses to the EMA(s) indicate risk. All groups have access to recovery support as usual. The primary outcome is days of abstinence from alcohol and other drugs. Secondary outcomes are number of HIV risk behaviors and whether abstinence mediates the effects of EMA, EMI, or EMA + EMI on HIV

  7. The entrance of the Izmit Gulf : a key site for monitoring gas emissions and seismicity in the Sea of Marmara

    Science.gov (United States)

    Gasperini, Luca; Polonia, Alina; Favali, Paolo; Marinaro, Giuditta; Etiope, Giuseppe; Namık Ćaǧatay, M.; Henry, Pierre; Geli, Louis

    2010-05-01

    The Sea of Marmara has been widely recognized as a seismic gap that will be probably filled in the next decades by a large (M >=7) earthquake along the North Anatolian Fault (NAF) system. Accordingly, new research activities started in the last years, and the possibility of installing seafloor observatories, considered. Only long-term observatories allow continuous observation of large numbers of parameters. This capability is crucial for observing natural processes that are either very episodic, or statistically require long time series to be detected. Among these phenomena, gas seepage at the seabed, occurring in various locations in the Sea of Marmara (Geli et al., 2008) may be sensitive to seismicity, providing possible precursor signals. Several lines of evidence suggest that the Gulf of Izmit, in the eastern Sea of Marmara, is a key area for monitoring the activity of the NAF through seismometers and gas sensors, because: 1) it is an area characterized by a "focusing" of the NAF principal deformation zone into a single strike-slip fault, along which the dextral strike-slip rate averaged over geological times (10 mm/y) has been measured (Polonia et al., 2004); 2) it is close to the western end of the surface rupture associated with the 1999 Izmit earthquake; thus, it is a probable area where the next earthquake will nucleate; 3) it is characterized by gas and fluids emission related to the fault activity, as documented by acoustic images of the water-column and direct observations carried out using ROVs (Gasperini et al., 2009). The methane and hydrogen sulphide escape is also confirmed by the presence of "black patches" at the seafloor observed during MarNaut cruise. Seafloor multi-parameters monitoring in this area is therefore essential to unravel relationships between geochemical, physical and geophysical parameters and the mechanical behaviour of faults; the information could then be used for seismic risk assessments and to define early-warning strategies

  8. Development and Evaluation of a Hyperbaric Toxic Gas Monitor (SubTox) for Disabled Submarines

    Science.gov (United States)

    2013-08-01

    olor L eg end: User E ntered Values  from  tes t data C alculated values  s ent to the  S ubtox  via Modbus F ixed Values Gas  s ensor  # 1 PR E S S UR E...Gas  Value Gas  S ensor PR S  S ensor ATM ppm mV mV 1 0 [Air] 2499 1287 1 85 3176 2 3290 3 3354 4 3413 5 3460 5 3460 3646 Pcomp data is  extracted...from the  above  entries  for uploading  to Item Description Value R eg is ter Add Gas  S ensor Offs et 2499 40177 S lope 7.965 40179 PR S  S ensor Offs

  9. NDIR gas sensor for spatial monitoring of carbon dioxide concentrations in naturally ventilated livestock buildings

    NARCIS (Netherlands)

    Mendes, L.B.; Ogink, N.W.M.; Edouard, Nadège; Dooren, van H.J.C.; Tinoco, I.; Mosquera, Julio

    2015-01-01

    The tracer gas ratio method, using CO2 as natural tracer, has been suggested as a pragmatic option to measure emissions from naturally ventilated (NV) barns without the need to directly estimate the ventilation rate. The aim of this research was to assess the performance of a low-cost

  10. A near real time MSG-SEVIRI based algorithm for gas flaring monitoring

    Science.gov (United States)

    Faruolo, Mariapia; Coviello, Irina; Filizzola, Carolina; Lacava, Teodosio; Pergola, Nicola; Tramutoli, Valerio

    2015-04-01

    In the last decades oil and gas industry has become responsible for important environmental issues. The gas flaring, one of the processes used to dispose of the natural gas associated with extracted crude oil, has been recognized as being potentially harmful to human health and the atmosphere. Efforts to empirically assess the environmental impacts of such phenomenon are frequently hampered by limited access to official information on flare locations and volumes, the heterogeneity in spatial and temporal sampling strategies and methods used to collect data. Consequently, there is a need to develop new methods of acquiring such information and remote sensing techniques seem the most viable option. In this paper, with reference to this problem, the potential of a satellite based technique for a near real time detection and characterization of hot spot sources was assessed. In detail, Medium Infrared (MIR) radiances acquired by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) scanner carried aboard the Meteosat Second Generation (MSG) satellite were processed following the Robust Satellite Techniques (RST) prescriptions. Such an algorithm, based on the processing of multi-year satellite images, co-located in the space-time domain, allows to timely identify statistically significant variations of the MIR signal, related to changes and/or malfunctions in the industrial process and responsible for the gas flaring blazes. Results achieved, referring to the flaring activity of the Centro Olio Val d'Agri (COVA), an oil/gas plant located in the South of Italy, will be described in detail and discussed in this paper.

  11. International Energy Agency (IEA) Greenhouse Gas (GHG) Weyburn-Midale CO₂ Monitoring and Storage Project

    Energy Technology Data Exchange (ETDEWEB)

    Sacuta, Norm [Petroleum Technology Research Centre Incorporated, Saskatchewan (Canada); Young, Aleana [Petroleum Technology Research Centre Incorporated, Saskatchewan (Canada); Worth, Kyle [Petroleum Technology Research Centre Incorporated, Saskatchewan (Canada)

    2015-12-22

    The IEAGHG Weyburn-Midale CO₂ Monitoring and Storage Project (WMP) began in 2000 with the first four years of research that confirmed the suitability of the containment complex of the Weyburn oil field in southeastern Saskatchewan as a storage location for CO₂ injected as part of enhanced oil recovery (EOR) operations. The first half of this report covers research conducted from 2010 to 2012, under the funding of the United States Department of Energy (contract DEFE0002697), the Government of Canada, and various other governmental and industry sponsors. The work includes more in-depth analysis of various components of a measurement, monitoring and verification (MMV) program through investigation of data on site characterization and geological integrity, wellbore integrity, storage monitoring (geophysical and geochemical), and performance/risk assessment. These results then led to the development of a Best Practices Manual (BPM) providing oilfield and project operators with guidance on CO₂ storage and CO₂-EOR. In 2013, the USDOE and Government of Saskatchewan exercised an optional phase of the same project to further develop and deploy applied research tools, technologies, and methodologies to the data and research at Weyburn with the aim of assisting regulators and operators in transitioning CO₂-EOR operations into permanent storage. This work, detailed in the second half of this report, involves seven targeted research projects – evaluating the minimum dataset for confirming secure storage; additional overburden monitoring; passive seismic monitoring; history-matched modelling; developing proper wellbore design; casing corrosion evaluation; and assessment of post CO₂-injected core samples. The results from the final and optional phases of the Weyburn-Midale Project confirm the suitability of CO₂-EOR fields for the injection of CO₂, and further, highlight the necessary MMV and follow-up monitoring required for these operations to be considered

  12. In situ monitoring of the acetylene decomposition and gas temperature at reaction conditions for the deposition of carbon nanotubes using linear Raman scattering.

    Science.gov (United States)

    Reinhold-López, Karla; Braeuer, Andreas; Popovska, Nadejda; Leipertz, Alfred

    2010-08-16

    To understand the reaction mechanisms taking place by growing carbon nanotubes via the catalytic chemical vapor deposition process, a strategy to monitor in situ the gas phase at reaction conditions was developed applying linear Raman spectroscopy. The simultaneous determination of the gas temperature and composition was possible by a new strategy of the evaluation of the Raman spectra. In agreement to the well-known exothermic decomposition of acetylene, a gas temperature increase was quantified when acetylene was added to the incident flow. Information about exhaust gas recirculation and location of the maximal acetylene conversion was derived from the composition measurements.

  13. Chemometric methods applied to the calibration of a Vis-NIR sensor for gas engine's condition monitoring.

    Science.gov (United States)

    Villar, Alberto; Gorritxategi, Eneko; Otaduy, Deitze; Ciria, Jose I; Fernandez, Luis A

    2011-10-31

    This paper describes the calibration process of a Visible-Near Infrared sensor for the condition monitoring of a gas engine's lubricating oil correlating transmittance oil spectra with the degradation of a gas engine's oil via a regression model. Chemometric techniques were applied to determine different parameters: Base Number (BN), Acid Number (AN), insolubles in pentane and viscosity at 40 °C. A Visible-Near Infrared (400-1100 nm) sensor developed in Tekniker research center was used to obtain the spectra of artificial and real gas engine oils. In order to improve sensor's data, different preprocessing methods such as smoothing by Saviztky-Golay, moving average with Multivariate Scatter Correction or Standard Normal Variate to eliminate the scatter effect were applied. A combination of these preprocessing methods was applied to each parameter. The regression models were developed by Partial Least Squares Regression (PLSR). In the end, it was shown that only some models were valid, fulfilling a set of quality requirements. The paper shows which models achieved the established validation requirements and which preprocessing methods perform better. A discussion follows regarding the potential improvement in the robustness of the models.

  14. Field monitoring and evaluation of a residential gas-engine-driven heat pump: Volume 2, Heating season

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.D.

    1995-11-01

    The Federal Government is the largest single energy consumer in the United States; consumption approaches 1.5 quads/year of energy (1 quad = 10{sup 15} Btu) at a cost valued at nearly $10 billion annually. The US Department of Energy (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the Federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US Government. Pacific Northwest Laboratory (PNL) is one of four DOE national multiprogram laboratories that participate in the NTDP by providing technical expertise and equipment to evaluate new, energy-saving technologies being studied and evaluated under that program. This two-volume report describes a field evaluation that PNL conducted for DOE/FEMP and the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of a candidate energy-saving technology -- a gas-engine-driven heat pump. The unit was installed at a single residence at Fort Sam Houston, a US Army base in San Antonio, Texas, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were York International, the heat pump manufacturer; Gas Research Institute (GRI), the technology developer; City Public Service of San Antonio, the local utility; American Gas Cooling Center (AGCC); Fort Sam Houston; and PNL.

  15. Field monitoring and evaluation of a residential gas-engine-driven heat pump: Volume 1, Cooling season

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.D.

    1995-09-01

    The Federal government is the largest single energy consumer in the United States; consumption approaches 1.5 quads/year of energy (1 quad = 10{sup 15} Btu) at a cost valued at nearly $10 billion annually. The US Department of Energy (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the Federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US government. Pacific Northwest Laboratory (PNL)is one of four DOE national multiprogram laboratories that participate in the NTDP by providing technical expertise and equipment to evaluate new, energy-saving technologies being studied and evaluated under that program. This two-volume report describes a field evaluation that PNL conducted for DOE/FEMP and the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of a candidate energy-saving technology -- a gas-engine-driven heat pump. The unit was installed at a single residence at Fort Sam Houston, a US Army base in San Antonio, Texas, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were York International, the heat pump manufacturer, Gas Research Institute (GRI), the technology developer; City Public Service of San Antonio, the local utility; American Gas Cooling Center (AGCC); Fort Sam Houston; and PNL.

  16. Diagnostic System of Wireless Acoustic Emission Signal Transfer for Monitoring Oil-and-Gas Facilities

    Directory of Open Access Journals (Sweden)

    Skalsky, V.R.

    2016-01-01

    Full Text Available The structure of diagnostic 8-channel system for wireless transfer of acoustic emission information during monitoring the objects of long operation is revealed. The results of the development of algorithmic software for hardware system and personal computer, which performs system control and post-processing of acoustic emission information. are presented. The basic specifications of the system are described.

  17. Comparison of use of an infrared anesthetic gas monitor and refractometry for measurement of anesthetic agent concentrations.

    Science.gov (United States)

    Ambrisko, Tamas D; Klide, Alan M

    2011-10-01

    To assess agreement between anesthetic agent concentrations measured by use of an infrared anesthetic gas monitor (IAGM) and refractometry. SAMPLE-4 IAGMs of the same type and 1 refractometer. Mixtures of oxygen and isoflurane, sevoflurane, desflurane, or N(2)O were used. Agent volume percent was measured simultaneously with 4 IAGMs and a refractometer at the common gas outlet. Measurements obtained with each of the 4 IAGMs were compared with the corresponding refractometer measurements via the Bland-Altman method. Similarly, Bland-Altman plots were also created with either IAGM or refractometer measurements and desflurane vaporizer dial settings. Bias ± 2 SD for comparisons of IAGM and refractometer measurements was as follows: isoflurane, -0.03 ± 0.18 volume percent; sevoflurane, -0.19 ± 0.23 volume percent; desflurane, 0.43 ± 1.22 volume percent; and N(2)O, -0.21 ± 1.88 volume percent. Bland-Altman plots comparing IAGM and refractometer measurements revealed nonlinear relationships for sevoflurane, desflurane, and N(2)O. Desflurane measurements were notably affected; bias ± limits of agreement (2 SD) were small (0.1 ± 0.22 volume percent) at < 12 volume percent, but both bias and limits of agreement increased at higher concentrations. Because IAGM measurements did not but refractometer measurements did agree with the desflurane vaporizer dial settings, infrared measurement technology was a suspected cause of the nonlinear relationships. Given that the assumption of linearity is a cornerstone of anesthetic monitor calibration, this assumption should be confirmed before anesthetic monitors are used in experiments.

  18. Gas monitoring in RPC by means of non-invasive plasma coated POF sensors

    Science.gov (United States)

    Grassini, S.; Ishtaiwi, M.; Parvis, M.; Benussi, L.; Bianco, S.; Colafranceschi, S.; Piccolo, D.

    2012-12-01

    Resistive Plate Counters (RPC) are employed as muon detectors in many high-rate high-energy physics experiments, such as the Compact Muon Solenoid (CMS) experiment currently under way in the Large Hadron Collider (LHC) accelerator at the European Center for Nuclear Research (CERN). A gas mixture containing C2H2F4, i-C4H10 and SF6 is recirculated inside the RPCs during their use and subjected to degradation due to the production of fluoride ions which limits the sensitivity of the RPCs. This paper describes a new sensor that is able to detect low concentrations of fluoride ions in gas mixtures. The sensor is made of a plastic optic fiber (POF) which is made sensitive to F- gaseous ions by means of a thin layer of a glass-\\it likematerial, deposited via plasma onto the fiber core. The F- ions attack the glass-\\it likefilm and alter the transmission capability of the fiber so that the detection simply requires a LED and a photodiode. The sensor exploits a cumulative response which makes it suitable for direct estimation of the total exposure to the F- ions, thus providing a tool that can be used to tune the maintenance of the gas filters. The glass-\\it likefilm is deposited by means of plasma enhanced chemical vapor deposition (PECVD) of organosilicons monomers, which allows the deposition to be performed a low temperature in order to avoid damaging the fiber core.

  19. On-line quality monitoring in short-circuit gas metal arc welding

    Energy Technology Data Exchange (ETDEWEB)

    Adolfsson, S. [Univ. of Karlskrono/Ronneby (Sweden). Dept. of Signal Processing]|[Lund Univ. (Sweden). Dept. of Production and Materials Engineering; Bahrami, A. [Technology Center of Kronoberg, Vaexjoe (Sweden)]|[Lund Univ. (Sweden); Bolmsjoe, G. [Lund Univ. (Sweden); Claesson, I. [Univ. of Karlskrono/Ronneby (Sweden)

    1999-02-01

    This paper addresses the problems involved in the automatic monitoring of the weld quality produced by robotized short-arc welding. A simple statistical change detection algorithm for the weld quality, the repeated Sequential Probability Ratio Test (SPRT), was used. The algorithm may similarly be viewed as a cumulative sum (CUSUM) type test, and is well-suited to detecting sudden minor changes in the monitored test statistic. The test statistic is based on the variance of the weld voltage, wherein it will be shown that the variance decreases when the welding process is not operating under optimal conditions. The performance of the algorithm is assessed through the use of experimental data. The results obtained from the algorithm show that it is possible to detect changes in weld quality automatically and on-line.

  20. KIGAM Seafloor Observation System (KISOS) for the baseline study in monitoring of gas hydrate test production in the Ulleung Basin, Korea

    Science.gov (United States)

    Lee, Sung-rock; Chun, Jong-hwa

    2013-04-01

    For the baseline study in the monitoring gas hydrate test production in the Ulleung Basin, Korea Institute of Geoscience and Mineral Resources (KIGAM) has developed the KIGAM Seafloor Observation System (KISOS) for seafloor exploration using unmanned remotely operated vehicle connected with a ship by a cable. The KISOS consists of a transponder of an acoustic positioning system (USBL), a bottom finding pinger, still camera, video camera, water sampler, and measuring devices (methane, oxygen, CTD, and turbidity sensors) mounted on the unmanned ROV, and a sediment collecting device collecting sediment on the seafloor. It is very important to monitoring the environmental risks (gas leakage and production water/drilling mud discharge) which may be occurred during the gas hydrate test production drilling. The KISOS will be applied to solely conduct baseline study with the KIGAM seafloor monitoring system (KIMOS) of the Korean gas hydrate program in the future. The large scale of environmental monitoring program includes the environmental impact assessment such as seafloor disturbance and subsidence, detection of methane gas leakage around well and cold seep, methane bubbles and dissolved methane, change of marine environments, chemical factor variation of water column and seabed, diffusion of drilling mud and production water, and biological factors of biodiversity and marine habitats before and after drilling test well and nearby areas. The design of the baseline survey will be determined based on the result of SIMAP simulation in 2013. The baseline survey will be performed to provide the gas leakage and production water/drilling mud discharge before and after gas hydrate test production. The field data of the baseline study will be evaluated by the simulation and verification of SIMAP simulator in 2014. In the presentation, the authors would like introduce the configuration of KISOS and applicability to the seafloor observation for the gas hydrate test production in

  1. Monitoring Hydrogen Sulfide Using a Quantum Cascade Laser Based Trace Gas Sensing System

    Institute of Scientific and Technical Information of China (English)

    WANG Ling-Fang; SHARPLES Thomas-Roben

    2011-01-01

    @@ We present the detection of hydrogen sulfide (HS) in a quantum cascade laser (QCL) based gas sensing system employing direct laser absorption spectroscopy.The sensitivity is obtained to be 3.61 × 10 cm Hz and the HS broadening coefficient in N is analyzed by fitting to the plot of the Lorentzian half width at the half maximum as a function of N pressure is 0.1124±0.0031 cm.atm.A simulation based on data from the HITRAN database shows broad agreement with the experimentally obtained spectrum.

  2. Utilization of on-line corrosion monitoring in the flue gas cleaning system

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Nielsen, Lars V.; Petersen, Michael B.

    2015-01-01

    such as HCl, KCl or chlorine containing corrosion products. Without knowing when corrosion occurs, it is difficult to take reasonable measures to reduce corrosion. In order to gain an improved understanding of the corrosion problem, an on-line corrosion measurement system was established before the booster....... A root cause analysis concluded that corrosion occurred due to corrosion products/deposit formed during operation; however it was unclear whether the majority of corrosion occurred during operation or downtime. In both cases the chlorine content in the flue gas results in the presence of chlorine species...

  3. [An investigation of temperature compensation of HCL gas online monitoring based on TDLAS method].

    Science.gov (United States)

    Shu, Xiao-Wen; Zhang, Yu-Jun; Kan, Rui-Feng; Cui, Yi-Ben; He, Ying; Zhang, Shuai; Geng, Hui; Liu, Wen-Qing

    2010-05-01

    HCL, with the character of strong erosion and toxicity, is a kind of chemical material of vital importance. So measuring the HCL in-situ can not only optimize its production process, but also be necessary to reduce the environment pollution. TDLAS (tunable diode laser absorption spectroscopy) technology, and owning the advantage of the tunability and narrow line width of the diode laser, this method can relatively easily select the absorption line of the detected gas without the interference from other gas, thus making the rapid and accurate HCL measurement possible. In the present paper, the HCL measurement system and the implemented experiment are introduced. The impact of the temperature on the measurement as well as the temperature compensation method is emphasized. The final experimental results validated the rationality of the empirical equation and therefore the improvement of the accuracy and feasibility of the TDLAS technology. The system, whose detection limitation reaches 2 ppm, can satisfy the needs of industrial in-sit measurement.

  4. Non-invasive gas monitoring in newborn infants using diode laser absorption spectroscopy: a case study

    Science.gov (United States)

    Lundin, Patrik; Svanberg, Emilie K.; Cocola, Lorenzo; Lewander, Märta; Andersson-Engels, Stefan; Jahr, John; Fellman, Vineta; Svanberg, Katarina; Svanberg, Sune

    2012-03-01

    Non-invasive diode laser spectroscopy was, for the first time, used to assess gas content in the intestines and the lungs of a new-born, 4 kg, baby. Two gases, water vapor and oxygen, were studied with two low-power tunable diode lasers, illuminating the surface skin tissue and detecting the diffusely emerging light a few centimeters away. The light, having penetrated into the tissue, had experienced absorption by gas located in the lungs and in the intestines. Very distinct water vapor signals were obtained from the intestines while imprint from oxygen was lacking, as expected. Detectable, but minor, signals of water vapor were also obtained from the lungs, illuminating the armpit area and detecting below the collar bone. Water vapor signals were seen but again oxygen signals were lacking, now due to the difficulties of penetration of the oxygen probing light into the lungs of this full-term baby. Ultra-sound images were obtained both from the lungs and from the stomach of the baby. Based on dimensions and our experimental findings, we conclude, that for early pre-term babies, also oxygen should be detectable in the lungs, in addition to intestine and lung detection of water vapor. The present paper focuses on the studies of the intestines while the lung studies will be covered in a forthcoming paper.

  5. RESIDUAL GAS IONIZATION BEAM PROFILE MONITOR ON 40MeV H— BEAM TRANSPORT LINE

    Institute of Scientific and Technical Information of China (English)

    徐伟鹏; E.Takasaki

    1995-01-01

    The monitor is composed of a pair of electrodes,a single stage of microchannel plate,a phosphor screen,a CCD camera and a PC computer,To obtain a good uniform collecting field,forming electrodes system is used instead of that with a resistive divider,The readout system is performed by the phosphor screen and the CCD camera because the spatial resolution is not limited by the mechanical structure like the anode strip type and such video display system is very useful for beam studies and operation of the 40MeV linac,Besides,the design and test results are described in detail.

  6. Residual oil monitoring in pressurised air with SnO2-based gas sensors

    OpenAIRE

    Papamichail, Nikos

    2004-01-01

    The doctoral thesis at hand describes the investigations undertaken in order to develop a newly invented procedure for the monitoring of residual oil in pressurised air. The problem of this application lies on the one hand in the state of aggregation of the oil, most of it is liquid and forms aerosols, and on the other hand in the general challenge to measure a small concentration in a changing matrix by means of unspecific sensors. The oil origins from the compressors, which typically us...

  7. FBG system for temperature monitoring under electromagnetic immersed and harsh oil and gas reservoir environment

    Science.gov (United States)

    Villnow, Michael; Bosselmann, Thomas; Willsch, Michael; Kaiser, Joachim

    2014-05-01

    A common way to explore oil out of tar sand is to use a technique called Steam Assisted Gravity Drainage SAGD. This method can be enhanced by using an inductive heater (EM-SAGD). To monitor the heat dissipation of the inductor a measurement system for this harsh electromagnetic environment is needed. In this paper different optical temperature measurement systems are compared to find the most suitable system for this kind of application. A field test with great results was performed, where the performance of the inductor and the FBG measurement system were demonstrated.

  8. Standard Practice for Sampling Gas Blow Down Systems and Components for Particulate Contamination by Automatic Particle Monitor Method

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This practice describes how to connect, prepare, and sample pressurized gas systems (having up to 19.1-mm (0.75-in.) diameter lines) for particulate contamination by using an automatic monitor. 1.2 The values stated in MKS units are to be regarded as the standard. The values given in parentheses are for information only. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For hazard statements, see Section 5.

  9. Improving the Efficiency of Administrative Decision-Making when Monitoring Reliability and Safety of Oil and Gas Equipment

    Directory of Open Access Journals (Sweden)

    Zemenkova Maria

    2016-01-01

    Full Text Available Methodology of rapid assessment of reliability index was developed based on system analysis of technological parameters. Within functioning of on-line monitoring system of reliability index of industrial facility this method allows to increase efficiency of making managerial decisions on technical and preventive maintenance. The technique is based on the analysis of technological parameters of operational modes of pipeline transport facilities registered by dispatcher controls. The created technique can be used by the operating, research, design institutes and oil and gas transport enterprises when declaring industrial safety. The received mathematical models allow federal services of supervision, the independent expert organizations to predict the development of reliability in the registered block of dispatching data either in real time mode, or taking into account the dynamics of service conditions of the object.

  10. Zeolites as nanoporous, gas-sensitive materials for in situ monitoring of DeNO(x)-SCR.

    Science.gov (United States)

    Simons, Thomas; Simon, Ulrich

    2012-01-01

    In a proof-of-concept study we demonstrate in situ reaction monitoring of DeNO(x)-SCR on proton-conducting zeolites serving as catalyst and gas sensor at the same time. By means of temperature-dependent impedance spectroscopy we found that the thermally induced NH(3) desorption in H-form and in Fe-loaded zeolite H-ZSM-5 follow the same process, while a remarkable difference under DeNO(x)-SCR reaction conditions was found. The Fe-loaded catalyst shows a significantly lower onset temperature, and time-dependent measurements suggest different SCR reaction mechanisms for the two catalysts tested. These results may help in the development of catalysts for the reduction of NO(x) emissions and ammonia consumption, and provide insight into the elementary catalytic process promoting a full description of the NH(3)-SCR reaction system.

  11. Improved conventional and microwave-assisted silylation protocols for simultaneous gas chromatographic determination of tocopherols and sterols: Method development and multi-response optimization.

    Science.gov (United States)

    Poojary, Mahesha M; Passamonti, Paolo

    2016-12-09

    This paper reports on improved conventional thermal silylation (CTS) and microwave-assisted silylation (MAS) methods for simultaneous determination of tocopherols and sterols by gas chromatography. Reaction parameters in each of the methods developed were systematically optimized using a full factorial design followed by a central composite design. Initially, experimental conditions for CTS were optimized using a block heater. Further, a rapid MAS was developed and optimized. To understand microwave heating mechanisms, MAS was optimized by two distinct modes of microwave heating: temperature-controlled MAS and power-controlled MAS, using dedicated instruments where reaction temperature and microwave power level were controlled and monitored online. Developed methods: were compared with routine overnight derivatization. On a comprehensive level, while both CTS and MAS were found to be efficient derivatization techniques, MAS significantly reduced the reaction time. The optimal derivatization temperature and time for CTS found to be 55°C and 54min, while it was 87°C and 1.2min for temperature-controlled MAS. Further, a microwave power of 300W and a derivatization time 0.5min found to be optimal for power-controlled MAS. The use of an appropriate derivatization solvent, such as pyridine, was found to be critical for the successful determination. Catalysts, like potassium acetate and 4-dimethylaminopyridine, enhanced the efficiency slightly. The developed methods showed excellent analytical performance in terms of linearity, accuracy and precision. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. A new protocol in La Spezia for elementary and secondary school students for monitoring Perception towards Science and Performance in Science Classrooms

    Science.gov (United States)

    Stroobant, Mascha; Mori, Anna; Merlino, Silvia; Bianucci, Marco; Delfanti, Roberta; Furia, Stefania; Carmisciano, Cosmo; Locritani, Marina; Muccini, Filippo; La Tassa, Hebert; Talamoni, Roberta; Nacini, Francesca; Benedetti, Alessandro; Nardi, Elisabetta; Parodi, Alice; Giacomazzi, Fabio; Mioni, Erika; Associazione Festival della Scienza

    2014-05-01

    Technological and scientific research in La Spezia (an Italian town with a population of 95.378) is, unfortunately, unknown to most people and often the existence of excellent research Centres (such as CNR-ISMAR, CNR-IENI, ENEA-UTMAR, INGV, CMRE, CSSN and University) is barely known, even just outside the La Spezia area. The current economic crisis has played a major role in determining the decline in maritime business (affecting all companies in the area and particularly SMEs). Therefore it is important to re-establish the relationship with the traditional maritime culture of the city. This objective can be achieved by enhancing research visibility (national and european) by dissemination of the activities carried out by research institutions, university and local enterprises. La Spezia has a long maritime tradition and it is vital for these customs to be kept alive and cultivated within the community. The cultural scene is positive: in fact, in the last decade the general public's perception on the importance of science in the context of human activities has been considerably strengthened. In La Spezia, especially since 2007, an increasing number of disseminating activities (carried out by CNR-ISMAR, CNR-IENI, ENEA-UTMAR, INGV, CMRE, CSSN, LABTER - the La Spezia association for environmental education- ASSOCIAZIONE FESTIVAL DELLA SCIENZA - the association that organizes the Genoa Science Festival- Genoa University and ISA 2 - "2 GIUGNO" - a local primary and secondary public school that has started a pilot project for marine biology), has revealed an educational and cultural path which now requires a monitoring protocol to be carried out for at least two years. In this paper we will present a new test that will be administered to the entire student population (aged 6 to 18 years) with the aim to fully understand the effectiveness of initiatives for popularizing science and the impact that they are having on new generations (professional choices, scientific

  13. Volumetric gas monitoring through a DSA laser network for the estimation of the gas emission flux by surface sources: methods and simulation results

    Science.gov (United States)

    Cuccoli, Fabrizio; Facheris, Luca; Lupo, Roberto; Berna, Tommaso

    2007-10-01

    A measurement approach for estimating the emission flux by a surface-distributed source, based on the use of IR laser measurements over optical links and atmospheric diffusion models is presented. An ad hoc disposition of the optical links close to the emission area allows to measure gas concentration over a closed surface corresponding to an air volume that covers the whole emission area. The real time concentration measurements over this closed surface, associated to suitable diffusion models, allow us to estimate the emission flux of the area under exam. The diffusion model to be applied strictly depends on the current atmospheric conditions, therefore it requires the knowledge of the main atmospheric parameters. In this paper we present some simulation results about a system for the surface flux monitoring assuming the faces of a parallelepiped the surfaces interested by laser measurements. The closed surface is therefore defined by 5 of its sides, while the 6th is the emission surface. We discuss some estimation results using diffusion models where the air diffusion and transportation phenomena are due mainly to the wind strength.

  14. Monitoring and groundwater/gas sampling in sands densified with explosives

    Directory of Open Access Journals (Sweden)

    Carlos A. Vega-Posada

    2014-01-01

    Full Text Available Este manuscrito presenta los resultados de un estudio de densificación de suelos en campo utilizando explosivos y realizado en un relleno sanitario localizado en Carolina de Sur, Estados Unidos; este estudio se realizó con el objeto de determinar los tipos de gases que se liberan y sus respectivas concentraciones in situ después del proceso de densificación. Se utilizó un sistema de sonda BAT para recolectar las muestras de aguas subterráneas y de gas en la mitad del estrato en estudio, así como para medir la evolución de las presiones del agua durante y después de la detonación de las cargas explosivas. Adicionalmente, se hicieron mediciones topográficas a través del eje central longitudinal de la zona de estudio después de cada explosión para medir la magnitud y la efectividad de esta técnica de densificación en depósitos de arena sueltas. Los resultados de este estudio mostraron que: a el sistema de sonda BAT puede ser una técnica confiable para recolectar muestra de agua subterránea y gas en campo antes y después de la explosión; b la masa de suelo afectada por la detonación de los explosivos licuó por un periodo de 6 horas, mientras el esfuerzo vertical efectivo alcanzó sus valores iniciales después de 3 días; y c se observaron deformaciones verticales significativas en el área de estudio después de cada explosión, lo cual indica que la masa de suelo fue exitosamente densificada.

  15. Gas Chromatographic-Selected Ion Monitoring-Mass Spectrometric Determination of Cigarette Mainstream Smoke Components with Sensory Attributes

    Directory of Open Access Journals (Sweden)

    Coleman WM

    2014-12-01

    Full Text Available A new method has been developed that detects significant quantitative differences in the amounts of pyrazines, pyridines, furfurals, carboxylic acids, b-damascenone, sclareolide, and megastigmatrienones in the mainstream smoke of a series of five commercial cigarettes. This new quantitative method is based on the gas chromatographic-selected ion monitoring-mass spectrometric (GC-SIM-MS determination of the selected smoke constituents. The accuracy and precision of the approach were well within acceptable parameters with the majority of cases relative standard deviation (RSD values consistently around 5%. Sample preparation was simple requiring only the dissolution of the trapped particulate material in a known volume of methanol followed by injection of this clear dark colored solution into the gas chromatograph. This approach represents an advance in the technology in terms of higher sample throughput and less sample workup. Certain products demonstrated consistent trends in concentration of specific chemical classes. The mainstream smoke from a University of Kentucky reference cigarette, 2R4F, was included for reference purposes. These results are applicable in the overall evaluation of the components responsible for the taste associated with cigarette products.

  16. CBERS-2B Brazilian remote sensing satellite to help to monitor the Bolivia-Brazil gas pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Hernandes, Gilberto Luis Sanches [TBG Transportadora Brasileira Gasoduto Bolivia-Brasil, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    This paper presents the results of CBERS-2B' Brazilian Remote Sensing Satellite to help to monitor the Bolivia-Brazil Gas Pipeline. The CBERS-2B is the third satellite launched in 2007 by the CBERS Program (China-Brazil Earth Resources Satellite) and the innovation was the HRC camera that produces high resolution images. It will be possible to obtain one complete coverage of the country every 130 days. In this study, 2 images from different parts of the Bolivia- Brazil Gas Pipeline were selected. Image processing involved the geometric registration of CBERS-2B satellite images with airborne images, contrast stretch transform and pseudo color. The analysis of satellite and airborne images in a GIS software to detect third party encroachment was effective to detect native vegetation removal, street construction, growth of urban areas, farming and residential/industrial land development. Very young, the CBERS-2B is a good promise to help to inspect the areas along the pipelines. (author)

  17. Development of Information Support of the Automated System for Monitoring the State of the Gas Transportation System’s Industrial Safety

    Directory of Open Access Journals (Sweden)

    Ruslan Skrynkovskyy

    2017-08-01

    Full Text Available The purpose of the article is to developing the information security of the automated system for monitoring the state of industrial safety of the gas transportation system within the framework of the safety management system, which will enable timely and objective detection of adverse accident hazards (hazardous events and taking the necessary specific measures to eliminate them and operate the gas transport system safely. It is proved that the basis of the information provision of the automated system for monitoring the state of the industrial safety of the gas transmission system is a methodology that includes the following basic procedures: identifying hazards; qualitative and quantitative assessment of emergencies; establishing of unacceptable (unallowable risks and their introduction to the information base (register of unacceptable risks of objects of the gas transportation system; comprehensive assessment and certification of the state of industrial safety of objects of the gas transportation system; identification of effective, productive (efficient risk management measures. The prospect of further research in this area is the development and implementation of an automated system for monitoring the state of industrial safety of the objects of the gas transmission system based on the results of the research (of the submitted information provision.

  18. Application Design of SSH Protocol in Data Transmission of Resource Monitoring System%SSH协议在资源监控系统数据传输中的应用

    Institute of Scientific and Technical Information of China (English)

    杨春龙

    2013-01-01

    随着互联网的快速发展,基于互联网远程数据传输方法起到了越来越重要的作用。本文主要介绍SSH协议,并通过一个Java实现的基于Internet资源监控系统为例,介绍SSH协议在监控系统中对远程数据传输的设计与实现。%With the rapid development of the Internet, method of remote data transmission based on Internet is playing an increasing important role. This paper mainly introduces the SSH protocol, and through a monitoring system developed by Java to introduce the use of SSH protocol in the monitoring system for the design and implementation of remote data transmission.

  19. Towards Improving the Quality of Present MAC Protocols for LECIM Systems

    Directory of Open Access Journals (Sweden)

    Mohammad Arif Siddiqui

    2016-06-01

    Full Text Available Wireless networking system is quickly growing in the field of communication technology due to its usefulness and huge applications. To make the system more effective to the users its lower energy consumption, security, reliability and lower cost issues must be considered under any circumstances. Low energy wireless is exceedingly required because the sensors are frequently located where mains power and network infrastructure are not reliably available. The recent development of Low Energy Critical Infrastructure Monitoring (LECIM has vast applications including: Water leak detection, Bridge/structural integrity monitoring, Oil & gas pipeline monitoring, electric plant monitoring, public transport tracking, Cargo container monitoring, Railroad condition monitoring, Traffic congestion monitoring, Border surveillance, Medical alert for at-risk populations and many more. This proposal Low Energy Critical Infrastructure Monitoring (LECIM is proposed by the Task Group 4k under IEEE P802.15 WPAN. Although many issues related to its quality are involved, but several Media Access Control (MAC protocols with different objectives were proposed for LECIM. In this research paper, issues related to energy consumption and wastage in LECIM system, energy savings mechanism, relevant energy conscious MAC protocols have been briefly studied and analyzed. Science Direct, Elsevier, Springer, IEEE Explore, Google Scholar and Wiley digital Library databases were used to search for articles related to the existing MAC protocols well suited for LECIM system. Finally, some ideas have been proposed towards developing energy efficient MAC protocol for LECIM applications in order to fulfill and satisfy the major issues of LECIM quality.

  20. A synopsis of Nova Scotia's offshore oil and gas environmental effects monitoring programs: summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-03-15

    This report describes a series of accomplishments of the Environmental Effects Monitoring (EEM) programs with regard to offshore petroleum activities in Nova Scotia involving scientific monitoring of the effects of production activities, and occasionally exploration activities, on specific components of the surrounding environment. The implementation by Operators of these production programs that are conducted annually, with the design being reviewed and adapted from year to year, are supervised by the Canada-Nova Scotia Offshore Petroleum Board (CNSOPB). The first offshore oil program, the Cohasset-Panuke Project (COPAN), began production in 1992 and finished in 1999. The other offshore petroleum production activity is the Sable Offshore Energy Project (SOEP), operated by ExxonMobil Canada Properties (ExxonMobil) and reported on from 1998 to 2008 by selected environmental components. The accomplishments reported here reveal new challenges for the future. A combination of knowledge gained from past EEM programs and new technology and practices will prove beneficial to upcoming offshore Nova Scotia oil and gas projects, such as the Deep Panuke Project.

  1. ANITA: The European Technology Demonstrator for Trace Gas Monitoring in the International Space Station Atmosphere

    Science.gov (United States)

    Tan, Gijsbert; Mosebach, Herbert; Honne, Atle

    2005-12-01

    The accumulation of toxic or otherwise harmful trace gases in a spacecraft cabin is a very serious concern in terms of health and safety of the crew. Much progress has been made in developing techniques for monitoring the air quality on board and in near-real-time. The technique developed in Europe has reached the state of an in-flight technology demonstrator. ANITA (Analysing Interferometer for Ambient Air) is based on FTIR (Fourier Transform Infra-Red) Spectrometry. ANITA is calibrated to identify and quantify quasi online more than 30 contaminants at low ppm (part per million) or sub-ppm detection limits.ANITA is a European Space Agency (ESA) - National Aeronautics and Space Administration (NASA) cooperative programme.ANITA will be launched with Jules Verne, the maiden flight of the Automatic Transfer Vehicle (ATV) currently scheduled for June 2007.

  2. Environmental monitoring survey of oil and gas fields in Region II in 2009. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    2010-03-15

    The oil companies Statoil ASA, ExxonMobil Exploration and Production Norway AS, Total E&P Norge AS, Talisman Energy Norge AS and Marathon Petroleum Norge AS commissioned Section of Applied Environmental Research at UNI RESEARCH AS to undertake the monitoring survey of Region II in 2009. Similar monitoring surveys in Region II have been carried out in 1996, 2000, 2003 and 2006. The survey in 2009 included in total 18 fields: Rev, Varg, Sigyn, Sleipner Vest, Sleipner OEst, Sleipner Alfa Nord, Glitne, Grane, Balder, Ringhorne, Jotun, Vale, Skirne, Byggve, Heimdal, Volve, Vilje og Alvheim. Sampling was conducted from the vessel MV Libas between May 18 and May 27. Samples were collected from in totally 137 sampling sites, of which 15 were regional sampling sites. Samples for chemical analysis were collected at all sites, whereas samples for benthos analysis were collected at 12 fields. As in previous surveys, Region II is divided into natural sub-regions. One sub-region is shallow (77-96 m) sub-region, a central sub-region (107-130 m) and a northern subregion (115-119 m). The sediments of the shallow sub-region had relatively lower content of TOM and pelite and higher content of fine sand than the central and northern sub-regions. Calculated areas of contamination are shown for the sub-regions in Table 1.1. The fields Sigyn, Sleipner Alfa Nord, Glitne, Grane, Balder, Ringhorne, Jotun, Skirne, Byggve, Vilje og Alvheim showed no contamination of THC. At the other fields there were minor changes from 2006. The concentrations of barium increased in the central sub-region from 2006 to 2009, also at fields where no drilling had been undertaken during the last years. The same laboratory and methods are used during the three last regional investigations. The changes in barium concentrations may be due to high variability of barium concentrations in the sediments. This is supported by relatively large variations in average barium concentrations at the regional sampling sites in

  3. Design and optimization of photonic crystal fiber based sensor for gas condensate and air pollution monitoring

    Science.gov (United States)

    Islam, Md. Ibadul; Ahmed, Kawsar; Sen, Shuvo; Chowdhury, Sawrab; Paul, Bikash Kumar; Islam, Md. Shadidul; Miah, Mohammad Badrul Alam; Asaduzzaman, Sayed

    2017-09-01

    In this paper, a hexagonal shape photonic crystal fiber (H-PCF) has been proposed as a gas sensor of which both micro-structured core and cladding are organized by circular air cavities. The reported H-PCF has a single layer circular core which is surrounded by a five-layer hexagonal cladding. The overall pretending process of the H-PCF is completed by using a full vectorial finite element method (FEM) with perfectly matched layer (PML) boundary condition. All geometrical parameters like diameters and pitches of both core and cladding regions have fluctuated with an optimized structure. After completing the numerical analysis, it is clearly visualized that the proposed H-PCF exhibits high sensitivity with low confinement loss. The investigated results reveal the relative sensitivity of 56.65% and confinement loss of 2.31×10-5 dB/m at the 1.33-μm wavelength. Moreover, effective area, nonlinearity, and V-parameter of the suggested PCF are also briefly described.

  4. Implementation and evaluation of a protocol management system for automated review of CT protocols.

    Science.gov (United States)

    Grimes, Joshua; Leng, Shuai; Zhang, Yi; Vrieze, Thomas; McCollough, Cynthia

    2016-09-08

    Protocol review is important to decrease the risk of patient injury and increase the consistency of CT image quality. A large volume of CT protocols makes manual review labor-intensive, error-prone, and costly. To address these challenges, we have developed a software system for automatically managing and monitoring CT proto-cols on a frequent basis. This article describes our experiences in the implementation and evaluation of this protocol monitoring system. In particular, we discuss various strategies for addressing each of the steps in our protocol-monitoring workflow, which are: maintaining an accurate set of master protocols, retrieving protocols from the scanners, comparing scanner protocols to master protocols, reviewing flagged differences between the scanner and master protocols, and updating the scanner and/or master protocols. In our initial evaluation focusing only on abdo-men and pelvis protocols, we detected 309 modified protocols in a 24-week trial period. About one-quarter of these modified protocols were determined to contain inappropriate (i.e., erroneous) protocol parameter modifications that needed to be corrected on the scanner. The most frequently affected parameter was the series description, which was inappropriately modified 47 times. Two inappropriate modifications were made to the tube current, which is particularly important to flag as this parameter impacts both radiation dose and image quality. The CT protocol changes detected in this work provide strong motivation for the use of an automated CT protocol quality control system to ensure protocol accuracy and consistency.

  5. Survey protocol for invasive species

    OpenAIRE

    Menza, Charles

    2009-01-01

    This protocol was developed by the Biogeography Branch of NOAA’s Center for Coastal Monitoring and Assessment to support invasive species research by the Papahānaumokuākea Marine National Monument. The protocol’s objective is to detect Carijoa riisei and Hypnea musciformis in deepwater habitats using visual surveys by technical divers. Note: This protocol is designed to detect the presence or absence of invasive species. A distinct protocol is required to collect information on abundance ...

  6. Leachate Monitoring In The Extractive Industry: A Case Study Of Nigerian Liquified Natural Gas Plant.

    Directory of Open Access Journals (Sweden)

    Uneke Louis Agwu

    2015-11-01

    Full Text Available Activities of extractive industry (NLNG is typical introduces some chemical substances into the groundwater. These change the groundwater signature and bioaccumulation of some of these classified as hazardous may result in various wealth challenges. Seven areas within the plant where identified by NLNG Six as high risk pollution areas and one (Nature Park as no pollution risk area. Groundwater samples were collected from all seven areas and analyzed for the presence of Cu, Cr, Zn, nitrate, phosphate and PH. Samples from the no pollution risk area served as control. Results were compared with WHO limits. Except for Cr content which was stable, other results showed fluctuations with time, albeit on the increase, though all remained within WHO limits. Nitrate value is fast approaching limit and requires urgent attention. Unexpected high values of the measured parameters were observed at Nature Park (no pollution risk area even beyond the high risk pollution areas. This precludes NLNG activities being responsible. The necessity of pre-activity groundwater quality assessment is thus established. Close monitoring of groundwater quality of the extractive industry zones is vital for the protection of source quality.

  7. Monitoring of phthalates in foodstuffs using gas purge microsyringe extraction coupled with GC-MS.

    Science.gov (United States)

    He, Miao; Yang, Cui; Geng, Renjie; Zhao, Xiangai; Hong, Lian; Piao, Xiangfan; Chen, Tie; Quinto, Maurizio; Li, Donghao

    2015-06-16

    Phthalate esters (PAEs) are commonly used as nonreactive plasticisers in vinyl plastics to increase the flexibility of plastic polymers. Numerous studies have indicated that the PAEs as a class of endocrine-disrupting chemicals. In addition, the studies have also shown that a major source of human exposure to phthalates is the diet. To date, the largest problem in PAEs analysis is the high blank value because PAEs are widely used in various applications and products. To overcome this shortcoming, gas purge microsyringe extraction (GP-MSE) was applied, which established a new and low-blank-value analytical method for PAE analysis to analyse PAEs in foodstuffs. In this study, GP-MSE was used as a clean-up method, and the overall recoveries ranged from 85.7 to 102.6%, and the RSD was less than 10%. More importantly, this method can overcome the problem of the high blank value in PAE analysis. This method was applied for measuring PAEs in 78 foodstuffs. The results showed that a wide variety of PAE concentrations were found in the different groups, and the content of PAEs (varies from 658 to 1610 ng g(-1) fresh weight) is greatest in seafood. The concentrations were in the following order: DEHP>DBP>DEP≈DMP>BBP≈DNOP. Finally, the daily intake of PAEs was estimated for adults based on the levels of PAEs in foodstuffs. The total EDIdiet values of 3.2 and 12.9 μg kg(-1) bw d(-1) were calculated for DEHP based on the mean and highest concentrations in foodstuffs, respectively.

  8. A greenhouse gas monitoring and modelling system for Switzerland: The CarboCount CH project

    Science.gov (United States)

    Brunner, Dominik; Buchmann, Nina; Eugster, Werner; Seneviratne, Sonia; Davin, Edouard; Gruber, Nicolas; Leuenberger, Markus; Bey, Isabelle; Bamberger, Ines; Henne, Stephan; Liu, Yu; Mystakidis, Stefanos; Oney, Brian; Roches, Anne

    2014-05-01

    emission inventories. Atmosphere-biosphere exchange fluxes of CO2 are simulated with the coupled system COSMO-CLM2, i.e. COSMO coupled to the Community Land Model, a state-of-the-art land processes and biogeochemistry model. Here we present a general outline of the project, the setup of the measurement network and of the different modeling components and inverse methods. We have performed transport simulations for the first year of observations and calculated the contributions from anthropogenic and biogenic sources/sinks upstream of the measurement sites. The generally good agreement between simulated and measured concentrations underlines the high quality of the transport simulations, but occasional deviations are pointing towards weaknesses in both the emission inventories and in the simulated meteorology. The CarboCount CH project provides an ideal test bed for future carbon monitoring systems, to test the suitability of different types of monitoring stations, to analyze the challenges of a heterogeneous landscape, and to identify critical modelling components.

  9. S35: a new parameter in blood gas analysis for monitoring the systemic oxygenation.

    Science.gov (United States)

    Trouwborst, A; Tenbrinck, R; Van Woerkens, E C

    1990-01-01

    In the estimation of oxygen transport the term oxygen availability is used as the product of cardiac output and the arterial oxygen content (CaO2). Attempts can be made to modify the concept of oxygen availability by subtracting from the CaO2 the venous content at a critical PO2 as measured in mixed venous blood (Pv-O2), where oxygen diffusion into tissue becomes compromised and oxygen uptake (VO2) may decrease. The real arterial available oxygen content (CavlO2) can be calculated by estimating the saturation at the critical Pv-O2. For our concept S35 was chosen as such a dynamic baseline. Similar modification of oxygen extraction ratio (ERav) defined as VO2 divided by the real oxygen availability (O2av) should give, more than the classic ER, a realistic indices of oxygen availability in relation to oxygen consumption. It can be hypothesized that VO2 starts to decline when ERav is around 1.0. During isovolemic hemodilution VO2 started to drop when ERav reached 1.08 +/- 0.09. The S35 changed from 55.0 +/- 2.1% to 41.5 +/- 4.1%, correlated with changes in Pv-O2. A direct correlation was also found between the increase of the classic ER and the change in S35. We conclude that the S35, the CavlO2 and the ERav can be of value in monitoring the systemic oxygenation and that the concept also includes the effect of changes in oxyhemoglobin characteristics on oxygen delivery.

  10. Total Column Greenhouse Gas Monitoring in Central Munich: Automation and Measurements

    Science.gov (United States)

    Chen, Jia; Heinle, Ludwig; Paetzold, Johannes C.; Le, Long

    2016-04-01

    It is challenging to use in-situ surface measurements of CO2 and CH4 to derive emission fluxes in urban regions. Surface concentrations typically have high variance due to the influence of nearby sources, and they are strongly modulated by mesoscale transport phenomena that are difficult to simulate in atmospheric models. The integrated amount of a tracer through the whole atmosphere is a direct measure of the mass loading of the atmosphere given by emissions. Column measurements are insensitive to vertical redistribution of tracer mass, e.g. due to growth of the planetary boundary layer, and are also less influenced by nearby point sources, whose emissions are concentrated in a thin layer near the surface. Column observations are more compatible with the scale of atmospheric models and hence provide stronger constraints for inverse modeling. In Munich we are aiming at establishing a regional sensor network with differential column measurements, i.e. total column measurements of CO2 and CH4 inside and outside of the city. The inner-city station is equipped with a compact solar-tracking Fourier transform spectrometer (Bruker EM27/SUN) in the campus of Technische Universität München, and our measurements started in Aug. 2015. The measurements over seasons will be shown, as well as preliminary emission studies using these observations. To deploy the compact spectrometers for stationary monitoring of the urban emissions, an automatic protection and control system is mandatory and a challenging task. It will allow solar measurements whenever the sun is out and reliable protection of the instrument when it starts to rain. We have developed a simplified and highly reliable concept for the enclosure, aiming for a fully automated data collection station without the need of local human interactions. Furthermore, we are validating and combining the OCO-2 satellite-based measurements with our ground-based measurements. For this purpose, we have developed a software tool that

  11. ABM Clinical Protocol #1: Guidelines for Blood Glucose Monitoring and Treatment of Hypoglycemia in Term and Late-Preterm Neonates, Revised 2014

    Science.gov (United States)

    Wight, Nancy

    2014-01-01

    A central goal of The Academy of Breastfeeding Medicine is the development of clinical protocols for managing common medical problems that may impact breastfeeding success. These protocols serve only as guidelines for the care of breastfeeding mothers and infants and do not delineate an exclusive course of treatment or serve as standards of medical care. Variations in treatment may be appropriate according to the needs of an individual patient. PMID:24823918

  12. Seismic time-lapse monitoring of potential gas hydrate dissociation around boreholes : could it be feasible? A conceptual 2D study linking geomechanical and seismic FD models

    Energy Technology Data Exchange (ETDEWEB)

    Pecher, I.; Yang, J.; Anderson, R.; Tohidi, B.; MacBeth, C. [Heriot-Watt Univ., Edinburgh (United Kingdom). Inst. of Petroleum Engineering; Freij-Ayoub, R.; Clennell, B. [CSIRO Petroleum, Bentley, WA (Australia)

    2008-07-01

    Dissociation of gas hydrate to water and potentially overpressured gas around boreholes may pose a hazard for deep-water hydrocarbon production. Strategies to mitigate this risk include monitoring for early detection of dissociation. Seismic methods are especially promising, primarily because of a high sensitivity of P-wave velocity to gas in the pore space of unconsolidated sediments. This paper presented a study that applied commonly used rock physics modeling to predict the seismic response to gas hydrate dissociation with a focus on P-impedance and performed sensitivity tests. The geomechanical model was translated into seismic models. In order to determine which parameters needed to be particularly well calibrated in experimental and modeling studies, the sensitivity of seismic properties to a variation of input parameters was estimated. The seismic response was predicted from dissociating gas hydrates using two-dimensional finite-difference wave-propagation modeling to demonstrate that despite the small predicted lateral extent of hydrate dissociation, its pronounced effect on seismic properties should allow detection with a seismic source on a drilling platform and receivers on the seafloor. The paper described the methods, models, and results of the study. It was concluded that the key factors for predicting the seismic response of sediments to hydrate dissociation were the mode of gas hydrate distribution, gas distribution in the sediments, gas saturation, and pore pressure. 33 refs., 3 tabs., 8 figs.

  13. Study of Differential Column Measurements for Urban Greenhouse Gas Emission Monitoring

    Science.gov (United States)

    Chen, Jia; Hedelius, Jacob K.; Viatte, Camille; Jones, Taylor; Franklin, Jonathan E.; Parker, Harrison; Wennberg, Paul O.; Gottlieb, Elaine W.; Dubey, Manvendra K.; Wofsy, Steven C.

    2016-04-01

    Urban areas are home to 54% of the total global population and account for ˜ 70% of total fossil fuel emissions. Accurate methods for measuring urban and regional scale carbon fluxes are required in order to design and implement policies for emissions reduction initiatives. In this paper, we demonstrate novel applications of compact solar-tracking Fourier transform spectrometers (Bruker EM27/SUN) for differential measurements of the column-averaged dry-air mole fractions (DMFs) of CH4 and CO2 within urban areas. Our differential column method uses at least two spectrometers to make simultaneous measurements of CO2, CH4 and O2 column number densities. We then compute the column-averaged DMFs XG for a gas G and the differences ΔXG between downwind and upwind stations. By accurately measuring the small differences in integrated column amounts across local and regional sources, we directly observe the mass loading of the atmosphere due to the influence of emissions in the intervening locale. The inference of the source strength is much more direct than inversion modeling using only surface concentrations, and less subject to errors associated with modeling small-scale transport phenomena. We characterize the differential sensor system using Allan variance analysis and show that the differential column measurement has a precision of 0.01% for XCO2 and XCH4 using an optimum integration time of 10 min, which corresponds to standard deviations of 0.04 ppm, and 0.2 ppb, respectively. The sensor system is very stable over time and after relocation across the contiguous US, i.e. the scaling factors between the two Harvard EM27/SUNs and the measured instrument line function parameters are consistent. We use the differential column measurements to determine the emission of an area source. We measure the downwind minus upwind column gradient ΔXCH4 (˜ 2 ppb, 0.1%) across dairy farms in the Chino California area, and input the data to a simple column model for comparison with

  14. Use of thermal infrared remote sensing data for fisheries, environmental monitoring, oil and gas exploration, and ship routing.

    Science.gov (United States)

    Roffer, M. A.; Gawlikowski, G.; Muller-Karger, F.; Schaudt, K.; Upton, M.; Wall, C.; Westhaver, D.

    2006-12-01

    Thermal infrared (TIR) and ocean color remote sensing data (1.1 - 4.0 km) are being used as the primary data source in decision making systems for fisheries management, commercial and recreational fishing advisory services, fisheries research, environmental monitoring, oil and gas operations, and ship routing. Experience over the last 30 years suggests that while ocean color and other remote sensing data (e.g. altimetry) are important data sources, TIR presently yields the most useful data for studying ocean surface circulation synoptically on a daily basis. This is due primarily to the greater temporal resolution, but also due to one's better understanding of the dynamics of sea surface temperature compared with variations in ocean color and the spatial limitations of altimeter data. Information derived from commercial operations and research is being used to improve the operational efficiency of fishing vessels (e.g. reduce search time and increase catch rate) and to improve our understanding of the variations in catch distribution and rate needed to properly manage fisheries. This information is also being used by the oil and gas industry to minimize transit time and thus, save costs (e.g., tug charter, insurance), to increase production and revenue up to 500K dollars a day. The data are also be used to reduce the risk of equipment loss, loss of time and revenue to sudden and unexpected currents such as eddies. Sequential image analysis integrating TIR and ocean color provided near-real time, synoptic visualization of the rapid and wide dispersal of coastal waters from the northern Gulf of Mexico following Hurricanes Katrina and Rita in September 2005. The satellite data and analysis techniques have also been used to monitor the effects and movement of other potential environmentally damaging substances, such as dispersing nutrient enriched waste water offshore. A review of our experience in several commercial applications and research efforts will reinforce the

  15. Gas, benefits and question marks. The Oklo reactors: 100 % natural. The Kyoto protocol: use it or lose it?. Small hydro power: a great leap forward. The energy mix of South Korea

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2005-07-01

    This issue of Alternatives newsletter contains a main press-kit about natural gas economics worldwide and 4 articles dealing with the Oklo natural reactor, the Kyoto protocol, the small hydro-power in China, and the energy mix of South Korea: 1 - 'Gas benefits and question marks': The world's most widely distributed fossil fuel, natural gas is also the fastest-growing energy source of the past thirty years. Its position as the fuel of choice in the global energy mix is due in large part to its many domestic and industrial applications. 2 - 'The Oklo reactors: 100% natural': Another look at this extraordinary 2 billion year-old phenomenon in words and pictures: the nuclear fission reaction that created the natural reactors of Gabon. 3 - 'The Kyoto Protocol: use it or lose it?': Nearly eight years after its signature, the Kyoto Protocol is still hotly debated. Two experts give us their views: Spencer Abraham, former U.S. Secretary for Energy, and Jean-Charles Hourcade of CIRED, the international center for research on the environment and development. 4 - 'Small hydro power: a great leap forward': The Chinese government has responded to the need for rural electrification with an aid program for the country's poorest cantons. Enter the small hydro plant in northern Guangxi province. 5 - 'The energy mix of South Korea': Faced with continuing strong economic growth and energy demand, South Korea has multiplied its projects, from hydropower to tidal power to nuclear and even hydrogen in the longer term.

  16. Solid-, solution-, and gas-state NMR monitoring of ¹³C-cellulose degradation in an anaerobic microbial ecosystem.

    Science.gov (United States)

    Yamazawa, Akira; Iikura, Tomohiro; Shino, Amiu; Date, Yasuhiro; Kikuchi, Jun

    2013-07-29

    Anaerobic digestion of biomacromolecules in various microbial ecosystems is influenced by the variations in types, qualities, and quantities of chemical components. Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for characterizing the degradation of solids to gases in anaerobic digestion processes. Here we describe a characterization strategy using NMR spectroscopy for targeting the input solid insoluble biomass, catabolized soluble metabolites, and produced gases. ¹³C-labeled cellulose produced by Gluconacetobacter xylinus was added as a substrate to stirred tank reactors and gradually degraded for 120 h. The time-course variations in structural heterogeneity of cellulose catabolism were determined using solid-state NMR, and soluble metabolites produced by cellulose degradation were monitored using solution-state NMR. In particular, cooperative changes between the solid NMR signal and ¹³C-¹³C/¹³C-¹²C isotopomers in the microbial degradation of ¹³C-cellulose were revealed by a correlation heat map. The triple phase NMR measurements demonstrated that cellulose was anaerobically degraded, fermented, and converted to methane gas from organic acids such as acetic acid and butyric acid.

  17. Solid-, Solution-, and Gas-state NMR Monitoring of 13C-Cellulose Degradation in an Anaerobic Microbial Ecosystem

    Directory of Open Access Journals (Sweden)

    Yasuhiro Date

    2013-07-01

    Full Text Available Anaerobic digestion of biomacromolecules in various microbial ecosystems is influenced by the variations in types, qualities, and quantities of chemical components. Nuclear magnetic resonance (NMR spectroscopy is a powerful tool for characterizing the degradation of solids to gases in anaerobic digestion processes. Here we describe a characterization strategy using NMR spectroscopy for targeting the input solid insoluble biomass, catabolized soluble metabolites, and produced gases. 13C-labeled cellulose produced by Gluconacetobacter xylinus was added as a substrate to stirred tank reactors and gradually degraded for 120 h. The time-course variations in structural heterogeneity of cellulose catabolism were determined using solid-state NMR, and soluble metabolites produced by cellulose degradation were monitored using solution-state NMR. In particular, cooperative changes between the solid NMR signal and 13C-13C/13C-12C isotopomers in the microbial degradation of 13C-cellulose were revealed by a correlation heat map. The triple phase NMR measurements demonstrated that cellulose was anaerobically degraded, fermented, and converted to methane gas from organic acids such as acetic acid and butyric acid.

  18. Low-Cost Gas Sensors Produced by the Graphite Line-Patterning Technique Applied to Monitoring Banana Ripeness

    Science.gov (United States)

    Manzoli, Alexandra; Steffens, Clarice; Paschoalin, Rafaella T.; Correa, Alessandra A.; Alves, William F.; Leite, Fábio L.; Herrmann, Paulo S. P.

    2011-01-01

    A low-cost sensor array system for banana ripeness monitoring is presented. The sensors are constructed by employing a graphite line-patterning technique (LPT) to print interdigitated graphite electrodes on tracing paper and then coating the printed area with a thin film of polyaniline (PANI) by in-situ polymerization as the gas-sensitive layer. The PANI layers were used for the detection of volatile organic compounds (VOCs), including ethylene, emitted during ripening. The influence of the various acid dopants, hydrochloric acid (HCl), methanesulfonic acid (MSA), p-toluenesulfonic acid (TSA) and camphorsulfonic acid (CSA), on the electrical properties of the thin film of PANI adsorbed on the electrodes was also studied. The extent of doping of the films was investigated by UV-Vis absorption spectroscopy and tests showed that the type of dopant plays an important role in the performance of these low-cost sensors. The array of three sensors, without the PANI-HCl sensor, was able to produce a distinct pattern of signals, taken as a signature (fingerprint) that can be used to characterize bananas ripeness. PMID:22163963

  19. PIGC™ - A low cost fugitive emissions and methane detection system using advanced gas filter correlation techniques for local and wide area monitoring

    Science.gov (United States)

    Lachance, R. L.; Gordley, L. L.; Marshall, B. T.; Fisher, J.; Paxton, G.; Gubeli, J. F.

    2015-12-01

    Currently there is no efficient and affordable way to monitor gas releases over small to large areas. We have demonstrated the ability to accurately measure key greenhouse and pollutant gasses with low cost solar observations using the breakthrough sensor technology called the "Pupil Imaging Gas Correlation", PIGC™, which provides size and complexity reduction while providing exceptional resolution and coverage for various gas sensing applications. It is a practical implementation of the well-known Gas Filter Correlation Radiometry (GFCR) technique used for the HALOE and MOPITT satellite instruments that were flown on successful NASA missions in the early 2000s. This strong space heritage brings performance and reliability to the ground instrument design. A methane (CH4) abundance sensitivity of 0.5% or better of ambient column with uncooled microbolometers has been demonstrated with 1 second direct solar observations. These under $10 k sensors can be deployed in precisely balanced autonomous grids to monitor the flow of chosen gasses, and infer their source locations. Measureable gases include CH4, 13CO2, N2O, NO, NH3, CO, H2S, HCN, HCl, HF, HDO and others. A single instrument operates in a dual operation mode, at no additional cost, for continuous (real-time 24/7) local area perimeter monitoring for the detection of leaks for safety & security needs, looking at an artificial light source (for example a simple 60 W light bulb placed 100 m away), while simultaneously allowing solar observation for quasi-continuous wide area total atmospheric column scanning (3-D) for environmental monitoring (fixed and mobile configurations). The second mode of operation continuously quantifies the concentration and flux of specific gases over different ground locations, determined the amount of targeted gas being released from the area or getting into the area from outside locations, allowing better tracking of plumes and identification of sources. This paper reviews the

  20. Online monitoring of trace chlorinated benzenes in flue gas of municipal solid waste incinerator by windowless VUV lamp single photon ionization TOFMS coupled with automatic enrichment system.

    Science.gov (United States)

    Liu, Wei; Jiang, Jichun; Hou, Keyong; Wang, Weiguo; Qi, Yachen; Wang, Yan; Xie, Yuanyuan; Hua, Lei; Li, Haiyang

    2016-12-01

    Chlorinated benzenes are typical precursors and indicators for polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) emissions from waste incinerators. Online and real-time monitoring of chlorobenzenes is a challenge due to their low concentration and complex nature of the flue gas. In this work, a continuous online monitoring system was built for detection of trace chlorinated benzenes based on a time-of-flight mass spectrometer (TOFMS). A single photon ionization (SPI) source based on a radiofrequency-excited windowless vacuum ultraviolet (VUV) lamp was developed for the first time to eliminate the signal attenuation resulting from the contamination of magnesium fluoride windows and to avoid the fragment ions. An automatic enrichment system including three parallel Tenax TA adsorption tubes was designed and coupled to the TOFMS to achieve the required ultrahigh sensitivity. The limits of quantitation at 7.65, 5.37 and 6.77pptv were obtained for monochlorobenzene (MCBz), dichlorobenzene (DCBz) and trichlorobenzene (TrCBz), respectively, within a 29-min analytical period. Moreover, this apparatus was applied to continuously online monitor the actual flue gas from a waste incinerator for three months. During this period, the concentrations of MCBz, DCBz and TrCBz detected in the flue gas were in the range of 100-1200, 50-800 and 50-300pptv, respectively. The relative standard deviation (RSD) of the sensitivity for the windowless VUV lamp ion source was 9.71% evaluated by the internal standard benzene over the 3-months flue gas monitoring. These results demonstrated the capability of this method in long-term analysis of the trace chlorinated benzenes in the flue gas. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Analysis of non-methane hydrocarbon data from a monitoring station affected by oil and gas development in the Eagle Ford shale, Texas

    Directory of Open Access Journals (Sweden)

    Gunnar W. Schade

    2016-03-01

    Full Text Available Abstract Within the last decade, unconventional oil and gas exploration in the US has become a new source of atmospheric hydrocarbons. Although a geographically dispersed source, field measurements in and downwind of a number of shale basins demonstrate the impact exploration activities have on ambient levels of hydrocarbons. Due to concerns related to ozone production, regulatory agencies are adding monitoring stations to better understand the potential influence of emissions from areas with increased oil and gas related activities. The Eagle Ford shale in south Texas is a rapidly developing shale play producing both oil and natural gas, providing 10% and 5% of US domestic oil and gas production, respectively, in 2013. We analyzed the first year of measurements from a newly established monitoring site at its central north edge. The data reveal median ethane mixing ratios—used as a marker for oil and gas exploration related emissions—at five times its typical clean air background. Ethane mixing ratios above ten times the background occurred regularly. Saturated hydrocarbons with likely origin in oil and gas exploration explain half of the data set’s variability. They dominate OH radical reactivity at levels both similar to other shale areas and similar to Houston’s ship channel area a decade ago. Air advecting slowly across the shale area from east-southeast and southwest directions shows the most elevated hydrocarbon concentrations, and evidence is presented linking elevated alkene abundances to flaring in the shale area. A case study is presented linking high emissions from an upwind facility to hydrocarbon plumes observed at the monitor.

  2. (dtltt) protocol

    African Journals Online (AJOL)

    2013-03-01

    Mar 1, 2013 ... Keywords: multi-access, multiservice, network, synchronous, asynchronous, traffic, timed-token. 1. ... 12, 13 ] SAFENET [14], Manufacturing Automation. Protocol (MAP) ...... ken circulation on mobile Ad Hoc Networks. 21th In-.

  3. Application of Modbus-RTU Protocol in Monitoring System of Coal Mine Underground Substation%Modbus—RTU协议在煤矿井下变电所监控系统中的应用

    Institute of Scientific and Technical Information of China (English)

    王义; 何伟; 李华兴

    2012-01-01

    According to the circumstances and the monitoring requirements of underground substation in coal mine, analyzes the Modbus-RTU protocol of DP400 comprehensive protector and the control process of comprehensive protector in the PLC, then designs a monitoring system for the underground substation based on the Modbus-RTU protocol. The monitoring system selects S7-300 PLC as the controller to read the data and utilizes the industrial Ethemet to implement communication of the PLC and supervisory computer, which achieves the remote monitoring for underground substation. The system has good running state, stable performance and high monitoring efficiency by on-spot operation.%根据某煤矿的现场情况和对井下变电所的监控要求,分析了该变电所使用的DP400型智能综合保护器的Modbus-RTU协议以及该综合保护器在PLC控制器中的控制流程,设计了基于Modbus-RTU协议的井下变电所监控系统。该系统选用S7-300PLC在Modbus—RTU协议下读取智能综合保护器数据,并通过工业以太网完成PLC与上位机的通信,实现井下变电所的远程监控。该系统经现场运行,情况良好,性能稳定,监控效率高。

  4. Monitoring Gas Concentration from Carbon Emissions by Remote Sensing%碳排放气体浓度遥感监测研究

    Institute of Scientific and Technical Information of China (English)

    王莉雯; 卫亚星

    2012-01-01

    结合国际碳排放气体浓度遥感监测最新研究进展,介绍了碳排放监测方法,以及碳排放气体浓度遥感监测技术(包括热红外、太阳波谱、主动遥感监测技术).并详细介绍了目前已在使用和未来将采用的监测主要碳排放气体的几种星载传感器,并对这些传感器已获取的监测结果进行了详细分析.%Global climate warming has become the focus question of international global climate change research, and is an important factor influencing world economy, political situation, and ecological environment Produced carbon emission gases such as CO2, CH4, N2O, etc. caused by human activity are the main reason for global warming. In order to forecast future climate change and construct accurate carbon cycle model, monitoring accuracy of gas concentration from carbon emission must be improved. In the present paper, the newest progress in the international research results about monitoring gas concentration from carbon emissions by remote sensing was considered, monitoring method for carbon emissions was introduced, and remotely sensed monitoring technology about gas concentration from carbon emissions (including thermal infrared, sun spectrum, active remote sensing monitoring technology) was stated. In detail, several present and future satellite sensors were introduced (including TOVS, AIRS, IASI, SCIAMACHY, GOSAT, OCO, A-SCOPE and ASCENDS), and monitoring results achieved by these sensors were analyzed.

  5. Monitoring the ripening process of Cheddar cheese based on hydrophilic component profiling using gas chromatography-mass spectrometry.

    Science.gov (United States)

    Ochi, H; Sakai, Y; Koishihara, H; Abe, F; Bamba, T; Fukusaki, E

    2013-01-01

    We proposed an application methodology that combines metabolic profiling with multiple appropriate multivariate analyses and verified it on the industrial scale of the ripening process of Cheddar cheese to make practical use of hydrophilic low-molecular-weight compound profiling using gas chromatography-mass spectrometry to design optimal conditions and quality monitoring of the cheese ripening process. Principal components analysis provided an overview of the effect of sodium chloride content and kind of lactic acid bacteria starter on the metabolic profile in the ripening process of Cheddar cheese and orthogonal partial least squares-discriminant analysis unveiled the difference in characteristic metabolites. When the sodium chloride contents were different (1.6 and 0.2%) but the same lactic acid bacteria starter was used, the 2 cheeses were classified by orthogonal partial least squares-discriminant analysis from their metabolic profiles, but were not given perfect discrimination. Not much difference existed in the metabolic profile between the 2 cheeses. Compounds including lactose, galactose, lactic acid, 4-aminobutyric acid, and phosphate were identified as contents that differed between the 2 cheeses. On the other hand, in the case of the same salt content of 1.6%, but different kinds of lactic acid bacteria starter, an excellent distinctive discrimination model was obtained, which showed that the difference of lactic acid bacteria starter caused an obvious difference in metabolic profiles. Compounds including lactic acid, lactose, urea, 4-aminobutyric acid, galactose, phosphate, proline, isoleucine, glycine, alanine, lysine, leucine, valine, and pyroglutamic acid were identified as contents that differed between the 2 cheeses. Then, a good sensory prediction model for "rich flavor," which was defined as "thick and rich, including umami taste and soy sauce-like flavor," was constructed based on the metabolic profile during ripening using partial least

  6. Gas Chromatography and Mass Spectrometry Measurements and Protocols for Database and Library Development Relating to Organic Species in Support of the Mars Science Laboratory

    Science.gov (United States)

    Misra, P.; Garcia, R.; Mahaffy, P. R.

    2010-04-01

    An organic contaminant database and library has been developed for use with the Sample Analysis at Mars (SAM) instrumentation utilizing laboratory-based Gas Chromatography-Mass Spectrometry measurements of pyrolyzed and baked material samples.

  7. Precision measurements of gas refractivity by means of a Fabry-Perot interferometer illustrated by the monitoring of radiator refractivity in the DELPHI RICH detectors

    CERN Document Server

    Filippas-Tassos, A; Fokitis, E; Maltezos, S; Patrinos, K

    2002-01-01

    With an updated, flexible, highly efficient and easily installed system we obtained accurate refractivity (n-1) values. This system is a refractometer based on a Fabry-Perot interferometer and was used to monitor the refractivity of DELPHI RICH Cherenkov radiators near the VUV region. By using a Pt-Ne spectral lamp and improved alignment and temperature control, the refractivities of C//5F//1//2 and C//4F//1 //0 have been monitored since 1996. With this light source, selected to have large coherence lengths, we can extract the refractivity at several wavelengths from one data set only. The estimated errors of the refractivity measurements are less than 1.2%, and depend on wavelength and the type of gas used. The various parameters affecting the accuracy of the refractometer are also discussed. Finally, results from special sample refractivity measurements of the liquid radiator (C//6F//1//4) in its gas phase, are presented.

  8. Low-Cost Real-Time Gas Monitoring Using a Laser Plasma Induced by a Third Harmonic Q-Switched Nd-YAG Laser

    Directory of Open Access Journals (Sweden)

    Syahrun Nur Abdulmadjid

    2005-11-01

    Full Text Available A gas plasma induced by a third harmonic Nd-YAG laser with relatively low pulsed energy (about 10 mJ has favorable characteristics for gas analysis due to its low background characteristics, nevertheless a high power fundamental Nd-YAG laser (100-200 mJ is widely used for laser gas breakdown spectroscopy. The air plasma can be used as a low-cost real-time gas monitoring system such that it can be used to detect the local absolute humidity, while a helium plasma can be used for gas analysis with a high level of sensitivity. A new technique using a helium plasma to improve laser ablation emission spectroscopy is proposed. Namely, the third harmonic Nd-YAG laser is focused at a point located some distance from the target in the 1-atm helium surrounding gas. By using this method, the ablated vapor from the target is excited through helium atoms in a metastable state in the helium plasma.

  9. Monitoring and prediction of geotechnical and environmental risks for security in natural gas transportation; Monitoramento e previsao de riscos geotecnicos e ambientais para seguranca no transporte do gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Chamecki, Paulo R.; Ligocki, Laryssa P.; Andrade, Heber A.C.; Manzolli, Andre; Horbatiuk, Borys W.D. [LACTEC - Instituto de Tecnologia para o Desenvolvimento, Curitiba, PR (Brazil); Strieder, Adelir J.; Quadros, Telmo F.P.; Buffon, Sergio A.; Stupf, Leonardo; Bressani, Luiz A.; Bica, Adriano V. Damiani [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil); Schiafino, Antonio V.; Bastos, Cesar B. [Fundacao Universidade Federal do Rio Grande (FURG), RS (Brazil); Radu, Marcos S.; Nascimento Filho, Lenart P. [PETROBRAS, Rio de Janeiro, RJ (Brazil); Santoro, Alcides [Centro de Tecnologias do Gas (CTGAS), Natal, RN (Brazil); Vasconcellos, Carlos R.A.; Oliveira, Hudson R. [TBG - Transportadora Brasileira Gasoduto Bolivia-Brasil S.A., Rio de Janeiro, RJ (Brazil)

    2004-07-01

    In order to take care of the consumption issues, often the bands of pipelines have to cross regions that do not present ideal conditions in terms of geotechnical and geologic characteristics. The present work describes a research in progress, involving a partnership between LACTEC, UFRGS, RedeGasEnergia and FINEP, that aims the development of a methodology for instrumentation and remote monitoring of places which present risks to the infrastructure of the gas-lines and the environment, due to geological and geotechnical conditions, as well as the definition of these places. The methodology is practically concluded and will be applied in the place defined for the case study in natural gas Bolivia-Brazil gas-line. Satellite images are being used, along whit computational modeling, geophysical methods, exploratory boreholes and field and laboratory tests, for the definition of points of risk. In the remote monitoring, besides a data communication system, residual stress test of the pipelines, strain gauges and automatic instruments, inclinometers, piezometer and pluviometers are being used. (author)

  10. Daily electronic self-monitoring of subjective and objective symptoms in bipolar disorder—the MONARCA trial protocol (MONitoring, treAtment and pRediCtion of bipolAr disorder episodes)

    DEFF Research Database (Denmark)

    Faurholt-Jepsen, Maria; Vinberg, Maj; Christensen, Ellen Margrethe

    2013-01-01

    Electronic self-monitoring of affective symptoms using cell phones is suggested as a practical and inexpensive way to monitor illness activity and identify early signs of affective symptoms. It has never been tested in a randomised clinical trial whether electronic self-monitoring improves outcom...

  11. Historical Consumption of Heating Natural Gas and Thermal Monitoring of a Multifamily High-Rise Building in a Temperate/Cold Climate in Argentina

    Directory of Open Access Journals (Sweden)

    Celina Filippín

    2012-12-01

    Full Text Available This paper analyzes the historical consumption of natural gas in a multifamily high-rise building and the monitored winter thermal behavior of an apartment sample. The building is located in the center of Argentina (latitude: 36º27’S; longitude: 64º27’W, where the climate is a cold temperate with an absolute minimum temperature that may reach −10 °C. The building has two blocks, North and South. The building’s annual gas consumption and its variability between 1996 and 2008 are shown. The South block consumed 78% more gas, a situation expected due to lower solar resource availability and greater vulnerability regarding strong and cold SW winds. Indoor temperatures monitored during 2009 in four apartments are described. The outdoor minimum temperature reached −5 °C, with solar irradiance around 500 W/m2 at midday. Results showed that the average indoor temperatures were 20.1, 20.6, 24.0 and 22.1 °C. The highest consumption value corresponded to the apartment exposed to SW cold winds. Compared to the rest of the building, the apartment on the top floor consumes 59% more energy than the average for the gas consumed throughout the year. The authors assume that the energy potentials of intervention are different, and not necessarily all the apartments should have the same technological response.

  12. Design and implementation of a telemedicine system using Bluetooth protocol and GSM/GPRS network, for real time remote patient monitoring.

    Science.gov (United States)

    Jasemian, Yousef; Nielsen, Lars Arendt

    2005-01-01

    This paper introduces the design and implementation of a generic wireless and Real-time Multi-purpose Health Care Telemedicine system applying Bluetooth protocol, Global System for Mobile Communications (GSM) and General Packet Radio Service (GPRS). The paper explores the factors that should be considered when evaluating different technologies for application in telemedicine system. The design and implementation of an embedded wireless communication platform utilising Bluetooth protocol is described, and the implementation problems and limitations are investigated. The system is tested and its telecommunication general aspects are verified. The results showed that the system has (97.9 +/- 1.3)% Up-time, 2.5 x 10(-5) Bit Error Rate, 1% Dropped Call Rate, 97.4% Call Success Rate, 5 second transmission delay in average, (3.42 +/- 0.11) kbps throughput, and the system may have application in electrocardiography.

  13. An Approach Using Gas Monitoring to Find the Residual TCE Location in the Unsaturated Zone of Woosan Industrial Complex (WIC), Korea

    Science.gov (United States)

    Koh, Y.; Lee, S.; Yang, J.; Lee, K.

    2012-12-01

    An area accommodating various industrial facilities has fairly high probability of groundwater contamination with multiple chlorinated solvents such as trichloroethene (TCE), carbon tetrachloride (CT), and chloroform (CF). Source tracing of chlorinated solvents in the unsaturated zone is an essential procedure for the management and remediation of contaminated area. From the previous study on seasonal variations in hydrological stresses and spatial variations in geologic conditions on a TCE plume, the existence of residual DNAPLs at or above the water table has proved. Since TCE is one of the frequently detected VOCs (Volatile Organic Compounds) in groundwater, residual TCE can be detected by gas monitoring. Therefore, monitoring of temporal and spatial variations in the gas phase TCE contaminant at an industrial complex in Wonju, Korea, were used to find the residual TCE locations. As pilot tests, TCE gas samples collected in the unsaturated zone at 4 different wells were analyzed using SPME (Solid Phase MicroExtraction) fiber and Gas Chromatography (GC). The results indicated that detecting TCE in gas phase was successful from these wells and TCE analysis on gas samples, collected from the unsaturated zone, will be useful for source area characterization. However, some values were too high to doubt the accuracy of the current method, which needs a preliminary lab test with known concentrations. The modified experiment setups using packer at different depths are in process to find residual TCE locations in the unsaturated zone. Meanwhile, several PVD (polyethylene-membrane Passive Vapor Diffusion) samplers were placed under water table to detect VOCs by equilibrium between air in the vial and VOCs in pore water.

  14. All-in-one: a versatile gas sensor based on fiber enhanced Raman spectroscopy for monitoring postharvest fruit conservation and ripening.

    Science.gov (United States)

    Jochum, Tobias; Rahal, Leila; Suckert, Renè J; Popp, Jürgen; Frosch, Torsten

    2016-03-21

    In today's fruit conservation rooms the ripening of harvested fruit is delayed by precise management of the interior oxygen (O2) and carbon dioxide (CO2) levels. Ethylene (C2H4), a natural plant hormone, is commonly used to trigger fruit ripening shortly before entering the market. Monitoring of these critical process gases, also of the increasingly favored cooling agent ammonia (NH3), is a crucial task in modern postharvest fruit management. The goal of this work was to develop and characterize a gas sensor setup based on fiber enhanced Raman spectroscopy for fast (time resolution of a few minutes) and non-destructive process gas monitoring throughout the complete postharvest production chain encompassing storage and transport in fruit conservation chambers as well as commercial fruit ripening in industrial ripening rooms. Exploiting a micro-structured hollow-core photonic crystal fiber for analyte gas confinement and sensitivity enhancement, the sensor features simultaneous quantification of O2, CO2, NH3 and C2H4 without cross-sensitivity in just one single measurement. Laboratory measurements of typical fruit conservation gas mixtures showed that the sensor is capable of quantifying O2 and CO2 concentration levels with accuracy of 3% or less with respect to reference concentrations. The sensor detected ammonia concentrations, relevant for chemical alarm purposes. Due to the high spectral resolution of the gas sensor, ethylene could be quantified simultaneously with O2 and CO2 in a multi-component mixture. These results indicate that fiber enhanced Raman sensors have a potential to become universally usable on-site gas sensors for controlled atmosphere applications in postharvest fruit management.

  15. Developing a protocol to monitor management effects on priority resources in sage steppe habitat at Charles M. Russell National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — In 2015, Charles M. Russell National Wildlife Refuge (CMR) received funds from the United States Fish and Wildlife Service (USFWS) Region 6 Inventory and Monitoring...

  16. Effective components of feedback from Routine Outcome Monitoring (ROM) in youth mental health care: Study protocol of a three-arm parallel-group randomized controlled trial

    NARCIS (Netherlands)

    Sonsbeek, A.M.S. van; Hutschemaekers, G.J.M.; Veerman, J.W.; Tiemens, B.G.

    2014-01-01

    Background: Routine Outcome Monitoring refers to regular measurements of clients' progress in clinical practice, aiming to evaluate and, if necessary, adapt treatment. Clients fill out questionnaires and clinicians receive feedback about the results. Studies concerning feedback in youth mental

  17. A newly designed radiation therapy protocol in combination with prednisolone as treatment for meningoencephalitis of unknown origin in dogs: a prospective pilot study introducing magnetic resonance spectroscopy as monitor tool.

    Science.gov (United States)

    Beckmann, Katrin; Carrera, Inés; Steffen, Frank; Golini, Lorenzo; Kircher, Patrick R; Schneider, Uwe; Bley, Carla Rohrer

    2015-01-31

    A plethora of treatment options have been described for canine meningoencephalitis of unknown origin (MUO), yet a gold standard has not been established. The aim of this prospective pilot study was to document the effect of a newly designed 30 Gray (Gy) radiation therapy (RT) protocol plus corticosteroids as treatment for focal and multifocal MUO, to monitor clinical and imaging changes during the course of the disease with conventional magnetic resonance imaging (MRI) and proton MR Spectroscopy (H-1 MRS) and to detect the occurrence of radiation related side effects. Six dogs (3 with focal and 3 with multifocal lesions) were included in the study. The RT protocol used consisted of 30 Gy in 10 fractions. The neurological status of all six dogs improved during RT, with 3 of 6 cases returning to a normal condition. One dog was euthanized early during follow-up (<3 weeks after end of RT). Three month follow up MRI was normal in one dog and improved in 3 dogs and H-1 MRS normalized in 4. In the dog without improvement of the MRI lesions, the N-acetyl aspartate continued to decrease, while choline and creatine concentrations remained stable during that time. This dog was euthanized 18 month after the end of RT due to relapse. One dog was lost to follow up 12 month after completion of RT. The other 3 dogs are still alive at the time of writing. RT with 30 Gy in 10 fractions can provide an additional option for anti-inflammatory treatment of focal and multifocal MUO. The protocol used for treatment monitoring was feasible while no side effects of RT could be observed during the follow up period. Moreover, H-1 MRS could represent a new and non-invasive tool to control the progression of the disease during the treatment course.

  18. 40 CFR Appendix E to Part 75 - Optional NOX Emissions Estimation Protocol for Gas-Fired Peaking Units and Oil-Fired Peaking Units

    Science.gov (United States)

    2010-07-01

    .... When inserting the probe into the flue gas for the first sampling point in each traverse, sample for at... methodology in § 75.19. 2.1.1Load Selection Establish at least four approximately equally spaced operating load points, ranging from the maximum operating load to the minimum operating load. Select the...

  19. 40Ar/39Ar dating of Quaternary volcanic ashes by multi-collection noble gas mass spectrometry: protocols, precision and intercalibration

    DEFF Research Database (Denmark)

    Storey, Michael; Rivera, Tiffany; Flude, Stephanie

    where potassium-bearing phenocrysts may contain relatively small amounts of radiogenic 40Ar. In 2005, the Quaternary Dating Laboratory, Roskilde University, installed a Nu-Instruments multi-collector Noblesse noble gas mass spectrometer, which is configured with a Faraday detector and three ion...

  20. CO2, CO, and CH4 measurements from tall towers in the NOAA Earth System Research Laboratory's Global Greenhouse Gas Reference Network: instrumentation, uncertainty analysis, and recommendations for future high-accuracy greenhouse gas monitoring efforts

    Science.gov (United States)

    Andrews, A. E.; Kofler, J. D.; Trudeau, M. E.; Williams, J. C.; Neff, D. H.; Masarie, K. A.; Chao, D. Y.; Kitzis, D. R.; Novelli, P. C.; Zhao, C. L.; Dlugokencky, E. J.; Lang, P. M.; Crotwell, M. J.; Fischer, M. L.; Parker, M. J.; Lee, J. T.; Baumann, D. D.; Desai, A. R.; Stanier, C. O.; De Wekker, S. F. J.; Wolfe, D. E.; Munger, J. W.; Tans, P. P.

    2014-02-01

    A reliable and precise in situ CO2 and CO analysis system has been developed and deployed at eight sites in the NOAA Earth System Research Laboratory's (ESRL) Global Greenhouse Gas Reference Network. The network uses very tall (> 300 m) television and radio transmitter towers that provide a convenient platform for mid-boundary-layer trace-gas sampling. Each analyzer has three sample inlets for profile sampling, and a complete vertical profile is obtained every 15 min. The instrument suite at one site has been augmented with a cavity ring-down spectrometer for measuring CO2 and CH4. The long-term stability of the systems in the field is typically better than 0.1 ppm for CO2, 6 ppb for CO, and 0.5 ppb for CH4, as determined from repeated standard gas measurements. The instrumentation is fully automated and includes sensors for measuring a variety of status parameters, such as temperatures, pressures, and flow rates, that are inputs for automated alerts and quality control algorithms. Detailed and time-dependent uncertainty estimates have been constructed for all of the gases, and the uncertainty framework could be readily adapted to other species or analysis systems. The design emphasizes use of off-the-shelf parts and modularity to facilitate network operations and ease of maintenance. The systems report high-quality data with > 93% uptime. Recurrent problems and limitations of the current system are discussed along with general recommendations for high-accuracy trace-gas monitoring. The network is a key component of the North American Carbon Program and a useful model for future research-grade operational greenhouse gas monitoring efforts.

  1. CO2, CO and CH4 measurements from the NOAA Earth System Research Laboratory's Tall Tower Greenhouse Gas Observing Network: instrumentation, uncertainty analysis and recommendations for future high-accuracy greenhouse gas monitoring efforts

    Science.gov (United States)

    Andrews, A. E.; Kofler, J. D.; Trudeau, M. E.; Williams, J. C.; Neff, D. H.; Masarie, K. A.; Chao, D. Y.; Kitzis, D. R.; Novelli, P. C.; Zhao, C. L.; Dlugokencky, E. J.; Lang, P. M.; Crotwell, M. J.; Fischer, M. L.; Parker, M. J.; Lee, J. T.; Baumann, D. D.; Desai, A. R.; Stanier, C. O.; de Wekker, S. F. J.; Wolfe, D. E.; Munger, J. W.; Tans, P. P.

    2013-02-01

    A robust in situ CO2 and CO analysis system has been developed and deployed at eight sites in the NOAA Earth System Research Laboratory's (ESRL) Tall Tower Greenhouse Gas Observing Network. The network uses very tall (> 300 m) television and radio transmitter towers that provide a convenient platform for mid-boundary layer trace gas sampling. Each analyzer has three sample inlets for profile sampling, and a complete vertical profile is obtained every 15 min. The instrument suite at one site has been augmented with a cavity ring-down spectrometer for measuring CO2 and CH4. The long-term stability of the systems in the field is typically better than 0.1 ppm for CO2, 6 ppb for CO, and 0.5 ppb for CH4, as determined from repeated standard gas measurements. The instrumentation is fully automated and includes sensors for measuring a variety of status parameters, such as temperatures, pressures and flow rates that are inputs for automated alerts and quality control algorithms. These algorithms provide detailed and time-dependent uncertainty estimates for all of the gases and could be adapted to other species or analysis systems. The design emphasizes use of off the shelf parts and modularity to facilitate network operations and ease of maintenance. The systems report high-quality data with > 93% uptime. Recurrent problems and limitations of the current system are discussed along with general recommendations for high accuracy trace-gas monitoring. The network is a key component of the North American Carbon Program and a useful model for future research-grade operational greenhouse gas monitoring efforts.

  2. Remote Sensing and the Kyoto Protocol: A Workshop Summary

    Science.gov (United States)

    Rosenqvist, Ake; Imhoff, Marc; Milne, Anthony; Dobson, Craig

    2000-01-01

    The Kyoto Protocol to the United Nations Framework Convention on Climate Change contains quantified, legally binding commitments to limit or reduce greenhouse gas emissions to 1990 levels and allows carbon emissions to be balanced by carbon sinks represented by vegetation. The issue of using vegetation cover as an emission offset raises a debate about the adequacy of current remote sensing systems and data archives to both assess carbon stocks/sinks at 1990 levels, and monitor the current and future global status of those stocks. These concerns and the potential ratification of the Protocol among participating countries is stimulating policy debates and underscoring a need for the exchange of information between the international legal community and the remote sensing community. On October 20-22 1999, two working groups of the International Society for Photogrammetry and Remote Sensing (ISPRS) joined with the University of Michigan (Michigan, USA) to convene discussions on how remote sensing technology could contribute to the information requirements raised by implementation of, and compliance with, the Kyoto Protocol. The meeting originated as a joint effort between the Global Monitoring Working Group and the Radar Applications Working Group in Commission VII of the ISPRS, co-sponsored by the University of Michigan. Tile meeting was attended by representatives from national government agencies and international organizations and academic institutions. Some of the key themes addressed were: (1) legal aspects of transnational remote sensing in the context of the Kyoto Protocol; (2) a review of the current and future and remote sensing technologies that could be applied to the Kyoto Protocol; (3) identification of areas where additional research is needed in order to advance and align remote sensing technology with the requirements and expectations of the Protocol; and 94) the bureaucratic and research management approaches needed to align the remote sensing

  3. Appendix C -- Soil gas analysis of vadose zone monitoring system installation report for McClellan AFB

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-31

    This appendix compiles the data from gas chromatography/mass spectroscopy measurements of gas samples from McClellan AFB soils collected and analyzed in December, 1995. Compounds detected include: vinyl chloride, methylene chloride, chloroethanes, chloroethenes, benzene, chlorobenzenes, propylene, trimethylbenzenes, acetone, toluene, xylenes.

  4. Gravimetric monitoring of water influx into a gas reservoir: A numerical study based on the ensemble kalman filter

    NARCIS (Netherlands)

    Glegola, M.; Ditmar, P.; Hanea, R.G.; Vossepoel, F.C.; Arts, R.; Klees, R.

    2012-01-01

    Water influx into gas fields can reduce recovery factors by 10-40%. Therefore, information about the magnitude and spatial distribution of water influx is essential for efficient management of waterdrive gas reservoirs. Modern geophysical techniques such as gravimetry may provide a direct measure of

  5. Daily electronic self-monitoring of subjective and objective symptoms in bipolar disorder--the MONARCA trial protocol (MONitoring, treAtment and pRediCtion of bipolAr disorder episodes): a randomised controlled single-blind trial

    National Research Council Canada - National Science Library

    Faurholt-Jepsen, Maria; Vinberg, Maj; Christensen, Ellen Margrethe; Frost, Mads; Bardram, Jakob; Kessing, Lars Vedel

    2013-01-01

    .... We developed the MONARCA application for Android-based Smartphones, allowing patients suffering from bipolar disorder to do daily self-monitoring-including an interactive feedback loop between...

  6. A sourcebook of methods and procedures for monitoring and reporting anthropogenic greenhouse gas emissions and removals associated with deforestation, gains and losses of carbon stocks in forests remaining forests, and forestation

    NARCIS (Netherlands)

    Achard, F.; Boschetti, L.; Brown, S.; Brady, M.; DeFries, R.; Grassi, G.; Herold, M.; Mollicone, D.; Mora, B.; Pandey, D.; Souza, C.

    2014-01-01

    A sourcebook of methods and procedures for monitoring and reporting anthropogenic greenhouse gas emissions and removals associated with deforestation, gains and losses of carbon stocks in forests remaining forests, and forestation

  7. GOFC-GOLD REDD Sourcebook, COP-18 release - A sourcebook of methods and procedures for monitoring and reporting anthropogenic greenhouse gas emissions and removals associated with deforestation, gains and losses of carbon stocks in forests remaining forests, and forestation

    NARCIS (Netherlands)

    Achard, F.; Brown, S.; Brady, M.; DeFries, R.; Grassi, G.; Herold, M.; Mollicone, D.; Mora, B.; Pandey, D.; Souza, C.

    2012-01-01

    A sourcebook of methods and procedures for monitoring and reporting anthropogenic greenhouse gas emissions and removals associated with deforestation, gains and losses of carbon stocks in forests remaining forests, and forestation

  8. The effect of reduced disclusion time in the treatment of myofascial pain dysfunction syndrome using immediate complete anterior guidance development protocol monitored by digital analysis of occlusion.

    Science.gov (United States)

    Thumati, Prafulla; Manwani, Rakhi; Mahantshetty, Minal

    2014-10-01

    Chronic myofascial pain dysfunction syndrome (MPDS) has been a nightmare for patients suffering from it, who have been treated with various treatment options with varied outcomes. This population of patients has been neglected, due to nagging revisits to a clinician and decreased percentage of success. T-Scan-based immediate complete anterior guidance development (ICAGD) has been shown by a researcher to reduce the muscle hyperactivity consistent with MPDS. The purpose of this study is to evaluate the effect of reduced disclusion time in lateral excursions in treating the MPDS symptoms. Fifty-one myofascial pain patients with symptoms in the area of the head and neck region were treated with ICAGD. The quantified force and time data from T-Scan records were used to correct the prolonged disclusion time, and the subjects were assessed for the symptom relief. The Wilcoxon Signed Ranks Test was used for statistical analysis (P<0·05 denotes significant changes). The changes in disclusion time and intensity of various symptoms were found to be statistically significant (P<0·05) from Day 1 onwards, and patients were relieved of their symptoms after reduction of disclusion time of less than 0·5 seconds. The results clearly indicated that ICAGD protocol reduces musculoskeletal-based symptoms of MPDS patients, and this protocol can prove beneficial for the clinical treatment success.

  9. A Novel Morphometry-Based Protocol of Automated Video-Image Analysis for Species Recognition and Activity Rhythms Monitoring in Deep-Sea Fauna

    Directory of Open Access Journals (Sweden)

    Paolo Menesatti

    2009-10-01

    Full Text Available The understanding of ecosystem dynamics in deep-sea areas is to date limited by technical constraints on sampling repetition. We have elaborated a morphometry-based protocol for automated video-image analysis where animal movement tracking (by frame subtraction is accompanied by species identification from animals’ outlines by Fourier Descriptors and Standard K-Nearest Neighbours methods. One-week footage from a permanent video-station located at 1,100 m depth in Sagami Bay (Central Japan was analysed. Out of 150,000 frames (1 per 4 s, a subset of 10.000 was analyzed by a trained operator to increase the efficiency of the automated procedure. Error estimation of the automated and trained operator procedure was computed as a measure of protocol performance. Three displacing species were identified as the most recurrent: Zoarcid fishes (eelpouts, red crabs (Paralomis multispina, and snails (Buccinum soyomaruae. Species identification with KNN thresholding produced better results in automated motion detection. Results were discussed assuming that the technological bottleneck is to date deeply conditioning the exploration of the deep-sea.

  10. Design and Tests of a New Rest Gas Ionisation Profile Monitor Installed in the SPS as a Prototype for the LHC

    CERN Document Server

    Fischer, C; Kramer, Daniel; Perret, R; Sillanoli, M; BIW'04

    2004-01-01

    Based on the encouraging results obtained with a Rest Gas Ionization Profile Monitor of a first generation, a new monitor was designed and then installed in the SPS at the beginning of 2002. Its design fulfills all the requirements for a future installation in the LHC where four such monitors are foreseen. After the initial tests performed during the run of 2002, a few upgrading steps appeared necessary mainly in order to cope with the nominal LHC beam characteristics. They were implemented during the subsequent winter stop and the operation of the monitor was resumed in 2003 under various conditions of beam, ranging from a LHC pilot bunch up to beams having in the SPS nominal distributions in bunch number, intensity and energy for injection into the LHC. After a description of the monitor design, the measurements performed with the instrument during these last two years are discussed with the difficulties encountered and the corresponding implemented cures. Data acquired in 2003 on the whole spectrum of LHC ...

  11. The Importance of Baseline Surveys of Near-Surface Gas Geochemistry for CCS Monitoring, as Shown from Onshore Case Studies in Northern and Southern Europe

    Directory of Open Access Journals (Sweden)

    Beaubien Stan E.

    2015-04-01

    Full Text Available The monitoring of the integrity of onshore geological carbon capture and storage projects will require an approach that integrates various methods with different spatial and temporal resolutions. One method proven to be quite effective for site assessment, leakage monitoring, and leakage verification is near-surface gas geochemistry, which includes soil gas concentration and gas flux measurements. Anomalous concentrations or fluxes, relative to the natural background values, can indicate the potential occurrence of a leak. However the natural background can be quite variable, especially for CO2, due to biological production and accumulation in the soil that changes as a function of soil type, land use, geology, temperature, water content, and various other parameters. To better understand how these parameters influence natural, near-surface background values, and to examine the potential of different sampling strategies as a function of the survey goals, this paper reports results from two highly different case studies, one from northern Europe (Voulund, Denmark and one from southern Europe (Sulcis, Sardinia, Italy. The small Voulund site, with its homogeneous soil, climate, and topography, was surveyed twice (in fall and in spring within the EU-funded SiteChar project to examine the effects of different land use practices and seasons on baseline values. Forested land was found to have lower CO2 concentrations during both campaigns compared to cultivated and heath land, and higher CH4 values during the spring sampling campaign. Continuous monitoring probes showed much more detail, highlighting seasonal changes in soil gas CO2 concentrations linked primarily to temperature variations. The much larger Sulcis site, studied within an ENEA-funded project on potential CO2-ECBM (Enhanced Coal Bed Methane deployment, was surveyed at the regional scale and on detailed grids and transects for site assessment purposes. Despite the completely different soil

  12. Gas monitoring system based on photonic crystal fiber sensor%基于光子晶体光纤传感器的瓦斯监测系统

    Institute of Scientific and Technical Information of China (English)

    韦民红; 童敏明; 童夏敏

    2012-01-01

    With special structure and light propagation mechanism, hollow-core bandgap photonic crystal fiber is superior to other common fibers in many aspects, for example, it is more sensitive to detect gas. The sensor is adopted as testing components, and gas monitoring system based on Zig Bee wireless sensor networks is designed. The test results is compared with sample value and the experimental results show that relative error is within 10% and the purpose of on-line gas monitoring is achieved fundamentally.%空芯带隙型光子晶体光纤以其独特的结构和导光机制,具有其它普通光纤无法比拟的优势,这种光纤传感器在气体检测方面灵敏度更高.设计了以这种传感器为检测元件,基于Zig Bee的无线传感器网络的瓦斯监测系统,实验测试结果与样本值比较表明:相对误差在10%以内,基本达到了实时在线监测瓦斯的目的.

  13. 卫星小站远程监控系统通信协议设计与实现%Communication Protocol Design and Realization for the Very Small Aperture Terminal Satellite Station Remote Monitoring System

    Institute of Scientific and Technical Information of China (English)

    贾本凯; 庄卉; 王国平; 郭随平; 陈志禄

    2012-01-01

    For the larger internet delay and higher data packet loss rate of telephone lines, we researched and designed communication protocol for the VSAT satellite station remote monitoring system. We designed 5 categories data frames 46 strips by referencing connection o-riented service serial interface communication protocol system structure and adopting classification first and definition after method. Referencing 802.3 protocol, we designed error retransmission to guarantee the reliability for data frame transmission, by using the data buffer and o-vertime setting. According to the VSAT station parameters actual reading and writing operation, we designed the data frames workflow, make sure the ultimate realization of the system communication protocol design. The test results show that the system communication protocol we designed can ensure system data safe, reliable and correct transmission.%针对电话线路网络延时较大和数据丢包率较高的情况,对VSAT卫星小站远程监控系统通信协议进行了设计研究;借鉴面向连接服务串口通信协议体系结构,采用先分类后定义的方法,设计了5类共46条数据帧;参照802.3协议,利用数据缓冲和超时设置对数据帧可靠性传输进行了出错重传设计;根据VSAT小站参数实际读写操作方式,对数据帧的工作流程进行设计,确保系统通信协议设计的最终实现;测试结果表明:设计的通信协议能够保障系统数据安全可靠正确地传输.

  14. Protocol for the "Michigan Awareness Control Study": A prospective, randomized, controlled trial comparing electronic alerts based on bispectral index monitoring or minimum alveolar concentration for the prevention of intraoperative awareness

    Directory of Open Access Journals (Sweden)

    Avidan Michael S

    2009-11-01

    Full Text Available Abstract Background The incidence of intraoperative awareness with explicit recall is 1-2/1000 cases in the United States. The Bispectral Index monitor is an electroencephalographic method of assessing anesthetic depth that has been shown in one prospective study to reduce the incidence of awareness in the high-risk population. In the B-Aware trial, the number needed to treat in order to prevent one case of awareness in the high-risk population was 138. Since the number needed to treat and the associated cost of treatment would be much higher in the general population, the efficacy of the Bispectral Index monitor in preventing awareness in all anesthetized patients needs to be clearly established. This is especially true given the findings of the B-Unaware trial, which demonstrated no significant difference between protocols based on the Bispectral Index monitor or minimum alveolar concentration for the reduction of awareness in high risk patients. Methods/Design To evaluate efficacy in the general population, we are conducting a prospective, randomized, controlled trial comparing the Bispectral Index monitor to a non-electroencephalographic gauge of anesthetic depth. The total recruitment for the study is targeted for 30,000 patients at both low and high risk for awareness. We have developed a novel algorithm that is capable of real-time analysis of our electronic perioperative information system. In one arm of the study, anesthesia providers will receive an electronic page if the Bispectral Index value is >60. In the other arm of the study, anesthesia providers will receive a page if the age-adjusted minimum alveolar concentration is Discussion Awareness during general anesthesia is a persistent problem and the role of the Bispectral Index monitor in its prevention is still unclear. The Michigan Awareness Control Study is the largest prospective trial of awareness prevention ever conducted. Trial Registration Clinical Trial NCT00689091

  15. A comparison of the performance and compatibility of protocols used by seven monitoring groups to measure stream habitat in the Pacific Northwest

    Science.gov (United States)

    Brett B. Roper; John M. Buffington; Stephen Bennett; Steven H. Lanigan; Eric Archer; Scott T. Downie; John Faustini; Tracy W. Hillman; Shannon Hubler; Kim Jones; Chris Jordan; Philip R. Kaufmann; Glenn Merritt; Chris Moyer; Allen Pleus

    2010-01-01

    To comply with legal mandates, meet local management objectives, or both, many federal, state, and tribal organizations have monitoring groups that assess stream habitat at different scales. This myriad of groups has difficulty sharing data and scaling up stream habitat assessments to regional or national levels because of differences in their goals and data collection...

  16. The effectiveness of a life style modification and peer support home blood pressure monitoring in control of hypertension: protocol for a cluster randomized controlled trial.

    Science.gov (United States)

    Su, Tin Tin; Majid, Hazreen Abdul; Nahar, Azmi Mohamed; Azizan, Nurul Ain; Hairi, Farizah Mohd; Thangiah, Nithiah; Dahlui, Maznah; Bulgiba, Awang; Murray, Liam J

    2014-01-01

    Death rates due to hypertension in low and middle income countries are higher compared to high income countries. The present study is designed to combine life style modification and home blood pressure monitoring for control of hypertension in the context of low and middle income countries. The study is a two armed, parallel group, un-blinded, cluster randomized controlled trial undertaken within lower income areas in Kuala Lumpur. Two housing complexes will be assigned to the intervention group and the other two housing complexes will be allocated in the control group. Based on power analysis, 320 participants will be recruited. The participants in the intervention group (n = 160) will undergo three main components in the intervention which are the peer support for home blood pressure monitoring, face to face health coaching on healthy diet and demonstration and training for indoor home based exercise activities while the control group will receive a pamphlet containing information on hypertension. The primary outcomes are systolic and diastolic blood pressure. Secondary outcome measures include practice of self-blood pressure monitoring, dietary intake, level of physical activity and physical fitness. The present study will evaluate the effect of lifestyle modification and peer support home blood pressure monitoring on blood pressure control, during a 6 month intervention period. Moreover, the study aims to assess whether these effects can be sustainable more than six months after the intervention has ended.

  17. Hydrogen sulfide monitoring and the effects of oil and gas activities on migratory birds in southeastern New Mexico [draft

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This study examined the effects of hydrogen sulfide (H2S), emitted by oil and gas activities, by focusing on migratory birds in southeastern New Mexico. Study sites...

  18. Monitoring of CO2/H2S gas mixture injection in basaltic rocks at Hellisheiði Geothermal Power Plant, Iceland