WorldWideScience

Sample records for monitoring positive ion

  1. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator

    Science.gov (United States)

    Jang, Hyojae; Jin, Hyunchang; Jang, Ji-Ho; Hong, In-Seok

    2016-02-01

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, development of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described.

  2. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Hyojae, E-mail: lkcom@ibs.re.kr; Jin, Hyunchang; Jang, Ji-Ho; Hong, In-Seok [Rare Isotope Science Project, Institute for Basic Science, Daejeon (Korea, Republic of)

    2016-02-15

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, development of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described.

  3. Beam position monitor R&D for keV ion beams

    CERN Document Server

    Naveed, S; Nosych, A; Søby,L

    2013-01-01

    Beams of cooled antiprotons at keV energies shall be provided by the Ultra-low energy Storage Ring (USR) at the Facility for Low energy Antiproton and Ion Research (FLAIR) and the Extra Low ENergy Antiproton ring (ELENA) at CERN's Antiproton Decelerator (AD) facility. Both storage rings put challenging demands on the beam position monitoring (BPM) system as their capacitive pick-ups should be capable of determining the beam position of beams at low intensities and low velocities, close to the noise level of state-of-the-art electronics. In this contribution we describe the design and anticipated performance of BPMs for low-energy ion beams with a focus on the ELENA orbit measurement systems. We also present the particular challenges encountered in the numerical simulation of pickup response at very low beta values. Finally, we provide an outlook on how the implementation of faster algorithms for the simulation of BPM characteristics could potentially help speed up such studies considerably.

  4. On the risk of false positive identification using multiple ion monitoring in qualitative mass spectrometry: large-scale intercomparisons with a comprehensive mass spectral library.

    Science.gov (United States)

    Stein, Stephen E; Heller, David N

    2006-06-01

    Analysts involved in qualitative mass spectrometry have long debated the minimum data requirements for demonstrating that signals from an unknown sample are identical to those from a known compound. Often this process is carried out by comparing a few selected ions acquired by multiple ion monitoring (MIM), with due allowance for expected variability in response. In a few past experiments with electron-ionization mass spectrometry (EI-MS), the number of ions selected and the allowable variability in relative abundance were tested by comparing one spectrum against a library of mass spectra, where library spectra served to represent potential false positive signals in an analysis. We extended these experiments by carrying out large-scale intercomparisons between thousands of spectra and a library of one hundred thousand EI mass spectra. The results were analyzed to gain insights into the identification confidence associated with various numbers of selected ions. A new parameter was investigated for the first time, to take into account that a library spectrum with a different base peak than the search spectrum may still cause a false positive identification. The influence of peak correlation among the specific ions in all the library mass spectra was also studied. Our computations showed that (1) false positive identifications can result from similar compounds, or low-abundance peaks in unrelated compounds if the method calls for detection at very low levels; (2) a MIM method's identification confidence improves in a roughly continuous manner as more ions are monitored, about one order of magnitude for each additional ion selected; (3) full scan spectra still represent the best alternative, if instrument sensitivity is adequate. The use of large scale intercomparisons with a comprehensive library is the only way to provide direct evidence in support of these conclusions, which otherwise depend on the judgment and experience of individual analysts. There are

  5. Development of a system for monitoring the shape, position, and intensity of the extracted relativistic ion beam at the Nuclotron-M accelerator complex at JINR

    Science.gov (United States)

    Vasilev, S. E.; Vishnevskiy, A. V.; Kadykov, M. G.; Makankin, A. M.; Tyutyunnikov, S. I.; Shurygin, A. A.

    2014-11-01

    Test samples of detectors and electronics for them constructed for the purpose of monitoring the "intense" relativistic ion beams extracted from the accelerator of the Nuclotron-M accelerator complex in real time are described. The system was tested in a series of acceleration runs with deuteron beams with an intensity of up to 1010 1/s and beams of carbon nuclei. The system allows one to perform multiple measurements of the two-dimensional distribution of the beam intensity in the plane perpendicular to it and the beam position in this plane during the beam dump and measure the two-dimensional distribution of the target irradiation dose after each beam dump.

  6. Electrostatic beam-position monitor

    CERN Multimedia

    CERN PhotoLab

    1969-01-01

    Electrostatic beam-position monitor installed in its final location (bake-out cover removed). The ISR will contain about 110 of these monitors. Their accuracy is better than 1 mm, their band width about 1 MHz.

  7. The ATLAS positive ion injector

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Bollinger, L.M.; Pardo, R.C.

    1990-01-01

    This paper reviews the design, construction status, and beam tests to date of the positive ion injector (PII) which is replacing the tandem injector for the ATLAS heavy-ion facility. PII consists of an ECR ion source on a 350 KV platform injecting a very low velocity superconducting linac. The linac is composed of an independently-phased array of superconducting four-gap interdigital resonators which accelerate over a velocity range of .006 to .05c. In finished form, PII will be able to inject ions as heavy as uranium into the existing ATLAS linac. Although at the present time little more than 50% of the linac is operational, the indenpently-phased array is sufficiently flexible that ions in the lower half of the periodic table can be accelerated and injected into ATLAS. Results of recent operational experience will be discussed. 5 refs.

  8. Beam Position Monitoring at CLIC

    CERN Document Server

    Prochnow, J

    2003-01-01

    At the European Organisation for Nuclear Research CERN in Geneva, Switzerland the design of the Compact LInear Collider (CLIC) for high energy physics is studied. To achieve the envisaged high luminosity the quadrupole magnets and radio-frequency accelerating structures have to be actively aligned with micron precision and submicron resolution. This will be done using beam-based algorithms which rely on beam position information inside of quadrupoles and accelerating structures. After a general introduction to the CLIC study and the alignment algorithms, the concept of the interaction between beams and radio-frequency structures is given. In the next chapter beam measurements and simulations are described which were done to study the performance of cavity beam position monitors (BPM). A BPM design is presented which is compatible with the multi-bunch operation at CLIC and could be used to align the quadrupoles. The beam position inside the accelerating structures will be measured by using the structures thems...

  9. Tevatron Beam Position Monitor Upgrade

    CERN Document Server

    Wolbers, Stephen; Barker, B; Bledsoe, S; Boes, T; Bowden, Mark; Cancelo, Gugstavo I; Dürling, G; Forster, B; Haynes, B; Hendricks, B; Kasza, T; Kutschke, Robert K; Mahlum, R; Martens, Michael A; Mengel, M; Olsen, M; Pavlicek, V; Pham, T; Piccoli, Luciano; Steimel, Jim; Treptow, K; Votava, Margaret; Webber, Robert C; West, B; Zhang, D

    2005-01-01

    The Tevatron Beam Position Monitor (BPM) readout electronics and software have been upgraded to improve measurement precision, functionality and reliability. The original system, designed and built in the early 1980s, became inadequate for current and future operations of the Tevatron. The upgraded system consists of 960 channels of new electronics to process analog signals from 240 BPMs, new front-end software, new online and controls software, and modified applications to take advantage of the improved measurements and support the new functionality. The new system reads signals from both ends of the existing directional stripline pickups to provide simultaneous proton and antiproton position measurements. Measurements using the new system are presented that demonstrate its improved resolution and overall performance.

  10. CLIC Drive Beam Position Monitor

    CERN Document Server

    Smith, S; Gudkov, D; Soby, L; Syratchev, I

    2011-01-01

    CLIC, an electron-positron linear collider proposed to probe the TeV energy scale, is based on a two-beam scheme where RF power to accelerate a high energy luminosity beam is extracted from a high current drive beam. The drive beam is efficiently generated in a long train at modest frequency and current then compressed in length and multiplied in frequency via bunch interleaving. The drive beam decelerator requires >40000 quadrupoles, each holding a beam position monitor (BPM). Though resolution requirements are modest (2 microns) these BPMs face several challenges. They must be compact and inexpensive. They must operate below waveguide cutoff to insure locality of position signals, ruling out processing at the natural 12 GHz bunch spacing frequency. Wakefields must be kept low. We find compact conventional stripline BPM with signals processed below 40 MHz can meet requirements. Choices of mechanical design, operating frequency, bandwidth, calibration and processing algorithm are presented. Calculations of wa...

  11. The logarithmic beam position monitor

    Science.gov (United States)

    Medvedko, Evgeny A.; Smith, Stephen R.

    2000-11-01

    Modern logarithmic amplifiers offer wide dynamic range, high bandwidth, good logarithmic conformance, and low cost making them attractive for beam position measurements. A log-ratio beam position monitor has been designed and built at SLAC for use at the PEP-II B-Factory. An integrated circuit logarithmic amplifier from Analog Devices, the AD8307, recovers the envelope of the 476 MHz harmonic of the beam signal. A log BPM board with two logarithmic and one differential amplifier performs the basic function of forming an output voltage proportional to the difference of the logarithms of the signal amplitudes on opposite electrodes. This voltage is approximately linear with beam position. For this application, we have limited the video bandwidth of the log amps to 50 kHz in order to remove fill pattern dependence. The log BPM board has an interface for testing and simulating beam offsets. The log BPMs were developed for a PEP-II ring protection chassis. Here the log BPMs function to identify dangerous orbit excursions. These excursions are signaled to a system, which can dump the beam. Two such chassis serve to protect the PEP-II rings.

  12. LHC Report: Positive ion run!

    CERN Multimedia

    Mike Lamont for the LHC Team

    2011-01-01

    The current LHC ion run has been progressing very well. The first fill with 358 bunches per beam - the maximum number for the year - was on Tuesday, 15 November and was followed by an extended period of steady running. The quality of the beam delivered by the heavy-ion injector chain has been excellent, and this is reflected in both the peak and the integrated luminosity.   The peak luminosity in ATLAS reached 5x1026 cm-2s-1, which is a factor of ~16 more than last year's peak of 3x1025 cm-2s-1. The integrated luminosity in each of ALICE, ATLAS and CMS is now around 100 inverse microbarn, already comfortably over the nominal target for the run. The polarity of the ALICE spectrometer and solenoid magnets was reversed on Monday, 28 November with the aim of delivering another sizeable amount of luminosity in this configuration. On the whole, the LHC has been behaving very well recently, ensuring good machine availability. On Monday evening, however, a faulty level sensor in the cooling towe...

  13. Design, test, and calibration of an electrostatic beam position monitor

    OpenAIRE

    Maurice Cohen-Solal

    2010-01-01

    The low beta of proton or ion beams favors an electrostatic pickup to measure the transverse beam centroid position. Often papers on beam position monitors (BPM) are focused on a particular aspect of the problem; however, it is important to consider all various issues of a position measurement system. Based on our experience at the IPHI (high intensity injector proton) facility at CEA-Saclay, this paper will address all aspects to design, test, and calibrate a BPM for proton linear accelerato...

  14. The Electro-Optic Beam Position Monitor

    CERN Document Server

    Doherty, James

    2013-01-01

    This reports outlines the development of a new ultra-wideband electro-optic beam position monitor (EO-BPM) for use in the Large Hadron Collider (LHC) which utilises birefringent crystals and the Pockels effect to monitor beam position. The physical principles behind the operation of the device and tested topology, which incorporates two Lithium Tantalate crystals, is discussed.

  15. Radiocarbon positive-ion mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, Stewart P.H.T.; Shanks, Richard P. [Scottish Universities Environmental Research Centre (SUERC), Scottish Enterprise Technology Park, East Kilbride G75 0QF (United Kingdom); Donzel, Xavier; Gaubert, Gabriel [Pantechnik S.A., 13 Rue de la Résistance, 14400 Bayeux (France)

    2015-10-15

    Proof-of-principle of a new mass spectrometric technique for radiocarbon measurement is demonstrated. Interfering nitrogen and hydrocarbon molecules are largely eliminated in a charge-exchange cell operating on non-metallic gas. The positive-to-negative ion conversion is the reverse of that conventionally used in accelerator mass spectrometry (AMS) and is compatible with plasma ion sources that may be significantly more efficient and capable of greater output than are AMS sputter ion sources. The Nanogan electron cyclotron resonance (ECR) ion source employed exhibited no sample memory and the >50 kyrs age range of AMS was reproduced. A bespoke prototype new instrument is now required to optimise the plasma and cell physics and to realise hypothetical performance gains over AMS.

  16. Actinide ion sensor for pyroprocess monitoring

    Science.gov (United States)

    Jue, Jan-fong; Li, Shelly X.

    2014-06-03

    An apparatus for real-time, in-situ monitoring of actinide ion concentrations which comprises a working electrode, a reference electrode, a container, a working electrolyte, a separator, a reference electrolyte, and a voltmeter. The container holds the working electrolyte. The voltmeter is electrically connected to the working electrode and the reference electrode and measures the voltage between those electrodes. The working electrode contacts the working electrolyte. The working electrolyte comprises an actinide ion of interest. The reference electrode contacts the reference electrolyte. The reference electrolyte is separated from the working electrolyte by the separator. The separator contacts both the working electrolyte and the reference electrolyte. The separator is ionically conductive to the actinide ion of interest. The reference electrolyte comprises a known concentration of the actinide ion of interest. The separator comprises a beta double prime alumina exchanged with the actinide ion of interest.

  17. Integrity monitoring in WLAN positioning systems

    Science.gov (United States)

    Yerubandi, Sri Phani; Kalgikar, Bhargav; Gunturu, Maheedhar; Akopian, David; Chen, Philip

    2009-05-01

    Indoor Positioning Systems using WLANs have become very popular in recent years. These systems are spawning a new class of applications like activity recognition, surveillance, context aware computing and location based services. While Global Positioning System (GPS) is the natural choice for providing navigation in outdoor environment, the urban environment places a significant challenge for positioning using GPS. The GPS signals can be significantly attenuated, and often completely blocked, inside buildings or in urban canyons. As the performance of GPS in indoor environments is not satisfactory, indoor positioning systems based on location fingerprinting of WLANs is being suggested as a viable alternative. The Indoor WLAN Positioning Systems suffer from several phenomena. One of the problems is the continual availability of access points, which directly affects the positioning accuracy. Integrity monitoring of WLAN localization, which computes WLAN positioning with different sets of access points is proposed as a solution for this problem. The positioning accuracy will be adequate for the sets which do not contain faulty or the access points which are offline, while the sets with such access points will fail and they will report random and inaccurate results. The proposed method identifies proper sets and identifies the rogue access points using prediction trajectories. The combination of prediction and correct access point set selection provides a more accurate result. This paper discusses about integrity monitoring method for WLAN devices and followed by how it monitors and developing the application on mobile platforms.

  18. Design of the AGS Booster beam position monitor system

    Energy Technology Data Exchange (ETDEWEB)

    Beadle, E.; Brennan, J.M.; Ciardullo, D.J.; Savino, J.; Stanziani, V.; Thomas, R.; Van Zwienen, W.; Witkover, R.L.; Schulte, E. (Brookhaven National Lab., Upton, NY (USA); European Organization for Nuclear Research, Geneva (Switzerland))

    1989-01-01

    The AGS Booster beam position monitor system must cover a wide range of beam intensity and bunch length for proton and heavy ion acceleration. The detector is designed to maintain 0.1 mm local tolerance following 300{degree}C bakeout. The electronics will be located in the tunnel, communicating via fiber optic links to avoid ground loops. The design will be described and test results for prototype units presented. 5 refs., 4 figs.

  19. LEDA beam diagnostics instrumentation: Beam position monitors

    Science.gov (United States)

    Barr, D.; Day, L.; Gilpatrick, J. D.; Kasemir, K.-U.; Martinez, D.; Power, J. F.; Shurter, R.; Stettler, M.

    2000-11-01

    The Low Energy Demonstration Accelerator (LEDA) facility located at Los Alamos National Laboratory (LANL) accelerates protons to an energy of 6.7 MeV and current of 100 mA operating in either a pulsed or cw mode. Of key importance to the commissioning and operations effort is the Beam Position Monitor system (BPM). The LEDA BPM system uses five micro-stripline beam position monitors processed by log ratio processing electronics with data acquisition via a series of custom TMS320C40 Digital Signal Processing (DSP) boards. Of special interest to this paper is the operation of the system, the log ratio processing, and the system calibration technique. This paper will also cover the DSP system operations and their interaction with the main accelerator control system.

  20. Leda Beam Diagnostics Instrumentation Beam Position Monitors

    CERN Document Server

    Barr, D

    2000-01-01

    The Low Energy Demonstration Accelerator (LEDA) facility located at Los Alamos National Laboratory (LANL) accelerates protons to an energy of 6.7-MeV and current of 100-mA operating in either a pulsed or cw mode. Of key importance to the commissioning and operations effort is the Beam Position Monitor system (BPM). The LEDA BPM system uses five micro-stripline beam position monitors processed by log ratio processing electronics with data acquisition via a series of custom TMS32OC40 Digital Signal Processing (DSP) boards. Of special interest to this paper is the operation of the system, the log ratio processing, and the system calibration technique. This paper will also cover the DSP system operations and their interaction with the main accelerator control system.

  1. Stripline Beam Position Monitors For "ELBE"

    CERN Document Server

    Evtushenko, P; Büttig, H; Michel, P; Schurig, R; Wustmann, B

    2001-01-01

    At the Forschungszentrum Rossendorf (FZR), the superconducting electron linear accelerator ELBE is under construction. It will deliver an electron beam with an energy of up to 40 MeV at an average beam current of up to 1mA. The accelerator uses standing wave DESY type RF cavities operating at 1.3 GHz. A non-destructive system for the measurement of the beam position at about 30 locations is needed. To obtain the required resolution of 100μm, a system of stripline beam position monitors (BPM) is under design.

  2. Laser Wire and Beam Position Monitor tests

    CERN Document Server

    Boogert, S T; Lyapin, A; Nevay, L; Snuverink, J

    2013-01-01

    This subtask involved two main activities; Firstly the development and subsequent usage of high resolution beam position monitors (BPM) for the International Linear Collider (ILC) and Compact Linear Collider projects (CLIC); and secondly the development of a laser-wire (LW) transverse beam size measurement systems. This report describes the technical progress achieved at a large-scale test ILC compatible BPM system installed at the Accelerator Test Facility 2 (ATF2). The ATF2 is an energy-scaled demonstration system for the final focus systems required to deliver the particle beams to collision at the ILC and CLIC. The ATF2 cavity beam position monitor system is one of the largest of its kind and rivals systems used at free electron lasers. The ATF2 cavity beam position system has achieved a position resolutionof 250 nm (with signal attuenation) and 27 nm (without attenuation). The BPM system has been used routinely for lattice diagnostics, beam based alignment and wakefield measurements. Extensive experience...

  3. Design, test, and calibration of an electrostatic beam position monitor

    Directory of Open Access Journals (Sweden)

    Maurice Cohen-Solal

    2010-03-01

    Full Text Available The low beta of proton or ion beams favors an electrostatic pickup to measure the transverse beam centroid position. Often papers on beam position monitors (BPM are focused on a particular aspect of the problem; however, it is important to consider all various issues of a position measurement system. Based on our experience at the IPHI (high intensity injector proton facility at CEA-Saclay, this paper will address all aspects to design, test, and calibrate a BPM for proton linear accelerators, while emphasizing the determination of the absolute beam position. We present details of the readout electronics, and describe the calibration of the BPM using a test station. For calculation and simulation of the electrical signals we developed a Mathematica script. The error analysis presented, on the basis of six BPMs installed in the high energy section of IPHI, demonstrates the expected accuracy of the position measurement. These studies also identify the parameters that could improve the performance of the beam position control. The experience from these developments is currently being used for the BPM design and test stand dedicated to the Spiral2 accelerator at Ganil-Caen which will deliver heavy ion beams.

  4. Design, test, and calibration of an electrostatic beam position monitor

    Science.gov (United States)

    Cohen-Solal, Maurice

    2010-03-01

    The low beta of proton or ion beams favors an electrostatic pickup to measure the transverse beam centroid position. Often papers on beam position monitors (BPM) are focused on a particular aspect of the problem; however, it is important to consider all various issues of a position measurement system. Based on our experience at the IPHI (high intensity injector proton) facility at CEA-Saclay, this paper will address all aspects to design, test, and calibrate a BPM for proton linear accelerators, while emphasizing the determination of the absolute beam position. We present details of the readout electronics, and describe the calibration of the BPM using a test station. For calculation and simulation of the electrical signals we developed a Mathematica script. The error analysis presented, on the basis of six BPMs installed in the high energy section of IPHI, demonstrates the expected accuracy of the position measurement. These studies also identify the parameters that could improve the performance of the beam position control. The experience from these developments is currently being used for the BPM design and test stand dedicated to the Spiral2 accelerator at Ganil-Caen which will deliver heavy ion beams.

  5. Statistical Treatment of Beam Position Monitor Data

    CERN Document Server

    Reiter, Andreas; Chorniy, Oleksandr

    2016-01-01

    We review beam position monitors adopting the perspective of an analogue-to- digital converter in a sampling data acquisition system. From a statistical treatment of independent data samples we derive basic formulae of position uncertainty for beam position monitors. Uncertainty estimates only rely on a few simple model parameters and have been calculated for two "practical" signal shapes, a square pulse and a triangular pulse. The analysis has been carried out for three approaches: the established signal integration and root-sum-square ap- proaches, and a least-square fit for the models of direct proportion and straight-line. The latter approach has not been reported in the literature so far. The straight-line fit provides the most robust estimator since it does not require baseline restoration, it is immune to signal offsets, and its standard deviation is smallest. Consequently, of the analysed estimators it promises the highest fidelity of results. The fit approach represents a simple, natural way to analy...

  6. Formation of thin film of negative and positive ions

    Energy Technology Data Exchange (ETDEWEB)

    Horino, Yuji; Tsubouchi, Nobuteru [Osaka National Research Inst., AIST, Ikeda (Japan)

    1997-02-01

    Positive and negative ions deposition apparatus (PANDA) was developed by us as new synthesis method of materials. This apparatus is able to form simultaneously or independently the positive and negative ion beams to separate the mass and to control the energy from 10 eV to 3 KeV. It consists of positive beam line, negative beam line and a film formation room. Microwave discharge ion source and plasma sputtering source are used as the positive ion and the negative ion source, respectably. The beam generation test was carried out. The negative ion beams were generated from silicon wafer (target) and measured by MS. The mass spectrum of extracted negative silicon beams showed mass number 28, 29, and 30 of Si{sup -} and Si{sub 2}{sup -}. It proved that ions were separated in the isotope level. Therefore, film, it`s purity is isotope level, may be formed by such ion beams. (S.Y.)

  7. A Two Bunch Beam Position Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Medvedko, E.; Aiello, R.; Smith, S.; /SLAC

    2011-09-12

    A new beam position monitor digitizer module has been designed, tested and tuned at SLAC. This module, the electron-positron beam position monitor (epBPM), measures position of single electron and positron bunches for the SLC, LINAC, PEPII injections lines and final focus. The epBPM has been designed to improve resolution of beam position measurements with respect to existing module and to speed feedback correction. The required dynamic range is from 5 x 10{sup 8} to 10{sup 11} particles per bunch (46dB). The epBPM input signal range is from {+-}2.5 mV to {+-}500 mV. The pulse-to-pulse resolution is less than 2 {mu}m for 5 x 10{sup 10} particles per bunch for the 12 cm long striplines, covering 30{sup o} at 9 mm radius. The epBPM module has been made in CAMAC standard, single width slot, with SLAC type timing connector. 45 modules have been fabricated. The epBPM module has four input channels X{sup +}, X{sup -}, Y{sup +}, Y{sup -} (Fig. 1), named to correspond with coordinates of four striplines - two in horizontal and two in vertical planes, processing signals to the epBPM inputs. The epBPM inputs are split for eight signal processing channels to catch two bunches, first - the positron, then the electron bunch in one cycle of measurements. The epBPM has internal and external trigger modes of operations. The internal mode has two options - with or without external timing, catching only first bunch in the untimed mode. The epBPM has an on board calibration circuit for measuring gain of the signal processing channels and for timing scan of programmable digital delays to synchronize the trigger and the epBPM input signal's peak. There is a mode for pedestal measurements. The epBPM has 3.6 {mu}s conversion time.

  8. Excitation of gases with positive ions

    Energy Technology Data Exchange (ETDEWEB)

    Sercel, P.C.; Bashkin, S.; Anderson, J.A.; Thiede, D.A.; Bruch, R.F.; DeWitt, D.; Fuelling, S.

    1988-04-01

    The aurora borealis presents problems the solutions to which depend partly on knowing the cross sections for the excitation of states in atmospheric gases by the impact of energetic protons and electrons. We have begun a study of the excitation processes induced in N/sub 2/ and O/sub 2/ by energetic incident positive ions (H/sup +/, H/sub 2//sup +/, H/sub 3//sup +/). The particles, accelerated with a 2 MV Van de Graaff accelerator, enter a differentially pumped gas cell in which the pressure can be varied up to 80 mTorr and held constant to 0.1 mTorr at each setting. Light generated in the cell is observed at 90/sup 0/ to the particle beam. The light is reflected by a mirror system so as to enter the input slit of a 1-m, air, Czerny-Turner spectrometer. The 1200 l/mm grating is blazed at 500 nm. A cooled 9659B photomultiplier tube detects the light which appears at the exit slit, and transmits intensity information to a 4000-channel multiscaler. The incident beam is received on an insulated plate, and the collected charge provides a signal which advances both the grating angle and the channel in the multiscaler. Using a line width of 0.03 to 0.1 nm, we have obtained spectra from 360 to 750 nm. Many transitions have been identified, most from N/sub 2//sup +/ O/sub 2//sup -/, but some from neutral molecules and monatomic emitters. Data have been taken as a function of pressure and type of incident particle for a particle velocity corresponding to 500 keV protons. There is no discernible difference in relative yield for the different bombarding species. The line intensities all appear to be linear with pressure over the range we used. We will describe our results and discuss our approach to making cross-section measurements. Possible extensions of the experiments into different directions will also be mentioned.

  9. Noise estimation of beam position monitors at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Shen, X. [Indiana Univ., Bloomington, IN (United States); Bai, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Lee, S. Y. [Indiana Univ., Bloomington, IN (United States)

    2014-02-10

    Beam position monitors (BPM) are used to record the average orbits and transverse turn-by-turn displacements of the beam centroid motion. The Relativistic Hadron Ion Collider (RHIC) has 160 BPMs for each plane in each of the Blue and Yellow rings: 72 dual-plane BPMs in the insertion regions (IR) and 176 single-plane modules in the arcs. Each BPM is able to acquire 1024 or 4096 consecutive turn-by-turn beam positions. Inevitably, there are broadband noisy signals in the turn-by-turn data due to BPM electronics as well as other sources. A detailed study of the BPM noise performance is critical for reliable optics measurement and beam dynamics analysis based on turn-by-turn data.

  10. ORNL positive ion neutral beam program

    Energy Technology Data Exchange (ETDEWEB)

    Whealton, J.H.; Haselton, H.H.; Barber, G.C.

    1978-01-01

    The neutral beam group at Oak Ridge National Laboratory has constructed neutral beam generators for the ORMAK and PLT devices, is presently constructing neutral beam devices for the ISX and PDX devices, and is contemplating the construction of neutral beam systems for the advanced TNS device. These neutral beam devices stem from the pioneering work on ion sources of G. G. Kelley and O. B. Morgan. We describe the ion sources under development at this Laboratory, the beam optics exhibited by these sources, as well as some theoretical considerations, and finally the remainder of the beamline design.

  11. Method for Continuous Monitoring of Electrospray Ion Formation

    Science.gov (United States)

    Metzler, Guille; Crathern, Susan; Bachmann, Lorin; Fernández-Metzler, Carmen; King, Richard

    2017-10-01

    A method for continuously monitoring the performance of electrospray ionization without the addition of hardware or chemistry to the system is demonstrated. In the method, which we refer to as SprayDx, cluster ions with solvent vapor natively formed by electrospray are followed throughout the collection of liquid chromatography-selected reaction monitoring data. The cluster ion extracted ion chromatograms report on the consistency of the ion formation and detection system. The data collected by the SprayDx method resemble the data collected for postcolumn infusion of analyte. The response of the cluster ions monitored reports on changes in the physical parameters of the ion source such as voltage and gas flow. SprayDx is also observed to report on ion suppression in a fashion very similar to a postcolumn infusion of analyte. We anticipate the method finding utility as a continuous readout on the performance of electrospray and other atmospheric pressure ionization processes. [Figure not available: see fulltext.

  12. Ion Mobility Spectrometry for Water Monitoring Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Current water quality monitors aboard the International Space Station (ISS) are specialized and provide limited data. The Colorimetric Water Quality Monitor Kit...

  13. Ion flow and sheath structure near positively biased electrodes

    Science.gov (United States)

    Hood, R.; Scheiner, B.; Baalrud, S. D.; Hopkins, M. M.; Barnat, E. V.; Yee, B. T.; Merlino, R. L.; Skiff, F.

    2016-11-01

    What effect does a dielectric material surrounding a small positively biased electrode have on the ion flow and sheath structure near the electrode? Measurements of the ion velocity distribution function and plasma potential near positively biased electrodes were made using laser-induced fluorescence and an emissive probe. The results were compared with 2D particle-in-cell simulations. Both measurements and simulations showed that when the positive electrode was surrounded by the dielectric material, ions were accelerated toward the electrode to approximately 0.5 times the ion sound speed before being deflected radially by the electron sheath potential barrier of the electrode. The axial potential profile in this case contained a virtual cathode. In comparison, when the dielectric material was removed from around the electrode, both the ion flow and virtual cathode depth near the electrode were dramatically reduced. These measurements suggest that the ion presheath from the dielectric material surrounding the electrode may enclose the electron sheath of the electrode, resulting in a virtual cathode that substantially influences the ion flow profile in the region.

  14. Performance of positive ion based high power ion source of EAST neutral beam injector

    Science.gov (United States)

    Hu, Chundong; Xie, Yahong; Xie, Yuanlai; Liu, Sheng; Xu, Yongjian; Liang, Lizhen; Jiang, Caichao; Li, Jun; Liu, Zhimin

    2016-02-01

    The positive ion based source with a hot cathode based arc chamber and a tetrode accelerator was employed for a neutral beam injector on the experimental advanced superconducting tokamak (EAST). Four ion sources were developed and each ion source has produced 4 MW @ 80 keV hydrogen beam on the test bed. 100 s long pulse operation with modulated beam has also been tested on the test bed. The accelerator was upgraded from circular shaped to diamond shaped in the latest two ion sources. In the latest campaign of EAST experiment, four ion sources injected more than 4 MW deuterium beam with beam energy of 60 keV into EAST.

  15. Small radio frequency driven multicusp ion source for positive hydrogen ion beam production

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, L.T.; Herz, P.R.; Leung, K.N.; Pickard, D.S. (Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 (United States))

    1994-04-01

    A compact, 2.5 cm diam rf-driven multicusp ion source has been developed and tested for H[sup +] ion production in pulse mode operation. The source is optimized for atomic hydrogen ion species and extractable current. It is found that hydrogen ion beam current densities in excess of 650 mA/cm[sup 2] can be achieved with H[sup +] species above 80%. The geometry and position of the porcelain-coated copper antenna were found to be of great significance in relation to the efficiency of the ion source.

  16. Efficiency of position sensitive PPAC for various ions

    CERN Document Server

    Hua Hui; Li Xiang Qing; Qian Tao; Wu He Yu; JinGenMing; Tan Ji Lian; Zhan Wen Long; Duan Li Min; Xiao Zhi Guang; Guo Zhong Yan; Li Zu Yu; Wang Hong Wei; Wang Shu Fan

    2002-01-01

    The detection efficiencies of a position sensitive parallel plate avalanche counter, measured with 40 MeV/u sup 1 sup 7 N beam bombarding on a 621 mg/cm sup 2 sup 1 sup 9 sup 7 Au target, were observed to be significantly different for different ions from helium to oxygen. Furthermore, for a given type of ion, the efficiency decreases with the increase of the incident energy.

  17. Ion-acoustic double layers in magnetized positive-negative ion plasmas with nonthermal electrons

    Science.gov (United States)

    El-Labany, S. K.; Sabry, R.; El-Taibany, W. F.; Elghmaz, E. A.

    2012-07-01

    The nonlinear ion-acoustic double layers (IADLs) in a warm magnetoplasma with positive-negative ions and nonthermal electrons are investigated. For this purpose, the hydrodynamic equations for the positive-negative ions, nonthermal electron density distribution, and the Poisson equation are used to derive a modified Zakharov-Kuznetsov (MZK) equation, in the small amplitude regime. It is found that compressive and rarefactive IADLs strongly depend on the mass and density ratios of the negative-to-positive ions as well as the nonthermal electron parameter. Also, it is shown that there are one critical value for the density ratio of the negative-to-positive ions ( ν), the ratio between unperturbed electron-to-positive ion density ( μ), and the nonthermal electron parameter ( β), which decide the existence of positive and negative IADLs. The present study is applied to examine the small amplitude nonlinear IADL excitations for the (H+, O2-) and (H+,H-) plasmas, where they are found in the D- and F-regions of the Earth's ionosphere. This investigation should be helpful in understanding the salient features of the nonlinear IADLs in either space or laboratory plasmas where two distinct groups of ions and non-Boltzmann distributed electrons are present.

  18. Report III on Switchyard beam position monitor

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Hengjie

    1994-09-01

    In this report, we will first discuss some basic beam position measurement schemes. Then, we will analyze the characteristics of several possible bpm designs to find out the optimum scheme for the switchyard application. Finally, the design of the second SY BPM prototype generated from our research will be introduced. As a by-product of developing the second prototype, a possible design of the bpm for handling fast spill with very short duty-cycle has also been found.

  19. Beam position monitor data acquisition for the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Lenkszus, F.R.; Kahana, E.; Votaw, A.J.; Decker, G.A.; Chung, Y.; Ciarlette, D.J.; Laird, R.J.

    1993-01-01

    This paper describes the Beam Position Monitor (BPM) data acquisition scheme for the Advanced Photon Source (APS) storage ring. The storage ring contains 360 beam position monitors distributed around its 1104-meter circumference. The beam position monitor data acquisition system is capable of making turn-by-turn measurements of all BPMs simultaneously. It is VXI-based with each VXI crate containing the electronics for 9 BPMS. The VXI Local Bus is used to provide sustained data transfer rates of up to 13 mega-transfers per second to a scanner module. The system provides single-bunch tracking, bunch-to-bunch measurements, fast digital-averaged positions, beam position history buffering, and synchronized multi-turn measurements. Data is accessible to the control system VME crates via an MXI bus. Dedicated high-speed ports are provided to supply position data to beam orbit feedback systems.

  20. Beam position monitor data acquisition for the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Lenkszus, F.R.; Kahana, E.; Votaw, A.J.; Decker, G.A.; Chung, Y.; Ciarlette, D.J.; Laird, R.J.

    1993-06-01

    This paper describes the Beam Position Monitor (BPM) data acquisition scheme for the Advanced Photon Source (APS) storage ring. The storage ring contains 360 beam position monitors distributed around its 1104-meter circumference. The beam position monitor data acquisition system is capable of making turn-by-turn measurements of all BPMs simultaneously. It is VXI-based with each VXI crate containing the electronics for 9 BPMS. The VXI Local Bus is used to provide sustained data transfer rates of up to 13 mega-transfers per second to a scanner module. The system provides single-bunch tracking, bunch-to-bunch measurements, fast digital-averaged positions, beam position history buffering, and synchronized multi-turn measurements. Data is accessible to the control system VME crates via an MXI bus. Dedicated high-speed ports are provided to supply position data to beam orbit feedback systems.

  1. The SupraThermal Ion Monitor for space weather predictions.

    Science.gov (United States)

    Allegrini, F; Desai, M I; Livi, S; McComas, D J; Ho, G C

    2014-05-01

    Measurement of suprathermal energy ions in the heliosphere has always been challenging because (1) these ions are situated in the energy regime only a few times higher than the solar wind plasma, where intensities are orders of magnitude higher and (2) ion energies are below or close to the threshold of state-of-art solid-state detectors. Suprathermal ions accelerated at coronal mass ejection-driven shocks propagate out ahead of the shocks. These shocks can cause geomagnetic storms in the Earth's magnetosphere that can affect spacecraft and ground-based power and communication systems. An instrument with sufficient sensitivity to measure these ions can be used to predict the arrival of the shocks and provide an advance warning for potentially geo-effective space weather. In this paper, we present a novel energy analyzer concept, the Suprathermal Ion Monitor (STIM) that is designed to measure suprathermal ions with high sensitivity. We show results from a laboratory prototype and demonstrate the feasibility of the concept. A list of key performances is given, as well as a discussion of various possible detectors at the back end. STIM is an ideal candidate for a future space weather monitor in orbit upstream of the near-earth environment, for example, around L1. A scaled-down version is suitable for a CubeSat mission. Such a platform allows proofing the concept and demonstrating its performance in the space environment.

  2. CCD based beam loss monitor for ion accelerators

    Science.gov (United States)

    Belousov, A.; Mustafin, E.; Ensinger, W.

    2014-04-01

    Beam loss monitoring is an important aspect of proper accelerator functioning. There is a variety of existing solutions, but each has its own disadvantages, e.g. unsuitable dynamic range or time resolution, high cost, or short lifetime. Therefore, new options are looked for. This paper shows a method of application of a charge-coupled device (CCD) video camera as a beam loss monitor (BLM) for ion beam accelerators. The system was tested with a 500 MeV/u N+7 ion beam interacting with an aluminum target. The algorithms of camera signal processing with LabView based code and beam loss measurement are explained. Limits of applicability of this monitor system are discussed.

  3. A wire scanning type position monitor for an undulator radiation

    Science.gov (United States)

    Zhang, Xiaowei; Sugiyama, Hiroshi; Ando, Masami; Xia, Shaojian; Shiwaku, Hideaki

    1995-02-01

    A scanning wire position monitor for insertion devices was designed and installed in an x-ray undulator beam line. It consists of a graphite wire, a copper mesh for electric shielding, and a motor-driven linear guide. The wire of the monitor was tested under the undulator radiation thermal load. It has been found that the signal level of the monitor was proportional to the radiation power density on the wire. Even when the wire crossed the beam during the x-ray experiment, no detectable influence on the experiment was observed.

  4. A new digital beam position monitor in SSRF

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The newly developed Digital Beam Position Monitor (DBPM) system is introduced. The DBPM system differs with the conventional beam position monitor system in the use of DSP chips and the digital signal processing technology. It can be programmed on-line to select operation modes through EPICS control panel, and to measure various parameters of the third generation synchrotron radiation facility. This DBPM system can be used in the pre-injector LINAC, the transfer lines, the booster synchrotron and the storage ring. The electronic parameters of the DBPM system itself have been measured also.

  5. EPICS interface to Libera electron beam position monitor

    Institute of Scientific and Technical Information of China (English)

    YAN Yingbing; LENG Yongbin; LIU Dekang; CHEN Yongzhong; YIN Chongxian

    2008-01-01

    SSRF diagnostics system will adopt a new generation digital electron beam position processor,Libera,as the signal condition,signal processing and data acquisition device for beam position monitor.In order to provide a uniform data and control interface for users,we developed an EPICS interface based on Control System Programming Interface(CSPI)layer,allowing the performance of the electron beam to be monitored through EPICS channels.In this interface a new record type for BPM was defined and its associated support routines were implemented.

  6. Beam Position Monitor Electronics Upgrade for Fermilab Switchyard

    CERN Document Server

    Stabile, P; Fitzgerald, J A; Liu, N; Morris, D K; Prieto, P S; Seraphin, J P

    2015-01-01

    The beam position monitor (BPM) system for Fermilab Switchyard (SY) provides the position, intensity and integrated intensity of the 53.10348 MHz RF bunched resonant extracted beam from the Main Injector over 4 seconds of spill. The total beam intensity varies from 1x10^11 to 1x10^13 protons. The spill is measured by stripline beam postion monitors and resonant circuit. The BPMs have an external resonant circuit tuned to 53.10348 MHz. The corresponding voltage signal out of the BPM has been estimated to be between -110 dBm and -80 dBm.

  7. ENERGETIC PHOTON AND ELECTRON INTERACTIONS WITH POSITIVE IONS

    Energy Technology Data Exchange (ETDEWEB)

    Phaneuf, Ronald A. [UNR

    2013-07-01

    The objective of this research is a deeper understanding of the complex multi-electron interactions that govern inelastic processes involving positive ions in plasma environments, such as those occurring in stellar cares and atmospheres, x-ray lasers, thermonuclear fusion reactors and materials-processing discharges. In addition to precision data on ionic structure and transition probabilities, high resolution quantitative measurements of ionization test the theoretical methods that provide critical input to computer codes used for plasma modeling and photon opacity calculations. Steadily increasing computational power and a corresponding emphasis on simulations gives heightened relevance to precise and accurate benchmark data. Photons provide a highly selective probe of the internal electronic structure of atomic and molecular systems, and a powerful means to better understand more complex electron-ion interactions.

  8. BEAM POSITION AND PHASE MONITORS FOR THE LANSCE LINAC

    Energy Technology Data Exchange (ETDEWEB)

    McCrady, Rodney C. [Los Alamos National Laboratory; Gilpatrick, John D. [Los Alamos National Laboratory; Watkins, Heath A. [Los Alamos National Laboratory

    2012-04-11

    New beam-position and phase monitors are under development for the linac at the Los Alamos Neutron Science Center (LANSCE.) Transducers have been designed and are being installed. We are considering many options for the electronic instrumentation to process the signals and provide position and phase data with the necessary precision and flexibility to serve the various required functions. We'll present the various options under consideration for instrumentation along with the advantages and shortcomings of these options.

  9. High current precision long pulse electron beam position monitor

    CERN Document Server

    Nelson, S D; Fessenden, T J; Holmes, C

    2000-01-01

    Precision high current long pulse electron beam position monitoring has typically experienced problems with high Q sensors, sensors damped to the point of lack of precision, or sensors that interact substantially with any beam halo thus obscuring the desired signal. As part of the effort to develop a multi-axis electron beam transport system using transverse electromagnetic stripline kicker technology, it is necessary to precisely determine the position and extent of long high energy beams for accurate beam position control (6 - 40 MeV, 1 - 4 kA, 2 μs beam pulse, sub millimeter beam position accuracy.) The kicker positioning system utilizes shot-to-shot adjustments for reduction of relatively slow (< 20 MHz) motion of the beam centroid. The electron beams passing through the diagnostic systems have the potential for large halo effects that tend to corrupt position measurements.

  10. Increasing positive ion number densities below the peak of ion-electron pair production in Titan's ionosphere

    Energy Technology Data Exchange (ETDEWEB)

    Vigren, E.; Galand, M. [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Shebanits, O.; Wahlund, J.-E. [Swedish Institute of Space Physics, P.O. Box 537, SE-751 21 Uppsala (Sweden); Geppert, W. D. [Department of Physics, Stockholm University, SE-10691 Stockholm (Sweden); Lavvas, P. [Groupe de Spectrométrie Moléculaire et Atmosphérique, Université Reims Champagne-Ardenne, UMR 7331, F-51687 Reims (France); Vuitton, V. [Institut de Planétologie et d' Astrophysique de Grenoble (IPAG), UJF-Grenoble/CNRS-INSU, UMR 5274, F-38041 Grenoble (France); Yelle, R. V., E-mail: erik.vigren@irfu.se [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721-0092 (United States)

    2014-05-01

    We combine derived ion-electron pair formation rates with Cassini Radio Plasma Wave Science Langmuir Probe measurements of electron and positive ion number densities in Titan's sunlit ionosphere. We show that positive ion number densities in Titan's sunlit ionosphere can increase toward significantly lower altitudes than the peak of ion-electron pair formation despite that the effective ion-electron recombination coefficient increases. This is explained by the increased mixing ratios of negative ions, which are formed by electron attachment to neutrals. While such a process acts as a sink for free electrons, the positive ions become longer-lived as the rate coefficients for ion-anion neutralization reactions are smaller than those for ion-electron dissociative recombination reactions.

  11. Monitoring of the Stanford Linac microbunches' position

    Energy Technology Data Exchange (ETDEWEB)

    Denard, J.C.; Oxoby, G.; Pellegrin, J.L.; Williams, S.

    1983-01-01

    A new hardware has been developed to measure the trajectory of microbunches along the Stanford Linac. To be suitable for the operation of the SLAC Single Pass Collider, the bunches absolute position must be kept within +-100 microns of the accelerator center, and the acquisition of this measurement must be made along the machine in a snapshot fashion. Typically, the position of three bunches will be monitored during subsequent shots; we expect a minimum charge of 10/sup 9/ particles per bunch and a time spacing between bunches of 50 nanoseconds. The mechanics of the position detectors is described as well as the general system organization and the calibration of various components.

  12. Beam position monitor for energy recovered linac beams

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Thomas; Evtushenko, Pavel

    2017-06-06

    A method of determining the beam position in an energy recovered linac (ERL). The method makes use of in phase and quadrature (I/Q) demodulation techniques to separate the pickup signal generated by the electromagnetic fields generated by the first and second pass beam in the energy recovered linac. The method includes using analog or digital based I/Q demodulation techniques in order to measure the relative amplitude of the signals from a position sensitive beam pickup such as a button, strip line or microstripline beam position monitor.

  13. Beam Position and Phase Monitor - Wire Mapping System

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, Heath A [Los Alamos National Laboratory; Shurter, Robert B. [Los Alamos National Laboratory; Gilpatrick, John D. [Los Alamos National Laboratory; Kutac, Vincent G. [Los Alamos National Laboratory; Martinez, Derwin [Los Alamos National Laboratory

    2012-04-10

    The Los Alamos Neutron Science Center (LANSCE) deploys many cylindrical beam position and phase monitors (BPPM) throughout the linac to measure the beam central position, phase and bunched-beam current. Each monitor is calibrated and qualified prior to installation to insure it meets LANSCE requirements. The BPPM wire mapping system is used to map the BPPM electrode offset, sensitivity and higher order coefficients. This system uses a three-axis motion table to position the wire antenna structure within the cavity, simulating the beam excitation of a BPPM at a fundamental frequency of 201.25 MHz. RF signal strength is measured and recorded for the four electrodes as the antenna position is updated. An effort is underway to extend the systems service to the LANSCE facility by replacing obsolete electronic hardware and taking advantage of software enhancements. This paper describes the upgraded wire positioning system's new hardware and software capabilities including its revised antenna structure, motion control interface, RF measurement equipment and Labview software upgrades. The main purpose of the wire mapping system at LANSCE is to characterize the amplitude response versus beam central position of BPPMs before they are installed in the beam line. The wire mapping system is able to simulate a beam using a thin wire and measure the signal response as the wire position is varied within the BPPM aperture.

  14. Performance of a high resolution cavity beam position monitor system

    Science.gov (United States)

    Walston, Sean; Boogert, Stewart; Chung, Carl; Fitsos, Pete; Frisch, Joe; Gronberg, Jeff; Hayano, Hitoshi; Honda, Yosuke; Kolomensky, Yury; Lyapin, Alexey; Malton, Stephen; May, Justin; McCormick, Douglas; Meller, Robert; Miller, David; Orimoto, Toyoko; Ross, Marc; Slater, Mark; Smith, Steve; Smith, Tonee; Terunuma, Nobuhiro; Thomson, Mark; Urakawa, Junji; Vogel, Vladimir; Ward, David; White, Glen

    2007-07-01

    It has been estimated that an RF cavity Beam Position Monitor (BPM) could provide a position measurement resolution of less than 1 nm. We have developed a high resolution cavity BPM and associated electronics. A triplet comprised of these BPMs was installed in the extraction line of the Accelerator Test Facility (ATF) at the High Energy Accelerator Research Organization (KEK) for testing with its ultra-low emittance beam. The three BPMs were each rigidly mounted inside an alignment frame on six variable-length struts which could be used to move the BPMs in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, we have demonstrated a position resolution of 15.6 nm and a tilt resolution of 2.1 μrad over a dynamic range of approximately ±20 μm.

  15. Forsterite Amorphisation by Ion Irradiation: Monitoring by Infrared Spectroscopy

    CERN Document Server

    Brucato, J R; Baratta, G; Colangeli, L

    2003-01-01

    We present experimental results on crystal--amorphous transition of forsterite (Mg2SiO4) silicate under ion irradiation. The aim of this work is to study the structural evolution of one of the most abundant crystalline silicates observed in space driven by ion irradiation. To this aim, forsterite films have been sythesised in laboratory and irradiated with low energy (30--60 keV) ion beams. Structural changes during irradiation with H+, He+, C+, and Ar++ have been observed and monitored by infrared spectroscopy. The fraction of crystalline forsterite converted into amorphous is a function of the energy deposited by nuclear collision by ions in the target. Laboratory results indicate that ion irradiation is a mechanism potentially active in space for the amorphisation of silicates. Physical properties obtained in this work can be used to model the evolution of silicate grains during their life cycle from evolved stars, through different interstellar environments and up to be incorporated in Solar System object...

  16. A phase-space beam position monitor for synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Samadi, Nazanin, E-mail: nazanin.samadi@usask.ca [University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK (Canada); Bassey, Bassey; Martinson, Mercedes [University of Saskatchewan, 116 Science Place, Saskatoon, SK (Canada); Belev, George; Dallin, Les; Jong, Mark de [Canadian Light Source, 44 Innovation Boulevard, Saskatoon, SK (Canada); Chapman, Dean [University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK (Canada)

    2015-06-25

    A system has been developed to measure the vertical position and angle of the electron beam at a single location from a synchrotron source. The system uses a monochromator tuned to the absorption edge of a contrast material and has a sensitivity comparable with other beam position monitors. The stability of the photon beam position on synchrotron beamlines is critical for most if not all synchrotron radiation experiments. The position of the beam at the experiment or optical element location is set by the position and angle of the electron beam source as it traverses the magnetic field of the bend-magnet or insertion device. Thus an ideal photon beam monitor would be able to simultaneously measure the photon beam’s position and angle, and thus infer the electron beam’s position in phase space. X-ray diffraction is commonly used to prepare monochromatic beams on X-ray beamlines usually in the form of a double-crystal monochromator. Diffraction couples the photon wavelength or energy to the incident angle on the lattice planes within the crystal. The beam from such a monochromator will contain a spread of energies due to the vertical divergence of the photon beam from the source. This range of energies can easily cover the absorption edge of a filter element such as iodine at 33.17 keV. A vertical profile measurement of the photon beam footprint with and without the filter can be used to determine the vertical centroid position and angle of the photon beam. In the measurements described here an imaging detector is used to measure these vertical profiles with an iodine filter that horizontally covers part of the monochromatic beam. The goal was to investigate the use of a combined monochromator, filter and detector as a phase-space beam position monitor. The system was tested for sensitivity to position and angle under a number of synchrotron operating conditions, such as normal operations and special operating modes where the photon beam is intentionally altered

  17. Dynamic Beam Based Calibration of Beam Position Monitors

    CERN Document Server

    Dehning, Bernd; Galbraith, Peter; Mugnai, G; Placidi, Massimo; Sonnemann, F; Tecker, F A; Wenninger, J

    1998-01-01

    The degree of spin polarization at LEP is strongly dependent on the knowledge of the vertical orbit. Quadrupole magnet alignment and beam position monitor (BPM) offsets are the main source of the orbi t uncertainty. The error of the orbit monitor readings can be largely reduced by calibrating the monitor relative to the adjacent quadrupole. At LEP, 16 BPM offsets can be determined in parallel durin g 40 minutes. The error of the measure offset is about 30mm. During the LEP run 1997, more than 500 measurements were made and used for the optimisation of polarization. The method of dynamic beam bas ed calibration will be explained and the results will be shown.

  18. Alignment of ADS beta cryostat with wire position monitor

    Institute of Scientific and Technical Information of China (English)

    朱洪岩; 董岚; 门瓴玲; 刘璨; 李波

    2015-01-01

    Wire position monitor (WPM) is designed to monitor contraction of the cold masses during the cooling-down operation in an accelerator driven system. Because of material difference, machining error, assembly error, etc., each WPM has to be calibrated. The sensing voltage and wire position are of a nonlinear relationship, which is expressed by high order polynomial. Root mean square (RMS) of the polynomial fitting error were 3.8 µm and 7.4 µm at x and y directions, respectively. The alignment test was carried out on the beta cryostat. Optical instruments were used to verify the WPM measuring results. The differences between WPM measuring results and optical measurements were 0.044 and 0.05 mm in x and y direction, respectively. A significant asymmetric contraction was detected, and asymmetry of material was taken as the main reason through analysis.

  19. Characterization of beam position monitors in 2-dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Power, J.F.; Gilpatrick, J.D.; Neri, F.; Shurter, R.B.

    1992-01-01

    We describe characterization of a beam position measuring system. We used an automatic test fixture to map the response in two dimensions of dual-axis beam position monitors (BPMs) and their associated ratio-signal processing electronics and applied signals to a thin wire whose position is controlled by way of stepper motor actuators on x-y stages. The wire may be moved within a circular area of up to 50 mm in diameter with 5-{mu}m accuracy. The resulting signals picked up by a BPM are recorded for each point on a grid within the mapping area. We present a comparison of the theoretical with the actual response, as well as techniques employed to calculate suitable correction functions that accurately predict the beam position over at least 80% of the probe's inner aperture.

  20. Characterization of beam position monitors in 2-dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Power, J.F.; Gilpatrick, J.D.; Neri, F.; Shurter, R.B.

    1992-09-01

    We describe characterization of a beam position measuring system. We used an automatic test fixture to map the response in two dimensions of dual-axis beam position monitors (BPMs) and their associated ratio-signal processing electronics and applied signals to a thin wire whose position is controlled by way of stepper motor actuators on x-y stages. The wire may be moved within a circular area of up to 50 mm in diameter with 5-{mu}m accuracy. The resulting signals picked up by a BPM are recorded for each point on a grid within the mapping area. We present a comparison of the theoretical with the actual response, as well as techniques employed to calculate suitable correction functions that accurately predict the beam position over at least 80% of the probe`s inner aperture.

  1. Monitoring spindle orientation: Spindle position checkpoint in charge.

    Science.gov (United States)

    Caydasi, Ayse K; Ibrahim, Bashar; Pereira, Gislene

    2010-12-11

    Every cell division in budding yeast is inherently asymmetric and counts on the correct positioning of the mitotic spindle along the mother-daughter polarity axis for faithful chromosome segregation. A surveillance mechanism named the spindle position checkpoint (SPOC), monitors the orientation of the mitotic spindle and prevents cells from exiting mitosis when the spindle fails to align along the mother-daughter axis. SPOC is essential for maintenance of ploidy in budding yeast and similar mechanisms might exist in higher eukaryotes to ensure faithful asymmetric cell division. Here, we review the current model of SPOC activation and highlight the importance of protein localization and phosphorylation for SPOC function.

  2. Monitoring spindle orientation: Spindle position checkpoint in charge

    Directory of Open Access Journals (Sweden)

    Pereira Gislene

    2010-12-01

    Full Text Available Abstract Every cell division in budding yeast is inherently asymmetric and counts on the correct positioning of the mitotic spindle along the mother-daughter polarity axis for faithful chromosome segregation. A surveillance mechanism named the spindle position checkpoint (SPOC, monitors the orientation of the mitotic spindle and prevents cells from exiting mitosis when the spindle fails to align along the mother-daughter axis. SPOC is essential for maintenance of ploidy in budding yeast and similar mechanisms might exist in higher eukaryotes to ensure faithful asymmetric cell division. Here, we review the current model of SPOC activation and highlight the importance of protein localization and phosphorylation for SPOC function.

  3. Beam Position Monitoring in the CSU Accelerator Facility

    Science.gov (United States)

    Einstein, Joshua; Vankeuren, Max; Watras, Stephen

    2014-03-01

    A Beam Position Monitoring (BPM) system is an integral part of an accelerator beamline, and modern accelerators can take advantage of newer technologies and designs when creating a BPM system. The Colorado State University (CSU) Accelerator Facility will include four stripline detectors mounted around the beamline, a low-noise analog front-end, and digitization and interface circuitry. The design will support a sampling rate greater than 10 Hz and sub-100 μm accuracy.

  4. On proton excitation of forbidden lines in positive ions

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, Alan [Department of Applied Mathematics and Theoretical Physics, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Tully, John A [Observatoire de la Cote d' Azur, Departement Cassiopee, BP 4229, 06304 Nice Cedex 4 (France)

    2005-08-14

    The semi-classical impact parameter approximations used by Bahcall and Wolf and by Bely and Faucher, for proton excitation of electric quadrupole transitions in positive ions, both fail at high energies, giving cross sections which do not fall off correctly as constant/E. This is in contrast with the pioneering example of Seaton for Fe{sup +13} and of Reid and Schwarz for S{sup +3}, both of whom achieve the correct functional form, but do not ensure the correct constant of proportionality. By combining the Born and semi-classical approximations one can obtain cross sections which have the full correct behaviour as E {yields} {infinity}, and hence, rate coefficients which have the correct high temperature behaviour ({approx}C/T{sup 1/2} with the correct value of C). We provide a computer program for calculating these. An error in Faucher's derivation of the Born formula is also discussed.

  5. An ion species model for positive ion sources - part II analysis of hydrogen isotope effects

    CERN Document Server

    Surrey, E

    2014-01-01

    A one dimensional model of the magnetic multipole volume plasma source has been developed for application to intense ion/neutral atom beam injectors. The model uses plasma transport coefficients for particle and energy flow to create a detailed description of the plasma parameters along an axis parallel to that of the extracted beam. In this paper the isotopic modelling of positive hydrogenic ions is considered and compared with experimental data from the neutral beam injectors of the Joint European Torus. The use of the code to gain insights into the processes contributing to the ratios of the ionic species is demonstrated and the conclusion is drawn that 75% of the atomic ion species arises from ionization of dissociated molecules and 25% from dissociation of the molecular ions. However whilst the former process is independent of the filter field, the latter is sensitive to the change in distribution of fast and thermal electrons produced by the magnetic filter field and an optimum combination of field stre...

  6. Simulating Heavy Ion SEUs in the ESA Monitor

    CERN Document Server

    Noordeh, Emil

    2014-01-01

    This study analyzed SEU measurements made of the ESA Monitor at GSI, RADEF, UCL, and TAMU. An IRPP model was implemented through the use of FLUKA that was calibrated to the measurements of ions above the LET threshold. The model proved successful in reproducing proton measurements that are entirely independent of the calibration. When applied to the sub-threshold region, experimental measurements were underestimated by a factor of $\\sim$3 for the high energy ions at GSI, a factor of $\\sim$10 for the ions at UCL/RADEF, and an anomalous factor of $\\sim$300 for the ion at TAMU. Several possible sources of systematic uncertainty were investigated including sensitive volume size, BEOL thickness, and substrate thickness. Additionally, the impact of including air between the beam and the DUT as well as side effects due to the simulated geometry were explored. It was found that none of these sources can provide a substantial enough impact on the SEU cross-section to reconcile the anomalous measurement made at TAMU.

  7. Ultrasound transducer positioning aid for fetal heart rate monitoring.

    Science.gov (United States)

    Hamelmann, Paul; Kolen, Alex; Schmitt, Lars; Vullings, Rik; van Assen, Hans; Mischi, Massimo; Demi, Libertario; van Laar, Judith; Bergmans, Jan

    2016-08-01

    Fetal heart rate (fHR) monitoring is usually performed by Doppler ultrasound (US) techniques. For reliable fHR measurements it is required that the fetal heart is located within the US beam. In clinical practice, clinicians palpate the maternal abdomen to identify the fetal presentation and then the US transducer is fixated on the maternal abdomen where the best fHR signal can be obtained. Finding the optimal transducer position is done by listening to the strength of the Doppler audio output and relying on a signal quality indicator of the cardiotocographic (CTG) measurement system. Due to displacement of the US transducer or displacement of the fetal heart out of the US beam, the fHR signal may be lost. Therefore, it is often necessary that the obstetrician repeats the tedious procedure of US transducer positioning to avoid long periods of fHR signal loss. An intuitive US transducer positioning aid would be highly desirable to increase the work flow for the clinical staff. In this paper, the possibility to determine the fetal heart location with respect to the transducer by exploiting the received signal power in the transducer elements is shown. A commercially available US transducer used for fHR monitoring is connected to an US open platform, which allows individual driving of the elements and raw US data acquisition. Based on the power of the received Doppler signals in the transducer elements, the fetal heart location can be estimated. A beating fetal heart setup was designed and realized for validation. The experimental results show the feasibility of estimating the fetal heart location with the proposed method. This can be used to support clinicians in finding the optimal transducer position for fHR monitoring more easily.

  8. Letter: High-mass capabilities of positive-ion and negative-ion direct analysis in real time mass spectrometry.

    Science.gov (United States)

    Gross, Jürgen H

    2016-01-01

    Of the ionic liquid 1-butyl-3-methylimidazolium (C(+)) tricyanomethide (A(-)) high-mass cluster ions of both positive ([C(n)A(n-1)](+)) and negative ([C(n-1)A(n)](-)) charge were generated and detected by direct analysis in real time (DART) Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS). After optimization of the settings of the DART ionization source and of the mass analyzer ions of m/z values unprecedented in DART-MS were detected. Thus, the upper m/z limits of positive-ion and negative-ion DART- MS were substantially expanded. Negative-ion DART-MS delivered cluster ions up to [C(15)A(16)](-), m/z 3527 (nominal mass of monoisotopic ion), while positive-ion DART-MS even yielded ions up to [C(30)A(29)](+), m/z 6784. The identification of the cluster ions is supported by their accurate mass and exact mass differences corresponding to CA between adjacent cluster ion peaks.

  9. Developments of fast emittance monitors for ion sources at RCNP

    Science.gov (United States)

    Yorita, T.; Hatanaka, K.; Fukuda, M.; Shimada, K.; Yasuda, Y.; Saito, T.; Tamura, H.; Kamakura, K.

    2016-02-01

    Recently, several developments of low energy beam transport line and its beam diagnostic systems have been performed to improve the injection efficiency of ion beam to azimuthally varying field cyclotron at Research Center for Nuclear Physics, Osaka University. One of those is the fast emittance monitor which can measure within several seconds for the efficient beam development and a Pepper-Pot Emittance Monitor (PPEM) has been developed. The PPEM consists of pepper-pot mask, multichannel plate, fluorescent screen, mirror, and CCD camera. The CCD image is taken via IEEE1394b to a personal computer and analyzed immediately and frequently, and then real time measurement with about 2 Hz has been achieved.

  10. Model-based condition monitoring for lithium-ion batteries

    Science.gov (United States)

    Kim, Taesic; Wang, Yebin; Fang, Huazhen; Sahinoglu, Zafer; Wada, Toshihiro; Hara, Satoshi; Qiao, Wei

    2015-11-01

    Condition monitoring for batteries involves tracking changes in physical parameters and operational states such as state of health (SOH) and state of charge (SOC), and is fundamentally important for building high-performance and safety-critical battery systems. A model-based condition monitoring strategy is developed in this paper for Lithium-ion batteries on the basis of an electrical circuit model incorporating hysteresis effect. It systematically integrates 1) a fast upper-triangular and diagonal recursive least squares algorithm for parameter identification of the battery model, 2) a smooth variable structure filter for the SOC estimation, and 3) a recursive total least squares algorithm for estimating the maximum capacity, which indicates the SOH. The proposed solution enjoys advantages including high accuracy, low computational cost, and simple implementation, and therefore is suitable for deployment and use in real-time embedded battery management systems (BMSs). Simulations and experiments validate effectiveness of the proposed strategy.

  11. Developments of fast emittance monitors for ion sources at RCNP

    Energy Technology Data Exchange (ETDEWEB)

    Yorita, T., E-mail: yorita@rcnp.osaka-u.ac.jp; Hatanaka, K.; Fukuda, M.; Shimada, K.; Yasuda, Y.; Saito, T.; Tamura, H.; Kamakura, K. [Research Center for Nuclear Physics (RCNP), Osaka University, Osaka 567-0047 (Japan)

    2016-02-15

    Recently, several developments of low energy beam transport line and its beam diagnostic systems have been performed to improve the injection efficiency of ion beam to azimuthally varying field cyclotron at Research Center for Nuclear Physics, Osaka University. One of those is the fast emittance monitor which can measure within several seconds for the efficient beam development and a Pepper-Pot Emittance Monitor (PPEM) has been developed. The PPEM consists of pepper-pot mask, multichannel plate, fluorescent screen, mirror, and CCD camera. The CCD image is taken via IEEE1394b to a personal computer and analyzed immediately and frequently, and then real time measurement with about 2 Hz has been achieved.

  12. Single Pass Stripline Beam Position Monitor Design, Fabrication and Commissioning

    Directory of Open Access Journals (Sweden)

    McKinlay J.

    2012-10-01

    Full Text Available To monitor the position of the electron beam during transport from the Booster Synchrotron to the Storage Ring at the Australian Synchrotron, a stripline Beam Position Monitor (BPM has been designed, fabricated and installed in-house. The design was based on an existing stripline in the Booster and modified for the transfer line with a particular emphasis on ensuring the line impedance is properly matched to the detector system. The initial bench tests of a prototype stripline showed that the fabrication of the four individual striplines in the BPM was made precisely, each with a measured standing wave ratio (SWR of 1.8 at 500 MHz. Further optimization for impedance matching will be done for new stripline BPMs. The linearity and gain factor was measured with the detector system. The detector system that digitizes the signals is an Instrumentation Technologies Brilliance Single Pass [1]. The results show an error of 1 mm at an offset (from the electrical centre of 10 mm when a linear gain factor is assumed and an RMS noise of ~150 um that decreases to < 10 um with increasing signal intensity. The results were under our requirements for the transport line. The commissioning results of the stripline will also be presented showing a strong signal for an electron beam with an estimated integrated charge of ~50 nC with a position stability of 28 um (horizontal and 75 um (vertical.

  13. Transverse Beam Size Effects in Beam Position Monitors

    Science.gov (United States)

    Kurennoy, Sergey

    2001-04-01

    The fields produced by a long beam with a given transverse charge distribution in a homogeneous vacuum chamber are studied. Signals induced by the displaced finite-size beam on electrodes of a beam position monitor (BPM) are calculated and compared to those from a pencil beam. The corrections to BPM signals due to a finite beam size are found analytically for a few particular transverse distributions of the beam current. The results for fields can also be directly applied for calculating the beam coupling impedances of small discontinuities.

  14. CAVITY BEAM POSITION MONITOR SYSTEM FOR ATF2

    CERN Document Server

    Boogert, S T; Cullinan, F; Joshi, N; Lyapin, A; Aryshev, A; Honda, Y; Naito, T; Terunuma, N; Urakara, J; Heo, A; Kim, E-S; Kim, Y I; McCormick, D; Frisch, J; Nelson, J; Smith, T; White, G R

    2011-01-01

    The Accelerator Test Facility 2 (ATF2) in KEK, Japan, is a prototype scaled demonstrator system for the final focus required for a future high energy lepton linear collider. The ATF2 beam-line is instrumented with a total of 41 high resolution C and S band resonant cavity beam position monitors (BPM) with associated mixer electronics and digitisers. In addition 4 high resolution BPMs have been recently installed at the interaction point, we briefly describe the first operational experience of these cavities in the ATF2 beam-line. The current status of the overall BPM system is also described, with a focus on operational techniques and performance.

  15. Development of a Cavity Beam Position Monitor for CLIC

    CERN Document Server

    Cullinan, F; Joshi, N; Lyapin, A; Calvo, E; Chritin, N; Guillot-Vignot, F; Lefevre, T; Søby, L; Lunin, A; Wendt, M; Yakovlev, V P; Smith, S

    2012-01-01

    The Compact Linear Collider (CLIC) project presents many challenges to its subsystems and the beam diagnostics in particular must perform beyond current limitations. The requirements for the CLIC main beam position monitors foresee a spacial resolution of 50 nm while delivering a 50 ns temporal resolution within the bunch train. We discuss the design of the microwave cavity pick-up and associated electronics, bench top tests with the first prototype cavity, as well as some of the machine-specific integration and operational issues.

  16. Numerical simulation of the PEP-II beam position monitor

    Energy Technology Data Exchange (ETDEWEB)

    Kurita, N.; Martin, D.; Ng, C.-K.; Smith, S. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Weiland, T.

    1996-08-01

    We use MAFIA to analyze the PEP-II button-type beam position monitor (BPM). Employing proper termination of the BPM into a coaxial cable, the output signal at the BPM is determined. Thus the issues of signal sensitivity and power output can be addressed quantitatively, including all transient effects and wakefields. Besides this first quantitative analysis of a true BPM 3D structure, we find that internal resonant modes are a major source of high value narrow-band impedances. The effects of these resonances on coupled-bunch instabilities are discussed. An estimate of the power dissipation in the ceramic vacuum seal under high current operation is given. (author)

  17. A beam position monitor for the diagnostic line in MEBT2 of J-PARC linac

    Science.gov (United States)

    Miura, A.; Tamura, J.; Kawane, Y.

    2017-07-01

    In the linac of the Japan Proton Accelerator Research Complex (J-PARC), the neutral hydrogen (H0) beam from the negative hydrogen ion (H-) beam is one of key issues in mitigating beam losses. To diagnose H0 particles, we installed a set of beam-bump magnets to generate a chicane orbit of the H- beam. The beam position monitors (BPMs) in the beam line are used for orbit correction to maintain the beam displacement within 2.0 mm from the duct center. To measure the beam displacement under different drive currents of the beam-bump magnets, a new wide-range BPM was designed and manufactured to evaluate the horizontal beam position by using a correction function to compensate for non-linearity. We also employed the beam profile monitor (WSM: wire scanner monitor) to measure the H- beam profile, which helped us to compare the beam position measurements. In this paper, the design and the performance of the wide-range BPM are described. In addition, we present a comparison of the beam position measured by the BPM and the WSM.

  18. Beam based measurement of beam position monitor electrode gains

    Directory of Open Access Journals (Sweden)

    D. L. Rubin

    2010-09-01

    Full Text Available Low emittance tuning at the Cornell Electron Storage Ring (CESR test accelerator depends on precision measurement of vertical dispersion and transverse coupling. The CESR beam position monitors (BPMs consist of four button electrodes, instrumented with electronics that allow acquisition of turn-by-turn data. The response to the beam will vary among the four electrodes due to differences in electronic gain and/or misalignment. This variation in the response of the BPM electrodes will couple real horizontal offset to apparent vertical position, and introduce spurious measurements of coupling and vertical dispersion. To alleviate this systematic effect, a beam based technique to measure the relative response of the four electrodes has been developed. With typical CESR parameters, simulations show that turn-by-turn BPM data can be used to determine electrode gains to within ∼0.1%.

  19. Log-ratio circuit for beam position monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Wells, F.D.; Gilpatrick, J.D.; Shafer, R.E.; Shurter, R.B.

    1991-01-01

    The logarithmic ratio of the signal amplitudes from beam-position probe-electrodes provides a normalized real-time analog signal that is more linear in beam displacement than other signal-processing techniques for circular cross-section, beam-position monitors. This paper describes work being done to develop a log-ratio circuit using an inexpensive, commercially available, logarithmic-response, integrated-circuit rf-amplifier. The circuit uses two amplifiers in a log (A) {minus} log (B) = log (A/B) configuration to provide the logarithmic ratio of the two rf input signals from the probe. The output is a real-time analog signal proportional to beam displacement. 4 refs., 7 figs.

  20. Volcano monitoring using the Global Positioning System: Filtering strategies

    Science.gov (United States)

    Larson, K.M.; Cervelli, Peter; Lisowski, M.; Miklius, Asta; Segall, P.; Owen, S.

    2001-01-01

    Permanent Global Positioning System (GPS) networks are routinely used for producing improved orbits and monitoring secular tectonic deformation. For these applications, data are transferred to an analysis center each day and routinely processed in 24-hour segments. To use GPS for monitoring volcanic events, which may last only a few hours, real-time or near real-time data processing and subdaily position estimates are valuable. Strategies have been researched for obtaining station coordinates every 15 min using a Kalman filter; these strategies have been tested on data collected by a GPS network on Kilauea Volcano. Data from this network are tracked continuously, recorded every 30 s, and telemetered hourly to the Hawaiian Volcano Observatory. A white noise model is heavily impacted by data outages and poor satellite geometry, but a properly constrained random walk model fits the data well. Using a borehole tiltmeter at Kilauea's summit as ground-truth, solutions using different random walk constraints were compared. This study indicates that signals on the order of 5 mm/h are resolvable using a random walk standard deviation of 0.45 cm/???h. Values lower than this suppress small signals, and values greater than this have significantly higher noise at periods of 1-6 hours. Copyright 2001 by the American Geophysical Union.

  1. Volcano monitoring using the Global Positioning System: Filtering strategies

    Science.gov (United States)

    Larson, Kristine M.; Cervelli, Peter; Lisowski, Michael; Miklius, Asta; Segall, Paul; Owen, Susan

    2001-09-01

    Permanent Global Positioning System (GPS) networks are routinely used for producing improved orbits and monitoring secular tectonic deformation. For these applications, data are transferred to an analysis center each day and routinely processed in 24-hour segments. To use GPS for monitoring volcanic events, which may last only a few hours, real-time or near real-time data processing and subdaily position estimates are valuable. Strategies have been researched for obtaining station coordinates every 15 min using a Kalman filter; these strategies have been tested on data collected by a GPS network on Kilauea Volcano. Data from this network are tracked continuously, recorded every 30 s, and telemetered hourly to the Hawaiian Volcano Observatory. A white noise model is heavily impacted by data outages and poor satellite geometry, but a properly constrained random walk model fits the data well. Using a borehole tiltmeter at Kilauea's summit as ground-truth, solutions using different random walk constraints were compared. This study indicates that signals on the order of 5 mm/h are resolvable using a random walk standard deviation of 0.45 cm/√h. Values lower than this suppress small signals, and values greater than this have significantly higher noise at periods of 1-6 hours.

  2. Magnetized retarding field energy analyzer measuring the particle flux and ion energy distribution of both positive and negative ions.

    Science.gov (United States)

    Rafalskyi, Dmytro; Dudin, Stanislav; Aanesland, Ane

    2015-05-01

    This paper presents the development of a magnetized retarding field energy analyzer (MRFEA) used for positive and negative ion analysis. The two-stage analyzer combines a magnetic electron barrier and an electrostatic ion energy barrier allowing both positive and negative ions to be analyzed without the influence of electrons (co-extracted or created downstream). An optimal design of the MRFEA for ion-ion beams has been achieved by a comparative study of three different MRFEA configurations, and from this, scaling laws of an optimal magnetic field strength and topology have been deduced. The optimal design consists of a uniform magnetic field barrier created in a rectangular channel and an electrostatic barrier consisting of a single grid and a collector placed behind the magnetic field. The magnetic barrier alone provides an electron suppression ratio inside the analyzer of up to 6000, while keeping the ion energy resolution below 5 eV. The effective ion transparency combining the magnetic and electrostatic sections of the MRFEA is measured as a function of the ion energy. It is found that the ion transparency of the magnetic barrier increases almost linearly with increasing ion energy in the low-energy range (below 200 eV) and saturates at high ion energies. The ion transparency of the electrostatic section is almost constant and close to the optical transparency of the entrance grid. We show here that the MRFEA can provide both accurate ion flux and ion energy distribution measurements in various experimental setups with ion beams or plasmas run at low pressure and with ion energies above 10 eV.

  3. Beam Position-Phase Monitors for SNS Linac

    Science.gov (United States)

    Kurennoy, Sergey

    Electromagnetic modeling with MAFIA of the combined beam position-phase monitors (BPPMs) for the Spallation Neutron Source (SNS) linac has been performed. Time-domain 3-D simulations are used to compute the signal amplitudes and phases on the BPPM electrodes for a given processing frequency, 402.5 MHz or 805 MHz, as functions of the beam transverse position. Working with a summed signal from all the BPPM electrodes provides a good way to measure accurately the beam phase. While for an off-axis beam the signal phases on the individual electrodes can differ from those for a centered beam by a few degrees, the phase of the summed signal is found to be independent of the beam transverse position inside the device. Based on the analysis results, an optimal BPPM design with 4 one-end-shorted 60-degree electrodes has been chosen. It provides a good linearity and sufficient signal power for both position and phase measurements, while satisfying the linac geometrical constrains and mechanical requirements.

  4. Beam Position-Phase Monitors for SNS Linac

    CERN Document Server

    Kurennoy, S S

    2000-01-01

    Electromagnetic modeling with MAFIA of the combined beam position-phase monitors (BPPMs) for the Spallation Neutron Source (SNS) linac has been performed. Time-domain 3-D simulations are used to compute the signal amplitudes and phases on the BPPM electrodes for a given processing frequency, 402.5 MHz or 805 MHz, as functions of the beam transverse position. Working with a summed signal from all the BPPM electrodes provides a good way to measure accurately the beam phase. While for an off-axis beam the signal phases on the individual electrodes can differ from those for a centered beam by a few degrees, the phase of the summed signal is found to be independent of the beam transverse position inside the device. Based on the analysis results, an optimal BPPM design with 4 one-end-shorted 60-degree electrodes has been chosen. It provides a good linearity and sufficient signal power for both position and phase measurements, while satisfying the linac geometrical constrains and mechanical requirements.

  5. Characterization of beam position monitors for measurement of second moment

    Energy Technology Data Exchange (ETDEWEB)

    Russell, S.J.; Gilpatrick, J.D.; Power, J.F.; Shurter, R.B.

    1995-05-01

    A dual-axis beam position monitor (BPM) consists of four electrodes placed at 90{degree} intervals around the probe aperture. The response signals of these lobes can be expressed as a sum of moments. The first order moment gives the centroid of the beam. The second order moment contains information about the rms size of the beam. It has been shown previously that the second order moment can be used to determine beam emittance. To make this measurement, the authors must characterize the BPM appropriately. The approach to this problem is to use a pulsed wire test fixture. By using the principle of superposition, they can build up a diffuse beam by taking the signals from different wire positions and summing them. This is done two ways: first by physically moving a wire about the aperture and building individual distributions, and, second, by taking a two dimensional grid of wire positions versus signal and using a computer to interpolate between the grid points to get arbitrary wire positions and, therefore, distributions. The authors present the current results of this effort.

  6. Position Stability Monitoring of THEthe LCLS Undulator Quadrupoles

    Energy Technology Data Exchange (ETDEWEB)

    Nuhn, Heinz Dieter; Gassner, Georg; Peters, Franz; /SLAC

    2012-03-26

    X-ray FELs demand that the positions of undulator components be stable to less than 1 {mu}m per day. Simultaneously, the undulator length increases significantly in order to saturate at x-ray wavelengths. To minimize the impact of the outside environment, the Linac Coherent Light Source (LCLS) undulator is placed underground, but reliable data about ground motion inside such a tunnel was not available in the required stability range during the planning phase. Therefore, a new position monitor system had been developed and installed with the LCLS undulator. This system is capable of measuring x, y, roll, pitch and yaw of each of the 33 undulator quadrupoles with respect to stretched wires. Instrument resolution is about 10 nm and instrument drift is negligible. Position data of individual quadrupoles can be correlated along the entire 132-m long undulator. The system has been under continuous operation since 2009. This report describes long term experiences with the running system and the observed positional stability of the undulator quadrupoles.

  7. Design of a new tracking device for on-line dose monitor in ion therapy

    CERN Document Server

    Traini, Giacomo; Bollella, Angela; Collamati, Francesco; De Lucia, Erika; Faccini, Riccardo; Ferroni, Fernando; Frallicciardi, Paola Maria; Mancini-Terracciano, Carlo; Marafini, Michela; Mattei, Ilaria; Miraglia, Federico; Muraro, Silvia; Paramatti, Riccardo; Piersanti, Luca; Pinci, Davide; Rucinski, Antoni; Russomando, Andrea; Sarti, Alessio; Sciubba, Adalberto; Senzacqua, Martina; Solfaroli-Camillocci, Elena; Toppi, Marco; Voena, Cecilia; Patera, Vincenzo

    2016-01-01

    Charged Particle Therapy is a technique for cancer treatment that exploits hadron beams, mostly protons and carbons. A critical issue is the monitoring of the dose released by the beam to the tumor and to the surrounding tissues. We present the design of a new tracking device for monitoring on-line the dose in ion therapy through the detection of secondary charged particles produced by the beam interactions in the patient tissues. In fact, the charged particle emission shape can be correlated with the spatial dose release and the Bragg peak position. The detector uses the information provided by 12 layers of scintillating fibers followed by a plastic scintillator and a small calorimeter made of a pixelated Lutetium Fine Silicate crystal. Simulations have been performed to evaluate the achievable spatial resolution and a possible application of the device for the monitoring of the dose pro?le in a real treatment is presented.

  8. Improved Positive Electrode Materials for Lithium-ion Batteries

    Science.gov (United States)

    Conry, Thomas Edward

    The introduction of the first commercially produced Li-ion battery by Sony in 1990 sparked a period of unprecedented growth in the consumer electronics industry. Now, with increasing efforts to move away from fossil-fuel-derived energy sources, a substantial amount of current research is focused on the development of an electrified transportation fleet. Unfortunately, existent battery technologies are unable to provide the necessary performance for electric vehicles (EV's) and plug-in hybrid electric vehicles (PHEV's) vehicles at a competitive cost. The cost and performance metrics of current Li-ion batteries are mainly determined by the positive electrode materials. The work here is concerned with understanding the structural and electrochemical consequences of cost-lowering mechanisms in two separate classes of Li-ion cathode materials; the LiMO2 (M = Ni, Mn, Co) layered oxides and the LiMPO4 olivine materials; with the goal of improving performance. Al-substitution for Co in LiNizMnzCo1-2zO 2 ("NMC") materials not only decreases the costly Co-content, but also improves the safety aspects and, notably, enhances the cycling stability of the layered oxide electrodes. The structural and electrochemical effects of Al-substitution are investigated here in a model NMC compound, LiNi0.45 Mn0.45Co0.1-yAlyO2. In addition to electrochemical measurements, various synchrotron-based characterization methods are utilized, including high-resolution X-ray diffraction (XRD), in situ X-ray diffraction, and X-ray absorption spectroscopy (XAS). Al-substitution causes a slight distortion of the as-synthesized hexagonal layered oxide lattice, lowering the inherent octahedral strain within the transition metal layer. The presence of Al also is observed to limit the structural variation of the NMC materials upon Li-deintercalation, as well as extended cycling of the electrodes. Various olivine materials, LiMPO4 ( M=Fe,Co) are produced using a custom-built spray pyrolysis system. Spray

  9. Video-based beam position monitoring at CHESS

    Science.gov (United States)

    Revesz, Peter; Pauling, Alan; Krawczyk, Thomas; Kelly, Kevin J.

    2012-10-01

    CHESS has pioneered the development of X-ray Video Beam Position Monitors (VBPMs). Unlike traditional photoelectron beam position monitors that rely on photoelectrons generated by the fringe edges of the X-ray beam, with VBPMs we collect information from the whole cross-section of the X-ray beam. VBPMs can also give real-time shape/size information. We have developed three types of VBPMs: (1) VBPMs based on helium luminescence from the intense white X-ray beam. In this case the CCD camera is viewing the luminescence from the side. (2) VBPMs based on luminescence of a thin (~50 micron) CVD diamond sheet as the white beam passes through it. The CCD camera is placed outside the beam line vacuum and views the diamond fluorescence through a viewport. (3) Scatter-based VBPMs. In this case the white X-ray beam passes through a thin graphite filter or Be window. The scattered X-rays create an image of the beam's footprint on an X-ray sensitive fluorescent screen using a slit placed outside the beam line vacuum. For all VBPMs we use relatively inexpensive 1.3 Mega-pixel CCD cameras connected via USB to a Windows host for image acquisition and analysis. The VBPM host computers are networked and provide live images of the beam and streams of data about the beam position, profile and intensity to CHESS's signal logging system and to the CHESS operator. The operational use of VBPMs showed great advantage over the traditional BPMs by providing direct visual input for the CHESS operator. The VBPM precision in most cases is on the order of ~0.1 micron. On the down side, the data acquisition frequency (50-1000ms) is inferior to the photoelectron based BPMs. In the future with the use of more expensive fast cameras we will be able create VBPMs working in the few hundreds Hz scale.

  10. Demonstration of long-pulse acceleration of high power positive ion beam with JT-60 positive ion source in Japan–Korea joint experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, A., E-mail: kojima.atsushi@jaea.go.jp [Japan Atomic Energy Agency, Naka (Japan); Hanada, M. [Japan Atomic Energy Agency, Naka (Japan); Jeong, S.H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Bae, Y.S. [National Fusion Research Institute, Daejeon (Korea, Republic of); Chang, D.H.; Kim, T.S.; Lee, K.W.; Park, M.; Jung, B.K. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Mogaki, K.; Komata, M.; Dairaku, M.; Kashiwagi, M.; Tobari, H.; Watanabe, K. [Japan Atomic Energy Agency, Naka (Japan)

    2016-01-15

    The long-pulse acceleration of the high-power positive ion beam has been demonstrated with the JT-60 positive ion source in the joint experiment among Japan Atomic Energy Agency (JAEA), Korea Atomic Energy Research Institute (KAERI) and National Fusion Research Institute (NFRI) under the collaboration program for the development of plasma heating and current drive systems. In this joint experiment, the increase of the heat load and the breakdowns induced by the degradation of the beam optics due to the gas accumulation was one of the critical issues for the long-pulse acceleration. As a result of development of the long-pulse operation techniques of the ion source and facilities of the neutral beam test stand in KAERI, 2 MW 100 s beam has been achieved for the first time. The achieved beam performance satisfies the JT-60SA requirement which is designed to be a 1.94 MW ion beam power from an ion source corresponding to total neutral beam power of 20 MW with 24 ion sources. Therefore, it was found that the JT-60 positive ion sources were applicable in the JT-60SA neutral beam injectors. Moreover, because this ion source is planned to be a backup ion source for KSTAR, the operational region and characteristic has been clarified to apply to the KSTAR neutral beam injector.

  11. The charge spectrum of positive ions in a hydrogen aurora

    Science.gov (United States)

    Lynch, J.; Pulliam, D.; Leach, R.; Scherb, F.

    1976-01-01

    An auroral ion charge spectrometer was flown into a hydrogen aurora on a Javelin sounding rocket launched from Churchill, Manitoba. The instrument contained an electrostatic analyzer which selected particles with incident energy per unit charge up to 20 keV/charge and an 80-kV power supply which accelerated these ions onto an array of solid state detectors. Ions tentatively identified as H(+), He(+2), and O(+) were detected from 225 to 820 km in altitude. The experiment did not discriminate between H(+) and He(+), or between O(+), N(+), and C(+). Upper limits of highly charged heavy ion abundances have been set at 20% of the He(+2) and 0.15% of the H(+). It is concluded that both terrestrial and solar wind sources play significant roles in auroral ion precipitation.

  12. The charge spectrum of positive ions in a hydrogen aurora

    Science.gov (United States)

    Lynch, J.; Pulliam, D.; Leach, R.; Scherb, F.

    1976-01-01

    An auroral ion charge spectrometer was flown into a hydrogen aurora on a Javelin sounding rocket launched from Churchill, Manitoba. The instrument contained an electrostatic analyzer which selected particles with incident energy per unit charge up to 20 keV/charge and an 80-kV power supply which accelerated these ions onto an array of solid state detectors. Ions tentatively identified as H(+), He(+2), and O(+) were detected from 225 to 820 km in altitude. The experiment did not discriminate between H(+) and He(+), or between O(+), N(+), and C(+). Upper limits of highly charged heavy ion abundances have been set at 20% of the He(+2) and 0.15% of the H(+). It is concluded that both terrestrial and solar wind sources play significant roles in auroral ion precipitation.

  13. Digital Beam Position Monitor for the Happex Experiment

    CERN Document Server

    Kauffman, Sherlon R; Freyberger, Arne; Kaufman, Lisa; Musson, John

    2005-01-01

    The proposed HAPPEX experiment at CEBAF employs a three cavity monitor system for high-precision (1 mm), high-bandwidth (100 kHz) position measurements. This is performed using a cavity triplet consisting of two TM110-mode cavities (one each for X and Y planes) combined with a conventional TM-010-mode cavity for a phase and magnitude reference. Traditional systems have used the TM010 cavity output to directly down convert the BPM cavity signals to base band. The Multi-channel HAPPEX digital receiver simultaneously I/Q samples each cavity and extracts position using a CORDIC algorithm. The hardware design consists of a digital receiver daughter board and digital processor motherboard that resides in a VXI crate. The daughter board down converts 1.497 GHz signals from the TM010 cavity and X and Y signals from the TM110 cavities to 4 MHz, and extracts the quadrature digital signals. The motherboard processes this data and computes beam intensity and X-Y positions with a resolution of one mm, 100 kHz output bandw...

  14. Effects of Transverse Beam Size in Beam Position Monitors

    CERN Document Server

    Kurennoy, S S

    2001-01-01

    The fields produced by a long beam with a given transverse charge distribution in a homogeneous vacuum chamber are studied. Signals induced by a displaced finite-size beam on electrodes of a beam position monitor (BPM) are calculated and compared to those produced by a pencil beam. The non-linearities and corrections to BPM signals due to a finite transverse beam size are calculated for an arbitrary chamber cross section. Simple analytical expressions are given for a few particular transverse distributions of the beam current in a circular or rectangular chamber. Of particular interest is a general proof that in an arbitrary homogeneous chamber the beam-size corrections vanish for any axisymmetric beam current distribution.

  15. Effects of transverse beam size in beam position monitors.

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S. (Sergey)

    2001-01-01

    The fields produced by a long beam with a given transverse charge distribution in a homogeneous vacuum chamber are studied. Signals induced by the displaced finite-size beam on electrodes of a beam position monitor (BPM) are calculated and compared to those from a pencil beam. The non-linearities and corrections to BPM signals due to a finite transverse beam size are calculated for an arbitrary chamber cross section. Simple analytical expressions are given for a few particular transverse distributions of the beam current in a circular or rectangular chamber. Of particular interest is a general proof that in an arbitrary homogeneous chamber the beam-size corrections vanish for any axisymmetric beam current distribution.

  16. EFFECTS OF TRANSFERSE BEAM SIZE IN BEAM POSITIONS MONITORS

    Energy Technology Data Exchange (ETDEWEB)

    S.S. KURENNOY

    2001-06-01

    The fields produced by a long beam with a given transverse charge distribution in a homogeneous vacuum chamber are studied. Signals induced by the displaced finite-size beam on electrodes of a beam position monitor (BPM) are calculated and compared to those from a pencil beam. The non-linearities and corrections to BPM signals due to a finite transverse beam size are calculated for an arbitrary chamber cross section. Simple analytical expressions are given for a few particular transverse distributions of the beam current in a circular or rectangular chamber. Of particular interest is a general proof that in an arbitrary homogeneous chamber the beam-size corrections vanish for any axisymmetric beam current distribution.

  17. Parasitic mode losses versus signal sensitivity in beam position monitors

    Science.gov (United States)

    Denard, J. C.; Bane, K. L.; Bijleveld, J.; Hutton, A. M.; Pellegrin, J. I.; Rivkin, L.; Wang, P.; Weaver, J. N.

    1985-04-01

    A beam position monitor (BPM) for a storage or damping ring may be subject to heating problems due to the parasitic mode (PM) losses, beam interception and synchrotron radiation interception. In addition, high PM losses can cause beam instabilities under some conditions. Recessing and/or masking the BPM may increase the PM losses in the process of solving the latter two problems. Three complementary methods for estimating the PM losses and for improving the design of a stripline directional coupler type of BPM: bench measurements, computer modeling (TBCI), and an equivalent circuit representation are presented. These methods lead to a decrease in PM losses without significant reduction in output signal for the north Stanford Linear Collider (SLC) damping ring BPMs.

  18. Architecture of a silicon strip beam position monitor

    Energy Technology Data Exchange (ETDEWEB)

    Angstadt, R; Cooper, W; Demarteau, M; Green, J; Jakubowski, S; Prosser, A; Rivera, R; Turqueti, M; Utes, M [Fermilab, Wilson Rd. and Pine Street, Batavia, IL (United States); Cai, X, E-mail: utes@fnal.gov [Institute for High Energy Physics, 19 Yuquan Road, Shijingshan District, Beijing (China)

    2010-12-15

    A collaboration between Fermilab and the Institute for High Energy Physics (IHEP), Beijing, has developed a beam position monitor for the IHEP test beam facility. This telescope is based on 5 stations of silicon strip detectors having a pitch of 60 microns. The total active area of each layer of the detector is about 12x10 cm{sup 2}. Readout of the strips is provided through the use of VA1' ASICs mounted on custom hybrid printed circuit boards and interfaced to Adapter Cards via copper-over-kapton flexible circuits. The Adapter Cards amplify and level-shift the signal for input to the Fermilab CAPTAN data acquisition nodes for data readout and channel configuration. These nodes deliver readout of triggered events and temperature data to an analysis computer over gigabit Ethernet links.

  19. Architecture of a Silicon Strip Beam Position Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Angstadt, R.; /Fermilab; Cooper, W.; /Fermilab; Demarteau, M.; /Fermilab; Green, J.; /Fermilab; Jakubowski, S.; /Fermilab; Prosser, A.; /Fermilab; Rivera, R.; /Fermilab; Turqueti, M.; /Fermilab; Utes, M.; /Fermilab; Cai, X.; /Beijing, Inst. High Energy Phys.

    2010-10-01

    A collaboration between Fermilab and the Institute for High Energy Physics (IHEP), Beijing, has developed a beam position monitor for the IHEP test beam facility. This telescope is based on 5 stations of silicon strip detectors having a pitch of 60 microns. The total active area of each layer of the detector is about 12 x 10 cm{sup 2}. Readout of the strips is provided through the use of VA1 ASICs mounted on custom hybrid printed circuit boards and interfaced to Adapter Cards via copper-over-kapton flexible circuits. The Adapter Cards amplify and level-shift the signal for input to the Fermilab CAPTAN data acquisition nodes for data readout and channel configuration. These nodes deliver readout and temperature data from triggered events to an analysis computer over gigabit Ethernet links.

  20. Architecture of a Silicon Strip Beam Position Monitor

    CERN Document Server

    Angstadt, R; Demarteau, M; Green, J; Jakubowski, S; Prosser, A; Rivera, R; Turqueti, M; Utes, M; Cai, Xiao

    2010-01-01

    A collaboration between Fermilab and the Institute for High Energy Physics (IHEP), Beijing, has developed a beam position monitor for the IHEP test beam facility. This telescope is based on 5 stations of silicon strip detectors having a pitch of 60 microns. The total active area of each layer of the detector is about 12x10 cm2. Readout of the strips is provided through the use of VA1` ASICs mounted on custom hybrid printed circuit boards and interfaced to Adapter Cards via copper-over-kapton flexible circuits. The Adapter Cards amplify and level-shift the signal for input to the Fermilab CAPTAN data acquisition nodes for data readout and channel configuration. These nodes deliver readout and temperature data from triggered events to an analysis computer over gigabit Ethernet links.

  1. A button - type beam position monitor design for TARLA facility

    Science.gov (United States)

    Gündoǧan, M. Tural; Kaya, ć.; Yavaş, Ö.

    2016-03-01

    Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) facility is proposed as an IR FEL and Bremsstrahlung facility as the first facility of Turkish Accelerator Center (TAC). TARLA is essentially proposed to generate oscillator mode FEL in 3-250 microns wavelengths range, will consist of normal conducting injector system with 250 keV beam energy, two superconducting RF accelerating modules in order to accelerate the beam 15-40 MeV. The TARLA facility is expected to provide two modes, Continuous wave (CW) and pulsed mode. Longitudinal electron bunch length will be changed between 1 and 10 ps. The bunch charge will be limited by 77pC. The design of the Button-type Beam Position Monitor for TARLA IR FEL is studied to operate in 1.3 GHz. Mechanical antenna design and simulations are completed considering electron beam parameters of TARLA. Ansoft HFSS and CST Particle Studio is used to compare with results of simulations.

  2. Performance of a reentrant cavity beam position monitor

    Directory of Open Access Journals (Sweden)

    Claire Simon

    2008-08-01

    Full Text Available The beam-based alignment and feedback systems, essential operations for the future colliders, require high resolution beam position monitors (BPMs. In the framework of the European CARE/SRF program, a reentrant cavity BPM with its associated electronics was developed by the CEA/DSM/Irfu in collaboration with DESY. The design, the fabrication, and the beam test of this monitor are detailed within this paper. This BPM is designed to be inserted in a cryomodule, work at cryogenic temperature in a clean environment. It has achieved a resolution better than 10  μm and has the possibility to perform bunch to bunch measurements for the x-ray free electron laser (X-FEL and the International Linear Collider (ILC. Its other features are a small size of the rf cavity, a large aperture (78 mm, and an excellent linearity. A first prototype of a reentrant cavity BPM was installed in the free electron laser in Hamburg (FLASH, at Deutsches Elektronen-Synchrotron (DESY and demonstrated its operation at cryogenic temperature inside a cryomodule. The second, installed, also, in the FLASH linac to be tested with beam, measured a resolution of approximately 4  μm over a dynamic range ±5  mm in single bunch.

  3. Performance of a reentrant cavity beam position monitor

    Energy Technology Data Exchange (ETDEWEB)

    Simon, C.; Luong, M.; Chel, S.; Napoly, O.; Novo, J.; Roudier, D. [CEA Saclay, DSM, Irfu, SACM, F-91191 Gif Sur Yvette, (France); Rouviere, N. [CNRS, IN2P3-IPN, F-91406 Orsay, (France); Baboi, N.; Mildner, N.; Nolle, D. [DESY, D-22603 Hamburg, (Germany)

    2008-07-01

    The beam-based alignment and feedback systems, essential operations for the future colliders, require high resolution beam position monitors (BPMs). In the framework of the European CARE/SRF program, a reentrant cavity BPM with its associated electronics was developed by the CEA/DSM/Irfu in collaboration with DESY. The design, the fabrication, and the beam test of this monitor are detailed within this paper. This BPM is designed to be inserted in a cryo-module, work at cryogenic temperature in a clean environment. It has achieved a resolution better than 10 {mu}m and has the possibility to perform bunch to bunch measurements for the X-ray free electron laser (X-FEL) and the International Linear Collider (ILC). Its other features are a small size of the rf cavity, a large aperture (78 mm), and an excellent linearity. A first prototype of a reentrant cavity BPM was installed in the free electron laser in Hamburg (FLASH), at Deutsches Elektronen-Synchrotron (DESY) and demonstrated its operation at cryogenic temperature inside a cryo-module. The second, installed, also, in the FLASH linac to be tested with beam, measured a resolution of approximately 4 {mu}m over a dynamic range {+-} 5 mm in single bunch. (authors)

  4. New Beam Position Monitor System Design for the APS Injector

    Science.gov (United States)

    Lill, R.; Singh, O.; Arnold, N.

    2002-12-01

    Demands on the APS injector have evolved over the last few years to the point that an upgrade to the existing beam position monitor (BPM) electronics is required. The injector is presently being used as a source for both the low-energy undulator test line (LEUTL) project and the top-up mode of operation. These new requirements and the fact that many new rf receiver components are available at reasonable cost make this upgrade very desirable at this time. The receiver topology selected is a logarithmic processor, which is designed around the Analog Devices AD8313 log amplifier demodulation chip. This receiver will become the universal replacement for all injector applications measuring positions signals from 352 to 2856 MHz with minimum changes in hardware and without the use of a downconverter. The receiver design features integrated front-end gain and built-in self test. The data acquisition being considered at this time is a 100-MHz, 12-bit transient recorder digitizer. The latest experimental and commissioning data and results will be presented.

  5. Formation of positive ions in hydrocarbon containing dielectric barrier discharge plasmas

    Science.gov (United States)

    Mihaila, Ilarion; Pohoata, Valentin; Jijie, Roxana; Nastuta, Andrei Vasile; Rusu, Ioana Alexandra; Topala, Ionut

    2016-12-01

    Low temperature atmospheric pressure plasma devices are suitable experimental solutions to generate transitory molecular environments with various applications. In this study we present experimental results regarding the plasma chemistry of dielectric barrier discharges (DBD) in helium - hydrogen (0.1%) - hydrocarbons (1.2%) mixtures. Four types of hydrocarbon gases were studied: methane (CH4), ethane (C2H6), propane (C3H8), and butane (C4H10). Discharge diagnosis and monitoring was assured by electrical measurements and optical emission spectroscopy. Molecular beam mass spectrometry is engaged to sample positive ions populations from two different plasma sources. Dissociation and generation of higher-chain and cyclic (aromatic) hydrocarbons were discussed as a function of feed gas and discharge geometry. We found a strong influence of these parameters on both molecular mass distribution and recombination processes in the plasma volume.

  6. Position of Fe ions in MgO crystalline structure

    Directory of Open Access Journals (Sweden)

    Szczerba Jacek

    2015-03-01

    Full Text Available Magnesium oxide (MgO is one of the most important raw materials in many branches of industry. Magnesium oxide is a popular refractory raw material because of its high refractoriness and high resistance to basic slags and environment. In many cases, use of MgO is limited by its properties, especially the presence of secondary phases like iron oxides. The amount and distribution of iron oxides can strongly influence the technological properties of MgO and depend on the manufacturing method, particularly the heat-treatment process. The aim of the study was to evaluate the influence of the heat-treatment process on amount and distribution of iron ions in a magnesium oxide lattice. The 57Fe Mössbauer effect measurements of fused and sintered magnesium oxide samples doped by the iron oxide were conducted. Investigation reveals in both cases the presence of Fe2+ as well as Fe3+ ions. Fe2+ ions occupy Mg2+ octahedral sites in the MgO lattice, whereas the Fe3+ ions are located in highly distorted octahedral coordination. The amount of Fe2+ varies from around 66% for fused samples to 30% for sintered samples.

  7. Production of Inorganic Thin Scintillating Films for Ion Beam Monitoring Devices

    CERN Document Server

    Re, Maurizio; Cosentino, Luigi; Cuttone, Giacomo; Finocchiaro, Paolo; Hermanne, Alex; Lojacono, Pietro A; Ma, YingJun; Thienpont, Hugo; Van Erps, Jurgen; Vervaeke, Michael; Volckaerts, Bart; Vynck, Pedro

    2005-01-01

    In this work we present the development of beam monitoring devices consisting of thin CsI(Tl) films deposited on Aluminium support layers. The light emitted by the scintillating layer during the beam irradiation is measured by a CCD-camera. In a first prototype a thin Aluminium support layer of 6 micron allows the ion beam to easily pass through without significant energy loss and scattering effects. Therefore it turns out to be a non-destructive monitoring device to characterize on-line beam shape and beam position without interfering with the rest of the irradiation process. A second device consists of an Aluminium support layer which is thick enough to completely stop the impinging ions allowing to monitor at the same time the beam profile and the beam current intensity. Some samples have been coated by a 100 Å protective layer to prevent the film damage by atmosphere exposition. In this contribution we present our experimental results obtained by irradiating the samples with proton beams at 8.3 and 62 Me...

  8. Direction for the Future - Successive Acceleration of Positive and Negative Ions Applied to Space Propulsion

    CERN Document Server

    Aanesland, A.; Popelier, L.; Chabert, P.

    2013-12-16

    Electrical space thrusters show important advantages for applications in outer space compared to chemical thrusters, as they allow a longer mission lifetime with lower weight and propellant consumption. Mature technologies on the market today accelerate positive ions to generate thrust. The ion beam is neutralized by electrons downstream, and this need for an additional neutralization system has some drawbacks related to stability, lifetime and total weight and power consumption. Many new concepts, to get rid of the neutralizer, have been proposed, and the PEGASES ion-ion thruster is one of them. This new thruster concept aims at accelerating both positive and negative ions to generate thrust, such that additional neutralization is redundant. This chapter gives an overview of the concept of electric propulsion and the state of the development of this new ion-ion thruster.

  9. Time-dependent cylindrical and spherical ion-acoustic solitary structures in relativistic degenerate multi-ion plasmas with positively-charged heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Hossen, M. R.; Nahar, L.; Mamun, A. A. [Jahangirnagar University,Savar, Dhaka (Bangladesh)

    2014-12-15

    The properties of time-dependent cylindrical and spherical, modified ion-acoustic (mIA) solitary structures in relativistic degenerate multi-ion plasmas (containing degenerate electron fluids, inertial positively-, as well as negatively-, charged light ions, and positively-charged static heavy ions) have been investigated theoretically. This investigation is valid for both non-relativistic and ultrarelativistic limits. The well-known reductive perturbation method has been used to derive the Korteweg-de Vries (K-dV) and the mK-dV equations for studying the basic features of solitary waves. The fundamental characteristics of mIA solitary waves are found to be significantly modified by the effects of the degenerate pressures of the electron and the ion fluids, their number densities, and the various charge states of heavy ions. The relevance of our results in astrophysical compact objects like white dwarfs and neutron stars, which are of scientific interest, is briefly discussed.

  10. Improvement of thermo-mechanical position stability of the beam position monitor in PLS-II

    CERN Document Server

    Ha, Taekyun; Kwon, Hyuckchae; Han, Hongsik; Park, Chongdo

    2016-01-01

    In the storage ring of PLS-II, we reduced mechanical displacement of electron beam position monitors (e-BPMs) that is caused by heating during e-beam storage. The orbit feedback system intends that the electron beam pass through the center of the BPM, so to provide stable photon beam into beamlines the BPM pickup itself must be stable to sub-micrometer precision. Thermal deformation of the vacuum chambers on which the BPM pickups are mounted is inevitable when the electron beam current is changed by unintended beam abort. We reduced this deformation by improving the vacuum chamber support and by enhancing the water cooling. We report the thermo-mechanical analysis and displacement measurements of BPM pickups after the improvements.

  11. Position-sensitive radiation monitoring (surface contamination monitor). Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    1999-06-01

    The Shonka Research Associates, Inc. Position-Sensitive Radiation Monitor both detects surface radiation and prepares electronic survey map/survey report of surveyed area automatically. The electronically recorded map can be downloaded to a personal computer for review and a map/report can be generated for inclusion in work packages. Switching from beta-gamma detection to alpha detection is relatively simple and entails moving a switch position to alpha and adjusting the voltage level to an alpha detection level. No field calibration is required when switching from beta-gamma to alpha detection. The system can be used for free-release surveys because it meets the federal detection level sensitivity limits requires for surface survey instrumentation. This technology is superior to traditionally-used floor contamination monitor (FCM) and hand-held survey instrumentation because it can precisely register locations of radioactivity and accurately correlate contamination levels to specific locations. Additionally, it can collect and store continuous radiological data in database format, which can be used to produce real-time imagery as well as automated graphics of survey data. Its flexible design can accommodate a variety of detectors. The cost of the innovative technology is 13% to 57% lower than traditional methods. This technology is suited for radiological surveys of flat surfaces at US Department of Energy (DOE) nuclear facility decontamination and decommissioning (D and D) sites or similar public or commercial sites.

  12. First operational experience with the positive-ion injector of ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Bollinger, L.M.; Pardo, R.C.; Shepard, K.W.; Bogaty, J.M.; Clifft, B.E.; Munson, F.H.; Zinkann, G.

    1992-01-01

    The recently completed positive-ion injector for the heavy-ion accelerator ATLAS was designed as a replacement for the tandem injector of the present tandem-linac system and, unlike the tandem, the positive-ion injector is required to provide ions from the full range of the periodic table. The concept for the new injector, which consists of an ECR ion source on a voltage platform coupled to a very-low-velocity superconducting linac, introduces technical problems and uncertainties that are well beyond those encountered previously for superconducting linacs. The solution to these problems and their relationship to performance are outlined, and initial experience in the acceleration of heavy-ion beams through the entire ATLAS system is discussed. The unusually good longitudinal beam quality of ATLAS with its new injector is emphasized.

  13. First operational experience with the positive-ion injector of ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Bollinger, L.M.; Pardo, R.C.; Shepard, K.W.; Bogaty, J.M.; Clifft, B.E.; Munson, F.H.; Zinkann, G.

    1992-08-01

    The recently completed positive-ion injector for the heavy-ion accelerator ATLAS was designed as a replacement for the tandem injector of the present tandem-linac system and, unlike the tandem, the positive-ion injector is required to provide ions from the full range of the periodic table. The concept for the new injector, which consists of an ECR ion source on a voltage platform coupled to a very-low-velocity superconducting linac, introduces technical problems and uncertainties that are well beyond those encountered previously for superconducting linacs. The solution to these problems and their relationship to performance are outlined, and initial experience in the acceleration of heavy-ion beams through the entire ATLAS system is discussed. The unusually good longitudinal beam quality of ATLAS with its new injector is emphasized.

  14. Control of secondary electrons from ion beam impact using a positive potential electrode

    Science.gov (United States)

    Crowley, T. P.; Demers, D. R.; Fimognari, P. J.

    2016-11-01

    Secondary electrons emitted when an ion beam impacts a detector can amplify the ion beam signal, but also introduce errors if electrons from one detector propagate to another. A potassium ion beam and a detector comprised of ten impact wires, four split-plates, and a pair of biased electrodes were used to demonstrate that a low-voltage, positive electrode can be used to maintain the beneficial amplification effect while greatly reducing the error introduced from the electrons traveling between detector elements.

  15. A monitoring and control system for the ISOLDE resonance laser ion source RILIS

    Energy Technology Data Exchange (ETDEWEB)

    Rossel, Ralf [Engineering Department, CERN, Geneva (Switzerland); Institut fuer Physik, Johannes Gutenberg-Universitaet, Mainz (Germany); Fachbereich Design Informatik Medien, Hochschule RheinMain, Wiesbaden (Germany); Fedosseev, Valentin; Marsh, Bruce [Engineering Department, CERN, Geneva (Switzerland); Rothe, Sebastian [Engineering Department, CERN, Geneva (Switzerland); Institut fuer Physik, Johannes Gutenberg-Universitaet, Mainz (Germany); Wendt, Klaus [Institut fuer Physik, Johannes Gutenberg-Universitaet, Mainz (Germany)

    2012-07-01

    The RILIS laser ion source is one of the central components of the ISOLDE on-line isotope production facility. A record of about 2500 hours of on-line operation for the year 2011 shows the major importance and high demand for RILIS which provides radioactive ion beams of various elements with the highest efficiency and unmatched isobaric purity. The RILIS is currently operated 24/7 with the operators continuously present to control and possibly correct the crucial laser parameters, i.e. wavelength, output powers and beam positions of all individual lasers in use. Moreover, the operator acts as contact person for the ISOLDE user to inform about its current status. Deploying a widely automated, network-based monitoring and control software will not only enable manpower to devote their time to system improvement rather than supervision but also greatly improve health issues and work safety as stay in areas with increased levels of radiation exposition will be significantly reduced. The on-going software and hardware development covers the four key aspects: Machine protection, monitoring of beam parameters, automated correction and a RILIS status display for the users. The concept and the status of implementation are presented.

  16. Status report on the positive ion injector (PII) for ATLAS at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Zinkann, G.P.; Added, N.; Billquist, P.; Bogaty, J.; Clifft, B.; Markovich, P.; Phillips, D.; Strickhorn, P.; Shepard, K.W.

    1991-01-01

    The Positive Ion Injector (PII) is part of the Uranuim upgrade for ATLAS accelerator at Argonne National Laboratory. This paper will include a technical discussion of the Positive Ion Injector (PII) accelerator with its superconducting, niobium, very low-velocity accelerating structures. It will also discuss the current construction schedule of PII, and review an upgrade of the fast- tuning system. 10 refs., 6 figs.

  17. Studies on the positive hydrogen ion production from a small multicusp source

    Energy Technology Data Exchange (ETDEWEB)

    Olivo, M.; Mariani, E. (Paul Scherrer Institute (PSI), CH-5232 Villigen PSI (Switzerland)); Leung, K.N. (Lawrence Berkeley Laboratory (LBL), University of California, Berkeley, California 94720 (United States))

    1994-04-01

    An rf driven ion source has been developed and tested at LBL for positive hydrogen ion production. Studies of this new source on ion species and current densities for a dc arc discharge are made in the 60-kV PSI ion source test stand and the results compared with those obtained using the rf discharge. This source, using both discharge modes, will be installed in the PSI Cockcroft--Walton preinjector to increase the 870-keV dc proton beam intensity from the present 8--10 mA operation to about 25 mA.

  18. Electron attachment and positive ion chemistry of monohydrogenated fluorocarbon radicals

    Energy Technology Data Exchange (ETDEWEB)

    Wiens, Justin P.; Shuman, Nicholas S.; Miller, Thomas M.; Viggiano, Albert A., E-mail: afrl.rvborgmailbox@kirtland.af.mil [Air Force Research Laboratory, Space Vehicles Directorate, Kirtland AFB, New Mexico 87117 (United States)

    2015-08-21

    Rate coefficients and product branching fractions for electron attachment and for reaction with Ar{sup +} are measured over the temperature range 300–585 K for three monohydrogenated fluorocarbon (HFC) radicals (CF{sub 3}CHF, CHF{sub 2}CF{sub 2}, and CF{sub 3}CHFCF{sub 2}), as well as their five closed-shell precursors (1-HC{sub 2}F{sub 4}I, 2-HC{sub 2}F{sub 4}I, 2-HC{sub 2}F{sub 4}Br, 1-HC{sub 3}F{sub 6}I, 2-HC{sub 3}F{sub 6}Br). Attachment to the HFC radicals is always fairly inefficient (between 0.1% and 10% of the Vogt–Wannier capture rate), but generally faster than attachment to analogous perfluorinated carbon radicals. The primary products in all cases are HF-loss to yield C{sub n}F{sub m−1}{sup −} anions, with only a minor branching to F{sup −} product. In all cases the temperature dependences are weak. Attachment to the precursor halocarbons is near the capture rate with a slight negative temperature dependence in all cases except for 2-HC{sub 2}F{sub 4}Br, which is ∼10% efficient at 300 K and becomes more efficient, approaching the capture rate at higher temperatures. All attachment kinetics are successfully reproduced using a kinetic modeling approach. Reaction of the HFC radicals with Ar{sup +} proceeds at or near the calculated collisional rate coefficient in all cases, yielding a wide variety of product ions.

  19. Deterministic delivery of externally cold and precisely positioned single molecular ions

    CERN Document Server

    Leschhorn, G; Schaetz, T

    2011-01-01

    We present the preparation and deterministic delivery of a selectable number of externally cold molecular ions. A laser cooled ensemble of Mg^+ ions subsequently confined in several linear Paul traps inter-connected via a quadrupole guide serves as a cold bath for a single or up to a few hundred molecular ions. Sympathetic cooling embeds the molecular ions in the crystalline structure. MgH^+ ions, that serve as a model system for a large variety of other possible molecular ions, are cooled down close to the Doppler limit and are positioned with an accuracy of one micrometer. After the production process, severely compromising the vacuum conditions, the molecular ion is efficiently transfered into nearly background-free environment. The transfer of a molecular ion between different traps as well as the control of the molecular ions in the traps is demonstrated. Schemes, optimized for the transfer of a specific number of ions, are realized and their efficiencies are evaluated. This versatile source applicable f...

  20. Sheath structure in plasma with two species of positive ions and secondary electrons

    Science.gov (United States)

    Xiao-Yun, Zhao; Nong, Xiang; Jing, Ou; De-Hui, Li; Bin-Bin, Lin

    2016-02-01

    The properties of a collisionless plasma sheath are investigated by using a fluid model in which two species of positive ions and secondary electrons are taken into account. It is shown that the positive ion speeds at the sheath edge increase with secondary electron emission (SEE) coefficient, and the sheath structure is affected by the interplay between the two species of positive ions and secondary electrons. The critical SEE coefficients and the sheath widths depend strongly on the positive ion charge number, mass and concentration in the cases with and without SEE. In addition, ion kinetic energy flux to the wall and the impact of positive ion species on secondary electron density at the sheath edge are also discussed. Project supported by the National Natural Science Foundation of China (Grant Nos. 11475220 and 11405208), the Program of Fusion Reactor Physics and Digital Tokamak with the CAS “One-Three-Five” Strategic Planning, the National ITER Program of China (Grant No. 2015GB101003), and the Higher Education Natural Science Research Project of Anhui Province, China (Grant No. 2015KJ009).

  1. Variation and balance of positive air ion concentrations in a boreal forest

    Directory of Open Access Journals (Sweden)

    U. Hõrrak

    2008-02-01

    Full Text Available Air ions are characterized on the basis of measurements carried out in a boreal forest at the Hyytiälä SMEAR station, Finland, during the BIOFOR III campaign in spring 1999. The air ions were discriminated as small ions (charged molecular aggregates of the diameter of less than 2.5 nm, intermediate ions (charged aerosol particles of the diameter of 2.5–8 nm, and large ions (charged aerosol particles of the diameter of 8–20 nm. Statistical characteristics of the ion concentrations and the parameters of ion balance in the atmosphere are presented separately for the nucleation event days and non-event days. In the steady state, the ionization rate is balanced with the loss of small ions, which is expressed as the product of the small ion concentration and the ion sink rate. The widely known sinks of small ions are the recombination with small ions of opposite polarity and attachment to aerosol particles. The dependence of small ion concentration on the concentration of aerosol particles was investigated applying a model of the bipolar diffusion charging of particles by small ions. When the periods of relative humidity above 95% and wind speed less than 0.6 m s−1 were excluded, then the small ion concentration and the theoretically calculated small ion sink rate were closely negatively correlated (correlation coefficient −87%. However, an extra ion loss term of the same magnitude as the ion loss onto aerosol particles is needed for a quantitative explanation of the observations. This term is presumably due to the small ion deposition on coniferous forest. The hygroscopic growth correction of the measured aerosol particle size distributions was also found to be necessary for the proper estimation of the ion sink rate. In the case of nucleation burst events, the concentration of small positive ions followed the general balance equation, no extra ion loss in addition to the deposition on coniferous forest was detected, and the

  2. Reagentless phosphate ion sensor system for environmental monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, M.; Kurata, H.; Inoue, Y.; Shin, H. [Kyushu Institute of Technology, Fukuoka (Japan). Faculty of computer Science and Systems; Kubo, I. [Soka University, Tokyo (Japan). Faculty of Engineering; Nakamura, H.; Ikebukuro, K.; Karube, I. [The University of Tokyo, Tokyo (Japan). Research Center for Advanced Science and Technology

    1998-06-05

    Phosphate ion sensor system using an electrochemical detector was developed by the use of recombinant pyruvate oxidase (PyOD) from Lactobacillus plantarum, which needs no addition of thiamine pyrophosphate and flavin adenine dinucleotide for reaction. This system could detect 2 nM hydrogen peroxide. Response time for phosphate ion was 80 s and total measurement time for one sample was 3 min. Citrate buffer solution (pH 6.3) was most suitable for the measurement and optimum flow rate was 0.6 ml/min. Under these optimum conditions minimum detection limit of phosphate ion was 15 nM, which was enough for the determination of phosphate ion in dam-lake. 6 refs., 5 figs., 1 tab.

  3. Positive ion chemistry in the exhaust plumes of an air craft jet engine and a burner: investigations with a quadrupole ion trap mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kiendler, A.; Aberle, S.; Arnold, F. [Max Planck Institute for Nuclear Physics, Heidelberg (Germany). Atmospheric Physics Div.

    2000-07-01

    Using a quadrupole ion trap mass spectrometer detailed composition analyses were made of positive ions in the exhaust of an aircraft jet engine and of a jet fuel burner. For both scenarios complex organic ions with large mass numbers were most abundant. By employing the MS{sup 2}-mode of the quadrupole ion trap mass spectrometer, mass selected trapped ions were intendently broken up and characteristic fragment ions were observed. The latter indicate that the parent ions contain hydrogen, carbon and oxygen which is indicative of oxygenated hydrocarbons. This contrasts recent composition measurements of negative ions in aircraft jet engine exhaust made by our group which revealed that negative ions contain the inorganic acid H{sub 2}SO{sub 4}. Our present measurements support the view that positive ions in aircraft jet engine exhaust contain preferably organic molecules. (author)

  4. Development of ion-exchange collectors for monitoring atmospheric deposition of inorganic pollutants in Alaska parklands

    Science.gov (United States)

    Brumbaugh, William G.; Arms, Jesse W.; Linder, Greg L.; Melton, Vanessa D.

    2016-09-19

    -stage arrangement. With the modified IEC design, ammonium, nitrate, and sulfate ions were determined with a precision of between 5 and 10 percent relative standard deviation for the low loads that happen in remote areas of Alaska. Results from 2012 field studies demonstrated that the targeted ions were stable and fully retained on the IEC during field deployment and could be fully recovered by extraction in the laboratory. Importantly, measurements of annual loads determined by combining snowpack and IEC sampling at sites near National Atmospheric Deposition Program monitoring stations was comparable to results obtained by the National Atmospheric Deposition Program.Field studies completed in 2014 included snowpack and IEC samples to measure depositional loads; the results were compared to concentrations of similar substances in co-located moss samples. Analyses of constituents in snow and IECs included ammonium, nitrate, and sulfate ions; and a suite of trace metals. Constituent measurements in Hylocomium splendens moss included total nitrogen, phosphorous, and sulfur, and trace metals. To recover ammonium ions and metal ions from the upper cation-exchange column, a two-step extraction procedure was developed from laboratory spiking experiments. The 2014 studies determined that concentrations of certain metals, nitrogen, and sulfur in tissues of Hylocomium splendens moss reflected differences in presumptive deposition from local atmospheric sources. Moss tissues collected from two sites farthest from urban locales had the lowest levels of total nitrogen and sulfur, whereas tissues collected from three of the urban sites had the greatest concentrations of many of the trace metals. Moss tissue concentrations of three trace metals (cobalt, chromium, and nickel) were strongly (positively) Spearman’s rank correlated (pExploratory models indicated linear uptake of the three metals by Hylocomium splendens moss and nonlinear uptake of sulfur from sulfate.Our results provided useful

  5. An ion species model for positive ion sources - part I description of the model

    CERN Document Server

    Surrey, E

    2014-01-01

    A one dimensional model of the magnetic multipole volume plasma source has been developed for use in intense ion/neutral atom beam injectors. The model uses plasma transport coefficients for particle and energy flow to create a detailed description of the plasma parameters along an axis parallel to that of the extracted beam. Primarily constructed for applications to neutral beam injection systems on fusion devices, the model concentrates on the hydrogenic isotopes but can be extended to any gas by substitution of the relevant masses, cross sections and rate coefficients. The model considers the flow of fast ionizing electrons that create the ratios of the three hydrogenic isotope ion species, H+, H2 +, H3 + (and similarly for deuterium and tritium) as they flow towards the beam extraction electrode, together with the production of negative hydrogenic ions through volume processes. The use of detailed energy balance in the discharge allows the determination of the fraction of the gas density that is in an ato...

  6. Stereo optical tracker for standoff monitoring of position and orientation

    Science.gov (United States)

    Sherman, W. D.; Houk, T. L.; Saint Clair, J. M.; Sjoholm, P. F.; Voth, M. D.

    2009-01-01

    A Precision Optical Measurement System (POMS) has been designed, constructed and tested for tracking the position (x, y, z) and orientation (roll, pitch, yaw) of models in Boeing's 9-77 Compact Radar Range. A stereo triangulation technique is implemented using two remote sensor units separated by a known baseline. Each unit measures pointing angles (azimuth and elevation) to optical targets on a model. Four different reference systems are used for calibration and alignment of the system's components and two platforms. Pointing angle data and calibration corrections are processed at high rates to give near real-time feedback to the mechanical positioning system of the model. The positional accuracy of the system is +/- .010 inches at a distance of 85 feet while using low RCS reflective tape targets. The precision measurement capabilities and applications of the system are discussed.

  7. Log-ratio circuit for beam position monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Wells, F.D.; Shafer, R.E.; Gilpatrick, J.D.; Shurter, R.B. (MS: H808, Los Alamos National Laboratory Los Alamos, NM (USA))

    1991-06-01

    A synopsis is given of work in progress on a new signal processing technique for obtaining real-time normalized beam position information from sensing electrodes in accelerator beam pipes. The circuit employs wideband logarithmic amplifiers in a configuration that converts pickup electrode signals to position signals that are substantially independent of beam current. The circuit functions as a ratio detector that computers the logarithm of (A/B) as (Log A {minus} Log B), and presents the results in a video (real-time analog) format representing beam position. It has potential benefits of greater dynamic range and better linearity than other techniques currently used and it may be able to operate at substantially higher frequencies.

  8. Log-ratio circuit for beam position monitoring

    Science.gov (United States)

    Wells, F. D.; Shafer, R. E.; Gilpatrick, J. D.; Shurter, R. B.

    1991-06-01

    A synopsis is given of work in progress on a new signal processing technique for obtaining real-time normalized beam position information from sensing electrodes in accelerator beam pipes. The circuit employs wideband logarithmic amplifiers in a configuration that converts pickup electrode signals to position signals that are substantially independent of beam current. The circuit functions as a ratio detector that computers the logarithm of (A/B) as (Log A - Log B), and presents the results in a video (real-time analog) format representing beam position. It has potential benefits of greater dynamic range and better linearity than other techniques currently used and it may be able to operate at substantially higher frequencies.

  9. Log-ratio circuit for beam position monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Wells, F.D.; Shafer, R.E.; Gilpatrick, J.D.; Shurter, R.B.

    1990-01-01

    A synopsis is given of work in progress on a new signal processing technique for obtaining real-time normalized beam position information from sensing electrodes in accelerator beam pipes. The circuit employs wideband logarithmic amplifiers in a configuration that converts pickup electrode signals to position signals that are substantially independent of beam current. The circuit functions as a ratio detector that computes the logarithm of (A/B) as (Log A-Log B), and presents the result in a video (real-time analog) format representing beam position. It has potential benefits of greater dynamic range and better linearity than other techniques currently used and it may be able to operate at substantially higher frequencies. 4 refs., 8 figs.

  10. Bond energies and structures of ammonia-sulfuric acid positive cluster ions.

    Science.gov (United States)

    Froyd, Karl D; Lovejoy, Edward R

    2012-06-21

    New particle formation in the atmosphere is initiated by nucleation of gas-phase species. The small molecular clusters that act as seeds for new particles are stabilized by the incorporation of an ion. Ion-induced nucleation of molecular cluster ions containing sulfuric acid generates new particles in the background troposphere. The addition of a proton-accepting species to sulfuric acid cluster ions can further stabilize them and may promote nucleation under a wider range of conditions. To understand and accurately predict atmospheric nucleation, the stabilities of each molecular cluster within a chemical family must be known. We present the first comprehensive measurements of the ammonia-sulfuric acid positive ion cluster system NH(4)(+)(NH(3))(n)(H(2)SO(4))(s). Enthalpies and entropies of individual growth steps within this system were measured using either an ion flow reactor-mass spectrometer system under equilibrium conditions or by thermal decomposition of clusters in an ion trap mass spectrometer. Low level ab initio structural calculations provided inputs to a master equation model to determine bond energies from thermal decomposition measurements. Optimized ab initio structures for clusters up through n = 3, s = 3 are reported. Upon addition of ammonia and sulfuric acid pairs, internal proton transfer generates multiple NH(4)(+) and HSO(4)(-) ions within the clusters. These multiple-ion structures are up to 50 kcal mol(-1) more stable than corresponding isomers that retain neutral NH(3) and H(2)SO(4) species. The lowest energy n = s clusters are composed entirely of ions. The addition of acid-base pairs to the core NH(4)(+) ion generates nanocrystals that begin to resemble the ammonium bisulfate bulk crystal starting with the smallest n = s cluster, NH(4)(+)(NH(3))(1)(H(2)SO(4))(1). In the absence of water, this cluster ion system nucleates spontaneously for conditions that encompass most of the free troposphere.

  11. Realization of a scanning ion beam monitor; Realisation d'un dispositif de controle et d'imagerie de faisceaux balayes d'ions

    Energy Technology Data Exchange (ETDEWEB)

    Pautard, C

    2008-07-15

    During this thesis, a scanning ion beam monitor has been developed in order to measure on-line fluence spatial distributions. This monitor is composed of an ionization chamber, Hall Effect sensors and a scintillator. The ionization chamber set between the beam exit and the experiment measures the ion rate. The beam spot is localized thanks to the Hall Effect sensors set near the beam sweeping magnets. The scintillator is used with a photomultiplier tube to calibrate the ionization chamber and with an imaging device to calibrate the Hall Effect sensors. This monitor was developed to control the beam lines of a radiobiology dedicated experimentation room at GANIL. These experiments are held in the context of the research in hadron-therapy. As a matter of fact, this new cancer treatment technique is based on ion irradiations and therefore demands accurate knowledge about the relation between the dose deposit in biological samples and the induced effects. To be effective, these studies require an on-line control of the fluence. The monitor has been tested with different beams at GANIL. Fluence can be measured with a relative precision of {+-}4% for a dose rate ranging between 1 mGy/s and 2 Gy/s. Once permanently set on the beam lines dedicated to radiobiology at GANIL, this monitor will enable users to control the fluence spatial distribution for each irradiation. The scintillator and the imaging device are also used to control the position, the spot shape and the energy of different beams such as those used for hadron-therapy. (author)

  12. A large area position-sensitive ionization chamber for heavy-ion-induced reaction studies

    Energy Technology Data Exchange (ETDEWEB)

    Pant, L.M. E-mail: lalit.pant@exp2.physik.uni-giessen.de; Biswas, D.C.; Dinesh, B.V.; Thomas, R.G.; Saxena, A.; Sawant, Y.S.; Choudhury, R.K

    2002-12-11

    A large area position-sensitive ionization chamber with a wide dynamic range has been developed to measure the mass, charge and energy of the heavy ions and the fission fragments produced in heavy-ion-induced reactions. The split anode geometry of the detector makes it suitable for both particle identification and energy measurements for heavy ions and fission fragments. The detector has been tested with {alpha} particles from {sup 241}Am-{sup 239}Pu source, fission fragments from {sup 252}Cf and the heavy-ion beams from the 14UD Mumbai Pelletron accelerator facility. Using this detector, measurements on mass and total kinetic energy distributions in heavy-ion-induced fusion-fission reactions have been carried out for a wide range of excitation energies. Results on deep inelastic collisions and mass-energy correlations on different systems using this detector setup are discussed.

  13. A large area position-sensitive ionization chamber for heavy-ion-induced reaction studies

    CERN Document Server

    Pant, L M; Dinesh, B V; Thomas, R G; Saxena, A; Sawant, Y S; Choudhury, R K

    2002-01-01

    A large area position-sensitive ionization chamber with a wide dynamic range has been developed to measure the mass, charge and energy of the heavy ions and the fission fragments produced in heavy-ion-induced reactions. The split anode geometry of the detector makes it suitable for both particle identification and energy measurements for heavy ions and fission fragments. The detector has been tested with alpha particles from sup 2 sup 4 sup 1 Am- sup 2 sup 3 sup 9 Pu source, fission fragments from sup 2 sup 5 sup 2 Cf and the heavy-ion beams from the 14UD Mumbai Pelletron accelerator facility. Using this detector, measurements on mass and total kinetic energy distributions in heavy-ion-induced fusion-fission reactions have been carried out for a wide range of excitation energies. Results on deep inelastic collisions and mass-energy correlations on different systems using this detector setup are discussed.

  14. Fault Monitoring and Fault Recovery Control for Position Moored Tanker

    DEFF Research Database (Denmark)

    Fang, Shaoji; Blanke, Mogens

    2011-01-01

    This paper addresses fault tolerant control for position mooring of a shuttle tanker operating in the North Sea. A complete framework for fault diagnosis is presented but the loss of a sub-sea mooring line buoyancy element is given particular attention, since this fault could lead to mooring line....... Properties of detection and fault-tolerant control are demonstrated by high fidelity simulations....

  15. Angle-resolved ion TOF spectrometer with a position sensitive detector

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Norio [Electrotechnical Lab., Tsukuba, Ibaraki (Japan); Heiser, F.; Wieliczec, K.; Becker, U.

    1996-07-01

    A angle-resolved ion time-of-flight mass spectrometer with a position sensitive anode has been investigated. Performance of this spectrometer has been demonstrated by measuring an angular distribution of a fragment ion pair, C{sup +} + O{sup +}, from CO at the photon energy of 287.4 eV. The obtained angular distribution is very close to the theoretically expected one. (author)

  16. Monitoring Ion Channel Function In Real Time Through Quantum Decoherence

    CERN Document Server

    Hall, L T; Cole, J H; Städler, B; Caruso, F; Mulvaney, P; Wrachtrup, J; Hollenberg, L C L

    2009-01-01

    In drug discovery research there is a clear and urgent need for non-invasive detection of cell membrane ion channel operation with wide-field capability. Existing techniques are generally invasive, require specialized nano structures, or are only applicable to certain ion channel species. We show that quantum nanotechnology has enormous potential to provide a novel solution to this problem. The nitrogen-vacancy (NV) centre in nano-diamond is currently of great interest as a novel single atom quantum probe for nanoscale processes. However, until now, beyond the use of diamond nanocrystals as fluorescence markers, nothing was known about the quantum behaviour of a NV probe in the complex room temperature extra-cellular environment. For the first time we explore in detail the quantum dynamics of a NV probe in proximity to the ion channel, lipid bilayer and surrounding aqueous environment. Our theoretical results indicate that real-time detection of ion channel operation at millisecond resolution is possible by d...

  17. Measurements of Positively Charged Ions in Premixed Methane-Oxygen Atmospheric Flames

    KAUST Repository

    Alquaity, Awad B. S.

    2016-08-22

    Cations and anions are formed as a result of chemi-ionization processes in combustion systems. Electric fields can be applied to reduce emissions and improve combustion efficiency by active control of the combustion process. Detailed flame ion chemistry models are needed to understand and predict the effect of external electric fields on combustion plasmas. In this work, a molecular beam mass spectrometer (MBMS) is utilized to measure ion concentration profiles in premixed methane–oxygen argon burner-stabilized atmospheric flames. Lean and stoichiometric flames are considered to assess the dependence of ion chemistry on flame stoichiometry. Relative ion concentration profiles are compared with numerical simulations using various temperature profiles, and good qualitative agreement was observed for the stoichiometric flame. However, for the lean flame, numerical simulations misrepresent the spatial distribution of selected ions greatly. Three modifications are suggested to enhance the ion mechanism and improve the agreement between experiments and simulations. The first two modifications comprise the addition of anion detachment reactions to increase anion recombination at low temperatures. The third modification involves restoring a detachment reaction to its original irreversible form. To our knowledge, this work presents the first detailed measurements of cations and flame temperature in canonical methane–oxygen-argon atmospheric flat flames. The positive ion profiles reported here may be useful to validate and improve ion chemistry models for methane-oxygen flames.

  18. Supplementary Material for: Measurements of Positively Charged Ions in Premixed Methane-Oxygen Atmospheric Flames

    KAUST Repository

    Alquaity, Awad B. S.

    2017-01-01

    Cations and anions are formed as a result of chemi-ionization processes in combustion systems. Electric fields can be applied to reduce emissions and improve combustion efficiency by active control of the combustion process. Detailed flame ion chemistry models are needed to understand and predict the effect of external electric fields on combustion plasmas. In this work, a molecular beam mass spectrometer (MBMS) is utilized to measure ion concentration profiles in premixed methane–oxygen argon burner-stabilized atmospheric flames. Lean and stoichiometric flames are considered to assess the dependence of ion chemistry on flame stoichiometry. Relative ion concentration profiles are compared with numerical simulations using various temperature profiles, and good qualitative agreement was observed for the stoichiometric flame. However, for the lean flame, numerical simulations misrepresent the spatial distribution of selected ions greatly. Three modifications are suggested to enhance the ion mechanism and improve the agreement between experiments and simulations. The first two modifications comprise the addition of anion detachment reactions to increase anion recombination at low temperatures. The third modification involves restoring a detachment reaction to its original irreversible form. To our knowledge, this work presents the first detailed measurements of cations and flame temperature in canonical methane–oxygen-argon atmospheric flat flames. The positive ion profiles reported here may be useful to validate and improve ion chemistry models for methane-oxygen flames.

  19. Position-dependent dynamics of a trapped ion in a standing wave laser

    Institute of Scientific and Technical Information of China (English)

    方卯发

    2002-01-01

    We have investigated the position-dependent dynamics of a trapped ion in a standing wave laser by transforming it to the Jaynes-Cummings-type system under the Lamb-Dicke limit. A variety of novel phenomena are exhibited,e.g. periodic collapse and revival features and long-time scaled revivals of the ionic inversion, depending on its position in the standing wave. Our result provides a way of producing a system equivalent to the two-photon Jaynes-Cummings model in the trapped ion system, with its exact periodicities.

  20. Generalization of the Child-Langmuir law to the alternate extraction of positive and negative ions

    Energy Technology Data Exchange (ETDEWEB)

    Lafleur, T., E-mail: trevor.lafleur@lpp.polytechnique.fr [Laboratoire de Physique des Plasmas, CNRS, Sorbonne Universités, UPMC Univ Paris 06, Univ Paris-Sud, Ecole Polytechnique, 91128 Palaiseau (France); ONERA-The French Aerospace Lab, 91120 Palaiseau (France); Aanesland, A. [Laboratoire de Physique des Plasmas, CNRS, Sorbonne Universités, UPMC Univ Paris 06, Univ Paris-Sud, Ecole Polytechnique, 91128 Palaiseau (France)

    2014-12-15

    Using a combined analytical and simulation approach, we investigate positive and negative ion extraction between two electrodes from an ion-ion plasma source. With a square voltage waveform applied to the electrodes, we obtain approximate analytical solutions for the time-averaged extracted current densities, which are given simply by: J{sub p}{sup ac}=[α−fL√((M{sub p})/(q{sub p}V{sub 0}) )]J{sub p}{sup dc}, and J{sub n}{sup ac}=[(1−α)−fL√((M{sub n})/(q{sub n}V{sub 0}) )]J{sub n}{sup dc}, where J{sup ac} is the time-averaged current density, α is the square waveform duty cycle, f is the frequency, L is the electrode gap length, M is the ion mass, q is the ion charge, V{sub 0} is the applied voltage amplitude, J{sup dc} is the dc extracted current density, and the subscripts p and n refer to positive and negative ions, respectively. In particular, if J{sup dc} is the dc space-charge limited current density, then these equations describe the square waveform generalization of the Child-Langmuir law.

  1. Spherical ion oscillations in a positive polarity gridded inertial-electrostatic confinement device

    Science.gov (United States)

    Bandara, R.; Khachan, J.

    2013-07-01

    A pulsed, positive polarity gridded inertial electrostatic confinement device has been investigated experimentally, using a differential emissive probe and potential traces as primary diagnostics. Large amplitude oscillations in the plasma current and plasma potential were observed within a microsecond of the discharge onset, which are indicative of coherent ion oscillations about a temporarily confined excess of recirculating electron space charge. The magnitude of the depth of the potential well in the established virtual cathode was determined using a differential emissive Langmuir probe, which correlated well to the potential well inferred from the ion oscillation frequency for both hydrogen and argon experiments. It was found that the timescale for ion oscillation dispersion is strongly dependent on the neutral gas density, and weakly dependent on the peak anode voltage. The cessation of the oscillations was found to be due to charge exchange processes converting ions to high velocity neutrals, causing the abrupt de-coherence of the oscillations through an avalanche dispersion in phase space.

  2. Spherical ion oscillations in a positive polarity gridded inertial-electrostatic confinement device

    Energy Technology Data Exchange (ETDEWEB)

    Bandara, R.; Khachan, J. [Plasma Physics, School of Physics, University of Sydney, Camperdown, New South Wales 2006 (Australia)

    2013-07-15

    A pulsed, positive polarity gridded inertial electrostatic confinement device has been investigated experimentally, using a differential emissive probe and potential traces as primary diagnostics. Large amplitude oscillations in the plasma current and plasma potential were observed within a microsecond of the discharge onset, which are indicative of coherent ion oscillations about a temporarily confined excess of recirculating electron space charge. The magnitude of the depth of the potential well in the established virtual cathode was determined using a differential emissive Langmuir probe, which correlated well to the potential well inferred from the ion oscillation frequency for both hydrogen and argon experiments. It was found that the timescale for ion oscillation dispersion is strongly dependent on the neutral gas density, and weakly dependent on the peak anode voltage. The cessation of the oscillations was found to be due to charge exchange processes converting ions to high velocity neutrals, causing the abrupt de-coherence of the oscillations through an avalanche dispersion in phase space.

  3. In Situ Monitoring of Temperature inside Lithium-Ion Batteries by Flexible Micro Temperature Sensors

    Directory of Open Access Journals (Sweden)

    Pei-Chi Chen

    2011-10-01

    Full Text Available Lithium-ion secondary batteries are commonly used in electric vehicles, smart phones, personal digital assistants (PDA, notebooks and electric cars. These lithium-ion secondary batteries must charge and discharge rapidly, causing the interior temperature to rise quickly, raising a safety issue. Over-charging results in an unstable voltage and current, causing potential safety problems, such as thermal runaways and explosions. Thus, a micro flexible temperature sensor for the in in-situ monitoring of temperature inside a lithium-ion secondary battery must be developed. In this work, flexible micro temperature sensors were integrated into a lithium-ion secondary battery using the micro-electro-mechanical systems (MEMS process for monitoring temperature in situ.

  4. In situ monitoring of temperature inside lithium-ion batteries by flexible micro temperature sensors.

    Science.gov (United States)

    Lee, Chi-Yuan; Lee, Shuo-Jen; Tang, Ming-Shao; Chen, Pei-Chi

    2011-01-01

    Lithium-ion secondary batteries are commonly used in electric vehicles, smart phones, personal digital assistants (PDA), notebooks and electric cars. These lithium-ion secondary batteries must charge and discharge rapidly, causing the interior temperature to rise quickly, raising a safety issue. Over-charging results in an unstable voltage and current, causing potential safety problems, such as thermal runaways and explosions. Thus, a micro flexible temperature sensor for the in in-situ monitoring of temperature inside a lithium-ion secondary battery must be developed. In this work, flexible micro temperature sensors were integrated into a lithium-ion secondary battery using the micro-electro-mechanical systems (MEMS) process for monitoring temperature in situ.

  5. Improvement of estradiol esters monitoring in bovine hair by dansylation and liquid chromatography/tandem mass spectrometry analysis in multiple reaction monitoring and precursor ion scan modes.

    Science.gov (United States)

    Bichon, E; Béasse, A; Prevost, S; Christien, S; Courant, F; Monteau, F; Le Bizec, B

    2012-04-15

    The control of forbidden anabolic practices in cattle in the European Union has become challenging since endogenous compounds such as estradiol derivatives can potentially be used as growth promoters. Due to the great difficulty in establishing a reference threshold value for endogenous steroids, the direct detection of steroid esters in hair is an efficient strategy for the detection of 'natural' steroid abuse in cattle. The present study aimed to develop and validate according to the current European standards a specific liquid chromatography/tandem mass spectrometry (LC/MS/MS) analytical strategy to monitor estrogen esters in bovine hair. The analysis was performed by positive ion electrospray ionisation (ESI+) after dansylation. Two acquisition modes were then assessed: single reaction monitoring and precursor ion scanning. The results showed that the introduction of a dansylation step strongly improves the sensitivity of the detection of estradiol-17-esters by LC/(ESI+)-MS/MS. The CCα values are in the range 1-10 ng g(-1) after optimisation, except for estradiol decanoate for which the derivatisation is not efficient. In addition, this LC/MS/MS approach makes it possible to carry out a precursor ion scan to screen for the presence of these estradiol 17-esters in hair samples. Based on the specific product ions, i.e. m/z 255 in native conditions or m/z 171 after dansylation, this strategy has the advantage of detecting any (un)known estradiol ester and of giving access to the [M + H](+) ion of the suspected ester through only a single analysis. Copyright © 2012 John Wiley & Sons, Ltd.

  6. Positive ions of the first- and second-row transition metal hydrides

    Science.gov (United States)

    Pettersson, Lars G. M.; Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry

    1987-01-01

    Theoretical dissociation energies for the first- and second-row transition metal hydride positive ions are critically compared against recent experimental values obtained from ion beam reactive scattering methods. Theoretical spectroscopic parameters and dipole moments are presented for the ground and several low-lying excited states. The calculations employ large Gaussian basis sets and account for electron correlation using the single-reference single- and double-excitation configuration interaction and coupled-pair-functional methods. The Darwin and mass-velocity contributions to the relativistic energy are included in the all-electron calculations on the first-row systems using first-order perturbation theory, and in the second-row systems using the Hay and Wadt relativistic effective core potentials. The theoretical D(0) values for the second-row transition metal hydride positive ions should provide a critical measure of the experimental values, which are not as refined as many of those in the first transition row.

  7. Potentiometric Sensor for Real-Time Monitoring of Multivalent Ion Concentrations in Molten Salt

    Energy Technology Data Exchange (ETDEWEB)

    Peter A. Zink; Jan-Fong Jue; Brenda E. Serrano; Guy L. Fredrickson; Ben F. Cowan; Steven D. Herrmann; Shelly X. Li

    2010-07-01

    Electrorefining of spent metallic nuclear fuel in high temperature molten salt systems is a core technology in pyroprocessing, which in turn plays a critical role in the development of advanced fuel cycle technologies. In electrorefining, spent nuclear fuel is treated electrochemically in order to effect separations between uranium, noble metals, and active metals, which include the transuranics. The accumulation of active metals in a lithium chloride-potassium chloride (LiCl-KCl) eutectic molten salt electrolyte occurs at the expense of the UCl3-oxidant concentration in the electrolyte, which must be periodically replenished. Our interests lie with the accumulation of active metals in the molten salt electrolyte. The real-time monitoring of actinide concentrations in the molten salt electrolyte is highly desirable for controlling electrochemical operations and assuring materials control and accountancy. However, real-time monitoring is not possible with current methods for sampling and chemical analysis. A new solid-state electrochemical sensor is being developed for real-time monitoring of actinide ion concentrations in a molten salt electrorefiner. The ultimate function of the sensor is to monitor plutonium concentrations during electrorefining operations, but in this work gadolinium was employed as a surrogate material for plutonium. In a parametric study, polycrystalline sodium beta double-prime alumina (Na-ß?-alumina) discs and tubes were subject to vapor-phase exchange with gadolinium ions (Gd3+) using a gadolinium chloride salt (GdCl3) as a precursor to produce gadolinium beta double-prime alumina (Gd-ß?-alumina) samples. Electrochemical impedance spectroscopy and microstructural analysis were performed on the ion-exchanged discs to determine the relationship between ion exchange and Gd3+ ion conductivity. The ion-exchanged tubes were configured as potentiometric sensors in order to monitor real-time Gd3+ ion concentrations in mixtures of gadolinium

  8. Potentiometric Sensor for Real-Time Monitoring of Multivalent Ion Concentrations in Molten Salt

    Energy Technology Data Exchange (ETDEWEB)

    Peter A. Zink; Jan-Fong Jue; Brenda E. Serrano; Guy L. Fredrickson; Ben F. Cowan; Steven D. Herrmann; Shelly X. Li

    2010-07-01

    Electrorefining of spent metallic nuclear fuel in high temperature molten salt systems is a core technology in pyroprocessing, which in turn plays a critical role in the development of advanced fuel cycle technologies. In electrorefining, spent nuclear fuel is treated electrochemically in order to effect separations between uranium, noble metals, and active metals, which include the transuranics. The accumulation of active metals in a lithium chloride-potassium chloride (LiCl-KCl) eutectic molten salt electrolyte occurs at the expense of the UCl3-oxidant concentration in the electrolyte, which must be periodically replenished. Our interests lie with the accumulation of active metals in the molten salt electrolyte. The real-time monitoring of actinide concentrations in the molten salt electrolyte is highly desirable for controlling electrochemical operations and assuring materials control and accountancy. However, real-time monitoring is not possible with current methods for sampling and chemical analysis. A new solid-state electrochemical sensor is being developed for real-time monitoring of actinide ion concentrations in a molten salt electrorefiner. The ultimate function of the sensor is to monitor plutonium concentrations during electrorefining operations, but in this work gadolinium was employed as a surrogate material for plutonium. In a parametric study, polycrystalline sodium beta double-prime alumina (Na-ß?-alumina) discs and tubes were subject to vapor-phase exchange with gadolinium ions (Gd3+) using a gadolinium chloride salt (GdCl3) as a precursor to produce gadolinium beta double-prime alumina (Gd-ß?-alumina) samples. Electrochemical impedance spectroscopy and microstructural analysis were performed on the ion-exchanged discs to determine the relationship between ion exchange and Gd3+ ion conductivity. The ion-exchanged tubes were configured as potentiometric sensors in order to monitor real-time Gd3+ ion concentrations in mixtures of gadolinium

  9. Giant Positive Magnetoresistance in Magnetic Multilayer Film Prepared by Ion-Beam Sputtering

    Institute of Scientific and Technical Information of China (English)

    张栋杰; 都有为

    2003-01-01

    The magnetic multilayers Ni78Co22∥Cu∥Ni78Co22/Ni78Co22O∥Ta were fabricated by ion-beam sputtering through applied magnetic field and treatment under high vacuum. Resistance against applied magnetic field was measured by the standard four-point probe method at room temperature. The giant positive magnetoresistance has been observed. A maximum positive magnetoresistance at room temperature was obtained to be 280%.

  10. Variable angle stereo imaging for rapid patient position correction in an in-house real-time position monitoring system.

    Science.gov (United States)

    Arumugam, Sankar; Sidhom, Mark; Truant, Daniel; Xing, Aitang; Udovitch, Mark; Holloway, Lois

    2017-01-01

    To develop and validate a variable angle stereo image based position correction methodology in an X-ray based in-house online position monitoring system. A stereo imaging module that enables 3D position determination and couch correction of the patient based on images acquired at any arbitrary angle and arbitrary angular separation was developed and incorporated to the in-house SeedTracker real-time position monitoring system. The accuracy of the developed system was studied by imaging an anthropomorphic phantom implanted with radiopaque markers set to known offset positions from its reference position in an Elekta linear accelerator (LA) and associated XVI imaging system. The accuracy of the system was further validated using CBCT data set from 10 prostate SBRT patients. The time gains achieved with the stereo image based position correction was compared with the manual matching of seed positions in Digitally Reconstructed Radiographs (DRRs) and kV images in the Mosaiq record and verify system. Based on phantom and patient CBCT dataset study stereo imaging module implemented in the SeedTracker shown to have an accuracy of 0.1(σ=0.5)mm in detecting the 3D position offset. The time comparison study showed that stereo image based methodology implemented in SeedTracker was a minimum of 80(4)s faster than the manual method implemented in Mosaiq R&V system with a maximum time saving of 146(6)s. The variable angle stereo image based position correction method was shown to be accurate and faster than the standard manual DRR-kV image based correction approach, leading to more efficient treatment. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  11. Beam Position Monitor and Kicker for the SPring-8 Transverse Bunch-by-bunch Feedback

    CERN Document Server

    Nakamura, T

    2005-01-01

    Beam position monitor and kicker for the SPring-8 transverse bunch-by-bunch feedback system are developed. The beam of the SPring-8 storage ring is micro-meter size and the residual motion driven by the noise in the position signal should be suppressed to be submicro-meters. To meet this requirement, we developed shorted stripline type position monitor that produces one order higher position signal at 509MHz than button type BPM. In this paper, we describe design, simulation and beam test of the BPM and the kicker and the experience with the feedback system.

  12. Respiratory monitoring by inductive plethysmography in unrestrained subjects using position sensor-adjusted calibration

    OpenAIRE

    2010-01-01

    BACKGROUND: Portable respiratory inductive plethysmography (RIP) is promising for noninvasive monitoring of breathing patterns in unrestrained subjects. However, its use has been hampered by requiring recalibration after changes in body position. OBJECTIVES: To facilitate RIP application in unrestrained subjects, we developed a technique for adjustment of RIP calibration using position sensor feedback. METHODS: Five healthy subjects and 12 patients with lung disease were monitored by portable...

  13. Device for monitoring the position of a drilling ship in relation to the underwater well head

    Energy Technology Data Exchange (ETDEWEB)

    Kurbanov, A.O.; Bagirov, M.D.

    1981-05-07

    A device is suggested for monitoring the position of a drilling ship in relation to the underwater well head containing a winch, two sensitive elements arranged in two mutually perpendicular planes through which a cable is passed, two sensors attached to the sensitive elements. In order to improve the accuracy of monitoring the position of the drilling ship, the sensitive elements are made in the form of two semirings installed with the possibility of rotation.

  14. Monitoring the Bragg peak location of 73 MeV/u carbon ions by means of prompt $\\gamma$-ray measurements

    CERN Document Server

    Testa, E; Chevallier, M; Dauvergne, D; Foulher, F Le; Poizat, J -C; Ray, C; Testa, M; Freud, N; Létang, J -M

    2008-01-01

    By means of a time-of-flight technique, we measured the longitudinal profile of prompt $\\gamma$-rays emitted by 73 MeV/u $^{13}$C ions irradiating a PMMA target. This technique allowed us to minimize the shielding against neutrons and scattered $\\gamma$-rays, and to correlate prompt gamma emission to the ion path. This correlation, together with a high counting rate, paves the way toward real-time monitoring of the longitudinal dose profile during ion therapy treatments. Moreover, the time correlation between the prompt gamma detection and the transverse position of the incident ions measured by a beam monitor can provide real-time 3D control of the irradiation.

  15. Lithium-free transition metal monoxides for positive electrodes in lithium-ion batteries

    Science.gov (United States)

    Jung, Sung-Kyun; Kim, Hyunchul; Cho, Min Gee; Cho, Sung-Pyo; Lee, Byungju; Kim, Hyungsub; Park, Young-Uk; Hong, Jihyun; Park, Kyu-Young; Yoon, Gabin; Seong, Won Mo; Cho, Yongbeom; Oh, Myoung Hwan; Kim, Haegyeom; Gwon, Hyeokjo; Hwang, Insang; Hyeon, Taeghwan; Yoon, Won-Sub; Kang, Kisuk

    2017-01-01

    Lithium-ion batteries based on intercalation compounds have dominated the advanced portable energy storage market. The positive electrode materials in these batteries belong to a material group of lithium-conducting crystals that contain redox-active transition metal and lithium. Materials without lithium-conducting paths or lithium-free compounds could be rarely used as positive electrodes due to the incapability of reversible lithium intercalation or the necessity of using metallic lithium as negative electrodes. These constraints have significantly limited the choice of materials and retarded the development of new positive electrodes in lithium-ion batteries. Here, we demonstrate that lithium-free transition metal monoxides that do not contain lithium-conducting paths in their crystal structure can be converted into high-capacity positive electrodes in the electrochemical cell by initially decorating the monoxide surface with nanosized lithium fluoride. This unusual electrochemical behaviour is attributed to a surface conversion reaction mechanism in contrast with the classic lithium intercalation reaction. Our findings will offer a potential new path in the design of positive electrode materials in lithium-ion batteries.

  16. Enhancing glycan isomer separations with metal ions and positive and negative polarity ion mobility spectrometry-mass spectrometry analyses

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Xueyun; Zhang, Xing; Schocker, Nathaniel S.; Renslow, Ryan S.; Orton, Daniel J.; Khamsi, Jamal; Ashmus, Roger A.; Almeida, Igor C.; Tang, Keqi; Costello, Catherine E.; Smith, Richard D.; Michael, Katja; Baker, Erin S.

    2016-09-07

    Glycomics has become an increasingly important field of research since glycans play critical roles in biology processes ranging from molecular recognition and signaling to cellular communication. Glycans often conjugate with other biomolecules such as proteins and lipids, and alter their properties and functions, so understanding the effect glycans have on cellular systems is essential. However the analysis of glycans is extremely difficult due to their complexity and structural diversity (i.e., the number and identity of monomer units, and configuration of their glycosidic linkages and connectivities). In this work, we coupled ion mobility spectrometry with mass spectrometry (IMS-MS) to characterize glycan standards and biologically important isomers of synthetic αGal-containing O-glycans including glycotopes of the protozoan parasite Trypanosoma cruzi, which is the causative agent of Chagas disease. IMS-MS results showed significant differences for the glycan structural isomers when analyzed in positive and negative polarity and complexed with different metal cations. These results suggest specific metal ions or ion polarities could be used to target and baseline separate glycan isomers of interest with IMS-MS.

  17. Analytical expression for position sensitivity of linear response beam position monitor having inter-electrode cross talk

    Science.gov (United States)

    Kumar, Mukesh; Ojha, A.; Garg, A. D.; Puntambekar, T. A.; Senecha, V. K.

    2017-02-01

    According to the quasi electrostatic model of linear response capacitive beam position monitor (BPM), the position sensitivity of the device depends only on the aperture of the device and it is independent of processing frequency and load impedance. In practice, however, due to the inter-electrode capacitive coupling (cross talk), the actual position sensitivity of the device decreases with increasing frequency and load impedance. We have taken into account the inter-electrode capacitance to derive and propose a new analytical expression for the position sensitivity as a function of frequency and load impedance. The sensitivity of a linear response shoe-box type BPM has been obtained through simulation using CST Studio Suite to verify and confirm the validity of the new analytical equation. Good agreement between the simulation results and the new analytical expression suggest that this method can be exploited for proper designing of BPM.

  18. In Vacuum High Accuracy Mechanical Positioning System of Nano Resolution Beam Position Monitor at the Interaction Point of ATF2

    OpenAIRE

    Bambade, P.; Bogard, F.; Cornebise, P.; Wallon, S.; Blanco, O.R.; Tauchi, T.; Terunuma, N.

    2013-01-01

    TUOCB203 - ISBN 978-3-95450-122-9; International audience; ATF2 is a low energy (1.3GeV) prototype of the final focus system for ILC and CLIC linear collider projects. A major goal of ATF2 is to demonstrate the ability to stabilise the beam position at the interaction point, where the beam can be focused down to about 35 nm. For this purpose, a set of new Beam Position Monitors (BPM) has been designed, with an expected resolution of about 2 nm. These BPMs must be very well aligned with respec...

  19. Monitoring of ion implantation in microelectronics production environment using multi-channel reflectometry

    Science.gov (United States)

    Ebersbach, Peter; Urbanowicz, Adam M.; Likhachev, Dmitry; Hartig, Carsten

    2016-03-01

    Optical metrology techniques such as ellipsometry and reflectometry are very powerful for routine process monitoring and control in the modern semiconductor manufacturing industry. However, both methods rely on optical modeling therefore, the optical properties of all materials in the stack need to be characterized a priori or determined during characterization. Some processes such as ion implantation and subsequent annealing produce slight variations in material properties within wafer, wafer-to-wafer, and lot-to-lot; such variation can degrade the dimensional measurement accuracy for both unpatterned optical measurements as well as patterned (2D and 3D) scatterometry measurements. These variations can be accounted for if the optical model of the structure under investigation allows one to extract not just dimensional but also material information already residing within the optical spectra. This paper focuses on modeling of ion implanted and annealed poly Si stacks typically used in high-k technology. Monitoring of ion implantation is often a blind spot in mass production due to capability issues and other limitations of common methods. Typically, the ion implantation dose can be controlled by research-grade ellipsometers with extended infrared range. We demonstrate that multi-channel spectroscopic reflectometry can also be used for ion implant monitoring in the mass-production environment. Our findings are applicable across all technology nodes.

  20. TEE monitoring for RA-horizontal paradoxical arterial air embolism during sitting-position surgery

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A 36-year-old woman suffered meningioma in her right cerebellopontine angle.Air embolisms often complicate sitting-position surgeries.Because TEE guides the localization of central venous catheters and promptly locates air embolisms promptly enough for effective treatment,TEE is an effective monitoring method for sitting-position surgeries.

  1. Performance of MACACO Compton telescope for ion-beam therapy monitoring : first test with proton beams

    NARCIS (Netherlands)

    Solevi, Paola; Munoz, Enrique; Solaz, Carles; Trovato, Marco; Dendooven, Peter; Gillam, John E.; Lacasta, Carlos; Oliver, Josep F.; Rafecas, Magdalena; Torres-Espallardo, Irene; Llosa, Gabriela

    2016-01-01

    In order to exploit the advantages of ion-beam therapy in a clinical setting, delivery verification techniques are necessary to detect deviations from the planned treatment. Efforts are currently oriented towards the development of devices for real-time range monitoring. Among the different detector

  2. Absolute prompt-gamma yield measurements for ion beam therapy monitoring

    Science.gov (United States)

    Pinto, M.; Bajard, M.; Brons, S.; Chevallier, M.; Dauvergne, D.; Dedes, G.; De Rydt, M.; Freud, N.; Krimmer, J.; La Tessa, C.; Létang, J. M.; Parodi, K.; Pleskač, R.; Prieels, D.; Ray, C.; Rinaldi, I.; Roellinghoff, F.; Schardt, D.; Testa, E.; Testa, M.

    2015-01-01

    Prompt-gamma emission detection is a promising technique for hadrontherapy monitoring purposes. In this regard, obtaining prompt-gamma yields that can be used to develop monitoring systems based on this principle is of utmost importance since any camera design must cope with the available signal. Herein, a comprehensive study of the data from ten single-slit experiments is presented, five consisting in the irradiation of either PMMA or water targets with lower and higher energy carbon ions, and another five experiments using PMMA targets and proton beams. Analysis techniques such as background subtraction methods, geometrical normalization, and systematic uncertainty estimation were applied to the data in order to obtain absolute prompt-gamma yields in units of prompt-gamma counts per incident ion, unit of field of view, and unit of solid angle. At the entrance of a PMMA target, where the contribution of secondary nuclear reactions is negligible, prompt-gamma counts per incident ion, per millimetre and per steradian equal to (124 ± 0.7stat ± 30sys) × 10-6 for 95 MeV u-1 carbon ions, (79 ± 2stat ± 23sys) × 10-6 for 310 MeV u-1 carbon ions, and (16 ± 0.07stat ± 1sys) × 10-6 for 160 MeV protons were found for prompt gammas with energies higher than 1 MeV. This shows a factor 5 between the yields of two different ions species with the same range in water (160 MeV protons and 310 MeV u-1 carbon ions). The target composition was also found to influence the prompt-gamma yield since, for 300/310 MeV u-1 carbon ions, a 42% greater yield ((112 ± 1stat ± 22sys) × 10-6 counts ion-1 mm-1 sr-1) was obtained with a water target compared to a PMMA one.

  3. Development of ion-exchange collectors for monitoring atmospheric deposition of inorganic pollutants in Alaska parklands

    Science.gov (United States)

    Brumbaugh, William G.; Arms, Jesse W.; Linder, Greg L.; Melton, Vanessa D.

    2016-09-19

    -stage arrangement. With the modified IEC design, ammonium, nitrate, and sulfate ions were determined with a precision of between 5 and 10 percent relative standard deviation for the low loads that happen in remote areas of Alaska. Results from 2012 field studies demonstrated that the targeted ions were stable and fully retained on the IEC during field deployment and could be fully recovered by extraction in the laboratory. Importantly, measurements of annual loads determined by combining snowpack and IEC sampling at sites near National Atmospheric Deposition Program monitoring stations was comparable to results obtained by the National Atmospheric Deposition Program.Field studies completed in 2014 included snowpack and IEC samples to measure depositional loads; the results were compared to concentrations of similar substances in co-located moss samples. Analyses of constituents in snow and IECs included ammonium, nitrate, and sulfate ions; and a suite of trace metals. Constituent measurements in Hylocomium splendens moss included total nitrogen, phosphorous, and sulfur, and trace metals. To recover ammonium ions and metal ions from the upper cation-exchange column, a two-step extraction procedure was developed from laboratory spiking experiments. The 2014 studies determined that concentrations of certain metals, nitrogen, and sulfur in tissues of Hylocomium splendens moss reflected differences in presumptive deposition from local atmospheric sources. Moss tissues collected from two sites farthest from urban locales had the lowest levels of total nitrogen and sulfur, whereas tissues collected from three of the urban sites had the greatest concentrations of many of the trace metals. Moss tissue concentrations of three trace metals (cobalt, chromium, and nickel) were strongly (positively) Spearman’s rank correlated (pnonlinear uptake of sulfur from sulfate.Our results provided useful preliminary models for several of the targeted substances; however, our ability to characterize

  4. Design and characterization of a prototype stripline beam position monitor for the Clic Drive Beam*

    CERN Document Server

    Benot-Morell, A; Wendt, M; Nappa, J M; Tassan-Viol, J; Vilalte, S; Smith, S

    2012-01-01

    The prototype of a stripline Beam Position Monitor (BPM) with its associated readout electronics is under development at CERN, in collaboration with SLAC, LAPP and IFIC. The anticipated position resolution and accuracy are expected to be below 2μm and 20μm respectively for operation of the BPM in the CLIC drive beam (DB) linac. This paper describes the particular CLIC DB conditions with respect to the beam position monitoring, presents the measurement concept, and summarizes electromagnetic simulations and RF measurements performed on the prototype.

  5. A new measurement method of electrode gains for orthogonal symmetric type beam position monitor

    CERN Document Server

    Zou, J Y; Yang, Y L; Sun, B G; Zhou, Z R; Luo, Q; Lu, P; Xu, H L

    2014-01-01

    The new beam position monitor (BPM) system of the injector at the upgrade project of Hefei Light Source (HLS II) has 19 stripline beam position monitors. Most consist of four orthogonal symmetric stripline electrodes. The differences in electronic gain and mismachining tolerance can cause the change of the beam response of the BPM electrodes. This variation will couple the two measured horizontal positions in order to bring the measuring error. To alleviate this effect, a new technique to measure the relative response of the four electrodes has been developed. It is irrelevant to the beam charge and the related coefficient can be theoretical calculated. The effect of electrodes coupling on this technique is analyzed. The calibration data is used to fit the gain for all 19 injector beam position monitors. The results show the standard deviation of the distribution of measured gains is about 5%.

  6. Comparison of the mobilities of negative and positive ions in nonpolar solutions.

    Science.gov (United States)

    Ivanishko, Irina S; Borovkov, Vsevolod I

    2010-08-01

    The mobilities of organic radical ions of different molecular volumes have been determined in squalane and hexane solutions to study the influence of the ion charge sign on the ionic mobility in a weakly polar liquid. The relative mobility of geminate radical ions was measured using the method of time-resolved electric field effect in the recombination fluorescence. To determine the mobility of cations and anions separately, a trend in the value of the relative mobility was analyzed by varying the mobility of one of the geminate partners. The ratios between the mobilities of the anion and the cation of the same molecules were found to be about 1.1. It was shown that in liquid alkanes, the solvent electrostriction was the main factor determining a decrease in the mobility of an ion as compared to the parent neutral molecule. The strong dependence of the electrostrictive effect on the radius of the ionic solvation shell allows the observed difference between negative and positive charge carriers by a small but systematic difference in the effective radii of the ions to be explained.

  7. Development of real-time position detection system for single-ion hit

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, A., E-mail: yokoyama.akihito@jaea.go.jp [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA), 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Kada, W. [Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-machi, Kiryu, Gunma 376-8515 (Japan); Satoh, T.; Koka, M.; Yamamoto, S.; Kamiya, T.; Yokota, W. [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA), 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan)

    2014-08-01

    A real-time position detection system has been developed for a single-ion hit. The system is composed of a position sensitive camera unit and a luminescent scintillator. The camera unit includes 512 × 512 pixel electron-multiplier charge-coupled device, an image intensifier tube, and an object lens with a working distance of 101 mm. To obtain a highly sensitive luminescent scintillator for the detection of a single ion in the mega-electron-volt region, we investigate the photoluminescence properties of α-Al{sub 2}O{sub 3} single-crystals implanted with Eu(Al{sub 2}O{sub 3}:Eu) at a fluence ranging from 10{sup 14} to 10{sup 16} cm{sup −2}. The Al{sub 2}O{sub 3}:Eu samples were annealed at temperature from 500°C to 900°C. The results of 15-MeV O single-ion hit experiments using Al{sub 2}O{sub 3}:Eu with a fluence of 3.0 × 10{sup 16} cm{sup −2} annealed for 0.5 h at 600°C indicate that our system is sufficiently sensitive to detect the single-ion hit with a spatial resolution of 1 μm in real time.

  8. Position paper concerning substance related enviromental monitoring: short version; Positionspapier zum stoffbezogenen Umweltmonitoring. Kurzfassung

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, W.; Schroeter-Kermani, N.T.; Schulze, T.; Schwarzbauer, J.; Theobald, N.; Trenck, K.T. von der; Wagner, G.; Wiesmueller, G.A. [Arbeitskreis Umweltmonitoring in der GDCh-Fachgruppe Umweltchemie und Oekotoxikologie (Germany); Ruedel, H.; Bester, K.; Eisentraeger, A.; Franzaring, J.; Haarich, M.; Koehler, J.; Koerner, W.; Oehlmann, J.; Paschke, A.; Ricking, M.

    2008-07-01

    Background: Due to the requirements of the EU Water Framework Directive and other legal regulations (e.g., national laws like the German Federal Soil Protection Act), but also due to the implementation of the new EU chemicals management system REACh, environmental monitoring will gain increasing importance for the surveillance of environmental quality. Therefore, the Working Group on 'Environmental Monitoring' of the Division of 'Environmental Chemistry and Ecotoxicology' within the German Chemical Society has compiled a position paper on substance-related environmental monitoring. Scope: The main focus of the position paper is the coverage of aspects which have to be observed for the preparation and implementation of a monitoring program. Essential is the clear specification of the targets which determine the development of the monitoring concept and its realization. Of course, also the properties of the substances are important (e.g. lipophilicity/bioaccumulation as pre-requisite for an exposure monitoring with organisms). Moreover, important aspects of the phases sample planning, sampling, storage and transport of samples, selection of analytical methods, quality assurance as well as reporting are discussed. Perspectives: An important issue for the future is to link chemical analyses (exposure and pollution monitoring) more closely to the study of biological effects (effect monitoring) than it was the case up to now. By this means and a spatial differentiation an as comprehensive as possible evaluation of the state of an ecosystem should be obtained and the relevance of the results be improved. (orig.)

  9. Integrity monitoring of vehicle positioning in urban environment using RTK-GNSS, IMU and speedometer

    Science.gov (United States)

    El-Mowafy, Ahmed; Kubo, Nobuaki

    2017-05-01

    Continuous and trustworthy positioning is a critical capability for advanced driver assistance systems (ADAS). To achieve continuous positioning, methods such as global navigation satellite systems real-time kinematic (RTK), Doppler-based positioning, and positioning using low-cost inertial measurement unit (IMU) with car speedometer data are combined in this study. To ensure reliable positioning, the system should have integrity monitoring above a certain level, such as 99%. Achieving this level when combining different types of measurements that have different characteristics and different types of errors is a challenge. In this study, a novel integrity monitoring approach is presented for the proposed integrated system. A threat model of the measurements of the system components is discussed, which includes both the nominal performance and possible fault modes. A new protection level is presented to bound the maximum directional position error. The proposed approach was evaluated through a kinematic test in an urban area in Japan with a focus on horizontal positioning. Test results show that by integrating RTK, Doppler with IMU/speedometer, 100% positioning availability was achieved. The integrity monitoring availability was assessed and found to meet the target value where the position errors were bounded by the protection level, which was also less than an alert level, indicating the effectiveness of the proposed approach.

  10. Position and size of the electron beam in the high-energy electron beam ion trap

    CERN Document Server

    Utter, S B; López-Urrutia, J R C; Widmann, K

    1999-01-01

    In the last decade, many spectroscopic studies have been performed using the electron beam ion trap. Often these measurements rely on the electron beam as an effective slit, yet until now, no systematic study of the position and size of the electron beam under various operating conditions has been made. Here, we present a thorough study of the electron beam's position and size (and thus the electron density) as affected by various operating parameters, and give optimal parameter ranges for operating the device as a spectroscopic source. It is shown that the diameter is constant as the energy is varied, which is important for accurate cross-section measurements.

  11. Core-level positive-ion and negative-ion fragmentation of gaseous and condensed HCCl3 using synchrotron radiation

    Science.gov (United States)

    Lu, K. T.; Chen, J. M.; Lee, J. M.; Haw, S. C.; Liang, Y. C.; Deng, M. J.

    2011-07-01

    We investigated the dissociation dynamics of positive-ion and negative-ion fragments of gaseous and condensed HCCl3 following photoexcitation of Cl 2p electrons to various resonances. Based on ab initio calculations at levels HF/cc-pVTZ and QCISD/6-311G*, the first doublet structures in Cl L-edge x-ray absorption spectrum of HCCl3 are assigned to transitions from the Cl (2P3/2,1/2) initial states to the 10a1* orbitals. The Cl 2p → 10a1* excitation of HCCl3 induces a significant enhancement of the Cl+ desorption yield in the condensed phase and a small increase in the HCCl+ yield in the gaseous phase. Based on the resonant photoemission of condensed HCCl3, excitations of Cl 2p electrons to valence orbitals decay predominantly via spectator Auger transitions. The kinetic energy distributions of Cl+ ion via the Cl 2p → 10a1* excitation are shifted to higher energy ˜0.2 eV and ˜0.1 eV relative to those via the Cl 2p → 10e* excitation and Cl 2p → shape resonance excitation, respectively. The enhancement of the yields of ionic fragments at specific core-excited resonance states is assisted by a strongly repulsive surface that is directly related to the spectator electrons localized in the antibonding orbitals. The Cl- anion is significantly reinforced in the vicinity of Cl 2p ionization threshold of gaseous HCCl3, mediated by photoelectron recapture through post-collision interaction.

  12. Resolving Two Beams in Beam Splitters with a Beam Position Monitor

    CERN Document Server

    Kurennoy, S S

    2002-01-01

    The beam transport system for the Advanced Hydrotest Facility (AHF) anticipates multiple beam splitters [1]. Monitoring two separated beams in a common beam pipe in the splitter sections imposes certain requirements on diagnostics for these sections. In this note we explore a two-beam system in a generic beam monitor and study the feasibility of resolving the positions of the two beams with a single diagnostic device.

  13. Water quality monitoring of Jialing-River in Chongqing using advanced ion chromatographic system

    Institute of Scientific and Technical Information of China (English)

    Kazuhiko TANAKA; Chao-Hong SHI; Nobukazu NAKAGOSHI

    2012-01-01

    The water quality monitoring operation to evaluate the water quality of polluted river is an extremely important task for the river-watershed management/control based on the environmental policy.In this study,the novel,simple and convenient water quality monitoring of Jialing-River in Chongqing,China was carried out using an advanced ion chromatography (IC) consisting of ion-exclusion/cation-exchange chromatography (IEC/CEC) with conductivity detection for determining simultaneously the common anions such as SO42 -,Cl -,and NO3- and the cations such as Na+,NH4+,K+,Mg2+,and Ca2+,the ion-exclusion chromatography (IEC) with visible detection for determining simultaneously the nutrient components such as phosphate and silicate ions,and the IEC with the enhanced conductivity detection using a post column of K+ -form cation-exchange resin for determining HCO3- -alkalinity as an inorganic-carbon source for biomass synthesis in biological reaction process under the aerobic conditions.According to the ionic balance theory between the total equivalent con-centrations of anions and cations,the water quality evaluation of the Jialing-River waters taking at different sampling sites in Chongqing metropolitan area was carried out using the advanced IC system.As a result,the effectiveness of this novel water quality monitoring methodology using the IC system was demonstrated on the several practical applications to a typical biological sewage treatment plant on Jialing-River of Chongqing.

  14. Stability study of the higher order mode beam position monitors at the Accelerating cavities at FLASH

    CERN Document Server

    Shi, L; Jones., R M

    2014-01-01

    erating cavities at FLASH linac, DESY, are equipped with electronics for beam position monitoring, which are based on HOM signals from special couplers. These monitors provide the beam position without additional vacuum components and at low cost. Moreover, they can be used to align the beam in the cavities to reduce the HOM effects on the beam. However, the HOMBPM (Higher Order Mode based Beam Position Monitor) shows an instability problem over time. In this paper, we will present the status of studies on this issue. Several methods are utilized to calibrate the HOMBPMs. These methods include DLR (Direct Linear Regression), and SVD (Singular Value Decomposition). We found that SVD generally is more suitable for HOMBPM calibration. We focus on the HOMBPMs at 1.3 GHz cavities. Techniques developed here are applicable to 3.9 ...

  15. First Operating Experiences of Beam Position Monitors in the TESLA Test Facility Linac

    Science.gov (United States)

    Lorenz, R.; Sachwitz, M.; Schreiber, H. J.; Tonisch, F.; Castellano, M.; Patteri, P.; Tazzioli, F.; Catani, L.

    1997-05-01

    Different types of monitors where installed in the TESLA Test Facility Linac to measure the beam position. At each superconducting quadrupole, the transverse beam position will be measured with a resolution of better than 10 μm, using a cylindrical cavity excited in the TM_110-mode by an off-center beam. In addition, two 'warm' cavities working at room temperature were built for the Injector I and the Bunch Compressor. The amplitude of the TM_110-mode and its phase are measured in a homodyne receiver. For the experimental area, stripline monitors having a resolution of better than 100 μm were built, tested and installed. The averaged position of the whole bunch train of Injector I is measured in a narrowband receiver using the amplitude-to-phase conversion. This paper summarizes the designs, cold tests and first operating experiences of both monitor types.

  16. Charge Inversion of Phospholipids by Dimetal Complexes for Positive Ion-Mode Electrospray Ionization Mass Spectrometry Analysis

    DEFF Research Database (Denmark)

    Svane, Simon; Gorshkov, Vladimir; Kjeldsen, Frank

    2015-01-01

    Phospholipids are vital constituents of living cells, as they are involved in signaling and membrane formation. Mass spectrometry analysis of many phospholipids is preferentially performed in the negative ion-mode because of their acidic nature. Here we have studied the potential of a digallium...... phosphates and phosphatidic acid bound to {LGa2}(5+) were between 2.5- and 116-fold higher than that of the unmodified lipids in the negative ion-mode. Native phosphoinositide ions yielded upon CID in the negative ion-mode predominantly product ions due to losses of H3PO4, PO3(-) and H2O. In comparison, CID...... and dizinc complex to charge-invert a range of different types of phospholipids and measured their ion yield and fragmentation behavior in positive ion-mode tandem mass spectrometry. The dimetal complexes bind specifically the phosphate groups of phospholipids and add an excess of up to three positive...

  17. Beam position monitor and kicker for the SPring-8 transverse bunch-by-bunch feedback

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, T. [JASRI/SPrig-8, Mikazuki-cho, Hyogo (Japan)

    2005-07-01

    A high-resolution beam position monitor and a wideband kicker for the SPring-8 transverse bunch-by-bunch feedback system are developed. To avoid the increase of effective emittance by unwanted kicks by a feedback driven by noise, the monitor is designed to have high position resolution of the order of micro meters for single pass of 0.25 nC bunch by adopting shorted stripline structure. Also a kicker for the feedback and the experience of those are described. (author)

  18. The beam bunching and transport system of the Argonne positive ion injector

    Energy Technology Data Exchange (ETDEWEB)

    Den Hartog, P.K.; Bogaty, J.M.; Bollinger, L.M.; Clifft, B.E.; Pardo, R.C.; Shepard, K.W.

    1989-01-01

    A new positive ion injector (PII) is currently under construction at Argonne that will replace the existing 9-MV tandem electrostatic accelerator as an injector into ATLAS. It consists of an electron-cyclotron resonance-ion source on a 350-kV platform injecting into a superconducting linac optimized for very slow (..beta.. less than or equal to .007 c) ions. This combination can potentially produce even higher quality heavy-ion beams than are currently available from the tandem since the emittance growth within the linac is largely determined by the quality of the bunching and beam transport. The system we have implemented uses a two-stage bunching system, composed of a 4-harmonic gridded buncher located on the ECR high-voltage platform and a room temperature spiral-loaded buncher of novel design. A sinusoidal beam chopper is used for removal of tails. The beam transport is designed to provide mass resolution of M/..delta..M > 250 and a doubly-isochronous beamline is used to minimize time spread due to path length differences. 4 refs., 2 figs.

  19. Evaluation of an optical beam-position-monitor system with closed-loop steering capabilities

    Science.gov (United States)

    Bissen, Mark; Rogers, Greg; Wood, William; Eisert, Dave; Kleman, K. J.; Winter, William; Höchst, Hartmut

    1994-08-01

    Imaging the synchrotron source profile onto the entrance slit of a monochromator provides a stable and reproducible energy calibration which is independent of the absolute position and drift of the electron beam. Potential electron-beam motions occurring during a fill result in a loss of flux through the beamline. We have implemented two independent beam position monitors which can be used as sensors to steer the vertical entrance mirror in order to maintain a maximum flux through a spherical grating varied line-spacing monochromator beamline. The system consists of a slotted plate photodiode which intercepts 2 mrad of synchrotron radiation next to the entrance mirror and a detector utilizing the photocurrents generated at the jaws of the entrance-slit assembly. Both monitors have a wide linear response range with a vertical position resolution of beam position monitors allows an easy check on the mechanical and thermal stability of the entrance optical system as well as on the reproducibility and long-term fluctuations of the electron-beam source during user shifts. We will discuss the performance of the optical beam-position-monitor system and its implementation as a sensor in a closed-loop feedback system to maintain maximum flux through the beamline.

  20. Secondary emission monitor for keV ion and antiproton beams

    CERN Document Server

    Sosa, Alejandro; Bravin, Enrico; Harasimowciz, Janusz; Welsch, C P

    2013-01-01

    Beam profile monitoring of low intensity keV ion and antiproton beams remains a challenging task. A Sec- ondary electron Emission Monitor (SEM) has been de- signed to measure profiles of beams with intensities below 107 and energies as low as 20 keV. The monitor is based on a two stage microchannel plate (MCP) and a phosphor screen facing a CCD camera. Its modular design allows two different operational setups. In this contribution we present the design of a prototype and discuss results from measurements with antiprotons at the AEgIS experiment at CERN. This is then used for a characterization of the monitor with regard to its possible future use at different facilities.

  1. Excitation of the CO fourth positive system by the dissociative recombination of CO2/+/ ions.

    Science.gov (United States)

    Gutcheck, R. A.; Zipf, E. C.

    1973-01-01

    The fourth positive system of CO has been excited in a static afterglow experiment by the dissociative recombination of CO2(+) ions. From combined absolute optical and microwave measurements the specific recombination coefficient for exciting the CO system was found to be (2 plus 1 or minus 0.5) x 10 to the minus 8th cu cm/sec. This value represents approximately 5% of the total recombination coefficient (4.0 plus or minus 0.5) x 10 to the minus 7th cu cm/sec measured in this experiment, implying that CO2(+) dissociative recombination will contribute significantly to the excitation of the CO fourth positive system in the Martian airglow. Corroborative electron heating experiments showed that the magnitude of the specific recombination coefficient decreased as the electron temperature was increased. Evidence was also found for the presence of vibrationally excited ions in the CO2(+) plasma, a result which indicates that analogous laboratory studies on the dissociative recombination of O2(+), N2(+), and NO(+) ions may have also involved vibrationally hot plasmas.

  2. Surface modification of positive electrode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Julien, C.M., E-mail: Christian.Julien@upmc.fr [Sorbonne Universités, UPMC Univ. Paris 6, Physicochimie des Electrolytes et Nanosystèmes Interfaciaux (PHENIX), UMR 8234, 75005 Paris (France); Mauger, A. [Institut de Minéralogie de Physique des Matériaux et de Cosmochimie (IMPMC), UPMC Univ. Paris 6, 4 place Jussieu, 75005 Paris (France); Groult, H. [Sorbonne Universités, UPMC Univ. Paris 6, Physicochimie des Electrolytes et Nanosystèmes Interfaciaux (PHENIX), UMR 8234, 75005 Paris (France); Zaghib, K. [Energy Storage and Conversion, Research Institute of Hydro-Québec, Varennes, Québec J3X 1S1 (Canada)

    2014-12-01

    The advanced lithium-ion batteries are critically important for a wide range of applications, from portable electronics to electric vehicles. The research on their electrodes aims to increase the energy density and the power density, improve the calendar and the cycling life, without sacrificing the safety issues. A constant progress through the years has been obtained owing to the surface treatment of the particles, in particular the coating of the nanoparticles with a layer that protects the core region from side reactions with the electrolyte, prevents the loss of oxygen, and the dissolution of the metal ions in the electrolyte, or simply improve the conductivity of the powder. The purpose of the present work is to present the different surface modifications that have been tried for three families of positive electrodes: layered, spinel and olivine frameworks that are currently considered as promising materials. The role of the different coats used to improve either the surface conductivity, or the thermal stability, or the structural integrity is discussed. - Highlights: • Report the various surface modifications tried for the positive electrodes of Li-ion batteries. • The role of different coats used to improve the conductivity, or the thermal stability, or the structural integrity. • Improvement of electrochemical properties of electrodes after coating or surface treatment.

  3. Engineering design and study of the beam position accuracy in the "Riesenrad" ion gantry

    CERN Document Server

    Reimoser, S A

    2001-01-01

    Beams of carbon ions are particularly well suited for radiotherapy. Their physical properties allow the 3D-conformal tumour irradiation with a sub-millimetre precision, provided that the beam is delivered by a rotating gantry equipped with a pencil-beam scanning system. However, the expected size and weight of such a carbon-ion gantry together with the requirement to direct the beam to the patient with an extreme position accuracy has so far prevented its realisation and stimulated the search for alternative solutions. One of them, the "Riesenrad" ion gantry, is introduced in the present paper. In contrast to conventional isocentric gantries, the main bending magnet of the Riesenrad is placed on the axis of gantry rotation, hence minimising the moment of inertia of the mobile structure and maximising its rigidity. The treatment cabin is smoothly moved towards the desired treatment position by a system that is mechanically de-coupled from the gantry. The engineering design as well as some aspects of the beam t...

  4. Methods for monitoring Ca(2+) and ion channels in the lysosome.

    Science.gov (United States)

    Zhong, Xi Zoë; Yang, Yiming; Sun, Xue; Dong, Xian-Ping

    2016-12-09

    Lysosomes and lysosome-related organelles are emerging as intracellular Ca(2+) stores and play important roles in a variety of membrane trafficking processes, including endocytosis, exocytosis, phagocytosis and autophagy. Impairment of lysosomal Ca(2+) homeostasis and membrane trafficking has been implicated in many human diseases such as lysosomal storage diseases (LSDs), neurodegeneration, myopathy and cancer. Lysosomal membrane proteins, in particular ion channels, are crucial for lysosomal Ca(2+) signaling. Compared with ion channels in the plasma membrane, lysosomal ion channels and their roles in lysosomal Ca(2+) signaling are less understood, largely due to their intracellular localization and the lack of feasible functional assays directly applied to the native environment. Recent advances in biomedical methodology have made it possible to directly investigate ion channels in the lysosomal membrane. In this review, we provide a summary of the newly developed methods for monitoring lysosomal Ca(2+) and ion channels, as well as the recent discovery of lysosomal ion channels and their significances in intracellular Ca(2+) signaling. These new techniques will expand our research scope and our understanding of the nature of lysosomes and lysosome-related diseases.

  5. Fragmentation Mechanism of Fullerenes in the Positive and Negative Ion Channels

    Institute of Scientific and Technical Information of China (English)

    孔庆宇; 赵利; 庄军; 钱士雄; 李郁芬

    2001-01-01

    We have performed the photofragmentation studies of pristine C60 and C60/C70 composites on the reflectron time-of-flight mass spectrometer (RTOF MS) in the positive and negative ion channels. The mechanism of the formation of daughter fullerenes in the negative ion channel and the enhancement of fullerene coalescence reactions have been discussed and compared to our previous studies on the linear TOF. The 5 cm free expansion path in the RTOF experiments provides sufficient time and a favourable environment for the electrons to attach to the neutral daughter species, so it is thought to play a key role for the appearance of strong mass peaks of anionic fragmentation and aggregation fullerene products. The appearance of odd-numbered "fullerene" fragments is briefly discussed.

  6. Positively and Negatively Charged Cesium and (C60) m Cs n Cluster Ions.

    Science.gov (United States)

    Renzler, Michael; Kranabetter, Lorenz; Goulart, Marcelo; Scheier, Paul; Echt, Olof

    2017-05-25

    We report on the formation and ionization of cesium and C60Cs clusters in superfluid helium nanodroplets. Size distributions of positively and negatively charged (C60) m Cs n(±) ions have been measured for m ≤ 7, n ≤ 12. Reproducible intensity anomalies are observed in high-resolution mass spectra. For both charge states, (C60) m Cs3(±) and (C60) m Cs5(±) are particularly abundant, with little dependence on the value of m. Distributions of bare cesium cluster ions also indicate enhanced stability of Cs3(±) and Cs5(±), in agreement with theoretical predictions. These findings contrast with earlier reports on highly Cs-doped cationic fullerene aggregates which showed enhanced stability of C60Cs6 building blocks attributed to charge transfer. The dependence of the (C60) m Cs3(-) anion yield on electron energy shows a resonance that, surprisingly, oscillates in strength as m increases from 1 to 6.

  7. A SUBSTRATE AND A METHOD FOR DETERMINING AND/OR MONITORING ELECTROPHYSIOLOGICAL PROPERTIES OF ION CHANNELS

    DEFF Research Database (Denmark)

    2001-01-01

    The present invention relates to a substrate and a method for obtaining an electrophysiological measuring configuration in which a cell forms a high resistive seal (giga-seal) around a measuring electrode making it suitable for determining and monitoring a current flow through the cell membrane....... The substrate is typically part of an apparatus for studying electrical events in cell membranes, such as an apparatus for carrying out patch clamp techniques utilised to study ion transfer channels in biological membranes. The substrate has a plurality or an array of measuring sites with integrated measuring...... and reference electrodes formed by wafer processing technology. The electrodes are adapted to conduct a current between them by delivery of ions by one electrode and receipt of ions by the other electrode and are typically silver/silver halide electrodes. This allows for effective and fast measuring of cells...

  8. Results from multipoint alignment monitoring using the new generation of amorphous silicon position detectors

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, J.; Arce, P.; Barcala, J.M.; Calvo, E. [CIEMAT, 28040 Madrid (Spain); Ferrando, A. [CIEMAT, 28040 Madrid (Spain)], E-mail: antonio.ferrando@ciemat.es; Josa, M.I.; Molinero, A.; Navarrete, J.; Oller, J.C.; Yuste, C. [CIEMAT, 28040 Madrid (Spain); Calderon, A.; Gomez, G.; Gonzalez-Sanchez, F.J.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Ruiz-Arbol, P.; Sobron, M.; Vila, I.; Virto, A.L. [Instituto de Fisica de Cantabria (IFCA), CSIC-University of Cantabria Santander (Spain)] (and others)

    2008-08-11

    We present the measured performance of a new generation of large sensitive area (28x28 mm{sup 2}) semitransparent amorphous silicon position detector sensors. More than 100 units have been characterized. They show a very high performance. To illustrate a multipoint application, we present results from the monitoring of five sensors placed in a 5.5-m-long light path.

  9. Multipoint alignment monitoring with amorphous silicon position detectors in a complex light path

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, J.; Arce, P.; Barcala, J.M.; Calvo, E. [CIEMAT, Madrid (Spain); Ferrando, A., E-mail: antonio.ferrando@ciemat.e [CIEMAT, Madrid (Spain); Josa, M.I.; Molinero, A.; Navarrete, J.; Oller, J.C.; Yuste, C. [CIEMAT, Madrid (Spain); Calderon, A.; Gomez, G.; Gonzalez-Sanchez, F.J.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Ruiz-Arbol, P.; Sobron, M.; Vila, I.; Virto, A.L. [Instituto de Fisica de Cantabria. CSIC-University of Cantabria, Santander (Spain)

    2010-12-01

    This document presents an application of the new generation of amorphous silicon position detecting (ASPD) sensors to multipoint alignment. Twelve units are monitored along a 20 m long laser beam, where the light path is deflected by 90{sup o} using a pentaprism.

  10. Construction process and read-out electronics of amorphous silicon position detectors for multipoint alignment monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, C.; Schubert, M.B.; Lutz, B.; Werner, J.H. [Steinbeis-Transferzentrum fuer Angewandte Photovoltaik und Duennschichttechnik, Stuttgart (Germany); Alberdi, J.; Arce, P.; Barcala, J.M.; Calvo, E. [CIEMAT, Madrid (Spain); Ferrando, A. [CIEMAT, Madrid (Spain)], E-mail: antonio.ferrando@ciemat.es; Josa, M.I.; Molinero, A.; Navarrete, J.; Oller, J.C.; Yuste, C. [CIEMAT, Madrid (Spain); Calderon, A.; Fernandez, M.G.; Gomez, G.; Gonzalez-Sanchez, F.J.; Martinez-Rivero, C.; Matorras, F. [Instituto de Fisica de Cantabria IFCA/CSIC-University of Cantabria, Santander (Spain)] (and others)

    2009-09-01

    We describe the construction process of large-area high-performance transparent amorphous silicon position detecting sensors. Details about the characteristics of the associated local electronic board (LEB), specially designed for these sensors, are given. In addition we report on the performance of a multipoint alignment monitoring application of 12 sensors in a 13 m long light path.

  11. Monitoring changes in membrane polarity, membrane integrity, and intracellular ion concentrations in Streptococcus pneumoniae using fluorescent dyes.

    Science.gov (United States)

    Clementi, Emily A; Marks, Laura R; Roche-Håkansson, Hazeline; Håkansson, Anders P

    2014-02-17

    Membrane depolarization and ion fluxes are events that have been studied extensively in biological systems due to their ability to profoundly impact cellular functions, including energetics and signal transductions. While both fluorescent and electrophysiological methods, including electrode usage and patch-clamping, have been well developed for measuring these events in eukaryotic cells, methodology for measuring similar events in microorganisms have proven more challenging to develop given their small size in combination with the more complex outer surface of bacteria shielding the membrane. During our studies of death-initiation in Streptococcus pneumoniae (pneumococcus), we wanted to elucidate the role of membrane events, including changes in polarity, integrity, and intracellular ion concentrations. Searching the literature, we found that very few studies exist. Other investigators had monitored radioisotope uptake or equilibrium to measure ion fluxes and membrane potential and a limited number of studies, mostly in Gram-negative organisms, had seen some success using carbocyanine or oxonol fluorescent dyes to measure membrane potential, or loading bacteria with cell-permeant acetoxymethyl (AM) ester versions of ion-sensitive fluorescent indicator dyes. We therefore established and optimized protocols for measuring membrane potential, rupture, and ion-transport in the Gram-positive organism S. pneumoniae. We developed protocols using the bis-oxonol dye DiBAC4(3) and the cell-impermeant dye propidium iodide to measure membrane depolarization and rupture, respectively, as well as methods to optimally load the pneumococci with the AM esters of the ratiometric dyes Fura-2, PBFI, and BCECF to detect changes in intracellular concentrations of Ca(2+), K(+), and H(+), respectively, using a fluorescence-detection plate reader. These protocols are the first of their kind for the pneumococcus and the majority of these dyes have not been used in any other bacterial

  12. Dose profile monitoring with carbon ions by means of prompt-gamma measurements

    Energy Technology Data Exchange (ETDEWEB)

    Testa, E. [Institut de Physique Nucleaire de Lyon, Universite de Lyon, F-69003 Lyon, Universite Lyon 1 and IN2P3/CNRS, UMR 5822, F-69622 Villeurbanne (France)], E-mail: e.testa@ipnl.in2p3.fr; Bajard, M.; Chevallier, M.; Dauvergne, D.; Le Foulher, F. [Institut de Physique Nucleaire de Lyon, Universite de Lyon, F-69003 Lyon, Universite Lyon 1 and IN2P3/CNRS, UMR 5822, F-69622 Villeurbanne (France); Freud, N.; Letang, J.M. [Institut National des Sciences Appliquees de Lyon, Laboratoire de Controle Non-Destructif par Rayonnements Ionisants (France); Poizat, J.C.; Ray, C.; Testa, M. [Institut de Physique Nucleaire de Lyon, Universite de Lyon, F-69003 Lyon, Universite Lyon 1 and IN2P3/CNRS, UMR 5822, F-69622 Villeurbanne (France)

    2009-03-15

    A key point in the quality control of ion therapy is real-time monitoring and imaging of the dose delivered to the patient. Among the possible signals that can be used to make such a monitoring, prompt gamma-rays issued from nuclear fragmentation are possible candidates, provided the correlation between the emission profile and the primary beam range can be established. By means of simultaneous energy and time-of-flight discrimination, we could measure the longitudinal profile of the prompt gamma-rays emitted by 73 MeV/u carbon ions stopping inside a PMMA target. This technique allowed us to minimize the shielding against neutrons and scattered gamma rays, and to find a good correlation between the prompt-gamma profile and the ion range. This profile was studied as a function of the observation angle. By extrapolating our results to higher energies and realistic detection efficiencies, we showed that prompt gamma-ray measurements make it feasible to control in real time the longitudinal dose during ion therapy treatments.

  13. Positive peer pressure: the effects of peer monitoring on children's disruptive behavior.

    Science.gov (United States)

    Carden Smith, L K; Fowler, S A

    1984-01-01

    Classroom peers can serve as powerful sources of reinforcement in increasing or maintaining both the positive and negative behaviors of their classmates. In two experiments, we examined the effectiveness of a peer-monitored token system on reducing disruption and nonparticipation during a transition period of a kindergarten class for behaviorally impaired children. Additionally, the effect of providing and subsequently withholding corrective feedback to peer mediators on the accuracy of their point awards was evaluated. Results in Experiment 1 suggest that both teacher- and peer-monitored interventions were successful in decreasing disruption and increasing participation of monitored peers. Experiment 2 further demonstrated that peer monitors could successfully initiate the token system without prior adult implementation. Analysis of the point awards in both experiments indicates that peer monitors consistently awarded points that were earned. However, when corrective feedback was withdrawn the peer monitors frequently awarded points that were not earned, i.e., they rarely withheld points for undesirable behavior. Even so, the monitored peers' disruptive behavior was maintained at low rates.

  14. Effects of roughness and temperature on low-energy hydrogen positive and negative ion reflection from silicon and carbon surfaces.

    Science.gov (United States)

    Tanaka, N; Kato, S; Miyamoto, T; Nishiura, M; Tsumori, K; Matsumoto, Y; Kenmotsu, T; Okamoto, A; Kitajima, S; Sasao, M; Wada, M; Yamaoka, H

    2014-02-01

    Angle-resolved energy distribution functions of positive and negative hydrogen ions produced from a rough-finished Si surface under 1 keV proton irradiation have been measured. The corresponding distribution from a crystalline surface and a carbon surface are also measured for comparison. Intensities of positive and negative ions from the rough-finished Si are substantially smaller than those from crystalline Si. The angular distributions of these species are broader for rough surface than the crystalline surface. No significant temperature dependence for positive and negative ion intensities is observed for all samples in the temperature range from 300 to 400 K.

  15. Eddy current sensor for in-situ monitoring of swelling of Li-ion prismatic cells

    Science.gov (United States)

    Plotnikov, Yuri; Karp, Jason; Knobloch, Aaron; Kapusta, Chris; Lin, David

    2015-03-01

    In-situ monitoring an on-board rechargeable battery in hybrid cars can be used to ensure a long operating life of the battery and safe operation of the vehicle. Intercalations of ions in the electrode material during charge and discharge of a Lithium Ion battery cause periodic stress and strain of the electrode materials that can ultimately lead to fatigue resulting in capacity loss and potential battery failure. Currently this process is not monitored directly on the cells. This work is focused on development technologies that would quantify battery swelling and provide in-situ monitoring for onboard vehicle applications. Several rounds of tests have been performed to spatially characterize cell expansion of a 5 Ah cell with a nickel/manganese/cobalt-oxide cathode (Sanyo, Japan) used by Ford in their Fusion HEV battery pack. A collaborative team of researchers from GE and the University of Michigan has characterized the free expansion of these cells to be in the range of 100×125 microns (1% of total cell thickness) at the center point of the cell. GE proposed to use a thin eddy current (EC) coil to monitor these expansions on the cells while inside the package. The photolithography manufacturing process previously developed for EC arrays for detecting cracks in aircraft engine components was used to build test coils for gap monitoring. These sensors are thin enough to be placed safely between neighboring cells and capable of monitoring small variations in the gap between the cells. Preliminary investigations showed that these coils can be less than 100 micron thick and have sufficient sensitivity in a range from 0 to 2 mm. Laboratory tests revealed good correlation between EC and optical gap measurements in the desired range. Further technology development could lead to establishing a sensor network for a low cost solution for the in-situ monitoring of cell swelling during battery operation.

  16. Eddy current sensor for in-situ monitoring of swelling of Li-ion prismatic cells

    Energy Technology Data Exchange (ETDEWEB)

    Plotnikov, Yuri, E-mail: plotnikov@ge.com; Karp, Jason, E-mail: plotnikov@ge.com; Knobloch, Aaron, E-mail: plotnikov@ge.com; Kapusta, Chris, E-mail: plotnikov@ge.com; Lin, David, E-mail: plotnikov@ge.com [GE Global Research, One Research Circle, Niskayuna, NY (United States)

    2015-03-31

    In-situ monitoring an on-board rechargeable battery in hybrid cars can be used to ensure a long operating life of the battery and safe operation of the vehicle. Intercalations of ions in the electrode material during charge and discharge of a Lithium Ion battery cause periodic stress and strain of the electrode materials that can ultimately lead to fatigue resulting in capacity loss and potential battery failure. Currently this process is not monitored directly on the cells. This work is focused on development technologies that would quantify battery swelling and provide in-situ monitoring for onboard vehicle applications. Several rounds of tests have been performed to spatially characterize cell expansion of a 5 Ah cell with a nickel/manganese/cobalt-oxide cathode (Sanyo, Japan) used by Ford in their Fusion HEV battery pack. A collaborative team of researchers from GE and the University of Michigan has characterized the free expansion of these cells to be in the range of 100×125 microns (1% of total cell thickness) at the center point of the cell. GE proposed to use a thin eddy current (EC) coil to monitor these expansions on the cells while inside the package. The photolithography manufacturing process previously developed for EC arrays for detecting cracks in aircraft engine components was used to build test coils for gap monitoring. These sensors are thin enough to be placed safely between neighboring cells and capable of monitoring small variations in the gap between the cells. Preliminary investigations showed that these coils can be less than 100 micron thick and have sufficient sensitivity in a range from 0 to 2 mm. Laboratory tests revealed good correlation between EC and optical gap measurements in the desired range. Further technology development could lead to establishing a sensor network for a low cost solution for the in-situ monitoring of cell swelling during battery operation.

  17. A prototype cavity beam position monitor for the CLIC Main Beam

    CERN Document Server

    Cullinany , F; Joshi, N; Lyapin, A; Bastard, D; Calvo, E; Chritin, N; Guillot-Vignot, F; Lefevre, T; Søby, L; Wendt, M; Lunin, A; Yakovlev, V P; Smith, S

    2012-01-01

    The Compact Linear Collider (CLIC) places unprecedented demands on its diagnostics systems. A large number of cavity beam position monitors (BPMs) throughout the main linac and beam delivery system (BDS) must routinely perform with 50 nm spatial resolution. Multiple position measurements within a single 156 ns bunch train are also required. A prototype low-Q cavity beam position monitor has been designed and built to be tested on the CLIC Test Facility (CTF3) probe beam. This paper presents the latest measurements of the prototype cavity BPM and the design and simulation of the radio frequency (RF) signal processing electronics with regards to the final performance. Installation of the BPM in the CTF3 probe beamline is also discussed.

  18. Accuracy Analysis of Precise Point Positioning of Compass Navigation System Applied to Crustal Motion Monitoring

    Science.gov (United States)

    Wang, Yuebing

    2017-04-01

    Based on the observation data of Compass/GPSobserved at five stations, time span from July 1, 2014 to June 30, 2016. UsingPPP positioning model of the PANDA software developed by Wuhan University,Analyzedthe positioning accuracy of single system and Compass/GPS integrated resolving, and discussed the capability of Compass navigation system in crustal motion monitoring. The results showed that the positioning accuracy in the east-west directionof the Compass navigation system is lower than the north-south direction (the positioning accuracy de 3 times RMS), in general, the positioning accuracyin the horizontal direction is about 1 2cm and the vertical direction is about 5 6cm. The GPS positioning accuracy in the horizontal direction is better than 1cm and the vertical direction is about 1 2cm. The accuracy of Compass/GPS integrated resolving is quite to GPS. It is worth mentioning that although Compass navigation system precision point positioning accuracy is lower than GPS, two sets of velocity fields obtained by using the Nikolaidis (2002) model to analyze the Compass and GPS time series results respectively, the results showed that the maximum difference of the two sets of velocity field in horizontal directions is 1.8mm/a. The Compass navigation system can now be used to monitor the crustal movement of the large deformation area, based on the velocity field in horizontal direction.

  19. First operational tests of the positive-ion injector for ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Bollinger, L.M.; Den Hartog, P.K.; Pardo, R.C.; Shepard, K.W.; Benaroya, R.; Billquist, P.J.; Clifft, B.E.; Markovich, P.; Munson, F.H. Jr.; Nixon, J.M.

    1989-01-01

    This paper summarizes the status and first operational experience with the positive-ion injector for ATLAS. The new injector consists of an ECR ion source on a 350-kV platform, followed by a superconducting injector linac of a new kind. In Phase I of this project, the ECR source, voltage platform, bunching system, beam-transport system, and a 3-MV injector linac were completed and tested in early 1989 by a successful acceleration of an /sup 40/Ar/sup 12 +/ beam. Most of the new system operated as planned, and the longitudinal emittance of the 36-MeV beam out of the injector was measured to be only 5 ..pi.. keV-ns, much smaller than the emittance for the present tandem injector. When completed in 1990, the final injector linac will be enlarged to 12 MV, enough to allow the original ATLAS linac to accelerate uranium ions up to 8 MeV/u. 8 refs., 2 figs.

  20. Superconducting low-velocity linac for the Argonne positive-ion injector

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Markovich, P.K.; Zinkann, G.P.; Clifft, B.; Benaroya, R.

    1989-01-01

    A low-velocity superconducting linac has been developed as part of a positive-ion injector system, which is replacing a 9 MV tandem as the injector for the ATLAS accelerator. The linac consists of an independently phased array of resonators, and is designed to accelerate various ions over a velocity range .008 < v/c < .06. The resonator array is formed of four different types of superconducting interdigital structures. The linac is being constructed in three phases, each of which will cover the full velocity range. Successive phases will increase the total accelerating potential and permit heavier ions to be accelerated. Assembly of the first phase was completed in early 1989. In initial tests with beam, a five-resonator array provided approximately 3.5 MV of accelerating potential and operated without difficulty for several hundred hours. The second phase is scheduled for completion in late 1989, and will increase the accelerating potential to more than 8 MV. 5 refs., 2 figs., 1 tab.

  1. Resolving two beams in beam splitters with a beam position monitor

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S. (Sergey)

    2002-01-01

    The beam transport system for the Advanced Hydrotest Facility (AHF) anticipates multiple beam splitters. Monitoring two separated beams in a common beam pipe in the splitter sections imposes certain requirements on diagnostics for these sections. In this note we explore a two-beam system in a generic beam monitor and study the feasibility of resolving the positions of the two beams with a single diagnostic device. In the Advanced Hydrotest Facility (AHF), 20-ns beam pulses (bunches) are extracted from the 50-GeV main proton synchrotron and then are transported to the target by an elaborated transport system. The beam transport system splits the beam bunches into equal parts in its splitting sections so that up to 12 synchronous beam pulses can be delivered to the target for the multi-axis proton radiography. Information about the transverse positions of the beams in the splitters, and possibly the bunch longitudinal profile, should be delivered by some diagnostic devices. Possible candidates are the circular wall current monitors in the circular pipes connecting the splitter elements, or the conventional stripline BPMs. In any case, we need some estimates on how well the transverse positions of the two beams can be resolved by these monitors.

  2. CALIBRATION ERRORS IN THE CAVITY BEAM POSITION MONITOR SYSTEM AT THE ATF2

    CERN Document Server

    Cullinan, F; Joshi, N; Lyapin, A

    2011-01-01

    It has been shown at the Accelerator Test Facility at KEK, that it is possible to run a system of 37 cavity beam position monitors (BPMs) and achieve high working resolution. However, stability of the calibration constants (position scale and radio frequency (RF) phase) over a three/four week running period is yet to be demonstrated. During the calibration procedure, random beam jitter gives rise to a statistical error in the position scale and slow orbit drift in position and tilt causes systematic errors in both the position scale and RF phase. These errors are dominant and have been evaluated for each BPM. The results are compared with the errors expected after a tested method of beam jitter subtraction has been applied.

  3. Resolving Two Beams in Beam Splitters with a Beam Position Monitor

    Science.gov (United States)

    Kurennoy, Sergey

    2002-04-01

    The beam transport system for the Advanced Hydrotest Facility (AHF) anticipates multiple beam splitters. Monitoring two transversely separated beams in a common beam pipe in the splitter sections imposes certain requirements on beam diagnostics for these sections. We explore a two-beam system in a generic beam monitor and study the feasibility of resolving the transverse positions of the two beams with one diagnostics device. Effects of unequal beam currents and of finite transverse sizes of the beams are explored analytically for both the ultra relativistic case and the long-wavelength limit.

  4. Real-time single-ion hit position detecting system for cell irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Takahiro, E-mail: satoh.takahiro37@jaea.go.jp [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA), 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Koka, Masahi [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA), 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Kada, Wataru [Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-machi, Kiryu, Gunma 376-8515 (Japan); Yokoyama, Akihito; Kamiya, Tomihiro [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA), 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan)

    2014-08-01

    We have developed a real-time single-ion hit position detecting system to replace a CR-39 solid-state nuclear-track detector for cell irradiation experiments because the CR-39 takes several minutes for off-line etching. The new real-time system consists of a 500-μm-thick CaF{sub 2}(Eu) scintillator, an optical microscope with a 10× objective lens, and a high-gain charge-coupled device camera. Each of the 260-MeV neon ions passing through a 100-μm-thick CR-39 sheet was detected using the real-time system in a performance test for the spatial resolution. The full width at half maxima (FWHMs) of the distances between positions detected by the real-time system and the centers of the etch pits on CR-39 were 6.5 and 6.9 μm in the x and y directions, respectively. The result shows that the system is useful for typical cultured cells of a few tens of micrometers in size.

  5. A contactless positioning system for monitoring discontinuities in three dimensions with geological and geotechnical applications

    Science.gov (United States)

    Rinaldi-Montes, Natalia; Rowberry, Matt; Frontera, Carlos; BaroÅ, Ivo; Garcés, Javier; Blahůt, Jan; Pérez-López, Raúl; Pennos, Christos; Martí, Xavi

    2017-07-01

    In this paper, a contactless positioning system is presented which has been designed to monitor the kinematic behavior of mechanical discontinuities in three dimensions. The positioning system comprises a neodymium magnet, fixed on one side of a discontinuity, and a magnetoresistive sensing array, fixed on the opposing side. Each of the anisotropic magnetoresistive sensors in the sensing array records the magnetic field along three orthogonal directions. The positioning system intrinsically generates compact data packages which are transmitted effectively using a range of standard wireless telecommunication technologies. These data are then modeled using a global least squares fitting procedure in which the adjustable parameters are represented by the position and orientation of the neodymium magnet. The instrumental resolution of the positioning system can be tuned depending on the strength of the magnetic field generated by the neodymium magnet and the distance between the neodymium magnet and the magnetoresistive sensing array. For a typical installation, the displacement resolution is shown to be circa 10 μm while the rotation resolution is circa 0.1°. The first permanently deployed positioning system was established in June 2016 to monitor the behavior of an N-S trending fault located at the contact between the eastern Alps and the Vienna Basin. The robust design of the positioning system is demonstrated by the fact that no interruptions in the broadcasted data streams have occurred since its installation. It has a range of potential applications in many areas of basic and applied research including geology, geotechnical engineering, and structural health monitoring.

  6. A new approach of single epoch GPS positioning for landslide monitoring

    Institute of Scientific and Technical Information of China (English)

    LIU Gen-you; ZHU Yao-zhong; ZHOU Rong-sheng

    2005-01-01

    When the deformation of landslide becomes larger, the conventional static GPS surveying cannot satisfy the real-time requirement in landslide monitoring. In this paper we present a new method for single epoch GPS positioning combining with the accuracy of approximate coordinates of monitored station in landslide monitoring. This algorithm does not consider troublesome cycle-slip problem of carrier phase, and integer ambiguities can be solved at a single epoch, so the centimeter level accurate coordinates can be calculated instantaneously. By means of filtering or smoothing, this method can be extended to detect millimeter level deformation and velocity. In order to test the new method, low-cost single frequency receivers have been used in a real landslide, which happened in Jiangxi Province, China.

  7. Ion channel modulators as potential positive inotropic compound for treatment of heart failure.

    Science.gov (United States)

    Doggrell, S; Hoey, A; Brown, L

    1994-11-01

    1. Current positive inotropy therapy of heart failure is associated with major problems: digoxin and the phosphodiesterase inhibitors can cause life-threatening toxicity while beta-adrenoceptor agonists become less effective inotropic compounds as heart failure progresses. A new approach to positive inotropy is ion channel modulation. 2. An increased influx of Na+ during the cardiac action potential, as measured with DPI 201-106 and BDF 9148 which increase the probability of the open state of the Na+ channel, will increase force of contraction. 3. Activation of L-type Ca2+ channels with Bay K 8644 will increase influx of Ca2+ and increase the force of contraction. However the Ca2+ channel activators developed to date have little potential for the treatment of heart failure as they are vasoconstrictors. 4. Blocking cardiac K+ channels is a possible mechanism of positive inotropy. Terikalant inhibits the inward rectifying K+ channel, tedisamil inhibits the transient outward K+ channel and dofetilide is one of the newly developed inhibitors of the slow delayed outward rectifying K+ channel. All these drugs prolong the cardiac action potential to increase Ca2+ entry and force of contraction. 5. Thus drugs which increase Na+ influx or block K+ channels represent exciting possibilities for positive inotropy and the potential of these compounds for the treatment of heart failure needs to be fully evaluated.

  8. A Fast Non Intercepting Linac Electron Beam Position and Current Monitor

    DEFF Research Database (Denmark)

    Hansen, Jørgen-Walther; Wille, Mads

    1982-01-01

    A non-intercepting beam monitor consisting of four detecting loops is used to determine the spatial postion and current of a pulsed beam from an electron linear accelerator. The monitor detects the magnetic field radiated by the substructure of the electron bunches created by the accelerating...... microwave. The detecting loops are interconnected two by two, by means of two coaxial hybrid junctions, the two sets positioned perpendicular to each other. By means of the two signals from the diametrically positioned detecting loops, a good spatial displacement and current monitoring sensitivity...... are achieved by subtracting one signal from the other and adding the two signals, respectively. For displacements below 2 mm from the center axis an average sensitivity of 0.5 mV/mm·mA is measured, whereas displacements more than 2 mm yields 1.3 mV / mm·mA. A sensitivity of 0.2 mV / mA in current monitoring...

  9. Electromagnetic modeling of beam position and phase monitors for SNS linac

    Science.gov (United States)

    Kurennoy, Sergey S.

    2000-11-01

    Electromagnetic modeling of the beam position monitors (BPMs) for the Spallation Neutron Source (SNS) linac has been performed with MAFIA. The signal amplitudes and phases on the BPM electrodes are computed as functions of the beam transverse position using time-domain 3-D simulations with an ultra-relativistic beam. An analytical model is then applied to extrapolate the results to lower beam velocities. It is shown that while the signal phases on the individual electrodes for an off-axis beam can differ from those for a centered beam by a few degrees, the phase of the summed signal from all electrodes is insensitive to the beam transverse position inside the device. Based on the analysis results, an optimal BPM design with 4 one-end-shorted 60-degree electrodes has been chosen. It provides a very good linearity and sufficient signal power for both position and phase measurements, while satisfying the linac geometrical constrains and mechanical requirements.

  10. A metrology system for a high resolution cavity beam position monitor system

    Science.gov (United States)

    Walston, Sean; Boogert, Stewart; Chung, Carl; Fitsos, Pete; Frisch, Joe; Gronberg, Jeff; Hayano, Hitoshi; Hinton, Shantell; Honda, Yosuke; Khainovski, Oleg; Kolomensky, Yury; Loscutoff, Peter; Lyapin, Alexey; Malton, Stephen; May, Justin; McCormick, Douglas; Meller, Robert; Miller, David; Orimoto, Toyoko; Ross, Marc; Slater, Mark; Smith, Steve; Smith, Tonee; Terunuma, Nobuhiro; Thomson, Mark; Urakawa, Junji; Vogel, Vladimir; Ward, David; White, Glen

    2013-11-01

    International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will likely be as small as a few nanometers. It is important to the ILC design effort to demonstrate that these tolerances can be achieved-ideally using a beam-based stability measurement. We developed a high resolution RF cavity Beam Position Monitor (BPM) system. A triplet of these BPMs, installed in the extraction line of the KEK Accelerator Test Facility (ATF) and tested with its ultra-low emittance beam, achieved a position measurement resolution of 15 nm. A metrology system for the three BPMs was subsequently installed. This system employed optical encoders to measure each BPM's position and orientation relative to a zero-coefficient of thermal expansion carbon fiber frame. We have demonstrated that the three BPMs behave as a rigid-body at the level of less than 5 nm.

  11. The Study of New Signal Processing Technique in Photon Beam Position Monitors

    CERN Document Server

    Lin, Shunfu; Lu, Ping; Sun Bao Gen; Wang, Jigang

    2005-01-01

    A log-ratio signal processing technique in photon beam position monitors (PBPM) was presented in this paper. The main performances (e.g. sensitivity, position offset and linearity range) of split PBPM and a pair of wires PBPM were analyzed , and the result of the measurement fit well with the theory. An inexpensive logarithmic amplifier chip which can measure photon currents from 0.1nA to 3.5mA was used in electronic circuits. The logarithmic ratio of the signal amplitudes from the PBPM provides a real-time analog signal that has wider linearity range and higher bandwidth than signal processing technique.

  12. Large Size High Performance Transparent Amorphous Silicon Sensors for Laser Beam Position Detection and Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Calderon, A.; Martinez Rivero, C.; Matorras, F.; Rodrigo, T.; Sobron, M.; Vila, I.; Virto; Alberdi, J.; Arce, P.; Barcala, J. M.; Calvo, E.; Ferrando, A.; Josa, M. I.; Luque, J. M.; Molinero, A.; Navarrete, J.; Oller, J. C.; Kohler, C.; Lutz, B.; Schubert, M. B.

    2006-09-04

    We present the measured performance of a new generation of semitransparente amorphous silicon position detectors. They have a large sensitive area (30 x 30 mm2) and show good properties such as a high response (about 20 mA/W), an intinsic position resolution better than 3 m, a spatial point reconstruction precision better than 10 m, deflection angles smaller than 10 rad and a transmission power in the visible and NIR higher than 70%. In addition, multipoint alignment monitoring, using up to five sensors lined along a light path of about 5 meters, can be achieved with a resolution better than 20m. (Author)

  13. Impedance simulations and measurements on the LHC collimators with embedded beam position monitors

    CERN Document Server

    Biancacci, N; Kuczerowski, J; Métral,; Mounet, N; Salvant, B; Mostacci, A; Frasciello, O; Zobov, M

    2017-01-01

    The LHC collimation system is a critical element for the safe operation of the LHC machine. The necessity of fast accurate positioning of the collimator’s jaws, recently introduced the need to have button beam position monitors directly embedded in the jaws extremities of the LHC tertiary collimators and some secondary collimators. This addition led to a new design of these collimators including ferrites to damp higher order modes instead of rf fingers. In this work we will present the impedance bench measurements and simulations on a TCT (Transverse Tertiary Collimator) prototype including estimations for beam stability for the LHC.

  14. Impedance simulations and measurements on the LHC collimators with embedded beam position monitors

    Directory of Open Access Journals (Sweden)

    N. Biancacci

    2017-01-01

    Full Text Available The LHC collimation system is a critical element for the safe operation of the LHC machine. The necessity of fast accurate positioning of the collimator’s jaws, recently introduced the need to have button beam position monitors directly embedded in the jaws extremities of the LHC tertiary collimators and some secondary collimators. This addition led to a new design of these collimators including ferrites to damp higher order modes instead of rf fingers. In this work we will present the impedance bench measurements and simulations on a TCT (Transverse Tertiary Collimator prototype including estimations for beam stability for the LHC.

  15. Evaluation and Correction of the Non-linear Distortion of CEBAF Beam Position Monitors

    Energy Technology Data Exchange (ETDEWEB)

    M. Spata, T.L. Allison, K.E. Cole, J. Musson, J. Yan

    2011-09-01

    The beam position monitors at CEBAF have four antenna style pickups that are used to measure the location of the beam. There is a strong nonlinear response when the beam is far from the electrical center of the device. In order to conduct beam experiments at large orbit excitation we need to correct for this nonlinearity. The correction algorithm is presented and compared to measurements from our stretched wire BPM test stand.

  16. Design and performance of a high resolution, low latency stripline beam position monitor system

    OpenAIRE

    R. J. Apsimon; D. R. Bett; N. Blaskovic Kraljevic; P. N. Burrows; G. B. Christian; C. I. Clarke; B. D. Constance; Dabiri Khah, H.; M. R. Davis; Perry, C; J. Resta López; C. J. Swinson

    2015-01-01

    A high-resolution, low-latency beam position monitor (BPM) system has been developed for use in particle accelerators and beam lines that operate with trains of particle bunches with bunch separations as low as several tens of nanoseconds, such as future linear electron-positron colliders and free-electron lasers. The system was tested with electron beams in the extraction line of the Accelerator Test Facility at the High Energy Accelerator Research Organization (KEK) in Japan. It consists of...

  17. Beam Position and Phase Monitors Characterized and Installed in the LANSCE CCL

    Energy Technology Data Exchange (ETDEWEB)

    Gilpatrick, John D [Los Alamos National Laboratory; Kutac, Vincent G. [Los Alamos National Laboratory; Martinez, Derwin [Los Alamos National Laboratory; McCrady, Rodney C. [Los Alamos National Laboratory; O' Hara, James F. [Los Alamos National Laboratory; Olivas, Felix R. [Los Alamos National Laboratory; Shurter, Robert B. [Los Alamos National Laboratory; Watkins, Heath A. [Los Alamos National Laboratory

    2012-04-11

    The Los Alamos Neutron Science Center - Risk Mitigation Project is in the process of replacing older Coupled-Cavity-Linac (CCL) Beam-Position Monitors (BPMs) with newer Beam Position and Phase Monitors (BPPMs) and their associated electronics and cable plants. In many locations, these older BPMs include a separate Delta-T loop for measuring the beam's central phase and energy. Thirty-one BPPMs have been installed and many have monitored the charged particle beam. The installation of these newer BPPMs is the first step to installing complete BPPM measurement systems. Prior to the installation, a characterization of each BPPM took place. The characterization procedure includes a mechanical inspection, a vacuum testing, and associated electrical tests. The BPPM electrical tests for all four electrodes include contact resistance measurements, Time Domain Reflectometer (TDR) measurements, relative 201.25-MHz phase measurements, and finally a set of position-sensitive mapping measurements were performed which included associated fitting routines. This paper will show these data for a typical characterized BPPM.

  18. Suppressed ion chromatography for monitoring chemical impurities in steam for geothermal power plants.

    Science.gov (United States)

    Santoyo, E; Verma, S P; Sandoval, F; Aparicio, A; García, R

    2002-03-08

    A suppressed ion chromatography (IC) technique has been evaluated as a chemical monitoring tool for detecting major anions (F-, Cl-, NO3- and SO4(2-)) of condensed steam in geothermal power plants. It is shown that the suppressed IC technique provides a suitable means for preventing possible damage to generating equipment in the geothermal industry. An electrical conductivity detector (0.1 microS sensitivity) with an anion-exchange column (IonPac AS4A-SC), a micro-membrane suppressor (AMMS II), and an isocratic high-pressure pump system were successfully used for detecting low concentrations of inorganic anions. Method detection limits for the anions of interest were geothermal steam pipes are also described.

  19. Role of positive ions on the surface production of negative ions in a fusion plasma reactor type negative ion source—Insights from a three dimensional particle-in-cell Monte Carlo collisions model

    Energy Technology Data Exchange (ETDEWEB)

    Fubiani, G.; Boeuf, J. P. [Université de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d' Energie), 118 route de Narbonne, F-31062 Toulouse cedex 9 (France); CNRS, LAPLACE, F-31062 Toulouse (France)

    2013-11-15

    Results from a 3D self-consistent Particle-In-Cell Monte Carlo Collisions (PIC MCC) model of a high power fusion-type negative ion source are presented for the first time. The model is used to calculate the plasma characteristics of the ITER prototype BATMAN ion source developed in Garching. Special emphasis is put on the production of negative ions on the plasma grid surface. The question of the relative roles of the impact of neutral hydrogen atoms and positive ions on the cesiated grid surface has attracted much attention recently and the 3D PIC MCC model is used to address this question. The results show that the production of negative ions by positive ion impact on the plasma grid is small with respect to the production by atomic hydrogen or deuterium bombardment (less than 10%)

  20. Proton affinities of candidates for positively charged ambient ions in boreal forests

    Science.gov (United States)

    Ruusuvuori, K.; Kurtén, T.; Ortega, I. K.; Faust, J.; Vehkamäki, H.

    2013-10-01

    The optimized structures and proton affinities of a total of 81 nitrogen-containing bases, chosen based on field measurements of ambient positive ions, were studied using the CBS-QB3 quantum chemical method. The results were compared to values given in the National Institute of Standards and Technology (NIST) Chemistry WebBook in cases where a value was listed. The computed values show good agreement with the values listed in NIST. Grouping the molecules based on their molecular formula, the largest calculated proton affinities for each group were also compared with experimentally observed ambient cation concentrations in a boreal forest. This comparison allows us to draw qualitative conclusions about the relative ambient concentrations of different nitrogen-containing organic base molecules.

  1. Proton affinities of candidates for positively charged ambient ions in the boreal forest

    Directory of Open Access Journals (Sweden)

    K. Ruusuvuori

    2013-04-01

    Full Text Available The optimized structures and proton affinities of a total of 81 nitrogen-containing bases, chosen based on field measurements of ambient positive ions, were studied using the CBS-QB3 quantum chemical method. The results were compared to values given in the National Institute of Standards and Technology (NIST Chemistry WebBook in cases where a value was listed. The computed values show good agreement with the values listed in NIST. Grouping the molecules based on their molecular formula, the largest calculated proton affinities for each group were also compared with experimentally observed ambient cation concentrations in the boreal forest. This comparison allows us to draw qualitative conclusions about the relative ambient concentrations of different nitrogen-containing organic base molecules.

  2. Proton affinities of candidates for positively charged ambient ions in the boreal forest

    Science.gov (United States)

    Ruusuvuori, K.; Kurtén, T.; Ortega, I. K.; Faust, J.; Vehkamäki, H.

    2013-04-01

    The optimized structures and proton affinities of a total of 81 nitrogen-containing bases, chosen based on field measurements of ambient positive ions, were studied using the CBS-QB3 quantum chemical method. The results were compared to values given in the National Institute of Standards and Technology (NIST) Chemistry WebBook in cases where a value was listed. The computed values show good agreement with the values listed in NIST. Grouping the molecules based on their molecular formula, the largest calculated proton affinities for each group were also compared with experimentally observed ambient cation concentrations in the boreal forest. This comparison allows us to draw qualitative conclusions about the relative ambient concentrations of different nitrogen-containing organic base molecules.

  3. Proton affinities of candidates for positively charged ambient ions in boreal forests

    Directory of Open Access Journals (Sweden)

    K. Ruusuvuori

    2013-10-01

    Full Text Available The optimized structures and proton affinities of a total of 81 nitrogen-containing bases, chosen based on field measurements of ambient positive ions, were studied using the CBS-QB3 quantum chemical method. The results were compared to values given in the National Institute of Standards and Technology (NIST Chemistry WebBook in cases where a value was listed. The computed values show good agreement with the values listed in NIST. Grouping the molecules based on their molecular formula, the largest calculated proton affinities for each group were also compared with experimentally observed ambient cation concentrations in a boreal forest. This comparison allows us to draw qualitative conclusions about the relative ambient concentrations of different nitrogen-containing organic base molecules.

  4. Measurement of the mean radial position of a lead ion beam in the CERN PS

    CERN Document Server

    Belleman, J; González, J; Johnston, S; Schulte, E C; Thivent, E

    1996-01-01

    The intensity of the lead ion beam in the PS, nominally 4×108 charges of Pb53+ per bunch, is too low for the closed orbit measurement system. However, for successful acceleration it is sufficient to know the mean radial position (MRP). A system was thus designed for simultaneous acquisition of revolution frequency and magnetic field. The frequency measurement uses a direct digital synthesiser (DDS), phase-locked to the beam signal from a special high-sensitivity pick-up. The magnetic field is obtained from the so-called B-train. From these two values, the MRP is calculated. The precision depends on the frequency measurement and on the accuracy of the value for the magnetic field. Furthermore, exact knowledge of the transition energy is essential. This paper describes the hardware and software developed for the MRP system, and discusses the issue of calibration, with a proton beam, of the B measurement.

  5. Transport Parameters For Positive IONS In Pure H2O DC Discharge

    Science.gov (United States)

    Petrovic, Zoran; Stojanovic, Vladimir; Jovanovic, Jasmina; Maric, Dragana

    2016-09-01

    Transport properties of positive ions originating from H2O (H2O+, OH+) in DC fields and at the room temperature were calculated by using Monte Carlo simulation technique. Initially, the relevant cross section sets were assessed by using Denpoh-Nanbu theory for resolving between elastic and reactive collision events and then resolving contribution of exothermic processes from available experimental data. Newest experimentally or theoretically determined cross sections were compiled and included wherever possible. We present transport coefficients for low and moderate reduced electric fields E / N (N-gas density) accounting for non-conservative processes. Acknowledgment to Ministry of Education, Science and Technology of Republic Serbia, Projects No. 171037 and 410011.

  6. A real-time applicator position monitoring system for gynecologic intracavitary brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Junyi, E-mail: junyi-xia@uiowa.edu; Waldron, Timothy; Kim, Yusung [Department of Radiation Oncology, University of Iowa, Iowa City, Iowa 52242 (United States)

    2014-01-15

    Purpose: To develop a real-time applicator position monitoring system (RAPS) for intracavitary brachytherapy using an infrared camera and reflective markers. Methods: 3D image-guided brachytherapy requires high accuracy of applicator localization; however, applicator displacement can happen during patient transfer for imaging and treatment delivery. No continuous applicator position monitoring system is currently available. The RAPS system was developed for real-time applicator position monitoring without additional radiation dose to patients. It includes an infrared camera, reflective markers, an infrared illuminator, and image processing software. After reflective markers are firmly attached to the applicator and the patient body, applicator displacement can be measured by computing the relative change in distance between the markers. The reflective markers are magnetic resonance imaging (MRI) compatible, which is suitable for MRI-guided HDR brachytherapy paradigm. In our prototype, a Microsoft Kinect sensor with a resolution of 640 by 480 pixels is used as an infrared camera. A phantom study was carried out to compare RAPS' measurements with known displacements ranging from −15 to +15 mm. A reproducibility test was also conducted. Results: The RAPS can achieve 4 frames/s using a laptop with Intel{sup ®} Core™2 Duo processor. When the pixel size is 0.95 mm, the difference between RAPS' measurements and known shift values varied from 0 to 0.8 mm with the mean value of 0.1 mm and a standard deviation of 0.44 mm. The system reproducibility was within 0.6 mm after ten reposition trials. Conclusions: This work demonstrates the feasibility of a real-time infrared camera based gynecologic intracavitary brachytherapy applicator monitoring system. Less than 1 mm accuracy is achieved when using an off-the-shelf infrared camera.

  7. Mass spectrometry of positive ions in capacitively coupled low pressure RF discharges in oxygen with water impurities

    Science.gov (United States)

    Stefanović, Ilija; Stojanović, Vladimir; Boulmer-Leborgne, Chantal; Lecas, Thomas; Kovacevic, Eva; Berndt, Johannes

    2016-07-01

    A capacitively coupled RF oxygen discharge is studied by means of mass spectroscopy. Mass spectra of neutral and positive species are measured in the mid plane between the electrodes at different distances between plasma and mass-spectrometer orifice. In the case of positive ions, as expected, the largest flux originates from \\text{O}2+ . However, a significant number of impurities are detected, especially for low input powers and larger distances. The most abundant positive ions (besides \\text{O}2+ ) are \\text{N}{{\\text{O}}+}, \\text{NO}2+ , {{\\text{H}}+}≤ft({{\\text{H}}2}\\text{O}\\right) , and {{\\text{H}}+}{{≤ft({{\\text{H}}2}\\text{O}\\right)}2} . In particular, for the case of hydrated hydronium ions {{\\text{H}}+}{{≤ft({{\\text{H}}2}\\text{O}\\right)}n} (n  =  1, 2) a surprisingly large flux (for low pressure plasma conditions) is detected. Another interesting fact concerns the {{\\text{H}}2}{{\\text{O}}+} ions. Despite the relatively high ammount of water impurities {{\\text{H}}2}{{\\text{O}}+} ions are present only in traces. The reaction mechanisms leading to the production of the observed ions, especially the hydrated hydronium ions are discussed.

  8. Charge inversion of phospholipids by dimetal complexes for positive ion-mode electrospray ionization mass spectrometry analysis.

    Science.gov (United States)

    Svane, Simon; Gorshkov, Vladimir; Kjeldsen, Frank

    2015-09-01

    Phospholipids are vital constituents of living cells, as they are involved in signaling and membrane formation. Mass spectrometry analysis of many phospholipids is preferentially performed in the negative ion-mode because of their acidic nature. Here we have studied the potential of a digallium and dizinc complex to charge-invert a range of different types of phospholipids and measured their ion yield and fragmentation behavior in positive ion-mode tandem mass spectrometry. The dimetal complexes bind specifically the phosphate groups of phospholipids and add an excess of up to three positive charges per phosphate group. Three different phosphoinositide phosphates (mono-, di-, and triphosphorylated inositides), a phosphatidic acid, a phosphatidylcholine, a phosphatidylethanolamine, and a phosphatidylglycerol were investigated. The intensities obtained in positive ion-mode of phosphoinositide phosphates and phosphatidic acid bound to {LGa2}(5+) were between 2.5- and 116-fold higher than that of the unmodified lipids in the negative ion-mode. Native phosphoinositide ions yielded upon CID in the negative ion-mode predominantly product ions due to losses of H3PO4, PO3(-) and H2O. In comparison, CID spectra of {LGa2}(5+)-bound phosphoinositides generally resulted in fragment ions corresponding to loss of the full diglyceride chain as well as the remaining headgroup bound to {LGa2}(5+) as the most abundant peaks. A number of signature fragment ions of moderate abundance were observed that allowed for distinction between the three regioisomers of 1,2-di(9Z-octadecenoyl)-sn-glycero-3-[phosphoinositol-x,y-bisphosphate] (PI(3,4)P2, PI(3,5)P2, PI(4,5)P2).

  9. Monitoring of (reactive) ion etching (RIE) with reflectance anisotropy spectroscopy (RAS) equipment

    Energy Technology Data Exchange (ETDEWEB)

    Barzen, Lars; Richter, Johannes [Research Group Integrated Optoelectronics and Microoptics (IOE), Physics Department, Kaiserslautern University of Technology, PO Box 3049, D-67653 Kaiserslautern (Germany); Fouckhardt, Henning, E-mail: fouckhar@physik.uni-kl.de [Research Group Integrated Optoelectronics and Microoptics (IOE), Physics Department, Kaiserslautern University of Technology, PO Box 3049, D-67653 Kaiserslautern (Germany); Wahl, Michael; Kopnarski, Michael [Institut für Oberflächen- und Schichtanalytik (IFOS) GmbH, Trippstadter Str. 120, D-67663 Kaiserslautern (Germany)

    2015-02-15

    Experimental results on the application of reflectance anisotropy spectroscopy (RAS) to the monitoring of (reactive) ion etching of monocrystalline semiconductor samples are described. To show the potential of this technique RAS signals collected during etching of GaAs/Al{sub x}Ga{sub 1−x}As multilayer samples are compared to RAS data obtained before during molecular-beam epitaxial (MBE) growth of these very samples. A change of the RIE-RAS spectrum can be attributed to a change of material composition. And the current etch depth can be monitored with an accuracy at least down to several tens of nanometers – f. e. by recording the average reflected intensity.

  10. Exploration of ion temperature profile measurements at JET using the upgraded neutron profile monitor

    Energy Technology Data Exchange (ETDEWEB)

    Marocco, D.; Esposito, B.; Riva, M. [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, C.P. 65, Frascati I-00044, Roma (Italy); Collaboration: JET-EFDA Contributors

    2012-10-15

    The neutron profile monitor (NPM), routinely used at the Joint European Torus for neutron emissivity profile measurements, consists of two fan-shaped arrays of collimators and each line of sight (LOS) is equipped with a NE213 liquid organic scintillator for simultaneous measurements of the 2.5 MeV and 14 MeV neutrons. A digital system developed in ENEA has replaced the analog acquisition electronics and now enables the NPM to perform spatially resolved neutron spectrometry by providing neutron pulse height spectra (PHS) for each LOS. However, the NPM was not originally designed as a spectrometer and, therefore, lacks several key features, such as detailed measurements of the detector response functions and the presence of detector stability monitors. We present a proof of principle of ion temperature profile measurements derived from the NPM PHS in high plasma current discharges using simulated detector response functions.

  11. Chemical analysis of succinylacetone and 4-hydroxyphenyllactate in amniotic fluid using selective ion monitoring.

    Science.gov (United States)

    Jakobs, C; Sweetman, L; Nyhan, W L

    1984-01-01

    A method for the measurement of the concentration of succinylacetone and 4-hydroxyphenyllactic acid in amniotic fluid was developed for the prenatal diagnosis of hereditary tyrosinemia. Succinylacetone was converted to 5-methyl-3-isoxazolepropionic acid and isolated with 4-hydroxyphenyllactic acid by liquid partition chromatography and the trimethylsilyl derivatives quantified by ammonia chemical ionization selected ion monitoring gas chromatography-mass spectrometry with 2-hydroxy-n-caproic acid as the internal standard. The concentration of 4-hydroxyphenyllactic acid in normal amniotic fluid was 1.97 +/- 0.75 (S.D.) mumol/l while succinylacetone was undetectable. A pregnancy at risk for tyrosinemia type II was monitored. The concentration of 4-hydroxyphenyllactic acid was within the normal range and a healthy child was born.

  12. Corona discharge ion mobility spectrometry with orthogonal acceleration time of flight mass spectrometry for monitoring of volatile organic compounds.

    Science.gov (United States)

    Sabo, Martin; Matejčík, Štefan

    2012-06-19

    We demonstrate the application of corona discharge ion mobility spectrometry with orthogonal acceleration time of flight mass spectrometry (CD IMS-oaTOF) for volatile organic compounds (VOCs) monitoring. Two-dimensional (2D) IMS-oaTOF spectra of VOCs were recorded in nearly real time. The corona discharge atmospheric pressure chemical ionization (APCI) source was operated in positive mode in nitrogen and air. The CD ion source generates in air H(3)O(+)(H(2)O)(n) and NO(+). The NO(+) offers additional possibility for selective ionization and for an increase of the sensitivity of monoaromatic compounds. In addition to H(3)O(+)(H(2)O)(n) and NO(+), we have carried out ionization of VOCs using acetone as dopant gas ((CH(3))(2)COH(+)). Sixteen model VOCs (tetrahydrofuran, butanol, n-propanol, iso-propano, acetone, methanol, ethanol, toluene, benzene, amomnia, dioxan, triethylamine, acetonitrile, formaldehyde, m-xylene, 2,2,2-trifluoroethylamine) were tested using these ionization techniques.

  13. Simultaneous Proteomic Discovery and Targeted Monitoring using Liquid Chromatography, Ion Mobility Spectrometry, and Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Burnum-Johnson, Kristin E.; Nie, Song; Casey, Cameron P.; Monroe, Matthew E.; Orton, Daniel J.; Ibrahim, Yehia M.; Gritsenko, Marina A.; Clauss, Therese R. W.; Shukla, Anil K.; Moore, Ronald J.; Purvine, Samuel O.; Shi, Tujin; Qian, Weijun; Liu, Tao; Baker, Erin S.; Smith, Richard D.

    2016-09-25

    Current proteomics approaches are comprised of both broad discovery measurements as well as more quantitative targeted measurements. These two different measurement types are used to initially identify potentially important proteins (e.g., candidate biomarkers) and then enable improved quantification for a limited number of selected proteins. However, both approaches suffer from limitations, particularly the lower sensitivity, accuracy, and quantitation precision for discovery approaches compared to targeted approaches, and the limited proteome coverage provided by targeted approaches. Herein, we describe a new proteomics approach that allows both discovery and targeted monitoring (DTM) in a single analysis using liquid chromatography, ion mobility spectrometry and mass spectrometry (LC-IMS-MS). In DTM, heavy labeled peptides for target ions are spiked into tryptic digests and both the labeled and unlabeled peptides are broadly detected using LC-IMS-MS instrumentation, allowing the benefits of discovery and targeted approaches. To understand the possible improvement of the DTM approach, it was compared to LC-MS broad measurements using an accurate mass and time tag database and selected reaction monitoring (SRM) targeted measurements. The DTM results yielded greater peptide/protein coverage and a significant improvement in the detection of lower abundance species compared to LC-MS discovery measurements. DTM was also observed to have similar detection limits as SRM for the targeted measurements indicating its potential for combining the discovery and targeted approaches.

  14. A highly Selective Fluorescent Sensor for Monitoring Cu(2+) Ion: Synthesis, Characterization and Photophysical Properties.

    Science.gov (United States)

    Aderinto, Stephen Opeyemi; Xu, Yuling; Peng, Hongping; Wang, Fei; Wu, Huilu; Fan, Xuyang

    2017-01-01

    A new fluorescent sensor, 4-allylamine-N-(N-salicylidene)-1,8-naphthalimide (1), anchoring a naphthalimide moiety as fluorophore and a Schiff base group as receptor, was synthesized and characterized. The photophysical properties of sensor 1 were conducted in organic solvents of different polarities. Our study revealed that, depending on the solvent polarity, the fluorescence quantum yields varied from 0.59 to 0.89. The fluorescent activity of the sensor was monitored and the sensor was consequently applied for the detection of Cu(2+) with high selectivity over various metal ions by fluorescence quenching in Tris-HCl (pH = 7.2) buffer/DMF (1:1, v/v) solution. From the binding stoichiometry, it was indicated that a 1:1 complex was formed between Cu(2+) and the sensor 1. The fluorescence intensity was linear with Cu(2+) in the concentration range 0.5-5 μM. Moreso, the detection limit was calculated to be 0.32 μM, which is sufficiently low for good sensitivity of Cu(2+) ion. The binding mode was due to the intramolecular charge transfer (ICT) and the coordination of Cu(2+) with C = N and hydroxyl oxygen groups of the sensor 1. The sensor proved effective for Cu(2+) monitoring in real water samples with recovery rates of 95-112.6 % obtained.

  15. Performance of MACACO Compton telescope for ion-beam therapy monitoring: first test with proton beams

    Science.gov (United States)

    Solevi, Paola; Muñoz, Enrique; Solaz, Carles; Trovato, Marco; Dendooven, Peter; Gillam, John E.; Lacasta, Carlos; Oliver, Josep F.; Rafecas, Magdalena; Torres-Espallardo, Irene; Llosá, Gabriela

    2016-07-01

    In order to exploit the advantages of ion-beam therapy in a clinical setting, delivery verification techniques are necessary to detect deviations from the planned treatment. Efforts are currently oriented towards the development of devices for real-time range monitoring. Among the different detector concepts proposed, Compton cameras are employed to detect prompt gammas and represent a valid candidate for real-time range verification. We present the first on-beam test of MACACO, a Compton telescope (multi-layer Compton camera) based on lanthanum bromide crystals and silicon photo-multipliers. The Compton telescope was first characterized through measurements and Monte Carlo simulations. The detector linearity was measured employing 22Na and Am-Be sources, obtaining about 10% deviation from linearity at 3.44 MeV. A spectral image reconstruction algorithm was tested on synthetic data. Point-like sources emitting gamma rays with energy between 2 and 7 MeV were reconstructed with 3-5 mm resolution. The two-layer Compton telescope was employed to measure radiation emitted from a beam of 150 MeV protons impinging on a cylindrical PMMA target. Bragg-peak shifts were achieved via adjustment of the PMMA target location and the resulting measurements used during image reconstruction. Reconstructed Bragg peak profiles proved sufficient to observe peak-location differences within 10 mm demonstrating the potential of the MACACO Compton Telescope as a monitoring device for ion-beam therapy.

  16. Control of stopping position of radioactive ion beam in superfluid helium for laser spectroscopy experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X.F., E-mail: yangxf@ribf.riken.jp [School of Physics, Peking University, Chengfu Road, Haidian District, Beijing 100871 (China); RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Furukawa, T. [Dept. of Physics, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397 (Japan); Wakui, T. [Cyclotron and Radioisotope Center Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578 (Japan); Imamura, K. [Dept. of Physics, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); Tetsuka, H. [Dept. of Physics, Tokyo Gakugei University, 4-1-1 Nukuikitamachi, Koganei, Tokyo 184-8501 (Japan); Fujita, T. [Dept. of Physics, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Yamaguchi, Y. [Dept. of Physics, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); Tsutsui, Y. [Dept. of Physics, Tokyo Gakugei University, 4-1-1 Nukuikitamachi, Koganei, Tokyo 184-8501 (Japan); Mitsuya, Y. [Dept. of Physics, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); Ichikawa, Y. [Dept. of Physics, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro, Tokyo152-8551 (Japan); Ishibashi, Y. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Dept. of Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571 (Japan); Yoshida, N.; Shirai, H. [Dept. of Physics, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro, Tokyo152-8551 (Japan); Ebara, Y.; Hayasaka, M. [Dept. of Physics, Tokyo Gakugei University, 4-1-1 Nukuikitamachi, Koganei, Tokyo 184-8501 (Japan); Arai, S.; Muramoto, S. [Dept. of Physics, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); Hatakeyama, A. [Dept. of Applied Physics, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan); Wada, M.; Sonoda, T. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); and others

    2013-12-15

    In order to investigate the structure of exotic nuclei with extremely low yields by measuring nuclear spins and moments, a new laser spectroscopy technique – “OROCHI” (Optical Radioisotopes Observation in Condensed Helium as Ion-catcher) has been proposed in recent years. The feasibility of this technique has been demonstrated by means of a considerable amount of offline and online studies of various atoms in superfluid helium. For in-situ laser spectroscopy of atoms in He II, trapping atoms in the observation region of laser is a key step. Therefore, a method which enables us to trap accelerated atoms at a precise position in He II is highly needed for performing experiment. In this work, a technique making use of a degrader, two plastic scintillators and a photon detection system is established for checking the stopping position of beam based on the LISE++ calculation. The method has been tested and verified by on-line experiments with the {sup 84,85,87}Rb beam. Details of the experimental setup, working procedure and testing results of this method are presented.

  17. An in-beam PET system for monitoring ion-beam therapy: test on phantoms using clinical 62 MeV protons

    Science.gov (United States)

    Camarlinghi, N.; Sportelli, G.; Battistoni, G.; Belcari, N.; Cecchetti, M.; Cirrone, G. A. P.; Cuttone, G.; Ferretti, S.; Kraan, A.; Retico, A.; Romano, F.; Sala, P.; Straub, K.; Tramontana, A.; Del Guerra, A.; Rosso, V.

    2014-04-01

    Ion therapy allows the delivery of highly conformal dose taking advantage of the sharp depth-dose distribution at the Bragg-peak. However, patient positioning errors and anatomical uncertainties can cause dose distortions. To exploit the full potential of ion therapy, an accurate monitoring system of the ion range is needed. Among the proposed methods to monitor the ion range, Positron Emission Tomography (PET) has proven to be the most mature technique, allowing to reconstruct the β+ activity generated in the patient by the nuclear interaction of the ions, that can be acquired during or after the treatment. Taking advantages of the spatial correlation between positron emitters created along the ions path and the dose distribution, it is possible to reconstruct the ion range. Due to the high single rates generated during the beam extraction, the acquisition of the β+ activity is typically performed after the irradiation (cyclotron) or in between the synchrotron spills. Indeed the single photon rate can be one or more orders of magnitude higher than normal for cyclotron. Therefore, acquiring the activity during the beam irradiation requires a detector with a very short dead time. In this work, the DoPET detector, capable of sustaining the high event rate generated during the cyclotron irradiation, is presented. The capability of the system to acquire data during and after the irradiation will be demonstrated by showing the reconstructed activity for different PMMA irradiations performed using clinical dose rates and the 62 MeV proton beam at the CATANA-LNS-INFN. The reconstructed activity widths will be compared with the results obtained by simulating the proton beam interaction with the FLUKA Monte Carlo. The presented data are in good agreement with the FLUKA Monte Carlo.

  18. A configurable electronics system for the ESS-Bilbao beam position monitors

    Science.gov (United States)

    Muguira, L.; Belver, D.; Etxebarria, V.; Varnasseri, S.; Arredondo, I.; del Campo, M.; Echevarria, P.; Garmendia, N.; Feuchtwanger, J.; Jugo, J.; Portilla, J.

    2013-09-01

    A versatile and configurable system has been developed in order to monitorize the beam position and to meet all the requirements of the future ESS-Bilbao Linac. At the same time the design has been conceived to be open and configurable so that it could eventually be used in different kinds of accelerators, independent of the charged particle, with minimal change. The design of the Beam Position Monitors (BPMs) system includes a test bench both for button-type pick-ups (PU) and striplines (SL), the electronic units and the control system. The electronic units consist of two main parts. The first part is an Analog Front-End (AFE) unit where the RF signals are filtered, conditioned and converted to base-band. The second part is a Digital Front-End (DFE) unit which is based on an FPGA board where the base-band signals are sampled in order to calculate the beam position, the amplitude and the phase. To manage the system a Multipurpose Controller (MC) developed at ESSB has been used. It includes the FPGA management, the EPICS integration and Archiver Instances. A description of the system and a comparison between the performance of both PU and SL BPM designs measured with this electronics system are fully described and discussed.

  19. A novel straightness measurement system applied to the position monitoring of large Particle Physics Detectors

    CERN Document Server

    Goudard, R; Ribeiro, R; Klumb, F

    1999-01-01

    The Compact Muon Solenoid experiment, CMS, is one of the two general purpose experiments foreseen to operate at the Large Hadron Collider, LHC, at CERN, the European Laboratory for Particle Physics. The experiment aims to study very high energy collisions of proton beams. Investigation of the most fundamental properties of matter, in particular the study of the nature of the electroweak symmetry breaking and the origin of mass, is the experiment scope. The central Tracking System, a six meter long cylinder with 2.4 m diameter, will play a major role in all physics searches of the CMS experiment. Its performance depends upon the intrinsic detector performance, on the stability of the supporting structure and on the overall survey, alignment and position monitoring system. The proposed position monitoring system is based on a novel lens-less laser straightness measurement method able to detect deviations from a nominal position of all structural elements of the Central Tracking system. It is based on the recipr...

  20. Digital beam position and phase monitor for P-LINAC for FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Almalki, Mohammed

    2013-07-01

    For the planned P-LINAC for the FAIR facility, Beam Position Monitors (BPM) will be installed at 14 locations along the LINAC. The digital signal processing to derive the transverse beam position and the beam phase will be implemented by ''Libera Single Pass H''. The specification for position measurement is 0.1 mm spatial resolution and phase accuracy is 1 degree with respect to 325 MHz acceleration frequency. The results from the Libera digital signal processing were compared with the time-domain approach and the FFT analytic calculations. The first test was performed at the GSI UNILAC with a Ne4+ beam at 1.4 MeV / u. A single BPM was used to act as a ''Bunch arrival monitor'' to characterize the dependence of beam arrival time on bunch shape. The signals were sampled at 117.440 MHz with a 16-bit ADC to produce I and Q data streams. The first experimental results are reported.

  1. Noninvasive intracranial pressure monitoring via optic nerve sheath diameter for robotic surgery in steep Trendelenburg position

    Directory of Open Access Journals (Sweden)

    Shagun Bhatia Shah

    2015-01-01

    Full Text Available Background: Recent reports of increased intracranial pressure (ICP due to steep Trendelenburg (ST position causing neurological deterioration, decreased regional cerebral oxygen saturation and postoperative visual loss after robotic urological and gynecological surgeries led us to consider a simple technique of ICP monitoring. Ours is one of the first instances reported of quantitative noninvasive measurement of increase in ICP with ST position by serial measurement of binocular optic nerve sheath diameter (ONSD in patients undergoing robot assisted urological and gynecological oncosurgery. We tested whether ONSD values rose to above the upper limits of normal and for what length of time they remained elevated. Materials and Methods: Prospective, randomized, interventional, parallel group, active control study conducted on 252 American Society of Anesthesiologists I and II patients. ONSD was measured using 7.5 MHz linear ultrasound probe in supine and Trendelenburg positions. Statistics: Student′s t-test to compare the inter-group mean ONSD and the repetitive t-test for intra-group analysis. Result: Comparison of the mean ONSD values of both groups yielded a 2-tailed significance P <0.01 at all compared time points intra- and post-operatively. In Group-O (open surgery; supine position, the baseline mean bilateral ONSD was 4.36 mm, which did not show any statistically significant change throughout open surgery and postoperative period. On de-docking the robot, 6.2 mm was the mean ONSD value in Group-R (robotic group while 4.3 mm was the corresponding value in control Group-O. Conclusion: ONSD evaluation is a simple, quick, safe, readily available, reliable, cost effective, noninvasive, potential standard of care for screening and monitoring of patients undergoing robotic surgery in ST position.

  2. Plasma EBV-DNA monitoring in Epstein-Barr virus-positive Hodgkin lymphoma patients.

    Science.gov (United States)

    Spacek, Martin; Hubacek, Petr; Markova, Jana; Zajac, Miroslav; Vernerova, Zdenka; Kamaradova, Katerina; Stuchly, Jan; Kozak, Tomas

    2011-01-01

    Epstein-Barr virus (EBV) is associated with approximately one-third of Hodgkin lymphoma (HL) cases. EBV-DNA is often present in the plasma and whole blood of EBV-associated HL patients. However, the significance of EBV-DNA monitoring is debated. In a cohort of 165 adult HL patients, EBV-DNA viral load was prospectively monitored both in the plasma and whole blood. Diagnostic tissue samples of all patients were histologically reviewed; in 72% nodular sclerosis was detected, 24% presented with mixed cellularity (MC), and 5% had other type of HL. Tissues from 150 patients were also analyzed for the presence of latent EBV infection using in situ hybridization for EBV-encoded RNA (EBER) and immunohistochemistry for latent membrane protein (LMP1). Using these methods, 29 (19%) patients were classified as EBV positive. Using real-time quantitative PCR, 22 (76%) of EBV-positive HL patients had detectable EBV-DNA in the plasma and 19 (66%) patients in whole blood prior to therapy. In the group of EBV-negative HL cases, three (2%) patients had detectable plasma EBV-DNA and 30 (25%) patients whole blood EBV-DNA before treatment. EBV-positive HL was significantly associated with EBV-DNA positivity both in the plasma and whole blood in pretreatment samples, increasing age and MC subtype. Serial analysis of plasma EBV-DNA showed that response to therapy was associated with decline in viral load. Moreover, significantly increased plasma EBV-DNA level recurred before disease relapse in one patient. Our results further suggest that the assessment of plasma EBV-DNA viral load might be of value for estimation of prognosis and follow-up of patients with EBV-positive HL.

  3. Design and simulation of a beam position monitor for the high current proton linac

    Institute of Scientific and Technical Information of China (English)

    RUAN Yu-Fang; XU Tao-Guang; FU Shi-Nian

    2009-01-01

    In this paper, the 2-D electrostatic field software, POISSON, is used to calculate the characteristic impedance of a BPM (beam position monitor) for a high current proton linac. Furthermore, the time-domain 3-D module of MAFIA with a beam microbunch at a varying offset from the axis is used to compute the induced voltage on the electrodes as a function of time. Finally, the effect of low 13 beams on the induced voltage, the sensitivity and the signal dynamic range of the BPM are discussed.

  4. Polarizabilities of an annular cut and coupling impedances of button type beam position monitors

    Science.gov (United States)

    Kurennoy, Sergei S.

    The longitudinal and transverse coupling impedances of a small discontinuity on the accelerator chamber wall can be expressed in terms of the electric and magnetic polarizabilities of the discontinuity. The polarizabilities are geometrical factors and can be found by solving a static (electric or magnetic) problem. However, they are known in the explicit analytical form only for a few simple-shaped discontinuities, for example, for an elliptic hole in a thin wall. In the present paper the polarizabilities of a ring-shaped cut in the wall are obtained. The results are applied to calculate the coupling impedances of button-type beam position monitors.

  5. Polarizabilities of an annular cut and coupling impedances of button-type beam position monitors

    CERN Document Server

    Kurennoy, S S

    1995-01-01

    The longitudinal and transverse coupling impedances of a small discontinuity on the accelerator chamber wall can be expressed in terms of the electric and magnetic polarizabilities of the discontinuity. The polarizabilities are geometrical factors and can be found by solving a static (electric or magnetic) problem. However, they are known in the explicit analytical form only for a few simple-shaped discontinuities, for example, for an elliptic hole in a thin wall. In the present paper the polarizabilities of a ring-shaped cut in the wall are obtained. The results are applied to calculate the coupling impedances of button-type beam position monitors.

  6. Status of the Stripline Beam Position Monitor developement for the CLIC Drive Beam

    CERN Document Server

    Benot-Morell, A; Wendt, M; Faus-Golfe, A; Nappa, J M; Vilalte, S; Smith, S

    2013-01-01

    In collaboration with SLAC, LAPP and IFIC, a first prototype of a stripline Beam Position Monitor (BPM) for the CLIC Drive Beam and its associated readout electronics has been successfully tested in the CLIC Test Facility linac (CTF3) at CERN. In addition, a modified prototype with downstream terminated striplines is under development to improve the suppression of unwanted RF signal interference. This paper presents the results of the beam tests, and the most relevant aspects for the modified stripline BPM design and its expected improvements.

  7. Design and experiments for the waveguide to coaxial cable adapter of a cavity beam position monitor

    Institute of Scientific and Technical Information of China (English)

    LI Xiang; ZHENG Shu-Xin

    2011-01-01

    The waveguide to coaxial cable adapter is very important to the cavity beam position monitor(CBPM)because it determines how much of the energy in the cavity could be coupled outside.In this paper,the waveguide to coaxial cable adapter of a CBPM is designed and experiments are conducted.The curve shapes of experiments and simulations are very similar and the difference in reflection is less than 0.1.This progress provides a reliable method for designing the adapter.

  8. Spatial distributions of photons in plastic scintillator detected by multi-anode photomultiplier for heavy-ion position determination

    Energy Technology Data Exchange (ETDEWEB)

    Omika, S. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Yamaguchi, T., E-mail: yamaguti@phy.saitama-u.ac.jp [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Fukuda, M. [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Kitagawa, A. [National Institute of Radiological Sciences, Chiba 263-8555 (Japan); Matsunaga, S. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Nagae, D. [Institute of Physics, University of Tsukuba, Ibaraki 305-8571 (Japan); Nishimura, D. [Department of Physics, Tokyo University of Science, Noda 278-8510 (Japan); Nishimura, T. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Ozawa, A. [Institute of Physics, University of Tsukuba, Ibaraki 305-8571 (Japan); Sato, S. [National Institute of Radiological Sciences, Chiba 263-8555 (Japan); Sawahata, K. [Institute of Physics, University of Tsukuba, Ibaraki 305-8571 (Japan); Suzuki, T.; Takeuchi, Y. [Department of Physics, Saitama University, Saitama 338-8570 (Japan)

    2015-10-11

    The spatial distributions of scintillation photons in a plastic scintillation detector were measured using a multi-anode photomultiplier H7546A coupled with 1-mm-diameter optical fibers. A row of several tens of fibers connected to the scintillator generates one-dimensional spatial distributions of photons induced by the swift passage of heavy ions. The pulse heights from each channel change depending on the beam position. This can be utilized to determine the positions of the heavy ions. To test the performance of the proposed detection method, an experiment using a {sup 84}Kr beam with intermediate energies ranging from 40 to 85 MeV/nucleon was performed at the heavy-ion medical accelerator in Chiba (HIMAC). The photon spatial distributions were successfully observed. By optimizing the photomultiplier bias voltage and threshold in the pulse height analyses, a detection efficiency of 98% and a position resolution of 1.1 mm in σ were achieved simultaneously.

  9. First composition measurements of positive chemiions in aircraft jet engine exhaust: detection of numerous ion species containing organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kiendler, A.; Arnold, F. [Max Planck Institute for Nuclear Physics, Heidelberg (Germany). Atmospheric Physics Division

    2002-06-01

    First mass-spectrometric composition measurements with high mass resolution of positive chemiions (CI) were made in the exhaust of an aircraft jet engine at ground level. The ion mass spectrometer used was a quadrupole ion-trap mass spectrometer with a high mass resolution and a large mass range (up to 2000 atomic mass units (amu)). The mass spectrum which extends from 150 to 2000 amu is very crowded showing a mass peak at nearly every mass number m. CI with odd m are much more abundant than CI with even m. Groups of mass peaks separated by 14 amu are clearly noticeable indicating CH{sub 2} groups. Probably many of the observed positive CI are protonated massive volatile organic compounds (VOCs). Some of the observed positive CI may also be cluster ions composed of VOCs. (author)

  10. High-Precision Resonant Cavity Beam Position, Emittance And Third-Moment Monitors

    Energy Technology Data Exchange (ETDEWEB)

    Barov, N.; Kim, J.S.; Weidemann, A.W.; /FARTECH, San Diego; Miller, R.H.; Nantista, C.D.; /SLAC

    2006-03-14

    Linear colliders and FEL facilities need fast, nondestructive beam position and profile monitors to facilitate machine tune-up, and for use with feedback control. FAR-TECH, Inc., in collaboration with SLAC, is developing a resonant cavity diagnostic to simultaneously measure the dipole, quadrupole and sextupole moments of the beam distribution. Measurements of dipole and quadrupole moments at multiple locations yield information about beam orbit and emittance. The sextupole moment can reveal information about beam asymmetry which is useful in diagnosing beam tail deflections caused by short-range dipole wakefields. In addition to the resonance enhancement of a single-cell cavity, use of a multi-cell standing-wave structure further enhances signal strength and improves the resolution of the device. An estimated resolution is better than 1 {micro}m in rms beam size and better than 1 nm in beam position.

  11. Model-independent analysis of the Fermilab Tevatron turn-by-turn beam position monitor measurements

    Energy Technology Data Exchange (ETDEWEB)

    Petrenko, A.V.; /Novosibirsk, IYF; Valishev, A.A.; Lebedev, V.A.; /Fermilab

    2011-09-01

    Coherent transverse beam oscillations in the Tevatron were analyzed with the model-independent analysis (MIA) technique. This allowed one to obtain the model-independent values of coupled betatron amplitudes, phase advances, and dispersion function around the ring from a single dipole kick measurement. In order to solve the MIA mode mixing problem which limits the accuracy of determination of the optical functions, we have developed a new technique of rotational MIA mode untangling. The basic idea is to treat each beam position monitor (BPM) as two BPMs separated in a ring by exactly one turn. This leads to a simple criterion of MIA mode separation: the betatron phase advance between any BPM and its counterpart shifted by one turn should be equal to the betatron tune and therefore should not depend on the BPM position in the ring. Furthermore, we describe a MIA-based technique to locate vibrating magnets in a storage ring.

  12. Model-independent analysis of the Fermilab Tevatron turn-by-turn beam position monitor measurements

    Energy Technology Data Exchange (ETDEWEB)

    Petrenko, A.V.; /Novosibirsk, IYF; Valishev, A.A.; Lebedev, V.A.; /Fermilab

    2011-09-01

    Coherent transverse beam oscillations in the Tevatron were analyzed with the model-independent analysis (MIA) technique. This allowed one to obtain the model-independent values of coupled betatron amplitudes, phase advances, and dispersion function around the ring from a single dipole kick measurement. In order to solve the MIA mode mixing problem which limits the accuracy of determination of the optical functions, we have developed a new technique of rotational MIA mode untangling. The basic idea is to treat each beam position monitor (BPM) as two BPMs separated in a ring by exactly one turn. This leads to a simple criterion of MIA mode separation: the betatron phase advance between any BPM and its counterpart shifted by one turn should be equal to the betatron tune and therefore should not depend on the BPM position in the ring. Furthermore, we describe a MIA-based technique to locate vibrating magnets in a storage ring.

  13. Design and performance of a high resolution, low latency stripline beam position monitor system

    Science.gov (United States)

    Apsimon, R. J.; Bett, D. R.; Blaskovic Kraljevic, N.; Burrows, P. N.; Christian, G. B.; Clarke, C. I.; Constance, B. D.; Dabiri Khah, H.; Davis, M. R.; Perry, C.; Resta López, J.; Swinson, C. J.

    2015-03-01

    A high-resolution, low-latency beam position monitor (BPM) system has been developed for use in particle accelerators and beam lines that operate with trains of particle bunches with bunch separations as low as several tens of nanoseconds, such as future linear electron-positron colliders and free-electron lasers. The system was tested with electron beams in the extraction line of the Accelerator Test Facility at the High Energy Accelerator Research Organization (KEK) in Japan. It consists of three stripline BPMs instrumented with analogue signal-processing electronics and a custom digitizer for logging the data. The design of the analogue processor units is presented in detail, along with measurements of the system performance. The processor latency is 15.6 ±0.1 ns . A single-pass beam position resolution of 291 ±10 nm has been achieved, using a beam with a bunch charge of approximately 1 nC.

  14. A micro-pattern gaseous detector for beam monitoring in ion-therapy

    Energy Technology Data Exchange (ETDEWEB)

    Terakawa, A.; Ishii, K.; Matsuyama, S.; Kikuchi, Y.; Togashi, T.; Arikawa, J.; Yamashita, W.; Takahashi, Y.; Fujishiro, F. [Department of Quantum Science and Energy Engineering, Tohoku University (Japan); Yamazaki, H.; Sakemi, Y. [Cyclotron and Radioisotope Center, Tohoku University (Japan)

    2015-12-15

    A micro-pattern gaseous detector based on gas electron multiplier technology (GEM detector) was developed as a new transmission beam monitor for charged-particle therapy to obtain real-time information about the parameters of a therapeutic beam. Feasibility tests for the GEM detector were performed using an 80-MeV proton beam to evaluate the lateral intensity distributions of a pencil beam and the dose delivered to a target. The beam intensity distributions measured with the GEM detector were in good agreement with those measured with an imaging plate while the charge output from the GEM detector was in proportion to that of a reference dose monitor of an ionization chamber design. These experimental results showed that the GEM detector can be used not only as a beam monitor for the position and two-dimensional intensity distribution but also as a dose monitor. Thus, it is possible to simultaneously measure these beam parameters for beam control in charged-particle therapy using a single GEM-based transmission monitor.

  15. Utilization of Ion-Exclusion Chromatography for Water Quality Monitoring in a Suburban River in Jakarta, Indonesia

    Directory of Open Access Journals (Sweden)

    Daisuke Kozaki

    2014-07-01

    Full Text Available We evaluated the use of ion-exclusion chromatographic systems for analyzing the behavior of inorganic ions (e.g., bicarbonate, sulfate, chloride, nitrate, phosphate, dissolved silicate, sodium, ammonium, potassium, magnesium, and calcium ions in a suburban river located in Jakarta, Indonesia. Carbonate, phosphate, and silicate ion concentrations were determined using ion-exclusion chromatography (IEC on a weakly acidic cation-exchange resin column (WCX in the H+-form with water eluent. Other ions were identified by ion-exclusion/cation-exchange chromatography (IEC/CEC on a WCX column with tartaric acid eluent. The use of IEC systems for water quality monitoring was advantageous for the following reasons: (1 the concentrations of analyte ions, except NO3− and silicate ions, increased from upstream to downstream; and (2 the speciation of inorganic nitrogen ions could be analyzed by single injection into the IEC/CEC. The IEC approach provided beneficial information for the construction of sewage treatment facilities in our study area. Results showed that (1 the analyte concentrations for samples obtained in the downstream area were higher than those in the upstream area owing to contamination by domestic sewage; (2 the concentrations of NO3− and NH4+ correlated with the concentration of dissolved oxygen; and (3 bicarbonate concentrations increased downstream, likely due to respiration of bacteria and dissolution of concrete under low-oxygen conditions.

  16. Energy Recovery from a Space-Charge Neutralized Positive Ion Beam by Means of Magnetic Electron Suppression

    Science.gov (United States)

    Ryan, Philip Michael

    The charge-exchange neutralization efficiency of positive ion based neutral beams used in plasma heating applications decreases as the beam energy increases. Direct energy recovery from the charged particles can be accomplished by electrostatically decelerating the positive ions; the problem is to effect this without accelerating the space -charge neutralizing electrons residing in the beam. Prior work with both electrostatic and magnetic electron suppression is reviewed. A finite difference ion optics code which solves the nonlinear Vlasov-Poisson equation is adapted to energy recovery application and used to analyze the transverse magnetic field electron suppression experiments carried out at Oak Ridge National Laboratory between 1980 and 1982. Three numerical models are discussed and evaluated. The double plasma model, which assumes an equilibrium Boltzmann distribution of electrons at both the neutralizer potential and the ion collector potential, most successfully duplicates the experimental results with beams in the 40 keV, 10 A range. It is used to analyze the effects of the magnetic field strength, the ion "boost" energy, and the ion beam current density on the ion collection efficiency. Conclusions of the study are: (1) the electron leakage current scales as B('-1), necessitating magnetic suppression fields in excess of 0.1 tesla; (2) the neutralizer geometry should provide an electrostatic field to counteract the magnetic force on the ions; (3) fractional energy beam ions should be confined to the neutralizer interior; (4) the neutral line density in the recovery region should be less than 3 x 10('-3) torr(.)cm. Recovery efficiency decreases with increasing beam current density; a net recovery efficiency of 30% (ion collection efficiency of 75%) at 5 mA/cm('2) falls to zero at 10 mA/cm('2) for a 40 keV beam. New designs are presented and analyzed: an ion collection efficiency of close to 90% is predicted for an 80 keV D ion beam with an ion current

  17. Positively charged and pH self-buffering quantum dots for efficient cellular uptake by charge mediation and monitoring cell membrane permeability

    Energy Technology Data Exchange (ETDEWEB)

    Wang Suhua; Song Haipeng; Huang Dejian [Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 (Singapore); Ong Weiyi [Department of Anatomy, National University of Singapore, 119260 (Singapore); Han Mingyong, E-mail: chmhdj@nus.edu.s [Institute of Materials Research and Engineering, 3 Research Link, 117602 (Singapore)

    2009-10-21

    Positively charged and pH self-buffering quantum dots (Tren-QDs) were achieved by surface functionalization with tris(2-aminoethyl)amine (Tren) derivatives, which are attached to the inorganic cores of QDs through bidentate chelating of dithiocarbamates. The Tren-QDs exhibit pH buffering capability by absorbing or releasing protons due to the surface polyamine groups as the surrounding pH fluctuates. Such self-buffering capability stabilizes the photoluminescence of the Tren-QDs against acid. The Tren-QDs bear positive charges through protonation of the surface polyamine groups under physiological conditions and the surface positive charges improve their cellular uptake efficiency by charge mediation, which has been demonstrated by BV-2 microglia cells. The photoluminescence of Tren-QDs shows a selective Stern-Volmer response to copper ions and this property has been preliminarily evaluated for investigating the BV-2 cell membrane structure by monitoring the photoluminescence of intracellular Tren-QDs.

  18. Positively charged and pH self-buffering quantum dots for efficient cellular uptake by charge mediation and monitoring cell membrane permeability

    Science.gov (United States)

    Wang, Suhua; Song, Haipeng; Ong, Wei Yi; Han, Ming Yong; Huang, Dejian

    2009-10-01

    Positively charged and pH self-buffering quantum dots (Tren-QDs) were achieved by surface functionalization with tris(2-aminoethyl)amine (Tren) derivatives, which are attached to the inorganic cores of QDs through bidentate chelating of dithiocarbamates. The Tren-QDs exhibit pH buffering capability by absorbing or releasing protons due to the surface polyamine groups as the surrounding pH fluctuates. Such self-buffering capability stabilizes the photoluminescence of the Tren-QDs against acid. The Tren-QDs bear positive charges through protonation of the surface polyamine groups under physiological conditions and the surface positive charges improve their cellular uptake efficiency by charge mediation, which has been demonstrated by BV-2 microglia cells. The photoluminescence of Tren-QDs shows a selective Stern-Volmer response to copper ions and this property has been preliminarily evaluated for investigating the BV-2 cell membrane structure by monitoring the photoluminescence of intracellular Tren-QDs.

  19. A Demonstration of GPS Landslide Monitoring Using Online Positioning User Service (OPUS)

    Science.gov (United States)

    Wang, G.

    2011-12-01

    Global Positioning System (GPS) technologies have been frequently applied to landslide study, both as a complement, and as an alternative to conventional surveying methods. However, most applications of GPS for landslide monitoring have been limited to the academic community for research purposes. High-accuracy GPS has not been widely equipped in geotechnical companies and used by technicians. The main issue that limits the applications of GPS in the practice of high-accuracy landslide monitoring is the complexity of GPS data processing. This study demonstrated an approach using the Online Positioning User Service (OPUS) (http://www.ngs.noaa.gov/OPUS) provided by the National Geodetic Survey (NGS) of National Oceanic and Atmospheric Administration (NOAA) to process GPS data and conduct long-term landslide monitoring in the Puerto Rico and Virgin Islands Region. Continuous GPS data collected at a creeping landslide site during two years were used to evaluate different scenarios for landslide surveying: continuous or campaign, long duration or short duration, morning or afternoon (different weather conditions). OPUS uses Continuously Operating Reference Station (CORS) managed by NGS (http://www.ngs.noaa.giv/CORS/) as references and user data as a rover to solve a position. There are 19 CORS permanent GPS stations in the Puerto Rico and Virgin Islands region. The dense GPS network provides a precise and reliable reference frame for subcentimeter-accuracy landslide monitoring in this region. Our criterion for the accuracy was the root-mean-square (RMS) of OPUS solutions over a 2-year period with respect to true landslide displacement time series overt the same period. The true landslide displacements were derived from a single-baseline (130 m) GPS processing by using 24-hour continuous data. If continuous GPS surveying is performed in the field, then OPUS static processing can provide 0.6 cm horizontal and 1.1 cm vertical precision with few outliers. If repeated

  20. A Wire Position Monitor System for the ISAC-II Cryomodule Components Alignment

    CERN Document Server

    Rawnsley, B; Dutto, G; Fong, K; Laxdal, R E; Ries, T

    2004-01-01

    TRIUMF is developing ISAC-II, a superconducting (SC) linac. It will comprise 9 cryomodules with a total of 48 niobium cavities and 12 SC solenoids. They must remain aligned at liquid He temperatures: cavities to ±400 μm and solenoids to ±200 μm after a vertical contraction of ~4 mm. A wire position monitor (WPM) system based on a TESLA design has been developed, built, and tested with a prototype cryomodule. The system is based on the measurement of signals induced in pickups by a 215 MHz signal carried by a wire through the WPMs. The wire is stretched between the warm tank walls parallel to the beam axis providing a position reference. The sensors, one per cavity and two per solenoid, are attached to the cold elements to monitor their motion during pre-alignment, pumping and cool down. A WPM consists of four 50 Ω striplines spaced 90° apart. A GaAs multiplexer scans the WPMs and a Bergoz card converts the RF signals to DC X and Y voltages. National Ins...

  1. Beam feasibility study of a collimator with in-jaw beam position monitors

    Science.gov (United States)

    Wollmann, Daniel; Nosych, Andriy A.; Valentino, Gianluca; Aberle, Oliver; Aßmann, Ralph W.; Bertarelli, Alessandro; Boccard, Christian; Bruce, Roderik; Burkart, Florian; Calvo, Eva; Cauchi, Marija; Dallocchio, Alessandro; Deboy, Daniel; Gasior, Marek; Jones, Rhodri; Kain, Verena; Lari, Luisella; Redaelli, Stefano; Rossi, Adriana

    2014-12-01

    At present, the beam-based alignment of the LHC collimators is performed by touching the beam halo with both jaws of each collimator. This method requires dedicated fills at low intensities that are done infrequently and makes this procedure time consuming. This limits the operational flexibility, in particular in the case of changes of optics and orbit configuration in the experimental regions. The performance of the LHC collimation system relies on the machine reproducibility and regular loss maps to validate the settings of the collimator jaws. To overcome these limitations and to allow a continuous monitoring of the beam position at the collimators, a design with jaw-integrated Beam Position Monitors (BPMs) was proposed and successfully tested with a prototype (mock-up) collimator in the CERN SPS. Extensive beam experiments allowed to determine the achievable accuracy of the jaw alignment for single and multi-turn operation. In this paper, the results of these experiments are discussed. The non-linear response of the BPMs is compared to the predictions from electromagnetic simulations. Finally, the measured alignment accuracy is compared to the one achieved with the present collimators in the LHC.

  2. Sub-micron resolution rf cavity beam position monitor system at the SACLA XFEL facility

    Energy Technology Data Exchange (ETDEWEB)

    Maesaka, H., E-mail: maesaka@spring8.or.jp [RIKEN SPring-8 Center, Sayo, Hyogo (Japan); Ego, H. [RIKEN SPring-8 Center, Sayo, Hyogo (Japan); Inoue, S. [SPring-8 Service Co. Ltd., Tatsuno, Hyogo (Japan); Matsubara, S. [Japan Synchrotron Radiation Research Institute, Sayo, Hyogo (Japan); Ohshima, T.; Shintake, T.; Otake, Y. [RIKEN SPring-8 Center, Sayo, Hyogo (Japan)

    2012-12-22

    We have developed and constructed a C-band (4.760 GHz) rf cavity beam position monitor (RF-BPM) system for the XFEL facility at SPring-8, SACLA. The demanded position resolution of the RF-BPM is less than 1{mu}m, because an electron beam and x-rays must be overlapped within 4{mu}m precision in the undulator section for sufficient FEL interaction between the electrons and x-rays. In total, 57 RF-BPMs, including IQ demodulators and high-speed waveform digitizers for signal processing, were produced and installed into SACLA. We evaluated the position resolutions of 20 RF-BPMs in the undulator section by using a 7 GeV electron beam having a 0.1 nC bunch charge. The position resolution was measured to be less than 0.6{mu}m, which was sufficient for the XFEL lasing in the wavelength region of 0.1 nm, or shorter.

  3. A novel electromagnetic design and a new manufacturing process for the cavity BPM (Beam Position Monitor)

    Science.gov (United States)

    Dal Forno, Massimo; Craievich, Paolo; Baruzzo, Roberto; De Monte, Raffaele; Ferianis, Mario; Lamanna, Giuseppe; Vescovo, Roberto

    2012-01-01

    The Cavity Beam Position Monitor (BPM) is a beam diagnostic instrument which, in a seeded Free Electron Laser (FEL), allows the measurement of the electron beam position in a non-destructive way and with sub-micron resolution. It is composed by two resonant cavities called reference and position cavity, respectively. The measurement exploits the dipole mode that arises when the electron bunch passes off axis. In this paper we describe the Cavity BPM that has been designed and realized in the context of the FERMI@Elettra project [1]. New strategies have been adopted for the microwave design, for both the reference and the position cavities. Both cavities have been simulated by means of Ansoft HFSS [2] and CST Particle Studio [3], and have been realized using high precision lathe and wire-EDM (Electro-Discharge) machine, with a new technique that avoids the use of the sinker-EDM machine. Tuners have been used to accurately adjust the working frequencies for both cavities. The RF parameters have been estimated, and the modifications of the resonant frequencies produced by brazing and tuning have been evaluated. Finally, the Cavity BPM has been installed and tested in the presence of the electron beam.

  4. A novel electromagnetic design and a new manufacturing process for the cavity BPM (Beam Position Monitor)

    Energy Technology Data Exchange (ETDEWEB)

    Dal Forno, Massimo, E-mail: massimo.dalforno@phd.units.it [Department of Industrial Engineering and Information Technology, University of Trieste (Italy); Craievich, Paolo, E-mail: paolo.craievich@elettra.trieste.it [Sicrotrone Trieste S.C.p.A., Basovizza, Trieste (Italy); Baruzzo, Roberto [Cinel Strumenti Scientifici s.r.l., Vigonza, Padova (Italy); De Monte, Raffaele; Ferianis, Mario [Sicrotrone Trieste S.C.p.A., Basovizza, Trieste (Italy); Lamanna, Giuseppe [Cinel Strumenti Scientifici s.r.l., Vigonza, Padova (Italy); Vescovo, Roberto [Department of Industrial Engineering and Information Technology, University of Trieste (Italy)

    2012-01-11

    The Cavity Beam Position Monitor (BPM) is a beam diagnostic instrument which, in a seeded Free Electron Laser (FEL), allows the measurement of the electron beam position in a non-destructive way and with sub-micron resolution. It is composed by two resonant cavities called reference and position cavity, respectively. The measurement exploits the dipole mode that arises when the electron bunch passes off axis. In this paper we describe the Cavity BPM that has been designed and realized in the context of the FERMI-Elettra project . New strategies have been adopted for the microwave design, for both the reference and the position cavities. Both cavities have been simulated by means of Ansoft HFSS and CST Particle Studio , and have been realized using high precision lathe and wire-EDM (Electro-Discharge) machine, with a new technique that avoids the use of the sinker-EDM machine. Tuners have been used to accurately adjust the working frequencies for both cavities. The RF parameters have been estimated, and the modifications of the resonant frequencies produced by brazing and tuning have been evaluated. Finally, the Cavity BPM has been installed and tested in the presence of the electron beam.

  5. Progress on the Development of the Next Generation X-ray Beam Position Monitors at the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.H.; Yang, B.X.; Decker, G.; Sereno, N.; Ramanathan, M.

    2016-07-27

    Accurate and stable x-ray beam position monitors (XBPMs) are ke y elements in obtaining the desired user beam stability in the Advanced Photon Source (APS). The next generat ion XBPMs for high heat load front ends (HHL FEs) have been designed to meet these requirements by utilizing Cu K-edge x-ray fluorescence (XRF) from a pair of copper absorbers and have been installed at the front ends (FEs) of the APS. Com missioning data showed a significant performance improvement over the existing photoemission-based XBPMs. While a similar design concept can be applied for the canted undulator front ends, where two undulator beams are separated by 1.0-mrad, the lower beam power (< 10 kW) per undulator allows us to explore lower-cost solutions based on Compton scat tering from the diamond blades placed edge-on to the x- ray beam. A prototype of the Compton scattering XBPM system was i nstalled at 24-ID-A in May 2015. In this report, the design and test results for XRF-based XBPM and Compton scattering based XBPM are presented. Ongoing research related to the development of the next generation XBPMs on thermal contac t resistance of a joint between two solid bodies is also discussed

  6. A configurable electronics system for the ESS-Bilbao beam position monitors

    Energy Technology Data Exchange (ETDEWEB)

    Muguira, L., E-mail: lmuguira@essbilbao.org [ESS-Bilbao, Edificio Rectorado, Vivero de Empresas, 48940 Leioa (Bizkaia) (Spain); Belver, D. [ESS-Bilbao, Edificio Rectorado, Vivero de Empresas, 48940 Leioa (Bizkaia) (Spain); Etxebarria, V. [University of Basque Country (UPV/EHU), Department of Electricity and Electronics, Science and Technology Faculty, 48940 Leioa (Bizkaia) (Spain); Varnasseri, S.; Arredondo, I.; Campo, M. del; Echevarria, P.; Garmendia, N.; Feuchtwanger, J. [ESS-Bilbao, Edificio Rectorado, Vivero de Empresas, 48940 Leioa (Bizkaia) (Spain); Jugo, J.; Portilla, J. [University of Basque Country (UPV/EHU), Department of Electricity and Electronics, Science and Technology Faculty, 48940 Leioa (Bizkaia) (Spain)

    2013-09-01

    A versatile and configurable system has been developed in order to monitorize the beam position and to meet all the requirements of the future ESS-Bilbao Linac. At the same time the design has been conceived to be open and configurable so that it could eventually be used in different kinds of accelerators, independent of the charged particle, with minimal change. The design of the Beam Position Monitors (BPMs) system includes a test bench both for button-type pick-ups (PU) and striplines (SL), the electronic units and the control system. The electronic units consist of two main parts. The first part is an Analog Front-End (AFE) unit where the RF signals are filtered, conditioned and converted to base-band. The second part is a Digital Front-End (DFE) unit which is based on an FPGA board where the base-band signals are sampled in order to calculate the beam position, the amplitude and the phase. To manage the system a Multipurpose Controller (MC) developed at ESSB has been used. It includes the FPGA management, the EPICS integration and Archiver Instances. A description of the system and a comparison between the performance of both PU and SL BPM designs measured with this electronics system are fully described and discussed. -- Author-Highlights: • A versatile and configurable BPM system for the ESS-Bilbao Linac has been designed. • The design works for PU and SL detectors, both in continuous and pulsed wave modes. • Several tests at simulated beamlines at 352 MHz and 175 MHz have been performed. • The BPM system has been integrated in EPICS and Archiver.

  7. Robotic-based carbon ion therapy and patient positioning in 6 degrees of freedom: setup accuracy of two standard immobilization devices used in carbon ion therapy and IMRT

    Directory of Open Access Journals (Sweden)

    Jensen Alexandra D

    2012-03-01

    Full Text Available Abstract Purpose To investigate repositioning accuracy in particle radiotherapy in 6 degrees of freedom (DOF and intensity-modulated radiotherapy (IMRT, 3 DOF for two immobilization devices (Scotchcast masks vs thermoplastic head masks currently in use at our institution for fractionated radiation therapy in head and neck cancer patients. Methods and materials Position verifications in patients treated with carbon ion therapy and IMRT for head and neck malignancies were evaluated. Most patients received combined treatment regimen (IMRT plus carbon ion boost, immobilization was achieved with either Scotchcast or thermoplastic head masks. Position corrections in robotic-based carbon ion therapy allowing 6 DOF were compared to IMRT allowing corrections in 3 DOF for two standard immobilization devices. In total, 838 set-up controls of 38 patients were analyzed. Results Robotic-based position correction including correction of rotations was well tolerated and without discomfort. Standard deviations of translational components were between 0.5 and 0.8 mm for Scotchcast and 0.7 and 1.3 mm for thermoplastic masks in 6 DOF and 1.2 - 1.4 mm and 1.0 - 1.1 mm in 3 DOF respectively. Mean overall displacement vectors were between 2.1 mm (Scotchcast and 2.9 mm (thermoplastic masks in 6 DOF and 3.9 - 3.0 mm in 3 DOF respectively. Displacement vectors were lower when correction in 6 DOF was allowed as opposed to 3 DOF only, which was maintained at the traditional action level of > 3 mm for position correction in the pre-on-board imaging era. Conclusion Setup accuracy for both systems was within the expected range. Smaller shifts were required when 6 DOF were available for correction as opposed to 3 DOF. Where highest possible positioning accuracy is required, frequent image guidance is mandatory to achieve best possible plan delivery and maintenance of sharp gradients and optimal normal tissue sparing inherent in carbon ion therapy.

  8. A new multi-strip ionization chamber used as online beam monitor for heavy ion therapy

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhiguo [Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd., Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Mao, Ruishi [Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd., Lanzhou 730000 (China); Duan, Limin, E-mail: lmduan@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd., Lanzhou 730000 (China); She, Qianshun; Hu, Zhengguo; Li, He; Lu, Ziwei; Zhao, Qiecheng; Yang, Herun; Su, Hong; Lu, Chengui; Hu, Rongjiang; Zhang, Junwei [Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd., Lanzhou 730000 (China)

    2013-11-21

    A multi-strip ionization chamber has been built for precise and fast monitoring of the carbon beam spatial distribution at Heavy Ion Researched Facility of Lanzhou Cooling Storing Ring (HIRFL-CSR). All the detector's anode, cathode and sealed windows are made by 2μm aluminized Mylar film in order to minimize the beam lateral deflection. The sensitive area of the detector is (100×100)mm{sup 2}, with the anode segmented in 100 strips, and specialized front-end electronics has been developed for simplifying the data acquisition and quick feedback of the relevant parameters to beam control system. It can complete one single beam profile in 200μs.

  9. Real-time monitoring of copper ions-induced cytotoxicity by EIS cell chips.

    Science.gov (United States)

    Primiceri, Elisabetta; Chiriacò, Maria Serena; D'Amone, Eliana; Urso, Emanuela; Ionescu, Rodica Elena; Rizzello, Antonia; Maffia, Michele; Cingolani, Roberto; Rinaldi, Ross; Maruccio, Giuseppe

    2010-08-15

    An important goal of biomedical research is the development of tools for high-throughput evaluation of drug effects and cytotoxicity tests. Here we demonstrate EIS cell chips able to monitor cell growth, morphology, adhesion and their changes as a consequence of treatment with drugs or toxic compounds. As a case study, we investigate the uptake of copper ions and its effect on two cell lines: B104 and HeLa cells. For further understanding, we also carried out in parallel with EIS studies, a complete characterization of cell morphology and changes induced by copper ions through complementary methodologies (including state-of-the-art AFM, viability test and Western blot). Our results reveal a strong correlation between EIS data and both MTT test and AFM characterization so our chip can be used as powerful tools in all biology lab in combination with other standard methods giving additional information that can be useful in a complete and deep investigation of a biological process. This chip can be used even alone replacing in vitro drug tests based on conventional biochemical methods, being very cheap and reusable and allowing to perform cytotoxicity tests without using any expensive reagent or equipment.

  10. Internal and External Temperature Monitoring of a Li-Ion Battery with Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    Susana Novais

    2016-08-01

    Full Text Available The integration of fiber Bragg grating (FBG sensors in lithium-ion cells for in-situ and in-operando temperature monitoring is presented herein. The measuring of internal and external temperature variations was performed through four FBG sensors during galvanostatic cycling at C-rates ranging from 1C to 8C. The FBG sensors were placed both outside and inside the cell, located in the center of the electrochemically active area and at the tab-electrode connection. The internal sensors recorded temperature variations of 4.0 ± 0.1 °C at 5C and 4.7 ± 0.1 °C at 8C at the center of the active area, and 3.9 ± 0.1 °C at 5C and 4.0 ± 0.1 °C at 8C at the tab-electrode connection, respectively. This study is intended to contribute to detection of a temperature gradient in real time inside a cell, which can determine possible damage in the battery performance when it operates under normal and abnormal operating conditions, as well as to demonstrate the technical feasibility of the integration of in-operando microsensors inside Li-ion cells.

  11. Internal and External Temperature Monitoring of a Li-Ion Battery with Fiber Bragg Grating Sensors.

    Science.gov (United States)

    Novais, Susana; Nascimento, Micael; Grande, Lorenzo; Domingues, Maria Fátima; Antunes, Paulo; Alberto, Nélia; Leitão, Cátia; Oliveira, Ricardo; Koch, Stephan; Kim, Guk Tae; Passerini, Stefano; Pinto, João

    2016-08-30

    The integration of fiber Bragg grating (FBG) sensors in lithium-ion cells for in-situ and in-operando temperature monitoring is presented herein. The measuring of internal and external temperature variations was performed through four FBG sensors during galvanostatic cycling at C-rates ranging from 1C to 8C. The FBG sensors were placed both outside and inside the cell, located in the center of the electrochemically active area and at the tab-electrode connection. The internal sensors recorded temperature variations of 4.0 ± 0.1 °C at 5C and 4.7 ± 0.1 °C at 8C at the center of the active area, and 3.9 ± 0.1 °C at 5C and 4.0 ± 0.1 °C at 8C at the tab-electrode connection, respectively. This study is intended to contribute to detection of a temperature gradient in real time inside a cell, which can determine possible damage in the battery performance when it operates under normal and abnormal operating conditions, as well as to demonstrate the technical feasibility of the integration of in-operando microsensors inside Li-ion cells.

  12. The vertical monitor position for presbyopic computer users with progressive lenses: how to reach clear vision and comfortable head posture.

    Science.gov (United States)

    Weidling, Patrick; Jaschinski, Wolfgang

    2015-01-01

    When presbyopic employees are wearing general-purpose progressive lenses, they have clear vision only with a lower gaze inclination to the computer monitor, given the head assumes a comfortable inclination. Therefore, in the present intervention field study the monitor position was lowered, also with the aim to reduce musculoskeletal symptoms. A comparison group comprised users of lenses that do not restrict the field of clear vision. The lower monitor positions led the participants to lower their head inclination, which was linearly associated with a significant reduction in musculoskeletal symptoms. However, for progressive lenses a lower head inclination means a lower zone of clear vision, so that clear vision of the complete monitor was not achieved, rather the monitor should have been placed even lower. The procedures of this study may be useful for optimising the individual monitor position depending on the comfortable head and gaze inclination and the vertical zone of clear vision of progressive lenses. For users of general-purpose progressive lenses, it is suggested that low monitor positions allow for clear vision at the monitor and for a physiologically favourable head inclination. Employees may improve their workplace using a flyer providing ergonomic-optometric information.

  13. Optimal positioning of sensors for the monitoring of water dams; Optimale Positionierung von Messeinrichtungen an Staumauern zur Bauwerksueberwachung

    Energy Technology Data Exchange (ETDEWEB)

    Lahmer, Tom [Bauhaus-Univ. Weimar (Germany). DFG-Graduiertenkolleg 1462; Koenke, Carsten [Bauhaus-Univ. Weimar (Germany). Inst. fuer Strukturmechanik; Bettzieche, Volker [Ruhrverband, Essen (Germany)

    2010-07-01

    This article discusses cases of damages of water dams and describes well proven methods for the monitoring of the structures. Additionally, the effects of damages are investigated with the help of a multifield Finite Element Simulation. Using an inverse approach these damages are identified from the combined consideration of mechanical and hydraulic measurements. An optimal positioning of sensors monitoring the dams is proposed. (orig.)

  14. Preliminary Study of Position-Sensitive Large-Area Radiation Portal Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Chang Hwy; Kim, Hyunok; Moon, Myung Kook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Jongyul [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Park, Jong Won; Lim, Yong Kon [Korea Institute of Ocean Science and Technology, Daejeon (Korea, Republic of)

    2013-10-15

    An RPM, which is a passive inspection method, is a system for monitoring the movement of radioactive materials at an airport, seaport, border, etc. To detect a γ-ray, an RPM using the plastic scintillator is generally used. The method of γ-ray detection using an RPM with a plastic scintillator is to measure lights generated by an incident γ-ray in the scintillator. Generally, a large-area RPM uses one or two photomultiplier tubes (PMT) for light collection. However, in this study, we developed a 4-ch RPM that can measure the radiation signal using 4 PMTs. The reason for using 4 PMTs is to calculate the position of the radiation source. In addition, we developed an electric device for acquisition of a 4-ch output signal at the same time. To estimate the performance of the developed RPM, we performed an RPM test using a {sup 60}Co γ-ray check source. In this study, we performed the development of a 4-ch RPM. The major function of the typical RPM is to measure the radiation. However, we developed a position-sensitive 4-ch RPM, which can be used to measure the location of the radiation source, as well as the radiation measurement, at the same time. In the future, we plan to develop an algorithm for a position detection of the radiation. In addition, an algorithm will be applied to an RPM.

  15. Monitoring the electron beam position at the TESLA test facility free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Kamps, T.

    2000-06-14

    The operation of a free electron laser working in the Self Amplified Spontaneous Emission mode (SASE FEL) requires the electron trajectory to be aligned with very high precision in overlap with the photon beam. In order to ensure this overlap, one module of the SASE FEL undulator at the TESLA Test Facility (TTF) is equipped with a new type of waveguide beam position monitor (BPM). Four waveguides are arranged symmetrically around the beam pipe, each channel couples through a small slot to the electromagnetic beam field. The induced signal depends on the beam intensity and on the transverse beam position in terms of beam-to-slot distance. With four slot--waveguide combinations a linear position sensitive signal can be achieved, which is independent of the beam intensity. The signals transduced by the slots are transferred by ridged waveguides through an impedance matching stage into a narrowband receiver tuned to 12 GHz. The present thesis describes design, tests, and implementation of this new type of BPM. (orig.)

  16. Extraction of radioactive positive ions across the surface of superfluid helium : A new method to produce cold radioactive nuclear beams

    NARCIS (Netherlands)

    Huang, WX; Dendooven, P; Gloos, K; Takahashi, N; Pekola, JP; Aysto, J

    2003-01-01

    Alpha-decay recoils Rn-219 were stopped in superfluid helium and positive ions were extracted by electric field into the vapour phase. This first quantitative observation of extraction was successfully conducted using highly sensitive radioactivity detection. The efficiency for extraction across the

  17. [Application of globe geographical positioning with wireless communication monitoring and supervision system in field survey on the endemic of schistosomiasis].

    Science.gov (United States)

    Yu, Qing; Bao, Zi-ping; Cao, Chun-li; Zhu, Hong-qing; Guo, Jia-gang

    2007-09-01

    To evaluate the practical value and the advantages of globe geographical positioning with wireless communication monitoring and supervision system in the field survey. Spots which were randomly sampled by the National Ministry of Health for the investigation were chosen in the endemic areas for schistosomiasis in Jiangsu, Jiangxi, Anhui, Hunan, Hubei, Sichuan and Yunnan provinces. Portable GPS CEC9680 was used for collecting relevant waypoints and track, recording on-the-spot geographical positions. The positioning data package was sent back synchronously in the form of short message of SMS to the monitoring service center, and the moving routes of the terminal receiver monitored were displayed on the GIS map to achieve real-time supervision and staff scheduling. With globe geographical positioning with wireless communication monitoring and supervision system, accurate positioning of 12 spots in the provinces of Jiangsu and 3 trial spots for schistosomiasis control with comprehensive treatment designated by the State Council has been established with real-time communicating recording, and monitoring systems. The globe geographical positioning with wireless communication monitoring and supervision system has provided a technical platform for the survey of schistosomiasis and other infectious diseases.

  18. Two-Dimensional Vanadium Carbide (MXene) as Positive Electrode for Sodium-Ion Capacitors.

    Science.gov (United States)

    Dall'Agnese, Yohan; Taberna, Pierre-Louis; Gogotsi, Yury; Simon, Patrice

    2015-06-18

    Ion capacitors store energy through intercalation of cations into an electrode at a faster rate than in batteries and within a larger potential window. These devices reach a higher energy density compared to electrochemical double layer capacitor. Li-ion capacitors are already produced commercially, but the development of Na-ion capacitors is hindered by lack of materials that would allow fast intercalation of Na-ions. Here we investigated the electrochemical behavior of 2D vanadium carbide, V2C, from the MXene family. We investigated the mechanism of Na intercalation by XRD and achieved capacitance of ∼100 F/g at 0.2 mV/s. We assembled a full cell with hard carbon as negative electrode, a known anode material for Na ion batteries, and achieved capacity of 50 mAh/g with a maximum cell voltage of 3.5 V.

  19. Numerical analysis of the beam position monitor pickup for the Iranian light source facility

    Science.gov (United States)

    Shafiee, M.; Feghhi, S. A. H.; Rahighi, J.

    2017-03-01

    In this paper, we describe the design of a button type Beam Position Monitor (BPM) for the low emittance storage ring of the Iranian Light Source Facility (ILSF). First, we calculate sensitivities, induced power and intrinsic resolution based on solving Laplace equation numerically by finite element method (FEM), in order to find the potential at each point of BPM's electrode surface. After the optimization of the designed BPM, trapped high order modes (HOM), wakefield and thermal loss effects are calculated. Finally, after fabrication of BPM, it is experimentally tested by using a test-stand. The results depict that the designed BPM has a linear response in the area of 2×4 mm2 inside the beam pipe and the sensitivity of 0.080 and 0.087 mm-1 in horizontal and vertical directions. Experimental results also depict that they are in a good agreement with numerical analysis.

  20. DESIGN AND FABRICATION OF THE BEAM POSITION MONITOR FOR THE PEFP LINAC

    Directory of Open Access Journals (Sweden)

    HYEOK-JUNG KWON

    2013-08-01

    Full Text Available The beam position monitor (BPM is an essential component for the PEFP 100-MeV linac's commissioning. A prototype stripline-type linac BPM was designed for this purpose. The electrode aperture is 20 mm in diameter, and the electrode is 25 mm long, so it can be installed between Drift Tube Linac (DTL101 and DTL102, which is the shortest distance. One end of the electrode is connected to the Sub Miniature Type A (SMA feed through for signal measurement, and the other end is terminated as a short. The signal amplitude of the fundamental component was calculated and compared with that of the second harmonic component. The designed BPM was fabricated and a low-power RF test was conducted. In this paper, the design, fabrication and low power test of the BPM for the PEFP linac are presented.

  1. Beam Position Monitor and Energy Analysis at the Fermilab Accelerator Science and Technology Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, David Juarez [Univ. of Guanajuato (Mexico)

    2015-08-01

    Fermilab Accelerator Science and Technology Facility has produced its first beam with an energy of 20 MeV. This energy is obtained by the acceleration at the Electron Gun and the Capture Cavity 2 (CC2). When fully completed, the accelerator will consist of a photoinjector, one International Liner Collider (ILC)-type cryomodule, multiple accelerator R&D beamlines, and a downstream beamline to inject 300 MeV electrons into the Integrable Optics Test Accelerator (IOTA). We calculated the total energy of the beam and the corresponding energy to the Electron Gun and CC2. Subsequently, a Beam Position Monitors (BPM) error analysis was done, to calculate the device actual resolution.

  2. Nonlinearities and effects of transverse beam size in beam position monitors

    Science.gov (United States)

    Kurennoy, Sergey S.

    2001-09-01

    The fields produced by a long beam with a given transverse charge distribution in a homogeneous vacuum chamber are studied. Signals induced by a displaced finite-size beam on electrodes of a beam position monitor (BPM) are calculated and compared to those produced by a pencil beam. The nonlinearities and corrections to BPM signals due to a finite transverse beam size are calculated for an arbitrary chamber cross section. Simple analytical expressions are given for a few particular transverse distributions of the beam current in a circular or rectangular chamber. Of particular interest is a general proof that in an arbitrary homogeneous chamber the beam-size corrections vanish for any axisymmetric beam current distribution.

  3. Calibration of a Non-Linear Beam Position Monitor Electronics by Switching Electrode Signals

    CERN Document Server

    Gasior, M

    2013-01-01

    Button electrode signals from beam position monitors embedded into new LHC collimators will be individually processed with front-end electronics based on compensated diode detectors and digitized with 24-bit audio-range ADCs. This scheme allows sub-micrometre beam orbit resolution to be achieved with simple hardware and no external timing. As the diode detectors only operate in a linear regime with large amplitude signals, offset errors of the electronics cannot be calibrated in the classical way with no input. This paper describes the algorithms developed to calibrate the offset and gain asymmetry of these nonlinear electronic channels. Presented algorithm application examples are based on measurements performed with prototype diode orbit systems installed on the CERN SPS and LHC machines.

  4. PAL-XFEL cavity beam position monitor pick-up design and beam test

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sojeong, E-mail: sojung8681@postech.ac.kr; Park, Young Jung; Kim, Changbum; Kim, Seung Hwan; Shin, Dong Cheol; Han, Jang-Hui; Ko, In Soo

    2016-08-11

    As an X-ray Free Electron Laser, PAL-XFEL is about to start beam commissioning. X-band cavity beam position monitor (BPM) is used in the PAL-XFEL undulator beam line. Prototypes of cavity BPM pick-up were designed and fabricated to test the RF characteristics. Also, the beam test of a cavity BPM pick-up was done in the Injector Test Facility (ITF). In the beam test, the raw signal properties of the cavity BPM pick-up were measured at a 200 pC bunch charge. According to the RF test and beam test results, the prototype cavity BPM pick-up design was confirmed to meet the requirements of the PAL-XFEL cavity BPM system.

  5. Cavity beam position monitor system for the Accelerator Test Facility 2

    Directory of Open Access Journals (Sweden)

    Y. I. Kim

    2012-04-01

    Full Text Available The Accelerator Test Facility 2 (ATF2 is a scaled demonstrator system for final focus beam lines of linear high energy colliders. This paper describes the high resolution cavity beam position monitor (BPM system, which is a part of the ATF2 diagnostics. Two types of cavity BPMs are used, C-band operating at 6.423 GHz, and S-band at 2.888 GHz with an increased beam aperture. The cavities, electronics, and digital processing are described. The resolution of the C-band system with attenuators was determined to be approximately 250 nm and 1  μm for the S-band system. Without attenuation the best recorded C-band cavity resolution was 27 nm.

  6. Monitoring Spruce Budworm with Light Traps: The Effect of Trap Position

    Directory of Open Access Journals (Sweden)

    Marc Rhainds

    2014-01-01

    Full Text Available Daily records of adult spruce budworms, Choristoneura fumiferana (Clemens (Lepidoptera: Tortricidae, captured at light traps at multiple locations in New Brunswick in the 1970s, are analyzed in relation to the physical position of light traps (tree canopies or forest clearings. Captures at light traps deployed in tree canopies were 4–400 times greater than those in forest clearings, especially for males. The phenology of captures (median date or duration of flight period did not differ in relation to trap location. Captures of both males and females in tree canopies were highly correlated with egg densities, whereas no significant relationship was observed for either sex in forest clearings. Monitoring programs for spruce budworm adults using light traps should be standardized by deploying traps in tree canopies.

  7. Nonlinearities and effects of transverse beam size in beam position monitors

    Directory of Open Access Journals (Sweden)

    Sergey S. Kurennoy

    2001-09-01

    Full Text Available The fields produced by a long beam with a given transverse charge distribution in a homogeneous vacuum chamber are studied. Signals induced by a displaced finite-size beam on electrodes of a beam position monitor (BPM are calculated and compared to those produced by a pencil beam. The nonlinearities and corrections to BPM signals due to a finite transverse beam size are calculated for an arbitrary chamber cross section. Simple analytical expressions are given for a few particular transverse distributions of the beam current in a circular or rectangular chamber. Of particular interest is a general proof that in an arbitrary homogeneous chamber the beam-size corrections vanish for any axisymmetric beam current distribution.

  8. Successive approximation algorithm for beam-position-monitor-based LHC collimator alignment

    Science.gov (United States)

    Valentino, Gianluca; Nosych, Andriy A.; Bruce, Roderik; Gasior, Marek; Mirarchi, Daniele; Redaelli, Stefano; Salvachua, Belen; Wollmann, Daniel

    2014-02-01

    Collimators with embedded beam position monitor (BPM) button electrodes will be installed in the Large Hadron Collider (LHC) during the current long shutdown period. For the subsequent operation, BPMs will allow the collimator jaws to be kept centered around the beam orbit. In this manner, a better beam cleaning efficiency and machine protection can be provided at unprecedented higher beam energies and intensities. A collimator alignment algorithm is proposed to center the jaws automatically around the beam. The algorithm is based on successive approximation and takes into account a correction of the nonlinear BPM sensitivity to beam displacement and an asymmetry of the electronic channels processing the BPM electrode signals. A software implementation was tested with a prototype collimator in the Super Proton Synchrotron. This paper presents results of the tests along with some considerations for eventual operation in the LHC.

  9. Design and Fabrication of the Beam Position Monitor for the PEFP Linac

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyeokjung; Kim, Hansung; Seol, Kyungtae; Ryu, Jinyeong; Jang, Jiho; Cho, Yongsub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-08-15

    The beam position monitor (BPM) is an essential component for the PEFP 100-MeV linac's commissioning. A prototype stripline-type linac BPM was designed for this purpose. The electrode aperture is 20 mm in diameter, and the electrode is 25 mm long, so it can be installed between Drift Tube Linac (DTL)101 and DTL102, which is the shortest distance. One end of the electrode is connected to the Sub Miniature Type A (SMA) feed through for signal measurement, and the other end is terminated as a short. The signal amplitude of the fundamental component was calculated and compared with that of the second harmonic component. The designed BPM was fabricated and a low-power RF test was conducted. In this paper, the design, fabrication and low power test of the BPM for the PEFP linac are presented.

  10. Capacitive beam position monitors for the low-β beam of the Chinese ADS proton linac

    Science.gov (United States)

    Zhang, Yong; Wu, Jun-Xia; Zhu, Guang-Yu; Jia, Huan; Xue, Zong-Heng; Zheng, Hai; Xie, Hong-Ming; Kang, Xin-Cai; He, Yuan; Li, Lin; Denard, Jean Claude

    2016-02-01

    Beam Position Monitors (BPMs) for the low-β beam of the Chinese Accelerator Driven Subcritical system (CADS) Proton linac are of the capacitive pick-up type. They provide higher output signals than that of the inductive type. This paper will describe the design and tests of the capacitive BPM system for the low-β proton linac, including the pick-ups, the test bench and the read-out electronics. The tests done with an actual proton beam show a good agreement between the measurements and the simulations in the time domain. Supported by National Natural Science Foundation of China (11405240) and “Western Light” Talents Training Program of Chinese Academy of Sciences

  11. Mass spectrometry of positive ions and neutral species in the effluent of an atmospheric pressure plasma with hexamethyldisiloxane and oxygen

    Science.gov (United States)

    Benedikt, J.; Ellerweg, D.; Schneider, S.; Rügner, K.; R, Reuter; Kersten, H.; Benter, T.

    2013-11-01

    The effluent of a non-equilibrium atmospheric pressure plasma jet in He with admixture of hexamethyldisiloxane (HMDSO) and O2 has been investigated by means of molecular beam mass spectrometry. Positive ions and neutral plasma chemistry products have been detected and their possible role in the deposition of good-quality SiO2 films is discussed. Positive ion spectra reveal the presence of protonated water clusters and H+ : HMDSO and H3O+ : HMDSO ions. These ions are most probably produced by photoionization. This is corroborated by optical emission spectroscopy data obtained in the wavelength range of 50-300 nm, where helium excimer continuum emission centred around 84 nm has been observed. No ion driven polymerization products of HMDSO have been detected. Measurements of neutral species have allowed the quantification of the HMDSO depletion and absolute densities of trimethylsilanol and pentamethyldisiloxane. Two neutral polymerization products have been observed as well. The results indicate that the Si-O bond of HMDSO is preferentially broken. Additionally, the mass balance of plasma chemistry products is discussed.

  12. Analysis of the interface and its position in C60(n+) secondary ion mass spectrometry depth profiling.

    Science.gov (United States)

    Green, F M; Shard, A G; Gilmore, I S; Seah, M P

    2009-01-01

    C60(n+) ions have been shown to be extremely successful for SIMS depth profiling of a wide range of organic materials, causing significantly less degradation of the molecular information than more traditional primary ions. This work focuses on examining the definition of the interface in a C60(n+) SIMS depth profile for an organic overlayer on a wafer substrate. First it investigates the optimum method to define the organic/inorganic interface position. Variations of up to 8 nm in the interface position can arise from different definitions of the interface position in the samples investigated here. Second, it looks into the reasons behind large interfacial widths, i.e., poor depth resolution, seen in C60(n+) depth profiling. This work confirms that, for Irganox 1010 deposited on a wafer, the depth resolution at the Irganox 1010/substrate interface is directly correlated to the roughening of material. C60n+

  13. Evidence of heavy positive ions at the summer Arctic mesopause from the EISCAT UHF incoherent scatter radar

    Energy Technology Data Exchange (ETDEWEB)

    Collis, P.N.; Turunen, T.; Turunen, E.

    1988-02-01

    A confined layer characterized by narrow incoherent scatter spectra has been observed between 86 and 88 km altitude in the high latitude summertime D-region with the EISCAT radar. Properties of the background plasma inferred from spectral measurements outside the layer are in close agreement with model predictions, but the localized minima in spectral width imply much heavier positive ions within the layer. This feature is interpreted as being due to the presence of large clustered ions with mass of the order of 500 amu, which are possibly hydrated protons with a mean hydration index of almost 30. copyright American Geophysical Union 1988

  14. Conceptual design of a high precision dual directional beam position monitoring system for beam crosstalk cancellation and improved output pulse shapes

    Energy Technology Data Exchange (ETDEWEB)

    Thieberger P.; Dawson, C.; Fischer, W.; Gassner, D.; Hulsart, R.; Mernick, K.; Michnoff, R.; Minty, M.

    2012-04-15

    The Relativistic Heavy Ions Collider (RHIC) would benefit from improved beam position measurements near the interaction points that see both beams, especially as the tolerances become tighter when reducing the beam sizes to obtain increased luminosity. Two limitations of the present beam position monitors (BPMs) would be mitigated if the proposed approach is successful. The small but unavoidable cross-talk between signals from bunches traveling in opposite directions when using conventional BPMs will be reduced by adopting directional BPMs. Further improvements will be achieved by cancelling residual cross-talk using pairs of such BPMs. Appropriately delayed addition and integration of the signals will also provide pulses with relatively flat maxima that will be easier to digitize by relaxing the presently very stringent timing requirements.

  15. Dual AC Dipole Excitation for the Measurement of Magnetic Multipole Strength from Beam Position Monitor Data

    Energy Technology Data Exchange (ETDEWEB)

    M. Spata, G.A. Krafft

    2011-09-01

    An experiment was conducted at Jefferson Lab's Continuous Electron Beam Accelerator Facility to develop a technique for characterizing the nonlinear fields of the beam transport system. Two air-core dipole magnets were simultaneously driven at two different frequencies to provide a time-dependent transverse modulation of the electron beam. Fourier decomposition of beam position monitor data was then used to measure the amplitude of these frequencies at different positions along the beamline. For a purely linear transport system one expects to find solely the frequencies that were applied to the dipoles with amplitudes that depend on the phase advance of the lattice. In the presence of nonlinear fields one expects to also find harmonics of the driving frequencies that depend on the order of the nonlinearity. The technique was calibrated using one of the sextupole magnets in a CEBAF beamline and then applied to a dipole to measure the sextupole and octupole strength of the magnet. A comparison is made between the beam-based measurements, results from TOSCA and data from our Magnet Measurement Facility.

  16. Development of a high-resolution cavity-beam position monitor

    Directory of Open Access Journals (Sweden)

    Yoichi Inoue

    2008-06-01

    Full Text Available We have developed a high-resolution cavity-beam position monitor (BPM to be used at the focal point of the ATF2, which is a test beam line that is now being built to demonstrate stable orbit control at ∼nanometer resolution. The design of the cavity structure was optimized for the Accelerator Test Facility (ATF beam in various ways. For example, the cavity has a rectangular shape in order to isolate two dipole modes in orthogonal directions, and a relatively thin gap that is less sensitive to trajectory inclination. A two stage homodyne mixer with highly sensitive electronics and phase-sensitive detection was also developed. Two BPM blocks, each containing two cavity BPMs, were installed in the existing ATF beam line using a rigid support frame. After testing the basic characteristics, we measured the resolution using three BPMs. The system demonstrated 8.7 nm position resolution over a dynamic range of 5  μm.

  17. Design and performance of a high resolution, low latency stripline beam position monitor system

    Directory of Open Access Journals (Sweden)

    R. J. Apsimon

    2015-03-01

    Full Text Available A high-resolution, low-latency beam position monitor (BPM system has been developed for use in particle accelerators and beam lines that operate with trains of particle bunches with bunch separations as low as several tens of nanoseconds, such as future linear electron-positron colliders and free-electron lasers. The system was tested with electron beams in the extraction line of the Accelerator Test Facility at the High Energy Accelerator Research Organization (KEK in Japan. It consists of three stripline BPMs instrumented with analogue signal-processing electronics and a custom digitizer for logging the data. The design of the analogue processor units is presented in detail, along with measurements of the system performance. The processor latency is 15.6±0.1  ns. A single-pass beam position resolution of 291±10  nm has been achieved, using a beam with a bunch charge of approximately 1 nC.

  18. Experimental assessment of post-processed kinematic Precise Point Positioning method for structural health monitoring

    Directory of Open Access Journals (Sweden)

    Cemal Ozer Yigit

    2016-01-01

    Full Text Available Monitoring the response of engineering structures, such as tall buildings, tower and large-scale bridges, under severe loading conditions, such as strong earthquake or wind storm, is an important requirement to verify their design and construction and to evaluate structural condition and reliability. In the last two decades, high-rate real-time or post-processed kinematic differential Global Positioning System (DGPS has been widely used in dynamic displacement measurements of civil engineering structures. In recent years, interest has increased for Precise Point Positioning (PPP due to its capability to generate positioning solutions as accurate as DGPS. In this study, the potential of post-processed kinematic PPP in terms of monitoring dynamic displacement response of a structure has been explored based on free damped oscillation events obtained from a model structure, which is able to vibrate in the fundamental and higher modes of vibration. A number of experiments have been carried out and five events, each of which is different character, have been selected to compare PPP results with DPGS results in the time and frequency domain. The results clearly demonstrate that the PPP method, like the DGPS method, offers great potential for the measurement of horizontal and vertical dynamic movement of structures. The impact of a short period (one minute of observation length on the result of the kinematic PPP method was also investigated in terms of sensing the dynamic movement of a structure. Twenty selected one-minute data-sets extracted from a one-hour original data-set were processed by Canadian spatial reference system PPP and each one-minute PPP solution was compared with the corresponding segment obtained from the one-hour PPP solution. The results show that the one-minute PPP solution is able to extract the fundamental natural frequency of the oscillation in the horizontal and vertical component just like the one-hour PPP solution after the

  19. Thomson spectrometer-microchannel plate assembly calibration for MeV-range positive and negative ions, and neutral atoms

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, R. [Centre for Plasma Physics, School of Mathematics and Physics, The Queen' s University of Belfast, Belfast BT7 1NN (United Kingdom); Abicht, F.; Braenzel, J.; Priebe, G.; Schnuerer, M. [Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin (Germany); Borghesi, M.; Ter-Avetisyan, S. [Centre for Plasma Physics, School of Mathematics and Physics, The Queen' s University of Belfast, Belfast BT7 1NN (United Kingdom); ELI-Beamlines Project, Institute of Physics of the ASCR, Na Slovance 2, 18221 Prague (Czech Republic); Nickles, P. V. [WCU Department of Nanobio Materials and Electronics, GIST, Gwangju 500-712 (Korea, Republic of)

    2013-05-15

    We report on the absolute calibration of a microchannel plate (MCP) detector, used in conjunction with a Thomson parabola spectrometer. The calibration delivers the relation between a registered count numbers in the CCD camera (on which the MCP phosphor screen is imaged) and the number of ions incident on MCP. The particle response of the MCP is evaluated for positive, negative, and neutral particles at energies below 1 MeV. As the response of MCP depends on the energy and the species of the ions, the calibration is fundamental for the correct interpretation of the experimental results. The calibration method and arrangement exploits the unique emission symmetry of a specific source of fast ions and atoms driven by a high power laser.

  20. Physical activity intensity can be accurately monitored by smartphone global positioning system 'app'.

    Science.gov (United States)

    Gordon, Brett Ashley; Bruce, Lyndell; Benson, Amanda Clare

    2016-08-01

    Monitoring physical activity is important to better individualise health and fitness benefits. This study assessed the concurrent validity of a smartphone global positioning system (GPS) 'app' and a sport-specific GPS device with a similar sampling rate, to measure physical activity components of speed and distance, compared to a higher sampling sport-specific GPS device. Thirty-eight (21 female, 17 male) participants, mean age of 24.68, s = 6.46 years, completed two 2.400 km trials around an all-weather athletics track wearing GPSports Pro™ (PRO), GPSports WiSpi™ (WISPI) and an iPhone™ with a Motion X GPS™ 'app' (MOTIONX). Statistical agreement, assessed using t-tests and Bland-Altman plots, indicated an (mean; 95% LOA) underestimation of 2% for average speed (0.126 km·h(-1); -0.389 to 0.642; p < .001), 1.7% for maximal speed (0.442 km·h(-1); -2.676 to 3.561; p = .018) and 1.9% for distance (0.045 km; -0.140 to 0.232; p < .001) by MOTIONX compared to that measured by PRO. In contrast, compared to PRO, WISPI overestimated average speed (0.232 km·h(-1); -0.376 to 0.088; p < .001) and distance (0.083 km; -0.129 to -0.038; p < .001) by 3.5% whilst underestimating maximal speed by 2.5% (0.474 km·h(-1); -1.152 to 2.099; p < .001). Despite the statistically significant difference, the MOTIONX measures intensity of physical activity, with a similar error as WISPI, to an acceptable level for population-based monitoring in unimpeded open-air environments. This presents a low-cost, minimal burden opportunity to remotely monitor physical activity participation to improve the prescription of exercise as medicine.

  1. Studies on two classes of positive electrode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, James Douglas [Univ. of California, Berkeley, CA (United States)

    2008-12-01

    The development of advanced lithium-ion batteries is key to the success of many technologies, and in particular, hybrid electric vehicles. In addition to finding materials with higher energy and power densities, improvements in other factors such as cost, toxicity, lifetime, and safety are also required. Lithium transition metal oxide and LiFePO4/C composite materials offer several distinct advantages in achieving many of these goals and are the focus of this report. Two series of layered lithium transition metal oxides, namely LiNi1/3Co1/3-yMyMn1/3O2 (M=Al, Co, Fe, Ti) and LiNi0.4Co0.2-yMyMn0.4O2 (M = Al, Co, Fe), have been synthesized. The effect of substitution on the crystal structure is related to shifts in transport properties and ultimately to the electrochemical performance. Partial aluminum substitution creates a high-rate positive electrode material capable of delivering twice the discharge capacity of unsubstituted materials. Iron substituted materials suffer from limited electrochemical performance and poor cycling stability due to the degradation of the layered structure. Titanium substitution creates a very high rate positive electrode material due to a decrease in the anti-site defect concentration. LiFePO4 is a very promising electrode material but suffers from poor electronic and ionic conductivity. To overcome this, two new techniques have been developed to synthesize high performance LiFePO4/C composite materials. The use of graphitization catalysts in conjunction with pyromellitic acid leads to a highly graphitic carbon coating on the surface of LiFePO4 particles. Under the proper conditions, the room temperature electronic conductivity can be improved by nearly five orders of magnitude over untreated materials. Using Raman spectroscopy, the improvement in conductivity and rate performance of

  2. European Society of Hypertension position paper on ambulatory blood pressure monitoring.

    Science.gov (United States)

    O'Brien, Eoin; Parati, Gianfranco; Stergiou, George; Asmar, Roland; Beilin, Laurie; Bilo, Grzegorz; Clement, Denis; de la Sierra, Alejandro; de Leeuw, Peter; Dolan, Eamon; Fagard, Robert; Graves, John; Head, Geoffrey A; Imai, Yutaka; Kario, Kazuomi; Lurbe, Empar; Mallion, Jean-Michel; Mancia, Giuseppe; Mengden, Thomas; Myers, Martin; Ogedegbe, Gbenga; Ohkubo, Takayoshi; Omboni, Stefano; Palatini, Paolo; Redon, Josep; Ruilope, Luis M; Shennan, Andrew; Staessen, Jan A; vanMontfrans, Gert; Verdecchia, Paolo; Waeber, Bernard; Wang, Jiguang; Zanchetti, Alberto; Zhang, Yuqing

    2013-09-01

    Ambulatory blood pressure monitoring (ABPM) is being used increasingly in both clinical practice and hypertension research. Although there are many guidelines that emphasize the indications for ABPM, there is no comprehensive guideline dealing with all aspects of the technique. It was agreed at a consensus meeting on ABPM in Milan in 2011 that the 34 attendees should prepare a comprehensive position paper on the scientific evidence for ABPM.This position paper considers the historical background, the advantages and limitations of ABPM, the threshold levels for practice, and the cost-effectiveness of the technique. It examines the need for selecting an appropriate device, the accuracy of devices, the additional information and indices that ABPM devices may provide, and the software requirements.At a practical level, the paper details the requirements for using ABPM in clinical practice, editing considerations, the number of measurements required, and the circumstances, such as obesity and arrhythmias, when particular care needs to be taken when using ABPM.The clinical indications for ABPM, among which white-coat phenomena, masked hypertension, and nocturnal hypertension appear to be prominent, are outlined in detail along with special considerations that apply in certain clinical circumstances, such as childhood, the elderly and pregnancy, and in cardiovascular illness, examples being stroke and chronic renal disease, and the place of home measurement of blood pressure in relation to ABPM is appraised.The role of ABPM in research circumstances, such as pharmacological trials and in the prediction of outcome in epidemiological studies is examined and finally the implementation of ABPM in practice is considered in relation to the issue of reimbursement in different countries, the provision of the technique by primary care practices, hospital clinics and pharmacies, and the growing role of registries of ABPM in many countries.

  3. TRIPLICATE SODIUM IODIDE GAMMA RAY MONITORS FOR THE SMALL COLUMN ION EXCHANGE PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Couture, A.

    2011-09-20

    This technical report contains recommendations from the Analytical Development (AD) organization of the Savannah River National Laboratory (SRNL) for a system of triplicate Sodium Iodide (NaI) detectors to be used to monitor Cesium-137 ({sup 137}Cs) content of the Decontaminated Salt Solution (DSS) output of the Small Column Ion Exchange (SCIX) process. These detectors need to be gain stabilized with respect to temperature shifts since they will be installed on top of Tank 41 at the Savannah River Site (SRS). This will be accomplished using NaI crystals doped with the alpha-emitting isotope, Americium-241({sup 241}Am). Two energy regions of the detector output will be monitored using single-channel analyzers (SCAs), the {sup 137}Cs full-energy {gamma}-ray peak and the {sup 241}Am alpha peak. The count rate in the gamma peak region will be proportional to the {sup 137}Cs content in the DSS output. The constant rate of alpha decay in the NaI crystal will be monitored and used as feedback to adjust the high voltage supply to the detector in response to temperature variation. An analysis of theoretical {sup 137}Cs breakthrough curves was used to estimate the gamma activity expected in the DSS output during a single iteration of the process. Count rates arising from the DSS and background sources were predicted using Microshield modeling software. The current plan for shielding the detectors within an enclosure with four-inch thick steel walls should allow the detectors to operate with the sensitivity required to perform these measurements. Calibration, testing, and maintenance requirements for the detector system are outlined as well. The purpose of SCIX is to remove and concentrate high-level radioisotopes from SRS salt waste resulting in two waste streams. The concentrated high-level waste containing {sup 137}Cs will be sent to the Defense Waste Processing Facility (DWPF) for vitrification and the low-level DSS will be sent to the Saltstone Production Facility (SPF

  4. Final implementation, commissioning, and performance of embedded collimator beam position monitors in the Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    Gianluca Valentino

    2017-08-01

    Full Text Available During Long Shutdown 1, 18 Large Hadron Collider (LHC collimators were replaced with a new design, in which beam position monitor (BPM pick-up buttons are embedded in the collimator jaws. The BPMs provide a direct measurement of the beam orbit at the collimators, and therefore can be used to align the collimators more quickly than using the standard technique which relies on feedback from beam losses. Online orbit measurements also allow for reducing operational margins in the collimation hierarchy placed specifically to cater for unknown orbit drifts, therefore decreasing the β^{*} and increasing the luminosity reach of the LHC. In this paper, the results from the commissioning of the embedded BPMs in the LHC are presented. The data acquisition and control software architectures are reviewed. A comparison with the standard alignment technique is provided, together with a fill-to-fill analysis of the measured orbit in different machine modes, which will also be used to determine suitable beam interlocks for a tighter collimation hierarchy.

  5. Final implementation, commissioning, and performance of embedded collimator beam position monitors in the Large Hadron Collider

    Science.gov (United States)

    Valentino, Gianluca; Baud, Guillaume; Bruce, Roderik; Gasior, Marek; Mereghetti, Alessio; Mirarchi, Daniele; Olexa, Jakub; Redaelli, Stefano; Salvachua, Belen; Valloni, Alessandra; Wenninger, Jorg

    2017-08-01

    During Long Shutdown 1, 18 Large Hadron Collider (LHC) collimators were replaced with a new design, in which beam position monitor (BPM) pick-up buttons are embedded in the collimator jaws. The BPMs provide a direct measurement of the beam orbit at the collimators, and therefore can be used to align the collimators more quickly than using the standard technique which relies on feedback from beam losses. Online orbit measurements also allow for reducing operational margins in the collimation hierarchy placed specifically to cater for unknown orbit drifts, therefore decreasing the β* and increasing the luminosity reach of the LHC. In this paper, the results from the commissioning of the embedded BPMs in the LHC are presented. The data acquisition and control software architectures are reviewed. A comparison with the standard alignment technique is provided, together with a fill-to-fill analysis of the measured orbit in different machine modes, which will also be used to determine suitable beam interlocks for a tighter collimation hierarchy.

  6. First Experiences of Beam Presence Detection Based on Dedicated Beam Position Monitors

    CERN Document Server

    Jalal, A; Gasior, M; Todd, B

    2011-01-01

    High intensity particle beam injection into the LHC is only permitted when a low intensity pilot beam is already circulating in the LHC. This requirement addresses some of the risks associated with high intensity injection, and is enforced by a so-called Beam Presence Flag (BPF) system which is part of the interlock chain between the LHC and its injector complex. For the 2010 LHC run, the detection of the presence of this pilot beam was implemented using the LHC Fast Beam Current Transformer (FBCT) system. However, the primary function of the FBCTs, that is reliable measurement of beam currents, did not allow the BPF system to satisfy all quality requirements of the LHC Machine Protection System (MPS). Safety requirements associated with high intensity injections triggered the development of a dedicated system, based on Beam Position Monitors (BPM). This system was meant to work first in parallel with the FBCT BPF system and eventually replace it. At the end of 2010 and in 2011, this new BP...

  7. Installation, tests and start up of the Tandetron positive ions accelerator; Instalacion, pruebas y arranque del acelerador de iones positivos Tandetron

    Energy Technology Data Exchange (ETDEWEB)

    Valdovinos A, M.A.; Hernandez M, V. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, Mexico D.F. (Mexico)

    2000-07-01

    The National Institute of Nuclear Research acquired a Positive ions accelerator type Tandetron 2MV of the Dutch Company High Voltage Engineering, Europe B.V. (H.V.E.E.) which was installed in the building named Irradiator Nave which is occupied by the Gamma irradiator and the Pelletron accelerator. Starting from the accelerator selection it was defined the conditions required for the operation of this as well as: electric feeding, water quality and quantity, air compressed, temperature, humidity, etc.; as well as the necessary modifications of the installation area. (Author)

  8. Low-Temperature Positive Secondary Ion Mass Spectrometry of Neat and Argon-Diluted Organic Solids

    NARCIS (Netherlands)

    Jonkman, Harry T.; Michl, Josef; King, Robert N.; Andrade, Joseph D.

    1978-01-01

    Secondary ion mass spectrometry of neat solid propane, n-pentane, benzene, toluene, and of propane imbedded in an argon matrix were observed at temperatures varying from 10 to 110 K and show fragmentation patterns similar to those known from ordinary electron impact mass spectrometry. The effects of

  9. Low-Temperature Positive Secondary Ion Mass Spectrometry of Neat and Argon-Diluted Organic Solids

    NARCIS (Netherlands)

    Jonkman, Harry T.; Michl, Josef; King, Robert N.; Andrade, Joseph D.

    1978-01-01

    Secondary ion mass spectrometry of neat solid propane, n-pentane, benzene, toluene, and of propane imbedded in an argon matrix were observed at temperatures varying from 10 to 110 K and show fragmentation patterns similar to those known from ordinary electron impact mass spectrometry. The effects of

  10. A detector based on silica fibers for ion beam monitoring in a wide current range

    Science.gov (United States)

    Auger, M.; Braccini, S.; Carzaniga, T. S.; Ereditato, A.; Nesteruk, K. P.; Scampoli, P.

    2016-03-01

    A detector based on doped silica and optical fibers was developed to monitor the profile of particle accelerator beams of intensity ranging from 1 pA to tens of μA. Scintillation light produced in a fiber moving across the beam is measured, giving information on its position, shape and intensity. The detector was tested with a continuous proton beam at the 18 MeV Bern medical cyclotron used for radioisotope production and multi-disciplinary research. For currents from 1 pA to 20 μA, Ce3+ and Sb3+ doped silica fibers were used as sensors. Read-out systems based on photodiodes, photomultipliers and solid state photomultipliers were employed. Profiles down to the pA range were measured with this method for the first time. For currents ranging from 1 pA to 3 μA, the integral of the profile was found to be linear with respect to the beam current, which can be measured by this detector with an accuracy of ~1%. The profile was determined with a spatial resolution of 0.25 mm. For currents ranging from 5 μA to 20 μA, thermal effects affect light yield and transmission, causing distortions of the profile and limitations in monitoring capabilities. For currents higher than ~1 μA, non-doped optical fibers for both producing and transporting scintillation light were also successfully employed.

  11. Accurate positioning of the 24-hour pH monitoring catheter: Agreement between manometry and pH step-up method in two patient positions

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To investigate the agreement between esophageal manometry and pH step-up method in two different patient positions.METHODS: Eighteen subjects were included in the study. First, the distance from the nose to the proximal border of the lower esophageal sphincter (LES) was measured manometrically. Then a different investigator,who was blinded to the results of the first study,measured the same distance using the pH step-up method, with the patient in both upright and supine positions. An assessment of agreement between the two techniques was performed.RESULTS: In the supine position, the measurement of only one subject was outside the range accepted for correct positioning (≤ 3 cm distal or proximal to the LES). In the upright position, errors in measurement were recognized in five subjects. Bland-Altman plots revealed good agreement between measurements obtained manometrically and by the pH-step up method with the patient in the supine position.CONCLUSION: In the case of nonavailability of manometric detection device, the pH step-up method can facilitate the positioning of the 24 h pH monitoring catheter with the patient in the supine position. This should increase the use of pH-metry in clinical practice for subjects with suspected gastroesophageal reflux disease if our results are supported by further studies.

  12. Design and experiments for the waveguide to coaxial cable adapter of a cavity beam position monitor%Design and experiments for the waveguide to coaxial cable adapter of a cavity beam position monitor

    Institute of Scientific and Technical Information of China (English)

    李享; 郑曙昕

    2011-01-01

    The waveguide to coaxial cable adapter is very important to the cavity beam position monitor (CBPM) because it determines how much of the energy in the cavity could be coupled outside. In this paper, the waveguide to coaxial cable adapter of a CBPM is des

  13. Production of lithium positive ions from LiF thin films on the anode in PBFA II

    Energy Technology Data Exchange (ETDEWEB)

    Green, T.A.; Stinnett, R.W.; Gerber, R.A. [and others

    1995-09-01

    The production of positive lithium ions using a lithium-fluoride-coated stainless steel anode in the particle beam fusion accelerator PBFA II is considered from both the experimental and theoretical points of view. It is concluded that the mechanism of Li{sup +} ion production is electric field desorption from the tenth-micron-scale crystallites which compose the columnar growth of the LiF thin film. The required electric field is estimated to be of the order of 5 MV/cm. An essential feature of the mechanism is that the crystallites are rendered electronically conducting through electron-hole pair generation by MeV electron bombardment of the thin film during the operation of the diode. It is proposed that the ion emission mechanism is an electronic conductivity analogue to that discovered by Rollgen for lithium halide crystallites which were rendered ionically conducting by heating to several hundred degrees Celsius. Since an electric field desorption mechanism cannot operate if a surface flashover plasma has formed and reduced the anode electric field to low values, the possibility of flashover on the lithium fluoride coated anode of the PBFA II Li{sup +} ion source is studied theoretically. It is concluded with near certainty that flashover does not occur.

  14. DEVELOPMENT OF A FAST MICRON-RESOLUTION BEAM POSITION MONITOR SIGNAL PROCESSOR FOR LINEAR COLLIDER BEAMBASED FEEDBACK SYSTEMS

    CERN Document Server

    Apsimon, R; Clarke, C; Constance, B; Dabiri Khah, H; Hartin, T; Perry, C; Resta Lopez, J; Swinson, C; Christian, G B; Kalinin, A

    2009-01-01

    We present the design of a prototype fast beam position monitor (BPM) signal processor for use in inter-bunch beam-based feedbacks for linear colliders and electron linacs. We describe the FONT4 intra-train beam-based digital position feedback system prototype deployed at the Accelerator test facility (ATF) extraction line at KEK, Japan. The system incorporates a fast analogue beam position monitor front-end signal processor, a digital feedback board, and a fast kicker-driver amplifier. The total feedback system latency is less than 150ns, of which less than 10ns is used for the BPM processor. We report preliminary results of beam tests using electron bunches separated by c. 150ns. Position resolution of order 1 micron was obtained.

  15. Monitoring of total positive end-expiratory pressure during mechanical ventilation by artificial neural networks.

    Science.gov (United States)

    Perchiazzi, Gaetano; Rylander, Christian; Pellegrini, Mariangela; Larsson, Anders; Hedenstierna, Göran

    2016-04-11

    Ventilation treatment of acute lung injury (ALI) requires the application of positive airway pressure at the end of expiration (PEEPapp) to avoid lung collapse. However, the total pressure exerted on the alveolar walls (PEEPtot) is the sum of PEEPapp and intrinsic PEEP (PEEPi), a hidden component. To measure PEEPtot, ventilation must be discontinued with an end-expiratory hold maneuver (EEHM). We hypothesized that artificial neural networks (ANN) could estimate the PEEPtot from flow and pressure tracings during ongoing mechanical ventilation. Ten pigs were mechanically ventilated, and the time constant of their respiratory system (τRS) was measured. We shortened their expiratory time (TE) according to multiples of τRS, obtaining different respiratory patterns (Rpat). Pressure (PAW) and flow (V'AW) at the airway opening during ongoing mechanical ventilation were simultaneously recorded, with and without the addition of external resistance. The last breath of each Rpat included an EEHM, which was used to compute the reference PEEPtot. The entire protocol was repeated after the induction of ALI with i.v. injection of oleic acid, and 382 tracings were obtained. The ANN had to extract the PEEPtot, from the tracings without an EEHM. ANN agreement with reference PEEPtot was assessed with the Bland-Altman method. Bland Altman analysis of estimation error by ANN showed -0.40 ± 2.84 (expressed as bias ± precision) and ±5.58 as limits of agreement (data expressed as cmH2O). The ANNs estimated the PEEPtot well at different levels of PEEPapp under dynamic conditions, opening up new possibilities in monitoring PEEPi in critically ill patients who require ventilator treatment.

  16. Evaluating biomass-derived hierarchically porous carbon as the positive electrode material for hybrid Na-ion capacitors

    Science.gov (United States)

    Chen, Jizhang; Zhou, Xiaoyan; Mei, Changtong; Xu, Junling; Zhou, Shuang; Wong, Ching-Ping

    2017-02-01

    As a promising renewable resource, biomass has several advantages such as wide availability, low cost, and versatility. In this study, we use peanut shell, wheat straw, rice straw, corn stalk, cotton stalk, and soybean stalk as the precursors to synthesize hierarchically porous carbon as the positive electrode material for hybrid Na-ion capacitors, aiming to establish a criterion of choosing suitable biomass precursors. The carbon derived from wood-like cotton stalk has abundant interconnected macropores, high surface area of 1994 m2 g-1, and large pore volume of 1.107 cm3 g-1, thanks to which it exhibits high reversible capacitance of 160.5 F g-1 at 0.2 A g-1 and great rate capability, along with excellent cyclability. The carbonaceous positive electrode material is combined with a Na2Ti2.97Nb0.03O7 negative electrode material to assemble a hybrid Na-ion capacitor, which delivers a high specific energy of 169.4 Wh kg-1 at 120.5 W kg-1, ranking among the best-performed hybrid ion capacitors.

  17. A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue.

    Science.gov (United States)

    Yuan, Min; Breitkopf, Susanne B; Yang, Xuemei; Asara, John M

    2012-04-12

    The revival of interest in cancer cell metabolism in recent years has prompted the need for quantitative analytical platforms for studying metabolites from in vivo sources. We implemented a quantitative polar metabolomics profiling platform using selected reaction monitoring with a 5500 QTRAP hybrid triple quadrupole mass spectrometer that covers all major metabolic pathways. The platform uses hydrophilic interaction liquid chromatography with positive/negative ion switching to analyze 258 metabolites (289 Q1/Q3 transitions) from a single 15-min liquid chromatography-mass spectrometry acquisition with a 3-ms dwell time and a 1.55-s duty cycle time. Previous platforms use more than one experiment to profile this number of metabolites from different ionization modes. The platform is compatible with polar metabolites from any biological source, including fresh tissues, cancer cells, bodily fluids and formalin-fixed paraffin-embedded tumor tissue. Relative quantification can be achieved without using internal standards, and integrated peak areas based on total ion current can be used for statistical analyses and pathway analyses across biological sample conditions. The procedure takes ∼12 h from metabolite extraction to peak integration for a data set containing 15 total samples (∼6 h for a single sample).

  18. Development of a Millimeter-Wave Beam Position and Profile Monitor for Transmission Efficiency Improvement in an ECRH System

    Directory of Open Access Journals (Sweden)

    Shimozuma T.

    2015-01-01

    Full Text Available In a high power Electron Cyclotron Resonance Heating (ECRH system, a long-distance and low-loss transmission system is required to realize effective heating of nuclear fusion-relevant plasmas. A millimeter-wave beam position and profile monitor, which can be used in a high-power, evacuated, and cooled transmission line, is proposed, designed, manufactured, and tested. The beam monitor consists of a reflector, Peltier-device array and a heat-sink. It was tested using simulated electric heater power or gyrotron output power. The data obtained from the monitor were well agreed with the heat source position and profile. The methods of data analysis and mode-content analysis of a propagating millimeter-wave in the corrugated wave-guide are proposed.

  19. Development of a Millimeter-Wave Beam Position and Profile Monitor for Transmission Efficiency Improvement in an ECRH System

    Science.gov (United States)

    Shimozuma, T.; Kobayashi, S.; Ito, S.; Ito, Y.; Kubo, S.; Yoshimura, Y.; Nishiura, M.; Igami, H.; Takahashi, H.; Mizuno, Y.; Okada, K.; Mutoh, T.

    2015-03-01

    In a high power Electron Cyclotron Resonance Heating (ECRH) system, a long-distance and low-loss transmission system is required to realize effective heating of nuclear fusion-relevant plasmas. A millimeter-wave beam position and profile monitor, which can be used in a high-power, evacuated, and cooled transmission line, is proposed, designed, manufactured, and tested. The beam monitor consists of a reflector, Peltier-device array and a heat-sink. It was tested using simulated electric heater power or gyrotron output power. The data obtained from the monitor were well agreed with the heat source position and profile. The methods of data analysis and mode-content analysis of a propagating millimeter-wave in the corrugated wave-guide are proposed.

  20. Performance Test of the First Prototype of 2 Ways Video Camera for the Muon Barrel Position Monitor

    CERN Document Server

    Brunel, Laurent; Bondar, Tamas; Bencze, Gyorgy; Raics, Peter; Szabó, Jozsef

    1998-01-01

    The CMS Barrel Position Monitor is based on 360 video cameras mounted on 36 very stable mechanical structures. One type of camera is used to observe optical sources mounted on the muon chambers. A first prototype was produced to test the main performances. This report gives the experimental results about stability, linearity and temperature effects.

  1. Community Violence Exposure and Adolescent Substance Use: Does Monitoring and Positive Parenting Moderate Risk in Urban Communities?

    Science.gov (United States)

    Lee, Rosalyn

    2012-01-01

    This study investigates whether monitoring and positive parenting moderate the relationship between community violence exposure (CVE) and youth substance use. Analyses utilized a subsample (N = 2197) of a cross-sectional, ethnically diverse, urban school district sample. Dependent variables were any past year alcohol or drug use (AOD) and binge…

  2. Experimental studies of a microsecond plasma opening switch in the positive polarity regime with inductive load/extraction ion diode

    Science.gov (United States)

    Bystritskii, V. M.; Lisitsyn, I. V.; Sinebryukhov, V. A.; Volkov, S. N.; Krasik, Ya. E.

    1992-06-01

    Systematic studies of the microsecond plasma opening switch (MPOS) operation in the positive polarity of its inner electrode with an inductive load/B-applied ion diode of the extraction type at a level of 0.3 TW of dissipated power were performed at the DOUBLE generator (300 kA, 480 kV, 1 μs). The detailed measurements of ion flow parameters in the conductive phase of the MPOS showed the considerable enhancement of the ion current amplitude over the thermal flow limit (3-10 times) which is coupled with a significant decrease of electron conductivity in the MPOS across its self-magnetic field. The positive polarity MPOS operation proved to be more critical to the stored current amplitudes and geometry of the electrodes in comparison with the negative polarity case. This fact resulted in limitations of satisfactory performance of the MPOS involving short high-voltage pulse duration, low stored current amplitudes, and a narrow region of acceptable electrode diameters. The variation of the diode anode-cathode (AC) gap provided a sensitive control of the MPOS + magnetically insulated diode (MID) system, which displayed very strong coupling, resulting in clamping of the output voltage in a wide region of diode impedances. The early long-duration (<300 ns) high-voltage (50-200 kV) prepulse improves plasma production at the anode of the MID prior to the application of the main pulse. The optimal performance of the MPOS+MID system was realized at the level of ZMPOS/ZMID = 2.5. The energy of the extracted high-power ion beam made up 3.5 kJ, its power being 120 GW with 40% efficiency of energy transfer from MPOS to the MID.

  3. Fabrication of a segmented micro Penning trap and numerical investigations of versatile ion positioning protocols

    CERN Document Server

    Hellwig, M; Singer, K; Werth, G; Schmidt-Kaler, F

    2009-01-01

    We describe a versatile planar Penning trap structure, which allows to dynamically modify the trapping configuration almost arbitrarily. The trap consists of 37 hexagonal electrodes, each of 300 mikron diameter, fabricated in a gold-on-sapphire lithographic technique. Every hexagon can be addressed individually, thus shaping the electric potential. The fabrication of such a device with clean room methods is demonstrated. We illustrate the variability of the device by a detailed numerical simulation of a lateral and a vertical transport and we simulate trapping in racetrack and artificial-crystal configurations. The trap may be used for ions or electrons, as a versatile container for quantum optics and quantum information experiments.

  4. Natural organic matter removal by ion exchange at different positions in the drinking water treatment lane

    Directory of Open Access Journals (Sweden)

    A. Grefte

    2013-01-01

    Full Text Available To guarantee a good water quality at the customers tap, natural organic matter (NOM should be (partly removed during drinking water treatment. The objective of this research was to improve the biological stability of the produced water by incorporating anion exchange (IEX for NOM removal. Different placement positions of IEX in the treatment lane (IEX positioned before coagulation, before ozonation or after slow sand filtration and two IEX configurations (MIEX® and fluidized IEX (FIX were compared on water quality as well as costs. For this purpose the pre-treatment plant at Loenderveen and production plant Weesperkarspel of Waternet were used as a case study. Both, MIEX® and FIX were able to remove NOM (mainly the HS fraction to a high extent. NOM removal can be done efficiently before ozonation and after slow sand filtration. The biological stability, in terms of assimilable organic carbon, biofilm formation rate and dissolved organic carbon, was improved by incorporating IEX for NOM removal. The operational costs were assumed to be directly dependent of the NOM removal rate and determined the difference between the IEX positions. The total costs for IEX for the three positions were approximately equal (0.0631 € m−3, however the savings on following treatment processes caused a cost reduction for the IEX positions before coagulation and before ozonation compared to IEX positioned after slow sand filtration. IEX positioned before ozonation was most cost effective and improved the biological stability of the treated water.

  5. Higher-order-mode damper as beam-position monitors; Higher-Order-Mode Daempfer als Stahllagemonitore

    Energy Technology Data Exchange (ETDEWEB)

    Peschke, C.

    2006-03-15

    In the framework of this thesis a beam-position monitor was developed, which can only because of the signals from the HOM dampers of a linear-accelerator structure determine the beam position with high accuracy. For the unique determination of the beam position in the plane a procedure was developed, which uses the amplitudes and the start-phase difference between a dipole mode and a higher monopole mode. In order tocheck the suitability of the present SBLC-HOM damper as beam position monitor three-dimensional numerical field calculations in the frequency and time range and measurements on the damper cell were performed. For the measurements without beam a beam simulator was constructed, which allows computer-driven measurements with variable depositions of the simulated beam with a resolution of 1.23 {mu}m. Because the complete 6 m long, 180-cell accelerator structure was not available for measurements and could also with the available computers not be three-dimensionally simulated simulated, a one-dimensional equivalent-circuit based model of the multi-cell was studied. The equivalent circuits with 879 concentrated components regards the detuning from cell to cell, the cell losses, the damper losses, and the beam excitation in dependence on the deposition. the measurements and simulations let a resolution of the ready beam-position monitor on the 180-cell in the order of magnitude of 1-10 {mu}m and a relative accuracy smaller 6.2% be expected.

  6. TRIGA control rod position and reactivity transient Monitoring by Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, R.; Palomba, M.; Sepielli, M. [ENEA - Casaccia TRIGA Reactor (Italy)

    2008-10-29

    Plant sensors drift or malfunction and operator actions in nuclear reactor control can be supported by sensor on-line monitoring, and data validation through soft-computing process. On-line recalibration can often avoid manual calibration or drifting component replacement. DSP requires prompt response to the modified conditions. Artificial Neural Network (ANN) and Fuzzy logic ensure: prompt response, link with field measurement and physical system behaviour, data incoming interpretation, and detection of discrepancy for mis-calibration or sensor faults. ANN (Artificial Neural Network) is a system based on the operation of biological neural networks. Although computing is day by day advancing, there are certain tasks that a program made for a common microprocessor is unable to perform. A software implementation of an ANN can be made with Pros and Cons. Pros: A neural network can perform tasks that a linear program can not; When an element of the neural network fails, it can continue without any problem by their parallel nature; A neural network learns and does not need to be reprogrammed; It can be implemented in any application; It can be implemented without any problem. Cons: The architecture of a neural network is different from the architecture of microprocessors therefore needs to be emulated; it requires high processing time for large neural networks; and the neural network needs training to operate. Three possibilities of training exist: Supervised learning: the network is trained providing input and matching output patterns; Unsupervised learning: input patterns are not a priori classified and the system must develop its own representation of the input stimuli; Reinforcement Learning: intermediate form of the above two types of learning, the learning machine does some action on the environment and gets a feedback response from the environment. Two TRIGAN ANN applications are considered: control rod position and fuel temperature. The outcome obtained in this

  7. Connecting to concrete: wireless monitoring of chloride ions in concrete structures

    NARCIS (Netherlands)

    Abbas, Yawar; Have, ten Bas; Hoekstra, Gerrit I.; Douma, Arjan; Bruijn, de Douwe; Olthuis, Wouter; Berg, van den Albert

    2015-01-01

    For the first time, chloride ions are measured wirelessly in concrete. The half-cell potential of a silver/silver chloride (Ag/AgCl) electrode, which corresponds to the concentration of chloride ions, is measured wirelessly. The sensor system (the Ag/AgCl and a reference electrode) is embedded in co

  8. Effect of initial ion positions on the interactions of monovalent and divalent ions with a DNA duplex as revealed with atomistic molecular dynamics simulations.

    Science.gov (United States)

    Robbins, Timothy J; Wang, Yongmei

    2013-01-01

    Monovalent (Na(+)) and divalent (Mg(2+)) ion distributions around the Dickerson-Drew dodecamer were studied by atomistic molecular dynamics (MD) simulations with AMBER molecular modeling software. Different initial placements of ions were tried and the resulting effects on the ion distributions around DNA were investigated. For monovalent ions, results were found to be nearly independent of initial cation coordinates. However, Mg(2+) ions demonstrated a strong initial coordinate dependent behavior. While some divalent ions initially placed near the DNA formed essentially permanent direct coordination complexes with electronegative DNA atoms, Mg(2+) ions initially placed further away from the duplex formed a full, nonexchanging, octahedral first solvation shell. These fully solvated cations were still capable of binding with DNA with events lasting up to 20 ns, and in comparison were bound much longer than Na(+) ions. Force field parameters were also investigated with modest and little differences arising from ion (ions94 and ions08) and nucleic acid description (ff99, ff99bsc0, and ff10), respectively. Based on known Mg(2+) ion solvation structure, we conclude that in most cases Mg(2+) ions retain their first solvation shell, making only solvent-mediated contacts with DNA duplex. The proper way to simulate Mg(2+) ions around DNA duplex, therefore, should begin with ions placed in the bulk water.

  9. Localization of Fatty Acyl and Double Bond Positions in Phosphatidylcholines Using a Dual Stage CID Fragmentation Coupled with Ion Mobility Mass Spectrometry

    NARCIS (Netherlands)

    Castro-Perez, J.; Roddy, T.P.; Nibbering, N.M.M.; Shah, V.; McLaren, D.G.; Previs, S.; Attygalle, A.B.; Herath, K.; Chen, Z.; Wang, S.P.; Mitnaul, L.; Hubbard, B.K.; Vreeken, R.J.; Johns, D.G.; Hankemeier, Th.

    2011-01-01

    (+) was not required to obtain double bond positions. Elemental compositions for fragment ions were confirmed by accurate mass measurements. A very specific first generation fragment ion m/z 577 (M-phosphoryl choline) from the PC [16:0/18:1 (9Z)] was produced, which by further CID generated acylium

  10. Discharge Characteristics of Large-Area High-Power RF Ion Source for Positive and Negative Neutral Beam Injectors

    Science.gov (United States)

    Doo-Hee, Chang; Seung, Ho Jeong; Min, Park; Tae-Seong, Kim; Bong-Ki, Jung; Kwang, Won Lee; Sang Ryul, In

    2016-12-01

    A large-area high-power radio-frequency (RF) driven ion source was developed for positive and negative neutral beam injectors at the Korea Atomic Energy Research Institute (KAERI). The RF ion source consists of a driver region, including a helical antenna and a discharge chamber, and an expansion region. RF power can be transferred at up to 10 kW with a fixed frequency of 2 MHz through an optimized RF matching system. An actively water-cooled Faraday shield is located inside the driver region of the ion source for the stable and steady-state operations of high-power RF discharge. Plasma ignition of the ion source is initiated by the injection of argon-gas without a starter-filament heating, and the argon-gas is then slowly exchanged by the injection of hydrogen-gas to produce pure hydrogen plasmas. The uniformities of the plasma parameter, such as a plasma density and an electron temperature, are measured at the lowest area of the driver region using two RF-compensated electrostatic probes along the direction of the short-and long-dimensions of the driver region. The plasma parameters will be compared with those obtained at the lowest area of the expansion bucket to analyze the plasma expansion properties from the driver region to the expansion region. supported by the Ministry of Science, ICT and Future Planning of the Republic of Korea under the ITER Technology R&D Program, and National R&D Program Through the National Research Foundation of Korea (NRF) Funded by the Ministry of Science, ICT & Future Planning (NRF-2014M1A7A1A03045372)

  11. Long-term observations of positive cluster ion concentration, sources and sinks at the high altitude site of the Puy de Dôme

    Science.gov (United States)

    Rose, C.; Boulon, J.; Hervo, M.; Holmgren, H.; Asmi, E.; Ramonet, M.; Laj, P.; Sellegri, K.

    2013-06-01

    Cluster particles (0.8-1.9 nm) are key entities involved in nucleation and new particle formation processes in the atmosphere. Cluster ions were characterized in clear sky conditions at the Puy de Dôme station (1465 m a.s.l). The studied dataset spread over five years (February 2007-February 2012), which provided a unique chance to catch seasonal variations of cluster ion properties at high altitude. Statistical values of the cluster ion concentration and diameter are reported for both positive and negative polarities. Cluster ions were found to be ubiquitous at the Puy de Dôme and displayed an annual variation with lower concentrations in spring. Positive cluster ions were less numerous than negative ones but were larger in diameters. Negative cluster ion properties seemed insensitive to the occurrence of a new particle formation (NPF) event while positive cluster ions appeared to be significantly more numerous and larger on event days. The parameters of the balance equation for the positive cluster concentration are reported, separately for the different seasons and for the NPF event days and non-event days. The steady state assumption suggests that the ionization rate is balanced with two sinks which are the ion recombination and the attachment on aerosol particles, referred as "aerosol ion sink". The aerosol ion sink was found to be higher during the warm season and dominated the loss of ions. The positive ionization rates derived from the balance equation were well correlated with the ionization rates obtained from radon measurement, and they were on average higher in summer and fall compared to winter and spring. Neither the aerosol ion sink nor the ionization rate were found to be significantly different on event days compared to non-event days, and thus they were not able to explain the different positive cluster concentrations between event and non-event days. Hence, the excess of positive small ions on event days may derive from an additional source of

  12. Effect of inorganic positive ions on the adsorption of surfactant Triton X-100 at quartz/solution interface

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The electrode-separated piezoelectric sensor (ESPS), an improved setup of quartz crystal microbalance (QCM), has been employed to investigate the adsorption behavior of nonionic surfactant Triton X-100 at the hydrophilic quartz-solution interface in mineralized water medium in situ, which contained CaCl2 0.01 mol·L?1, MgCl2 0.01 mol·L?1, NaCl 0.35 mol·L?1. In a large scale of surfactant concentration, the effects of Ca2+, Mg2+ and Na+ on the adsorption isotherm and kinetics are obviously different. In aque-ous solution containing NaCl only, adsorption of Triton X-100 on quartz-solution interface is promoted, both adsorption rate and adsorption amount increase. While in mineralized water medium, multivalent positive ions Ca2+ and Mg2+ are firmly adsorbed on quartz-solution interface, result in the increasing of adsorption rate and adsorption amount at low concentration of surfactant and the peculiar desorption of surfactant at high concentration of Triton X-100. The results got by solution depletion method are in good agreement with which obtained by ESPS. The "bridge" and "separate" effect of inorganic positive ions on the adsorption and desorption mechanism of Triton X-100 at the quartz- solution interface is discussed with molecular dynamics simulations (MD), flame atomic absorption spectrometry (FAAS) and atomic force microscopy (AFM) methods.

  13. Development of a Turn-by-Turn Beam Position Monitoring System for Multiple Bunch Operation of the ATF Damping Ring

    CERN Document Server

    Burrows, P N; Kraljevic, N Blaskovic; Christian, G B; Davis, M R; Perry, C; Apsimon, R J; Constance, B; Gerbershagen, A; Resta-Lopez, J

    2012-01-01

    An FPGA-based monitoring system has been developed to study multi-bunch beam instabilities in the damping ring (DR) of the KEK Accelerator Test Facility (ATF). The system utilises a stripline beam position monitor (BPM) and single-stage down-mixing BPM processor. The system is designed to record the horizontal and/or vertical positions of up to three bunches in the DR with c. 150ns bunch spacing, or the head bunch of up to three trains in a multi-bunch mode with a bunch spacing of 5.6 ns. The FPGA firmware and data acquisition software allow the recording of turnby-turn data. An overview of the system and performance results will be presented.

  14. Method and apparatus for monitoring armature position in direct-current solenoids

    Science.gov (United States)

    Moyers, John C.; Haynes, Howard D.

    1996-12-10

    A method for determining the position of an armature of a dc-powered solenoid. Electrical circuitry is provided to introduce a small alternating current flow through the coil. As a result, the impedance and resistance of the solenoid coil can be measured to provide information indicative of the armature's position.

  15. Method and apparatus for monitoring armature position in direct-current solenoids

    Science.gov (United States)

    Moyers, J.C.; Haynes, H.D.

    1996-12-10

    A method for determining the position of an armature of a dc-powered solenoid is disclosed. Electrical circuitry is provided to introduce a small alternating current flow through the coil. As a result, the impedance and resistance of the solenoid coil can be measured to provide information indicative of the armature`s position. 5 figs.

  16. Method and apparatus for monitoring armature position in direct-current solenoids

    Energy Technology Data Exchange (ETDEWEB)

    Moyers, J.C.; Haynes, H.D.

    1996-12-10

    A method for determining the position of an armature of a dc-powered solenoid is disclosed. Electrical circuitry is provided to introduce a small alternating current flow through the coil. As a result, the impedance and resistance of the solenoid coil can be measured to provide information indicative of the armature`s position. 5 figs.

  17. Method and apparatus for monitoring armature position in direct-current solenoids

    Energy Technology Data Exchange (ETDEWEB)

    Moyers, John C. (Oak Ridge, TN); Haynes, Howard D. (Knoxville, TN)

    1996-12-10

    A method for determining the position of an armature of a dc-powered solenoid. Electrical circuitry is provided to introduce a small alternating current flow through the coil. As a result, the impedance and resistance of the solenoid coil can be measured to provide information indicative of the armature's position.

  18. Lithium ion battery cells under abusive discharge conditions: Electrode potential development and interactions between positive and negative electrode

    Science.gov (United States)

    Kasnatscheew, Johannes; Börner, Markus; Streipert, Benjamin; Meister, Paul; Wagner, Ralf; Cekic Laskovic, Isidora; Winter, Martin

    2017-09-01

    Increasing specific energy of lithium ion battery cells (LIBs) and their cycle life requires deeper understanding of complex processes taking place during the cell operation. This work focuses on the electrode potential development and the interactions between negative and positive electrode in a quasi LIB full cell by applying over-discharge conditions. By analysis of the potential profiles, a characteristic potential plateau at ≈ 3.56 V vs. Li/Li+ was detected at the graphite negative electrode, which can be assigned to the Cu oxidation process of the negative electrode current collector. Also at the positive electrode, a time shifted potential plateau was observed, which could be attributed to a competitive reaction between conventional discharge (lithiation) and parasitic Cu reduction (plating) on the positive electrode surface. The proposed mechanism involving the presence of elemental Cu on the positive electrode surface was confirmed by SEM-EDX mapping experiments. The relevance of Cu dissolution and deposition as well as possible solution approaches are discussed.

  19. Reconstruction of lattice parameters and beam momentum distribution from turn-by-turn beam position monitor readings in circular accelerators

    Directory of Open Access Journals (Sweden)

    C. S. Edmonds

    2014-05-01

    Full Text Available In high chromaticity circular accelerators, rapid decoherence of the betatron motion of a particle beam can make the measurement of lattice and bunch values, such as Courant-Snyder parameters and betatron amplitude, difficult. A method for reconstructing the momentum distribution of a beam from beam position measurements is presented. Further analysis of the same beam position monitor data allows estimates to be made of the Courant-Snyder parameters and the amplitude of coherent betatron oscillation of the beam. The methods are tested through application to data taken on the linear nonscaling fixed field alternating gradient accelerator, EMMA.

  20. Electron impact single ionization of mono- and di-positive ions

    Indian Academy of Sciences (India)

    M Alfaz Uddin; A K F Haque; M S Mahbub; K R Karim; A K Basak

    2006-06-01

    The electron impact ionization cross-sections of mono- and di-positive ionic targets are calculated using a second version of the modified binary-encounter-dipole (MBED) model, previously reported [M A Uddin et al, J. Phys. B37, 1909 (2004)]. The present version differs from the previous one in the scale factor of the Burgess denominator and is applicable to targets with charges = 1 and 2. The MBED in the present form is found to work well for 11 ionic targets ranging from Be+ to K+ and complements its previous version valid for targets with > 2.

  1. A Generic Multiple Reaction Monitoring Based Approach for Plant Flavonoids Profiling Using a Triple Quadrupole Linear Ion Trap Mass Spectrometry

    Science.gov (United States)

    Yan, Zhixiang; Lin, Ge; Ye, Yang; Wang, Yitao; Yan, Ru

    2014-06-01

    Flavonoids are one of the largest classes of plant secondary metabolites serving a variety of functions in plants and associating with a number of health benefits for humans. Typically, they are co-identified with many other secondary metabolites using untargeted metabolomics. The limited data quality of untargeted workflow calls for a shift from the breadth-first to the depth-first screening strategy when a specific biosynthetic pathway is focused on. Here we introduce a generic multiple reaction monitoring (MRM)-based approach for flavonoids profiling in plants using a hybrid triple quadrupole linear ion trap (QTrap) mass spectrometer. The approach includes four steps: (1) preliminary profiling of major aglycones by multiple ion monitoring triggered enhanced product ion scan (MIM-EPI); (2) glycones profiling by precursor ion triggered EPI scan (PI-EPI) of major aglycones; (3) comprehensive aglycones profiling by combining MIM-EPI and neutral loss triggered EPI scan (NL-EPI) of major glycone; (4) in-depth flavonoids profiling by MRM-EPI with elaborated MRM transitions. Particularly, incorporation of the NH3 loss and sugar elimination proved to be very informative and confirmative for flavonoids screening. This approach was applied for profiling flavonoids in Astragali radix ( Huangqi), a famous herb widely used for medicinal and nutritional purposes in China. In total, 421 flavonoids were tentatively characterized, among which less than 40 have been previously reported in this medicinal plant. This MRM-based approach provides versatility and sensitivity that required for flavonoids profiling in plants and serves as a useful tool for plant metabolomics.

  2. Localization of fatty acyl and double bond positions in phosphatidylcholines using a dual stage CID fragmentation coupled with ion mobility mass spectrometry.

    Science.gov (United States)

    Castro-Perez, Jose; Roddy, Thomas P; Nibbering, Nico M M; Shah, Vinit; McLaren, David G; Previs, Stephen; Attygalle, Athula B; Herath, Kithsiri; Chen, Zhu; Wang, Sheng-Ping; Mitnaul, Lyndon; Hubbard, Brian K; Vreeken, Rob J; Johns, Douglas G; Hankemeier, Thomas

    2011-09-01

    A high content molecular fragmentation for the analysis of phosphatidylcholines (PC) was achieved utilizing a two-stage [trap (first generation fragmentation) and transfer (second generation fragmentation)] collision-induced dissociation (CID) in combination with travelling-wave ion mobility spectrometry (TWIMS). The novel aspects of this work reside in the fact that a TWIMS arrangement was used to obtain a high level structural information including location of fatty acyl substituents and double bonds for PCs in plasma, and the presence of alkali metal adduct ions such as [M + Li](+) was not required to obtain double bond positions. Elemental compositions for fragment ions were confirmed by accurate mass measurements. A very specific first generation fragment ion m/z 577 (M-phosphoryl choline) from the PC [16:0/18:1 (9Z)] was produced, which by further CID generated acylium ions containing either the fatty acyl 16:0 (C(15)H(31)CO(+), m/z 239) or 18:1 (9Z) (C(17)H(33)CO(+), m/z 265) substituent. Subsequent water loss from these acylium ions was key in producing hydrocarbon fragment ions mainly from the α-proximal position of the carbonyl group such as the hydrocarbon ion m/z 67 (+H(2)C-HC = CH-CH = CH(2)). Formation of these ions was of important significance for determining double bonds in the fatty acyl chains. In addition to this, and with the aid of (13)C labeled lyso-phosphatidylcholine (LPC) 18:1 (9Z) in the ω-position (methyl) TAP fragmentation produced the ion at m/z 57. And was proven to be derived from the α-proximal (carboxylate) or distant ω-position (methyl) in the LPC.

  3. Local position measurement system for fast and accurate 3D monitoring

    Science.gov (United States)

    Fischer, Alexander; Pracherstorfer, Gerald; Stelzer, Andreas; Soeser, Andreas

    2003-07-01

    This contribution describes the components necessary for measurement of the three-dimensional local position of objects with high accuracy and high measurement rate. The methodology is based on the FMCW (frequency modulated continuous wave) technology in state of the art technology described as sensor system. A high speed real-time network collects data and transfers it to a master processing unit (MPU) where 3-D position data is calculated. It is described how to measure and how to process position data for a local, wide area measurement system. Results are shown for a series of static measurements and an outdoor Motocross race.

  4. Role of biomarkers in monitoring exposures to chemicals: present position, future prospects.

    Science.gov (United States)

    Watson, William P; Mutti, Antonio

    2004-01-01

    Biomarkers are becoming increasingly important in toxicology and human health. Many research groups are carrying out studies to develop biomarkers of exposure to chemicals and apply these for human monitoring. There is considerable interest in the use and application of biomarkers to identify the nature and amounts of chemical exposures in occupational and environmental situations. Major research goals are to develop and validate biomarkers that reflect specific exposures and permit the prediction of the risk of disease in individuals and groups. One important objective is to prevent human cancer. This review presents a commentary and consensus views about the major developments on biomarkers for monitoring human exposure to chemicals. A particular emphasis is on monitoring exposures to carcinogens. Significant developments in the areas of new and existing biomarkers, analytical methodologies, validation studies and field trials together with auditing and quality assessment of data are discussed. New developments in the relatively young field of toxicogenomics possibly leading to the identification of individual susceptibility to both cancer and non-cancer endpoints are also considered. The construction and development of reliable databases that integrate information from genomic and proteomic research programmes should offer a promising future for the application of these technologies in the prediction of risks and prevention of diseases related to chemical exposures. Currently adducts of chemicals with macromolecules are important and useful biomarkers especially for certain individual chemicals where there are incidences of occupational exposure. For monitoring exposure to genotoxic compounds protein adducts, such as those formed with haemoglobin, are considered effective biomarkers for determining individual exposure doses of reactive chemicals. For other organic chemicals, the excreted urinary metabolites can also give a useful and complementary indication of

  5. A Distributed Monitoring and Control System for the Laser Ion Source RILIS at CERN-ISOLDE

    CERN Document Server

    AUTHOR|(SzGeCERN)715185; Richter, Detlef; Wendt, Klaus

    In this work, the implementation of the LabVIEW-based RILIS Equipment Acquisition and Control Toolset (REACT) software framework is documented, revised, and further developed to accomplish remotely operated in-source laser spectroscopy experiments at CERN-ISOLDE. The Resonance Ionization Laser Ion Source (RILIS) is an integral part of the radioactive ion beam user facility ISOLDE at CERN. Its task as an ion source is to ensure high isobaric purity and production efficiency of the ion beams that are generated for the various experimental setups of the facility. Reliable operation requires directing 3 pulsed laser beams, precisely wavelength-tuned and overlapped in time to a precision of 5 nanoseconds, to converge into a 3mm diameter ion source cavity located 25m away in an inaccessible radioactive environment. These stable conditions have to be maintained for up to 7 days at a time per experiment setup. Within recent years, the array of RILIS equipment and its need to interface with other experimental apparatu...

  6. The effect of textile-based inductive coil sensor positions for heart rate monitoring.

    Science.gov (United States)

    Koo, Hye Ran; Lee, Young-Jae; Gi, Sunok; Khang, Seonah; Lee, Joo Hyeon; Lee, Jae-Ho; Lim, Min-Gyu; Park, Hee-Jung; Lee, Jeong-Whan

    2014-02-01

    In the research related to heart rate measurement, few studies have been done using magnetic-induced conductivity sensing methods to measure the heart rate. The aim of this study was to analyze the effect of the position of a textile-based inductive coil sensor on the measurement of the heart rate. In order to assess the capability of the textile-based inductive coil sensor and the repeatability of measured cardiac muscle contractions, we proposed a new quality index based on the morphology of measured signals using a textile-based inductive coil sensor. We initially explored eight potential positions of the inductive sensor in a pilot experiment, followed by three sensor positions in the main experiment. A simultaneously measured electrocardiography (ECG) signal (Lead II) which was used as a reference signal for a comparison of the R-peak location with signals obtained from selected positions of the textile-based inductive coil sensor. The result of the main experiment indicated that the total quality index obtained from the sensor position 'P3', which was located 3 cm away from the left side from the center front line on the chest circumference line, was the highest (QI value = 1.30) among the three positions across all the subjects. This finding led us to conclude that (1) the position of the textile-based inductive coil sensor significantly affected the quality of the measurement results, and that (2) P3 would be the most appropriate position for the textile-based inductive coil sensor for heart rate measurements based on the magnetic-induced conductivity sensing principle.

  7. An application of Global Positioning System data from the Plate Boundary Observatory for deformation monitoring purposes (Invited)

    Science.gov (United States)

    Murray-Moraleda, J. R.; Liu, Z.; Segall, P.

    2009-12-01

    The Plate Boundary Observatory (PBO) represents a major step forward in Global Positioning System (GPS) coverage for the western United States by increasing the spatial density of stations, generating daily position estimates, and providing the infrastructure for high-rate and real-time positioning. In addition to producing vital input for a wide range of crustal deformation studies, PBO significantly expands opportunities for monitoring and event response. This presentation will focus on one such effort. Data from large continuous GPS networks like PBO should be monitored for temporal changes, be they tectonic, volcanic, hydrologic, anthropogenic, or instrumental in origin. Since it is not feasible to review time series by eye on a daily basis, automated approaches are required. Here we apply a Kalman filtering based method, termed the Network Inversion Filter (Segall and Matthews, 1997; McGuire and Segall, 2003), to monitor daily GPS data for deformation-related transient signals. This approach relies on the spatial coherence of signals due to transient sources such as fault slip in order to separate them from spatially-localized time-dependent noise. The dense GPS coverage provided by PBO has augmented pre-existing continuous GPS networks making it now feasible to test this method in California. Results from synthetic tests using the >400 station southern California continuous GPS network configuration demonstrate this approach can extract fault slip signals from data contaminated by plausible noise processes. We will present results using real data from the San Francisco Bay Area and discuss the role and limitations of this methodology in hazard monitoring.

  8. Effects of Ion Irradiation on Seedlings Growth Monitored by Ultraweak Delayed Luminescence

    Science.gov (United States)

    Abe, Tomoko; Cirrone, Giuseppe A. P.; Cuttone, Giacomo; Gulino, Marisa; Musumeci, Francesco; Romano, Francesco; Ryuto, Hiromichi; Scordino, Agata

    2016-01-01

    The optical technique based on the measurement of delayed luminescence emitted from the biological samples has demonstrated its ability to provide valid and predictive information on the functional status of various biological systems. We want to extend this technique to study the effect of ionizing radiation on biological systems. In particular we are interested in the action of ion beams, used for therapeutic purposes or to increase the biological diversity. In general, the assessment of the damage that radiation produces both in the target objects and in the surrounding tissues, requires considerable time because is based on biochemical analysis or on the examination of the evolution of the irradiated systems. The delayed luminescence technique could help to simplify this investigation. We have so started our studies performing irradiations of some relatively simple vegetable models. In this paper we report results obtained from mung bean (Vigna radiata) seeds submitted to a 12C ion beam at the energy of 62 MeV/nucleon. The dry seeds were irradiated at doses from 50 to 7000 Gy. The photoinduced delayed luminescence of each seed before and after ion irradiation was measured. The growth of seedlings after irradiation was compared with that of untreated seeds. A growth reduction on increasing the dose was registered. The results show strong correlations between the ion irradiation dose, seeds growth and delayed luminescence intensity. In particular, the delayed luminescence intensity is correlated by a logistic function to the seedlings elongation and, after performing a suitable measurement campaign based on blind tests, it could become a tool able to predict the growth of seeds after ion irradiation. Moreover these results demonstrate that measurements of delayed luminescence could be used as a fast and non-invasive technique to check the effects of ion beams on relatively simple biological systems. PMID:27936220

  9. The position of teaching materials on the monitor and its effect on the e-learning success

    Directory of Open Access Journals (Sweden)

    Janko Žufić

    2011-06-01

    Full Text Available Normal 0 21 false false false MicrosoftInternetExplorer4 Normal 0 21 false false false MicrosoftInternetExplorer4 There are various elements in designing e-teaching materials that could have an impact in raising the efficiency of e-learning. This paper is based on the experiments aiming to investigate whether there are certain positions on the monitor in which students are able to better perceive and/or remember e-teaching materials. Our research was carried out at the Juraj Dobrila University of Pula. Participants were first year students attending the teacher education programme (aged 19.5 – 20.5. The research design included two pre-experimental groups and one experimental group. The monitor was virtually divided into 24 zones. Students read the teaching material displayed on the screen; in each reading four texts in different positions were used. The relative ease/difficulty of remembering the text was taken into account by introducing different ponders to each text. Regarding the memory efficiency, our results show statistically significant differences between certain screen positions (these differences ranged from +29.6% to -42.6% from the average result. Keywords: efficient e-learning, text position on the screen

  10. Global positioning system measurements over a strain monitoring network in the eastern two-thirds of the United States

    Energy Technology Data Exchange (ETDEWEB)

    Strange, W.E.

    1991-09-01

    A 45-station geodetic network was established in 1987 using global positioning system (GPS) technology to provide a means of monitoring strain and deformation in the central and eastern United States. Reduction of the initial epoch data showed that accuracies of 1 to 3 cm can be achieved for horizontal position, provided sufficient observations are available and there are four or more fiducial stations whose positions are known a priori, for example from Very Long Baseline Interferometry measurements. Accuracies obtained provide the ability to determine strain at the 1:10{sup 7} to 1:10{sup 8} level. Vertical positions are less accurate because of problems in modeling refraction and are determined at the 5 to 7 cm level. It is planned to remeasure this network at regular intervals in the coming years to place bounds on the strain occurring in the central and eastern United States. This network is also expected to serve as a reference network for more detailed monitoring networks in areas of high risk such as the New Madrid area. Future measurements are expected to provide more accurate results because of increased numbers of GPS satellites available and improved computation software. The improved software will also allow future upgrading of the accuracy of the 1987 observations. 3 figs., 5 tabs.

  11. High-rate RTK and PPP multi-GNSS positioning for small-scale dynamic displacements monitoring

    Science.gov (United States)

    Paziewski, Jacek; Sieradzki, Rafał; Baryła, Radosław; Wielgosz, Pawel

    2017-04-01

    The monitoring of dynamic displacements and deformations of engineering structures such as buildings, towers and bridges is of great interest due to several practical and theoretical reasons. The most important is to provide information required for safe maintenance of the constructions. High temporal resolution and precision of GNSS observations predestine this technology to be applied to most demanding application in terms of accuracy, availability and reliability. GNSS technique supported by appropriate processing methodology may meet the specific demands and requirements of ground and structures monitoring. Thus, high-rate multi-GNSS signals may be used as reliable source of information on dynamic displacements of ground and engineering structures, also in real time applications. In this study we present initial results of application of precise relative GNSS positioning for detection of small scale (cm level) high temporal resolution dynamic displacements. Methodology and algorithms applied in self-developed software allowing for relative positioning using high-rate dual-frequency phase and pseudorange GPS+Galileo observations are also given. Additionally, an approach was also made to use the Precise Point Positioning technique to such application. In the experiment were used the observations obtained from high-rate (20 Hz) geodetic receivers. The dynamic displacements were simulated using specially constructed device moving GNSS antenna with dedicated amplitude and frequency. The obtained results indicate on possibility of detection of dynamic displacements of the GNSS antenna even at the level of few millimetres using both relative and Precise Point Positioning techniques after suitable signals processing.

  12. Metal Foam as Positive Electrode Current Collector for LiFePO4-Based Li-Ion Battery

    Science.gov (United States)

    Yang, Gui Fu; Song, Jae Sun; Kim, Hyung Yoon; Joo, Seung Ki

    2013-10-01

    In order to improve the kinetic performance of LiFePO4-based Li-ion batteries, three dimensional metal foams were used as positive current collector. In the case of conventional Ni foam, the organic electrolyte of the cell was decomposed with the ionization of Ni during charge and discharge. The low tolerance of Ni was solved by using NiCrAl foam which was manufactured by alloying NiCrAl powder with Ni foam. From the electrochemical analysis, it shows that the kinetic performance of the cell by using a three dimensional NiCrAl foam was much superior to that in the case of conventional foil type.

  13. Beam-position monitors in the X-ray undulator beamline at PETRA.

    Science.gov (United States)

    Hahn, U; Brefeld, W; Hesse, M; Schneider, J R; Schulte-Schrepping, H; Seebach, M; Werner, M

    1998-05-01

    At the 12 GeV storage ring PETRA, the first synchrotron radiation beamline uses a 4 m-long undulator. The beamline, with a length of 130 m between source and sample, delivers hard X-ray photons usable up to 300 keV. The photon beam has a total power of 7 kW. Combined with the high brilliance, the powerful beam is very critical for all beamline components. Copper, located at a distance of 26 m, hit by the full undulator beam, melts within 20 ms. Different monitors are described for stable, safe and reliable operation of beam and experiments.

  14. Monitoring and Surveillance in the Workplace: Lessons Learnt? – Investigating the International Legal Position

    Directory of Open Access Journals (Sweden)

    Verine Etsebeth

    2007-06-01

    Full Text Available When considering the legal implications of monitoring and surveillance in the workplace, the question may be asked why companies deploy computer surveillance and monitoring in the first place. Several reasons may be put forward to justify why more than 80% of all major American firms monitor employee e-mails and Internet usage. However, what most companies forget is the fact that the absence or presence of monitoring and surveillance activities in a company holds serious legal consequences for companies. From the discussion in this paper it will become apparent that there is a vast difference in how most countries approach this subject matter. On the one hand America does not afford any employee a reasonable expectation of privacy when it comes to the use of corporate computer resources and systems, while in contrast to this position the United Kingdom goes out of its way to protect each employee’s reasonable expectation of privacy. This paper will not only investigate the different approaches followed by some of the world-leader, but will also investigate the legal consequences embedded in each approach. This paper will ultimately enable the reader to judge for himself/herself which approach his/her country should follow while being fully informed of the legal consequences attached to the chosen approach.

  15. Use of positive reinforcement conditioning to monitor pregnancy in an unanesthetized snow leopard (Uncia uncia) via transabdominal ultrasound.

    Science.gov (United States)

    Broder, Jacqueline M; Macfadden, Annabell J; Cosens, Lindsay M; Rosenstein, Diana S; Harrison, Tara M

    2008-01-01

    Closely monitoring snow leopard (Uncia uncia) fetal developments via transabdominal ultrasound, with minimal stress to the animal, was the goal of this project. The staff at Potter Park Zoo has used the principles of habituation, desensitization, and positive reinforcement to train a female snow leopard (U. uncia). Ultrasound examinations were preformed on an unanesthetized feline at 63 and 84 days. The animal remained calm and compliant throughout both procedures. Fetuses were observed and measured on both occasions. The absence of anesthesia eliminated components of psychologic and physiologic stress associated with sedation. This was the first recorded instance of transabdominal ultrasound being carried out on an unanesthetized snow leopard. It documents the feasibility of detecting pregnancy and monitoring fetal development via ultrasound. Zoo Biol 27:78-85, 2008. (c) 2007 Wiley-Liss, Inc.

  16. Occupational exposure to ultrafine particles among airport employees--combining personal monitoring and global positioning system

    DEFF Research Database (Denmark)

    Møller, Karina Lauenborg; Thygesen, Lau Caspar; Schipperijn, Jasper

    2014-01-01

    BACKGROUND: Exposure to ultrafine particles (UFP) has been linked to cardiovascular and lung diseases. Combustion of jet fuel and diesel powered handling equipment emit UFP resulting in potentially high exposure levels among employees working at airports. High levels of UFP have been reported......). METHOD: 30 employees from five different occupational groups (baggage handlers, catering drivers, cleaning staff and airside and landside security) at CPH were instructed to wear a personal monitor of particle number concentration in real time and a GPS device. The measurements were carried out on 8 days...... handlers were exposed to 7 times higher average concentrations (geometric mean, GM: 37×103 UFP/cm(3), 95% CI: 25-55 × 10(3) UFP/cm(3)) than employees mainly working indoors (GM: 5 × 10(3) UFP/cm(3), 95% CI: 2-11 × 103 UFP/cm(3)). Furthermore, catering drivers, cleaning staff and airside security were...

  17. A novel diamond-based beam position monitoring system for the High Radiation to Materials facility at CERN SPS

    CERN Document Server

    AUTHOR|(CDS)2092886; Höglund, Carina

    The High Radiation to Materials facility employs a high intensity pulsed beam imposing several challenges on the beam position monitors. Diamond has been shown to be a resilient material with its radiation hardness and mechanical strength, while it is also simple due to its wide bandgap removing the need for doping. A new type of diamond based beam position monitor has been constructed, which includes a hole in the center of the diamond where the majority of the beam is intended to pass through. This increases the longevity of the detectors as well as allowing them to be used for high intensity beams. The purpose of this thesis is to evaluate the performance of the detectors in the High Radiation to Materials facility for various beam parameters, involving differences in position, size, bunch intensity and bunch number. A prestudy consisting of calibration of the detectors using single incident particles is also presented. The detectors are shown to work as intended after a recalibration of the algorithm, alb...

  18. Prototype Digital Beam Position and Phase Monitor for the 100-MeV Proton Linac of PEFP

    CERN Document Server

    Yu In Ha; Kim, Sung-Chul; Park, In-Soo; Park, Sung-Ju; Tae Kim, Do

    2005-01-01

    The PEFP (Proton Engineering Frontier Project) at the KAERI (Korea Atomic Energy Research Institute) is building a high-power proton linear accelerator aiming to generate 100-MeV proton beams with 20-mA peak current (pulse width and max. repetition rate of 1 ms and 120 Hz respectively). We are developing a prototype digital BPPM (Beam Position and Phase Monitor) for the PEFP linac utilizing the digital technology with field programmable gate array (FPGA). The RF input signals are down converted to 10 MHz and sampled at 40 MHz with 14-bit ADC to produce I and Q data streams. The system is designed to provide a position and phase resolution of 0.1% and 0.1? RMS respectively. The fast digital processing is networked to the EPICS-based control system with an embedded processor (Blackfin). In this paper, the detailed description of the prototype digital beam position and phase monitor will be described with the performance test results.

  19. THE TEST PROGRAMME CONCERNING AIRCRAFT POSITIONING AND TRAFFIC MONITORING – PART II

    Directory of Open Access Journals (Sweden)

    Henryk JAFERNIK

    2016-12-01

    Full Text Available This paper presents the results of studies on the determination of an aircraft’s trajectory and positioning accuracy. The PPP method was applied to determine the aircraft’s position in kinematic mode for code observations in the GPS system. Computations were executed in the “PPP_KINEMTIC” software, whose source code was written using the Scilab 5.3.2 platform. The PPP_KINEMTIC software allows for the latitude coordinate to be estimated with accuracy between 1 and 6 m, the longitude coordinate to be estimated with accuracy between 0.5 and 2.5 m, and the ellipsoidal height to be estimated with accuracy between 1 and 7 m. The average value of the MRSE term equals 5 m with a magnitude between 1 and 8.5 m. In the paper, general libraries of the PPP_KINEMTIC application were presented and the PPP method was characterized too.

  20. Solar Eclipse Monitoring for Solar Energy Applications Using the Solar and Moon Position Algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Reda, I.

    2010-03-01

    This report includes a procedure for implementing an algorithm (described by Jean Meeus) to calculate the moon's zenith angle with uncertainty of +/-0.001 degrees and azimuth angle with uncertainty of +/-0.003 degrees. The step-by-step format presented here simplifies the complicated steps Meeus describes to calculate the Moon's position, and focuses on the Moon instead of the planets and stars. It also introduces some changes to accommodate for solar radiation applications.

  1. On line high dose static position monitoring by ionization chamber detector for industrial gamma irradiators.

    Science.gov (United States)

    Rodrigues, Ary A; Vieira, Jose M; Hamada, Margarida M

    2010-01-01

    A 1 cm(3) cylindrical ionization chamber was developed to measure high doses on line during the sample irradiation in static position, in a (60)Co industrial plant. The developed ionization chamber showed to be suitable for use as a dosimeter on line. A good linearity of the detector was found between the dose and the accumulated charge, independently of the different dose rates caused by absorbing materials.

  2. On line high dose static position monitoring by ionization chamber detector for industrial gamma irradiators

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Ary A. [Universidade Estadual de Londrina-Depto de Fisica, Rodovia Celso Garcia Cid, km 38, 086051-990 Londrina (Brazil); Vieira, Jose M. [Instituto de Pesquisas Energeticas e Nucleares-IPEN/CNEN-SP, Prof. Lineu Prestes, 2242-Cidade Universitaria, 05508-900 Sao Paulo (Brazil); Hamada, Margarida M. [Instituto de Pesquisas Energeticas e Nucleares-IPEN/CNEN-SP, Prof. Lineu Prestes, 2242-Cidade Universitaria, 05508-900 Sao Paulo (Brazil)], E-mail: mmhamada@ipen.br

    2010-04-15

    A 1 cm{sup 3} cylindrical ionization chamber was developed to measure high doses on line during the sample irradiation in static position, in a {sup 60}Co industrial plant. The developed ionization chamber showed to be suitable for use as a dosimeter on line. A good linearity of the detector was found between the dose and the accumulated charge, independently of the different dose rates caused by absorbing materials.

  3. Monitoring the presence of Staphylococcus coagulaso positive in Sharri cheese during the traditional ripening

    Directory of Open Access Journals (Sweden)

    Ismail Ferati

    2012-12-01

    Full Text Available Sharri cheese is a farming traditional product of Sharra region. Sharri cheese is prepared from sheep milk. While the chemical and physical aspect of this type of cheese is already completed the aspect of safety is much less studied. The safety of Sharra cheese may be compromised because it is produced from unpasteurized sheep's milk. Staphylococcal food poisoning is one of the most common food-borne diseases worldwide resulting from the ingestion of Staphylococcal enterotoxins preformed in food by enterotoxigenic strains of coagulase positive Staphylococci, mainly S. aureus. Staphylococcus coagulase positive is considered one of the most problematic bacteria presented in sheep milk. If it is presented in milk in a certain level has the ability to produce Staphylococcal enterotoxins (SE. The milk contaminated with these enterotoxina can cause foodborne intoxication, in consummators. Taking in consideration the lack of this information in my country is considered of great value the conclusion released from this study. The study was performed on cheese and not on the raw milk. The test for the thermostable thermonuclease (TNase was conducted to detect the potential presence of thermostable thermonucleases (TNase. The data performed that Staphylococcus coagulase positive was not presented in cheese. Although the results and conclusions achieved from this study are of great importance not only for this scientific research but also for public health. Taken together, this study should lead to better control and a subsequent reduction of Staphylococcal food poisoning outbreaks.

  4. Pulsed laser positive ion desorption from a model hydrated inorganic crystal (CaHPO 4·2H 2O) at 248 nm

    Science.gov (United States)

    Dawes, M. L.; Langford, S. C.; Dickinson, J. T.

    1998-05-01

    We examine the laser-induced positive ion emission of a typical, wide band gap, hydrated inorganic single crystal, CaHPO 4·2H 2O (brushite), at 248 nm (KrF excimer) in vacuum. As-grown brushite is quite resistant to laser damage and yields little ion emission at fluences below 1 J/cm 2. In the presence of surface damage by abrasion or heating-induced transformations, intense laser-induced ion emission appears at lower fluences. The ion energy and fluence dependence are consistent with a defect mediated, multiple photon emission mechanism. In particular, the transport of hydrated Ca + to the surface, followed by adsorption at anion defects (and removal of water by evaporation), can provide an ideal environment for ion emission. The implications with regard to the UV laser ablation of hydrated environmental and biological minerals are discussed.

  5. Alkylphosphate-based nonflammable gel electrolyte for LiMn 2O 4 positive electrode in lithium-ion battery

    Science.gov (United States)

    Yoshimoto, Nobuko; Gotoh, Daisuke; Egashira, Minato; Morita, Masayuki

    Polymeric gel containing alkylphosphate has been examined as nonflammable gel electrolyte for LiMn 2O 4 positive electrode of lithium-ion battery (LIB). The gel was composed of a polymer matrix of poly(vinylidenefluoride- co-hexafluoropropylene) (PVdF-HFP) and a liquid component consisting of ternary solvent of trimethyl phosphate (TMP) mixed with ethylene carbonate (EC) and diethyl carbonate (DEC) that dissolves lithium salt (LiPF 6 or LiBF 4). The gel composition of 0.8 M (mol dm -3) LiX (X = PF 6 and BF 4) dissolved in EC + DEC + TMP (55:25:20) with PVdF-HFP showed excellent nonflammable characteristics and high ionic conductivity of ca. 3.1 mS cm -1 at room temperature (20 °C). The charge-discharge cycling test of LiMn 2O 4 positive electrode gave good reversibility with high capacitance in the gel electrolyte. With respect to the electrolyte salt, LiBF 4 was better than LiPF 6 due to its thermal stability during the gel preparation.

  6. Semi-Interpenetrating Polymer Networks with Predefined Architecture for Metal Ion Fluorescence Monitoring

    Directory of Open Access Journals (Sweden)

    Kyriakos Christodoulou

    2016-11-01

    Full Text Available The development of new synthetic approaches for the preparation of efficient 3D luminescent chemosensors for transition metal ions receives considerable attention nowadays, owing to the key role of the latter as elements in biological systems and their harmful environmental effects when present in aquatic media. In this work, we describe an easy and versatile synthetic methodology that leads to the generation of nonconjugated 3D luminescent semi-interpenetrating amphiphilic networks (semi-IPN with structure-defined characteristics. More precisely, the synthesis involves the encapsulation of well-defined poly(9-anthrylmethyl methacrylate (pAnMMA (hydrophobic, luminescent linear polymer chains within a covalent poly(2-(dimethylaminoethyl methacrylate (pDMAEMA hydrophilic polymer network, derived via the 1,2-bis-(2-iodoethoxyethane (BIEE-induced crosslinking process of well-defined pDMAEMA linear chains. Characterization of their fluorescence properties demonstrated that these materials act as strong blue emitters when exposed to UV irradiation. This, combined with the presence of the metal-binding tertiary amino functionalities of the pDMAEMA segments, allowed for their applicability as sorbents and fluorescence chemosensors for transition metal ions (Fe3+, Cu2+ in solution via a chelation-enhanced fluorescence-quenching effect promoted within the semi-IPN network architecture. Ethylenediaminetetraacetic acid (EDTA-induced metal ion desorption and thus material recyclability has been also demonstrated.

  7. Exposure to positively- and negatively-charged plasma cluster ions impairs IgE-binding capacity of indoor cat and fungal allergens

    OpenAIRE

    NISHIKAWA, Kazuo; Fujimura, Takashi; Ota, Yasuhiro; Abe, Takuya; ElRamlawy, Kareem Gamal; Nakano, Miyako; Takado, Tomoaki; Uenishi, Akira; Kawazoe, Hidechika; Sekoguchi, Yoshinori; Tanaka, Akihiko; Ono, Kazuhisa; Kawamoto, Seiji

    2016-01-01

    Background Environmental control to reduce the amount of allergens in a living place is thought to be important to avoid sensitization to airborne allergens. However, efficacy of environmental control on inactivation of airborne allergens is not fully investigated. We have previously reported that positively- and negatively-charged plasma cluster ions (PC-ions) reduce the IgE-binding capacity of crude allergens from Japanese cedar pollen as important seasonal airborne allergens. Cat (Felis do...

  8. Simultaneous linear optics and coupling correction for storage rings with turn-by-turn beam position monitor data

    CERN Document Server

    Yang, Xi

    2015-01-01

    We propose a method to simultaneously correct linear optics errors and linear coupling for storage rings using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA) method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice model. The fitting results are used for lattice correction. The method has been successfully demonstrated on the NSLS-II storage ring.

  9. Electromagnetic Design and Optimization of Directivity of Stripline Beam Position Monitors for the High Luminosity Large Hadron Collider

    CERN Document Server

    Draskovic, Drasko; Jones, Owain Rhodri; Lefèvre, Thibaut; Wendt, Manfred

    2015-01-01

    This paper presents the preliminary electromagnetic design of a stripline Beam Position Monitor (BPM) for the High Luminosity program of the Large Hadron Collider (HL-LHC) at CERN. The design is fitted into a new octagonal shielded Beam Screen for the low-beta triplets and is optimized for high directivity. It also includes internal Tungsten absorbers, required to reduce the energy deposition in the superconducting magnets. The achieved broadband directivity in wakefield solver simulations presents significant improvement over the directivity of the current stripline BPMs installed in the LHC.

  10. System Overview and Current Status of the ESS Beam Position Monitors

    OpenAIRE

    Hassanzadegan, Hooman; Jansson, Andreas; Thomas, Cyrille; Lipka, Dirk; Werner, Matthias; Young, Andrew

    2014-01-01

    It is planned to install more than 140 button BPMs along the ESS linac. The BPMs will be used to measure the beam position and phase in all foreseen beam modes and to provide input to the Machine Interlock System. The phase measurement is mainly intended for cavity tuning and Time-Of-Flight energy measurements. A customized BPM detector based on the European XFEL button style has been designed for the cold linac through a collaboration with DESY. Large buttons with diameters up to 40 mm are f...

  11. An Optical Fiber-Based Sensor Array for the Monitoring of Zinc and Copper Ions in Aqueous Environments

    Directory of Open Access Journals (Sweden)

    Steven Kopitzke

    2014-02-01

    Full Text Available Copper and zinc are elements commonly used in industrial applications as aqueous solutions. Before the solutions can be discharged into civil or native waterways, waste treatment processes must be undertaken to ensure compliance with government guidelines restricting the concentration of ions discharged in solution. While currently there are methods of analysis available to monitor these solutions, each method has disadvantages, be it high costs, inaccuracy, and/or being time-consuming. In this work, a new optical fiber-based platform capable of providing fast and accurate results when performing solution analysis for these metals is described. Fluorescent compounds that exhibit a high sensitivity and selectivity for either zinc or copper have been employed for fabricating the sensors. These sensors demonstrated sub-part-per-million detection limits, 30-second response times, and the ability to analyze samples with an average error of under 10%. The inclusion of a fluorescent compound as a reference material to compensate for fluctuations from pulsed excitation sources has further increased the reliability and accuracy of each sensor. Finally, after developing sensors capable of monitoring zinc and copper individually, these sensors are combined to form a single optical fiber sensor array capable of simultaneously monitoring concentration changes in zinc and copper in aqueous environments.

  12. Ion mobility spectrometry as a simple and rapid method to measure the plasma propofol concentrations for intravenous anaesthesia monitoring

    Science.gov (United States)

    Wang, Xin; Zhou, Qinghua; Jiang, Dandan; Gong, Yulei; Li, Enyou; Li, Haiyang

    2016-11-01

    The plasma propofol concentration is important information for anaesthetists to monitor and adjust the anaesthesia depth for patients during a surgery operation. In this paper, a stand-alone ion mobility spectrometer (IMS) was constructed for the rapid measurement of the plasma propofol concentrations. Without any sample pre-treatment, the plasma samples were dropped on a piece of glass microfiber paper and then introduced into the IMS cell by the thermal desorption directly. Each individual measurement could be accomplished within 1 min. For the plasma propofol concentrations from 1 to 12 μg mL-1, the IMS response was linear with a correlation coefficient R2 of 0.998, while the limit of detection was evaluated to be 0.1 μg mL-1. These measurement results did meet the clinical application requirements. Furthermore, other clinically-often-used drugs, including remifentanil, flurbiprofen and atracurium, were found no significant interference with the qualitative and quantitative analysis of the plasma propofol. The plasma propofol concentrations measured by IMS were correlated well with those measured by the high performance liquid chromatography (HPLC). The results confirmed an excellent agreement between these two methods. Finally, this method was applied to monitor the plasma propofol concentrations for a patient undergoing surgery, demonstrating its capability of anaesthesia monitoring in real clinical environments.

  13. WAVELET TRANSFORM THRESHOLD NOISE REDUCTION METHODS IN THE OIL PIPELINE LEAKAGE MONITORING AND POSITIONING SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Gao Chao; Zhou Shanxue

    2010-01-01

    This letter investigates the wavelet transform,as well as the principle and the method of the noise reduction based on wavelet transform,it chooses the threshold noise reduction,and discusses in detail the principles,features and design steps of the threshold method. Rigrsure,heursure,sqtwolog and minimization four kinds of threshold selection method are compared qualitatively,and quantitatively. The wavelet analysis toolbox of MATLAB helps to realize the computer simulation of the signal noise reduction. The graphics and calculated standard deviation of the various threshold noise reductions show that,when dealing with the actual pressure signal of the oil pipeline leakage,sqtwolog threshold selection method can effectively remove the noise. Aiming to the pressure signal of the oil pipeline leakage,the best choice is the wavelet threshold noise reduction with sqtwolog threshold. The leakage point is close to the actual position,with the relative error of less than 1%.

  14. Performance Test of the Next Generation X-Ray Beam Position Monitor System for The APS Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Yang, B.; Lee, S.; Westferro, F.; Jaski, Y.; Lenkszus, F.; Sereno, N.; Ramanathan, M.

    2017-03-25

    The Advanced Photon Source is developing its next major upgrade (APS-U) based on the multi-bend achromat lattice. Improved beam stability is critical for the upgrade and will require keeping short-time beam angle change below 0.25 µrad and long-term angle drift below 0.6 µrad. A reliable white x-ray beam diagnostic system in the front end will be a key part of the planned beam stabilization system. This system includes an x-ray beam position monitor (XBPM) based on x-ray fluorescence (XRF) from two specially designed GlidCop A-15 absorbers, a second XBPM using XRF photons from the Exit Mask, and two white beam intensity monitors using XRF from the photon shutter and Compton-scattered photons from the front end beryllium window or a retractable diamond film in windowless front ends. We present orbit stability data for the first XBPM used in the feedback control during user operations, as well as test data from the second XBPM and the intensity monitors. They demonstrate that the XBPM system meets APS-U beam stability requirements.

  15. Blood pressure monitor with a position sensor for wrist placement to eliminate hydrostatic pressure effect on blood pressure measurement.

    Science.gov (United States)

    Sato, Hironori; Koshimizu, Hiroshi; Yamashita, Shingo; Ogura, Toshihiko

    2013-01-01

    Accurate measurement of blood pressure at wrist requires the heart and wrist to be kept at the same level to avoid the effects of hydrostatic pressure. Although a blood pressure monitor with a position sensor that guides appropriate forearm angle without use of a chair and desk has already been proposed, a similar functioning device for measuring upper arm blood pressure with a chair and desk is needed. In this study, a calculation model was first used to explore design of such a system. The findings were then implemented into design of a new blood pressure monitor. Results of various methods were compared. The calculation model of the wrist level from arthrosis angles and interarticulars lengths was developed and considered using published anthropometric dimensions. It is compared with 33 volunteer persons' experimental results. The calculated difference of level was -4.1 to 7.9 (cm) with a fixed chair and desk. The experimental result was -3.0 to 5.5 (cm) at left wrist and -2.1 to 6.3(cm) at right wrist. The absolute difference level equals ±4.8 (mmHg) of blood pressure readings according to the calculated result. This meets the AAMI requirements for a blood pressure monitor. In the conclusion, the calculation model is able to effectively evaluate the difference between the heart and wrist level. Improving the method for maintaining wrist to heart level will improve wrist blood pressure measurement accuracy when also sitting in the chair at a desk. The leading angle of user's forearm using a position sensor is shown to work for this purpose.

  16. Positron emission tomography for the dose monitoring of intra-fractionally moving targets in ion beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Stuetzer, Kristin

    2014-07-01

    Ion beam therapy (IBT) is a promising treatment option in radiotherapy. The characteristic physical and biological properties of light ion beams allow for the delivery of highly tumor conformal dose distributions. Related to the sparing of surrounding healthy tissue and nearby organs at risk, it is feasible to escalate the dose in the tumor volume to reach higher tumor control and survival rates. Remarkable clinical outcome was achieved with IBT for radio-resistant, deep-seated, static and well fixated tumor entities. Presumably, more patients could benefit from the advantages of IBT if it would be available for more frequent tumor sites. Those located in the thorax and upper abdominal region are commonly subjected to intra-fractional, respiration related motion. Different motion-compensated dose delivery techniques have been developed for active field shaping with scanned pencil beams and are at least available under experimental conditions at the GSI Helmholtzzentrum fuer Schwerionenforschung (GSI) in Darmstadt, Germany. Since minor unexpected anatomical changes e.g. related to patient mispositioning, tumour shrinkage or tissue swelling could already lead to remarkable deviations between planned and delivered dose distribution, a valuable dose monitoring system is desired for IBT. So far, positron emission tomography (PET) is the only in vivo, in situ and non-invasive qualitative dose monitoring method applied under clinical conditions. Conclusions about the delivered dose distribution can be drawn indirectly from a comparison between two β{sup +}-activity distributions: the measured one and an expected one generated by a Monte-Carlo simulation. Dedicated phantoms mainly made up of polymethyl methacrylate (PMMA) and a motion table for regular one-dimensional (1D) motion patterns have been designed and manufactured for the experiments. Furthermore, the general applicability of the 4D MLEM algorithm for more complex motion patterns has been demonstrated by the

  17. A Novel Sensor for Monitoring of Iron(III Ions Based on Porphyrins

    Directory of Open Access Journals (Sweden)

    Mayte Gil-Agusti

    2012-06-01

    Full Text Available Three A3B porphyrins with mixed carboxy-, phenoxy-, pyridyl- and dimethoxy-substituent functionalization on the meso-phenyl groups were obtained by multicomponent synthesis, fully characterized and used as ionophores for preparing PVC-based membrane sensors selective to iron(III. The membranes have an ionophore:PVC:plasticizer composition ratio of 1:33:66. Sodium tetraphenylborate was used as additive (20 mol% relative to ionophore. The performance characteristics (linear concentration range, slope and selectivity of the sensors were investigated. The best results were obtained for the membrane based on 5-(4-carboxyphenyl-10,15,20-tris(4-phenoxyphenyl-porphyrin plasticized with bis(2-ethylhexylsebacate, in a linear range from 1 × 10−7–1 × 10−1 M with a slope of 21.6 mV/decade. The electrode showed high selectivity with respect to alkaline and heavy metal ions and a response time of 20 s. The influence of pH on the sensor response was studied. The sensor was used for a period of six weeks and the utility has been tested for the quantitative determination of Fe(III in recovered solutions from spent lithium ion batteries and for the quantitative determination of Fe(III in tap water samples.

  18. A novel sensor for monitoring of iron(III) ions based on porphyrins.

    Science.gov (United States)

    Vlascici, Dana; Fagadar-Cosma, Eugenia; Popa, Iuliana; Chiriac, Vlad; Gil-Agusti, Mayte

    2012-01-01

    Three A(3)B porphyrins with mixed carboxy-, phenoxy-, pyridyl-, and dimethoxy-substituent functionalization on the meso-phenyl groups were obtained by multicomponent synthesis, fully characterized and used as ionophores for preparing PVC-based membrane sensors selective to iron(III). The membranes have an ionophore:PVC:plasticizer composition ratio of 1:33:66. Sodium tetraphenylborate was used as additive (20 mol% relative to ionophore). The performance characteristics (linear concentration range, slope and selectivity) of the sensors were investigated. The best results were obtained for the membrane based on 5-(4-carboxyphenyl)-10,15,20-tris(4-phenoxyphenyl)-porphyrin plasticized with bis(2-ethylhexyl)sebacate, in a linear range from 1 × 10(-7)-1 × 10(-1) M with a slope of 21.6 mV/decade. The electrode showed high selectivity with respect to alkaline and heavy metal ions and a response time of 20 s. The influence of pH on the sensor response was studied. The sensor was used for a period of six weeks and the utility has been tested for the quantitative determination of Fe(III) in recovered solutions from spent lithium ion batteries and for the quantitative determination of Fe(III) in tap water samples.

  19. A Novel Sensor for Monitoring of Iron(III) Ions Based on Porphyrins

    Science.gov (United States)

    Vlascici, Dana; Fagadar-Cosma, Eugenia; Popa, Iuliana; Chiriac, Vlad; Gil-Agusti, Mayte

    2012-01-01

    Three A3B porphyrins with mixed carboxy-, phenoxy-, pyridyl-, and dimethoxy-substituent functionalization on the meso-phenyl groups were obtained by multicomponent synthesis, fully characterized and used as ionophores for preparing PVC-based membrane sensors selective to iron(III). The membranes have an ionophore:PVC:plasticizer composition ratio of 1:33:66. Sodium tetraphenylborate was used as additive (20 mol% relative to ionophore). The performance characteristics (linear concentration range, slope and selectivity) of the sensors were investigated. The best results were obtained for the membrane based on 5-(4-carboxyphenyl)-10,15,20-tris(4-phenoxyphenyl)-porphyrin plasticized with bis(2-ethylhexyl)sebacate, in a linear range from 1 × 10−7–1 × 10−1 M with a slope of 21.6 mV/decade. The electrode showed high selectivity with respect to alkaline and heavy metal ions and a response time of 20 s. The influence of pH on the sensor response was studied. The sensor was used for a period of six weeks and the utility has been tested for the quantitative determination of Fe(III) in recovered solutions from spent lithium ion batteries and for the quantitative determination of Fe(III) in tap water samples. PMID:22969395

  20. [Quantitative monitoring the concentration changes of organic acids in fermentation process of Clostridium acetobutylicum using capillary ion electrophoresis].

    Science.gov (United States)

    Cheng, Jiayi; Wang, Tongdan; Kang, Jingwu

    2008-11-01

    A method for monitoring the concentration changes of organic acids in the fermentation process of Clostridium acetobutylicum by capillary ion electrophoresis has been developed. In this study, 4-methoxybenzoic acid was used as the background electrolyte for the indirect ultraviolet detection, and cetyltrimethylammonium chloride (CTAC) was employed as the electroosmotic flow modifier. The sample of fermentation was simply treated by centrifugation and dilution. The optimal conditions for the separation were established as 10 mmol/L of 4-methoxybenzoic acid solution (pH 5. 8) and 0. 15 mmol/L of CTAC solution. The limits of quantification for lactate, acetate and n-butyrate were 1.22, 0.38 and 0.58 mg/L, respectively. The method can be successfully used for the metabolic flux analysis of Clostridium acetobutylicum.

  1. Chemosensitivity assay in mice prostate tumor: Preliminary report of flow cytometry, DNA fragmentation, ion ratiometric methods of anti-neoplastic drug monitoring

    Directory of Open Access Journals (Sweden)

    Kline Richard

    2004-03-01

    Full Text Available Abstract Flow cytometry, DNA fragmentation, ion ratiomateric analysis and NMR peaks characterized drug chemosensitivity of antineoplastic drugs. Hypotheses were: 1. The chemosensitive effect of different cancer cell lines is characteristic; 2. DNA fragmentation, ion ratiometric analysis suggest apoptosis status of tumor cells. Methods PC-3 cell lines were compared with DU-145, LNCaP cell lines in culture for the [Na]i and [Ca]i ion sensing dyes, cell death, NMR peaks and apoptosis staining for chemotherapeutic action of different drugs. Results DNA fragmentation, ratiometric ions and fluorescence endlabelling plots were characteristic for cell lines and drug response. 31P-23Na NMR spectra showed characteristic high phospho-choline and sodium peaks. Conclusion Flow cytometry, DNA fragmentation, ion ratiometric methods and NMR peaks indicated apoptosis and offered in vivo drug monitoring method.

  2. Intracellular ion monitoring using a gold-core polymer-shell nanosensor architecture

    Energy Technology Data Exchange (ETDEWEB)

    Stanca, S E; Cranfield, C G; Biskup, C [Biomolecular Photonics Group, University Hospital Jena, Teichgraben 8, 07743 Jena (Germany); Nietzsche, S [Centre for Electron Microscopy, University Hospital Jena, Ziegel-muehlenweg 1, 07743 Jena (Germany); Fritzsche, W, E-mail: sarmiza.stanca@mti.uni-jena.de, E-mail: charles.cranfield@mti.uni-jena.de, E-mail: christoph.biskup@mti.uni-jena.de [Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07745 Jena (Germany)

    2010-02-05

    In this study, we describe the design of new ratiometric fluorescent nanosensors, whose architecture is based on a gold core surrounded by a poly(vinyl alcohol)-polyacetal shell. To the gold core, indicator dyes and reference dyes are attached via a cysteine linker. This nanosensor architecture is flexible with regards to the number and types of fluorophore linkages possible. The robust poly(vinyl alcohol)-polyacetal shell protects the fluorophores linked to the core from non-specific interactions with intracellular proteins. The nanosensors developed in this way are biocompatible and can be easily incorporated into mammalian cells without the use of transfection agents. Here, we show the application of these nanosensors for intracellular pH and sodium ion measurements.

  3. Intracellular ion monitoring using a gold-core polymer-shell nanosensor architecture.

    Science.gov (United States)

    Stanca, S E; Nietzsche, S; Fritzsche, W; Cranfield, C G; Biskup, C

    2010-02-05

    In this study, we describe the design of new ratiometric fluorescent nanosensors, whose architecture is based on a gold core surrounded by a poly(vinyl alcohol)-polyacetal shell. To the gold core, indicator dyes and reference dyes are attached via a cysteine linker. This nanosensor architecture is flexible with regards to the number and types of fluorophore linkages possible. The robust poly(vinyl alcohol)-polyacetal shell protects the fluorophores linked to the core from non-specific interactions with intracellular proteins. The nanosensors developed in this way are biocompatible and can be easily incorporated into mammalian cells without the use of transfection agents. Here, we show the application of these nanosensors for intracellular pH and sodium ion measurements.

  4. Effect of heat treatment on UV-laser-induced positive ion desorption in CaHPO4.2H2O

    Science.gov (United States)

    Kawaguchi, Y.; Dawes, M. L.; Langford, S. C.; Dickinson, J. T.

    We have investigated KrF excimer-laser-induced positive ion desorption from single-crystal brushite (CaHPO4.2H2O), a model biomineral containing water, and we show the effect of heat treatment on ion desorption. Time-of-flight peaks of Ca+ desorption from the heated-cleaved surface are similar to those from as-cleaved ones, but the ion intensity is 2 to 4 orders of magnitude larger. In addition to Ca+, desorption of CaO+, PO+, and P+ from the heated surface is also strongly enhanced. The heated-cleaved surface shows rough, platelet-like fine structures due to recrystallization. Surface defects created during recrystallization strongly couple with the 5 eV photons and dramatically enhance ion desorption.

  5. Continuous Monitoring and Intrafraction Target Position Correction During Treatment Improves Target Coverage for Patients Undergoing SBRT Prostate Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lovelock, D. Michael, E-mail: lovelocm@mskcc.org [Memorial Sloan Kettering Cancer Center, New York, New York (United States); Messineo, Alessandra P. [Memorial Sloan Kettering Cancer Center, New York, New York (United States); Cox, Brett W. [North Shore-Long Island Jewish Health System, New Hyde Park, New York (United States); Kollmeier, Marisa A.; Zelefsky, Michael J. [Memorial Sloan Kettering Cancer Center, New York, New York (United States)

    2015-03-01

    Purpose: To compare the potential benefits of continuous monitoring of prostate position and intervention (CMI) using 2-mm displacement thresholds during stereotactic body radiation therapy (SBRT) treatment to those of a conventional image-guided procedure involving single localization prior to treatment. Methods and Materials: Eighty-nine patients accrued to a prostate SBRT dose escalation protocol were implanted with radiofrequency transponder beacons. The planning target volume (PTV) margin was 5 mm in all directions, except for 3 mm in the posterior direction. The prostate was kept within 2 mm of its planned position by the therapists halting dose delivery and, if necessary, correcting the couch position. We computed the number, type, and time required for interventions and where the prostate would have been during dose delivery had there been, instead, a single image-guided setup procedure prior to each treatment. Distributions of prostate displacements were computed as a function of time. Results: After the initial setup, 1.7 interventions per fraction were required, with a concomitant increase in time for dose delivery of approximately 65 seconds. Small systematic drifts in prostate position in the posterior and inferior directions were observed in the study patients. Without CMI, intrafractional motion would have resulted in approximately 10% of patients having a delivered dose that did not meet our clinical coverage requirement, that is, a PTV D95 of >90%. The posterior PTV margin required for 95% of the dose to be delivered with the target positioned within the PTV was computed as a function of time. The margin necessary was found to increase by 2 mm every 5 minutes, starting from the time of the imaging procedure. Conclusions: CMI using a tight 2-mm displacement threshold was not only feasible but was found to deliver superior PTV coverage compared with the conventional image-guided procedure in the SBRT setting.

  6. Monitoring daily MLC positional errors using trajectory log files and EPID measurements for IMRT and VMAT deliveries

    Science.gov (United States)

    Agnew, A.; Agnew, C. E.; Grattan, M. W. D.; Hounsell, A. R.; McGarry, C. K.

    2014-05-01

    This work investigated the differences between multileaf collimator (MLC) positioning accuracy determined using either log files or electronic portal imaging devices (EPID) and then assessed the possibility of reducing patient specific quality control (QC) via phantom-less methodologies. In-house software was developed, and validated, to track MLC positional accuracy with the rotational and static gantry picket fence tests using an integrated electronic portal image. This software was used to monitor MLC daily performance over a 1 year period for two Varian TrueBeam linear accelerators, with the results directly compared with MLC positions determined using leaf trajectory log files. This software was validated by introducing known shifts and collimator errors. Skewness of the MLCs was found to be 0.03 ± 0.06° (mean ±1 standard deviation (SD)) and was dependent on whether the collimator was rotated manually or automatically. Trajectory log files, analysed using in-house software, showed average MLC positioning errors with a magnitude of 0.004 ± 0.003 mm (rotational) and 0.004 ± 0.011 mm (static) across two TrueBeam units over 1 year (mean ±1 SD). These ranges, as indicated by the SD, were lower than the related average MLC positioning errors of 0.000 ± 0.025 mm (rotational) and 0.000 ± 0.039 mm (static) that were obtained using the in-house EPID based software. The range of EPID measured MLC positional errors was larger due to the inherent uncertainties of the procedure. Over the duration of the study, multiple MLC positional errors were detected using the EPID based software but these same errors were not detected using the trajectory log files. This work shows the importance of increasing linac specific QC when phantom-less methodologies, such as the use of log files, are used to reduce patient specific QC. Tolerances of 0.25 mm have been created for the MLC positional errors using the EPID-based automated picket fence test. The software allows diagnosis

  7. Status of Higher Order Mode Beam Position Monitors in 3.9 GHz Superconducting Accelerating Cavities at FLASH

    CERN Document Server

    Zhang, P; Flisgen, T; van Rienen, U; Jones, R M; Shinton, I R R

    2013-01-01

    Higher order mode (HOM) beam position monitors (BPM) are being developed for the 3.9 GHz third harmonic superconducting accelerating cavities at FLASH. The transverse beam position in a cavity can be determined utilizing beam-excited HOMs based on dipole components. The existing couplers used for HOM suppression provide necessary signals. The diagnostics principle is similar to a cavity BPM, but requires no additional vacuum instruments on the linac. The challenges of HOM-BPM for 3.9 GHz cavities lie in the dense HOM spectrum arising from the coupling of the majority HOMs amongst the four cavities in the cryo-module ACC39. HOMs with particularly promising diagnostics features were evaluated using a spectrum analyzer and custom-built test electronics with various data analysis techniques, data reduction was focused on. After careful theoretical and experimental assessment of the HOM spectrum, multi-cavity modes in the region of 5 GHz were chosen to provide a global position over the complete module with superi...

  8. Status of higher order mode beam position monitors in 3.9 GHz superconducting accelerating cavities at FLASH

    CERN Document Server

    Zhang, P; Jones, R M; Flisgen, T; Van Rienen, U; Shinton, I R R

    2013-01-01

    Higher order mode (HOM) beam position monitors (BPM) are being developed for the 3.9 GHz third harmonic superconducting accelerating cavities at FLASH. The transverse beam position in a cavity can be determined utilizing beam-excited HOMs based on dipole components. The existing couplers used for HOM suppression provide necessary signals. The diagnostics principle is similar to a cavity BPM, but requires no additional vacuum instruments on the linac. The challenges of HOM-BPM for 3.9 GHz cavities lie in the dense HOM spectrum arising from the coupling of the majority HOMs amongst the four cavities in the cryo-module ACC39. HOMs with particularly promising diagnostics features were evaluated using a spectrum analyzer and custom-built test electronics with various data analysis techniques, data reduction was focused on. After careful theoretical and experimental assessment of the HOM spectrum, multi-cavity modes in the region of 5 GHz were chosen to provide a global position over the complete module with superi...

  9. Real-time monitoring of bioaerosols via cell-lysis by air ion and ATP bioluminescence detection.

    Science.gov (United States)

    Park, Chul Woo; Park, Ji-Woon; Lee, Sung Hwa; Hwang, Jungho

    2014-02-15

    In this study, we introduce a methodology for disrupting cell membranes with air ions coupled with ATP bioluminescence detection for real-time monitoring of bioaerosol concentrations. A carbon fiber ionizer was used to extract ATP from bacterial cells for generating ATP bioluminescence. Our methodology was tested using Staphylococcus epidermidis and Escherichia coli, which were aerosolized with an atomizer, and then indoor bioaerosols were also used for testing the methodology. Bioaerosol concentrations were estimated without culturing which requires several days for colony formation. Correlation equations were obtained for results acquired using our methodology (Relative Luminescent Unit (RLU)/m(3)) and a culture-based (Colony Forming Unit (CFU)/m(3)) method; CFU/m(3)=1.8 × measured RLU/m(3) for S. epidermidis and E. coli, and CFU/m(3)=1.1 × measured RLU/m(3) for indoor bioaerosols under the experimental conditions. Our methodology is an affordable solution for rapidly monitoring bioaerosols due to rapid detection time (cell-lysis time: 3 min; bioluminescence detection time: <1 min) and easy operation.

  10. Theoretical study of the bonding of the first- and second-row transition-metal positive ions to acetylene

    Science.gov (United States)

    Sodupe, M.; Bauschlicher, Charles W., Jr.

    1991-01-01

    The bonding of transition-metal ions to acetylene is studied by using a theoretical treatment that includes electron correlation. The ions on the left side of the first and second transition rows insert into the pi bond to form a three-membered ring. On the right side of the row the bonding is electrostatic. The trends in bonding are discussed.

  11. Monitoring the Effect of Metal Ions on the Mobility of Artemia salina Nauplii.

    Science.gov (United States)

    Kokkali, Varvara; Katramados, Ioannis; Newman, Jeffrey D

    2011-03-28

    This study aims to measure the effect of toxic aqueous solutions of metals on the mobility of Artemia salina nauplii by using digital image processing. The instrument consists of a camera with a macro lens, a dark chamber, a light source and a laptop computer. Four nauplii were inserted into a macro cuvette, which contained copper, cadmium, iron and zinc ions at various concentrations. The nauplii were then filmed inside the dark chamber for two minutes and the video sequence was processed by a motion tracking algorithm that estimated their mobility. The results obtained by this system were compared to the mortality assay of the Artemia salina nauplii. Despite the small number of tested organisms, this system demonstrates great sensitivity in quantifying the mobility of the nauplii, which leads to significantly lower EC50 values than those of the mortality assay. Furthermore, concentrations of parts per trillion of toxic compounds could be detected for some of the metals. The main novelty of this instrument relies in the sub-pixel accuracy of the tracking algorithm that enables robust measurement of the deterioration of the mobility of Artemia salina even at very low concentrations of toxic metals.

  12. Monitoring Conformational Landscape of Ovine Prion Protein Monomer Using Ion Mobility Coupled to Mass Spectrometry

    Science.gov (United States)

    Van der Rest, Guillaume; Rezaei, Human; Halgand, Frédéric

    2017-02-01

    Prion protein is involved in deadly neurodegenerative diseases. Its pathogenicity is linked to its structural conversion (α-helix to β-strand transition). However, recent studies suggest that prion protein can follow a plurality of conversion pathways, which hints towards different conformers that might coexist in solution. To gain insights on the plasticity of the ovine prion protein (PrP) monomer, wild type (A136, R154, Q171), mutants and deletions of ARQ were studied by traveling wave ion mobility experiments coupled to mass spectrometry. In order to perform the analysis of a large body of data sets, we designed and evaluated the performance of a processing pipeline based on Driftscope peak detection and a homemade script for automated peak assignment, annotation, and quantification on specific multiply charged protein data. Using this approach, we showed that in the gas phase, PrPs are represented by at least three conformer families differing in both charge state distribution and collisional cross-section, in agreement with the work of Hilton et al. (2010). We also showed that this plasticity is borne both by the N- and C-terminal domains. Effect of protein concentration, pH and temperature were also assessed, showing that (1) pH does not affect conformer distributions, (2) protein concentration modifies the conformational landscape of one mutant (I208M) only, and (3) heating leads to other unfolded species and to a modification of the conformer intensity ratios.

  13. Identification by selective ion monitoring of 1-methyl-1,2,3,4-tetrahydro-beta-carboline in human platelets and plasma after ethanol intake.

    Science.gov (United States)

    Peura, P; Kari, I; Airaksinen, M M

    1980-11-01

    1-Methyl-1,2,3,4-tetrahydro-beta-carboline (tetrahydroharman) has been quantified in human platelets and plasma following acute intake of ethanol using a selective ion monitoring method. It was not possible to detect this compound before ethanol intake.

  14. Application of wide selected-ion monitoring data-independent acquisition to identify tomato fruit proteins regulated by the CUTIN DEFICIENT2 transcription factor

    Science.gov (United States)

    We describe here the use of label-free wide selected-ion monitoring data-independent acquisition (WiSIM-DIA) to identify proteins that are involved in the formation of tomato (Solanum lycopersicum) fruit cuticles and that are regulated by the transcription factor CUTIN DEFICIENT2 (CD2). A spectral l...

  15. Ion photon-stimulated desorption as a tool to monitor the physisorption to chemisorption transition of benzene on Si(111) 7 x 7

    CERN Document Server

    Carbone, M; Casaletto, M P; Zanoni, R; Besnard-Ramage, M J; Comtet, G; Dujardin, G; Hellner, L

    2003-01-01

    We investigated the use of ion photodesorption as a tool to monitor the transition from the physisorbed to the chemisorbed state on a surface. The adsorption of benzene on Si(111) 7 x 7 in the temperature range 40-300 K is chosen as a prototype. The D sup + ion photodesorption yield was monitored as a function of temperature at various benzene exposures. Comparative measurements of the C 1s photoelectron yield in the same temperature range enable the physisorbed to chemisorbed state transition to be distinguished from that of the multilayer to the chemisorbed state. We find the onset at 110 K in the first case, and at 130-140 K in the second case. These results demonstrate that ion photodesorption is a potentially interesting method to identify physisorption to chemisorption transitions of adsorbed molecules on surfaces. (letter to the editor)

  16. An online monitoring system for atmospheric nitrous acid (HONO) based on stripping coil and ion chromatography

    Institute of Scientific and Technical Information of China (English)

    Peng Cheng; Yafang Cheng; Keding Lu; Hang Su; Qiang Yang; Yikan Zou; Yanran Zhao

    2013-01-01

    A new instrument for measuring atmospheric nitrous acid (HONO) was developed,consisting of a double-wail glass stripping coil sampler coupled with ion chromatography (SC-IC).SC-IC is featured by small size (50 × 35 × 25 cm) and modular construction,including three independent parts:the sampling unit,the transfer and supporting unit,and the detection unit.High collection efficiency (> 99%) was achieved with 25 μmol/L Na2CO3 as absorption solution even in the presence of highly acidic compounds.This instrument has a detection limit of 8 pptv at 15 min time resolution,with a measurement uncertainty of 7%.Potentiai interferences from NOx,NO2+SO2,NO2+VOCs,HONO+O3,HNO3,peroxyacetyl nitrite (PAN) and particle nitrite were quantified in laboratory studies and were found to be insignificant under typical atmospheric conditions.Within the framework of the 3C-STAR project,inter-comparison between the SC-IC and LOPAP (long path liquid absorption photometer) was conducted at a rurai site in the Pearl River Delta.Good agreement was achieved between the two instruments over three weeks.Both instruments determined a clear diurnai profile of ambient HONO concentrations from 0.1 to 2.5 ppbv.However,deviations were found for low ambient HONO concentrations (i.e.<0.3 ppbv),which cannot be explained by previous investigated interference species.To accurately determine the HONO budget under illuminated conditions,more intercomparison of HONO measurement techniques is still needed in future studies,especiaily at low HONO concentrations.

  17. Ion trap LC/MS characterisation of toxic polar organic pollutants in colour photographic wastewaters and monitoring of their chemical degradation.

    Science.gov (United States)

    Lunar, L; Rubio, S; Pérez-Bendito, D

    2004-02-01

    Liquid chromatography/electrospray ionisation-ion trap mass spectrometry (LC/ESI-ITMS) with positive mode of operation was successfully applied to the characterisation of aromatic amines and chelating agents in colour photographic wastewaters. In addition to residual ingredients, monomers and dimers of sulphonated aromatic amines were the main toxic polar organic pollutants found. Oxidation of wastewater components by the Fenton-like reagent (Fe3+ + H2O2) was investigated by continuously pumping a solution of hydrogen peroxide. Iron concentration, present in the wastewater as ferric carboxylate complexes, was typically above 1 g l(-1), and therefore addition of Fe3+ was not necessary for treatment. Operating variables like reagent feeding concentration and flowrate, temperature and pH were studied. The overall chemical oxygen demand (COD) removal reached 90% after 7.5 h of treatment when the dosage of hydrogen peroxide was 230 g per litre of effluent, the pH was about 4 and the temperature was 60 degrees C. The absence of toxics in the treated effluents was confirmed by the Photobacterium phosphoreum luminescence reduction test. Monitoring of the chemical degradation of aromatic amines and chelating agents by LC/ESI-ITMS proved that the Fenton's like reagent was effective in degrading them. Propylenediamine tetraacetic acid (PDTA) was found to be the more recalcitrant compound, however about 97% of degradation was achieved after 7.5 hours of treatment.

  18. Design of planar pick-ups for beam position monitor in the bunch compressor at FLASH and XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Angelovski, Aleksandar; Penirschke, Andreas; Jakoby, Rolf [Institut fuer Mikrowellentechnik und Photonik, TU Darmstadt (Germany); Sydlo, Cezary; Mavric, Uros; Gerth, Christopher [DESY, Hamburg (Germany)

    2013-07-01

    For obtaining ultra short electron bunches at the Free Electron Laser at DESY (FLASH) the beam is compressed in magnetic chicanes. During the compression process the precise knowledge of the energy of the bunches is essential for the longitudinal dynamics control. The measurement of the beam position in the chicane allows for non-destructive measurements of the energy. For that purpose, two stripline pick-ups perpendicular to the beam direction are installed in the chicane at FLASH as a part of the Beam Position Monitor. The recent upgrade in the electronics as well as the increased aperture and length of the beam pipe (for the European XFEL) requires the design of new pick-ups which will fulfill the new demands. Namely, the pick-ups should have maximum signal at 3 GHz with minimum reflections. In this talk, we will present the design of planar transmission line pick-ups for FLASH and XFEL. The planar design of the pick-ups can provide for a proper impedance matching to the subsequent electronics as well as sufficient mechanical stability along the aperture when using alumina substrate. A prototype of the pick-ups was build and installed in a non-hermetic body. The measured S parameters are compared to the simulation.

  19. 论离子色谱在环境监测中的应用%The Application of Chromatography of Ions at Environmental Monitoring

    Institute of Scientific and Technical Information of China (English)

    王龙胜; 刘思佳

    2011-01-01

    Ion chromatography is the main analysis mode to ions and ionic compounds at environmental monitoring at aspects such as China’s water quality, air, soil.Currently, ion chromatography mainly analyzed the air and water quality which has become the important means for environmental monitoring.As the important measurement equipment at environmental monitoring, the application, maintenance and its treatment for measurement materials of ion chromatography have certain kind of impact for the testing structure.In order to better monitor China’s environment and ensure China’s environmental protection industry smooth operation, the paper discussed the application of ion chromatography at environmental monitoring, the usage and maintenance of equipment.%离子色谱法是目前我国水质、大气、土壤等生态方面环境监测中对离子和离子型化合物的主要分析方式.目前采用离子色谱法分析的主要是大气和水质,已经成为环境监测的重要手段.作为环境监测中的重要检测仪器,离子色谱仪的使用与保养以及其检测物质的处理等都对检测结构有一定的影响.为了更好的对我国环境进行监测,确保我国环保事业的有效进行.文中就离子色谱在环境监测中的应用、仪器的使用与保养等进行了简要的文艺论述.

  20. Interstitial positions of tin ions in alpha-(FerichSn)(2)O-3 solid solutions prepared by mechanical alloying

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Lin, Rong; Nielsen, Kurt

    1997-01-01

    The microstructure of samples of 91, 85, and 71 mol % alpha-Fe-2-O-3-SnO2. prepared by mechanical alloying, has been studied by x-ray diffraction with Rietveld structure refinements, On the basis of the structure refinements to the whole x-ray diffraction patterns for the four as-milled samples......, it is found that tin ions do not substitute iron ions in the solid solution, although this model is generally assumed in the literature. The Sn4+ ions occupy the empty octahedral holes in the lattice of the alpha-Fe2O3 phase....

  1. Electron stimulated desorption of positive and negative oxygen ions from YBa{sub 2}Cu{sub 3}O{sub 7} surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, A. [Technion-Israel Inst. of Tech., Haifa (Israel). Solid State Inst.; Moss, S.D.; Paterson, P.J.K. [Royal Melbourne Inst. of Tech., VIC (Australia); McCubbery, D. [La Trobe Univ., Bundoora, VIC (Australia); Petravic, M. [Australian National Univ., Canberra, ACT (Australia)

    1996-12-31

    The electron stimulated desorption (ESD) of positive and negative oxygen ion from superconducting YBa{sub 2}Cu{sub 3}O{sub 7} surfaces was studied. Based on ion desorption yield measurements as function of electron kinetic energy, primary excitations leading to positive and negative oxygen ion desorption are suggested. To the best of the authors` knowledge this is the first study on electron energy dependent ESD from YBa{sub 2}Cu{sub 3}O{sub 7} surfaces. The YBa{sub 2}Cu{sub 3}O{sub 7} samples were prepared from BaCO{sub 3}, Y{sub 2}O{sub 3} and CuO using standard high temperature sintering and annealing procedures. Slices 2 mm thick were cut and further annealed at 400 C in flowing oxygen for 24 hours prior to insertion into the ultrahigh vacuum (UHV) chamber for ESD. The near surface composition and chemical state of the annealed sample after exposure to air was examined by Auger and XPS analysis. These measurements suggest that the ESD experiments were performed on samples of similar near surface and bulk composition with some OH- chemisorbed groups and Cl surface contaminations and that negative and positive oxygen ion desorption may be initiated via a primary core level ionization. 10 refs., 3 figs.

  2. Enhanced sensitivity for selected reaction monitoring mass spectrometry-based targeted proteomics using a dual stage electrodynamic ion funnel interface.

    Science.gov (United States)

    Hossain, Mahmud; Kaleta, David T; Robinson, Errol W; Liu, Tao; Zhao, Rui; Page, Jason S; Kelly, Ryan T; Moore, Ronald J; Tang, Keqi; Camp, David G; Qian, Wei-Jun; Smith, Richard D

    2011-02-01

    Selected reaction monitoring mass spectrometry (SRM-MS) is playing an increasing role in quantitative proteomics and biomarker discovery studies as a method for high throughput candidate quantification and verification. Although SRM-MS offers advantages in sensitivity and quantification compared with other MS-based techniques, current SRM technologies are still challenged by detection and quantification of low abundance proteins (e.g. present at ∼10 ng/ml or lower levels in blood plasma). Here we report enhanced detection sensitivity and reproducibility for SRM-based targeted proteomics by coupling a nanospray ionization multicapillary inlet/dual electrodynamic ion funnel interface to a commercial triple quadrupole mass spectrometer. Because of the increased efficiency in ion transmission, significant enhancements in overall signal intensities and improved limits of detection were observed with the new interface compared with the original interface for SRM measurements of tryptic peptides from proteins spiked into non-depleted mouse plasma over a range of concentrations. Overall, average SRM peak intensities were increased by ∼70-fold. The average level of detection for peptides also improved by ∼10-fold with notably improved reproducibility of peptide measurements as indicated by the reduced coefficients of variance. The ability to detect proteins ranging from 40 to 80 ng/ml within mouse plasma was demonstrated for all spiked proteins without the application of front-end immunoaffinity depletion and fractionation. This significant improvement in detection sensitivity for low abundance proteins in complex matrices is expected to enhance a broad range of SRM-MS applications including targeted protein and metabolite validation.

  3. A Wire Position Monitor System for the 1.3 GHZ Tesla-Style Cryomodule at the Fermilab New-Muon-Lab Accelerator

    CERN Document Server

    Eddy, N; Prieto, P; Semenov, A; Voy, D C; Wendt, M

    2012-01-01

    The first cryomodule for the beam test facility at the Fermilab New-Muon-Lab building is currently under RF commissioning. Among other diagnostics systems, the transverse position of the helium gas return pipe with the connected 1.3 GHz SRF accelerating cavities is measured along the ~15 m long module using a stretched-wire position monitoring system. An overview of the wire position monitor system technology is given, along with preliminary results taken at the initial module cool down, and during further testing. As the measurement system offers a high resolution, we also discuss options for use as a vibration detector.

  4. Magnetic Graphene Nanosheet-Based Microfluidic Device for Homogeneous Real-Time Electronic Monitoring of Pyrophosphatase Activity Using Enzymatic Hydrolysate-Induced Release of Copper Ion.

    Science.gov (United States)

    Lin, Youxiu; Zhou, Qian; Li, Juan; Shu, Jian; Qiu, Zhenli; Lin, Yuping; Tang, Dianping

    2016-01-01

    A novel flow-through microfluidic device based on a magneto-controlled graphene sensing platform was designed for homogeneous electronic monitoring of pyrophosphatase (PPase) activity; enzymatic hydrolysate-induced release of inorganic copper ion (Cu(2+)) from the Cu(2+)-coordinated pyrophosphate ions (Cu(2+)-PPi) complex was assessed to determine enzyme activity. Magnetic graphene nanosheets (MGNS) functionalized with negatively charged Nafion were synthesized by using the wet-chemistry method. The Cu(2+)-PPi complexes were prepared on the basis of the coordination reaction between copper ion and inorganic pyrophosphate ions. Upon target PPase introduction into the detection system, the analyte initially hydrolyzed pyrophosphate ions into phosphate ions and released the electroactive copper ions from Cu(2+)-PPi complexes. The released copper ions could be readily captured through the negatively charged Nafion on the magnetic graphene nanosheets, which could be quantitatively monitored by using the stripping voltammetry on the flow-through detection cell with an external magnet. Under optimal conditions, the obtained electrochemical signal exhibited a high dependence on PPase activity within a dynamic range from 0.1 to 20 mU mL(-1) and allowed the detection at a concentration as low as 0.05 mU mL(-1). Coefficients of variation for reproducibility of the intra-assay and interassay were below 7.6 and 9.8%, respectively. The inhibition efficiency of sodium fluoride (NaF) also received good results in pyrophosphatase inhibitor screening research. In addition, the methodology afforded good specificity and selectivity, simplification, and low cost without the need of sample separations and multiple washing steps, thus representing a user-friendly protocol for practical utilization in a quantitative PPase activity.

  5. SU-E-T-758: To Determine the Source Dwell Positions of HDR Brachytherapy Using 2D 729 Ion Chamber Array

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Syam [Malabar Cancer Centre, Kannur, Kerala (India); Sitha [University of Calicut, Calicut, Kerala (India)

    2015-06-15

    Purpose: Determination of source dwell positions of HDR brachytherapy using 2D 729 ion chamber array Methods: Nucletron microselectron HDR and PTW 2D array were used for the study. Different dwell positions were assigned in the HDR machine. Rigid interstitial needles and vaginal applicator were positioned on the 2D array. The 2D array was exposed for this programmed dwell positions. The positional accuracy of the source was analyzed after the irradiation of the 2D array. This was repeated for different dwell positions. Different test plans were transferred from the Oncentra planning system and irradiated with the same applicator position on the 2D array. The results were analyzed using the in house developed excel program. Results: Assigned dwell positions versus corresponding detector response were analyzed. The results show very good agreement with the film measurements. No significant variation found between the planned and measured dwell positions. Average dose response with 2D array between the planned and nearby dwell positions was found to be 0.0804 Gy for vaginal cylinder applicator and 0.1234 Gy for interstitial rigid needles. Standard deviation between the doses for all the measured dwell positions for interstitial rigid needle for 1 cm spaced positions were found to be 0.33 and 0.37 for 2cm spaced dwell positions. For intracavitory vaginal applicator this was found to be 0.21 for 1 cm spaced dwell positions and 0.06 for 2cm spaced dwell positions. Intracavitory test plans reproduced on the 2D array with the same applicator positions shows the ideal dose distribution with the TPS planned. Conclusion: 2D array is a good tool for determining the dwell position of HDR brachytherapy. With the in-house developed program in excel it is easy and accurate. The traditional way with film analysis can be replaced by this method, as the films will be more costly.

  6. Ambulatory circadian monitoring (ACM) based on thermometry, motor activity and body position (TAP): a comparison with polysomnography.

    Science.gov (United States)

    Ortiz-Tudela, Elisabet; Martinez-Nicolas, Antonio; Albares, Javier; Segarra, Francesc; Campos, Manuel; Estivill, Eduard; Rol, Maria Angeles; Madrid, Juan Antonio

    2014-03-14

    An integrated variable based on the combination of wrist Temperature, motor Activity and body Position (TAP) was previously developed at our laboratory to evaluate the functioning of the circadian system and sleep-wake rhythm under ambulatory conditions. However, the reliability of TAP needed to be validated with polysomnography (PSG). 22 subjects suffering from sleep disorders were monitored for one night with a temperature sensor (iButton), an actimeter (HOBO) and exploratory PSG. Mean waveforms, sensitivity (SE), specificity (SP), agreement rates (AR) and comparisons between TAP and sleep stages were studied. The TAP variable was optimized for SE, SP and AR with respect to each individual variable (SE: 92%; SP: 78%; AR: 86%). These results improved upon estimates previously published for actigraphy. Furthermore, TAP values tended to decrease as sleep depth increased, reaching the lowest point at phase 3. Finally, TAP estimates for sleep latency (SL: 37±9 min), total sleep time (TST: 367±13 min), sleep efficiency (SE: 86.8±1.9%) and number of awakenings (NA>5 min: 3.3±.4) were not significantly different from those obtained with PSG (SL: 29±4 min; SE: 89.9±1.8%; NA>5 min: 2.3±.4), despite the heterogeneity of the sleep pathologies monitored. The TAP variable is a novel measurement for evaluating circadian system status and sleep-wake rhythms with a level of reliability better to that of actigraphy. Furthermore, it allows the evaluation of a patient's sleep-wake rhythm in his/her normal home environment, and at a much lower cost than PSG. Future studies in specific pathologies would verify the relevance of TAP in those conditions.

  7. Commissioning of an integrated platform for time-resolved treatment delivery in scanned ion beam therapy by means of optical motion monitoring.

    Science.gov (United States)

    Fattori, G; Saito, N; Seregni, M; Kaderka, R; Pella, A; Constantinescu, A; Riboldi, M; Steidl, P; Cerveri, P; Bert, C; Durante, M; Baroni, G

    2014-12-01

    The integrated use of optical technologies for patient monitoring is addressed in the framework of time-resolved treatment delivery for scanned ion beam therapy. A software application has been designed to provide the therapy control system (TCS) with a continuous geometrical feedback by processing the external surrogates tridimensional data, detected in real-time via optical tracking. Conventional procedures for phase-based respiratory phase detection were implemented, as well as the interface to patient specific correlation models, in order to estimate internal tumor motion from surface markers. In this paper, particular attention is dedicated to the quantification of time delays resulting from system integration and its compensation by means of polynomial interpolation in the time domain. Dedicated tests to assess the separate delay contributions due to optical signal processing, digital data transfer to the TCS and passive beam energy modulation actuation have been performed. We report the system technological commissioning activities reporting dose distribution errors in a phantom study, where the treatment of a lung lesion was simulated, with both lateral and range beam position compensation. The zero-delay systems integration with a specific active scanning delivery machine was achieved by tuning the amount of time prediction applied to lateral (14.61 ± 0.98 ms) and depth (34.1 ± 6.29 ms) beam position correction signals, featuring sub-millimeter accuracy in forward estimation. Direct optical target observation and motion phase (MPh) based tumor motion discretization strategies were tested, resulting in 20.3(2.3)% and 21.2(9.3)% median (IQR) percentual relative dose difference with respect to static irradiation, respectively. Results confirm the technical feasibility of the implemented strategy towards 4D treatment delivery, with negligible percentual dose deviations with respect to static irradiation.

  8. Water quality monitoring system for determination of ionic nutrients by ion-exclusion chromatography with spectrophotometric detection on cation- and anion-exchange resin columns using water eluent.

    Science.gov (United States)

    Kozaki, Daisuke; Nakatani, Nobutake; Mori, Masanobu; Nakagoshi, Nobukazu; Tanaka, Kazuhiko

    2012-07-01

    A unified ion-exclusion chromatography (IEC) system for monitoring anionic and cationic nutrients like NH4+, NO2-, NO3-, phosphate ion, silicate ion and HCO3- was developed and applied to several environmental waters. The IEC system consisted of four IEC methodologies, including the IEC with ultraviolet (UV) form connected with detection at 210 nm for determining NH4+ on anion-exchange separation column in OH anion-exchange UV-conversion column in I- form in tandem, the IEC with UV-detection at 210 nm for determining simultaneously NO3- and NO3- on cation-exchange separation column in H+ form, the IEC with UV-detection at 210 nm for determining HCO3- on cation-exchange separation column in H+ form connected with anion-exchange UV-conversion column in I- form in tandem, and the IEC with visible-detection based on molybdenum-blue reaction for determining simultaneously silicate and phosphate ions on cation-exchange separation column in H+ form. These IEC systems were combined through three manually-driven 6-port column selection valves to select each separation column to determine selectively the ionic nutrients. Using this sequential water quality monitoring system, the analytical performances such as calibration linearity, reproducibility, detection limit and recovery were also tested under the optimized chromatographic conditions. This novel water quality monitoring system has been applied successfully for the determination of the ionic eutrophication components in sub-urban river waters.

  9. Gas Chromatographic-Selected Ion Monitoring-Mass Spectrometric Determination of Cigarette Mainstream Smoke Components with Sensory Attributes

    Directory of Open Access Journals (Sweden)

    Coleman WM

    2014-12-01

    Full Text Available A new method has been developed that detects significant quantitative differences in the amounts of pyrazines, pyridines, furfurals, carboxylic acids, b-damascenone, sclareolide, and megastigmatrienones in the mainstream smoke of a series of five commercial cigarettes. This new quantitative method is based on the gas chromatographic-selected ion monitoring-mass spectrometric (GC-SIM-MS determination of the selected smoke constituents. The accuracy and precision of the approach were well within acceptable parameters with the majority of cases relative standard deviation (RSD values consistently around 5%. Sample preparation was simple requiring only the dissolution of the trapped particulate material in a known volume of methanol followed by injection of this clear dark colored solution into the gas chromatograph. This approach represents an advance in the technology in terms of higher sample throughput and less sample workup. Certain products demonstrated consistent trends in concentration of specific chemical classes. The mainstream smoke from a University of Kentucky reference cigarette, 2R4F, was included for reference purposes. These results are applicable in the overall evaluation of the components responsible for the taste associated with cigarette products.

  10. Thermodynamic model for electron emission and negative- and positive-ion formation in keV molecular collisions

    CERN Document Server

    Juhász, Zoltán

    2016-01-01

    A statistical-type model is developed to describe the ion production and electron emission in collisions of (molecular) ions with atoms. The model is based on the Boltzmann population of the bound electronic energy levels of the quasi molecule formed in the collision and the discretized continuum. The discretization of the continuum is implemented by a free electron gas in a box model assuming an effective square potential of the quasi molecule. The temperature of the electron gas is calculated by taking into account a thermodynamically adiabatic process due to the change of the effective volume of the quasi molecule as the system evolves. The system may undergo a transition with a small probability from the discretized continuum to the states of the complementary continuum. It is assumed that these states are decoupled from the thermodynamic time development. The decoupled states overwhelmingly determine the yield of the asymptotically observed fragment ions. The main motivation of this work is to describe t...

  11. An OpenMP Parallelisation of Real-time Processing of CERN LHC Beam Position Monitor Data

    CERN Document Server

    Renshall, H

    2012-01-01

    SUSSIX is a FORTRAN program for the post processing of turn-by-turn Beam Position Monitor (BPM) data, which computes the frequency, amplitude, and phase of tunes and resonant lines to a high degree of precision. For analysis of LHC BPM data a specific version run through a C steering code has been implemented in the CERN Control Centre to run on a server under the Linux operating system but became a real time computational bottleneck preventing truly online study of the BPM data. Timing studies showed that the independent processing of each BPMs data was a candidate for parallelization and the Open Multiprocessing (OpenMP) package with its simple insertion of compiler directives was tried. It proved to be easy to learn and use, problem free and efficient in this case reaching a factor of ten reductions in real-time over twelve cores on a dedicated server. This paper reviews the problem, shows the critical code fragments with their OpenMP directives and the results obtained.

  12. Thermal management and prototype testing of Compton scattering X-ray beam position monitor for the Advanced Photon Source Upgrade

    Science.gov (United States)

    Lee, S. H.; Yang, B. X.; Collins, J. T.; Ramanathan, M.

    2017-02-01

    Accurate and stable x-ray beam position monitors (XBPMs) are key elements in obtaining the desired user beam stability in the Advanced Photon Source Upgrade. In the next-generation XBPMs for the canted-undulator front ends, where two undulator beams are separated by 1.0 mrad, the lower beam power (cost solutions based on Compton scattering from a diamond placed edge-on to the x-ray beam. Because of the high peak power density of the x-ray beams, this diamond experiences high temperatures and has to be clamped to a water-cooled heat spreader using thermal interface materials (TIMs), which play a key role in reducing the temperature of the diamond. To evaluate temperature changes through the interface via thermal simulations, the thermal contact resistance (TCR) of TIMs at an interface between two solid materials under even contact pressure must be known. This paper addresses the TCR measurements of several TIMs, including gold, silver, pyrolytic graphite sheet, and 3D graphene foam. In addition, a prototype of a Compton-scattering XBPM with diamond blades was installed at APS Beamline 24-ID-A in May 2015 and has been tested. This paper presents the design of the Compton-scattering XBPM, and compares thermal simulation results obtained for the diamond blade of this XBPM by the finite element method with in situ empirical measurements obtained by using reliable infrared technology.

  13. 换流站内冷水中铝离子的监测%The monitor of Aluminum ion in cooling water of converter stations

    Institute of Scientific and Technical Information of China (English)

    田兴旺; 张蓬鹤; 吴巍; 乐文静

    2012-01-01

    All of the inside cooling water dispose system of DC project in converter stations exist the problem of serious canker and aggradation, according to a mass of analyzing, the scale formation of aluminum ion is serious, in order to prevent in time, it needs online monitoring. This paper mainly introduce the method about monitoring of Aluminum ion in cooling water of converter stations.%各换流站直流工程内冷水处理系统均存在严重的腐蚀和沉积问题,经多方面分析,铝离子结垢比较严重,需要通过在线监测来进行及时预防.本文主要介绍内冷水中铝离子的在线监测方法.

  14. Biological monitoring of occupational exposure to 1-bromopropane by means of urinalysis for 1-bromopropane and bromide ion.

    Science.gov (United States)

    Kawai, T; Takeuchi, A; Miyama, Y; Sakamto, K; Zhang, Z W; Higashikawa, K; Ikeda, M

    2001-01-01

    The purposes of the present study are (1) to develop a sensitive analytical method to measure 1-bromopropane (1-BP) in urine, (2) to examine if 1-BP or bromide ion (Br) in urine is a useful biomarker of exposure to 1-BP, and (3) to identify the lowest 1-BP exposure concentration the method thus established can biomonitor. A factory survey was carried out on Friday, and 33 workers (all men) in cleaning and painting workshops participated; each worker was equipped with a diffusive sampler (carbon cloth KF-1500 as an adsorbent) to monitor 1-BP vapour for an 8-h shift, and offered a urine sample at the end of the shift for measurement of 1-BP and Br in urine. In addition, 10 non-exposed men offered urine samples as controls. The performance of the carbon cloth diffusive sampler was examined to confirm that the sampler is suitable for monitoring time-weighted average 1-BP vapour exposure. A head-space GC technique was employed for analysis of 1-BP in urine, whereas Br in urine was analysed by ECD-GC after derivatization to methyl bromide. The workers were exposed to vapours of seven other solvents (i.e. toluene, xylenes, ethylbenzene, acetone, etc.) in addition to 1-BP vapour; the 1-BP vapour concentration was 1.4 ppm as GM and 28 ppm as the maximum. Multiple regression analysis however showed that 1-BP was the only variable that influenced urinary 1-BP significantly. There was a close correlation between 1-BP in urine and 1-BP in air; the correlation coefficient (r) was >0.9 with a narrow variation range, and the regression line passed very close to the origin so that 2 ppm 1-BP exposure can be readily biomonitored. The correlation of Br in urine with 1-BP in air was also significant, but the r (about 0.7) was smaller than that for 1-BP, and the background Br level was also substantial (about 8 mg l(-1)). Thus, it was concluded that 1-BP in end-of-shift urine is a reliable biomarker of occupational exposure to 1-BP vapour, and that Br in urine is less reliable.

  15. A Study on the Optimal Positions of ECG Electrodes in a Garment for the Design of ECG-Monitoring Clothing for Male.

    Science.gov (United States)

    Cho, Hakyung; Lee, Joo Hyeon

    2015-09-01

    Smart clothing is a sort of wearable device used for ubiquitous health monitoring. It provides comfort and efficiency in vital sign measurements and has been studied and developed in various types of monitoring platforms such as T-shirt and sports bra. However, despite these previous approaches, smart clothing for electrocardiography (ECG) monitoring has encountered a serious shortcoming relevant to motion artifacts caused by wearer movement. In effect, motion artifacts are one of the major problems in practical implementation of most wearable health-monitoring devices. In the ECG measurements collected by a garment, motion artifacts are usually caused by improper location of the electrode, leading to lack of contact between the electrode and skin with body motion. The aim of this study was to suggest a design for ECG-monitoring clothing contributing to reduction of motion artifacts. Based on the clothing science theory, it was assumed in this study that the stability of the electrode in a dynamic state differed depending on the electrode location in an ECG-monitoring garment. Founded on this assumption, effects of 56 electrode positions were determined by sectioning the surface of the garment into grids with 6 cm intervals in the front and back of the bodice. In order to determine the optimal locations of the ECG electrodes from the 56 positions, ECG measurements were collected from 10 participants at every electrode position in the garment while the wearer was in motion. The electrode locations indicating both an ECG measurement rate higher than 80.0 % and a large amplitude during motion were selected as the optimal electrode locations. The results of this analysis show four electrode locations with consistently higher ECG measurement rates and larger amplitudes amongst the 56 locations. These four locations were abstracted to be least affected by wearer movement in this research. Based on this result, a design of the garment-formed ECG monitoring platform

  16. Magnetically insulated baffled probe for real-time monitoring of equilibrium and fluctuating values of space potentials, electron and ion temperatures, and densities.

    Science.gov (United States)

    Demidov, V I; Koepke, M E; Raitses, Y

    2010-10-01

    By restricting the electron-collection area of a cold Langmuir probe compared to the ion-collection area, the probe floating potential can become equal to the space potential, and thus conveniently monitored, rather than to a value shifted from the space potential by an electron-temperature-dependent offset, i.e., the case with an equal-collection-area probe. This design goal is achieved by combining an ambient magnetic field in the plasma with baffles, or shields, on the probe, resulting in species-selective magnetic insulation of the probe collection area. This permits the elimination of electron current to the probe by further adjustment of magnetic insulation which results in an ion-temperature-dependent offset when the probe is electrically floating. Subtracting the floating potential of two magnetically insulated baffled probes, each with a different degree of magnetic insulation, enables the electron or ion temperature to be measured in real time.

  17. Ion pair-based liquid-phase microextraction combined with cuvetteless UV-vis micro-spectrophotometry as a miniaturized assay for monitoring ammonia in waters.

    Science.gov (United States)

    Senra-Ferreiro, Sonia; Pena-Pereira, Francisco; Costas-Mora, Isabel; Romero, Vanesa; Lavilla, Isela; Bendicho, Carlos

    2011-09-15

    A miniaturized method based on liquid-phase microextraction (LPME) in combination with microvolume UV-vis spectrophotometry for monitoring ammonia in waters is proposed. The methodology is based on the extraction of the ion pair formed between the blue indophenol obtained according to the Berthelot reaction and a quaternary ammonium salt into a microvolume of organic solvent. Experimental parameters affecting the LPME performance such as type and concentration of the quaternary ammonium ion salt required to form the ion pair, type and volume of extractant solvent, effect of disperser solvent, ionic strength and extraction time, were optimized. A detection limit of 5.0 μg L(-1) ammonia and an enrichment factor of 30 can be attained after a microextraction time of 4 min. The repeatability, expressed as relative standard deviation, was 7.6% (n=7). The proposed method can be successfully applied to the determination of trace amounts of ammonia in several environmental water samples.

  18. Environmental and biological monitoring of platinum-containing drugs in two hospital pharmacies using positive air pressure isolators.

    Science.gov (United States)

    Kopp, Bettina; Crauste-Manciet, Sylvie; Guibert, Agnès; Mourier, Wilhelmine; Guerrault-Moro, Marie-Noelle; Ferrari, Sylvie; Jomier, Jean-Yves; Brossard, Denis; Schierl, Rudolf

    2013-04-01

    Environmental and biological monitoring of platinum containing drugs was implemented in two French hospital pharmacies using positive air pressure isolators and having similar working procedures when preparing antineoplastic drugs. Wipe sampling of surfaces, gloves, and vials was performed in the preparation room and in storage areas. All employees involved in the preparation of antineoplastic drugs were tested for urinary platinum on Monday before work and Friday after shift. Only traces of platinum were detected on surfaces in the preparation room outside the isolators (less than 1.61 pg cm(-2)). However, in one center, significant contamination was found in the storage area of the drug vials, which can most likely be linked to the rupture of a platinum vial and due to inefficient cleaning procedures. Surfaces inside the isolators were found to be contaminated (maximum: 198.4 pg cm(-2)). A higher level of contamination was detected in one pharmacy and could be explained by the lack of overgloving with regular changes during the preparation process. Nitrile gloves used during drug handling outside the isolator showed the highest platinum concentration (maximum: 5.86 ng per pair). With regards to platinum urine concentration, no significant difference was found between exposed and unexposed pharmacy personnel. Isolator technology combined with individual protective measures seems to be efficient to protect workers from occupational exposure to antineoplastic drugs, whereas specific individual protective procedures implemented were focussing on the risk of handling vials outside the isolator (e.g. high frequency of glove changing). Moreover, overgloving inside the isolator would contribute to substantially decrease inner surface contamination and should be recommended in order to limit the transfer of chemical contamination to the end products.

  19. FY1995 study on the low energy reaction of Si surface with halogen atoms and positive and negative ions; 1995 nendo harogen genshi, sei/fu ion to Si hyomen hanno no teisonshoka kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For the damageless fabrication of nanometer-electronics devices, low energy and damage-free surface reactions have been investigated as follows. (1) Negative ion etching of silicon has been investigated in SF{sub 6} and Cl{sub 2} plasma. (2) To establish the self-limiting reaction process which is necessary to realize the atomically layer-by-layer etching, the initial reaction of fluorine (F) atoms and F{sub 2} molecules with hydrogen (H)-terminated Si (111) has been studied. In both SF{sub 6} and Cl{sub 2} plasma etching, the etching reactivity of negative ions was proved to be higher than those of positive ions, since negative ions are atomical like the radical. A notch-free etching of n+ poly-silicon with 0.3{mu}m L and S pattern was successfully obtained by an alternative irradiation of positive and negative ions in SF{sub 6} plasma. For SiO{sub 2} and other oxide etching with negative ions the high rate was observed but not with high selectivity. Negative ion-assisted Si oxidation was found to be one order faster than radical and thermal oxidations. Based on the ATR and XPS measurements, F atom/H-terminated Si(111) surface reaction has been revealed. First F radicals penetrates just underneath of the Si-H bond, generating the B{sub 2} peak. Further exposure appear the B{sub 3} peak which arises from the bonding of a F atom with a Si-H bond at the five-coordination state. However, more exposure of F atoms caused higher order SiF{sub x}(x=l,2,3) products. Hence, F{sub 2} gas which was less reactive than F atoms was investigated. It was found out that the exposure of 5 % F{sub 2}/He to H-terminated Si (111) reached a plateau value at 5{sub x}10{sup 5} L where terminated H atoms quite disappeared. The SiF monolayer corresponded exactly to an atomic layer of Si(111) was formed. This indicates that the self-limiting process for the Si/F system has been realized first. (NEDO)

  20. An Integrated Glucose Sensor with an All-Solid-State Sodium Ion-Selective Electrode for a Minimally Invasive Glucose Monitoring System

    Directory of Open Access Journals (Sweden)

    Junko Kojima

    2015-06-01

    Full Text Available We developed a minimally invasive glucose monitoring system that uses a microneedle to permeate the skin surface and a small hydrogel to accumulate interstitial fluid glucose. The measurement of glucose and sodium ion levels in the hydrogel is required for estimating glucose levels in blood; therefore, we developed a small, enzyme-fixed glucose sensor with a high-selectivity, all-solid-state, sodium ion-selective electrode (ISE integrated into its design. The glucose sensor immobilized glucose oxidase showed a good correlation between the glucose levels in the hydrogels and the reference glucose levels (r > 0.99, and exhibited a good precision (coefficient of variation = 2.9%, 0.6 mg/dL. In the design of the sodium ISEs, we used the insertion material Na0.33MnO2 as the inner contact layer and DD16C5 exhibiting high Na+/K+ selectivity as the ionophore. The developed sodium ISE exhibited high selectivity (\\( \\log \\,k^{pot}_{Na,K} = -2.8\\ and good potential stability. The sodium ISE could measure 0.4 mM (10−3.4 M sodium ion levels in the hydrogels containing 268 mM (10−0.57 M KCl. The small integrated sensor (ϕ < 10 mm detected glucose and sodium ions in hydrogels simultaneously within 1 min, and it exhibited sufficient performance for use as a minimally invasive glucose monitoring system.

  1. Development of a silicon detector monitor for the HIE-ISOLDE superconducting upgrade of the REX-ISOLDE heavy-ion linac

    CERN Document Server

    Zocca, F; Bravin, E; Pasini, M; Voulot, D; Wenander, F

    2012-01-01

    A silicon detector monitor has been developed and tested in the framework of the beam diagnostics development program for the HIE-ISOLDE superconducting upgrade of the REX-ISOLDE heavy-ion linac at CERN. The monitor is intended for beam energy and timing measurements aimed at the phase tuning of the superconducting cavities. Tests were performed with a stable ion beam, composed of carbon, oxygen and neon ions accelerated to energies from 300keV/u to 2.82MeV/u. The energy measurements performed allowed for beam spectroscopy and ion identification with a resolution of 1.4%-0.5% rms in the measured energy range. The achieved resolution is suited for a fast phase tuning of the cavities, which was demonstrated with the third REX 7-gap resonator. The time structure of the beam, characterised by a bunch period of 9.87ns, was measured with a resolution better than 200ps rms. This paper describes the results from all these tests and provides details of the detector set-up.

  2. Target-induced formation of gold amalgamation on DNA-based sensing platform for electrochemical monitoring of mercury ion coupling with cycling signal amplification strategy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jinfeng; Tang, Juan; Zhou, Jun; Zhang, Lan; Chen, Guonan; Tang, Dianping, E-mail: dianping.tang@fzu.edu.cn

    2014-01-31

    Graphical abstract: -- Highlights: •We report a new electrochemical sensing protocol for the detection of mercury ion. •Gold amalgamation on DNA-based sensing platform was used as nanocatalyst. •The signal was amplified by cycling signal amplification strategy. -- Abstract: Heavy metal ion pollution poses severe risks in human health and environmental pollutant, because of the likelihood of bioaccumulation and toxicity. Driven by the requirement to monitor trace-level mercury ion (Hg{sup 2+}), herein we construct a new DNA-based sensor for sensitive electrochemical monitoring of Hg{sup 2+} by coupling target-induced formation of gold amalgamation on DNA-based sensing platform with gold amalgamation-catalyzed cycling signal amplification strategy. The sensor was simply prepared by covalent conjugation of aminated poly-T{sub (25)} oligonucleotide onto the glassy carbon electrode by typical carbodiimide coupling. Upon introduction of target analyte, Hg{sup 2+} ion was intercalated into the DNA polyion complex membrane based on T–Hg{sup 2+}–T coordination chemistry. The chelated Hg{sup 2+} ion could induce the formation of gold amalgamation, which could catalyze the p-nitrophenol with the aid of NaBH{sub 4} and Ru(NH{sub 3}){sub 6}{sup 3+} for cycling signal amplification. Experimental results indicated that the electronic signal of our system increased with the increasing Hg{sup 2+} level in the sample, and has a detection limit of 0.02 nM with a dynamic range of up to 1000 nM Hg{sup 2+}. The strategy afforded exquisite selectivity for Hg{sup 2+} against other environmentally related metal ions. In addition, the methodology was evaluated for the analysis of Hg{sup 2+} in spiked tap-water samples, and the recovery was 87.9–113.8%.

  3. Ionization cross-sections for the production of positive ions from H2O by electron impact

    Science.gov (United States)

    Rao, M. V. V. S.; Iga, I.; Srivastava, S. K.

    1995-01-01

    Water is present in the atmospheres of 6 of the 9 planets. Cross section values for the direct and partial ionization of H2O by electron impact have been measured and compared with previously published data. The present measurements have been carried out from thresholds to 1 KeV by utilizing a crossed electron beam and molecular beam collision geometry and an improved ion extraction technique.

  4. Unusual odd-electron fragments from even-electron protonated prodiginine precursors using positive-ion electrospray tandem mass spectrometry.

    Science.gov (United States)

    Chen, Kan; Rannulu, Nalaka S; Cai, Yang; Lane, Pat; Liebl, Andrea L; Rees, Bernard B; Corre, Christophe; Challis, Gregory L; Cole, Richard B

    2008-12-01

    Reports of anticancer and immunosuppressive properties have spurred recent interest in the bacterially produced prodiginines. We use electrospray tandem mass spectrometry (ES-MS/MS) to investigate prodigiosin, undecylprodiginine, and streptorubin B (butyl-meta-cycloheptylprodiginine) and to explore their fragmentation pathways to explain the unusual methyl radical loss and consecutive fragment ions that dominate low-energy collision-induced dissociation (CID) mass spectra. The competition between the formation of even-electron ions and radical ions is examined in detail. Theoretical calculations are used to optimize the structures and calculate the energies of both reactants and products using the Gaussian 03 program. Results indicate that protonation occurs on the nitrogen atom that initially held no hydrogen, thus allowing formation of a pseudo-seven-membered ring that constitutes the most stable ground state [M + H](+) structure. From this precursor, experimental data show that methyl radical loss has the lowest apparent threshold but, alternatively, even-electron fragment ions can be formed by loss of a methanol molecule. Computational modeling indicates that methyl radical loss is the more endothermic process in this competition, but the lower apparent threshold associated with methyl radical loss points to a lower kinetic barrier. Additionally, this characteristic and unusual loss of methyl radical (in combination with weaker methanol loss) from each prodiginine is useful for performing constant neutral loss scans to quickly and efficiently identify all prodiginines in a complex biological mixture without any clean-up or purification. The feasibility of this approach has been proven through the identification of a new, low-abundance prodigiosin analog arising from Hahella chejuensis.

  5. An improved pseudotargeted metabolomics approach using multiple ion monitoring with time-staggered ion lists based on ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yang; Liu, Fang; Li, Peng; He, Chengwei; Wang, Ruibing; Su, Huanxing; Wan, Jian-Bo, E-mail: jbwan@umac.mo

    2016-07-13

    Pseudotargeted metabolomics is a novel strategy integrating the advantages of both untargeted and targeted methods. The conventional pseudotargeted metabolomics required two MS instruments, i.e., ultra-high performance liquid chromatography/quadrupole-time- of-flight mass spectrometry (UHPLC/Q-TOF MS) and UHPLC/triple quadrupole mass spectrometry (UHPLC/QQQ-MS), which makes method transformation inevitable. Furthermore, the picking of ion pairs from thousands of candidates and the swapping of the data between two instruments are the most labor-intensive steps, which greatly limit its application in metabolomic analysis. In the present study, we proposed an improved pseudotargeted metabolomics method that could be achieved on an UHPLC/Q-TOF/MS instrument operated in the multiple ion monitoring (MIM) mode with time-staggered ion lists (tsMIM). Full scan-based untargeted analysis was applied to extract the target ions. After peak alignment and ion fusion, a stepwise ion picking procedure was used to generate the ion lists for subsequent single MIM and tsMIM. The UHPLC/Q-TOF tsMIM MS-based pseudotargeted approach exhibited better repeatability and a wider linear range than the UHPLC/Q-TOF MS-based untargeted metabolomics method. Compared to the single MIM mode, the tsMIM significantly increased the coverage of the metabolites detected. The newly developed method was successfully applied to discover plasma biomarkers for alcohol-induced liver injury in mice, which indicated its practicability and great potential in future metabolomics studies. - Highlights: • An UHPLC/Q-TOF tsMIM MS-based pseudotargeted metabolomics was proposed. • Compared to full scan, the improved method exhibits better repeatability and a wider linear range. • The proposed method could achieve pseudotargeted analysis on one UHPLC/Q-TOF/MS instrument. • The developed method was successfully used to discover biomarkers for alcohol-induced liver injury.

  6. Hydrothermal synthesis of LiMn2O4 onto carbon fiber paper current collector for binder free lithium-ion battery positive electrodes

    Science.gov (United States)

    Waller, Gordon Henry; Lai, Samson Yuxiu; Rainwater, Ben Harris; Liu, Meilin

    2014-04-01

    Concerns over the safety and high cost of lithium ion batteries, especially those containing cobalt-based active materials, limit their use to applications where energy density requirements cannot be met by any other materials. Manganese-spinel based positive electrode materials represent a promising candidate for lithium ion batteries because of their lower cost, lower toxicity, and greater resistance to thermal runaway than cobalt-based active materials. Although LiMn2O4 has a well-known issue of capacity fading, investigations into nanostructured composites composed of surface modified spinel phases have demonstrated outstanding performance, suggesting that LiMn2O4 has potential to be a viable positive electrode for safe, inexpensive, high power, and long lifetime lithium-ion batteries. Here we report a low-temperature hydrothermal process for growth of conformal coatings of highly crystalline LiMn2O4 directly onto a carbon fiber current collector, completely eliminating the process steps and materials associated with the conventional tape casting approach (binders, solvents, and metal foils). The prepared electrodes tested at a rate of 1 C showed an initial discharge capacity of 125 mAh g-1 and an average energy efficiency of 92.4% over 100 cycles.

  7. Inelastic collisions of positrons with positive ions: A coupled-static treatment with an application to e +-Be + and e +-Mg + scattering

    Science.gov (United States)

    Abdel-Raouf, Mohamed Assad

    1988-07-01

    The inelastic collisions of positrons with positive ions are treated for the first time within the framework of the coupled-static and frozen-core approximations. The method is used for calculating partial and total cross sections of the inelastic scattering of positrons by beryllium and magnesium positive ions with the assumption that only two channels (the elastic and rearrangement ones), are opened. The calculations are carried out, in each case, for eight values of the total angular momentum l(0⩽ l⩽7), at 29 values of the incident energy lying above the positronium formation thresholds (i.e. above 11.32 eV in e +-Be + scattering and above 7.923 eV in e +-Mg + scattering). In both cases the effect of "switching on" the polarisation potential of the positroniums on their coupled-static cross sections is investigated. Although the resulting positronium formation cross sections are smaller than the elastic ones, their large values should draw the attention of experimental and theoretical physicists to the field of positron-ion collisions.

  8. Development of a Propagating Millimeter-Wave Beam Position and Profile Monitor in the Oversize Corrugated Waveguide Used in an ECRH System

    Science.gov (United States)

    Shimozuma, Takashi; Kobayashi, Sakuji; Ito, Satoshi; Ito, Yasuhiko; Kubo, Shin; Yoshimura, Yasuo; Nishiura, Masaki; Igami, Hiroe; Takahashi, Hiromi; Mizuno, Yoshinori; Okada, Kohta; Mutoh, Takashi

    2016-01-01

    In a high-power electron cyclotron resonance heating (ECRH) system for plasma heating, a long-distance and low-loss transmission system of the millimeter wave is required. A real-time monitor of the millimeter-wave beam position and its intensity profile, which can be used in a high-power, evacuated, and cooled transmission line, is proposed, designed, manufactured, and tested. The beam-position and profile monitor (BPM) consists of a reflector, Peltier-device array, and a heat-sink, which is installed in the reflector-plate of a miterbend. The BPM was tested using both simulated electric heater power and high-power gyrotron output power. The profile obtained from the monitor using the gyrotron output was well agreed with the burn patter on a thermal sensitive paper. Methods of data analysis and mode-content analysis of a propagating millimeter-wave in the corrugated waveguide are proposed.

  9. 全自动阵列离子迁移谱仪连续监测挥发性有机化合物%Automatic Continuous Monitoring of Volatile Organic Compounds Using Ion Mobility Spectrometer Array

    Institute of Scientific and Technical Information of China (English)

    周庆华; 李海洋; 仓怀文; 鞠帮玉; 李林; 杜永斋; 陈创; 侯可勇; 李京华; 王卫国

    2011-01-01

    An ion mobility spectrometer array was designed,in order to broaden the detection range of ion mobility spectrometer and improve the accuracy of compound identification.This instrument was based on the combination of ionization sources of 63Ni positive ion mode,63Ni negative ion mode and photoionization mode with vacuum UV lamp,and it can continuously monitor the volatile organic compounds in air.With the automatic system of sampling and injection of this instrument,the positive ion of dimethyl sulfoxide and negative ion of dichloromethane were detected simultaneously.By comprehensive analysis of spectra with ion mobility spectrometer array,acrylonitrile,m-xylene and acetone were identified,which were difficult to be distinguished under the63Ni positive ion mode.Acetone samples were determined quantitatively within four days continuously,and the results indicated that the linear range of acetone in this instrument was 2 orders of magnitude.The linear correlation coefficient R was higher than 0.995,and the relative standard deviations were controlled in the range of 4.0%-18.3%.Methacrylate leaked in simulation was monitored on-line for 24 h continuously,using the method of dynamic tracking,and the result showed the leaking time and the concentration of methacrylate directly.%为了拓宽离子迁移谱仪的检测范围、提高化合物的识别准确度,研制了一套阵列离子迁移谱仪,该仪器基于63 Ni源正离子模式、63Ni源负离子模式和真空紫外灯光电离模式的组合电离源,可以连续监测空气中挥发性有机化合物.仪器采用全自动的采样进样系统,同时检测了二甲基亚砜的正离子和二氯甲烷的负离子,实现了正负离子的同时检测.通过对阵列离子迁移谱图的综合解析,识别了63Ni源正离子模式下难以鉴别的丙烯腈、间二甲苯和丙酮.连续4 d定量测定丙酮样品,结果表明仪器对丙酮的线性检测范围为2个数量级,线性相关系数R优于0.995,

  10. The 4-pyridylmethyl ester as a protecting group for glutamic and aspartic acids: 'flipping' peptide charge states for characterization by positive ion mode ESI-MS.

    Science.gov (United States)

    Garapati, Sriramya; Burns, Colin S

    2014-03-01

    Use of the 4-pyridylmethyl ester group for side-chain protection of glutamic acid residues in solid-phase peptide synthesis enables switching of the charge state of a peptide from negative to positive, thus making detection by positive ion mode ESI-MS possible. The pyridylmethyl ester moiety is readily removed from peptides in high yield by hydrogenation. Combining the 4-pyridylmethyl ester protecting group with benzyl ester protection reduces the number of the former needed to produce a net positive charge and allows for purification by RP HPLC. This protecting group is useful in the synthesis of highly acidic peptide sequences, which are often beset by problems with purification by standard RP HPLC and characterization by ESI-MS.

  11. Water quality monitoring system for determination of ionic nutrients by ion-exclusion chromatography with spectrophotometric detection on cationand anion-exchange resin columns using water eluent

    Institute of Scientific and Technical Information of China (English)

    Daisuke KOZAKI; Nobutakc NAKATANI; Masanobu MORI; Nobukazu NAKAGOSHI; Kazuhiko TANAKA

    2012-01-01

    A unified ion-exclusion chromatography(IEC)system for monitoring anionic and cationic nutrients like NH+4,NO-2,NO-3,phosphate ion,silicate ion and HCO-3 was developed and applied to several environmental waters.The IEC system consisted of four IEC methodologies,including the IEC with ultraviolet(UV)detection at 210 nm for determining NH-4 on anion-exchange separation column in OH form connected with anion-exchange UV-conversion column in I-form in tandem,the IEC with UV-detection at 210 nm for determining simultaneously NO-2 and NO-3 on cation-exchange separation column in H+ form,the IEC with UV-detection at 210 nm for determining HCO-3 on cation-exchange separation column in H+ form connected with anionexchange UV-conversion column in I-form in tandem,and the IEC with visible-detection based on molybdenum-blue reaction for determining simultaneously silicate and phosphate ions on cation-exchange separation column in H + form.These IEC systems were combined through three manually-driven 6-port column selection valves to select each separation column to determine selectively the ionic nutrients.Using this sequential water quality monitoring system,the analytical performances such as calibration linearity,reproducibility,detection limit and recovery were also tested under the optimized chromatographic conditions.This novel water quality monitoring system has been applied successfully for the determination of the ionic eutrophication components in sub-urban river waters.

  12. Application of simultaneous determination of inorganic ionic species by advanced ion chromatography for water quality monitoring of river water and wastewater

    Institute of Scientific and Technical Information of China (English)

    Nobutake NAKATANI; Daisuke KOZAKI; Kazuhiko TANAKA

    2012-01-01

    In this study,our recent work on advanced ion chromatographic methods for the simultaneous determination of inorganic ionic species such as common anions ( SO42 -,Cl- and NO3- ) and cations (Na+,NH4+,K+,Mg2+,and Ca2 + ),nutrients ( phosphate and silicate) and hydrogen ion/alkalinity are summarized first.Then,the applications using these methods for monitoring environmental water quality are also presented.For the determination of common anions and cations with nutrients,the separation was successfully performed by a polymethacrylate-based weakly acidic cation-exchange column of TSKgel Super IC-A/C ( Tosoh,150 mm x 6.0 mm i.d.) and a mixture solution of 100 mmol/L ascorbic acid and 4 mmol/L 18-crown-6 as acidic eluent with dual detection of conductivity and spectrophotometry.For the determination of hydrogen ion/alkelinity,the separation was conducted by TSKgel ODS-100Z column (Tosoh,150 mm ×4.5 mm i.d.) modified with lithium dodecylsulfate and an eluent of 40 mmol/L LiCl/0.1 mmol/L lithium dodecylsulfate/0.05 mmol/L H2SO4 with conductivity detector.The differences of ion concentration between untreated and treated wastewater showed the variation of ionic species during biological treatment process in a sewage treatment plant.Occurrence and distribution of water-quality conditions were related to the bioavailability and human activity in watershed.From these results,our advanced ion chromatographic methods have contributed significantly for water quality monitoring of environmental waters.

  13. Peak position differences observed during XPS sputter depth profiling of the SEI on lithiated and delithiated carbon-based anode material for Li-ion batteries

    Science.gov (United States)

    Oswald, S.; Hoffmann, M.; Zier, M.

    2017-04-01

    The ability of delivering chemical information from peak shift phenomena has ever since made X-ray photoelectron spectroscopy (XPS) an ideal tool for material characterization in Li-ion batteries (LIB). Upon investigation, charging is inevitable as most of the chemical species involved are non-conducting. Thus, the binding energy (BE) scale must be corrected to allow an accurate interpretation of the results. This is usually done using the peak position of the ubiquitous surface carbon contamination detectable for all Li-ion battery relevant materials. We herein report on the occurrence of peak shift phenomena that can be observed when investigating surface layers on graphite anodes using sputter depth-profiling. These shifts, however, are not related to classical static electric charging, but are depending on the state of charge (lithiation) of the anode material. The observations presented are in agreement with previous findings on other Li-containing materials and are obviously caused by the presence of Li in its elemental state. As aging and failure mechanisms in LIBs are closely linked to electrolyte reaction products on electrode surfaces it is of high importance to draw the correct conclusions on their chemical origin from XP spectra. In order to avoid misinterpretation of the BE positions, implanted Ar can be used for identification of relevant peak positions and species involved in the phenomena observed.

  14. Characterization of ions at Alpine waterfalls

    Directory of Open Access Journals (Sweden)

    P. Kolarž

    2011-09-01

    Full Text Available During a three-year field campaign of measuring waterfall generated ions, we monitored five different waterfalls in the Austrian Alps. Most measurements were performed at the Krimml waterfall (Salzburg, which is the biggest and most visited one in Europe and the Gartl waterfall (Mölltal, Carinthia. Smallest ion sizes (0.9–2 nm were measured with a cylindrical air ion detector (CDI-06 while ion sizes from 5.5 to 350 nm were measured using a modified Grimm SMPS aerosol spectrometer. Measurements showed high negative ion gradients nearby waterfalls whereas positive ions showed only a moderate increase. The most abundant sizes of nano-sized and sub-micrometer ions measured were at 2 nm and of the larger and heavier ones at 120 nm.

  15. Alternative uses of a megavolt tandem accelerator for few-keV studies with ion-source SIMS monitoring

    Science.gov (United States)

    Mello, S. L. A.; Codeço, C. F. S.; Magnani, B. F.; Sant'Anna, M. M.

    2016-06-01

    We increase the versatility of a tandem electrostatic accelerator by implementing simple modifications to the standard operation procedure. While keeping its ability to deliver MeV ion beams, we show that the experimental setup can (i) provide good quality ion beams in the few-keV energy range and (ii) be used to study ion-beam surface modification with simultaneous secondary ion mass spectrometry. This latter task is accomplished without using any chamber connected to the accelerator exit. We perform mass spectrometry of the few-keV anions produced in the ion source by measuring their neutral counterparts at the accelerator exit with energies up to 1.7 MeV. With an additional modification, a high-current few-keV regime is obtained, using the ion source as an irradiation chamber and the accelerator itself only as a mass spectrometer. As an example of application, we prepare a sample for the study of ion-beam assisted dewetting of a thin Au film on a Si substrate.

  16. G-SIMS-FPM: Molecular structure at surfaces—a combined positive and negative secondary ion study

    Science.gov (United States)

    Gilmore, I. S.; Green, F. M.; Seah, M. P.

    2006-07-01

    G-SIMS is an easy to use method that considerably simplifies complex static SIMS spectra. The G-SIMS peaks relate directly to the parent molecular structure and so provide a library independent method for direct interpretation and identification. For larger molecules (>100 u) the mass alone may be insufficient to identify the molecule unambiguously. A development of G-SIMS, G-SIMS-fragmentation pathway mapping (FPM), solves this problem. G-SIMS-FPM allows the molecular structure to be re-assembled by following fragmentation pathways as the G-SIMS surface plasma temperature is varied. In this study, we develop the inclusion of negative secondary ion fragmentation data to provide a more complete analysis. This approach is exampled with data for complex molecules of Irganox 1010 and folic acid.

  17. Real-time air monitoring of mustard gas and Lewisite 1 by detecting their in-line reaction products by atmospheric pressure chemical ionization ion trap tandem mass spectrometry with counterflow ion introduction.

    Science.gov (United States)

    Okumura, Akihiko; Takada, Yasuaki; Watanabe, Susumu; Hashimoto, Hiroaki; Ezawa, Naoya; Seto, Yasuo; Sekiguchi, Hiroshi; Maruko, Hisashi; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Kondo, Tomohide; Nagashima, Hisayuki; Nagoya, Tomoki

    2015-01-20

    A new method enabling sensitive real-time air monitoring of highly reactive chemical warfare agents, namely, mustard gas (HD) and Lewisite 1 (L1), by detecting ions of their in-line reaction products instead of intact agents, is proposed. The method is based on corona discharge-initiated atmospheric pressure chemical ionization coupled with ion trap tandem mass spectrometry (MS(n)) via counterflow ion introduction. Therefore, it allows for highly sensitive and specific real-time detection of a broad range of airborne compounds. In-line chemical reactions, ionization reactions, and ion fragmentations of these agents were investigated. Mustard gas is oxygenated in small quantity by reactive oxygen species generated in the corona discharge. With increasing air humidity, the MS(2) signal intensity of protonated molecules of mono-oxygenated HD decreases but exceeds that of dominantly existing intact HD. This result can be explained in view of proton affinity. Lewisite 1 is hydrolyzed and oxidized. As the humidity increases from zero, the signal of the final product, namely, didechlorinated, dihydroxylated, and mono-oxygenated L1, quickly increases and reaches a plateau, giving the highest MS(2) and MS(3) signals among those of L1 and its reaction products. The addition of minimal moisture gives the highest signal intensity, even under low humidity. The method was demonstrated to provide sufficient analytical performance to meet the requirements concerning hygienic management and counter-terrorism. It will be the first practical method, in view of sensitivity and specificity, for real-time air monitoring of HD and L1 without sample pretreatment.

  18. Solid phase extraction and trace monitoring of cadmium ions in environmental water and food samples based on modified magnetic nanoporous silica

    Energy Technology Data Exchange (ETDEWEB)

    Omidi, Fariborz [Department of Occupational Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud (Iran, Islamic Republic of); Behbahani, Mohammad, E-mail: mohammadbehbahai89@yahoo.com [Department of Chemistry, Shahid Beheshti University, Evin, Tehran (Iran, Islamic Republic of); Kalate Bojdi, Majid [Faculty of Chemistry, Kharazmi (Tarbiat Moallem) University, Tehran (Iran, Islamic Republic of); Shahtaheri, Seyed Jamaleddin [Department of Occupational Health Engineering, School of Public Health and Institute for Environmental Research, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2015-12-01

    A new method has been developed for trace separation/preconcentration of cadmium ions using pyridine-functionalized magnetic nanoporous silica material (called Py-Fe{sub 3}O{sub 4}@MCM-41) as a new magnetic sorbent and their determination by flame atomic absorption spectrometry (FAAS). The Py-Fe{sub 3}O{sub 4}@MCM-41 sorbent was characterized by thermogravimetric analysis, differential thermal analysis, transmission electron microscopy, Fourier transform infrared spectrometry and X-ray diffraction. The modified Fe{sub 3}O{sub 4}@MCM-41 can be easily separated from an aqueous solution by applying an external magnetic field. Effects of pH, amount of functionalized Fe{sub 3}O{sub 4}@MCM-41, extraction time, type and quantity of eluent, desorption time, and interfering ions on the extraction efficiency were evaluated and optimized. Under the optimized conditions, the detection limit and relative standard deviation was 0.04 μg L{sup –1} and 2.9%, respectively and the maximum adsorption capacity of the synthesized sorbent for cadmium ions was 154 mg g{sup −1}. The proposed method has been applied to the determination of Cd ions at trace levels in real samples such as, rice, onion, carrot, lettuce, parsley, basil, tap water, river water and seawater with satisfactory results. - Highlights: • The introducing of modified magnetic mesoporous silica as a novel magnetic sorbent. • Trace monitoring of cadmium ions. • The limit of detection (LOD) by the proposed solid phase extraction method was 0.04 ng mL{sup −1} for the cadmium ions. • High surface areas and magnetic characteristic of the sorbent. • Maximum adsorption capacity of the sorbent was 154 mg g{sup −1}.

  19. Simultaneous monitoring of the radial modes of the ion motion and their manipulation in Penning traps by FT-ICR mass spectrometry

    CERN Document Server

    Breitenfeldt, M; Herlert, A; Marxa, G; Schweikhard, L

    2007-01-01

    It is demonstrated how FT-ICR MS can be used to monitor both the coherent magnetron motion and the cyclotron motion of ions stored in a Penning trap. By use of the ICR signal intensity at the magnetron frequency, ν−, and the reduced cyclotron frequency, ν+, the manipulation of the ion motion by dipolar, quadrupolar, and octupolar excitation has been followed. In particular, the conversion between the magnetron and the cyclotron motion by quadrupolar and octupolar excitation at the corresponding resonance frequencies νc = ν+ + ν− and 2νc, respectively, has been observed by detection of the magnetron and the cyclotron signal. While the ion motion under the influence of a quadrupolar excitation has already been studied extensively, the octupolar excitation has been introduced only recently. As compared to other techniques, such as the time-of-flight ion-cyclotron-resonance detection method, FT-ICR MS allows to simultaneously investigate the influence of an excitation on the cyclotron und the magnetron ...

  20. Leakage correction estimate for electret ion chamber dielectric material used for long-term environmental gamma monitoring.

    Science.gov (United States)

    Jones, David F; Paulus, L R

    2008-05-01

    The Idaho Department of Environmental Quality INL Oversight Program (DEQ-INL) operates an environmental gamma radiation detection network consisting of a series of high-pressure ion chambers to provide real-time ambient radiation measurements and a series of passive environmental electret ion chambers to increase coverage area and measure cumulative dose over a calendar quarter. DEQ-INL has identified a consistent over-response of approximately 40% by the electret ion chambers with respect to co-located high-pressure ion chambers since 1998. DEQ-INL conducted a series of three investigations to quantify this over-response. The over-response is likely attributable to a number of factors, including inherent voltage loss by the electret material not due to ionization within the chamber. One aspect of the investigation verified the manufacturer's calibration factor used to convert decrease in voltage to exposure. Additional investigations were performed that identified an average electret voltage loss of 0.2 V d(-1). When this voltage correction was applied to historical environmental data, electret ion chamber response was within 10% of the co-located high-pressure ion chamber response.

  1. SU-E-J-62: Breath Hold for Left-Sided Breast Cancer: Visually Monitored Deep Inspiration Breath Hold Amplitude Evaluated Using Real-Time Position Management

    Energy Technology Data Exchange (ETDEWEB)

    Conroy, L; Quirk, S; Smith, WL [The University of Calgary, Calgary, AB (Canada); Tom Baker Cancer Centre, Calgary, AB (Canada); Yeung, R; Phan, T [The University of Calgary, Calgary, AB (Canada); Hudson, A [Tom Baker Cancer Centre, Calgary, AB (Canada)

    2015-06-15

    Purpose: We used Real-Time Position Management (RPM) to evaluate breath hold amplitude and variability when gating with a visually monitored deep inspiration breath hold technique (VM-DIBH) with retrospective cine image chest wall position verification. Methods: Ten patients with left-sided breast cancer were treated using VM-DIBH. Respiratory motion was passively collected once weekly using RPM with the marker block positioned at the xiphoid process. Cine images on the tangent medial field were acquired on fractions with RPM monitoring for retrospective verification of chest wall position during breath hold. The amplitude and duration of all breath holds on which treatment beams were delivered were extracted from the RPM traces. Breath hold position coverage was evaluated for symmetric RPM gating windows from ± 1 to 5 mm centered on the average breath hold amplitude of the first measured fraction as a baseline. Results: The average (range) breath hold amplitude and duration was 18 mm (3–36 mm) and 19 s (7–34 s). The average (range) of amplitude standard deviation per patient over all breath holds was 2.7 mm (1.2–5.7 mm). With the largest allowable RPM gating window (± 5 mm), 4 of 10 VM-DIBH patients would have had ≥ 10% of their breath hold positions excluded by RPM. Cine verification of the chest wall position during the medial tangent field showed that the chest wall was greater than 5 mm from the baseline in only 1 out of 4 excluded patients. Cine images verify the chest wall/breast position only, whether this variation is acceptable in terms of heart sparing is a subject of future investigation. Conclusion: VM-DIBH allows for greater breath hold amplitude variability than using a 5 mm gating window with RPM, while maintaining chest wall positioning accuracy within 5 mm for the majority of patients.

  2. Simultaneous monitoring of superoxides and intracellular calcium ions in neutrophils by chemiluminescence and fluorescence: evaluation of action mechanisms of bioactive compounds in foods.

    Science.gov (United States)

    Kazumura, Kimiko; Sato, Yukiko; Satozono, Hiroshi; Koike, Takashi; Tsuchiya, Hiroshi; Hiramatsu, Mitsuo; Katsumata, Masakazu; Okazaki, Shigetoshi

    2013-10-01

    We have developed a measuring system for simultaneous monitoring of chemiluminescence and fluorescence, which indicate respectively, (i) generation of superoxide anion radicals (O2(-•)) and (ii) change in the intracellular calcium ion concentration ([Ca(2+)]i) of neutrophils triggered by the mechanism of innate immune response. We applied this measuring system for establishing a method to distinguish between anti-inflammatory actions and antioxidant actions caused by bioactive compounds. We evaluated anti-inflammatory agents (zinc ion [Zn(2+)] and ibuprofen) and antioxidants (superoxide dismutase [SOD] and ascorbic acid). It was shown that ibuprofen and Zn(2+) were anti-inflammatory while SOD and ascorbic acid were anti-oxidative. We conclude that it is possible to determine the mechanism of action of bioactive compounds using this method.

  3. DESIGN AND INITIAL RESULTS OF A TURN-BY-TURN BEAM POSITION MONITORING SYSTEM FOR MULTIPLE BUNCH OPERATION OF THE ATF DAMPING RING

    CERN Document Server

    Christian, G B; Bett, D R; Burrows, P N; Davis, M R; Gerbershagen, A; Perry, C; Constance, B; Resta-Lopez, J

    2011-01-01

    An FPGA-based monitoring system has been developed to study multi-bunch beam instabilities in the damping ring (DR) of the KEK Accelerator Test Facility (ATF), utilising a stripline beam position monitor (BPM) and existing BPM processor hardware. The system is designed to record the horizontal and/or vertical positions of up to three bunches in the DR in single-bunch multi-train mode or the head bunch of up to three trains in multi-bunch mode, with a bunch spacing of 5.6 ns. The FPGA firmware and data acquisition software were modified to record turn-by-turn data for up to six channels and 1–3 bunches in the DR. An overview of the system and initial results will be presented.

  4. Evaluation of lithium ion cells with titanate negative electrodes and iron phosphate positive electrode for start-stop applications

    Science.gov (United States)

    Wang, John S.; Liu, Ping; Soukiazian, Souren; Tataria, Harshad; Dontigny, Martin; Guerfi, Abdelbast; Zaghib, Karim; Verbrugge, Mark W.

    2014-06-01

    Start-stop systems require the battery to provide high power, endure shallow cycling, and exhibit long cycle life. The LFP/LTO (lithium iron phosphate/lithium titanate) battery is a potential candidate to meet such requirements because, at room temperature, both materials can be operated at high rate and have good stability (calendar and cycle life). In this work, we have investigated the feasibility of using LixFePO4/Li4+3yTi5O12 (0 < x < 1, 0 < y < 1) lithium ion batteries for start-stop systems. We evaluate both the rate and temperature dependence of LFP/LTO cells subjected to galvanostatic charge/discharge cycling. Excellent rate performance was observed at temperatures above or at ambient. However, at low temperatures, significant resistance is observed, and this must be addressed for the LFP/LTO system to be viable. In addition, we investigate the SOC dependence of equivalent circuit parameters using triangular current and voltage excitation method to facilitate the implementation of circuit-based control algorithms for vehicle applications. Parameter values are nearly constant over the broad voltage-plateau region of the substantially two-phase behavior of both the LFP and LTO materials.

  5. Li2CuVO4: A high capacity positive electrode material for Li-ion batteries

    Science.gov (United States)

    Ben Yahia, Hamdi; Shikano, Masahiro; Yamaguchi, Yoichi

    2016-07-01

    The new compound Li2CuVO4 was synthesized by a solid state reaction route, and its crystal structure was determined from single crystal X-ray diffraction data. Li2CuVO4 was characterized by galvanometric cycling, cycle voltammetry, and electrochemical impedance spectroscopy. The structure of Li2CuVO4 is isotypic to Pmn21-Li3VO4. It can be described as a disordered wurtzite structure with rows of Li1/Cu1 atoms alternating with rows of (Li2/Cu2)-V-(Li2/Cu2) atoms along [100]. All cations are tetrahedrally coordinated. The lithium and copper atoms are statistically disordered over two crystallographic sites. The electrochemical cycling between 2.0 and 4.7 V indicates that almost two lithium atoms could be extracted and re-intercalated. This delivers a maximum discharge capacity of 257 mA h g-1 at a C/50 rate (theoretical capacity = 139 mA h g-1 for one lithium). Li2CuVO4 shows also high rate capability with a capacity of 175 mA h g-1 at 1C rate. This demonstrates that Cu-based compounds can be very interesting as electrodes for Li-ion batteries if Cu-dissolution is avoided.

  6. Critical analysis of the positioning of monitoring system of the cyclotron accelerator; Analise critica do posicionamento de um sistema de monitoramento de acelerador Ciclotron

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Julia A.; Passaro, Bruno M.; Guimaraes, Maria Ines C.C.; Buchpigue, Carlos A. [Centro de Medicina Nuclear (CMN) do InRad HCFMUSP, Sao Paulo, SP (Brazil); Videira, Heber S., E-mail: heber@cyclopet.com [CYCLOPET Radiofarmacos LTDA., Curitiba, PR (Brazil)

    2012-08-15

    Ever since the first concerns arose about the possibility that the ionizing radiation induced detriment to human health, were created the methods of production, characterization and measurement of radiation, as well as definition of quantities that realistically express its interaction with human tissue. From this point, the monitoring program of the installation of a cyclotron must be continuously performed and contain the critical points of contamination according to the CNEN standard N.E. 3.02 - Radioprotection Service to avoid contamination and maintain radioactive exposure rates as low as reasonably achievable. The results obtained during the analysis showed that the positioning of monitors is suitable, except for the physico-chemical control laboratory monitors, which were installed next to the chapel of manipulation and below the dose calibrator. The answer obtained from the monitoring system in the position that the ionization chamber is in the door of the bunker should be taken into account, because the intensity of radiation emitted by the activation of the targets is slightly attenuated by the cyclotron. (author)

  7. Characterization of a multi-user indoor positioning system based on low cost depth vision (Kinect) for monitoring human activity in a smart home.

    Science.gov (United States)

    Sevrin, Loïc; Noury, Norbert; Abouchi, Nacer; Jumel, Fabrice; Massot, Bertrand; Saraydaryan, Jacques

    2015-01-01

    An increasing number of systems use indoor positioning for many scenarios such as asset tracking, health care, games, manufacturing, logistics, shopping, and security. Many technologies are available and the use of depth cameras is becoming more and more attractive as this kind of device becomes affordable and easy to handle. This paper contributes to the effort of creating an indoor positioning system based on low cost depth cameras (Kinect). A method is proposed to optimize the calibration of the depth cameras, to describe the multi-camera data fusion and to specify a global positioning projection to maintain the compatibility with outdoor positioning systems. The monitoring of the people trajectories at home is intended for the early detection of a shift in daily activities which highlights disabilities and loss of autonomy. This system is meant to improve homecare health management at home for a better end of life at a sustainable cost for the community.

  8. The Mechanical Design and Preliminary Testing Results of Beam Position Monitors for the LANSCE Isotope Production Facility and Switchyard Kicker Projects

    Science.gov (United States)

    O'Hara, J. F.; Gilpatrick, J. D.; Ledford, J. E.; Shurter, R. B.; Roybal, R. J.; Bentley, B. E.

    2002-12-01

    The Los Alamos Neutron Science Center (LANSCE-1) Beam Diagnostic Team is providing Beam Position Monitors (BPMs) to the LANSCE Facility for use in two on-going projects: The Isotope Production Facility (IPF) and The Switchyard Kicker Upgrade (SYK). The BPM designs for both projects are very similar. The BPMs are classic, four, micro-stripline units having one end terminated in a 50-ohm load. This paper will discuss the position measurement requirements, mechanical design, fabrication, and alignment issues encountered for both sets of BPMs, as well as report the results obtained from the initial taught wire testing of the IPF BPMs.

  9. Beam Tests of a Prototype Stripline Beam Position Monitoring System for the Drive Beam of the CLIC Two-beam Module at CTF3

    CERN Document Server

    Benot-Morell, Alfonso; Nappa, Jean-Marc; Vilalte, Sebastien; Wendt, Manfred

    2016-01-01

    In collaboration with LAPP and IFIC, two units of a prototype stripline Beam Position Monitor (BPM) for the CLIC Drive Beam (DB), and its associated readout electronics have been successfully installed and tested in the Two-Beam-Module (TBM) at the CLIC Test Facility 3 (CTF3) at CERN. This paper gives a short overview of the BPM system and presents the performance measured under different Drive Beam configurations.

  10. Development of a Fast, Single-pass, Micron-resolution Beam Position Monitor Signal Processor: Beam Test Results from ATF2

    CERN Document Server

    Apsimon, Robert; Burrows, Philip; Christian, Glenn; Constance, Ben; Dabiri Khah, Hamid; Perry, Colin; Resta Lopez, Javier; Swinson, Christina

    2010-01-01

    We present the design of a stripline beam position monitor (BPM) signal processor with low latency (c. 10ns) and micron-level spatial resolution in single-pass mode. Such a BPM processor has applications in single-pass beamlines such as those at linear colliders and FELs. The processor was deployed and tested at the Accelerator Test Facility (ATF2) extraction line at KEK, Japan. We report the beam test results and processor performance, including response, linearity, spatial resolution and latency.

  11. Application of Ion Chromatography on Environmental Monitoring%离子色谱技术在环境监测中的具体应用

    Institute of Scientific and Technical Information of China (English)

    王娟; 李海波

    2011-01-01

    The application of ion chromatography on environmental monitoring was demonstrated by analyzing a series of experimental data and pollution samples. The use and maintaih of the equipments were put forward in detail as well.%通过一系列实验数据及污染源样品的分析,对离子色谱在环境监测中的具体应用、仪器的使用维护与保养等进行了较详细的论述。

  12. Process Evaluation of the Project SHINE Intervention for African American Families: An Integrated Positive Parenting and Peer Monitoring Approach to Health Promotion.

    Science.gov (United States)

    St George, Sara M; Wilson, Dawn K; McDaniel, Tyler; Alia, Kassandra A

    2016-07-01

    This study describes the process evaluation of Project SHINE, a randomized family-based health promotion intervention that integrated parenting and peer monitoring for improving sedentary behavior, physical activity, and diet in African American families. Adolescent-parent dyads (n = 89) were randomized to a 6-week behavioral, positive parenting, and peer monitoring skills intervention or a general health education comparison condition. Process evaluation included observational ratings of fidelity, attendance records, psychosocial measures, and qualitative interviews. Results indicated that the intervention was delivered with high fidelity based on facilitator adherence (>98% of content delivered) and competent use of theoretically based behavior change and positive parenting skills (100% of ratings >3 on a 1-4 scale). Although only 43% of peers attended the "bring a friend" session, overall attendance was high (4.39 ± 1.51 sessions) as was the retention rate (88%). Parents in the intervention condition reported significant improvements in communication related to adolescents' engagement in health behaviors both on their own and with peers. These findings were supported by qualitative themes related to improvements in family communication and connectedness. This study provides an innovative example of how future family-based health promotion trials can expand their process evaluation approaches by assessing theoretically relevant positive parenting variables as part of ongoing monitoring.

  13. A Novel Experimental Technique to Monitor the Time-Dependent Water and Ions Uptake when Shale Interacts with Aqueous Solutions

    Science.gov (United States)

    AL-Bazali, Talal

    2013-09-01

    The time-dependent water and ions uptake when shale interacts with aqueous solutions is quantified using a combination of immersion and gravimetric techniques. Results show that when shale interacts with salt solutions, water uptake into shale goes through three distinct stages; water movement out of shale (due to chemical osmosis), water movement into shale (due to diffusion osmosis) and stationary state (equilibrium stage). This work shows that chemical osmosis dominates water movement in early times while diffusion osmosis takes over later. In addition, it is shown that the amount of water movement due to chemical osmosis depends on the chemical potential gradient while the amount of water movement due to diffusion osmosis is highly related to the ionic concentration imbalance. In addition, the amount of ions uptake into shale at equilibrium is shown to depend on the type and concentration of salt solution. Furthermore, this work shows that potassium ion has a strengthening effect on shale while sodium and calcium ions have a weakening effect on shale. Results also show that the shale's compressive strength alteration is greatly influenced by the type and concentration of the salt solution. Furthermore, the shale's compressive strength alteration is shown to be time dependent and correlates very well with the time-dependent flux of water and ions. Finally, it is shown that chemical osmosis and diffusion osmosis take place simultaneously when shale interacts with water-based muds. The overall impact on shale stability is governed by the net water flow resulting from chemical osmosis and diffusion osmosis.

  14. Simple extraction method and gas chromatography-mass spectrometry in the selective ion monitoring mode for the determination of phenols in wine.

    Science.gov (United States)

    Minuti, Lucio; Pellegrino, Roberto Maria; Tesei, Ilaria

    2006-05-12

    The concentrations of 22 components of wine, including most of those that have been shown to possess significant biological properties, have been determined by a fast and simple analytical method based on gas chromatography with mass spectrometric detection in the selective ion monitoring mode (GC/MS-SIM). The procedure involves an easy liquid-liquid extraction and derivatization methods of flavanols, phenols and carboxylic acid, using a very small wine volume. The average recovery (Rcv) ranged from 73 to 107% and linear regression coefficients (r(2)) were in a range of 0.981or=0.999. The GC/MS-SIM technique gives good specificity and sensitivity, and can therefore be suitable for routine monitoring of the concentration of individual phenolic antioxidants during winemaking and the aging process.

  15. Hard X-ray polarimetry with position sensitve germanium detectors. Studies of the recombination transitions into highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Tashenov, Stanislav

    2005-07-01

    In this work a first study of the photon polarization for the process of radiative recombination has been performed. This was done at the ESR storage ring at GSI for uranium ions colliding with N2 at various collision energies. For this measurement a high purity Ge Pixel Detector with a 4 x 4 segmentation matrix was applied. The investigation was performed at the Gas-jet target of the ESR. The detector was placed at 60 and 90 observation angles. The sensitivity of the Compton scattering effect to the linear polarization of the X-Ray radiation was employed for the polarization measurement. Detailed investigations of the scattering and geometrical effects inside the detector were performed in order to develop a method to interpret the experimental data and extract the degree of the linear polarization in the hard X-Ray regime with a high precision. A special emphasis was given to the geometry of the detector and it's influence on the measured pixel-to-pixel Compton scattering intensities. The developed method enabled to achieve a precision of the order of 10% with the Pixel Detector which is dominated by the statistical uncertainties. The obtained results show a good agreement with the theoretical values derived from the exact relativistic calculations. For the case of the linear polarization of the K-REC photons, the measured data con rm the theoretical prediction that strong depolarization effects occur for high projectile charges in the forward hemisphere. The latter is in disagreement with the nonrelativistic theory which predicts a 100 % polarization regardless of the emission angle. (orig.)

  16. X-ray absorption near-edge structure study on positive electrodes of degraded lithium-ion battery

    Science.gov (United States)

    Shikano, Masahiro; Kobayashi, Hironori; Koike, Shinji; Sakaebe, Hikari; Saito, Yoshiyasu; Hori, Hironobu; Kageyama, Hiroyuki; Tatsumi, Kuniaki

    18650-type cylindrical cells using LiNi 1/3Mn 1/3Co 1/3O 2 (NMC) and hard carbon as positive and negative electrode material, respectively, were fabricated and degraded by cycle tests. The capacity of the cells remained more than 95% and 85% after cycle tests at 25 and 50 °C, respectively. After the cycle tests, Li-deficient cubic phase was observed on the surface of NMC. This phenomenon should be related to the degradation mechanism of this type of cell.

  17. HIE-Isolde: Commissioning and first results of the Mathilde system monitoring the positions of cavities and solenoids inside cryomodules

    CERN Document Server

    Kautzmann, Guillaume; Klumb, Francis; CERN. Geneva. ATS Department

    2016-01-01

    The new superconducting HIE-ISOLDE Linac replaced most of pre-existing REX ISOLDE facility at CERN. This upgrade involves the design, construction, installation and commissioning of 4 high-β cryomodules. Each high-β cryomodule houses five superconducting cavities and one superconducting solenoid. Beam-physics simulations show that the optimum linac working conditions are obtained when the main axes of the active components, located inside the cryostats, are aligned and permanently monitored on the REX Nominal Beam Line (NBL) within a precision of 0.3 mm for the cavities and 0.15 mm for the solenoids at one sigma level along directions perpendicular to the beam axis. The Monitoring and Alignment Tracking for HIE-ISOLDE (MATHILDE) system has been developed to fulfil the alignment and monitoring needs for components exposed to non-standard environmental conditions such as high vacuum or cryogenic temperatures. MATHILDE is based on opto-electronic sensors (HBCAM) observing, through high quality viewports, spher...

  18. Real-time monitoring of inhibitory effects on glutamate-induced neurotransmitter release using a potassium ion image sensor

    Science.gov (United States)

    Kono, Akiteru; Sakurai, Takashi; Hattori, Toshiaki; Okumura, Koichi; Ishida, Makoto; Sawada, Kazuaki

    2015-02-01

    To directly image the release of neurotransmitters from neurons, we combined a substance-selective layer with a 128 × 128-pixel ion image sensor based on CMOS technology. Using the substance-specific image sensors, we studied the dynamics of potassium ion ( K+) release from neurons and examined the effect of ouabain on K+ release. K+ transients were significantly inhibited by ouabain. The K+ image sensor used in this study demonstrated the dynamic analysis of ligand-operated signal release and the pharmacological assessment of secretagogues without requiring cell labeling.

  19. Millimeter-accuracy GPS landslide monitoring using Precise Point Positioning with Single Receiver Phase Ambiguity (PPP-SRPA) resolution: a case study in Puerto Rico

    Science.gov (United States)

    Wang, G. Q.

    2013-03-01

    Continuous Global Positioning System (GPS) monitoring is essential for establishing the rate and pattern of superficial movements of landslides. This study demonstrates a technique which uses a stand-alone GPS station to conduct millimeter-accuracy landslide monitoring. The Precise Point Positioning with Single Receiver Phase Ambiguity (PPP-SRPA) resolution employed by the GIPSY/OASIS software package (V6.1.2) was applied in this study. Two-years of continuous GPS data collected at a creeping landslide were used to evaluate the accuracy of the PPP-SRPA solutions. The criterion for accuracy was the root-mean-square (RMS) of residuals of the PPP-SRPA solutions with respect to "true" landslide displacements over the two-year period. RMS is often regarded as repeatability or precision in GPS literature. However, when contrasted with a known "true" position or displacement it could be termed RMS accuracy or simply accuracy. This study indicated that the PPP-SRPA resolution can provide an accuracy of 2 to 3 mm horizontally and 8 mm vertically for 24-hour sessions with few outliers (extreme weather conditions. Vertical accuracy below 10 mm can be achieved with 8-hour or longer sessions. This study indicates that the PPP-SRPA resolution is competitive with the conventional carrier-phase double-difference network resolution for static (longer than 4 hours) landslide monitoring while maintaining many advantages. It is evident that the PPP-SRPA method would become an attractive alternative to the conventional carrier-phase double-difference method for landslide monitoring, notably in remote areas or developing countries.

  20. Fractionation in position-specific isotope composition during vaporization of environmental pollutants measured with isotope ratio monitoring by ¹³C nuclear magnetic resonance spectrometry.

    Science.gov (United States)

    Julien, Maxime; Parinet, Julien; Nun, Pierrick; Bayle, Kevin; Höhener, Patrick; Robins, Richard J; Remaud, Gérald S

    2015-10-01

    Isotopic fractionation of pollutants in terrestrial or aqueous environments is a well-recognized means by which to track different processes during remediation. As a complement to the common practice of measuring the change in isotope ratio for the whole molecule using isotope ratio monitoring by mass spectrometry (irm-MS), position-specific isotope analysis (PSIA) can provide further information that can be exploited to investigate source and remediation of soil and water pollutants. Position-specific fractionation originates from either degradative or partitioning processes. We show that isotope ratio monitoring by (13)C NMR (irm-(13)C NMR) spectrometry can be effectively applied to methyl tert-butylether, toluene, ethanol and trichloroethene to obtain this position-specific data for partitioning. It is found that each compound exhibits characteristic position-specific isotope fractionation patterns, and that these are modulated by the type of evaporative process occurring. Such data should help refine models of how remediation is taking place, hence back-tracking to identify pollutant sources.

  1. Functional Contributions of Positive Charges in the Pore-Lining Helix 3 of the Bordetella pertussis CyaA-Hemolysin to Hemolytic Activity and Ion-Channel Opening

    Directory of Open Access Journals (Sweden)

    Chattip Kurehong

    2017-03-01

    Full Text Available The Bordetella pertussis CyaA-hemolysin (CyaA-Hly domain was previously demonstrated to be an important determinant for hemolysis against target erythrocytes and ion-channel formation in planar lipid bilayers (PLBs. Here, net-charge variations in the pore-lining helix of thirteen related RTX cytolysins including CyaA-Hly were revealed by amino acid sequence alignments, reflecting their different degrees of hemolytic activity. To analyze possible functional effects of net-charge alterations on hemolytic activity and channel formation of CyaA-Hly, specific mutations were made at Gln574 or Glu581 in its pore-lining α3 of which both residues are highly conserved Lys in the three highly active RTX cytolysins (i.e., Escherichia coli α-hemolysin, Actinobacillus pleuropneumoniae toxin, and Aggregatibacter actinomycetemcomitans leukotoxin. All six constructed CyaA-Hly mutants that were over-expressed in E. coli as 126 kDa His-tagged soluble proteins were successfully purified via immobilized Ni2+-affinity chromatography. Both positive-charge substitutions (Q574K, Q574R, E581K, E581R and negative-charge elimination (E581Q appeared to increase the kinetics of toxin-induced hemolysis while the substitution with a negatively-charged side-chain (Q574E completely abolished its hemolytic activity. When incorporated into PLBs under symmetrical conditions (1.0 M KCl, pH 7.4, all five mutant toxins with the increased hemolytic activity produced clearly-resolved single channels with higher open probability and longer lifetime than the wild-type toxin, albeit with a half decrease in their maximum conductance. Molecular dynamics simulations for 50 ns of a trimeric CyaA-Hly pore model comprising three α2-loop-α3 transmembrane hairpins revealed a significant role of the positive charge at both target positions in the structural stability and enlarged diameter of the simulated pore. Altogether, our present data have disclosed functional contributions of positively

  2. In-treatment tests for the monitoring of proton and carbon-ion therapy with a large area PET system at CNAO

    Energy Technology Data Exchange (ETDEWEB)

    Rosso, V., E-mail: valeria.rosso@pi.infn.it [Department of Physics, University of Pisa and INFN, Pisa (Italy); Battistoni, G. [INFN Sezione di Milano, Milano (Italy); Belcari, N.; Camarlinghi, N. [Department of Physics, University of Pisa and INFN, Pisa (Italy); Ciocca, M. [Fondazione CNAO, Pavia (Italy); Collini, F. [Department of Physical Sciences, Earth and Environment, University of Siena and INFN, Pisa (Italy); Ferretti, S.; Kraan, A.C.; Lucenò, S. [Department of Physics, University of Pisa and INFN, Pisa (Italy); Molinelli, S.; Pullia, M. [Fondazione CNAO, Pavia (Italy); Sportelli, G.; Zaccaro, E.; Del Guerra, A. [Department of Physics, University of Pisa and INFN, Pisa (Italy)

    2016-07-11

    One of the most promising new radiotherapy techniques makes use of charged particles like protons and carbon ions, rather than photons. At present, there are more than 50 particle therapy centers operating worldwide, and many new centers are being constructed. Positron Emission Tomography (PET) is considered a well-established non-invasive technique to monitor range and delivered dose in patients treated with particle therapy. Nuclear interactions of the charged hadrons with the patient tissue lead to the production of β+ emitting isotopes (mainly {sup 15}O and {sup 11}C), that decay with a short lifetime producing a positron. The two 511 keV annihilation photons can be detected with a PET detector. In-beam PET is particularly interesting because it could allow monitoring the ions range also during dose delivery. A large area dual head PET prototype was built and tested. The system is based on an upgraded version of the previously developed DoPET prototype. Each head covers now 15×15 cm{sup 2} and is composed by 9 (3×3) independent modules. Each module consists of a 23×23 LYSO crystal matrix (2 mm pitch) coupled to H8500 PMT and is readout by custom front-end and a FPGA based data acquisition electronics. Data taken at the CNAO treatment facility in Pavia with proton and carbon beams impinging on heterogeneous phantoms demonstrate the DoPET capability to detect the presence of a small air cavity in the phantom.

  3. In-treatment tests for the monitoring of proton and carbon-ion therapy with a large area PET system at CNAO

    Science.gov (United States)

    Rosso, V.; Battistoni, G.; Belcari, N.; Camarlinghi, N.; Ciocca, M.; Collini, F.; Ferretti, S.; Kraan, A. C.; Lucenò, S.; Molinelli, S.; Pullia, M.; Sportelli, G.; Zaccaro, E.; Del Guerra, A.

    2016-07-01

    One of the most promising new radiotherapy techniques makes use of charged particles like protons and carbon ions, rather than photons. At present, there are more than 50 particle therapy centers operating worldwide, and many new centers are being constructed. Positron Emission Tomography (PET) is considered a well-established non-invasive technique to monitor range and delivered dose in patients treated with particle therapy. Nuclear interactions of the charged hadrons with the patient tissue lead to the production of β+ emitting isotopes (mainly 15O and 11C), that decay with a short lifetime producing a positron. The two 511 keV annihilation photons can be detected with a PET detector. In-beam PET is particularly interesting because it could allow monitoring the ions range also during dose delivery. A large area dual head PET prototype was built and tested. The system is based on an upgraded version of the previously developed DoPET prototype. Each head covers now 15×15 cm2 and is composed by 9 (3×3) independent modules. Each module consists of a 23×23 LYSO crystal matrix (2 mm pitch) coupled to H8500 PMT and is readout by custom front-end and a FPGA based data acquisition electronics. Data taken at the CNAO treatment facility in Pavia with proton and carbon beams impinging on heterogeneous phantoms demonstrate the DoPET capability to detect the presence of a small air cavity in the phantom.

  4. Field performance of a semi-continuous monitor for ambient PM2.5 water-soluble inorganic ions and gases at a suburban site

    Science.gov (United States)

    Young, Li-Hao; Li, Chiao-Hsin; Lin, Ming-Yeng; Hwang, Bing-Fang; Hsu, Hui-Tsung; Chen, Yu-Cheng; Jung, Chau-Ren; Chen, Kuan-Chi; Cheng, Dung-Hung; Wang, Ven-Shing; Chiang, Hung-Che; Tsai, Perng-Jy

    2016-11-01

    To reduce sampling artifacts and to improve time-resolved measurements of inorganic aerosol system, a recently commercialized semi-continuous In-situ Gas and Aerosol Composition (IGAC) monitoring system was evaluated against a reference annular denuder system (ADS; denuder/two-stage filter pack) at a suburban site over a year, during which the average PM2.5 was 37.0 ± 24.8 μg/m3. A suite of eight ions SO42-, NO3-, Cl-, NH4+, Na+, K+, Ca2+ and Mg2+ and two gases SO2 and NH3 were the target species. In comparison to the reference ADS method, the IGAC performed well in measuring the major ions SO42-, NO3- and NH4+, and the SO2. For those species, the linear slopes, intercepts and R2 values between the two methods all passed the performance evaluation criteria outlined by earlier similar studies. The performance of IGAC on Cl-, Na+, K+ and NH3 was marginally acceptable, whereas Ca2+ and Mg2+ could not be properly evaluated due to the low concentrations (<0.2 μg/m3) and hence inadequate amount of sample size. The ionic balance of the hourly IGAC samples averaged very close to unity, as did the daily ADS samples, though the former was considerably more variable than the latter. The overall performance of the IGAC has been shown to be comparable to other similar monitors and its improvements are discussed.

  5. SULIVAN: Remote Manual Valve Monitoring System Real-Time Transmission of Valve Positions to Reduce Alignment Errors

    Energy Technology Data Exchange (ETDEWEB)

    Denis, J.C.; Mace, J.R.; Perisse, J.

    2015-07-01

    Every year, a number of plants worldwide face valve misalignment issues that can lead to damaged components and unplanned extended outage. By installing valve monitoring solutions, the plant can expect a reduction of the risk of valve misalignment events. Over the past years, AREVA has developed Wireless communication solutions and Smart sensor expertise at its own facilities and has carried out tests in nuclear power plants. This paper presents AREVA Wireless studies and Solutions that could be implemented in a nuclear plant. These solutions are mainly based on IoT technologies as MEMs and Low Power Wide Area Network, LPWAN. (Author)

  6. The unique ion permeability profile of cochlear fibrocytes and its contribution to establishing their positive resting membrane potential.

    Science.gov (United States)

    Yoshida, Takamasa; Nin, Fumiaki; Murakami, Shingo; Ogata, Genki; Uetsuka, Satoru; Choi, Samuel; Nakagawa, Takashi; Inohara, Hidenori; Komune, Shizuo; Kurachi, Yoshihisa; Hibino, Hiroshi

    2016-09-01

    Eukaryotic cells exhibit negative resting membrane potential (RMP) owing to the high K(+) permeability of the plasma membrane and the asymmetric [K(+)] between the extracellular and intracellular compartments. However, cochlear fibrocytes, which comprise the basolateral surface of a multilayer epithelial-like tissue, exhibit a RMP of +5 to +12 mV in vivo. This positive RMP is critical for the formation of an endocochlear potential (EP) of +80 mV in a K(+)-rich extracellular fluid, endolymph. The epithelial-like tissue bathes fibrocytes in a regular extracellular fluid, perilymph, and apically faces the endolymph. The EP, which is essential for hearing, represents the potential difference across the tissue. Using in vivo electrophysiological approaches, we describe a potential mechanism underlying the unusual RMP of guinea pig fibrocytes. The RMP was +9.0 ± 3.7 mV when fibrocytes were exposed to an artificial control perilymph (n = 28 cochleae). Perilymphatic perfusion of a solution containing low [Na(+)] (1 mM) markedly hyperpolarized the RMP to -31.1 ± 11.2 mV (n = 10; p control, Tukey-Kramer test after one-way ANOVA). Accordingly, the EP decreased. Little change in RMP was observed when the cells were treated with a high [K(+)] of 30 mM (+10.4 ± 2.3 mV; n = 7; p = 0.942 versus the control). During the infusion of a low [Cl(-)] solution (2.4 mM), the RMP moderately hyperpolarized to -0.9 ± 3.4 mV (n = 5; p control), although the membranes, if governed by Cl(-) permeability, should be depolarized. These observations imply that the fibrocyte membranes are more permeable to Na(+) than K(+) and Cl(-), and this unique profile and [Na(+)] gradient across the membranes contribute to the positive RMP.

  7. Intelligent monitoring system for new energy vehicle lithium ion battery%新能源汽车锂离子电池组智能监控系统

    Institute of Scientific and Technical Information of China (English)

    林可

    2016-01-01

    随着新能源汽车的兴起,锂离子电池作为一种新型的环保电池,被认为是其主要的动力源和储能载体,而电池自燃起火等事故的频发造成极大危害。本文基于锂离子电池的特性,试对新能源汽车中的锂离子电池组智能监控系统进行相关的研究和探索。%With thedevelopment of new energy vehicles, lithium ion battery as a new environmental protection battery,is considered to be the main source of power and energy storage carrier,and frequent accidents such as battery spontaneous combustion fire caused great harm.Try this article on the basis of the characteristics of lithium ion batteries,lithium ion battery of new energy vehicles intelligent monitoring system for the related research and exploration.

  8. Dopant-assisted negative photoionization Ion mobility spectrometry coupled with on-line cooling inlet for real-time monitoring H2S concentration in sewer gas.

    Science.gov (United States)

    Peng, Liying; Jiang, Dandan; Wang, Zhenxin; Hua, Lei; Li, Haiyang

    2016-06-01

    Malodorous hydrogen sulfide (H2S) gas often exists in the sewer system and associates with the problems of releasing the dangerous odor to the atmosphere and causing sewer pipe to be corroded. A simple method is in demand for real-time measuring H2S level in the sewer gas. In this paper, an innovated method based on dopant-assisted negative photoionization ion mobility spectrometry (DANP-IMS) with on-line semiconductor cooling inlet was put forward and successfully applied for the real-time measurement of H2S in sewer gas. The influence of moisture was effectively reduced via an on-line cooling method and a non-equilibrium dilution with drift gas. The limits of quantitation for the H2S in ≥60% relative humidity air could be obtained at ≤79.0ng L(-1) with linear ranges of 129-2064ng L(-1). The H2S concentration in a sewer manhole was successfully determined while its product ions were identified by an ion-mobility time-of-fight mass spectrometry. Finally, the correlation between sewer H2S concentration and the daily routines and habits of residents was investigated through hourly or real-time monitoring the variation of sewer H2S in manholes, indicating the power of this DANP-IMS method in assessing the H2S concentration in sewer system. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Molecular structure identification and position of a dopant ion in diaqua(2,2‧-bipyridine)malonatozinc(II) by spectroscopic studies - II: VO(II)

    Science.gov (United States)

    Parthipan, Krishnan; Ramesh, Hema; Sambasiva Rao, P.

    2011-04-01

    Single crystal EPR, optical, FT-IR and powder XRD studies of VO(II) ion doped diaqua(2,2'-bipyridine) malonato zinc complex were carried out at room temperature to ascertain the structural properties. In EPR, the angular variation of vanadium hyperfine lines indicated a single site, with spin Hamiltonian parameters as: g xx = 1.968, g yy = 1.964, g zz = 1.928, A xx = 7.54 mT, A yy = 6.36 mT and A zz = 18.81 mT. In addition, the dopant had entered the lattice in an interstitial position and the position had been identified with the help of atom positions of the host lattice. The EPR and optical data was corroborated to obtain various bonding parameters, from which the nature of the bonding in the complex was discussed. FT-IR and powder XRD studies were used to observe the effect of dopant on structural parameters of the host lattice.

  10. The hydrogen molecule and the H+2 molecular ion inside padded prolate spheroidal cavities with arbitrary nuclear positions

    Science.gov (United States)

    Colín-Rodríguez, R.; Díaz-García, C.; Cruz, S. A.

    2011-12-01

    A generalization of previous theoretical studies of molecular confinement based on the molecule-in-a-box model for the H+2 and H2 systems whereby the confining cavity is assumed to be prolate spheroidal in shape is presented. A finite height for the confining barrier potential is introduced and the independent variation of the nuclear positions from the cavity size and shape is allowed. Within this scheme, the non-separable Schrödinger problem for the confined H+2 and H2 molecules in their ground states is treated variationally. In both cases, an important dependence of the equilibrium bond length and total energy on the confining barrier height is observed for fixed cavity sizes and shapes. It is also shown that—given a barrier height—as the cavity size is reduced, the limit of stability of the confined molecule is attained for a critical size. The results of this work suggest the adequacy of the proposed method for more realistic studies of electronic and vibrational properties of confined one- and two-electron diatomics for proper comparison with experiment.

  11. Modern technologies and methodologies concerning permanent monitoring of position changes and entity state in space and time

    Directory of Open Access Journals (Sweden)

    Zoran Sušić

    2014-06-01

    Full Text Available The topic of the paper is the description of the modern sensor solutions used in the permanent-monitoring projects for deformations of entities in space and time, as well as of many other parameters necessary to a detailed analysis of spatial processes at the sites of large civil-engineering objects. The possibility of applying the monitoring with an alarm system, with a special comment concerning the LeicaGeoMos software, is also mentioned. Using an example of integrated multisensor system (GPS, inclinometers, accelerometers, robotised TS concerning the general solution for observing deformations of the Žeželj bridge (test examination and permanent observation during exploitation in Novi Sad the possibilities of new technologies will be presented and the place, role and importance of a specialist in geodesy in such projects will be indicated. The topic of the paper is an automated system of integrated sensors for measuring meteorological parameters and those of dynamical motions of water at the location of the future marina in the Kotor Bay at Kumbor. On the basis of the presented results of sensor application to the registration of quantities and their spatial and temporal variations new possibilities of geodesy in extension and participation in new services in multidisciplinary projects of other sciences are indicated.

  12. A Review of Wearable Technologies for Elderly Care that Can Accurately Track Indoor Position, Recognize Physical Activities and Monitor Vital Signs in Real Time

    Science.gov (United States)

    Wang, Zhihua; Yang, Zhaochu; Dong, Tao

    2017-01-01

    Rapid growth of the aged population has caused an immense increase in the demand for healthcare services. Generally, the elderly are more prone to health problems compared to other age groups. With effective monitoring and alarm systems, the adverse effects of unpredictable events such as sudden illnesses, falls, and so on can be ameliorated to some extent. Recently, advances in wearable and sensor technologies have improved the prospects of these service systems for assisting elderly people. In this article, we review state-of-the-art wearable technologies that can be used for elderly care. These technologies are categorized into three types: indoor positioning, activity recognition and real time vital sign monitoring. Positioning is the process of accurate localization and is particularly important for elderly people so that they can be found in a timely manner. Activity recognition not only helps ensure that sudden events (e.g., falls) will raise alarms but also functions as a feasible way to guide people’s activities so that they avoid dangerous behaviors. Since most elderly people suffer from age-related problems, some vital signs that can be monitored comfortably and continuously via existing techniques are also summarized. Finally, we discussed a series of considerations and future trends with regard to the construction of “smart clothing” system. PMID:28208620

  13. A Review of Wearable Technologies for Elderly Care that Can Accurately Track Indoor Position, Recognize Physical Activities and Monitor Vital Signs in Real Time

    Directory of Open Access Journals (Sweden)

    Zhihua Wang

    2017-02-01

    Full Text Available Rapid growth of the aged population has caused an immense increase in the demand for healthcare services. Generally, the elderly are more prone to health problems compared to other age groups. With effective monitoring and alarm systems, the adverse effects of unpredictable events such as sudden illnesses, falls, and so on can be ameliorated to some extent. Recently, advances in wearable and sensor technologies have improved the prospects of these service systems for assisting elderly people. In this article, we review state-of-the-art wearable technologies that can be used for elderly care. These technologies are categorized into three types: indoor positioning, activity recognition and real time vital sign monitoring. Positioning is the process of accurate localization and is particularly important for elderly people so that they can be found in a timely manner. Activity recognition not only helps ensure that sudden events (e.g., falls will raise alarms but also functions as a feasible way to guide people’s activities so that they avoid dangerous behaviors. Since most elderly people suffer from age-related problems, some vital signs that can be monitored comfortably and continuously via existing techniques are also summarized. Finally, we discussed a series of considerations and future trends with regard to the construction of “smart clothing” system.

  14. Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications. Part I: Initial characterizations

    Science.gov (United States)

    Dubarry, Matthieu; Truchot, Cyril; Cugnet, Mikaël; Liaw, Bor Yann; Gering, Kevin; Sazhin, Sergiy; Jamison, David; Michelbacher, Christopher

    Evaluating commercial Li-ion batteries presents some unique benefits. One of them is to use cells made from established fabrication process and form factor, such as those offered by the 18650 cylindrical configuration, to provide a common platform to investigate and understand performance deficiency and aging mechanism of target chemistry. Such an approach shall afford us to derive relevant information without influence from processing or form factor variability that may skew our understanding on cell-level issues. A series of 1.9 Ah 18650 lithium ion cells developed by a commercial source using a composite positive electrode comprising {LiMn 1/3Ni 1/3Co 1/3O 2 + LiMn 2O 4} is being used as a platform for the investigation of certain key issues, particularly path-dependent aging and degradation in future plug-in hybrid electric vehicle (PHEV) applications, under the US Department of Energy's Applied Battery Research (ABR) program. Here we report in Part I the initial characterizations of the cell performance and Part II some aspects of cell degradation in 2C cycle aging. The initial characterizations, including cell-to-cell variability, are essential for life cycle performance characterization in the second part of the report when cell-aging phenomena are discussed. Due to the composite nature of the positive electrode, the features (or signature) derived from the incremental capacity (IC) of the cell appear rather complex. In this work, the method to index the observed IC peaks is discussed. Being able to index the IC signature in details is critical for analyzing and identifying degradation mechanism later in the cycle aging study.

  15. Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications. Part I: Initial characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Matthieu Dubarry; Cyril Truchot; Mikael Cugnet; Bor Yann Liaw; Kevin Gering; Sergiy Sazhin; David Jamison; Christopher Michelbacher

    2011-12-01

    Evaluating commercial Li-ion batteries presents some unique benefits. One of them is to use cells made from established fabrication process and form factor, such as those offered by the 18650 cylindrical configuration, to provide a common platform to investigate and understand performance deficiency and aging mechanism of target chemistry. Such an approach shall afford us to derive relevant information without influence from processing or form factor variability that may skew our understanding on cell-level issues. A series of 1.9 Ah 18650 lithium ion cells developed by a commercial source using a composite positive electrode comprising (LiMn1/3Ni1/3Co1/3O2 + LiMn2O4) is being used as a platform for the investigation of certain key issues, particularly path-dependent aging and degradation in future plug-in hybrid electric vehicle (PHEV) applications, under the US Department of Energy's Applied Battery Research (ABR) program. Here we report in Part I the initial characterizations of the cell performance and Part II some aspects of cell degradation in 2C cycle aging. The initial characterizations, including cell-to-cell variability, are essential for life cycle performance characterization in the second part of the report when cell-aging phenomena are discussed. Due to the composite nature of the positive electrode, the features (or signature) derived from the incremental capacity (IC) of the cell appear rather complex. In this work, the method to index the observed IC peaks is discussed. Being able to index the IC signature in details is critical for analyzing and identifying degradation mechanism later in the cycle aging study.

  16. Characterization of Glycan Structures of Chondroitin Sulfate-Glycopeptides Facilitated by Sodium Ion-Pairing and Positive Mode LC-MS/MS

    Science.gov (United States)

    Nilsson, Jonas; Noborn, Fredrik; Gomez Toledo, Alejandro; Nasir, Waqas; Sihlbom, Carina; Larson, Göran

    2016-11-01

    Purification and liquid chromatography-tandem mass spectrometry (LC-MS/MS) characterization of glycopeptides, originating from protease digests of glycoproteins, enables site-specific analysis of protein N- and O-glycosylations. We have described a protocol to enrich, hydrolyze by chondroitinase ABC, and characterize chondroitin sulfate-containing glycopeptides (CS-glycopeptides) using positive mode LC-MS/MS. The CS-glycopeptides, originating from the Bikunin proteoglycan of human urine samples, had ΔHexAGalNAcGlcAGalGalXyl-O-Ser hexasaccharide structure and were further substituted with 0-3 sulfate and 0-1 phosphate groups. However, it was not possible to exactly pinpoint sulfate attachment residues, for protonated precursors, due to extensive fragmentation of sulfate groups using high-energy collision induced dissociation (HCD). To circumvent the well-recognized sulfate instability, we now introduced Na+ ions to form sodiated precursors, which protected sulfate groups from decomposition and facilitated the assignment of sulfate modifications. Sulfate groups were pinpointed to both Gal residues and to the GalNAc of the hexasaccharide structure. The intensities of protonated and sodiated saccharide oxonium ions were very prominent in the HCD-MS2 spectra, which provided complementary structural analysis of sulfate substituents of CS-glycopeptides. We have demonstrated a considerable heterogeneity of the bikunin CS linkage region. The realization of these structural variants should be beneficial in studies aimed at investigating the importance of the CS linkage region with regards to the biosynthesis of CS and potential interactions to CS binding proteins. Also, the combined use of protonated and sodiated precursors for positive mode HCD fragmentation analysis will likely become useful for additional classes of sulfated glycopeptides.

  17. Characterization of Glycan Structures of Chondroitin Sulfate-Glycopeptides Facilitated by Sodium Ion-Pairing and Positive Mode LC-MS/MS

    Science.gov (United States)

    Nilsson, Jonas; Noborn, Fredrik; Gomez Toledo, Alejandro; Nasir, Waqas; Sihlbom, Carina; Larson, Göran

    2017-02-01

    Purification and liquid chromatography-tandem mass spectrometry (LC-MS/MS) characterization of glycopeptides, originating from protease digests of glycoproteins, enables site-specific analysis of protein N- and O-glycosylations. We have described a protocol to enrich, hydrolyze by chondroitinase ABC, and characterize chondroitin sulfate-containing glycopeptides (CS-glycopeptides) using positive mode LC-MS/MS. The CS-glycopeptides, originating from the Bikunin proteoglycan of human urine samples, had ΔHexAGalNAcGlcAGalGalXyl- O-Ser hexasaccharide structure and were further substituted with 0-3 sulfate and 0-1 phosphate groups. However, it was not possible to exactly pinpoint sulfate attachment residues, for protonated precursors, due to extensive fragmentation of sulfate groups using high-energy collision induced dissociation (HCD). To circumvent the well-recognized sulfate instability, we now introduced Na+ ions to form sodiated precursors, which protected sulfate groups from decomposition and facilitated the assignment of sulfate modifications. Sulfate groups were pinpointed to both Gal residues and to the GalNAc of the hexasaccharide structure. The intensities of protonated and sodiated saccharide oxonium ions were very prominent in the HCD-MS2 spectra, which provided complementary structural analysis of sulfate substituents of CS-glycopeptides. We have demonstrated a considerable heterogeneity of the bikunin CS linkage region. The realization of these structural variants should be beneficial in studies aimed at investigating the importance of the CS linkage region with regards to the biosynthesis of CS and potential interactions to CS binding proteins. Also, the combined use of protonated and sodiated precursors for positive mode HCD fragmentation analysis will likely become useful for additional classes of sulfated glycopeptides.

  18. THE RAMAN SPECTROSCOPY USE FOR MONITORING OF CHANGES IN THE GLASS STRUCTURE OF THE THIN LAYERS CAUSED BY ION IMPLANTATION

    Directory of Open Access Journals (Sweden)

    Pavla Nekvindova

    2015-09-01

    Full Text Available In this paper, we have demonstrated the utility of Raman spectroscopy as a technique for the characterisation of changes in the glass structure of the thin layers caused by ion implantation. Various types of silicate glasses were implanted by Au+ ions with energy of 1.7 MeV and a fluence of 1 x 1016 ions.cm-2 to create gold nanoparticles in thin sub-surface layer of the glass. It was proved that the structure of the glass has an indisputable impact on the extent of depolymerisation of the glass network after implantation. It was shown that the degree of glass matrix depolymerisation can be described using the evaluation of Qn factors in the implanted layers from different depths. After analysis of Raman spectra, the relation between nucleation and the resulting parameters of the gold nanoparticles was put into connection with the feasibility of the glass to recover its structure during post-implantation annealing. Also the creation of new bonds in the glass network was discussed.

  19. Highly Selective Liquid Membrane Sensor Based on 1,3,5-Triphenylpyrylium Perchlorate for Quick Monitoring of Sulfate Ions

    Energy Technology Data Exchange (ETDEWEB)

    Ganjali, Mohammad Reza; Ghorbani, Maryam; Daftari, Azadeh; Norouzi, Parviz; Pirelahi, Hooshang; Dargahani, Hossein Daryanavard [Tehran University, Tehran (Iran, Islamic Republic of)

    2004-02-15

    A highly selective membrane electrode based on 1,3,5-triphenylpyrylium perchlorate (TPPP) is presented. The proposed electrode shows very good selectivity for sulfate ions over a wide variety of common inorganic and organic anions. The sensor displays a nice Nernstian slope of -29.7 mV per decade. The working concentration ranges of the electrode is 1.0 x 10{sup -1} . 6.3 x 10{sup -6} M with a detection limit of 4.0 x 10{sup -6} M (480 ng per mL). The response time of the sensor in whole concentration ranges is very short (< 6 s). The response of the sensor is independent on the pH range of 2.5-9.5. The best performance was obtained with a membrane composition of 32% PVC, 59% benzyl acetate, 5% TPPP and 4% hexadecyltrimethylammonium bromide. It was successfully used as an indicator electrode for titration of sulfate ions with barium ions. The electrode was also applied for determination of salbutamol sulfate and paramomycine sulfate

  20. Design of a Remote Monitoring System for Evaluation of Corrosión in Reinforced Concrete Structures under Chloride Ion Attack

    Directory of Open Access Journals (Sweden)

    Roa-Rodríguez Guillermo

    2015-09-01

    Full Text Available In this paper it was designed and built a remote monitoring equipment that allows to obtain the corrosion potential in reinforcing steels embedded in reinforced concrete, which were previously subjected to chloride attack in a hostile environment. The monitoring system, based on ASTM standard C876-91, determines from 0% to 100% the probability of corrosion on the samples tested. The system provides ease of perform field installation, if there is cellular network coverage, and may be operated remotely using text messages to start and stop measurements, whose results are stored in a local data logger on microSD cards and then are sent via the general packet radio service (GPRS to a web server which allows to access to the data via a web page, where the test results can be seen graphically. The concrete samples used as reference for monitoring degradation were immersed in chloride ion (3.5% NaCl for 12 months. Data for corrosion potential were generated through the exposureconcrete interface, corresponding to a system with a 90% probability of corrosion.

  1. GPS positioning and desktop mapping. Applications to environmental monitoring. Report on task JNT B898 on the Finnish support programme to IAEA safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Kansanaho, A.; Ilander, T.; Toivonen, H.

    1995-10-01

    Satellite navigation has been used for in-field applications by the Finnish Centre for Radiation and Nuclear Safety since 1993. Because of this experience, training in the use of GPS positioning and desktop mapping was chosen as a task under the Finnish Support programme to IAEA safeguards. A lecture and a field experiment was held in the training course on environmental monitoring at the IAEA headquarters in June 1995. Real-time mapping of the co-ordinates and storing information on sampling sites and procedures can make safeguards implementation more efficient and effective. Further software development are needed for these purposes. (author) (6 figs.).

  2. A method for simultaneous linear optics and coupling correction for storage rings with turn-by-turn beam position monitor data

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xi [Brookhaven National Laboratory, Upton, Long Island, NY 11973 (United States); Huang, Xiaobiao, E-mail: xiahuang@slac.stanford.edu [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2016-08-21

    We propose a method to simultaneously correct linear optics errors and linear coupling for storage rings using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA) method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice model. The fitting results are used for lattice correction. The method has been successfully demonstrated on the NSLS-II storage ring.

  3. A method for simultaneous linear optics and coupling correction for storage rings with turn-by-turn beam position monitor data

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xi [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, Xiaobiao [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2016-08-01

    We propose a method to simultaneously correct linear optics errors and linear coupling for storage rings using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA) method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice model. Furthermore, the fitting results are used for lattice correction. Our method has been successfully demonstrated on the NSLS-II storage ring.

  4. A method for simultaneous linear optics and coupling correction for storage rings with turn-by-turn beam position monitor data

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xi; Huang, Xiaobiao

    2016-08-01

    We propose a method to simultaneously correct linear optics errors and linear coupling for storage rings using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA) method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice model. The fitting results are used for lattice correction. The method has been successfully demonstrated on the NSLS-II storage ring.

  5. A method for simultaneous linear optics and coupling correction for storage rings with turn-by-turn beam position monitor data

    Science.gov (United States)

    Yang, Xi; Huang, Xiaobiao

    2016-08-01

    We propose a method to simultaneously correct linear optics errors and linear coupling for storage rings using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA) method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice model. The fitting results are used for lattice correction. The method has been successfully demonstrated on the NSLS-II storage ring.

  6. Targeted monitoring and analysis of ESBLs-positive Klebsiella pneumoniae%产ESBLs肺炎克雷伯菌的目标性监测与分析

    Institute of Scientific and Technical Information of China (English)

    杨怀; 王予川; 郑金鼎; 徐艳; 牟霞; 罗湘蓉; 袁军

    2012-01-01

    OBJECTIVE To understand the isolation and drug resistance of ESBLs-positive K. pneumoniae and explore control measures of ESBLs-positive K. pneumoniae infections. METHODS Targeted monitoring of clinical isolates of pathogens was performed in 2010, ESBLs-positive K. pneumoniae and the drug resistance were statistically analyzed, the surveillance for ESBLs-positive K. pneumoniae infections was performed. RESULTS According to the findings in the whole year,a total of 1215 strains of K. pneumoniae were isolated, among which ESBLs-positive isolates accounted for 22. 30% ; the resistance rate was high; there was no outbreak and prevalence of ESBLs-positive K. pneumoniae. CONCLUSION There are so many strains of ESBLs-positive K. pneumoniae isolated with high drug resistance, it is necessary to intensify the management of reasonable use of antibiotics, monitor the ESBLs-positive K. pneumoniae infections so as to prevent and reduce the resistant strains and control the nosocomial infections.%目的 了解临床产ESBLs肺炎克雷伯菌的分离和耐药性,探索产ESBLs肺炎克雷伯菌感染病例的监控措施.方法 对2010年临床分离的致病菌进行目标性监测,统计出产ESBLs肺炎克雷伯菌的株数及耐药率,并对临床产ESBLs肺炎克雷伯菌感染病例实施监控.结果 全年检测结果发现,共分离出肺炎克雷伯菌1215株,其中产ESBLs肺炎克雷伯菌占22.3%;对抗菌药物耐药率较高;全院未发生产ESBLs肺炎克雷伯菌的暴发和流行.结论 产ESBLs肺炎克雷伯菌分离株数较多,耐药率较高,应加强临床合理使用抗菌药物的管理,对产ESBLs肺炎克雷伯菌感染病例实施监控,预防和减少多药耐药菌的产生,控制医院感染.

  7. Alkylphosphate-based nonflammable gel electrolyte for LiMn{sub 2}O{sub 4} positive electrode in lithium-ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimoto, Nobuko; Gotoh, Daisuke; Egashira, Minato; Morita, Masayuki [Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611 (Japan)

    2008-12-01

    Polymeric gel containing alkylphosphate has been examined as nonflammable gel electrolyte for LiMn{sub 2}O{sub 4} positive electrode of lithium-ion battery (LIB). The gel was composed of a polymer matrix of poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-HFP) and a liquid component consisting of ternary solvent of trimethyl phosphate (TMP) mixed with ethylene carbonate (EC) and diethyl carbonate (DEC) that dissolves lithium salt (LiPF{sub 6} or LiBF{sub 4}). The gel composition of 0.8 M (mol dm{sup -3}) LiX (X = PF{sub 6} and BF{sub 4}) dissolved in EC + DEC + TMP (55:25:20) with PVdF-HFP showed excellent nonflammable characteristics and high ionic conductivity of ca. 3.1 mS cm{sup -1} at room temperature (20 C). The charge-discharge cycling test of LiMn{sub 2}O{sub 4} positive electrode gave good reversibility with high capacitance in the gel electrolyte. With respect to the electrolyte salt, LiBF{sub 4} was better than LiPF{sub 6} due to its thermal stability during the gel preparation. (author)

  8. [Sequential monitoring of plasma EBV-DNA level in a patient with EBV-positive Hodgkin lymphoma].

    Science.gov (United States)

    Uchida, Emi; Honma, Riko; Igarashi, Aiko; Kurata, Morito; Imadome, Ken-Ichi; Omoto, Eijiro; Miura, Osamu; Arai, Ayako

    2012-01-01

    A 58-year-old woman was admitted to our hospital because of fever, systemic lymphadenopathy with abnormal Epstein-Barr virus (EBV) antibody titers, and a high EBV-DNA load in the serum. She had been diagnosed as possibly having chronic active EBV infection (CAEBV) during a previous hospitalization. The EBV-DNA load of the plasma (pEBV-DNA), examined at our hospital, was elevated to 1.8×10(4) copies/ml, whereas that of the peripheral blood mononuclear cells was 3.4×10(1) copies/μg DNA, which was not clearly elevated, unlike in cases with CAEBV. Biopsy of the cervical lymph node was performed and the diagnosis of mixed cellularity classical Hodgkin lymphoma, Stage4B was made. Hodgkin cells were positive for EBV. COPP therapy was started and pEBV-DNA decreased drastically. The treatment was followed by ABVD therapy and pEBV-DNA turned negative after one course of ABVD therapy. She achieved complete response after 4 courses of the treatment. Reports from abroad indicate that pEBV-DNA parallels the disease state of EBV-positive Hodgkin lymphoma. Our results were consistent with these reports, and demonstrated that, in a Japanese patient, EBV-DNA load and its localization in the peripheral blood fractions could be useful tools for diagnosis as well as evaluating the disease status.

  9. Monitoring of inorganic ions, carbonaceous matter and mass in ambient aerosol particles with online and offline methods

    Directory of Open Access Journals (Sweden)

    H. Timonen

    2011-10-01

    Full Text Available Year-long high timeresolution measurements of major chemical components in atmospheric sub-micrometer particles were conducted at an urban background station in Finland 2006–2007. Ions were analyzed using a particle-into-liquid sampler combined with an ion chromatograph (PILS-IC, organic and elemental carbon (OC and EC by using a semicontinuos OC/EC aerosol carbon analyzer (RT-OCEC, and PM2.5 mass with a tapered element oscillating microbalance (TEOM. Long time series provides information on differences between the used measurement techniques as well as information about the diurnal and seasonal changes. Chemical mass closure was constructed by comparing the identified aerosol mass with the measured PM2.5. The sum of all components measured online (ions, particulate organic matter (POM, EC represented only 65% of the total PM2.5 mass. The difference can be explained by the difference in cutoff sizes (PM1 for online measurements, PM2.5 for total mass and by evaporation of the semivolatile/volatile components. In general, some differences in results were observed when the results of the continuous/semicontinuous instruments were compared with those of the conventional filter samplings. For non-volatile compounds, like sulfate and potassium, correlation between the filter samples and the PILS was good but greater differences were observed for the semivolatile compounds like nitrate and ammonium. For OC the results of the RT-OCEC were on average 10% larger than those of the filters. When compared to filter measurements, high resolution measurements provide important data on short pollution plumes as well as on diurnal changes. Clear seasonal and diurnal cycles were observed for nitrate and EC.

  10. Nano-level monitoring of Mn(2+) ion by fabrication of coated pyrolytic graphite electrode based on isonicotinohydrazide derivatives.

    Science.gov (United States)

    Sahani, Manoj Kumar; Singh, A K; Jain, A K

    2015-05-01

    The two ionophores N'(N',N‴E,N',N‴E)-N',N‴-((((oxybis(ethane-2,1-diyl))bis(oxy)) bis(2,1-phenylene))bis(methanylylidene))di(isonicotinohydrazide) (I1) and (N',N‴E,N',N‴E)-N',N‴-(((propane-1,3-diylbis(oxy))bis(2,1-phenylene))bis(methanylylidene))di(isonicotinohydrazide) (I2) were synthesised and investigated as neutral carrier in the fabrication of Mn(2+) ion selective sensor. Several membranes were prepared by incorporating different plasticizers and anionic excluders and their effect on potentiometric response was studied. The best analytical performance was obtained with the electrode having a membrane of composition of I2: PVC: o-NPOE: NaTPB in the ratio of 6:34:58:2 (w/w, mg). Comparative studies of coated graphite electrode (CGE) and coated pyrolytic graphite electrode (CPGE) based on I2 reveal the superiority of CPGE. The CPGE exhibits wide working concentration range of 1.23×10(-8)-1.0×10(-1) mol L(-1) and a detection limit down to 4.78×10(-9) mol L(-1) with a Nernstian slope of 29.5±0.4 mV decade(-1) of activity. The sensor performs satisfactorily over a wide pH range (3.5-9.0) and exhibited a quick response time (9s). The sensor can work satisfactorily in water-acetonitrile and water-methanol mixtures. It can tolerate 30% acetonitrile and 20% methanol content in the mixtures. The sensor could be used for a period of four months without any significant divergence in performance. The sensor reflects its utility in the quantification of Mn(2+) ion in real samples and has been successfully employed as an indicator electrode in the potentiometric titration of Mn(2+) ion with ethylenediaminetetraacetic acid (EDTA).

  11. High-rate and ultralong cycle-life LiFePO4 nanocrystals coated by boron-doped carbon as positive electrode for lithium-ion batteries

    Science.gov (United States)

    Feng, Jinpeng; Wang, Youlan

    2016-12-01

    An evolutionary modification approach, boron-doped carbon coating, has been used to improve the electrochemical performances of positive electrodes for lithium-ion batteries, and demonstrates apparent and significant modification effects. In this study, the boron-doped carbon coating is firstly adopted and used to decorate the performance of LiFePO4. The obtained composite exhibits a unique core-shell structure with an average diameter of 140 nm and a 4 nm thick boron-doped carbon shell that uniformly encapsulates the core. Owing to the boron element which could induce high amount of defects in the carbon, the electronic conductivity of LiFePO4 is greatly ameliorated. Thus, the boron-doped composite shows superior rate capability and cycle stability than the undoped sample. For instance, the reversible specific capacity of LiFePO4@B0.4-C can reach 164.1 mAh g-1 at 0.1C, which is approximately 96.5% of the theoretical capacity (170 mAh g-1). Even at high rate of 10C, it still shows a high specific capacity of 126.8 mAh g-1 and can be maintained at 124.5 mAh g-1 after 100 cycles with capacity retention ratio of about 98.2%. This outstanding Li-storage property enable the present design strategy to open up the possibility of fabricating the LiFePO4@B-C composite for high-performance lithium-ion batteries.

  12. Monitoring of the orbital position of a geostationary satellite by the spatially separated reception of signals of digital satellite television

    Science.gov (United States)

    Kaliuzny, M. P.; Bushuev, F. I.; Sibiriakova, Ye. S.; Shulga, O. V.; Shakun, L. S.; Bezrukovs, V.; Kulishenko, V. F.; Moskalenko, S. S.; Malynovsky, Ye. V.; Balagura, O. A.

    2017-02-01

    The results of the determination of the geostationary satellite "Eutelsat-13B" orbital position obtained during 2015-2016 years using European stations' network for reception of DVB-S signals from the satellite are presented. The network consists of five stations located in Ukraine and Latvia. The stations are equipped with a radio engineering complex developed by the RI "MAO". The measured parameter is a time difference of arrival (TDOA) of the DVB-S signals to the stations of the network. The errors of TDOA determination and satellite coordinates, obtained using a numerical model of satellite motion, are equal ±2.6 m and ±35 m respectively. Software implementation of the numerical model is taken from the free space dynamics library OREKIT.

  13. BDS Precise Point Positioning for Seismic Displacements Monitoring: Benefit from the High-Rate Satellite Clock Corrections

    Directory of Open Access Journals (Sweden)

    Tao Geng

    2016-12-01

    Full Text Available In order to satisfy the requirement of high-rate high-precision applications, 1 Hz BeiDou Navigation Satellite System (BDS satellite clock corrections are generated based on precise orbit products, and the quality of the generated clock products is assessed by comparing with those from the other analysis centers. The comparisons show that the root mean square (RMS of clock errors of geostationary Earth orbits (GEO is about 0.63 ns, whereas those of inclined geosynchronous orbits (IGSO and medium Earth orbits (MEO are about 0.2–0.3 ns and 0.1 ns, respectively. Then, the 1 Hz clock products are used for BDS precise point positioning (PPP to retrieve seismic displacements of the 2015 Mw 7.8 Gorkha, Nepal, earthquake. The derived seismic displacements from BDS PPP are consistent with those from the Global Positioning System (GPS PPP, with RMS of 0.29, 0.38, and 1.08 cm in east, north, and vertical components, respectively. In addition, the BDS PPP solutions with different clock intervals of 1 s, 5 s, 30 s, and 300 s are processed and compared with each other. The results demonstrate that PPP with 300 s clock intervals is the worst and that with 1 s clock interval is the best. For the scenario of 5 s clock intervals, the precision of PPP solutions is almost the same to 1 s results. Considering the time consumption of clock estimates, we suggest that 5 s clock interval is competent for high-rate BDS solutions.

  14. BDS Precise Point Positioning for Seismic Displacements Monitoring: Benefit from the High-Rate Satellite Clock Corrections.

    Science.gov (United States)

    Geng, Tao; Su, Xing; Fang, Rongxin; Xie, Xin; Zhao, Qile; Liu, Jingnan

    2016-12-20

    In order to satisfy the requirement of high-rate high-precision applications, 1 Hz BeiDou Navigation Satellite System (BDS) satellite clock corrections are generated based on precise orbit products, and the quality of the generated clock products is assessed by comparing with those from the other analysis centers. The comparisons show that the root mean square (RMS) of clock errors of geostationary Earth orbits (GEO) is about 0.63 ns, whereas those of inclined geosynchronous orbits (IGSO) and medium Earth orbits (MEO) are about 0.2-0.3 ns and 0.1 ns, respectively. Then, the 1 Hz clock products are used for BDS precise point positioning (PPP) to retrieve seismic displacements of the 2015 Mw 7.8 Gorkha, Nepal, earthquake. The derived seismic displacements from BDS PPP are consistent with those from the Global Positioning System (GPS) PPP, with RMS of 0.29, 0.38, and 1.08 cm in east, north, and vertical components, respectively. In addition, the BDS PPP solutions with different clock intervals of 1 s, 5 s, 30 s, and 300 s are processed and compared with each other. The results demonstrate that PPP with 300 s clock intervals is the worst and that with 1 s clock interval is the best. For the scenario of 5 s clock intervals, the precision of PPP solutions is almost the same to 1 s results. Considering the time consumption of clock estimates, we suggest that 5 s clock interval is competent for high-rate BDS solutions.

  15. Cerebral hemodynamics in patients with obstructive sleep apnea syndrome monitored with near-infrared spectroscopy (NIRS) during positive airways pressure (CPAP) therapy: a pilot study

    Science.gov (United States)

    Zhang, Zhongxing; Schneider, Maja; Laures, Marco; Fritschi, Ursula; Lehner, Isabella; Qi, Ming; Khatami, Ramin

    2014-03-01

    In obstructive sleep apnea syndrome (OSA) the periodic reduction or cessation of breathing due to narrowing or occlusion of the upper airway during sleep leads to daytime symptoms and increased cardiovascular risk, including stroke. The higher risk of stroke is related to the impairment in cerebral vascular autoregulation. Continuous positive airways pressure (CPAP) therapy at night is the most effective treatment for OSA. However, there is no suitable bedside monitoring method evaluating the treatment efficacy of CPAP therapy, especially to monitor the recovery of cerebral hemodynamics. NIRS is ideally suited for non-invasive monitoring the cerebral hemodynamics during sleep. In this study, we will for first time assess dynamic changes of cerebral hemodynamics during nocturnal CPAP therapy in 3 patients with OSA using NIRS. We found periodic oscillations in HbO2, HHb, tissue oxygenation index (TOI) and blood volume associated with periodic apnea events without CPAP in all OSA patients. These oscillations were gradually attenuated and finally eliminated with the stepwise increments of CPAP pressures. The oscillations were totally eliminated in blood volume earlier than in other hemodynamic parameters. These results suggested that 1) the cerebral hemodynamic oscillations induced by OSA events can effectively be attenuated by CPAP therapy, and 2) blood flow and blood volume recovered first during CPAP therapy, followed by the recovery of oxygen consumption. Our study suggested that NIRS is a useful tool to evaluate the efficacy of CPAP therapy in patients with OSA bedside and in real time.

  16. Simultaneous determination of 4-tert-octylphenol,4-nonylphenol and bisphenol A in Guanting Reservoir using gas chromatography-mass spectrometry with selected ion monitoring

    Institute of Scientific and Technical Information of China (English)

    JIN Xing-long; HUANG Guo-lan; JIANG Gui-bin; ZHOU Qun-fang; LIU Jing-fu

    2004-01-01

    The wide occurrence of estrogenic compounds 4-tert-octylphenol, 4-nonylphenol, bisphenol A in surface water of Guanting Reservoir was successfully determined. The target compounds in water samples were preconcentrated by liquid-liquid extraction with dichloromethane, derivatized by trifluoroacetic anhydride, and quantified by gas chromatography-mass spectrometry(GC-MS) with selected ion monitoring(SIM). In the selected seven sampling sites(S1-S7), the concentrations of NP in sample S7 were significantly higher than the other in reservoir. The pollution status in S3 and S7 were much more serious. The concentrations of OP, NP and BPA were in the range of 44.5-48.8, 221.6-349.6 and 30.2-82.7 ng/L, respectively. The pollution were mainly inputted from the upper river and released from sediments in Guanting Reservoir.

  17. Direct chemical-analysis of uv laser-ablation products of organic polymers by using selective ion monitoring mode in gas-chromatography mass-spectrometry

    Science.gov (United States)

    Cho, Yirang; Lee, H.W.; Fountain, S.T.; Lubman, D.M.

    1994-01-01

    Trace quantities of laser ablated organic polymers were analyzed by using commercial capillary column gas chromatography/mass spectrometry; the instrument was modified so that the laser ablation products could be introduced into the capillary column directly and the constituents of each peak in the chromatogram were identified by using a mass spectrometer. The present study takes advantage of the selective ion monitoring mode for significantly improving the sensitivity of the mass spectrometer as a detector, which is critical in analyzing the trace quantities and confirming the presence or absence of the species of interest in laser ablated polymers. The initial composition of the laser ablated polymers was obtained by using an electron impact reflectron time-of-flight mass spectrometer and the possible structure of the fragments observed in the spectra was proposed based on the structure of the polymers.

  18. Results of the Ongoing Monitoring of the Position of a Geostationary Telecommunication Satellite by the Method of Spatially Separated Basis Receiving of Digital Satellite Television Signals

    Science.gov (United States)

    Bushuev, F.; Kaliuzhnyi, M.; Sybiryakova, Y.; Shulga, O.; Moskalenko, S.; Balagura, O.; Kulishenko, V.

    2016-10-01

    The results of the ongoing monitoring of the position of geostationary telecommunication satellite Eutelsat-13B (13° East) are presented in the article. The results were obtained using a radio engineering complex (RC) of four stations receiving digital satellite television and a data processing centre. The stations are located in Kyiv, Mukachevo, Kharkiv and Mykolaiv. The equipment of each station allows synchronous recording (by the GPS) of fragments of DVB-S signal from the quadrature detector output of the satellite television receiver. Samples of the complex signal are archived and sent to the data processing center through the Internet. Here three linearly independent slant range differences (Δr) for three pairs of the stations are determined as a result of correlation processing of received signals. Every second measured values of Δr are used to calculate Cartesian coordinates (XYZ) of the satellite in the coordinate system WGS84 by multilateration method. The time series of Δr, X, Y and Z obtained during continuous observations from March to May 2015 are presented in the article. Single-measurement errors of Δr, X, Y and Z are equal to 2.6 m, 3540 m, 705 m and 455 m, respectively. The complex is compared with known analogues. Ways of reduction of measurement errors of satellite coordinates are considered. The radio engineering complex could be considered a prototype of a system of independent ongoing monitoring of the position of geostationary telecommunication satellites.

  19. Tailor-made micro-object optical sensor based on mesoporous pellets for visual monitoring and removal of toxic metal ions from aqueous media.

    Science.gov (United States)

    El-Safty, Sherif A; Shenashen, M A; Shahat, A

    2013-07-08

    Methods for the continuous monitoring and removal of ultra-trace levels of toxic inorganic species (e.g., mercury, copper, and cadmium ions) from aqueous media such as drinking water and biological fluids are essential. In this paper, the design and engineering of a simple, pH-dependent, micro-object optical sensor is described based on mesoporous aluminosilica pellets with an adsorbed dressing receptor (a porphyrinic chelating ligand). This tailor-made optical sensor permits ultra-fast (≤ 60 s), specific, pH-dependent visualization and removal of Cu(2+) , Cd(2+) , and Hg(2+) at sub-picomolar concentrations (∼10(-11) mol dm(-3) ) from aqueous media, including drinking water and a suspension of red blood cells. The acidic active acid sites of the pellets consist of heteroatoms arranged around uniformly shaped pores in 3D nanoscale gyroidal mesostructures densely coated with the chelating ligand. The sensor can be used in batch mode, as well as in a flow-through system in which sampling, target ion recognition and removal, and analysis are integrated in a highly automated and efficient manner. Because the pellets exhibit long-term stability, reproducibility, and versatility over a number of analysis/regeneration cycles, they can be expected to be useful for the fabrication of inexpensive sensor devices for naked-eye detection of toxic pollutants.

  20. Outburst of GX304-1 Monitored with INTEGRAL: Positive Correlation Between the Cyclotron Line Energy and Flux

    Science.gov (United States)

    Klochkov, D.; Doroshenko, V.; Santangelo, A.; Staubert, R.; Ferrigno, C.; Kretschmar, P.; Caballero, I.; Wilms, J.; Kreykenbohm, I.; Pottschmidt, I.; hide

    2012-01-01

    Context. X-ray spectra of many accreting pulsars exhibit significant variations as a function of flux and thus of mass accretion rate. In some of these pulsars, the centroid energy of the cyclotron line(s), which characterizes the magnetic field strength at the site of the X-ray emission, has been found to vary systematically with flux. Aims. GX304-1 is a recently established cyclotron line source with a line energy around 50 keV. Since 2009, the pulsar shows regular outbursts with the peak flux exceeding one Crab. We analyze the INTEGRAL observations of the source during its outburst in January-February 2012. Methods. The observations covered almost the entire outburst, allowing us to measure the source's broad-band X-my spectrum at different flux levels. We report on the variations in the spectral parameters with luminosity and focus on the variations in the cyclotron line. Results. The centroid energy of the line is found to be positively correlated with the luminosity. We interpret this result as a manifestation of the local sub-Eddington (sub-critical) accretion regime operating in the source.