WorldWideScience

Sample records for monitoring nanoclimate climate

  1. NABU Forest and Climate Monitoring Final Report

    NARCIS (Netherlands)

    DeVries, B.R.; Herold, M.

    2014-01-01

    This report outlines results of the Forest and Climate Monitoring sub-component of the project entitled “Climate Protection and Preservation of Primary Forests – A Management Model using the Wild Coffee Forests in Ethiopia as an Example” implemented by The Nature and Biodiversity Conservation Union

  2. Satellite-based climate information within the WMO RA VI Regional Climate Centre on Climate Monitoring

    Science.gov (United States)

    Obregón, A.; Nitsche, H.; Körber, M.; Kreis, A.; Bissolli, P.; Friedrich, K.; Rösner, S.

    2014-05-01

    The World Meteorological Organization (WMO) established Regional Climate Centres (RCCs) around the world to create science-based climate information on a regional scale within the Global Framework for Climate Services (GFCS). The paper introduces the satellite component of the WMO Regional Climate Centre on Climate Monitoring (RCC-CM) for Europe and the Middle East. The RCC-CM product portfolio is based on essential climate variables (ECVs) as defined by the Global Climate Observing System (GCOS), spanning the atmospheric (radiation, clouds, water vapour) and terrestrial domains (snow cover, soil moisture). In the first part, the input data sets are briefly described, which are provided by the EUMETSAT (European Organisation for the Exploitation of Meteorological Satellites) Satellite Application Facilities (SAF), in particular CM SAF, and by the ESA (European Space Agency) Climate Change Initiative (CCI). In the second part, the derived RCC-CM products are presented, which are divided into two groups: (i) operational monitoring products (e.g. monthly means and anomalies) based on near-real-time environmental data records (EDRs) and (ii) climate information records (e.g. climatologies, time series, trend maps) based on long-term thematic climate data records (TCDRs) with adequate stability, accuracy and homogeneity. The products are provided as maps, statistical plots and gridded data, which are made available through the RCC-CM website (www.dwd.de/rcc-cm).

  3. Operational climate monitoring from space: the EUMETSAT satellite application facility on climate monitoring (CM-SAF

    Directory of Open Access Journals (Sweden)

    J. Schulz

    2008-05-01

    Full Text Available The Satellite Application Facility on Climate Monitoring (CM-SAF aims at the provision of satellite-derived geophysical parameter data sets suitable for climate monitoring. CM-SAF provides climatologies for Essential Climate Variables (ECV, as required by the Global Climate Observing System implementation plan in support of the UNFCCC. Several cloud parameters, surface albedo, radiation fluxes at the top of the atmosphere and at the surface as well as atmospheric temperature and humidity products form a sound basis for climate monitoring of the atmosphere. The products are categorized in monitoring data sets obtained in near real time and data sets based on carefully intercalibrated radiances. The CM-SAF products are derived from several instruments on-board operational satellites in geostationary and polar orbit, i.e., the Meteosat and NOAA satellites, respectively. The existing data sets will be continued using data from the instruments on-board the new EUMETSAT Meteorological Operational satellite (MetOP. The products have mostly been validated against several ground-based data sets both in situ and remotely sensed. The accomplished accuracy for products derived in near real time is sufficient to monitor variability on diurnal and seasonal scales. Products based on intercalibrated radiance data can also be used for climate variability analysis up to inter-annual scale. A central goal of the recently started Continuous Development and Operations Phase of the CM-SAF (2007–2012 is to further improve all CM-SAF data sets to a quality level that allows for studies of inter-annual variability.

  4. Monitoring climate from space: a metrology perspective

    Science.gov (United States)

    Revercomb, Hank; Best, Fred; Tobin, Dave; Knuteson, Bob; Smith, Nadia; Smith, William L.; Weisz, Elisabeth

    2016-05-01

    Application of the principles of metrology for the NASA Climate Absolute Radiance and Refractivity Observatory (CLARREO) infrared high spectral resolution measurements is presented, starting with the use of a Standard International (SI) reference source on orbit, developing uncertainty traceability for intercalibration to other spaceborne sensors, and finally tracing the direct effects of radiance uncertainty on climate products originating from state parameter retrievals. The Absolute Radiance Interferometer (ARI) IR prototype employs an On-orbit Absolute Radiance Standard (OARS), developed under the NASA Instrument Incubator Program for CLARREO, for on-orbit calibration verification to better than 0.1 K 3-sigma. The OARS consists of a variable temperature, high emissivity blackbody with temperature calibration established to better than 16 mK on-orbit and provision for on-orbit emissivity monitoring. The temperature scale is established using miniature melt cells of Ga, H2O, and Hg. Transferring the high accuracy of ARI measurements to other IR instruments, especially the high spectral resolution operational sounders (AIRS, CrIS and IASI), is an important objective of CLARREO. The mathematical approach to rigorous traceability of sampling uncertainties is explained and applied in simulations of the intercalibration process. Results show that it will be possible to make intercomparisons of better than 0.05 K 3-sigma with just 6 months of observations from a single CLARREO in true polar orbit. Finally, the effects of radiance perturbations representing realistic uncertainties (for the CrIS on Suomi NPP) on retrieved temperature and water vapor profiles are evaluated. The results demonstrate a stable, physically reasonable impact of Dual regression retrievals.

  5. Contributions of GRACE to Climate Monitoring

    Science.gov (United States)

    Rodell, Matthew; Famiglietti, James; Chambers, Don P.; Wahr, John

    2011-01-01

    The NASA/German Gravity Recovery and Climate Experiment (GRACE) was launched in March 2002. Rather than looking downward, GRACE continuously monitors the locations of and precise distance between twin satellites which orbit in tandem about 200 km apart. Variations in mass near Earth's surface cause heterogeneities in its gravity field, which in turn affect the orbits of satellites. Thus scientists can use GRACE data to map Earth's gravity field with enough accuracy to discern month to month changes caused by ocean circulation and redistribution of water stored on and in the land. Other gravitational influences, such as atmospheric circulation, post-glacial rebound, and solid earth movements are either independently determined and removed or are negligible on a monthly to sub-decadal timescale. Despite its coarse spatial (>150,000 sq km at mid-latitudes) and temporal (approx monthly) resolutions, GRACE has enabled significant advancements in the oceanic, hydrologic, and cryospheric science, and has great potential for climate monitoring, because it is the only global observing system able to measure ocean bottom pressures, total terrestrial water storage, and ice mass changes. The best known GRACE results are estimates of Greenland and Antarctic ice sheet loss rates. Previously, scientists had estimated ice mass losses using ground and satellite based altimetry and surface mass balance estimates based on snowfall accumulation and glacier discharge. While such measurements are still very useful for their spatial detail, they are imperfectly correlated with large-scale ice mass changes, due to snow and ice compaction and incomplete spatial coverage. GRACE enables scientists to generate monthly time series of Greenland and Antarctic ice mass, which have confirmed the shrinking of the polar ice sheets, one of the most obvious and indisputable manifestations of climate change. Further, GRACE has located and quantified hot spots of ice loss in southeastern Greenland and

  6. Climate Engine - Monitoring Drought with Google Earth Engine

    Science.gov (United States)

    Hegewisch, K.; Daudert, B.; Morton, C.; McEvoy, D.; Huntington, J. L.; Abatzoglou, J. T.

    2016-12-01

    Drought has adverse effects on society through reduced water availability and agricultural production and increased wildfire risk. An abundance of remotely sensed imagery and climate data are being collected in near-real time that can provide place-based monitoring and early warning of drought and related hazards. However, in an era of increasing wealth of earth observations, tools that quickly access, compute, and visualize archives, and provide answers at relevant scales to better inform decision-making are lacking. We have developed ClimateEngine.org, a web application that uses Google's Earth Engine platform to enable users to quickly compute and visualize real-time observations. A suite of drought indices allow us to monitor and track drought from local (30-meters) to regional scales and contextualize current droughts within the historical record. Climate Engine is currently being used by U.S. federal agencies and researchers to develop baseline conditions and impact assessments related to agricultural, ecological, and hydrological drought. Climate Engine is also working with the Famine Early Warning Systems Network (FEWS NET) to expedite monitoring agricultural drought over broad areas at risk of food insecurity globally.

  7. Weather and Climate Monitoring Protocol, Channel Islands National Park, California

    Science.gov (United States)

    McEachern, Kathryn; Power, Paula; Dye, Linda; Rudolph, Rocky

    2008-01-01

    Weather and climate are strong drivers of population dynamics, plant and animal spatial distributions, community interactions, and ecosystem states. Information on local weather and climate is crucial in interpreting trends and patterns in the natural environment for resource management, research, and visitor enjoyment. This document describes the weather and climate monitoring program at the Channel Islands National Park (fig. 1), initiated in the 1990s. Manual and automated stations, which continue to evolve as technology changes, are being used for this program. The document reviews the history of weather data collection on each of the five Channel Islands National Park islands, presents program administrative structure, and provides an overview of procedures for data collection, archival, retrieval, and reporting. This program overview is accompanied by the 'Channel Islands National Park Remote Automated Weather Station Field Handbook' and the 'Channel Islands National Park Ranger Weather Station Field Handbook'. These Handbooks are maintained separately at the Channel Island National Park as 'live documents' that are updated as needed to provide a current working manual of weather and climate monitoring procedures. They are available on request from the Weather Program Manager (Channel Islands National Park, 1901 Spinnaker Dr., Ventura, CA 93001; 805.658.5700). The two Field Handbooks describe in detail protocols for managing the four remote automated weather stations (RAWS) and the seven manual Ranger Weather Stations on the islands, including standard operating procedures for equipment maintenance and calibration; manufacturer operating manuals; data retrieval and archiving; metada collection and archival; and local, agency, and vendor contracts.

  8. Stationary monitoring of glacier response to climate change in China

    Science.gov (United States)

    Ren, Jiawen; Li, Zhongqin; Qin, Xiang; He, Yuanqing; He, Xiaobo; Li, Huilin

    2016-04-01

    At present, there are about 48571 glaciers with a total area of about 51.8×103 km2 and a volume of about 5.6×103 km3 in China. They are distributed widely in the high mountains in and surrounding the Tibetan Plateau and other high mountains such as Tianshan, Altay and Pamir. In view of differences in climatic conditions and glacier types, stationary monitoring of the glacier variations has been ongoing in different regions in order to investigate the glacier response to climate change. The monitoring results show that all the monitoring glaciers have been in retreat during the past decades and especially since 1990's the retreat rate has an accelerating trend. The accumulative mass balance is much negative and has a large annual variability for the monsoonal maritime glaciers in comparison with the continental and sub-continental glaciers. Under climate warming background, the acceleration of glacier melting is mainly attributed to rise in air temperature, ice temperature augment and albedo reduction of glacier surface. Particularly, the albedo reduction has a positive feedback effect on the glacier melting. Based on long term observation of glacier variations and physical properties, a simple dynamics model is coupled with mass balance modeling to make a projection of a typical glacier change in future. The primary modeling results suggest that the glacier will continue in shrinkage until vanishing within 50-90 years.

  9. Drought Monitoring, Prediction and Adaptation under Climatic Changes

    Science.gov (United States)

    Su, Z.; Ma, Y.; van der Velde, R.; Dente, L.; Wang, L.; Timmermans, J.; Menenti, M.; Sobrino, J.; Li, Z.-L.; Verhoef, W.; Jia, L.; Wen, J.; He, Y.; Wan, L.; Liu, Q. H.; Yu, Q.; Li, X.; Zhong, L.; Zeng, Y.; Tian, X.; Li, L.; Qin, C.; Timmermans, W.; van Helvoirt, M.; van der Tol, C.; Salama, M. S.; Vekerdy, Z.

    2013-01-01

    The objective of this project was to develop a quantitative and operational system for nationwide drought monitoring and drought impact assessment for application in agriculture and water resources and environment in China using ESA, Chinese and other relevant satellite data as major data source in combination with other data (e.g. meteorological and drought statistics, etc.). An extension to drought prediction and adaptation to climate change had been made compared to the Dragon I drought monitoring project. In detail the project generated: (1) a preoperational real time drought monitoring and prediction system, (2) improved understanding of land surface processes and land-atmosphere interactions over different terrains (e.g. agriculture land, forest, Gobi desert, high plateau, polar environment), (3) algorithms for estimation of land surface parameters and heat fluxes, (4) assessment of economic loss caused by drought and adaptation measures under climatic change, (5) training of young scientists in the area of water, climate and environment. An operational system will be established by the China Meteorological Administration’s National Meteorological Center (CMA/NMC) to provide information concerning the drought evolution situation and to support drought relief decision-making. We report on advances in retrievals of soil moisture using in-situ observations, satellite sensors and numerical modeling. The accuracy of available soil moisture products are assessed using in-situ data collected in the soil moisture monitoring networks developed for this and other projects. The use of these satellite retrievals in drought monitoring is demonstrated by analyzing the droughts in China and the generated drought assessment indices are compared to current practice by CMA.

  10. Climate Change, Carbon Dioxide, and Pest Biology: Monitor, Mitigate, Manage.

    Science.gov (United States)

    Ziska, Lewis H; McConnell, Laura L

    2016-01-13

    Rising concentrations of atmospheric carbon dioxide ([CO2]) and subsequent changes in climate, including temperature and precipitation extremes, are very likely to alter pest pressures in both managed and unmanaged plant communities. Such changes in pest pressures can be positive (migration from a region) or negative (new introductions), but are likely to be accompanied by significant economic and environmental consequences. Recent studies indicate the range of invasive weeds such as kudzu and insects such as mountain pine beetle have already expanded to more northern regions as temperatures have risen. To reduce these consequences, a better understanding of the link between CO2/climate and pest biology is needed in the context of existing and new strategies for pest management. This paper provides an overview of the probable biological links and the vulnerabilities of existing pest management (especially chemical control) and provides a preliminary synthesis of research needs that could potentially improve the ability to monitor, mitigate, and manage pest impacts.

  11. Monitoring Surface Climate With its Emissivity Derived From Satellite Measurements

    Science.gov (United States)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu

    2012-01-01

    Satellite thermal infrared (IR) spectral emissivity data have been shown to be significant for atmospheric research and monitoring the Earth fs environment. Long-term and large-scale observations needed for global monitoring and research can be supplied by satellite-based remote sensing. Presented here is the global surface IR emissivity data retrieved from the last 5 years of Infrared Atmospheric Sounding Interferometer (IASI) measurements observed from the MetOp-A satellite. Monthly mean surface properties (i.e., skin temperature T(sub s) and emissivity spectra epsilon(sub v) with a spatial resolution of 0.5x0.5-degrees latitude-longitude are produced to monitor seasonal and inter-annual variations. We demonstrate that surface epsilon(sub v) and T(sub s) retrieved with IASI measurements can be used to assist in monitoring surface weather and surface climate change. Surface epsilon(sub v) together with T(sub s) from current and future operational satellites can be utilized as a means of long-term and large-scale monitoring of Earth 's surface weather environment and associated changes.

  12. Drought Monitoring in Peru as a Climate Service

    Science.gov (United States)

    Lavado, Waldo; Felipe, Oscar; Caycho, Tania; Sosa, Jesus; Fernandez, Carlos; Endara, Sofia

    2015-04-01

    Given the need to reduce socio- economic and environmental drought in Peru as well as the vulnerability and increasing responsiveness and recovery to these events, the National Service of Meteorology and Hydrology of Peru (SENAMHI ) in conjunction with the Peru's Environment Ministry has developed a plan Drought Monitoring nationwide, which consists of two components: 1) Monitoring System and 2 ) Dissemination System . The first component consists of calculating drought indicators at national level; and for that purpose we have selected the following indexes: Normal Precipitation Index (NPI), Standardized Precipitation Index (SPI) , Precipitation Concentration Index (PCI) , Vegetation Condition Index (VCI ) , Temperature Condition Index ( TCI) , Healthy Vegetation Index (VHI ) and Streamflow Drought Index (SDI). In order to estimate these index observed climatological and hydrological data of SENAMHI network is used as well as remote sensing data of precipitation, temperature and vegetation (TRMM, CHIRPS and MODIS). The second component is the spread of these indicators and a compilation thereof to a summary document that integrates all indicators (Monthly Bulletin). This will be done through newsletters and a website (www.senamhi.gob.pe/serviciosclimaticos); in the case of exceptional drought events special notes will be made. A date has launched the first newsletter in September 2014. This drought monitoring system will be used as an instrument of climate service and we intend to make it a useful tool for decision makers and the general population .

  13. Monitoring lichens diversity and climatic change in Sierra Nevada (Spain

    Directory of Open Access Journals (Sweden)

    Fernández Calzado, M.ª R.

    2013-12-01

    Full Text Available Lichens are common organisms in high mountain zones, where they play an important role in ecosystem balance. In recent years, the increasing interest in understanding more about their interactions with abiotic factors has prompted several investigations, some of which have proved their value as bioindicators of climatic conditions. In this context, focusing on climatic change effects on high mountain vascular plants and supported by the Global Observation Research Initiative in Alpine Environments project (GLORIA, we have monitored for the first time the lichens biodiversity in Sierra Nevada with the intention of studying the alterations caused by the process of climatic change. The aim of this paper is to explain the monitoring experience developed on the massif and contribute to the first results from the biodiversity and statistical analysis of the sampling data.Los líquenes son organismos comunes en las zonas de alta montaña donde juegan un importante papel en el equilibrio de los ecosistemas. En los últimos años, el creciente interés por entender más acerca de sus interacciones con los factores abióticos ha motivado diversas investigaciones, algunas de las cuales han demostrado su valor como bioindicadores de las condiciones climáticas. En este contexto, centrándonos en los efectos del cambio climático en plantas vasculares de alta montaña y respaldados por el proyecto “Iniciativa para la investigación y el seguimiento global de los ambientes alpinos (GLORIA”, se ha monitorizado por primera vez la diversidad de líquenes en Sierra Nevada con la intención de estudiar las posibles alteraciones que esta pueda sufrir causadas por el proceso de cambio climático. El objetivo de este artículo es el de dar a conocer la experiencia de seguimiento en el macizo y aportar los primeros resultados procedentes del análisis, tanto de la biodiversidad como estadístico, de los datos de muestreo.

  14. The 21st century Museum Climatic Monitoring System

    Science.gov (United States)

    Liu, W.-S.

    2015-08-01

    Technology has provided us work convenience and shaped our quality of life; it has enabled an unprecedented level of access to knowledge by flipping screen of a hand-held electronic device without going elsewhere but stay connected wireless communication. This kind of technology has been broadly acquired at museums in Hong Kong for preserving their valuable collections. Similar gadget was applied on the monitoring system to record climatic conditions of museum's stores and galleries. Sensors have been equipped with chips for the wireless transmission of RH/Temp, without installation of any conduit or LAN lines. Useful and important data will then be grouped into a packet format for efficient delivery. As long as the static IP address of the target workstation has been set, data can be accurately retrieved from one place to another via commercially available browsers, such as: Firefox or Internet Explorer, even on hand-held electronic devices. This paper will discuss the detail of this system, its pros and cons in comparison with the old model. After all, the new technology is highly significant in supporting the current needs and the future developments of the museum service.

  15. A climatological network for regional climate monitoring in Sardinia.

    Science.gov (United States)

    Delitala, Alessandro M. S.

    2016-04-01

    In recent years the Region of Sardinia has been working to set-up a Regional Climatological Network of surface stations, in order to monitor climate (either stationary or changing) at sub-synoptic scale and in order to make robust climatological information available to researchers and to local stake-holders. In order to do that, an analysis of long climatological time series has been performed on the different historical networks of meteorological stations that existed over the past two centuries. A set of some hundreds of stations, with about a century of observations of daily precipitation, was identified. An important subset of them was also defined, having long series of observations of temperature, wind, pressure and other quantities. Specific investments were made on important stations sites where observations had been carried for decades, but where the climatological stations did not exist anymore. In the present talk, the Regional Climatological Network of Sardinia will be presented and its consistency discussed. Specific attention will be given to the most important climatological stations which have got more than a century of observations of meteorological quantities. Critical issues of the Regional Climatological Network, like relocation of stations and inhomogeneity of data due to instrumental changes or environmental modifications, will be discussed.

  16. Using Copernicus earth observation services to monitor climate change impacts and adaptations

    Science.gov (United States)

    Becker, Daniel; Zebisch, Marc; Sonnenschein, Ruth; Schönthaler, Konstanze; von Andrian-Werburg, Stefan

    2016-04-01

    In the last years, earth observation made a big leap towards an operational monitoring of the state of environment. Remote sensing provides for instance information on the dynamics, trends and anomalies of snow and glaciers, vegetation, soil moisture or water temperature. In particular, the European Copernicus initiative offers new opportunities through new satellites with a higher temporal and spatial resolution, operational services for environmental monitoring and an open data access policy. With the Copernicus climate change service and the ESA climate change initiative, specific earth observation programs are in place to address the impacts of climate change. However, such products and services are until now rarely picked up in the field of policy or decision making oriented climate impact or climate risk assessments. In this talk, we will present results of a study, which focus on the question, if and how remote sensing approaches could be integrated into operational monitoring activities of climate impacts and response measures on a national and subnational scale. We assessed all existing and planned Copernicus services regarding their relevance for climate impact monitoring by comparing them against the indication fields from an indicator system for climate impact and response monitoring in Germany, which has lately been developed in the framework of the German national adaptation strategy. For several climate impact or response indicators, an immediate integration of remote sensing data could be identified and been recommended. For these cases, we will show practical examples on the benefit of remote sensing data. For other indication fields, promising approaches were found, which need further development. We argue that remote sensing is a very valuable complement to the existing indicator schemes by contributing with spatial explicit, timely information but not always easy to integrate with classical approaches, which are oriented towards consistent long

  17. Field Monitoring and Analysis of Climate Change Across a Wide Range of Ecosystems in Hawaii

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The goal of this ongoing project is to ensure continued operation and maintenance of the HaleNet climate and ecosystem monitoring network, including field...

  18. Collaboration pathway(s) using new tools for optimizing operational climate monitoring from space

    Science.gov (United States)

    Helmuth, Douglas B.; Selva, Daniel; Dwyer, Morgan M.

    2014-10-01

    Consistently collecting the earth's climate signatures remains a priority for world governments and international scientific organizations. Architecting a solution requires transforming scientific missions into an optimized robust `operational' constellation that addresses the needs of decision makers, scientific investigators and global users for trusted data. The application of new tools offers pathways for global architecture collaboration. Recent (2014) rulebased decision engine modeling runs that targeted optimizing the intended NPOESS architecture, becomes a surrogate for global operational climate monitoring architecture(s). This rule-based systems tools provide valuable insight for Global climate architectures, through the comparison and evaluation of alternatives considered and the exhaustive range of trade space explored. A representative optimization of Global ECV's (essential climate variables) climate monitoring architecture(s) is explored and described in some detail with thoughts on appropriate rule-based valuations. The optimization tools(s) suggest and support global collaboration pathways and hopefully elicit responses from the audience and climate science shareholders.

  19. Climate monitoring and diagnostics laboratory No. 23. Summary report 1994-1995

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, D.J.; Peterson, J.T.; Rosson, R.M.

    1996-09-01

    This report is a summary of activities of the Climate Monitoring and Diagnostic Laboratory (CMDL) for Calendar years 1994 and 1995. It is the 23rd consecutive report issued by this organization and its Air Resources Laboratory/Geophysical Monitoring for Climate Change predecessor since formation in 1972. This report is organized into six major sections: Observatory , Meteorology, and Data Management; Carbon Cycle; Aerosols and Radiation; Ozone and Water Vapor; Nitrous Oxide and Halocompounds; and Cooperative Programs.

  20. Establishing a baseline for monitoring and evaluating user satisfaction with climate services in Tanzania

    OpenAIRE

    2016-01-01

    This report is an output from the Global Framework for Climate Services Adaptation Program in Africa (GFCS-APA) Tanzania country activities. The aim of the report is to establish a baseline for monitoring “User Satisfaction with Climate Services” at the national, district, and local levels, with a focus on the programme target districts of Longido and Kiteto. A qualitative approach was employed to document 1) existing institutional coordination and steering mechanisms for a dedicated climate ...

  1. Air pollution and climate change effects on health of the Ukrainian forests: monitoring and evalution

    Science.gov (United States)

    Igor F. Buksha; Valentina L. Meshkova; Oleg M. Radchenko; Alexander S. Sidorov

    1998-01-01

    Forests in the Ukraine are affected by environmental pollution, intensive forestry practice, and recreational uses. These factors make them sensitive to impacts of climate change. Since 1989 Ukraine has participated in the International Cooperative Program on Assessment and Monitoring of Air Pollution Effects on Forests (ICP-Forests). A network of monitoring plots has...

  2. Monitoring Users' Satisfactions of the NOAA NWS Climate Products and Services

    Science.gov (United States)

    Horsfall, F. M.; Timofeyeva, M. M.; Dixon, S.; Meyers, J. C.

    2011-12-01

    The NOAA's National Weather Service (NWS) Climate Services Division (CSD) ensures the relevance of NWS climate products and services. There are several ongoing efforts to identify the level of user satisfaction. One of these efforts includes periodical surveys conducted by Claes Fornell International (CFI) Group using the American Customer Satisfaction Index (ACSI), which is "the only uniform, national, cross-industry measure of satisfaction with the quality of goods and services available in the United States" (http://www.cfigroup.com/acsi/overview.asp). The CFI Group conducted NWS Climate Products and Services surveys in 2004 and 2009. In 2010, a prominent routine was established for a periodical assessment of the customer satisfaction. From 2010 onward, yearly surveys will cover major climate services products and services. An expanded suite of climate products will be surveyed every other year. Each survey evaluated customer satisfaction with a range of NWS climate services, data, and products, including Climate Prediction Center (CPC) outlooks, drought monitoring, and ENSO monitoring and forecasts, as well as NWS local climate data and forecast products and services. The survey results provide insight into the NWS climate customer base and their requirements for climate services. They also evaluate whether we are meeting the needs of customers and the ease of their understanding for routine climate services, forecasts, and outlooks. In addition, the evaluation of specific topics, such as NWS forecast product category names, probabilistic nature of climate products, interpretation issues, etc., were addressed to assess how our users interpret prediction terminology. This paper provides an analysis of the following products: hazards, extended-range, long-lead and drought outlooks, El Nino Southern Oscillation monitoring and predictions as well as local climate data products. Two key issues make comparing the different surveys challenging, including the

  3. A framework for habitat monitoring and climate change modelling

    NARCIS (Netherlands)

    Villoslada, Miguel; Bunce, Robert G.H.; Sepp, Kalev; Jongman, Rob H.G.; Metzger, Marc J.; Kull, Tiiu; Raet, Janar; Kuusemets, Valdo; Kull, Ain; Leito, Aivar

    2017-01-01

    Environmental stratifications provide the framework for efficient surveillance and monitoring of biodiversity and ecological resources, as well as modelling exercises. An obstacle for agricultural landscape monitoring in Estonia has been the lack of a framework for the objective selection of

  4. CTFS/ForestGEO: A global network to monitor forest interactions with a changing climate

    Science.gov (United States)

    Anderson-Teixeira, K. J.; Muller-Landau, H.; McMahon, S.; Davies, S. J.

    2013-12-01

    Forests are an influential component of the global carbon cycle and strongly influence Earth's climate. Climate change is altering the dynamics of forests globally, which may result in significant climate feedbacks. Forest responses to climate change entail both short-term ecophysiological responses and longer-term directional shifts in community composition. These short- and long-term responses of forest communities to climate change may be better understood through long-term monitoring of large forest plots globally using standardized methodology. Here, we describe a global network of forest research plots (CTFS/ForestGEO) of utility for understanding forest responses to climate change and consequent feedbacks to the climate system. CTFS/ForestGEO is an international network consisting of 51 sites ranging in size from 2-150 ha (median size: 25 ha) and spanning from 25°S to 52°N latitude. At each site, every individual > 1cm DBH is mapped and identified, and recruitment, growth, and mortality are monitored every 5 years. Additional measurements include aboveground productivity, carbon stocks, soil nutrients, plant functional traits, arthropod and vertebrates monitoring, DNA barcoding, airborne and ground-based LiDAR, micrometeorology, and weather monitoring. Data from this network are useful for understanding how forest ecosystem structure and function respond to spatial and temporal variation in abiotic drivers, parameterizing and evaluating ecosystem and earth system models, aligning airborne and ground-based measurements, and identifying directional changes in forest productivity and composition. For instance, CTFS/ForestGEO data have revealed that solar radiation and night-time temperature are important drivers of aboveground productivity in moist tropical forests; that tropical forests are mixed in terms of productivity and biomass trends over the past couple decades; and that the composition of Panamanian forests has shifted towards more drought

  5. A comprehensive network of measuring stations to monitor climate change

    Energy Technology Data Exchange (ETDEWEB)

    Hari, P. (Dept. of Forest Ecology, Univ. of Helsinki (Finland)); Andreae, M. (Biogeochemistry Dept., Max Planck Institute for Chemistry, Mainz (Germany)); Kabat, P. (Wageningen Univ. and Research Centre (Netherlands)); Kulmala, M. (Dept. of Physics, Univ. of Helsinki (Finland))

    2009-07-01

    The atmospheric CO{sub 2} concentration and temperature have been rather stable at the time scale of millennia, although rather large variations have occurred during longer periods. The extensive use of fossil fuels and destruction of forests have recently increased the atmospheric CO{sub 2} concentrations. Temperature and circulation of water on the globe are reacting to the increase in the atmospheric CO{sub 2} concentration. Mankind urgently needs knowledge on the present climate change and on its effects on living nature. We propose that a network of comprehensive measuring stations should be constructed, utilizing modern technology to provide documentation of the climate change and data for research related to it. To be able to cover spatial and temporal variations, a hierarchy of stations is needed. (orig.)

  6. Monitoring and Predicting the African Climate for Food Security

    Science.gov (United States)

    Thiaw, W. M.

    2015-12-01

    Drought is one of the greatest challenges in Africa due to its impact on access to sanitary water and food. In response to this challenge, the international community has mobilized to develop famine early warning systems (FEWS) to bring safe food and water to populations in need. Over the past several decades, much attention has focused on advance risk planning in agriculture and water. This requires frequent updates of weather and climate outlooks. This paper describes the active role of NOAA's African Desk in FEWS. Emphasis is on the operational products from short and medium range weather forecasts to subseasonal and seasonal outlooks in support of humanitarian relief programs. Tools to provide access to real time weather and climate information to the public are described. These include the downscaling of the U.S. National Multi-model Ensemble (NMME) to improve seasonal forecasts in support of Regional Climate Outlook Forums (RCOFs). The subseasonal time scale has emerged as extremely important to many socio-economic sectors. Drawing from advances in numerical models that can now provide a better representation of the MJO, operational subseasonal forecasts are included in the African Desk product suite. These along with forecasts skill assessment and verifications are discussed. The presentation will also highlight regional hazards outlooks basis for FEWSNET food security outlooks.

  7. Pilot system on extreme climate monitoring and early warning for long range forecast in Korea

    Science.gov (United States)

    Cho, K.; Park, B. K.; E-hyung, P.; Gong, Y.; Kim, H. K.; Park, S.; Min, S. K.; Yoo, H. D.

    2015-12-01

    Recently, extreme weather/climate events such as heat waves, flooding/droughts etc. have been increasing in frequency and intensity under climate change over the world. Also, they can have substantial impacts on ecosystem and human society (agriculture, health, and economy) of the affected regions. According to future projections of climate, extreme weather and climate events in Korea are expected to occure more frequently with stronger intensity over the 21st century. For the better long range forecast, it is also fundamentally ruquired to develop a supporting system in terms of extreme weather and climate events including forequency and trend. In this context, the KMA (Korea Meteorological Administration) has recently initiated a development of the extreme climate monintoring and early warning system for long range forecast, which consists of three sub-system components; (1) Real-time climate monitoring system, (2) Ensemble prediction system, and (3) Mechanism analysis and display system for climate extremes. As a first step, a pilot system has been designed focusing on temperature extremes such heat waves and cold snaps using daily, monthly and seasonal observations and model prediction output on the global, regional and national levels. In parallel, the skills of the KMA long range prediction system are being evaluated comprehensively for weather and climate extremes, for which varous case studies are conducted to better understand the observed variations of extrem climates and responsible mechanisms and also to assess predictability of the ensemble prediction system for extremes. Details in the KMA extreme climate monitoring and early warning system will be intorduced and some preliminary results will be discussed for heat/cold waves in Korea.

  8. An integrated climate service strategy for African drought monitoring and prediction: linking information to action

    Science.gov (United States)

    Funk, C.; Verdin, J. P.; Rowland, J.; Budde, M.

    2008-12-01

    For 23 years, the US Agency for International Development's Famine Early Warning Systems Network (FEWS NET) has applied climate data analysis in support of timely food insecurity mitigation and adaptation in Africa. FEWS NET, therefore, provides a compelling example of a sector-specific climate service. We briefly review the phases, successes and shortcomings of the FEWS NET climate service, describe an improved long term climate service strategy, and present new research supporting an improved, integrated drought monitoring approach. Our new monitoring system emphasizes seamless links between historical precipitation archives, near real-time rainfall estimates, and 1-to-4 month statistical predictions. Assessment of forecast skill shows useful levels of accuracy for many regions during key periods of the growing season. Integrating these forecasts with near real time blended satellite-gauge precipitation observations facilitates early identification of mid-season agricultural drought. Integrated historical climate archives (1979-present) permit analysis of observed and forecast climate conditions in terms of historical probabilities and analogs. Tools specific to staple crops and pastoralist settings are then used to assess the likely impacts of hydrometeorological anomalies. These are geographically integrated with livelihoods information and interpreted in terms of current food security conditions and timelines to determine human consequences. A client-server web-mapping data portal will allow users to dynamically access the climate anomaly information, and visualize the results in conjunction with livelihood information.

  9. Collaboration pathway(s) using new tools for optimizing `operational' climate monitoring from space

    Science.gov (United States)

    Helmuth, Douglas B.; Selva, Daniel; Dwyer, Morgan M.

    2015-09-01

    Consistently collecting the earth's climate signatures remains a priority for world governments and international scientific organizations. Architecting a long term solution requires transforming scientific missions into an optimized robust `operational' constellation that addresses the collective needs of policy makers, scientific communities and global academic users for trusted data. The application of new tools offers pathways for global architecture collaboration. Recent rule-based expert system (RBES) optimization modeling of the intended NPOESS architecture becomes a surrogate for global operational climate monitoring architecture(s). These rulebased systems tools provide valuable insight for global climate architectures, by comparison/evaluation of alternatives and the sheer range of trade space explored. Optimization of climate monitoring architecture(s) for a partial list of ECV (essential climate variables) is explored and described in detail with dialogue on appropriate rule-based valuations. These optimization tool(s) suggest global collaboration advantages and elicit responses from the audience and climate science community. This paper will focus on recent research exploring joint requirement implications of the high profile NPOESS architecture and extends the research and tools to optimization for a climate centric case study. This reflects work from SPIE RS Conferences 2013 and 2014, abridged for simplification30, 32. First, the heavily securitized NPOESS architecture; inspired the recent research question - was Complexity (as a cost/risk factor) overlooked when considering the benefits of aggregating different missions into a single platform. Now years later a complete reversal; should agencies considering Disaggregation as the answer. We'll discuss what some academic research suggests. Second, using the GCOS requirements of earth climate observations via ECV (essential climate variables) many collected from space-based sensors; and accepting their

  10. Submarine Cables for Ocean/Climate Monitoring and Disaster Warning

    Science.gov (United States)

    Bueti, Cristina; Barnes, Chris; Meldrum, David

    2013-04-01

    A joint initiative between International Telecommunication Union (ITU), the World Meteorological Organization (WMO) and the Intergovernmental Oceanographic Commission (IOC) of UNESCO is examining novel uses for submarine telecommunication cables. The initiative addresses two main issues: the need for sustained climate-quality data from the sparsely observed deep oceans, and the desire to increase the reliability and integrity of the global tsunami warning networks. In the latter case, a significant proportion of the network suffers from failure and vandalism of the sea-surface telemetry buoys that relay the tsunami signals from the sea-bed sensor package: incorporating the sensors within a submarine cable repeater is an obvious way of increasing system reliability. At the present time, plans are well advanced to launch a pilot project with the active involvement of cable industry players.

  11. Solving the Global Climate Monitoring Problem in the Atmosphere: Towards SI-tied Climate Records with Integrated Uncertainty Propagation

    Science.gov (United States)

    Kirchengast, G.; Schwaerz, M.; Fritzer, J.; Schwarz, J.; Scherllin-Pirscher, B.; Steiner, A. K.

    2013-12-01

    Monitoring the atmosphere to gain accurate and long-term stable records of essential climate variables (ECVs) such as temperature and greenhouse gases is the backbone of contemporary atmospheric and climate science. Earth observation from space is the key to obtain such data globally in the atmosphere. Currently, however, not any existing satellite-based atmospheric ECV record can serve as authoritative benchmark over months to decades so that climate variability and change in the atmosphere are not yet reliably monitored. Radio occultation (RO) using Global Navigation Satellite System (GNSS) signals provides a unique opportunity to solve this problem in the free atmosphere (from ~1-2 km altitude upwards) for core ECVs: the thermodynamic variables temperature and pressure, and to some degree water vapor, which are key parameters for tracking climate change. On top of RO we have recently conceived next-generation methods, microwave and infrared-laser occultation and nadir-looking infrared-laser reflectometry. These can monitor a full set of thermo-dynamic ECVs (incl. wind) as well as the greenhouse gases such as carbon dioxide and methane as main drivers of climate change; for the latter we also target the boundary layer for tracking carbon sources and sinks. We briefly introduce to why the atmospheric climate monitoring challenge is unsolved so far and why just the above methods have the capabilities to break through. We then focus on RO, which already provided more than a decade of observations. RO accurately measures time delays from refraction of GNSS signals during atmospheric occultation events. This enables to tie RO-derived ECVs and their uncertainty to fundamental time standards, effectively the SI second, and to their unique long-term stability and narrow uncertainty. However, despite impressive advances since the pioneering RO mission GPS/Met in the mid-1990ties no rigorous trace from fundamental time to the ECVs (duly accounting also for relevant side

  12. Applications of Advanced Technology for Monitoring Forest Carbon to Support Climate Change Mitigation

    Science.gov (United States)

    Birdsey, R.; Hurtt, G. C.; Dubayah, R.; Hagen, S. C.; Vargas, R.; Nehrkorn, T.; Domke, G. M.; Houghton, R. A.

    2015-12-01

    Measurement, Reporting, and Verification (MRV) is a broad concept guiding the application of monitoring technology to the needs of countries or entities for reporting and verifying reductions in greenhouse gas emissions or increases in greenhouse gas sinks. Credibility, cost-effectiveness, and compatibility are important features of global MRV efforts that can support implementation of climate change mitigation programs such as Reducing Emissions from Deforestation and Forest Degradation and Sustainable Forest Management (REDD+). Applications of MRV technology may be tailored to individual country circumstances following guidance provided by the Intergovernmental Panel on Climate Change; hence, there is no single approach that is uniquely viable but rather a range of ways to integrate new MRV methods. MRV technology is advancing rapidly with new remote sensing and advanced measurement of atmospheric CO2, and in situ terrestrial and ocean measurements, coupled with improvements in data analysis, modeling, and assessing uncertainty. Here we briefly summarize some of the most application-ready MRV technologies being developed under NASA's Carbon Monitoring System (CMS) program, and illustrate how these technologies may be applied for monitoring forests using several case studies that span a range of scales, country circumstances, and stakeholder reporting requirements. We also include remarks about the potential role of advanced monitoring technology in the context of the global climate accord that is expected to result from the 21st session of the Conference of the Parties to the United Nations Framework Convention on Climate Change, which is expected to take place in December 2015, in Paris, France.

  13. Good Practice in Designing and Implementing National Monitoring Systems for Adaptation to Climate Change

    DEFF Research Database (Denmark)

    Naswa, Prakriti; Trærup, Sara Lærke Meltofte; Bouroncle, Claudia

    In this report, we identify, analyse and compare international good practices in the design and implementation of national monitoring and evaluating indicator systems for climate change adaptation. This first chapter provides an introduction to the context and key terminology in the domain...

  14. Monitoring of small and medium embankment dams on permafrost in a changing climate

    Institute of Scientific and Technical Information of China (English)

    Rudolf V.Zhang

    2014-01-01

    Global climate warming which began in the second half of the twentieth century is continuing. It is associated with in creased risks for ecological management, especially in permafrost areas comprising over 65% of Russia. Of special con cern are dams constructed on permafrost. They are subject not only to climatic impacts, but also to additional hydrothermal loads from water reservoirs. This paper presents the concept of geocryological monitoring of dams and other water re source projects and substantiates its necessity in view of climatic change. It also presents methods, scope and implemen tation of geocryological monitoring at medium and small dams, considering the specific nature of Far Northern areas, as well as the complicated geotechnical, hydrogeological and permafrost conditions.

  15. Monitoring strategies of stream phosphorus under contrasting climate-driven flow regimes

    DEFF Research Database (Denmark)

    Goyenola, Guillermo; Meerhoff, Marianna; Teixeira-de Mello, Franco;

    2015-01-01

    and the performance of alternative monitoring strategies in streams under contrasting climate-driven flow regimes. We compared a set of paired streams draining lowland micro-catchments under temperate climate and stable discharge conditions (Denmark) and under sub-tropical climate and flashy conditions (Uruguay). We...... phosphorus export from diffuse sources in streams in Uruguay streams, mostly as a consequence of higher variability in flow regime (higher flashiness). Contrarily, we found a higher contribution of dissolved P in flashy streams. We did not find a notably poorer performance of the low-frequency sampling...... program to estimate P exports in flashy streams compared to the less variable streams. We also found signs of interaction between climate/hydrology and land use intensity, in particular in the presence of point sources of P, leading to a bias towards underestimation of P in hydrologically stable streams...

  16. Climate Monitoring Network on Maunakea - Master Station at Summit and Lower Elevation Satellite Stations

    Science.gov (United States)

    McKenzie, M. M.; Klasner, F.; Giambelluca, T. W.; Businger, S.

    2014-12-01

    Maunakea, a dormant shield volcano on the Big Island of Hawai'i, rises 13,796 feet above sea level, making it the highest point in the Pacific Basin. From sea floor to summit, it's the tallest mountain in the world. The high elevation, low air and light pollution, as well as dry weather year round make it the best location in the world for astronomy observations. The summit is home to 13 ground based telescope facilities. Like all alpine regions, it is an extremely fragile and unique ecosystem because of the harsh conditions and short growing seasons located at high altitudes. The summit is home to several federal and/or state protected species. It supports 11 species of arthropods found nowhere else on Earth. Most noted of these is the Wēkiu bug, whose habitat has been altered by the infrastructural development on the mountain. Arthropod habitat model development has highlighted gaps in climate information, for example, lack of climate precipitation data, snow data and reliable temperature data. Furthermore, in tropical regions, precipitation is the most variable climate component due to topography and local winds. The telescopes collect weather data for the purpose of knowing when it is dry and clear for astronomical observation. Although existing weather stations associated with the telescopes meet some weather and climate monitoring needs, it cannot address the full range of issues needed due to technological limitation and site design. Precipitation does not occur often and is likely to be in the form of snow or ice. Snow cover data has not been directly recorded despite astronomical recording of other meteorological data that began in the1960s. Therefore, the need to monitor the weather and climate in a long-term and well-calibrated way is critical for management of the ecosystems on the slopes of Maunakea. Long-term weather and climate monitoring stations are the primary building blocks for research partnerships, which encourage collaboration and ultimately

  17. Integrated monitoring and information systems for managing aquatic invasive species in a changing climate

    Science.gov (United States)

    Lee, Henry; Reusser, Deborah A.; Olden, Julian D.; Smith, Scott S.; Graham, Jim; Burkett, Virginia; Dukes, Jeffrey S.; Piorkowski, Robert J.; Mcphedran, John

    2008-01-01

    Changes in temperature, precipitation, and other climatic drivers and sea-level rise will affect populations of existing native and non-native aquatic species and the vulnerability of aquatic environments to new invasions. Monitoring surveys provide the foundation for assessing the combined effects of climate change and invasions by providing baseline biotic and environmental conditions, although the utility of a survey depends on whether the results are quantitative or qualitative, and other design considerations. The results from a variety of monitoring programs in the United States are available in integrated biological information systems, although many include only non-native species, not native species. Besides including natives, we suggest these systems could be improved through the development of standardized methods that capture habitat and physiological requirements and link regional and national biological databases into distributed Web portals that allow drawing information from multiple sources. Combining the outputs from these biological information systems with environmental data would allow the development of ecological-niche models that predict the potential distribution or abundance of native and non-native species on the basis of current environmental conditions. Environmental projections from climate models can be used in these niche models to project changes in species distributions or abundances under altered climatic conditions and to identify potential high-risk invaders. There are, however, a number of challenges, such as uncertainties associated with projections from climate and niche models and difficulty in integrating data with different temporal and spatial granularity. Even with these uncertainties, integration of biological and environmental information systems, niche models, and climate projections would improve management of aquatic ecosystems under the dual threats of biotic invasions and climate change

  18. Understanding Climate Adaptation on Public Lands in the Upper Midwest: Implications for Monitoring and Tracking Progress.

    Science.gov (United States)

    Anhalt-Depies, Christine M; Knoot, Tricia Gorby; Rissman, Adena R; Sharp, Anthony K; Martin, Karl J

    2016-05-01

    There are limited examples of efforts to systematically monitor and track climate change adaptation progress in the context of natural resource management, despite substantial investments in adaptation initiatives. To better understand the status of adaptation within state natural resource agencies, we utilized and problematized a rational decision-making framework to characterize adaptation at the level of public land managers in the Upper Midwest. We conducted in-depth interviews with 29 biologists and foresters to provide an understanding of managers' experiences with, and perceptions of, climate change impacts, efforts towards planning for climate change, and a full range of actions implemented to address climate change. While the majority of managers identified climate change impacts affecting their region, they expressed significant uncertainty in interpreting those signals. Just under half of managers indicated planning efforts are underway, although most planning is remote from local management. Actions already implemented include both forward-looking measures and those aimed at coping with current impacts. In addition, cross-scale dynamics emerged as an important theme related to the overall adaptation process. The results hold implications for tracking future progress on climate change adaptation. Common definitions or measures of adaptation (e.g., presence of planning documents) may need to be reassessed for applicability at the level of public land managers.

  19. Understanding Climate Adaptation on Public Lands in the Upper Midwest: Implications for Monitoring and Tracking Progress

    Science.gov (United States)

    Anhalt-Depies, Christine M.; Knoot, Tricia Gorby; Rissman, Adena R.; Sharp, Anthony K.; Martin, Karl J.

    2016-05-01

    There are limited examples of efforts to systematically monitor and track climate change adaptation progress in the context of natural resource management, despite substantial investments in adaptation initiatives. To better understand the status of adaptation within state natural resource agencies, we utilized and problematized a rational decision-making framework to characterize adaptation at the level of public land managers in the Upper Midwest. We conducted in-depth interviews with 29 biologists and foresters to provide an understanding of managers' experiences with, and perceptions of, climate change impacts, efforts towards planning for climate change, and a full range of actions implemented to address climate change. While the majority of managers identified climate change impacts affecting their region, they expressed significant uncertainty in interpreting those signals. Just under half of managers indicated planning efforts are underway, although most planning is remote from local management. Actions already implemented include both forward-looking measures and those aimed at coping with current impacts. In addition, cross-scale dynamics emerged as an important theme related to the overall adaptation process. The results hold implications for tracking future progress on climate change adaptation. Common definitions or measures of adaptation (e.g., presence of planning documents) may need to be reassessed for applicability at the level of public land managers.

  20. Monitoring of Global Climate Change in the Earth from the Moon

    Science.gov (United States)

    Morozhenko, O. V.; Vidmachenko, A. P.; Nevedovskiy, P. V.; Choliy, V. Ya.

    2017-08-01

    The most important experimental data that should be obtained for the monitoring of global climate change of Earth are: investigations of the stratospheric aerosol layer, which affects the stratospheric ozone layer, effective and real equilibrium temperature of Earth, content of greenhouse gases. Scientific equipment should be installed on an automatic (better habitable) base on the surface of the Moon, on the polar, constantly visible from the Earth artificial satellite of the Moon or on a satellite located at the lunar point of Lagrange.

  1. Hyperspectral lidar in non-destructive 4D monitoring of climate variables

    Science.gov (United States)

    Kaasalainen, S.; Hakala, T.; Nevalainen, O.; Puttonen, E.; Anttila, K.

    2014-09-01

    The first applications of a prototype 8-channel full waveform active hyperspectral lidar (HSL) show a possibility to determine various target 3D characteristics with remote observations. The results open up a prospect for four-dimensional (4D - a three dimensional target representation with time as a fourth dimension) monitoring of important climate variables, such as those related to tree physiology or snow pollution.

  2. Advances in the monitoring of geo-structure subjected to climate loading

    Directory of Open Access Journals (Sweden)

    Tarantino Alessandro

    2016-01-01

    Full Text Available The paper presents results achieved within the project MAGIC, a project funded by the European Commission under the Marie-Curie Industry Academia Partnerships and Pathways (IAPP scheme. The project MAGIC aims to advance the state-of-the art in the monitoring of geo-structures subjected to climate loading by filling some of the gaps in current monitoring technologies. The project involves a partnership between academic and industrial partners to boost knowledge transfer and promote the development of ‘industrial’ instruments and services. The paper presents developments concerning the measurement of pore-water tension (suction in excess of 100 kPa and the integration of geotechnical and geophysical monitoring.

  3. Design of ecoregional monitoring in conservation areas of high-latitude ecosystems under contemporary climate change

    Science.gov (United States)

    Beever, Erik A.; Woodward, Andrea

    2011-01-01

    Land ownership in Alaska includes a mosaic of federally managed units. Within its agency’s context, each unit has its own management strategy, authority, and resources of conservation concern, many of which are migratory animals. Though some units are geographically isolated, many are nevertheless linked by paths of abiotic and biotic flows, such as rivers, air masses, flyways, and terrestrial and aquatic migration routes. Furthermore, individual land units exist within the context of a larger landscape pattern of shifting conditions, requiring managers to understand at larger spatial scales the status and trends in the synchrony and spatial concurrence of species and associated suitable habitats. Results of these changes will determine the ability of Alaska lands to continue to: provide habitat for local and migratory species; absorb species whose ranges are shifting northward; and experience mitigation or exacerbation of climate change through positive and negative atmospheric feedbacks. We discuss the geographic and statutory contexts that influence development of ecological monitoring; argue for the inclusion of significant amounts of broad-scale monitoring; discuss the importance of defining clear programmatic and monitoring objectives; and draw from lessons learned from existing long-term, broad-scale monitoring programs to apply to the specific contexts relevant to high-latitude protected areas such as those in Alaska. Such areas are distinguished by their: marked seasonality; relatively large magnitudes of contemporary change in climatic parameters; and relative inaccessibility due to broad spatial extent, very low (or zero) road density, and steep and glaciated areas. For ecological monitoring to effectively support management decisions in high-latitude areas such as Alaska, a monitoring program ideally would be structured to address the actual spatial and temporal scales of relevant processes, rather than the artificial boundaries of individual land

  4. Monitoring and managing responses to climate change at the retreating range edge of forest trees.

    Science.gov (United States)

    Jump, Alistair S; Cavin, Liam; Hunter, Peter D

    2010-10-06

    Rising temperatures and increasing drought severity linked to global climate change are negatively impacting forest growth and function at the equatorial range edge of species distributions. Rapid dieback and range retractions are predicted to occur in many areas as temperatures continue to rise. Despite widespread negative impacts at the ecosystem level, equatorial range edges are not well studied, and their responses to climate change are poorly understood. Effective monitoring of tree responses to climate in these regions is of critical importance in order to predict and manage threats to populations. Remote sensing of impacts on forests can be combined with ground-based assessment of environmental and ecological changes to identify populations most at risk. Modelling may be useful as a 'first-filter' to identify populations of concern but, together with many remote sensing methods, often lacks adequate resolution for application at the range edge. A multidisciplinary approach, combining remote observation with targeted ground-based monitoring of local susceptible and resistant populations, is therefore required. Once at-risk regions have been identified, management can be adapted to reduce immediate risks in priority populations, and promote long-term adaptation to change. However, management to protect forest ecosystem function may be preferable where the maintenance of historical species assemblages is no longer viable.

  5. Ocean climate indicators: A monitoring inventory and plan for tracking climate change in the north-central California coast and ocean region

    Science.gov (United States)

    Duncan, Benet; Higgason, Kelley; Suchanek, Tom; Largier, John; Stachowicz, Jay; Allen, Sarah; Bograd, Steven; Breen, R.; Gellerman, Holly; Hill, Tessa; Jahncke, Jaime; Johnosn, Rebecca; Lonhart, Steve I.; Morgan, Steven; Wilkerson, Frances; Roletto, Jan

    2013-01-01

    The impacts of climate change, defined as increasing atmospheric and oceanic carbon dioxide and associated increases in average global temperature and oceanic acidity, have been observed both globally and on regional scales, such as in the North-central California coast and ocean, a region that extends from Point Arena to Point Año Nuevo and includes the Pacific coastline of the San Francisco Bay Area. Because of the high economic and ecological value of the region’s marine environment, the Gulf of the Farallones National Marine Sanctuary (GFNMS) and other agencies and organizations have recognized the need to evaluate and plan for climate change impacts. Climate change indicators can be developed on global, regional, and site-specific spatial scales, and they provide information about the presence and potential impacts of climate change. While indicators exist for the nation and for the state of California as a whole, no system of ocean climate indicators exist that specifically consider the unique characteristics of the California coast and ocean region. To that end, GFNMS collaborated with over 50 regional, federal, and state natural resource managers, research scientists, and other partners to develop a set of 2 ocean climate indicators specific to this region. A smaller working group of 13 regional partners developed monitoring goals, objectives, strategies, and activities for the indicators and recommended selected species for biological indicators, resulting in the Ocean Climate Indicators Monitoring Inventory and Plan. The working group considered current knowledge of ongoing monitoring, feasibility of monitoring, costs, and logistics in selecting monitoring activities and selected species.

  6. The potential of cellular network infrastructures for sudden rainfall monitoring in dry climate regions

    Science.gov (United States)

    David, N.; Alpert, P.; Messer, H.

    2013-09-01

    Monitoring of precipitation and in particular sudden rain, in rural dry climate regions, is a subject of great significance in several weather related processes such as soil erosion, flash flooding, triggering epidemics and more. The rainfall monitoring facilities in these regions and as a result precipitation data are, however, commonly, severely lacking. As was recently shown, cellular networks infrastructures supply high resolution precipitation measurements at ground level while often being situated in dry areas, covering large parts of these climatic zones. The potential found in these systems to provide early monitoring and essential precipitation information, directly from arid regions, based on standard measurements of commercial microwave links, is exemplified here over the Negev and the Southern Judean desert, South Israel. We present the results of two different rainfall events occurred in these regions. It is shown that the microwave system measured precipitation between at least 50 min (in case 1) and at least 1 h and 40 min (in case 2) before each of the sparse rain gauges. During each case, the radar system, located relatively far from the arid sites, provided measurements from heights of at least 1500 m and 2000 m above surface, respectively. A third case study demonstrates a relative advantage of microwave links to measure precipitation intensity with respect to the radar system, over an area of complex topography located in northeastern Israel, which is relatively far (~ 150 km) from the radar.

  7. Multi-year GNSS monitoring of atmospheric IWV over Central and South America for climate studies

    Science.gov (United States)

    Mendoza, Luciano; Bianchi, Clara; Fernández, Laura; Natali, María Paula; Meza, Amalia; Moirano, Juan

    2017-04-01

    Atmospheric water vapour has been acknowledged as an essential climate variable. Weather prediction and hazard assessment systems benefit from real-time observations, whereas long-term records contribute to climate studies. Nowadays, ground-based GNSS products have become widely employed, complementing satellite observations over the oceans. Although the past decade has seen a significant development of the GNSS infrastructure in Central and South America, its potential for atmospheric water vapour monitoring has not been fully exploited. With this in mind, we have performed a regional, seven-year long and homogeneous analysis, comprising 136 GNSS tracking stations, obtaining high-rate and continuous observations of column integrated water vapour and troposphere zenith total delay (Bianchi et al. 2016). As preliminary application for this data set, we have estimated local water vapour trends, their significance, and their relation with specific climate regimes. We have found evidence of drying at temperate regions in South America, at a rate of about 2% per decade, while a slow moistening of the troposphere over tropical regions is also weakly suggested by our results. Furthermore, we have assessed the regional performance of the empirical model GPT2w to blindly estimate troposphere delays. The model fairly reproduces the observed mean delays, including their annual and semi-annual variations. Nevertheless, a long-term evaluation has shown systematical biases, up to 20 mm, probably inherited form the underling atmospheric reanalysis. Additionally, the complete data set has been made openly available at a scientific repository (doi:10.1594/PANGAEA.858234). References: C. Bianchi, L. Mendoza, L. Fernandez, M. P. Natali, A. Meza, J. F. Moirano, Multi-year GNSS monitoring of atmospheric IWV over Central and South America for climate studies, Ann. Geophys., ISSN 0992-7689, eISSN 1432-0576, 34 (7), 623-639 (doi:10.5194/angeo-34-623-2016).

  8. Monitoring agricultural drought with climate-based drought indices in China

    Science.gov (United States)

    Wang, H.; Zhang, C., Sr.; Jeffery, R. C.

    2015-12-01

    Agricultural drought monitoring significantly influences food security in recent decades. Soil moisture shortages adversely affecting agriculture is one important indicator for agricultural drought monitoring. Because of limited soil moisture observations, characterizing soil moisture using climate-based drought indices has great practical meaning. The agricultural area in China was identified by crop identification from remotely sensed data. Drought indices of multiple timescale or from two-layer bucket model were analyzed. In most agricultural areas of China, surface soil moisture is more affected by drought indices having shorter time scales while deep-layer soil moisture is more related on longer time scales. In general, multiscalar drought indices work better than drought indices from two-layer bucket models. The standardized precipitation evapotranspiration index (SPEI) works similarly or better than the standardized precipitation index (SPI) in characterizing soil moisture at different soil layers. In most stations in China, the Z index has a higher correlation with soil moisture at 0-5 cm than the Palmer drought severity index (PDSI), which in turn has a higher correlation with soil moisture at 90-100-cm depth than the Z index. Soil moisture-drought indices relationship was significantly affected by soil organic carbon density. Effective agriculture drought monitoring can be conducted with climate-based drought indices from widely available climatic data and crop area identification from remote sensing. Authors:Hongshuo wang1, Chao Zhang1, Jeffery C Rogers2 1 China agricultural university 2 Ohio state University Key words: Agricultural drought, SPI, SPEI, PDSI, Z index, crop identification

  9. Development of Distributed Research Center for monitoring and projecting regional climatic and environmental changes: first results

    Science.gov (United States)

    Gordov, Evgeny; Shiklomanov, Alexander; Okladinikov, Igor; Prusevich, Alex; Titov, Alexander

    2016-04-01

    Description and first results of the cooperative project "Development of Distributed Research Center for monitoring and projecting of regional climatic and environmental changes" recently started by SCERT IMCES and ESRC UNH are reported. The project is aimed at development of hardware and software platform prototype of Distributed Research Center (DRC) for monitoring and projecting regional climatic and environmental changes over the areas of mutual interest and demonstration the benefits of such collaboration that complements skills and regional knowledge across the northern extratropics. In the framework of the project, innovative approaches of "cloud" processing and analysis of large geospatial datasets will be developed on the technical platforms of two U.S. and Russian leading institutions involved in research of climate change and its consequences. Anticipated results will create a pathway for development and deployment of thematic international virtual research centers focused on interdisciplinary environmental studies by international research teams. DRC under development will comprise best features and functionality of earlier developed by the cooperating teams' information-computational systems RIMS (http://rims.unh.edu) and CLIMATE(http://climate.scert.ru/), which are widely used in Northern Eurasia environment studies. The project includes several major directions of research (Tasks) listed below. 1. Development of architecture and defining major hardware and software components of DRC for monitoring and projecting of regional environmental changes. 2. Development of an information database and computing software suite for distributed processing and analysis of large geospatial data hosted at ESRC and IMCES SB RAS. 3. Development of geoportal, thematic web client and web services providing international research teams with an access to "cloud" computing resources at DRC; two options will be executed: access through a basic graphical web browser and

  10. Advancing drought monitoring using a Small Unmanned Aerial System (sUAS) in a changing climate

    Science.gov (United States)

    Ryu, J.

    2016-12-01

    Drought as a natural hazard, increasingly threatens the sustainability of regional water resources around the world. Given current trends in climate variability and change, droughts are likely to continue and increase. One of the effective ways to mitigate drought impacts may be to use a Small Unmanned Aerial System (sUAS) to improve understanding of the factors that drive the onset and development of drought conditions at local levels would enable planners and end users to more effectively manage and meter out limited water resources. During the presentation, the author will propose a methodological approach to apply sUAS for drought monitoring along with federal regulations and policies.

  11. Energy and Climate Monitor Agricultural Sector 2011; Energie- en klimaatmonitor Agrosectoren 2011

    Energy Technology Data Exchange (ETDEWEB)

    Moerkerken, A.; Gerlagh, T.; De Jong, G.; Both, D. [Agentschap NL, Den Haag (Netherlands); Verhoog, D. [Landbouw Economisch Instituut LEI-WUR, Wageningen UR, Wageningen (Netherlands); Segers, R. [Centraal Bureau voor de Statistiek CBS, Den Haag (Netherlands)

    2011-12-15

    This report contains the results of the Innovation and Action program Dutch Agricultural sectors, showing a total overview of energy and climate in the agricultural sectors, detailed results of the agricultural, horticultural -open cultivation, and cattle farming sectors and the forestry and wood sectors, as well as several highlights of the sectors that already have their own monitor (greenhouse horticulture, flower bulbs, mushrooms and agricultural industry) [Dutch] Resultaten van het Innovatie- en actieprogramma Agrosectoren met een totaaloverzicht van energie en klimaat in de agrosectoren, gedetailleerde resultaten van de ATV-sectoren (akkerbouw, tuinbouw open teelt en veehouderij) en de bos- en houtsector, en enkele highlights van de sectoren die al een eigen monitor hebben (glastuinbouw, bloembollen, paddenstoelen en agro-industrie)

  12. How can climate, soil, and monitoring schedule affect temporal stability of soil water contents?

    Science.gov (United States)

    Martinez, G.; Pachepsky, Y. A.; Vereecken, H.

    2012-12-01

    Temporal stability (TS) of soil water content (SWC) reflects the spatio-temporal organization of soil water. The TS SWC was originally recognized as a phenomenon that can be used to provide temporal average SWC of an area of interest from observations at a representative location(s). Currently application fields of TS SWC are numerous, e.g. up- and downscaling SWC, SWC monitoring and data assimilation, precision farming, and sensor network design and optimization. However, the factors that control the SWC organization and TS SWC are not completely understood. Among these factors are soil hydraulic properties that are considered as local controls, weather patterns, and the monitoring schedule. The objective of this work was to use modeling to assess the effect of these factors on the spatio-temporal patterns of SWC. We ran the HYDRUS6 code to simulate four years of SWC in 4-m long soil columns. The columns were assumed homogeneous, soil hydraulic conductivity was drawn from lognormal distributions. Sets of columns were generated separately for sandy loam and loamy soils, soil water retention was set to typical values for those soil textures. Simulations were carried out for four climates present at the continental US. The climate-specific weather patterns were obtained with the CLIGEN code using climate-specific weather observation locations that were humid subtropical from College Station (TX), humid continental from Indianapolis (IN), cold semiarid from Moscow (ID) and hot semiarid from Tucson (AZ). We evaluated the TS and representative location (RL) selections by comparing i) different climates; ii) for the same climates different years; iii) different time intervals between samplings; iv) one year duration surveys vs. one month summer campaigns; and v) different seasons of the same year. Spatial variability of the mean relative differences (MRD) differed among climates for both soils, as the probability of observing the same variance in the MRD was lower than

  13. The Climate Change Education Evidence Base: Lessons Learned from NOAA's Monitoring and Evaluation Framework Implementation

    Science.gov (United States)

    Baek, J.

    2012-12-01

    effort has provided some shared understanding and general guidance, there is still a lack of guidance to make decisions at any level of the community. A recent memorandum from the Office of Management and Budget provides more specific guidance around the generation and utilization of evidence. For example, the amount of funding awarded through grants should be weighted by the level of the evidence supporting a proposed project. As the field of climate change education establishes an evidence base, study designs should address a greater number of internal validity threats through comparison groups and reliable common measures. In addition, OMB invites agencies to develop systematic measurement of costs and costs per outcome. A growing evidence base, one that includes data that includes costs and even monetizes benefits, can inform decisions based on the strongest returns on investments within a portfolio. This paper will provide examples from NOAA's Monitoring and Evaluation Framework Implementation project that illustrate how NOAA is facing these challenges. This is intended to inform climate change educators, evaluators, and researchers in ways to integrate evaluation into the management of their programs while providing insight across the portfolio.

  14. Soil Moisture Drought Monitoring and Forecasting Using Satellite and Climate Model Data over Southwestern China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xuejun; Tang, Qiuhong; Liu, Xingcai; Leng, Guoyong; Li, Zhe

    2017-01-01

    Real-time monitoring and predicting drought development with several months in advance is of critical importance for drought risk adaptation and mitigation. In this paper, we present a drought monitoring and seasonal forecasting framework based on the Variable Infiltration Capacity (VIC) hydrologic model over Southwest China (SW). The satellite precipitation data are used to force VIC model for near real-time estimate of land surface hydrologic conditions. As initialized with satellite-aided monitoring, the climate model-based forecast (CFSv2_VIC) and ensemble streamflow prediction (ESP)-based forecast (ESP_VIC) are both performed and evaluated through their ability in reproducing the evolution of the 2009/2010 severe drought over SW. The results show that the satellite-aided monitoring is able to provide reasonable estimate of forecast initial conditions (ICs) in a real-time manner. Both of CFSv2_VIC and ESP_VIC exhibit comparable performance against the observation-based estimates for the first month, whereas the predictive skill largely drops beyond 1-month. Compared to ESP_VIC, CFSv2_VIC shows better performance as indicated by the smaller ensemble range. This study highlights the value of this operational framework in generating near real-time ICs and giving a reliable prediction with 1-month ahead, which has great implications for drought risk assessment, preparation and relief.

  15. Global climate change mitigation and sustainable forest management--The challenge of monitoring and verification

    Energy Technology Data Exchange (ETDEWEB)

    Makundi, Willy R.

    1997-12-31

    In this paper, sustainable forest management is discussed within the historical and theoretical framework of the sustainable development debate. The various criteria and indicators for sustainable forest management put forth by different institutions are critically explored. Specific types of climate change mitigation policies/projects in the forest sector are identified and examined in the light of the general criteria for sustainable forest management. Areas of compatibility and contradiction between the climate mitigation objectives and the minimum criteria for sustainable forest management are identified and discussed. Emphasis is put on the problems of monitoring and verifying carbon benefits associated with such projects given their impacts on pre-existing policy objectives on sustainable forest management. The implications of such policy interactions on assignment of carbon credits from forest projects under Joint Implementation/Activities Implemented Jointly initiatives are discussed. The paper concludes that a comprehensive monitoring and verification regime must include an impact assessment on the criteria covered under other agreements such as the Biodiversity and/or Desertification Conventions. The actual carbon credit assigned to a specific project should at least take into account the negative impacts on the criteria for sustainable forest management. The value of the impacts and/or the procedure to evaluate them need to be established by interested parties such as the Councils of the respective Conventions.

  16. Preface: Monitoring and modelling to guide coastal adaptation to extreme storm events in a changing climate

    Science.gov (United States)

    Brown, J. M.; Ciavola, P.; Masselink, G.; McCall, R.; Plater, A. J.

    2016-02-01

    Storms across the globe and their associated consequences in coastal zones (flooding and erosion), combined with the long-term geomorphic evolution of our coastlines, are a threat to life and assets, both socioeconomic and environmental. In a changing climate, with a rising global sea level, potentially changing patterns in storm tracks and storminess, and rising population density and pressures on the coastal zone, the future risk of coastal storm impacts is likely to increase. Coastal managers and policy makers therefore need to make effective and timely decisions on the use of resources for the immediate and longer Research focused on "monitoring and modelling to guide coastal adaptation to extreme storm events in a changing climate" is becoming more common; its goal is to provide science-based decision support for effective adaptation to the consequences of storm impacts, both now and under future climate scenarios at the coast. The growing transfer of information between the science community and end-users is enabling leading research to have a greater impact on the socioeconomic resilience of coastal communities. This special issue covers recent research activities relating to coastal hazard mapping in response to extreme events, economic impacts of long-term change, coastal processes influencing management decisions and the development of online decision support tools.

  17. Multi-year GNSS monitoring of atmospheric IWV over Central and South America for climate studies

    Science.gov (United States)

    Bianchi, Clara Eugenia; Mendoza, Luciano Pedro Oscar; Fernández, Laura Isabel; Natali, María Paula; Meza, Amalia Margarita; Francisco Moirano, Juan

    2016-07-01

    Atmospheric water vapour has been acknowledged as an essential climate variable. Weather prediction and hazard assessment systems benefit from real-time observations, whereas long-term records contribute to climate studies. Nowadays, ground-based global navigation satellite system (GNSS) products have become widely employed, complementing satellite observations over the oceans. Although the past decade has seen a significant development of the GNSS infrastructure in Central and South America, its potential for atmospheric water vapour monitoring has not been fully exploited. With this in mind, we have performed a regional, 7-year-long and homogeneous analysis, comprising 136 GNSS tracking stations, obtaining high-rate and continuous observations of column-integrated water vapour and troposphere zenith total delay. As a preliminary application for this data set, we have estimated local water vapour trends, their significance, and their relation with specific climate regimes. We have found evidence of drying at temperate regions in South America, at a rate of about 2 % per decade, while a slow moistening of the troposphere over tropical regions is also weakly suggested by our results. Furthermore, we have assessed the regional performance of the empirical model GPT2w to blindly estimate troposphere delays. The model reproduces the observed mean delays fairly well, including their annual and semi-annual variations. Nevertheless, a long-term evaluation has shown systematical biases, up to 20 mm, probably inherited from the underlying atmospheric reanalysis. Additionally, the complete data set has been made openly available as supplementary material.

  18. Satellite cloud and precipitation property retrievals for climate monitoring and hydrological applications

    Science.gov (United States)

    Wolters, E. L. A.

    2012-03-01

    This thesis presents the retrieval, evaluation, and application of cloud physical property datasets (cloud phase, cloud particle effective radius, and precipitation occurrence and intensity) obtained from Spinning Enhanced Visible and Infrared Imager (SEVIRI) reflectance measurements using the Cloud Physical Properties (CPP) retrieval algorithm. In Chapter 3 it is shown that the CPP cloud-phase retrieval algorithm has sufficient accuracy (West Africa. During the afternoon, precipitation occurrence frequency over dry soils becomes significantly higher than over wet soils, whereas for precipitation intensity no significant difference is discerned. The study demonstrates that the combination of satellite-based soil moisture and precipitation observations can be helpful in improving the understanding of the land surface-precipitation interaction over tropical areas. The thesis concludes with a number of recommendations on future algorithm improvements and potential research applications. For both cloud phase and precipitation properties, extension of the algorithm to include nighttime observations would be desirable to enable detailed studies on the full diurnal cycle. Further, the SEVIRI High-Resolution Visible (HRV) channel could be incorporated to correct retrieved cloud physical properties for broken and inhomogeneous cloud cases. Finally, the accurate cloud phase and precipitation datasets combined with the high SEVIRI spatial and temporal sampling resolution enables possibilities for detailed research on climate monitoring, nowcasting applications, evaluation of cloud schemes in climate models, studies on land surface-precipitation interactions (with a special focus on the diurnal cycle), and assimilation of the datasets in weather and climate models

  19. SLICEIT and TAHMO Partnerships: Students Local and International Collaboration for Climate and Environmental Monitoring, Technology Development, Education, Adaptation and Mitigation

    Science.gov (United States)

    Aishlin, P. S.; Selker, J. S.

    2015-12-01

    Climate change understanding and impacts vary by community, yet the global nature of climate change requires international collaboration to address education, monitoring, adaptation and mitigation needs. We propose that effective climate change monitoring and education can be accomplished via student-led local and international community partnerships. By empowering students as community leaders in climate-environmental monitoring and education, as well as exploration of adaptation/mitigation needs, well-informed communities and young leadership are developed to support climate change science moving forward. Piloted 2013-2015, the SLICEIT1 program partnered with TAHMO2 to connect student leaders in North America, Europe and Africa. At the international level, schools in the U.S.A and Netherlands were partnered with schools in Ghana, Kenya, and Uganda for science and cultural exchange. Each school was equipped with a climate or other environmental sensing system, real-time data publication and curricula for both formal and informal science, technology, engineering and math education and skill development. African counterparts in TAHMO's School-2-School program collect critically important data for enhanced on-the-ground monitoring of weather conditions in data-scarce regions of Africa. In Idaho, student designed, constructed and installed weather stations provide real time data for classroom and community use. Student-designed formal educational activities are disseminated to project partners, increasing hands-on technology education and peer-based learning. At the local level, schools are partnered with a local agency, research institute, nonprofit organization, industry and/or community partner that supplies a climate science expert mentor to SLICEIT program leaders and teachers. Mentor engagement is facilitated and secured by program components that directly benefit the mentor's organization and local community via climate/environment monitoring, student workforce

  20. Monitoring groundwater storage change in Mekong Delta using Gravity Recovery and Climate Experiment (GRACE) data

    Science.gov (United States)

    Aierken, A.; Lee, H.; Hossain, F.; Bui, D. D.; Nguyen, L. D.

    2016-12-01

    The Mekong Delta, home to almost 20 million inhabitants, is considered one of the most important region for Vietnam as it is the agricultural and industrial production base of the nation. However, in recent decades, the region is seriously threatened by variety of environmental hazards, such as floods, saline water intrusion, arsenic contamination, and land subsidence, which raise its vulnerability to sea level rise due to global climate change. All these hazards are related to groundwater depletion, which is the result of dramatically increased over-exploitation. Therefore, monitoring groundwater is critical to sustainable development and most importantly, to people's life in the region. In most countries, groundwater is monitored using well observations. However, because of its spatial and temporal gaps and cost, it is typically difficult to obtain large scale, continuous observations. Since 2002, the Gravity Recovery and Climate Experiment (GRACE) satellite gravimetry mission has delivered freely available Earth's gravity variation data, which can be used to obtain terrestrial water storage (TWS) changes. In this study, the TWS anomalies over the Mekong Delta, which are the integrated sum of anomalies of soil moisture storage (SMS), surface water storage (SWS), canopy water storage (CWS), groundwater storage (GWS), have been obtained using GRACE CSR RL05 data. The leakage error occurred due to GRACE signal processing has been corrected using several different approaches. The groundwater storage anomalies were then derived from TWS anomalies by removing SMS, and CWS anomalies simulated by the four land surface models (NOAH, CLM, VIC and MOSAIC) in the Global Land Data Assimilation System (GLDAS), as well as SWS anomalies estimated using ENVISAT satellite altimetry and MODIS imagery. Then, the optimal GRACE signal restoration method for the Mekong Delta is determined with available in-situ well data. The estimated GWS anomalies revealed continuously decreasing

  1. Accompanying monitoring. Pt. 2. Energy consumption and room climate in the passive house kindergarten; Begleitendes Monitoring. T. 2. Energieverbrauch und Raumklima im Passivhauskindergarten

    Energy Technology Data Exchange (ETDEWEB)

    Trogisch, Achim; Berbig, Alex [HTW Dresden (DE). Lehrgebiet Technische Gebaeudeausruestung (TGA); Herrmann, Hendrik [Ingenieurbuero Dr. Scheffler und Partner, Dresden (Germany)

    2011-07-01

    The kindergarten ''Rainbow'' in Dresden-Klotzsche (Federal Republic of Germany) was designed, planned and implemented according to the passive house standard and commissioned in October 2009. An accompanying monitoring shows how successful the design and implementation were done. The second part of the contribution under consideration especially reports on the indoor climate.

  2. An observing system simulation experiment for climate monitoring with GNSS radio occultation data: Setup and test bed study

    OpenAIRE

    U. Foelsche; Kirchengast, G.; A. Steiner; Kornblueh, L.; Manzini, E.; L. Bengtsson

    2008-01-01

    The long-term stability, high accuracy, all-weather capability, high vertical resolution, and global coverage of Global Navigation Satellite System ( GNSS) radio occultation ( RO) suggests it as a promising tool for global monitoring of atmospheric temperature change. With the aim to investigate and quantify how well a GNSS RO observing system is able to detect climate trends, we are currently performing an ( climate) observing system simulation experiment over the 25-year period 2001 to 2025...

  3. Monitoring Crop Yield in USA Using a Satellite-Based Climate-Variability Impact Index

    Science.gov (United States)

    Zhang, Ping; Anderson, Bruce; Tan, Bin; Barlow, Mathew; Myneni, Ranga

    2011-01-01

    A quantitative index is applied to monitor crop growth and predict agricultural yield in continental USA. The Climate-Variability Impact Index (CVII), defined as the monthly contribution to overall anomalies in growth during a given year, is derived from 1-km MODIS Leaf Area Index. The growing-season integrated CVII can provide an estimate of the fractional change in overall growth during a given year. In turn these estimates can provide fine-scale and aggregated information on yield for various crops. Trained from historical records of crop production, a statistical model is used to produce crop yield during the growing season based upon the strong positive relationship between crop yield and the CVII. By examining the model prediction as a function of time, it is possible to determine when the in-season predictive capability plateaus and which months provide the greatest predictive capacity.

  4. Simulation of Greenhouse Climate Monitoring and Control with Wireless Sensor Network and Event-Based Control

    Directory of Open Access Journals (Sweden)

    Andrzej Pawlowski

    2009-01-01

    Full Text Available Monitoring and control of the greenhouse environment play a decisive role in greenhouse production processes. Assurance of optimal climate conditions has a direct influence on crop growth performance, but it usually increases the required equipment cost. Traditionally, greenhouse installations have required a great effort to connect and distribute all the sensors and data acquisition systems. These installations need many data and power wires to be distributed along the greenhouses, making the system complex and expensive. For this reason, and others such as unavailability of distributed actuators, only individual sensors are usually located in a fixed point that is selected as representative of the overall greenhouse dynamics. On the other hand, the actuation system in greenhouses is usually composed by mechanical devices controlled by relays, being desirable to reduce the number of commutations of the control signals from security and economical point of views. Therefore, and in order to face these drawbacks, this paper describes how the greenhouse climate control can be represented as an event-based system in combination with wireless sensor networks, where low-frequency dynamics variables have to be controlled and control actions are mainly calculated against events produced by external disturbances. The proposed control system allows saving costs related with wear minimization and prolonging the actuator life, but keeping promising performance results. Analysis and conclusions are given by means of simulation results.

  5. The monitoring evaluation, reporting and verification of climate change mitigation projects

    Energy Technology Data Exchange (ETDEWEB)

    Vine, E.; Sathaye, J.

    1998-05-01

    Because of concerns with the growing threat of global climate change from increasing emissions of greenhouse gases, the US and other countries are implementing, by themselves or in cooperation with one or more other nations, climate change mitigation projects. These projects will reduce greenhouse gas (GHG) emissions or sequester carbon, and will also result in non-GHG benefits (i.e., environmental, economic, and social benefits). Monitoring, evaluating, reporting, and verifying (MERV) guidelines are needed for these projects to accurately determine their net GHG, and other, benefits. Implementation of MERV guidelines is also intended to: (1) increase the reliability of data for estimating GHG benefits; (2) provide real-time data so that mid-course corrections can be made; (3) introduce consistency and transparency across project types and reporters; and (4) enhance the credibility of the projects with stakeholders. In this paper, the authors review the issues involved in MERV activities. They identify several topics that future protocols and guidelines need to address, such as: (1) establishing a credible baseline; (2) accounting for impacts outside project boundaries through leakage; (3) net GHG reductions and other benefits; (4) precision of measurement; (5) MERV frequency; (6) persistence (sustainability) of savings, emissions reduction, and carbon sequestration; (7) reporting by multiple project participants; (8) verification of GHG reduction credits; (9) uncertainty and risk; (10) institutional capacity in conducting MERV; and (11) the cost of MERV.

  6. Challenges in monitoring and managing engineered slopes in a changing climate

    Directory of Open Access Journals (Sweden)

    Hughes Paul N

    2016-01-01

    Full Text Available Geotechnical asset owners need to know which parts of their asset network are vulnerable to climate change induced failure in order to optimise future investment. Protecting these vulnerable slopes requires monitoring systems capable of identifying and alerting to asset operators changes in the internal conditions that precede failure. Current monitoring systems are heavily reliant on point sensors which can be difficult to interpret across slope scale. This paper presents challenges to producing such a system and research being carried out to address some of these using electrical resistance tomography (ERT. Experimental results show that whilst it is possible to measure soil water content indirectly via resistivity the relationship between resistivity and water content will change over time for a given slope. If geotechnical parameters such as pore water pressure are to be estimated using this method then ERT systems will require integrating with more conventional geotechnical instrumentation to ensure correct representative information is provided. The paper also presents examples of how such data can be processed and communicated to asset owners for the purposes of asset management.

  7. e-phenology: monitoring leaf phenology and tracking climate changes in the tropics

    Science.gov (United States)

    Morellato, Patrícia; Alberton, Bruna; Almeida, Jurandy; Alex, Jefersson; Mariano, Greice; Torres, Ricardo

    2014-05-01

    The e-phenology is a multidisciplinary project combining research in Computer Science and Phenology. Its goal is to attack theoretical and practical problems involving the use of new technologies for remote phenological observation aiming to detect local environmental changes. It is geared towards three objectives: (a) the use of new technologies of environmental monitoring based on remote phenology monitoring systems; (b) creation of a protocol for a Brazilian long term phenology monitoring program and for the integration across disciplines, advancing our knowledge of seasonal responses within tropics to climate change; and (c) provide models, methods and algorithms to support management, integration and analysis of data of remote phenology systems. The research team is composed by computer scientists and biology researchers in Phenology. Our first results include: Phenology towers - We set up the first phenology tower in our core cerrado-savanna 1 study site at Itirapina, São Paulo, Brazil. The tower received a complete climatic station and a digital camera. The digital camera is set up to take daily sequence of images (five images per hour, from 6:00 to 18:00 h). We set up similar phenology towers with climatic station and cameras in five more sites: cerrado-savanna 2 (Pé de Gigante, SP), cerrado grassland 3 (Itirapina, SP), rupestrian fields 4 ( Serra do Cipo, MG), seasonal forest 5 (Angatuba, SP) and Atlantic raiforest 6 (Santa Virginia, SP). Phenology database - We finished modeling and validation of a phenology database that stores ground phenology and near-remote phenology, and we are carrying out the implementation with data ingestion. Remote phenology and image processing - We performed the first analyses of the cerrado sites 1 to 4 phenology derived from digital images. Analysis were conducted by extracting color information (RGB Red, Green and Blue color channels) from selected parts of the image named regions of interest (ROI). using the green color

  8. Glacier monitoring and glacier-climate interactions in the tropical Andes: A review

    Science.gov (United States)

    Veettil, Bijeesh Kozhikkodan; Wang, Shanshan; Florêncio de Souza, Sergio; Bremer, Ulisses Franz; Simões, Jefferson Cardia

    2017-08-01

    In this review, we summarized the evolution of glacier monitoring in the tropical Andes during the last few decades, particularly after the development of remote sensing and photogrammetry. Advantages and limitations of glacier mapping, applied so far, in Venezuela, Colombia, Ecuador, Peru and Bolivia are discussed in detail. Glacier parameters such as the equilibrium line altitude, snowline and mass balance were given special attention in understanding the complex cryosphere-climate interactions, particularly using remote sensing techniques. Glaciers in the inner and the outer tropics were considered separately based on the precipitation and temperature conditions within a new framework. The applicability of various methods to use glacier records to understand and reconstruct the tropical Andean climate between the Last Glacial Maximum (11,700 years ago) and the present is also explored in this paper. Results from various studies published recently were analyzed and we tried to understand the differences in the magnitudes of glacier responses towards the climatic perturbations in the inner tropics and the outer tropics. Inner tropical glaciers, particularly those in Venezuela and Colombia near the January Intertropical Convergence Zone (ITCZ), are more vulnerable to increase in temperature. Surface energy balance experiments show that outer tropical glaciers respond to precipitation variability very rapidly in comparison with the temperature variability, particularly when moving towards the subtropics. We also analyzed the gradients in glacier response to climate change from the Pacific coast towards the Amazon Basin as well as with the elevation. Based on the current trends synthesised from recent studies, it is hypothesized that the glaciers in the inner tropics and the southern wet outer tropics will disappear first as a response to global warming whereas glaciers in the northern wet outer tropics and dry outer tropics show resistance to warming trends due to

  9. COST Action ES1206: Advanced GNSS Tropospheric Products for Monitoring Severe Weather Events and Climate (GNSS4SWEC)

    Science.gov (United States)

    Jones, Jonathan; Guerova, Guergana; Dousa, Jan; Dick, Galina; de Haan, Siebren; Pottiaux, Eric; Bock, Olivier; Pacione, Rosa

    2016-04-01

    GNSS is a well established atmospheric observing system which can accurately sense water vapour, the most abundant greenhouse gas, accounting for 60-70% of atmospheric warming. Water vapour observations are currently under-sampled in operational meteorology and obtaining and exploiting additional high-quality humidity observations is essential to improve severe weather forecasting and climate monitoring. Inconsistencies introduced into long-term time series from improved GNSS processing algorithms make climate trend analysis challenging. Ongoing re-processing efforts using state-of-the-art models are underway which will provide consistent time series' of tropospheric data, using 15+ years of GNSS observations and from over 600 stations worldwide. These datasets will enable validation of systematic biases from a range of instrumentation, improve the knowledge of climatic trends of atmospheric water vapour, and will potentially be of great benefit to global and regional NWP reanalyses and climate model simulations (e.g. IPCC AR5)

  10. Top of Atmosphere Radiation MVIRI/SEVIRI Data Record within the Climate Monitoring SAF

    Science.gov (United States)

    Urbain, Manon; Clerbaux, Nicolas; Ipe, Alessandro; Tornow, Florian; Hollmann, Rainer; Baudrez, Edward; Velazquez Blazquez, Almudena; Moreels, Johan; Trentmann, Jörg

    2017-04-01

    The CM SAF Top of Atmosphere (TOA) Radiation MVIRI/SEVIRI Data Record provides a homogeneous satellite-based climatology of the TOA Reflected Solar (TRS) and Emitted Thermal (TET) radiation in all-sky conditions. The continuous monitoring of these two components of the Earth Radiation Budget is of prime importance to study climate variability and change. The Meteosat Visible and InfraRed Imager (MVIRI - from 1983 until 2004) and the Spinning Enhanced Visible and Infrared Imager (SEVIRI - from 2004 onward) on board the Meteosat First and Second Generation satellites are combined to generate a long Thematic Climate Data Record (TCDR). Combining MVIRI and SEVIRI allows an unprecedented temporal (30 minutes / 15 minutes) and spatial (2.5 km / 3 km) resolution compared to the Clouds and the Earth's Radiant Energy System (CERES) products. This is a step forward as it helps to increase the knowledge of the diurnal cycle and the small-scale spatial variations of radiation. The MVIRI/SEVIRI Data Record covers a 32 years time period from 1 February 1983 to 30 April 2015. The TOA radiation products are provided as daily mean, monthly mean and monthly averages of the hourly integrated values (diurnal cycle). To ensure consistency with other CM SAF products, the data is provided on a regular grid at a spatial resolution of 0.05 degrees (i.e. about 5.5 km) and covers the region between +/- 70° longitude and +/- 70° latitude. Validation of the MVIRI/SEVIRI Data Record has been performed by intercomparison with several references such as the CERES products (EBAF, SYN1deg-Day and SYN1deg-M3Hour), the HIRS OLR Climate Data Record (Daily and Monthly), the reconstructed ERBS WFOV-CERES (or DEEP-C) dataset and the ISCCP FD products. CERES is considered as the best reference from March 2000 onward. The quality of the early part of the Data Record is verified against the other references. In general, the stability of all the TOA radiation products is estimated to be better than 4 W.m-2

  11. Hyperspectral Monitoring of Green Roof Vegetation Health State in Sub-Mediterranean Climate: Preliminary Results.

    Science.gov (United States)

    Piro, Patrizia; Porti, Michele; Veltri, Simone; Lupo, Emanuela; Moroni, Monica

    2017-03-23

    In urban and industrial environments, the constant increase of impermeable surfaces has produced drastic changes in the natural hydrological cycle. Decreasing green areas not only produce negative effects from a hydrological-hydraulic perspective, but also from an energy point of view, modifying the urban microclimate and generating, as shown in the literature, heat islands in our cities. In this context, green infrastructures may represent an environmental compensation action that can be used to re-equilibrate the hydrological and energy balance and reduce the impact of pollutant load on receiving water bodies. To ensure that a green infrastructure will work properly, vegetated areas have to be continuously monitored to verify their health state. This paper presents a ground spectroscopy monitoring survey of a green roof installed at the University of Calabria fulfilled via the acquisition and analysis of hyperspectral data. This study is part of a larger research project financed by European Structural funds aimed at understanding the influence of green roofs on rainwater management and energy consumption for air conditioning in the Mediterranean area. Reflectance values were acquired with a field-portable spectroradiometer that operates in the range of wavelengths 350-2500 nm. The survey was carried out during the time period November 2014-June 2015 and data were acquired weekly. Climatic, thermo-physical, hydrological and hydraulic quantities were acquired as well and related to spectral data. Broadband and narrowband spectral indices, related to chlorophyll content and to chlorophyll-carotenoid ratio, were computed. The two narrowband indices NDVI705 and SIPI turned out to be the most representative indices to detect the plant health status.

  12. HadISDH land surface multi-variable humidity and temperature record for climate monitoring

    Directory of Open Access Journals (Sweden)

    K. M. Willett

    2014-06-01

    Full Text Available HadISDH.2.0.0 is the first gridded, multi-variable humidity and temperature climate-data product that is homogenised and annually updated. It provides physically consistent estimates for specific humidity, vapour pressure, relative humidity, dew point temperature, wet bulb temperature, dew point depression and temperature. It is a monthly-mean gridded (5° by 5° product with uncertainty estimates that account for spatio-temporal sampling, climatology calculation, homogenisation and irreducible random measurement effects. It provides a unique tool for the monitoring of a variety of humidity-related variables which have different impacts and implications for society. HadISDH.2.0.0 is shown to be in good agreement both with other estimates where they are available, and with theoretical understanding. The dataset is available from 1973 to the present. The theme common to all variables is of a warming world with more water vapour present in the atmosphere. The largest increases in water vapour are found over the tropics and Mediterranean. Over the tropics and high northern latitudes the surface air over land is becoming more saturated. However, despite increasing water vapour over the mid-latitudes and Mediterranean, the surface air over land is becoming less saturated. These observed features may be due to atmospheric circulation changes, land–sea warming disparities and reduced water availability or changed land surface properties.

  13. CryoClim: A new system and service for climate monitoring of the cryosphere

    Science.gov (United States)

    Solberg, R.; Killie, M. A.; Andreassen, L. M.; König, M.

    2014-03-01

    The CryoClim project has developed a new operational and permanent service for long-term systematic climate monitoring of the cryosphere. The product production and the product repositories are hosted by mandated organisations, and the service is delivered through a state-of-the-art web service and web portal. The service provides sea ice and snow products of global coverage and glacier products covering Norway (mainland and Svalbard). The sea ice sub-service is based on data from passive microwave radiometers (SMMR and SSM/I). The same period is covered by snow cover extent products based on passive microwave radiometers (SMMR and SSM/I) and optical (AVHRR from 1982). Glacier maps, including glacier area outline and glacier lakes have been generated from Landsat TM, ETM+ and historic topographic maps for all glaciers in mainland Norway starting the time series from 1952. For Svalbard, glacier products are based on optical data (SPOT and MODIS) for glacier area outline and glacier snow line, and SAR data (ERS-1, ERS-2, Envisat ASAR and Radarsat) for glacier surface type. The period covered with satellite data starts in the early 1990s. The glacier area outline time series has in Svalbard also been extended with map data and aerial images from earlier days.

  14. Employing GNSS radio occultation for solving the global climate monitoring problem for the fundamental state of the atmosphere

    Science.gov (United States)

    Kirchengast, Gottfried; Schwaerz, Marc; Schwarz, Jakob; Scherllin-Pirscher, Barbara; Pock, Christian; Innerkofler, Josef; Proschek, Veronika; Steiner, Andrea; Danzer, Julia; Ladstaedter, Florian; Foelsche, Ulrich

    2016-04-01

    Monitoring the atmosphere to gain accurate and long-term stable records of essential climate variables (ECVs) such as temperature is the backbone of atmospheric and climate science. Earth observation from space is the key to obtain such data globally. Currently, however, not any atmospheric ECV record can serve as authoritative reference from weekly to decadal scales so that climate variability and change is not yet reliably monitored, despite of satellite data since the 1970s. We aim to solve this decades-long problem for the fundamental state of the atmosphere, the thermodynamic state of the gas as expressed by air density, pressure, temperature, and tropospheric water vapor, which are the fundamental ECVs for tracking climate change and in fact fundamental to all weather and climate processes. We base the solution on the unique SI-traceable data of the GNSS radio occultation (RO) space geodetic observing system, available since 2001 and scheduled long-term into the future. We introduce a new system modeling and data analysis approach which, in contrast to current RO retrieval chains using classical data inversion, enables us to exploit the traceability to universal time (SI second) and to realize SI-traced profiles of atmospheric ECVs, accounting also for relevant side influences such as from the ionosphere, with unprecedented utility for climate monitoring and science. We work to establish such a trace first-time in form of the Reference Occultation Processing System rOPS, providing reference RO data for calibration/validation and climate applications. This rOPS development is a current cornerstone endeavor at the WEGC Graz over 2013 to 2016, supported also by colleagues from EUMETSAT Darmstadt, ECMWF Reading, DMI Copenhagen, AIUB Berne, UCAR Boulder, JPL Pasadena, and others. The rOPS approach demands to process the full chain from the SI-tied raw data to the ECVs with integrated uncertainty propagation, both of estimated systematic and estimated random

  15. Towards Solving the Global Climate Monitoring Problem for the Fundamental State of the Atmosphere with GNSS Radio Occultation

    Science.gov (United States)

    Kirchengast, G.; Schwaerz, M.; Schwarz, J.; Scherllin-Pirscher, B.; Pock, C.; Innerkofler, J.; Proschek, V.; Steiner, A. K.; Danzer, J.; Ladstaedter, F.; Foelsche, U.

    2015-12-01

    Monitoring the atmosphere to gain accurate and long-term stable records of essential climate variables (ECVs) such as temperature is the backbone of atmospheric and climate science. Earth observation from space is the key to obtain such data globally. Currently, however, not any atmospheric ECV record can serve as authoritative reference from weekly to decadal scales so that climate variability and change is not yet reliably monitored, despite of satellite data since the 1970s. We aim to solve this decades-long problem for the fundamental state of the atmosphere, the thermodynamic state of the gas as expressed by air density, pressure, temperature, and tropospheric water vapor, which are the fundamental ECVs for tracking climate change and in fact fundamental to all weather and climate processes. We base the solution on the unique SI-traceable data of the GNSS radio occultation (RO) observing system, available since 2001 and scheduled long-term into the future. We introduce a new system modeling and data analysis approach which, in contrast to current RO retrieval chains using classical data inversion, enables us to exploit the traceability to universal time (SI second) and to realize SI-traced ECV profiles, accounting also for relevant side influences, with unprecedented utility for climate monitoring and science. We work to establish such a trace first-time in form of the Reference Occultation Processing System rOPS, providing reference RO data for cal/val and climate applications. This rOPS development is a current cornerstone endeavor at the WEGC Graz over 2013 to 2016, supported also by colleagues from EUMETSAT, ECMWF, DMI Copenhagen, UCAR Boulder, JPL Pasadena, and others. The rOPS approach demands to process the full chain from the SI-tied raw data to the ECVs with integrated uncertainty propagation. We first briefly summarize the RO promise along the above lines and where we currently stand in quantifying RO accuracy and long-term stability. We then

  16. Web-GIS platform for monitoring and forecasting of regional climate and ecological changes

    Science.gov (United States)

    Gordov, E. P.; Krupchatnikov, V. N.; Lykosov, V. N.; Okladnikov, I.; Titov, A. G.; Shulgina, T. M.

    2012-12-01

    presented. Platform software developed (Shulgina et al, 2012, Okladnikov et al, 2012) includes dedicated modules for numerical processing of regional and global modeling results for consequent analysis and visualization. Also data preprocessing, run and visualization of modeling results of models WRF and «Planet Simulator» integrated into the platform is provided. All functions of the center are accessible by a user through a web-portal using common graphical web-browser in the form of an interactive graphical user interface which provides, particularly, capabilities of visualization of processing results, selection of geographical region of interest (pan and zoom) and data layers manipulation (order, enable/disable, features extraction). Platform developed provides users with capabilities of heterogeneous geophysical data analysis, including high-resolution data, and discovering of tendencies in climatic and ecosystem changes in the framework of different multidisciplinary researches (Shulgina et al, 2011). Using it even unskilled user without specific knowledge can perform computational processing and visualization of large meteorological, climatological and satellite monitoring datasets through unified graphical web-interface.

  17. Conservation in the face of climate change: The roles of alternative models, monitoring, and adaptation in confronting and reducing uncertainty

    Science.gov (United States)

    Conroy, M.J.; Runge, M.C.; Nichols, J.D.; Stodola, K.W.; Cooper, R.J.

    2011-01-01

    The broad physical and biological principles behind climate change and its potential large scale ecological impacts on biota are fairly well understood, although likely responses of biotic communities at fine spatio-temporal scales are not, limiting the ability of conservation programs to respond effectively to climate change outside the range of human experience. Much of the climate debate has focused on attempts to resolve key uncertainties in a hypothesis-testing framework. However, conservation decisions cannot await resolution of these scientific issues and instead must proceed in the face of uncertainty. We suggest that conservation should precede in an adaptive management framework, in which decisions are guided by predictions under multiple, plausible hypotheses about climate impacts. Under this plan, monitoring is used to evaluate the response of the system to climate drivers, and management actions (perhaps experimental) are used to confront testable predictions with data, in turn providing feedback for future decision making. We illustrate these principles with the problem of mitigating the effects of climate change on terrestrial bird communities in the southern Appalachian Mountains, USA. ?? 2010 Elsevier Ltd.

  18. The French-German Climate Monitoring Initiative on global observations of atmospheric CH4

    Science.gov (United States)

    Ehret, Gerhard; Flamant, Pierre; Amediek, Axel; Ciais, Philippe; Fabien, Gibert; Fix, Andreas; Kiemle, Christoph; Quatrevalet, Mathieu; Wirth, Martin

    2010-05-01

    We report on a new French-German Climate Monitoring Initiative targeting on global measurements of atmospheric methane (CH4). Among the greenhouse gases banned by the Kyoto protocol, CH4 contributes most to global warming after CO2. Questions arise whether global warming in Arctic regions might foster the melting of permafrost soils which contain significant amounts of carbon in organic form which under anaerobic conditions might be converted to CH4 and partially released to the atmosphere. Also the development of natural wetlands which are the biggest methane source, play an important role in climate prediction. Up to now, there is very little knowledge about CH4 sources and sinks in connection with changes in the agro-industrial era of predominant human influence or the very large deposits of CH4 as gas hydrates on ocean shelves that are vulnerable to ocean warming. The objective of this initiative is to improve our knowledge on regional to synoptic scale methane sources, globally. This will be obtained by the measurement of the column-weighted dry-air mixing ratio of CH4, commonly referred to XCH4 which can be used as input for flux inversion models. As a novel feature, the observational instrument will have its own light source emitting pulsed narrow-line laser radiation, not relying on sunlight. The XCH4 values will be provided by a lidar technique with no bias due to particles scattering in the light path, which can have strong regional variability. Using a range-gated receiver for detection of the signals scattered from the Earth surface, the lidar can distinguish surface from cloud or aerosol backscatter, permitting high-precision retrievals of XCH4 in the presence of thin cirrus or aerosol layers. The proposed measurement approach is also capable of providing measurements in partially cloudy conditions. The emitted laser pulses can reach the surface when gaps between clouds occur due to the near-nadir view and the small lidar footprint. The instrument will

  19. Toward a categorical drought prediction system based on U.S. Drought Monitor (USDM) and climate forecast

    Science.gov (United States)

    Hao, Zengchao; Xia, Youlong; Luo, Lifeng; Singh, Vijay P.; Ouyang, Wei; Hao, Fanghua

    2017-08-01

    Disastrous impacts of recent drought events around the world have led to extensive efforts in drought monitoring and prediction. Various drought information systems have been developed with different indicators to provide early drought warning. The climate forecast from North American Multimodel Ensemble (NMME) has been among the most salient progress in climate prediction and its application for drought prediction has been considerably growing. Since its development in 1999, the U.S. Drought Monitor (USDM) has played a critical role in drought monitoring with different drought categories to characterize drought severity, which has been employed to aid decision making by a wealth of users such as natural resource managers and authorities. Due to wide applications of USDM, the development of drought prediction with USDM drought categories would greatly aid decision making. This study presented a categorical drought prediction system for predicting USDM drought categories in the U.S., based on the initial conditions from USDM and seasonal climate forecasts from NMME. Results of USDM drought categories predictions in the U.S. demonstrate the potential of the prediction system, which is expected to contribute to operational early drought warning in the U.S.

  20. A long-term and reproducible passive microwave sea ice concentration data record for climate studies and monitoring

    Directory of Open Access Journals (Sweden)

    G. Peng

    2013-05-01

    Full Text Available A long-term, consistent, and reproducible satellite-based passive microwave sea ice concentration climate data record (CDR is available for climate studies, monitoring, and model validation with an initial operation capability (IOC. The daily and monthly sea ice concentration data are on the National Snow and Ice Data Center (NSIDC polar stereographic grid with nominal 25 × 25 km grid cells in both the Southern and Northern Hemisphere Polar Regions from 9 July 1987 to 31 December 2007 with an update through 2011 underway. The data files are available in the NetCDF data format at http://nsidc.org/data/g02202.html and archived by the National Oceanic and Atmospheric Administration (NOAA's National Climatic Data Center (NCDC under the satellite climate data record program (http://www.ncdc.noaa.gov/cdr/operationalcdrs.html. The description and basic characteristics of the NOAA/NSIDC passive microwave sea ice concentration CDR are presented here. The CDR provides similar spatial and temporal variability as the heritage products to the user communities with the additional documentation, traceability, and reproducibility that meet current standards and guidelines for climate data records. The dataset along with detailed data processing steps and error source information can be found at: doi:10.7265/N5B56GN3.

  1. A Long-Term and Reproducible Passive Microwave Sea Ice Concentration Data Record for Climate Studies and Monitoring

    Science.gov (United States)

    Peng, G.; Meier, W. N.; Scott, D. J.; Savoie, M. H.

    2013-01-01

    A long-term, consistent, and reproducible satellite-based passive microwave sea ice concentration climate data record (CDR) is available for climate studies, monitoring, and model validation with an initial operation capability (IOC). The daily and monthly sea ice concentration data are on the National Snow and Ice Data Center (NSIDC) polar stereographic grid with nominal 25 km × 25 km grid cells in both the Southern and Northern Hemisphere polar regions from 9 July 1987 to 31 December 2007. The data files are available in the NetCDF data format at http://nsidc.org/data/g02202.html and archived by the National Climatic Data Center (NCDC) of the National Oceanic and Atmospheric Administration (NOAA) under the satellite climate data record program (http://www.ncdc.noaa.gov/cdr/operationalcdrs.html). The description and basic characteristics of the NOAA/NSIDC passive microwave sea ice concentration CDR are presented here. The CDR provides similar spatial and temporal variability as the heritage products to the user communities with the additional documentation, traceability, and reproducibility that meet current standards and guidelines for climate data records. The data set, along with detailed data processing steps and error source information, can be found at http://dx.doi.org/10.7265/N5B56GN3.

  2. Satellite Remote Sensing Missions for Monitoring Water, Carbon, and global Climate Change

    Science.gov (United States)

    In recent years, the subjects of water, carbon, and global climate change have attracted worldwide attention by scientists and the media. Climate change, whether associated with human- induced or natural variations, has and will continue to be important to policy makers and the public. It is clear t...

  3. Developing a Climate Service: Using Hydroclimate Monitoring and Forecasting to Aid Decision Making in Africa and Latin America

    Science.gov (United States)

    Wood, E. F.; Sheffield, J.; Fisher, C. K.; Chaney, N.; Wanders, N.

    2015-12-01

    Hydrological and water scarcity predictions have the potential to provide vital information for a variety of needs including water resources management, agricultural and urban water supply, and flood mitigation. In particular, seasonal forecasts of drought risk can enable farmers to make adaptive choices on crop varieties, labor usage, and technology investments. Forecast skill is generally derived from teleconnections with ocean variability specifically sea surface temperature (SST) anomalies and, equally important persistence in the state of the land in terms of soil moisture, snowpack, or streamflow conditions. Short term precipitation forecasts are critical in flood prediction by extending flood prediction lead times beyond the basin travel time, and thus allows for extended warnings. The Global Framework for Climate Services (GFCS) is a UN-wide initiative in which WMO Members and inter- and non- governmental, regional, national and local stakeholders work in partnership to develop targeted climate services. Thus, GFCS offers the potential for hydroclimatologists to develop products (hydroclimatic forecasts) and information services (i.e. product dissemination) to users with the expectation that GFCS will increase the resilience of the society to weather and climate events and to reduce operational costs for economic sectors and regions dependent on water. This presentation will discuss the development of a nascent climate service system focused on hydroclimatic monitoring and forecasting, and initially developed by the authors for Africa and Latin America. Central to this system is the use of satellite remote sensing and hydroclimate forecasts (from days to seasons) in the development of weather and climate information useful for water management in sectors such as flood protection (precipitation and streamflow forecasting) and agriculture (drought and crop forecasting). The elements of this system will be discussed, including the challenges of monitoring and

  4. Operational generation of AVHRR-based cloud products for Europe and the Arctic at EUMETSAT's Satellite Application Facility on Climate Monitoring (CM-SAF

    Directory of Open Access Journals (Sweden)

    F. Kaspar

    2009-04-01

    Full Text Available The Satelite Application Facility on Climate Monitoring has implemented a new processing environment for AVHRR-based climate monitoring products. AVHRR measurements from NOAA-17, NOAA-18 and MetOp-A are utilized to generate daily and monthly means of several cloud parameters for Europe and the Inner Arctic: Cloud fraction, cloud types, cloud phase, cloud top height, cloud optical thickness and cloud liquid water path.

  5. Monitoring climate signal transfer into the varved lake sediments of Lake Czechowskie, Poland

    Science.gov (United States)

    Groß-Schmölders, Miriam; Ott, Florian; Brykała, Dariusz; Gierszewski, Piotr; Kaszubski, Michał; Kienel, Ulrike; Brauer, Achim

    2015-04-01

    In 2012 we started a monitoring program at Lake Czechowskie, Poland, because the lake comprises a long Holocene time series of calcite varves until recent times. The aim of the program is to understand how environmental and climatic conditions influence the hydrological conditions and, ultimately, the sediment deposition processes of the lake. Lake Czechowskie is located in the north of Poland in the Pomeranian Lake District and is part of the national park Tuchola Forest. The landscape and the lake is formed by the glacier retreat after the last glaciation (Weichselian). Lake Czechowskie is a typical hardwater lake and has a length of 1.4 km, an average width of 600 m and a lake surface area of ca 4 km. The maximum depth of 32 m is reached in a rather small hollow in the eastern part of the lake. Two different types of sediment traps provide sediment samples with monthly resolution from different water depths (12m, 26m). In addition, hydrological data including water temperature in different depths, water inflow, throughflow and outflow and the depth of visibility are measured. These data allow to describe strength and duration of lake mixing in spring and autumn and its influence on sedimentation. The sediment samples were analyzed with respect to their dry weight (used to calculate mean daily sediment flux), their inorganic and organic carbon contents, the stable C- and O-isotopes of organic matter and calcite as well as N-isotopes of organic matter. For selected samples dominant diatom taxa are determined. Our first results demonstrate the strong influence of the long winter with ice cover until April in 2013 on the sedimentation. A rapid warming in only 9 days starting on April 9th from -0,3 C° to 15,2 C° resulted in fast ice break-up and a short but intensive lake mixing. In consequence of this short mixing period a strong algal bloom especially of Fragilaria and Crysophycea commenced in April and had its maximum in May. This bloom further induced biogenic

  6. Mapping and Modeling Web Portal to Advance Global Monitoring and Climate Research

    Science.gov (United States)

    Chang, G.; Malhotra, S.; Bui, B.; Sadaqathulla, S.; Goodale, C. E.; Ramirez, P.; Kim, R. M.; Rodriguez, L.; Law, E.

    2011-12-01

    principal investigators to share their research and analysis seamlessly. In addition, this extension will allow users to easily share their tools and data, and to enrich their mapping and analysis experiences. In this talk, we will describe the advanced data management and portal technologies used to power this collaborative environment. We will further illustrate how this environment can enable, enhance and advance global monitoring and climate research.

  7. COST Action ES1206: Advanced GNSS Tropospheric Products for Monitoring Severe Weather Events and Climate (GNSS4SWEC)

    Science.gov (United States)

    Jones, Jonathan; Guerova, Guergana; Dousa, Jan; Dick, Galina; de Haan, Siebren; Pottiaux, Eric; Bock, Olivier; Pacione, Rosa

    2017-04-01

    GNSS is a well established atmospheric observing technique which can accurately sense atmospheric water vapour, the most abundant greenhouse gas, accounting for up to 70% of atmospheric warming. Water vapour is typically under-sampled in modern operational meteorological observing systems and obtaining and exploiting additional high-quality humidity observations is essential to improve weather forecasting and climate monitoring. COST Action ES1206 is a 4-year project, running from 2013 to 2017, which is coordinating the research activities and improved capabilities from concurrent developments in the GNSS, meteorological and climate communities. For the first time, the synergy of multi-GNSS constellations is used to develop new, more advanced tropospheric products, exploiting the full potential of multi-GNSS on a wide range of temporal and spatial scales - from real-time products monitoring and forecasting severe weather, to the highest quality post-processed products suitable for climate research. The Action also promotes the use of meteorological data as an input to real-time GNSS services and is stimulating the transfer of knowledge and data throughout Europe and beyond.

  8. Relevance of hydro-climatic change projection and monitoring for assessment of water cycle changes in the Arctic.

    Science.gov (United States)

    Bring, Arvid; Destouni, Georgia

    2011-06-01

    Rapid changes to the Arctic hydrological cycle challenge both our process understanding and our ability to find appropriate adaptation strategies. We have investigated the relevance and accuracy development of climate change projections for assessment of water cycle changes in major Arctic drainage basins. Results show relatively good agreement of climate model projections with observed temperature changes, but high model inaccuracy relative to available observation data for precipitation changes. Direct observations further show systematically larger (smaller) runoff than precipitation increases (decreases). This result is partly attributable to uncertainties and systematic bias in precipitation observations, but still indicates that some of the observed increase in Arctic river runoff is due to water storage changes, for example melting permafrost and/or groundwater storage changes, within the drainage basins. Such causes of runoff change affect sea level, in addition to ocean salinity, and inland water resources, ecosystems, and infrastructure. Process-based hydrological modeling and observations, which can resolve changes in evapotranspiration, and groundwater and permafrost storage at and below river basin scales, are needed in order to accurately interpret and translate climate-driven precipitation changes to changes in freshwater cycling and runoff. In contrast to this need, our results show that the density of Arctic runoff monitoring has become increasingly biased and less relevant by decreasing most and being lowest in river basins with the largest expected climatic changes.

  9. AgroClimate: Simulating and Monitoring the Risk of Extreme Weather Events from a Crop Phenology Perspective

    Science.gov (United States)

    Fraisse, C.; Pequeno, D.; Staub, C. G.; Perry, C.

    2016-12-01

    Climate variability, particularly the occurrence of extreme weather conditions such as dry spells and heat stress during sensitive crop developmental phases can substantially increase the prospect of reduced crop yields. Yield losses or crop failure risk due to stressful weather conditions vary mainly due to stress severity and exposure time and duration. The magnitude of stress effects is also crop specific, differing in terms of thresholds and adaptation to environmental conditions. To help producers in the Southeast USA mitigate and monitor the risk of crop losses due to extreme weather events we developed a web-based tool that evaluates the risk of extreme weather events during the season taking into account the crop development stages. Producers can enter their plans for the upcoming season in a given field (e.g. crop, variety, planting date, acreage etc.), select or not a specific El Nino Southern Oscillation (ENSO) phase, and will be presented with the probabilities (ranging from 0 -100%) of extreme weather events occurring during sensitive phases of the growing season for the selected conditions. The DSSAT models CERES-Maize, CROPGRO-Soybean, CROPGRO-Cotton, and N-Wheat phenology models have been translated from FORTRAN to a standalone versions in R language. These models have been tested in collaboration with Extension faculty and producers during the 2016 season and their usefulness for risk mitigation and monitoring evaluated. A companion AgroClimate app was also developed to help producers track and monitor phenology development during the cropping season.

  10. IODP Expeditions 303 and 306 Monitor Miocene- Quaternary Climate in the North Atlantic

    Directory of Open Access Journals (Sweden)

    Carlos Alvarez-Zarikian

    2006-03-01

    Full Text Available Introduction The IODP Expeditions 303 and 306 drilling sites were chosen for two reasons: (1 to capture Miocene-Quaternary millennial-scale climate variability in sensitive regions at the mouth of the Labrador Sea and in the North Atlantic icerafted debris (IRD belt (Ruddiman et al., 1977, and (2 to provide the sedimentary and paleomagnetic attributes, including adequate sedimentation rates, for constructinghigh-resolution isotopic and magnetic stratigraphies.High accumulation rates, reaching 20 cm ky-1, permit the study of millennial-scale variations in climate and in the Earth's magnetic fi eld over the past several million years, when the amplitude and frequency of climate variability changed substantially. Shipboard logging and scanning data (magnetic susceptibility and remanence, density, natural gamma radiation, digital images and color refl ectance and post-expedition x-ray fl uorescence (XRF scanning datahave revealed that the sediment cores recovered on Expeditions 303 and 306 contain detailed histories of millennial-scale climate and geomagnetic fi eld variability throughout the late Miocene to Quaternary epochs. The climate proxies will be integrated with paleomagnetic data to place the records of millennial-scale climate change into a high resolution stratigraphy based on oxygen isotope andrelative paleomagnetic intensity (RPI. The paleomagnetic record of polarity reversals, excursions and RPI in these cores is central to the construction of the stratigraphic template and will provide detailed documentation of geomagnetic fi eld behavior.

  11. Experiment, monitoring, and gradient methods used to infer climate change effects on plant communities yield consistent patterns.

    Science.gov (United States)

    Elmendorf, Sarah C; Henry, Gregory H R; Hollister, Robert D; Fosaa, Anna Maria; Gould, William A; Hermanutz, Luise; Hofgaard, Annika; Jónsdóttir, Ingibjörg S; Jónsdóttir, Ingibjörg I; Jorgenson, Janet C; Lévesque, Esther; Magnusson, Borgþór; Molau, Ulf; Myers-Smith, Isla H; Oberbauer, Steven F; Rixen, Christian; Tweedie, Craig E; Walker, Marilyn D; Walker, Marilyn

    2015-01-13

    Inference about future climate change impacts typically relies on one of three approaches: manipulative experiments, historical comparisons (broadly defined to include monitoring the response to ambient climate fluctuations using repeat sampling of plots, dendroecology, and paleoecology techniques), and space-for-time substitutions derived from sampling along environmental gradients. Potential limitations of all three approaches are recognized. Here we address the congruence among these three main approaches by comparing the degree to which tundra plant community composition changes (i) in response to in situ experimental warming, (ii) with interannual variability in summer temperature within sites, and (iii) over spatial gradients in summer temperature. We analyzed changes in plant community composition from repeat sampling (85 plant communities in 28 regions) and experimental warming studies (28 experiments in 14 regions) throughout arctic and alpine North America and Europe. Increases in the relative abundance of species with a warmer thermal niche were observed in response to warmer summer temperatures using all three methods; however, effect sizes were greater over broad-scale spatial gradients relative to either temporal variability in summer temperature within a site or summer temperature increases induced by experimental warming. The effect sizes for change over time within a site and with experimental warming were nearly identical. These results support the view that inferences based on space-for-time substitution overestimate the magnitude of responses to contemporary climate warming, because spatial gradients reflect long-term processes. In contrast, in situ experimental warming and monitoring approaches yield consistent estimates of the magnitude of response of plant communities to climate warming.

  12. Determining the climate impact of the German government's Integrated Energy and Climate Programme (IEKP) and proposing a plan to continuously monitor its climate impact. Work package 2. Development of monitoring tools for the Integrated Energy and Climate Programme (IEKP); Ermittlung der Klimaschutzwirkung des Integrierten Energie- und Klimaschutzprogramms der Bundesregierung IEKP und Vorschlag fuer ein Konzept zur kontinuierlichen Ueberpruefung der Klimaschutzwirkung des IEKP. Arbeitspaket 2. Entwicklung eines Monitoringkonzepts fuer das Integrierte Energie- und Klimaschutzprogramm (IEKP)

    Energy Technology Data Exchange (ETDEWEB)

    Doll, Claus; Eichhammer, Wolfgang; Fleiter, Tobias [Fraunhofer-Institut fuer System- und Innovationsforschung, Karlsruhe (DE)] (and others)

    2012-02-15

    Since November 2010, there exist an obligation to evaluate the effects of the integrated energy and climate program (IEKP) by means of a regular monitoring in order to check the validity of the instruments. With this in mind, the authors of the contribution under consideration at first report on the basic structure of the monitoring plan. Subsequently, 22 measures of this concept are presented.

  13. European monitoring systems and data for assessing environmental and climate impacts on human infectious diseases.

    Science.gov (United States)

    Nichols, Gordon L; Andersson, Yvonne; Lindgren, Elisabet; Devaux, Isabelle; Semenza, Jan C

    2014-04-09

    Surveillance is critical to understanding the epidemiology and control of infectious diseases. The growing concern over climate and other drivers that may increase infectious disease threats to future generations has stimulated a review of the surveillance systems and environmental data sources that might be used to assess future health impacts from climate change in Europe. We present an overview of organizations, agencies and institutions that are responsible for infectious disease surveillance in Europe. We describe the surveillance systems, tracking tools, communication channels, information exchange and outputs in light of environmental and climatic drivers of infectious diseases. We discuss environmental and climatic data sets that lend themselves to epidemiological analysis. Many of the environmental data sets have a relatively uniform quality across EU Member States because they are based on satellite measurements or EU funded FP6 or FP7 projects with full EU coverage. Case-reporting systems for surveillance of infectious diseases should include clear and consistent case definitions and reporting formats that are geo-located at an appropriate resolution. This will allow linkage to environmental, social and climatic sources that will enable risk assessments, future threat evaluations, outbreak management and interventions to reduce disease burden.

  14. European Monitoring Systems and Data for Assessing Environmental and Climate Impacts on Human Infectious Diseases

    Directory of Open Access Journals (Sweden)

    Gordon L. Nichols

    2014-04-01

    Full Text Available Surveillance is critical to understanding the epidemiology and control of infectious diseases. The growing concern over climate and other drivers that may increase infectious disease threats to future generations has stimulated a review of the surveillance systems and environmental data sources that might be used to assess future health impacts from climate change in Europe. We present an overview of organizations, agencies and institutions that are responsible for infectious disease surveillance in Europe. We describe the surveillance systems, tracking tools, communication channels, information exchange and outputs in light of environmental and climatic drivers of infectious diseases. We discuss environmental and climatic data sets that lend themselves to epidemiological analysis. Many of the environmental data sets have a relatively uniform quality across EU Member States because they are based on satellite measurements or EU funded FP6 or FP7 projects with full EU coverage. Case-reporting systems for surveillance of infectious diseases should include clear and consistent case definitions and reporting formats that are geo-located at an appropriate resolution. This will allow linkage to environmental, social and climatic sources that will enable risk assessments, future threat evaluations, outbreak management and interventions to reduce disease burden.

  15. Monitoring Effects of Climatic stresses on a Papyrus Wetland System in Eastern Uganda Using Times Series of Remotely Sensed Data

    Science.gov (United States)

    Kayendeke, Ellen; French, Helen K.; Kansiime, Frank; Bamutaze, Yazidhi

    2017-04-01

    Papyrus wetlands predominant in southern, central and eastern Africa; are important in supporting community livelihoods since they provide land for agriculture, materials for building and craft making, as well as services of water purification and water storage. Papyrus wetlands are dominated by a sedge Cyperus papyrus, which is rooted at wetland edges but floats in open water with the help of a root mat composed of intermingled roots and rhizomes. The hypothesis is that the papyrus mat structure reduces flow velocity and increases storage volume during storm events, which not only helps to mitigate flood events but aids in storage of excess water that can be utilised during the dry seasons. However, due to sparse gauging there is inadequate meteorological and hydrological data for continuous monitoring of the hydrological functioning of papyrus systems. The objective of this study was to assess the potential of utilising freely available remote sensing data (MODIS, Landsat, and Sentinel-1) for cost effective monitoring of papyrus wetland systems, and their response to climatic stresses. This was done through segmentation of MODIS NDVI and Landsat derived NDWI datasets; as well as classification of Sentinel-1 images taken in wet and dry seasons of 2015 and 2016. The classified maps were used as proxies for changes in hydrological conditions with time. The preliminary results show that it is possible to monitor changes in biomass, wetland inundation extent, flooded areas, as well as changes in moisture content in surrounding agricultural areas in the different seasons. Therefore, we propose that remote sensing data, when complemented with available meteorological data, is a useful resource for monitoring changes in the papyrus wetland systems as a result of climatic and human induced stresses.

  16. Holocene climatic change in Alaska: monitoring the gateway between the Pacific and Arctic

    Science.gov (United States)

    Finney, B. P.

    2011-12-01

    Alaska lies at an important gateway between the Pacific and Arctic, and climatic change in this region is strongly influenced by interplay between processes in these ocean-atmosphere systems. Evaluation of sedimentary records of stable isotopes, lake-level, pollen and other proxies is underway to better define the history and controls of paleoclimate in Alaska during the Holocene. These records suggest variability on time-scales ranging from millennial to decadal, with several periods of abrupt climatic transition. An abrupt increase in effective moisture ushered in the early Holocene, c.a. 9,500 cal yr BP, resulting in increasing lake-levels and spruce expansion in interior Alaska. Neoglacial changes centered ~ 4,000 cal BP indicate further increases in effective moisture in the interior and Gulf of Alaska regions, as well as glacial advances, and vegetation and other environmental changes. Several abrupt climatic shifts occurred in the past 2000 years, with two such shifts happening during climatic transitions into and out of the Little Ice Age (LIA; ca. 1200 - 1850 AD). Changes between multiple synoptic climate modes, each with distinct spatial climatic patterns (i.e., PDO), can be used to characterize climatic variability in Alaska over decadal to millennial timescales. Some but not all of these modes are well represented during the historical period. Comparisons of paleo-records from widespread regions allow recognition of how these modes vary over time and suggest several periods of reorganization of ocean-atmospheric circulation during the Holocene. Such "mega-regime shifts" are of a different nature and larger amplitude than historical regime-shifts. For example, recent paleoclimatic studies from the Mt, Logan ice cores and elsewhere suggest the LIA transitions reflect abrupt shifts between atmospheric circulation modes of more zonal vs. more meridional flow. Past and future climates of this region will depend in part on connections between the Pacific and

  17. Modelling marine community responses to climate-driven species redistribution to guide monitoring and adaptive ecosystem-based management.

    Science.gov (United States)

    Marzloff, Martin Pierre; Melbourne-Thomas, Jessica; Hamon, Katell G; Hoshino, Eriko; Jennings, Sarah; van Putten, Ingrid E; Pecl, Gretta T

    2016-07-01

    As a consequence of global climate-driven changes, marine ecosystems are experiencing polewards redistributions of species - or range shifts - across taxa and throughout latitudes worldwide. Research on these range shifts largely focuses on understanding and predicting changes in the distribution of individual species. The ecological effects of marine range shifts on ecosystem structure and functioning, as well as human coastal communities, can be large, yet remain difficult to anticipate and manage. Here, we use qualitative modelling of system feedback to understand the cumulative impacts of multiple species shifts in south-eastern Australia, a global hotspot for ocean warming. We identify range-shifting species that can induce trophic cascades and affect ecosystem dynamics and productivity, and evaluate the potential effectiveness of alternative management interventions to mitigate these impacts. Our results suggest that the negative ecological impacts of multiple simultaneous range shifts generally add up. Thus, implementing whole-of-ecosystem management strategies and regular monitoring of range-shifting species of ecological concern are necessary to effectively intervene against undesirable consequences of marine range shifts at the regional scale. Our study illustrates how modelling system feedback with only limited qualitative information about ecosystem structure and range-shifting species can predict ecological consequences of multiple co-occurring range shifts, guide ecosystem-based adaptation to climate change and help prioritise future research and monitoring. © 2016 John Wiley & Sons Ltd.

  18. Ecoregional-scale monitoring within conservation areas, in a rapidly changing climate

    Science.gov (United States)

    Beever, Erik A.; Woodward, Andrea

    2011-01-01

    Long-term monitoring of ecological systems can prove invaluable for resource management and conservation. Such monitoring can: (1) detect instances of long-term trend (either improvement or deterioration) in monitored resources, thus providing an early-warning indication of system change to resource managers; (2) inform management decisions and help assess the effects of management actions, as well as anthropogenic and natural disturbances; and (3) provide the grist for supplemental research on mechanisms of system dynamics and cause-effect relationships (Fancy et al., 2009). Such monitoring additionally provides a snapshot of the status of monitored resources during each sampling cycle, and helps assess whether legal standards and regulations are being met. Until the last 1-2 decades, tracking and understanding changes in condition of natural resources across broad spatial extents have been infrequently attempted. Several factors, however, are facilitating the achievement of such broad-scale investigation and monitoring. These include increasing awareness of the importance of landscape context, greater prevalence of regional and global environmental stressors, and the rise of landscape-scale programs designed to manage and monitor biological systems. Such programs include the US Forest Service's Forest Inventory and Analysis (FIA) Program (Moser et al., 2008), Canada's National Forest Inventory, the 3Q Programme for monitoring agricultural landscapes of Norway (Dramstad et al., 2002), and the emerging (US) Landscape Conservation Cooperatives (USDOI Secretarial Order 3289, 2009; Anonymous, 2011). This Special Section explores the underlying design considerations, as well as many pragmatic aspects associated with program implementation and interpretation of results from broad-scale monitoring systems, particularly within the constraints of high-latitude contexts (e.g., low road density, short field season, dramatic fluctuations in temperature). Although Alaska is

  19. Synergy use of satellite remote sensing and in-situ monitoring data for air pollution impacts on urban climate

    Science.gov (United States)

    Savastru, Dan M.; Zoran, Maria A.; Savastru, Roxana S.

    2016-10-01

    The increase of urban atmospheric pollution due to particulate matters (PM) in different fraction sizes affects seriously not only human health and environment, but also city climate directly and indirectly. In the last decades, with the economic development and the increased emissions from industrial, traffic and domestic pollutants, the urban atmospheric pollution with remarkable high PM2.5 (particulate matters with aerodynamic diameter less than 2.5 μm) and PM10 (particulate matters with aerodynamic diameter less than 10 μm) concentration levels became serious in the metropolitan area of Bucharest in Romania. Both active as well as satellite remote sensing are key applications in global change science and urban climatology. The aerosol parameters can be measured directly in situ or derived from satellite remote sensing observations. All these methods are important and complementary. The current study presents a spatiotemporal analysis of the aerosol concentrations in relation with climate parameters in two size fractions (PM10 and PM2.5) in Bucharest metropolitan area. Daily average particle matters concentrations PM10 and PM2.5 for Bucharest metropolitan area have been provided by 8 monitoring stations belonging to air pollution network of Environmental Protection Agency. The C005 (version 5.1) Level 2 and Level 3 Terra and Aqua MODIS AOD550 time-series satellite data for period 01/01/2011- 31/12/2012 have been also used. Meteorological variables (air temperature, relative humidity, sea level atmospheric pressure) have been provided by in-situ measurements. Both in-situ monitoring data as well as MODIS Terra/Aqua time-series satellite data for 2011-2012 period provided useful tools for particle matter PM2.5 and PM10 monitoring.

  20. A New EO-Based Indicator for Assessing and Monitoring Climate-Related Vegetation Stress

    Science.gov (United States)

    McCormick, Niall; Gobron, Nadine

    2016-08-01

    This paper describes a study in which a new environmental indicator, called Annual Vegetation Stress (AVS), has been developed, based on annual anomalies of satellite-measured Fraction of Absorbed Photosynthetically Active Radiation (FAPAR ), and used to map the area affected annually by vegetation stress during the period 2003-2014, for 108 selected developing countries. Analysis of the results for six countries in the "tropical and subtropical forests" ecoregion, reveals good correspondence between high AVS values, and the occurrence of climatic extremes (droughts) and anthropogenic disturbance (deforestation). The results for Equatorial Guinea suggest that the recent trend of large-scale droughts and rainfall deficits in Central and Western Africa, contribute to increased vegetation stress in the region's tropical rainforests. In East Timor there is evidence of a "biological lag" effect, whereby the main impacts of drought on the country's seasonally dry tropical forests are delayed until the year following the climate event.

  1. Permafrost and climate in Europe: Monitoring and modelling thermal, geomorphological and geotechnical responses

    Science.gov (United States)

    Harris, Charles; Arenson, Lukas U.; Christiansen, Hanne H.; Etzelmüller, Bernd; Frauenfelder, Regula; Gruber, Stephan; Haeberli, Wilfried; Hauck, Christian; Hölzle, Martin; Humlum, Ole; Isaksen, Ketil; Kääb, Andreas; Kern-Lütschg, Martina A.; Lehning, Michael; Matsuoka, Norikazu; Murton, Julian B.; Nötzli, Jeanette; Phillips, Marcia; Ross, Neil; Seppälä, Matti; Springman, Sarah M.; Vonder Mühll, Daniel

    2009-02-01

    We present a review of the changing state of European permafrost within a spatial zone that includes the continuous high latitude arctic permafrost of Svalbard and the discontinuous high altitude mountain permafrost of Iceland, Fennoscandia and the Alps. The paper focuses on methodological developments and data collection over the last decade or so, including research associated with the continent-scale network of instrumented permafrost boreholes established between 1998 and 2001 under the European Union PACE project. Data indicate recent warming trends, with greatest warming at higher latitudes. Equally important are the impacts of shorter-term extreme climatic events, most immediately reflected in changes in active layer thickness. A large number of complex variables, including altitude, topography, insolation and snow distribution, determine permafrost temperatures. The development of regionally calibrated empirical-statistical models, and physically based process-oriented models, is described, and it is shown that, though more complex and data dependent, process-oriented approaches are better suited to estimating transient effects of climate change in complex mountain topography. Mapping and characterisation of permafrost depth and distribution requires integrated multiple geophysical approaches and recent advances are discussed. We report on recent research into ground ice formation, including ice segregation within bedrock and vein ice formation within ice wedge systems. The potential impacts of climate change on rock weathering, permafrost creep, landslides, rock falls, debris flows and slow mass movements are also discussed. Recent engineering responses to the potentially damaging effects of climate warming are outlined, and risk assessment strategies to minimise geological hazards are described. We conclude that forecasting changes in hazard occurrence, magnitude and frequency is likely to depend on process-based modelling, demanding improved

  2. Climate Change in the School Yard: Monitoring the Health of Acer Saccharum with A Maple Report Card

    Science.gov (United States)

    Carlson, M.; Diller, A.; Rock, B. N.

    2012-12-01

    K-12 Teachers and students engage in authentic science and a research partnership with scientists in Maple Watch, a University of New Hampshire outreach program. Maple Watch is a hands-on, inquiry-based program in which students learn about climate change and air quality as well as many other environmental stress factors which may affect the health of sugar maple. The iconic New England tree is slated to lose 52% of its range in this century. Maple Watch builds on the 20-year record of Forest Watch, a K-12 program in which students and teachers have contributed annual research specimens and data to a UNH study of tropospheric ozone and its impact on white pine (Pinus strobus). Maple Watch students monitor sugar maples (Acer saccharum) year-round for signals of strain and disease. Students report the first run in sap season, bud burst and leaf development, and leaf senescence and fall. Across New England the timing of these phenologic events is changing with climate warming. Students assess maple health with simple measures of leaf development in May, leaf senescence in early fall and bud quality in late fall. Simple student arithmetic rankings of leaf and bud health correlate with chlorophyll content and spectral reflectance measures that students can analyze and compare with researchers at UNH. Grading their trees for each test on a one-two-three scale, students develop a Maple Report Card for each type of measurement, which presents an annual portrait of tree health. Year-by-year, schools across the sugar maple's 31 million acre range could monitor changes in tree health. The change over time in maple health can be graphed in parallel with the Goddard Space Institute's Common Sense Climate Index. Four teachers, listed as co-authors here, began a pilot study with Maple Watch in 2010, contributing sap samples and sharing curricular activities with UNH. Pilot Maple Watch schools already manage stands of sugar maples and make maple syrup and are assisting in training

  3. Forest growth and climate change: evidences from the ICP-Forests intensive monitoring in Italy

    Directory of Open Access Journals (Sweden)

    Piovosi M

    2011-12-01

    Full Text Available A few concurrent and/or counteracting factors (increase of average air temperature, rainfall shortage, drought, CO2 enrichment, ozone, nitrogen fertilization, sulphate deposition drive today the soil-tree-atmosphere relationships in the Mediterranean area. Radial stem growth measured within the ICP-Forests level II Italian network provides a sensitive response to these occurrences. Climate fluctuations and repeated anomalous seasons or extreme events are the major evidences of the change in progress. The 2003 heat wave is the main event occurred in this decade over large part of Europe. In Italy, it provoked a marked water deficit coupled to high air temperature, which resulted in a heavy water stress. The growth performance in different forest types was analyzed in this paper: growth rate in 2000-2004, compared with 1997-1999, showed reductions up to 50% on half of the plots examined. Most of them were: (i in northern-central Italy within the southern continental border of the climatic deviation; (ii at low elevation, which is more sensitive to high air temperature and drought; (iii made up of deciduous broadleaved forests (beech and oaks, i.e., species showing growth effects also in the following year. Over the time-window 2005-2009, a significant growth decrease was vice-versa detected within the coniferous spruce forests located at medium-high elevation in the Alps. Repeated seasonal deviations in temperature and rainfall were recorded in the Alps in 2005-2009. Climate effects at local scale were examined in a site where two oak species with a different auto-ecology (sessile oak and Turkey oak grow together. The on-going change produced heavy mortality and reduced the growth of the more demanding and less drought-tolerant sessile oak; in a few years Turkey oak became prevailing in the stand composition and structure.

  4. Monitoring climate model performance in an era of explosive data growth (Invited)

    Science.gov (United States)

    Gleckler, P. J.

    2013-12-01

    Increased resolution, additional complexity, and multiple realizations from a variety of experiments have all contributed to larger data volumes of climate model output and the need for a distributed approach to data delivery. The Earth System Grid Federation (ESGF) serves this need for the Coupled Model Intercomparison Project (CMIP5) and related Model Intercomparisons (MIPs). By adhering to the Climate and Forecast (CF) metadata convention for model output, MIPs ensure that critical metadata can be both readily searched via ESGF and efficiently analyzed by scientists. These advancements to the organization and delivery of climate model output are now being applied to observational datasets in the obs4MIPs project initiated by NASA and the DOE. Select NASA products routinely used for model evaluation are now accessible on ESGF via the obs4MIPs project, and others are also becoming available. The simulations available from CMIP5 are being studied by hundreds of scientists, most of whom are publishing their research in peer-reviewed publications. Collectively, the resulting body of literature represents comprehensive model evaluation, however, a distillation of this work into model performance summaries is difficult. With the same data conventions and delivery methods now being exploited for model and observational data, a more integrated approach to model evaluation in MIPs may be possible. Well-established performance metrics offer one viable pathway. This presentation will describe efforts underway to exploit the above infrastructural advancements for the purpose of improving how routine model benchmarking is performed in MIPs. Technological challenges to this endeavor will be highlighted.

  5. Use of GRACE data to monitor climate change-induced variations in water storage availability in the African continent

    Science.gov (United States)

    Ahmed, M. E.; Sultan, M.; Wahr, J. M.; Yan, E.; Milewski, A.; Mohsen, F.; Chouinard, K.

    2011-12-01

    The Gravity Recovery and Climate Experiment (GRACE) data provides direct measurements of temporal mass variations; the latter is largely controlled by variations in water volumes in various reservoirs such as surface water (e.g., lakes and streams), groundwater (e.g., shallow and deep aquifers) and in the soil profile. Climatic changes impact the amounts of precipitation and its partitioning into each of these reservoirs. We explored the use of GRACE data for monitoring climate change-induced variations in water availability in the African continent over a period of nine years and used the identified trends to predict water storage availability across the continent over the next decade. Monthly GRACE gravity field solutions (Center of Space Research [CSR] RL04) in form of Spherical Harmonic Coefficients (SHC's) that span the period from April 2002 through November 2010 were processed (temporal mean was removed, de-striped, smoothed [250 km; Gaussian], and converted to 0.5 x 0.5 deg. equivalent water thicknesses). Several relevant GRACE bi-products (e.g., standard deviation, annual trend) were generated over time periods of six, seven, eight, and nine years and compared (in a GIS environment) with relevant co-registered data sets and derived products (e.g., precipitation, topography, geology, VNIR Landsat, NDVI, stream network distribution, water bodies distribution, watershed boundaries, and Community Climate System Model [CCSM-3] products). Spatial correlations of the co-registered data sets revealed the following: (1) persistent and increasingly pronounced linear annual trends (+ve: increasing mass; -ve: decreasing mass) over periods of six to nine years with the most pronounced trends detected over domains of high signal to noise ratios; (2) +ve trends over the source areas for the Blue Nile basin (4.2 mm/yr) and over the source areas of the Congo basin (7 mm/yr) and over the Zambezi basin (24 mm/yr), whereas -ve trends were detected over Central Africa (-7 mm

  6. Air, Ocean and Climate Monitoring Enhancing Undergraduate Training in the Physical, Environmental and Computer Sciences

    Science.gov (United States)

    Hope, W. W.; Johnson, L. P.; Obl, W.; Stewart, A.; Harris, W. C.; Craig, R. D.

    2000-01-01

    Faculty in the Department of Physical, Environmental and Computer Sciences strongly believe in the concept that undergraduate research and research-related activities must be integrated into the fabric of our undergraduate Science and Technology curricula. High level skills, such as problem solving, reasoning, collaboration and the ability to engage in research, are learned for advanced study in graduate school or for competing for well paying positions in the scientific community. One goal of our academic programs is to have a pipeline of research activities from high school to four year college, to graduate school, based on the GISS Institute on Climate and Planets model.

  7. Monitoring Thermal Performance of Hollow Bricks with Different Cavity Fillers in Difference Climate Conditions

    Science.gov (United States)

    Pavlík, Zbyšek; Jerman, Miloš; Fořt, Jan; Černý, Robert

    2015-03-01

    Hollow brick blocks have found widespread use in the building industry during the last decades. The increasing requirements to the thermal insulation properties of building envelopes given by the national standards in Europe led the brick producers to reduce the production of common solid bricks. Brick blocks with more or less complex systems of internal cavities replaced the traditional bricks and became dominant on the building ceramics market. However, contrary to the solid bricks where the thermal conductivity can easily be measured by standard methods, the complex geometry of hollow brick blocks makes the application of common techniques impossible. In this paper, a steady-state technique utilizing a system of two climatic chambers separated by a connecting tunnel for sample positioning is used for the determination of the thermal conductivity, thermal resistance, and thermal transmittance ( U value) of hollow bricks with the cavities filled by air, two different types of mineral wool, polystyrene balls, and foam polyurethane. The particular brick block is provided with the necessary temperature- and heat-flux sensors and thermally insulated in the tunnel. In the climatic chambers, different temperatures are set. After steady-state conditions are established in the measuring system, the effective thermal properties of the brick block are calculated using the measured data. Experimental results show that the best results are achieved with hydrophilic mineral wool as a cavity filler; the worst performance exhibits the brick block with air-filled cavities.

  8. Surface water hydrology and geomorphic characterization of a playa lake system: Implications for monitoring the effects of climate change

    Science.gov (United States)

    Adams, Kenneth D.; Sada, Donald W.

    2014-03-01

    Playa lakes are sensitive recorders of subtle climatic perturbations because these ephemeral water bodies respond to the flux of diffuse and channelized flow from their watersheds as well as from direct precipitation. The Black Rock Playa in northwestern Nevada is one of the largest playas in North America and is noted for its extreme flatness, varying less than one meter across a surface area of 310 km2. Geo-referenced Landsat imagery was used to map surface-area fluctuations of ephemeral lakes on the playa from 1972 to 2013 to provide baseline data on surface water hydrology of this system to compare to future hydrologic conditions caused by climate change. The area measurements were transformed into depth and volumetric estimates using results of detailed topographic global positioning system (GPS) surveys and correlated with available surface hydrological and meteorological monitoring data. Playa lakes reach their maximum size (<350 km2) in spring, fed by melting snows from high mountains on the periphery of the drainage basin, and usually desiccate by early- to mid-summer. The combination of a shallow groundwater table, sediment deposition, and hydro-aeolian planation probably are largely responsible for the flatness of the playa. When lakes do not form for a period of several years, the clay- and silt-rich playa surface transforms from one that is hard and durable into one that is soft and puffy, probably from upward capillary movement of water and resultant evaporation. Subsequent flooding restores the hard and durable surface. The near-global availability of Landsat imagery for the last 41 years should allow the documentation of baseline surface hydrologic characteristics for a large number of widely-distributed playa lake systems that can be used to assess the hydrologic effects of future climate changes.

  9. Determining the climate impact of the German government's Integrated Energy and Climate Programme (IEKP) and proposing a plan to continuously monitor its climate impact. Work package 3. Description of monitoring tools for the Integrated Energy and Climate Programme (IEKP); Ermittlung der Klimaschutzwirkung des Integrierten Energie- und Klimaschutzprogramms der Bundesregierung IEKP und Vorschlag fuer ein Konzept zur kontinuierlichen Ueberpruefung der Klimaschutzwirkung des IEKP. Arbeitspaket 3. Beschreibung des Monitoringtools fuer das Integrierte Energie- und Klimaschutzprogramm (IEKP)

    Energy Technology Data Exchange (ETDEWEB)

    Doll, Claus; Eichhammer, Wolfgang; Fleiter, Tobias [Fraunhofer-Institut fuer System- und Innovationsforschung, Karlsruhe (DE)] (and others)

    2012-02-15

    The reports on the Work Packages 1 and 2 describe the development of the monitoring concept for the individual measures of the integrated energy and climate program (IEKP). In the third work package, the monitoring concept was developed in an Excel tool presenting the actual output of the third work package The authors of the contribution under consideration describe the functionality of this Excel tool.

  10. The USA National Phenology Network: A national science and monitoring program for understanding climate change

    Science.gov (United States)

    Weltzin, J.

    2009-04-01

    Patterns of phenology for plants and animals control ecosystem processes, determine land surface properties, control biosphere-atmosphere interactions, and affect food production, health, conservation, and recreation. Although phenological data and models have applications related to scientific research, education and outreach, agriculture, tourism and recreation, human health, and natural resource conservation and management, until recently there was no coordinated effort to understand phenology at the national scale in the United States. The USA National Phenology Network (USA-NPN; www.usanpn.org), established in 2007, is an emerging and exciting partnership between federal agencies, the academic community, and the general public to establish a national science and monitoring initiative focused on phenology. The first year of operation of USA-NPN produced many new phenology products and venues for phenology research and citizen involvement. Products include a new web-site (www.usanpn.org) that went live in June 2008; the web-site includes a tool for on-line data entry, and serves as a clearinghouse for products and information to facilitate research and communication related to phenology. The new core Plant Phenology Program includes profiles for 200 vetted local, regional, and national plant species with descriptions and (BBCH-consistent) monitoring protocols, as well as templates for addition of new species. A partnership program describes how other monitoring networks can engage with USA-NPN to collect, manage or disseminate phenological information for science, health, education, management or predictive service applications. Project BudBurst, a USA-NPN field campaign for citizen scientists, went live in February 2008, and now includes over 3000 registered observers monitoring 4000 plants across the nation. For 2009 and beyond, we will initiate a new Wildlife Phenology Program, create an on-line clearing-house for phenology education and outreach, strengthen

  11. Using Satellite Data to Build Climate Resilience: A Novel East Africa Drought Monitor

    Science.gov (United States)

    Slinski, K.; Hogue, T. S.; McCray, J. E.

    2016-12-01

    East Africa is affected by recurrent drought. The 2015-2016 El Niño triggered a severe drought across East Africa causing serious impacts to regional water security, health, and livelihoods. Ethiopia was the hardest hit, with the United Nations Office for the Coordination of Humanitarian Affairs calling the recent drought the worst in 50 years. Resources to monitor the severity and progression of droughts are a critical component to disaster risk reduction, but are challenging to implement in regions with sparse data collection networks such as East Africa. Satellite data is used by the United Nations Food and Agriculture Organization Global Information and Early Warning System, the USAID Famine Early Warning System, and the Africa Drought and Flood Monitor. These systems use remotely sensed vegetation, soil moisture, and meteorological data to develop drought indices. However, they do not directly monitor impacts to water resources, which is necessary to appropriately target drought mitigation efforts. The current study combines new radar data from the European Space Agency's Sentinel-1 mission with satellite imagery to perform a retrospective analysis of the impact of the 2015-2016 drought in East Africa on regional surface water. Inland water body extents during the drought are compared to historical trends to identify the most severely impacted areas. The developed tool has the potential to support on-the-ground humanitarian relief efforts and to refine predictions of water scarcity and crop impacts from existing hydrologic models and famine early warning systems.

  12. AATSR - Precise Sea-Surface Temperature for Climate Monitoring and for Operational Applications

    Science.gov (United States)

    Llewellyn-Jones, David; Corlett, Gary; Donlon, Craig; Stark, John

    The Advanced Along-Track Scanning Radiometer (AATSR) is an imaging radiometer specifi- cally designed to measure Sea-Surface Temperature (SST) to the demanding levels of accuracy and stability required for climate research. AATSR, which has been operating continuously on ESA's Envisat Satellite since its launch in 2002, achieves the required levels of accuracy on account of its unique dual view, whereby each terrestrial scene is viewed twice, once at nadir and then through an inclined path which uses a different atmospheric path-length, thereby providing a direct observation of atmospheric effects, leading to an exceptionally accurate atmospheric correction. This feature is accompanied by an advanced calibration system combined with excellent optical and thermal designs. Recent rigorous and extensive comparisons with in situ data have shown that, for most of the global oceans, AATSR can achieve and accuracy of around 0.2o C with high stability, which has qualified them for use in climate analysis schemes. Because AATSR is the third sensor in a near-continuous series which started with the launch of ATSR-1 on ERS-1 satellite in 1991, there is a time-series of 16+ years of climate standard SSTs which have recently been re-processed and are now becoming available to the World-wide user community from data centres in Europe. SST data from AATSR have been included in the suite of operational SST products generated by the GODAE/GHRSST Pilot Project, on a timescale needed by operational users and in a format which allows easy ingestion and error estimates for data from AATSR and most of the other sensors currently providing SST measurements from space. Within the GODAE/GHRSST data-products, AATSR SST data are generally regarded as the benchmark for accuracy and are used to provide bias corrections for data from the other sensors, which often have superior coverage, thus exploiting synergistically the complementary qualities if the different data-sets. The UK Met Office

  13. The FirnCover Project - Real-time Monitoring of Greenland's Firn Compaction in a Changing Climate

    Science.gov (United States)

    MacFerrin, M. J.; Stevens, C.; Waddington, E. D.; Abdalati, W.

    2015-12-01

    An unavoidable source of uncertainty in altimetry-based mass balance assessments of ice sheets is the conversion from volume change into mass change. A primary component of this volume change is firn compaction, or the rate at which snow compresses into glacial ice. Firn densification models simulate this process, but model outputs vary widely, and Greenland's rapidly changing climate challenges many of the steady-state assumptions held in most of these models. Contemporary measurements of firn compaction rates are extremely sparse across Greenland in both time and space and are nonexistent in many large regions. Here we present initial results from Greenland's Firn Compaction Verification and Reconnaissance (FirnCover) Project, a network of real-time strain gauges at over thirty boreholes that continuously monitor compaction rates at eight locations in Greenland's accumulation zones, ranging from areas of heavy percolation to dry snow. Initial results from these stations indicate a strong seasonality in compaction, especially in regions where heavy melt and refreezing release latent heat into the firn column, a process that will intensify as melt increases across Greenland. We also discuss the substantial challenge of measuring firn compaction in regions of heterogeneous percolation, and other challenges encountered when validating firn models and monitoring contemporary mass changes of the Greenland ice sheet.

  14. Monitoring a Pre-Normative Multi-Family Housing Case-Study in a Mediterranean Climate

    Directory of Open Access Journals (Sweden)

    Teresa Blázquez

    2016-12-01

    Full Text Available In Spain, a significant percentage of the residential building stock presents deficient indoor conditions regarding current energy standards, due to having been constructed before the Norma Básica de la Edificación in 1979 (NBE CT 79 regarding thermal conditions in buildings. Current environmental policies pursue a cut in energy consumption and seek improvements in indoor conditions by refurbishing current stock, mainly that constructed between 1950 and 1980. Before any retrofitting action, housing monitoring has become essential for a better understanding of real and passive environmental behavior. This paper aims to present the monitoring in hourly intervals, real-time and post-occupancy conditions of a residential building in Seville, built in the 1950s and belonging to national heritage. The results obtained show major discrepancies between thermal indoor data collected and comfort conditions, both in summer and winter, which are solved by the sporadic use of cooling and heating devices present in the dwellings, thus leading to less energy consumption than expected. This is a common occurrence in multi-family housing units from the Mediterranean arc: there are many periods of the year in which a vast number of the population lives in poor energy conditions.

  15. MVIRI/SEVIRI TOA Radiation Datasets within the Climate Monitoring SAF

    Science.gov (United States)

    Urbain, Manon; Clerbaux, Nicolas; Ipe, Alessandro; Baudrez, Edward; Velazquez Blazquez, Almudena; Moreels, Johan

    2016-04-01

    Within CM SAF, Interim Climate Data Records (ICDR) of Top-Of-Atmosphere (TOA) radiation products from the Geostationary Earth Radiation Budget (GERB) instruments on the Meteosat Second Generation (MSG) satellites have been released in 2013. These datasets (referred to as CM-113 and CM-115, resp. for shortwave (SW) and longwave (LW) radiation) are based on the instantaneous TOA fluxes from the GERB Edition-1 dataset. They cover the time period 2004-2011. Extending these datasets backward in the past is not possible as no GERB instruments were available on the Meteosat First Generation (MFG) satellites. As an alternative, it is proposed to rely on the Meteosat Visible and InfraRed Imager (MVIRI - from 1982 until 2004) and the Spinning Enhanced Visible and Infrared Imager (SEVIRI - from 2004 onward) to generate a long Thematic Climate Data Record (TCDR) from Meteosat instruments. Combining MVIRI and SEVIRI allows an unprecedented temporal (30 minutes / 15 minutes) and spatial (2.5 km / 3 km) resolution compared to the Clouds and the Earth's Radiant Energy System (CERES) products. This is a step forward as it helps to increase the knowledge of the diurnal cycle and the small-scale spatial variations of radiation. The MVIRI/SEVIRI datasets (referred to as CM-23311 and CM-23341, resp. for SW and LW radiation) will provide daily and monthly averaged TOA Reflected Solar (TRS) and Emitted Thermal (TET) radiation in "all-sky" conditions (no clear-sky conditions for this first version of the datasets), as well as monthly averaged of the hourly integrated values. The SEVIRI Solar Channels Calibration (SSCC) and the operational calibration have been used resp. for the SW and LW channels. For MFG, it is foreseen to replace the latter by the EUMETSAT/GSICS recalibration of MVIRI using HIRS. The CERES TRMM angular dependency models have been used to compute TRS fluxes while theoretical models have been used for TET fluxes. The CM-23311 and CM-23341 datasets will cover a 32 years

  16. Monitoring and quantifying future climate projections of dryness and wetness extremes: SPI bias

    Directory of Open Access Journals (Sweden)

    F. Sienz

    2012-07-01

    Full Text Available The adequacy of the gamma distribution (GD for monthly precipitation totals is reconsidered. The motivation for this study is the observation that the GD fails to represent precipitation in considerable areas of global observed and simulated data. This misrepresentation may lead to erroneous estimates of the Standardised Precipitation Index (SPI, evaluations of models, and assessments of climate change. In this study, the GD is compared to the Weibull (WD, Burr Type III (BD, exponentiated Weibull (EWD and generalised gamma (GGD distribution. These distributions extend the GD in terms of possible shapes (skewness and kurtosis and the behaviour for large arguments. The comparison is based on the Akaike information criterion, which maximises information entropy and reveals a trade-off between deviation and the numbers of parameters used. We use monthly sums of observed and simulated precipitation for 12 calendar months of the year. Assessing observed and simulated data, (i the Weibull type distributions give distinctly improved fits compared to the GD and (ii the SPI resulting from the GD overestimates (underestimates extreme dryness (wetness.

  17. Blackbird Creek Monitoring Program to Study the impact of Climate Change and Land Use

    Science.gov (United States)

    Ozbay, G.; Chintapenta, L. K.; Roeske, K. P.; Stone, M.; Phalen, L.

    2014-12-01

    The Blackbird Creek Monitoring Program at Delaware State University continues to utilize various perspectives to study the dynamics of one of Delaware's most pristine ecosystems. The water quality of Blackbird Creek has been constantly monitored for 3 years and correlated with the rain and storm events. Soil nutrients composition has been studied by extracting the water associated with soil aggregates and analyzing the levels of different nutrients. Soil quality is also assessed for heavy metals to identify potential human impact that may affect the health of ecosystem. Within the Blackbird Creek there is a threat to native plant communities from invasive plant species as they alter the ecosystem dynamics. Saltmarsh cord grass (Spartina alterniflora) and common reed (Phragmites australius) are the common wetland plants. Aerial mapping of the creek has been conducted to determine the area covered by invasive plant species. The microbial community structure plays a key role in soil carbon and nitrogen cycles in the ecosystem. Molecular analysis has been performed to study the microbial diversity with respect to the type of marsh grasses. This program has also incorporated the use of diatoms as biological indicators to assess the health of ecosystem and correlate that data with physical and chemical water quality data. The abundance and diversity of macro fauna such as blue crabs, fish and other significant species has also been studied. Stable isotopic analysis of these macro fauna has also been performed to study the food web. The results from this program will be helpful in addressing environmental challenges and designing management strategies.

  18. HadISDH: an updateable land surface specific humidity product for climate monitoring

    Directory of Open Access Journals (Sweden)

    K. M. Willett

    2013-03-01

    Full Text Available HadISDH is a near-global land surface specific humidity monitoring product providing monthly means from 1973 onwards over large-scale grids. Presented herein to 2012, annual updates are anticipated. HadISDH is an update to the land component of HadCRUH, utilising the global high-resolution land surface station product HadISD as a basis. HadISD, in turn, uses an updated version of NOAA's Integrated Surface Database. Intensive automated quality control has been undertaken at the individual observation level, as part of HadISD processing. The data have been subsequently run through the pairwise homogenisation algorithm developed for NCDC's US Historical Climatology Network monthly temperature product. For the first time, uncertainty estimates are provided at the grid-box spatial scale and monthly timescale. HadISDH is in good agreement with existing land surface humidity products in periods of overlap, and with both land air and sea surface temperature estimates. Widespread moistening is shown over the 1973–2012 period. The largest moistening signals are over the tropics with drying over the subtropics, supporting other evidence of an intensified hydrological cycle over recent years. Moistening is detectable with high (95% confidence over large-scale averages for the globe, Northern Hemisphere and tropics, with trends of 0.089 (0.080 to 0.098 g kg−1 per decade, 0.086 (0.075 to 0.097 g kg−1 per decade and 0.133 (0.119 to 0.148 g kg−1 per decade, respectively. These changes are outside the uncertainty range for the large-scale average which is dominated by the spatial coverage component; station and grid-box sampling uncertainty is essentially negligible on large scales. A very small moistening (0.013 (−0.005 to 0.031 g kg−1 per decade is found in the Southern Hemisphere, but it is not significantly different from zero and uncertainty is large. When globally averaged, 1998 is the moistest year since monitoring began in 1973, closely

  19. HadISDH: an updateable land surface specific humidity product for climate monitoring

    Science.gov (United States)

    Willett, K. M.; Williams, C. N., Jr.; Dunn, R. J. H.; Thorne, P. W.; Bell, S.; de Podesta, M.; Jones, P. D.; Parker, D. E.

    2013-03-01

    HadISDH is a near-global land surface specific humidity monitoring product providing monthly means from 1973 onwards over large-scale grids. Presented herein to 2012, annual updates are anticipated. HadISDH is an update to the land component of HadCRUH, utilising the global high-resolution land surface station product HadISD as a basis. HadISD, in turn, uses an updated version of NOAA's Integrated Surface Database. Intensive automated quality control has been undertaken at the individual observation level, as part of HadISD processing. The data have been subsequently run through the pairwise homogenisation algorithm developed for NCDC's US Historical Climatology Network monthly temperature product. For the first time, uncertainty estimates are provided at the grid-box spatial scale and monthly timescale. HadISDH is in good agreement with existing land surface humidity products in periods of overlap, and with both land air and sea surface temperature estimates. Widespread moistening is shown over the 1973-2012 period. The largest moistening signals are over the tropics with drying over the subtropics, supporting other evidence of an intensified hydrological cycle over recent years. Moistening is detectable with high (95%) confidence over large-scale averages for the globe, Northern Hemisphere and tropics, with trends of 0.089 (0.080 to 0.098) g kg-1 per decade, 0.086 (0.075 to 0.097) g kg-1 per decade and 0.133 (0.119 to 0.148) g kg-1 per decade, respectively. These changes are outside the uncertainty range for the large-scale average which is dominated by the spatial coverage component; station and grid-box sampling uncertainty is essentially negligible on large scales. A very small moistening (0.013 (-0.005 to 0.031) g kg-1 per decade) is found in the Southern Hemisphere, but it is not significantly different from zero and uncertainty is large. When globally averaged, 1998 is the moistest year since monitoring began in 1973, closely followed by 2010, two strong El

  20. Vegetation change (1988–2010 in Camdeboo National Park (South Africa, using fixed-point photo monitoring: The role of herbivory and climate

    Directory of Open Access Journals (Sweden)

    Mmoto L. Masubelele

    2013-02-01

    Full Text Available Fixed-point photo monitoring supplemented by animal census data and climate monitoring potential has never been explored as a long-term monitoring tool for studying vegetation change in the arid and semi-arid national parks of South Africa. The long-term (1988–2010, fixed-point monitoring dataset developed for the Camdeboo National Park, therefore, provides an important opportunity to do this. Using a quantitative estimate of the change in vegetation and growth form cover in 1152 fixed-point photographs, as well as series of step-point vegetation surveys at each photo monitoring site, this study documented the extent of vegetation change in the park in response to key climate drivers, such as rainfall, as well as land use drivers such as herbivory by indigenous ungulates. We demonstrated the varied response of vegetation cover within three main growth forms (grasses, dwarf shrubs [< 1 m] and tall shrubs [> 1 m] in three different vegetation units and landforms (slopes, plains, rivers within the Camdeboo National Park since 1988. Sites within Albany Thicket and Dwarf Shrublands showed the least change in vegetation cover, whilst Azonal vegetation and Grassy Dwarf Shrublands were more dynamic. Abiotic factors such as drought and flooding, total annual rainfall and rainfall seasonality appeared to have the greatest influence on growth form cover as assessed from the fixed-point photographs. Herbivory appeared not to have had a noticeable impact on the vegetation of the Camdeboo National Park as far as could be determined from the rather coarse approach used in this analysis and herbivore densities remained relatively low over the study duration.Conservation implications: We provided an historical assessment of the pattern of vegetation and climatic trends that can help evaluate many of South African National Parks’ biodiversity monitoring programmes, especially relating to habitat change. It will help arid parks in assessing the trajectories of

  1. Retrieval of temperature profiles from CHAMP for climate monitoring: intercomparison with Envisat MIPAS and GOMOS and different atmospheric analyses

    Directory of Open Access Journals (Sweden)

    A. Gobiet

    2007-02-01

    Full Text Available This study describes and evaluates a Global Navigation Satellite System (GNSS radio occultation (RO retrieval scheme particularly aimed at delivering bias-free atmospheric parameters for climate monitoring and research. The focus of the retrieval is on the sensible use of a priori information for careful high-altitude initialisation in order to maximise the usable altitude range. The RO retrieval scheme has been meanwhile applied to more than five years of data (September 2001 to November 2006 from the German CHAllenging Minisatellite Payload for geoscientific research (CHAMP satellite. In this study it was validated against various correlative datasets including the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS and the Global Ozone Monitoring for Occultation of Stars (GOMOS sensors on Envisat, five different atmospheric analyses, and the operational CHAMP retrieval product from GeoForschungsZentrum (GFZ Potsdam. In the global mean within 10 to 30 km altitude we find that the present validation observationally constrains the potential RO temperature bias to be <0.2 K. Latitudinally resolved analyses show biases to be observationally constrained to <0.2–0.5 K up to 35 km in most cases, and up to 30 km in any case, even if severely biased (about 10 K or more a priori information is used in the high altitude initialisation of the retrieval. No evidence is found for the 10–35 km altitude range of RO bias sources other than those potentially propagated downward from initialisation, indicating that the widely quoted RO promise of "unbiasedness and long-term stability due to intrinsic self-calibration" can indeed be realized given care in the data processing to strictly limit structural uncertainty. The results demonstrate that an adequate high-altitude initialisation technique is crucial for accurate stratospheric RO retrievals and that still common methods of initialising the involved hydrostatic integral with an upper boundary

  2. Baseline map of organic carbon in Australian soil to support national carbon accounting and monitoring under climate change.

    Science.gov (United States)

    Viscarra Rossel, Raphael A; Webster, Richard; Bui, Elisabeth N; Baldock, Jeff A

    2014-09-01

    Australia's National Carbon Accounting System, help guide the formulation of policy around carbon offset schemes, improve Australia's carbon balances, serve to direct future sampling for inventory, guide the design of monitoring networks and provide a benchmark against which to assess the impact of changes in land cover, land management and climate on the stock of C in Australia. In this way, these estimates would help us to develop strategies to adapt and mitigate the effects of climate change.

  3. The C6 Program: Monitoring Climatic Changes in Canyons and Caves Involving Scientific Istitutions, Environmental NGOs and Mountain Sport Associations

    Science.gov (United States)

    di Pietro, R.; Casamento, G.; Interlandi, M.; Madonia, P.

    2007-12-01

    The acronym "C6" means "Climatic Changes and Carbon Cycle in Canyons and Caves". The project was born in 2005, joining under the scientific supervision of the Palermo branch of the Istituto Nazionale di Geofisica e Vulcanologia two different programs both active since 1999; the first was due to the initiative of the Italian Canyoning Association, a no-profit association aimed to the diffusion of the canyoning sport practise in Italy, the second one, developed by the NGO Legambiente Sicilia and funded by the Regione Siciliana-Assessorato Territorio e Ambiente (Sicilian Regional Government, Territorial and Environmental Department), managing the natural reserves of Santa Ninfa, Carburangeli and Sant'Angelo Muxaro caves (Sicily), was focused to verify the existence of a possible environmental negative feedback of human fruition. In 2005 the Royal Society for the Conservation of Nature of Jordan joined the program, and a new site was established inside the Shagher Daghleh Canyon in the Wadi Dana Reserve. In October 2006 the Caver Federation of Bosnia Herzegovina joined the C6 program and another observational site was instituted into a cave close to Sarajevo. Preliminary data acquired indicate how canyons play a very important role in biodiversity preservation in arid and semi-arid environments, whereas caves are extraordinary natural laboratories for the study of carbon dioxide partition between atmosphere and lithosphere, of the effect of rain dynamic on the underground aquifer recharge and, last but not least, of the monitoring of climatic changes. The success of the initiative is based on the very different nature of the co-participants. Caver and canyoning associations guarantee the safe accessibility to difficult environments, like canyons and caves. The selection as measuring sites of natural reserves managed by NGOs, whose activity is essentially based on volunteers, ensure on one hand their environmental stability on a long term perspective, on the other hand

  4. Using multi-resolution remote sensing to monitor disturbance and climate change impacts on northern forests

    Science.gov (United States)

    Sulla-Menashe, Damien

    Global forests are experiencing a variety of stresses in response to climate change and human activities. The broad objective of this dissertation is to improve understanding of how temperate and boreal forests are changing by using remote sensing to develop new techniques for detecting change in forest ecosystems and to use these techniques to investigate patterns of change in North American forests. First, I developed and applied a temporal segmentation algorithm to an 11-year time series of MODIS data for a region in the Pacific Northwest of the USA. Through comparison with an existing forest disturbance map, I characterized how the severity and spatial scale of disturbances affect the ability of MODIS to detect these events. Results from these analyses showed that most disturbances occupying more than one-third of a MODIS pixel can be detected but that prior disturbance history and gridding artifacts complicate the signature of forest disturbance events in MODIS data. Second, I focused on boreal forests of Canada, where recent studies have used remote sensing to infer decreases in forest productivity. To investigate these trends, I collected 28 years of Landsat TM and ETM+ data for 11 sites spanning Canada's boreal forests. Using these data, I analyzed how sensor geometry and intra- and inter-sensor calibration influence detection of trends from Landsat time series. Results showed systematic patterns in Landsat time series that reflect sensor geometry and subtle issues related to inter-sensor calibration, including consistently higher red band reflectance values from TM data relative to ETM+ data. In the final chapter, I extended the analyses from my second chapter to explore patterns of change in Landsat time series at an expanded set of 46 sites. Trends in peak-summer values of vegetation indices from Landsat were summarized at the scale of MODIS pixels. Results showed that the magnitude and slope of observed trends reflect patterns in disturbance and land

  5. A 30+ Year AVHRR Land Surface Reflectance Climate Data Record and Its Application to Wheat Yield Monitoring

    Directory of Open Access Journals (Sweden)

    Belen Franch

    2017-03-01

    Full Text Available The Advanced Very High Resolution Radiometer (AVHRR sensor provides a unique global remote sensing dataset that ranges from the 1980s to the present. Over the years, several efforts have been made on the calibration of the different instruments to establish a consistent land surface reflectance time-series and to augment the AVHRR data record with data from other sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS. In this paper, we present a summary of all the corrections applied to the AVHRR surface reflectance and NDVI Version 4 Product, developed in the framework of the National Oceanic and Atmospheric Administration (NOAA Climate Data Record (CDR program. These corrections result from assessment of the geolocation, improvement of cloud masking, and calibration monitoring. Additionally, we evaluate the performance of the surface reflectance over the AERONET sites by a cross-comparison with MODIS, which is an already validated product, and evaluation of a downstream leaf area index (LAI product. We demonstrate the utility of this long time-series by estimating the winter wheat yield over the USA. The methods developed by Becker-Reshef et al. (2010 and Franch et al. (2015 are applied to both the MODIS and AVHRR data. Comparison of the results from both sensors during the MODIS-era shows the consistency of the dataset with similar errors of 10%. When applying the methods to AVHRR historical data from the 1980s, the results have errors equivalent to those derived from MODIS.

  6. Bio-monitoring of the most industrialized area in Poland: Trees' response to climate and anthropogenic environmental changes

    Science.gov (United States)

    Sensuła, Barbara; Wilczyński, Sławomir; Piotrowska, Natalia

    2017-04-01

    Silesia is one of the regions with the highest levels of air pollution in Europe, highly industrialized over the years and highly populated. In this study, trees (Pinus Sylvestris L.)growing in the heavily urbanized area in close proximity to point-source pollution emitters, such as a heat and power plant, nitrogen plant, and steelworks in Silesia (Poland), were analyzed as bio-indicators of contemporary environmental changes. Trees are a very good archive of ecosystem changes, becouse they are sensitive to climate changes and anthropogenic pollution. The pollution impacts human, plants and animal life and different ecosystem processes. The changes in the ecosystem can disturb the metabolism and physiological processes of trees, and consequently, they also have an effect on the wood structure, tree ring width and the isotopic composition of wood and its components. The analysed samples covered the time period of the development of industrialization and the modernization in the industrial sector in Poland. In Poland, the systematic long-term monitoring of air pollutants is generally restricted to rural point-source regions in urban areas. Even for those areas, air pollution emissions were not continually monitored and data is only available for the last decades. Tree ring series that present long-term data can be used to analyse the ecosystem changes, caused by human activities. The conifers investigated in this study have grown for many years under the stress of environmental contamination. We analysed the spatiotemporal distribution of growth reductions, the depth of reduction with respect to the distance from the emitter, the relationship between tree growth and radiocarbon and stable isotope composition and climate during the industry development period and during pro-ecological strategy application. Pines chronologies indicate that trees have a similar sensitivity to most climatic elements of the previous and given year, but there is also observed a different

  7. Developing a protocol for long-term population monitoring and habitat projections for a climate-sensitive sentinel species to track ecosystem change and species range shifts

    Science.gov (United States)

    Beers, A.

    2016-12-01

    As a response to ongoing climate change, many species have started to shift their ranges poleward and toward higher elevations and mountain environments are predicted to experience especially rapid climatic changes. Because of this, there is likely a greater risk of habitat loss and local extinctions for species at high elevations compared to species at lower elevations. Among those potentially threatened habitat specialists is the American pika (Ochotona princeps), a climate sensitive indicator of climate change effects which may already be experiencing climate driven extirpations. Pikas are considered sentinels, indicators of greater ecosystem change. Changes in their distribution speaks to changes in availability of resources they require and shifts in the environment. Pika presence is closely tied to sub-surface ice features that act as a temperature buffer and water source. Those sub-surface ice features are critical in water cycling and long-term water storage and drive downstream hydrological and ecological processes. Understanding how this species responds to climate change therefore provides a model to inform landscape level conservation and management decisions. Pikas may be particularly vulnerable in parts of Colorado, including Rocky Mountain National Park (ROMO) and the Niwot Ridge LTER (NWT), where they may face population collapse as habitat suitability and connectivity both decline in response to various possible climate change scenarios, in large part because of cold stress and declining functional connectivity. Because of their potential role as an ecosystem indicator, their risk for decline, and how limitations to their survival likely vary across their range, management groups can use place based models of habitat suitability for pikas or other sentinel species in designing long term monitoring protocols to detect ecosystem responses to climate change. In this project we used remotely sensed data, occupancy surveys, and a random tessellation

  8. Understanding Climate Policy Data Needs. NASA Carbon Monitoring System Briefing: Characterizing Flux Uncertainty, Washington D.C., 11 January 2012

    Science.gov (United States)

    Brown, Molly E.; Macauley, Molly

    2012-01-01

    Climate policy in the United States is currently guided by public-private partnerships and actions at the local and state levels. This mitigation strategy is made up of programs that focus on energy efficiency, renewable energy, agricultural practices and implementation of technologies to reduce greenhouse gases. How will policy makers know if these strategies are working, particularly at the scales at which they are being implemented? The NASA Carbon Monitoring System (CMS) will provide information on carbon dioxide fluxes derived from observations of earth's land, ocean and atmosphere used in state of the art models describing their interactions. This new modeling system could be used to assess the impact of specific policy interventions on CO2 reductions, enabling an iterative, results-oriented policy process. In January of 2012, the CMS team held a meeting with carbon policy and decision makers in Washington DC to describe the developing modeling system to policy makers. The NASA CMS will develop pilot studies to provide information across a range of spatial scales, consider carbon storage in biomass, and improve measures of the atmospheric distribution of carbon dioxide. The pilot involves multiple institutions (four NASA centers as well as several universities) and over 20 scientists in its work. This pilot study will generate CO2 flux maps for two years using observational constraints in NASA's state-of -the-art models. Bottom-up surface flux estimates will be computed using data-constrained land and ocean models; comparison of the different techniques will provide some knowledge of uncertainty in these estimates. Ensembles of atmospheric carbon distributions will be computed using an atmospheric general circulation model (GEOS-5), with perturbations to the surface fluxes and to transport. Top-down flux estimates will be computed from observed atmospheric CO2 distributions (ACOS/GOSAT retrievals) alongside the forward-model fields, in conjunction with an

  9. Comparative analysis of agricultural drought monitoring based on climate and soil moisture indicators in the Huang-Huai-Hai Plain of China

    Science.gov (United States)

    Wu, J.; Zhou, H.; An, X.

    2016-12-01

    Agricultural drought is one of very common agro-meteorological disasters, having a serious threat on crop growth and production. Effective drought monitoring will aid the drought response management to reduce drought loss. Currently there has been many drought indices used for agricultural drought monitoring. Climate-based Standardized Precipitation Evapotranspiration Index (SPEI) was widely used for agricultural drought monitoring in view of its merits of simple calculation, multi-scale and with consideration of evapotranspiration. Besides, soil moisture has been recognized as the most direct indicator for monitoring agricultural drought, which provides a huge potential for monitoring due to the increase of soil moisture accessibility. Given that algorithms of both indices are different and their monitoring results also may exist the discrepancies, it is necessary to analyze their performances of both indices in agricultural drought monitoring. In this study, we chose the climate-based SPEI and soil moisture-based index (SMI) to analyze. Firstly, drought events identified by SPEI and SMI were analyzed from the perspective of drought evolution. Then the performances of SPEI and SMI were assessed through the comparison with observed drought events. Finally, vegetation change since 2000 and impact of drought on vegetation growth in Huang-Huai-Hai (HHH) Plain were explored based on MODIS NDVI data. The results show that SPEI-based drought trend agrees with SMI-based analysis, demonstrating that drought has an alleviating trend in HHH Plain in recent years. The SPEI and SMI could identify most of drought events, whereas the SMI has better performance than SPEI when it comes to drought category. The NDVI in HHH Plain shows an upward trend since 2000 and drought occurred in 2000 causes a decline in vegetation vigor. Both the SPEI and SMI are significantly correlated with NDVI anomaly, and correlation between SMI and NDVI anomaly is slightly higher than that of SPEI.

  10. 无线传感器网络在温室环境监测中的应用研究%Application Research of Wireless Sensor Networks in Greenhouse Climate Monitoring

    Institute of Scientific and Technical Information of China (English)

    时文武; 杨军

    2012-01-01

    In the background of the greenhouse climate monitoring applications, the characteristics of the greenhouse climate monitor are analyzed, the architecture of the greenhouse climate monitor system is given. Energy efficient data aggregation algorithm is proposed based on the specific application of greenhouse climate monitor. Simulation experiments show that the algorithm can effectively improve the utilization of energy and extend network life cycle.%以温室环境监测为应用背景,分析温室环境监控的特点,给出温室环境监控的系统体系结构,并结合温室监控的具体应用提出节能的数据融合算法,仿真实验表明该算法能有效提高节点能量的利用率和延长网络生命周期.

  11. A national upgrade of the climate monitoring grid in Sri Lanka. The place of Open Design, OSHW and FOSS.

    Science.gov (United States)

    Chemin, Yann; Bandara, Niroshan; Eriyagama, Nishadi

    2015-04-01

    The National Climate Observatory of Sri lanka is a proposition designed for the Government of Sri Lanka in September and discussed with private and public stakeholders in November 2014. The idea was initially to install a networked grid of weather instruments from locally-made open source hardware technology, on land and seas, that report live the state of climate. After initial stakeholder meetings, it was agreed to first try to connect any existing weather stations from different governmental and private sector agencies. This would bring existing information to a common ground through the Internet. At this point, it was realized that extracting information from various vendors set up would take a large amount of efforts, that is still the best and fastest anyway, as considerations from ownership and maintenance are the most important issues in a tropical humid country as Sri Lanka. Thus, the question of Open Design, open source hardware (OSHW) and free and open source software (FOSS) became a pivotal element in considering operationalization of any future elements of a national grid. Reasons range from ownership, to low-cost and customization, but prominently it is about technology ownership, royalty-free and local availability. Building on previous work from (Chemin and Bandara, 2014) we proposed to open design specifications and prototypes for weather monitoring for various kinds of needs, the Meteorological Department clearly specified that the highest variability observed spatially in Sri Lanka is rainfall, and their willingness to investigate OSHW electronics using their new team of electronics and sensors specialists. A local manufacturer is providing an OSHW micro-controller product, a start up is providing additional sensor boards under OSHW specifications and local manufacture of the sensors (tipping-bucket and other wind sensors) is under development and blueprints have been made available in the Public Domain for CNC machine, 3D printing or Plastic

  12. Accompanying monitoring. Pt. I. Energy consumption and room climate in the passive house kindergarten; Begleitendes Monitoring. T. 1. Energieverbrauch und Raumklima im Passivhauskindergarten

    Energy Technology Data Exchange (ETDEWEB)

    Trogisch, Achim; Berbig, Alex [HTW Dresden (DE). Lehrgebiet Technische Gebaeudeausruestung (TGA); Herrmann, Hendrik [Ingenieurbuero Dr. Scheffler und Partner, Dresden (Germany)

    2011-07-01

    The kindergarten 'Rainbow' in Dresden-Klotzsche (Federal Republic of Germany) was designed, planned, implemented and commissioned in October 2009 according to the passive house standard. An accompanying monitoring shows a successful design and implementation as well.

  13. Analyzing the Effects of Climate Change on Sea Surface Temperature in Monitoring Coral Reef Health in the Florida Keys Using Sea Surface Temperature Data

    Science.gov (United States)

    Jones, Jason; Burbank, Renane; Billiot, Amanda; Schultz, Logan

    2011-01-01

    This presentation discusses use of 4 kilometer satellite-based sea surface temperature (SST) data to monitor and assess coral reef areas of the Florida Keys. There are growing concerns about the impacts of climate change on coral reef systems throughout the world. Satellite remote sensing technology is being used for monitoring coral reef areas with the goal of understanding the climatic and oceanic changes that can lead to coral bleaching events. Elevated SST is a well-documented cause of coral bleaching events. Some coral monitoring studies have used 50 km data from the Advanced Very High Resolution Radiometer (AVHRR) to study the relationships of sea surface temperature anomalies to bleaching events. In partnership with NOAA's Office of National Marine Sanctuaries and the University of South Florida's Institute for Marine Remote Sensing, this project utilized higher resolution SST data from the Terra's Moderate Resolution Imaging Spectroradiometer (MODIS) and AVHRR. SST data for 2000-2010 was employed to compute sea surface temperature anomalies within the study area. The 4 km SST anomaly products enabled visualization of SST levels for known coral bleaching events from 2000-2010.

  14. Bio-climatic house in Buenos Aires: monitoring of comfort in summer; Vivienda bioclimatica en buenos Aires: monitoreo de confort en verano

    Energy Technology Data Exchange (ETDEWEB)

    Camporeale, P. E.

    2008-07-01

    This a case study referred to house. Different bio climatic design strategies were applied to get comfort only by passive technologies: stack device, crossed natural ventilation and appropriate insulation. Interior temperature has being monitored during summers to observe how a theoretical model and the real one differ from one another by means of data loggers. The measurements were taken considering a first case without the stack device working and a second case with the upper windows open, permitting that the draught provokes the stack effect. Considering users habits, it was noticed that they used to open windows during peak temperature inhibiting the thermal delay provided by wall inertia, which is theoretically more than nine hours. conclusions will improve bio climatic strategies to be developed in next projects retrofitting design process. (Author)

  15. An integrated multi-parameter monitoring approach for the quantification and mitigation of the climate change impact on the coasts of Eastern Crete, S. Aegean Sea (Project AKTAIA)

    Science.gov (United States)

    Ghionis, George; Alexandrakis, George; Karditsa, Aikaterini; Sifnioti, Dafni; Vousdoukas, Michalis; Andreadis, Olympos; Petrakis, Stelios; Poulos, Serafim; Velegrakis, Adonis; Kampanis, Nikolaos; Lipakis, Michalis

    2014-05-01

    The AKTAIA project aims at the production of new knowledge regarding the forms of manifestation of the climate change and its influence on the stability and evolution of the coastal landforms along the shoreline of eastern Crete (approximate length: 757 km), taking into account the various aspects of human intervention. Aerial photographs, satellite images and orthophotomaps have been used to produce a detailed coastline map and to study the morphological characteristics of the coastal zone of Eastern Crete. More than 100 beach zones have been visited during three field campaigns, which included geomorphological and human intervention mapping, topographic, meteorological and oceanographic measurements and sedimentological sampling and observations. In addition, two pilot sites (one in the north and one in the south part of Crete) are being monitored, via the installation of coastal video monitoring systems, shore-based meteorological stations and wave-tide recorders installed in the nearshore zone. Detailed seafloor mapping with the use of side scan sonar and scuba diving and bathymetric surveys were conducted in the two pilot sites. Meteorological and oceanographic data from all existing land-based meteorological stations, oceanographic buoys and the ERA-interim dataset are used to determine the wind and wave climate of each beach. The collected climatic, sedimentological and coastal environmental data are being integrated in a GIS database that will be used to forecast the climatic trends in the area of Crete for the next decades and to model the impact of the climatic change on the future evolution of the coastal zone. New methodologies for the continuous monitoring of land-sea interaction and for the quantification of the loss of sensitive coastal zones due to sea-level rise and a modified Coastal Vulnerability Index for a comparative evaluation of the vulnerability of the coasts are being developed. Numerical modelling of the nearshore hydrodynamics and the

  16. Monitoring the effects of climate and agriculture intensity on nutrient fluxes in lowland streams: a comparison between temperate Denmark and subtropical Uruguay

    DEFF Research Database (Denmark)

    Goyenola, Guillermo; Meerhof, Mariane; Teixeira de Mello, Franco

    2014-01-01

    Climate is changing towards more extreme conditions all over the world. At the same time, land use is becoming more intensive worldwide and particularly in many developing countries, whereas several developed countries are trying to reduce the impacts of intensive agricultural production and lower...... or intensive agriculture. The four selected streams drained catchments of similar size (7 to 19 km2). We have established similarly equipped monitoring stations in the four micro-catchments in spring (November 2009, Uruguay; March 2010, Denmark) to monitor the effects of land use and agriculture intensity...... sampling of composite water samples for nutrient analysis (total and dissolved nitrogen and phosphorus; sampled every four hours and accumulated fortnightly). Moreover, water level and meteorological information (precipitation, air temperature, global radiation, humidity) has been recorded every 10 minutes...

  17. Towards a framework to access, compare and develop monitoring and evaluation of climate change adaptation in Europe

    NARCIS (Netherlands)

    Klostermann, J.E.M.; Sandt, van de K.; Harley, M.; Hilden, M.; Leiter, T.; Minnen, van J.; Pieterse, N.; Bree, van L.

    2015-01-01

    Adaptation is increasingly recognised as essential when dealing with the adverse impacts of climate change on societies, economies and the environment. However, there is insufficient information about the effectiveness of adaption policies, measures and actions. For this reason, the establishment of

  18. Lichen bioindication of biodiversity, air quality, and climate: baseline results from monitoring in Washington, Oregon, and California.

    Science.gov (United States)

    Sarah. Jovan

    2008-01-01

    Lichens are highly valued ecological indicators known for their sensitivity to a wide variety of environmental stressors like air quality and climate change. This report summarizes baseline results from the U.S. Department of Agriculture, Forest Service, Forest Inventory and Analysis (FIA) Lichen Community Indicator covering the first full cycle of data collection (...

  19. Modelling marine community responses to climate-driven species redistribution to guide monitoring and adaptive ecosystem-based management

    NARCIS (Netherlands)

    Marzloff, Martin Pierre; Melbourne-Thomas, Jessica; Hamon, Katell G.; Hoshino, Eriko; Jennings, Sarah; Putten, Van Ingrid E.; Pecl, Gretta T.

    2016-01-01

    As a consequence of global climate-driven changes, marine ecosystems are experiencing polewards redistributions of species – or range shifts – across taxa and throughout latitudes worldwide. Research on these range shifts largely focuses on understanding and predicting changes in the distribution of

  20. Participatory data collection and monitoring of agricultural pest dynamics for climate-resilient coffee production using Tiko'n, a generic tool to develop agroecological food web models

    Science.gov (United States)

    Rojas, M.; Malard, J. J.; Adamowski, J. F.; Tuy, H.

    2016-12-01

    Climate variability impacts agricultural processes through many mechanisms. For example, the proliferation of pests and diseases increases with warmer climate and alternated wind patterns, as longer growing seasons allow pest species to complete more reproductive cycles and changes in the weather patterns alter the stages and rates of development of pests and pathogens. Several studies suggest that enhancing plant diversity and complexity in farming systems, such as in agroforestry systems, reduces the vulnerability of farms to extreme climatic events. On the other hand, other authors have argued that vegetation diversity does not necessarily reduce the incidence of pests and diseases, highlighting the importance of understanding how, where and when it is recommendable to diversify vegetation to improve pest and disease control, and emphasising the need for tools to develop, monitor and evaluate agroecosystems. In order to understand how biodiversity can enhance ecosystem services provided by the agroecosystem in the context of climatic variability, it is important to develop comprehensive models that include the role of trophic chains in the regulation of pests, which can be achieved by integrating crop models with pest-predator models, also known as agroecosystem network (AEN) models. Here we present a methodology for the participatory data collection and monitoring necessary for running Tiko'n, an AEN model that can also be coupled to a crop model such as DSSAT. This methodology aims to combine the local and practical knowledge of farmers with the scientific knowledge of entomologists and agronomists, allowing for the simplification of complex ecological networks of plant and insect interactions. This also increases the acceptability, credibility, and comprehension of the model by farmers, allowing them to understand their relationship with the local agroecosystem and their potential to use key agroecosystem principles such as functional diversity to mitigate

  1. Studies of the Belukha glacier plexus in the context of global glacio-climatic monitoring (on the 100th anniversary of the first ascent of the Belukha Mountain

    Directory of Open Access Journals (Sweden)

    V. S. Revyakin

    2014-01-01

    Full Text Available The Belukha Mountain is the highest peak of the Altai. On July 26 (7th August in the new time scale of 1914 the brothers Boris and Mikhail Tronov discovered the mountain and were the first people to climb it. The Tronov Glacier is named after them. The Belukha glacier plexus is now subject to intensive degradation caused by current climate warming. There are changes in the processes of ice-forming, the temperature regime, and the stratigraphic characteristics. The mountain slope processes have become more active. The glacier length has decreased by 1.5–2.0 km, their area shortened almost by 20%, and the volume – by 10–12%. The snow-coverage of slopes has decreased, and positions of the ice-forming zones have correspondingly changed. Analysis of cores from the borehole drilled by the international expedition of 2003 on the west plateau of the Tronov Glacier has made it possible to better refine the character and seasonality of the glaciers alimentation. It is supposed that 11 thousand years ago no glacier existed here.The glacier plexus of the Belukha Mountain area is a natural reference point to monitor the state of glacierization and to justify predicted glacio-climatic situations. We propose to organize an international project aimed at the monitoring of these glacier areas and then to prepare a joint monograph devoted to its glacio-climatic characteristics. This could be performed in the framework of the Russian-Kazakh international programs with participation of scientists from other countries. Now is the right time to prepare summarizing monographs on glacierization of the main glacier clusters in the Russian mountains, similar to the series of books on representative glacier basins in USSR published in the 1980s. The Belukha glaciers should certainly be included in this series.

  2. Improved ground-based remote-sensing systems help monitor plant response to climate and other changes

    Science.gov (United States)

    Dye, Dennis G.; Bogle, Rian C.

    2016-05-26

    Scientists at the U.S. Geological Survey are improving and developing new ground-based remote-sensing instruments and techniques to study how Earth’s vegetation responds to changing climates. Do seasonal grasslands and forests “green up” early (or late) and grow more (or less) during unusually warm years? How do changes in temperature and precipitation affect these patterns? Innovations in ground-based remote-sensing instrumentation can help us understand, assess, and mitigate the effects of climate change on vegetation and related land resources.

  3. Preface to special issue: Monitoring and modelling to guide coastal adaptation to extreme storm events in a changing climate

    OpenAIRE

    Brown, J.; Ciavola, P.; Masselink, G.; McCall, R; Plater, A.

    2016-01-01

    Storms across the globe and their associated consequences in coastal zones (flooding and erosion), combined with the long-term geomorphic evolution of our coastlines, are a threat to life and assets, both socioeconomic and environmental. In a changing climate, with a rising global sea level, potentially changing patterns in storm tracks and storminess, and rising population density and pressures on the coastal zone, the future risk of coastal storm impacts is likely to increase. Coastal manag...

  4. Improved hydrological model parametrization for climate change impact assessment under data scarcity - The potential of field monitoring techniques and geostatistics.

    Science.gov (United States)

    Meyer, Swen; Blaschek, Michael; Duttmann, Rainer; Ludwig, Ralf

    2016-02-01

    According to current climate projections, Mediterranean countries are at high risk for an even pronounced susceptibility to changes in the hydrological budget and extremes. These changes are expected to have severe direct impacts on the management of water resources, agricultural productivity and drinking water supply. Current projections of future hydrological change, based on regional climate model results and subsequent hydrological modeling schemes, are very uncertain and poorly validated. The Rio Mannu di San Sperate Basin, located in Sardinia, Italy, is one test site of the CLIMB project. The Water Simulation Model (WaSiM) was set up to model current and future hydrological conditions. The availability of measured meteorological and hydrological data is poor as it is common for many Mediterranean catchments. In this study we conducted a soil sampling campaign in the Rio Mannu catchment. We tested different deterministic and hybrid geostatistical interpolation methods on soil textures and tested the performance of the applied models. We calculated a new soil texture map based on the best prediction method. The soil model in WaSiM was set up with the improved new soil information. The simulation results were compared to standard soil parametrization. WaSiMs was validated with spatial evapotranspiration rates using the triangle method (Jiang and Islam, 1999). WaSiM was driven with the meteorological forcing taken from 4 different ENSEMBLES climate projections for a reference (1971-2000) and a future (2041-2070) times series. The climate change impact was assessed based on differences between reference and future time series. The simulated results show a reduction of all hydrological quantities in the future in the spring season. Furthermore simulation results reveal an earlier onset of dry conditions in the catchment. We show that a solid soil model setup based on short-term field measurements can improve long-term modeling results, which is especially important

  5. Developing a set of strategies, in Portugal, to monitor and prevent damages in animal housing, due to hot climate conditions

    OpenAIRE

    Fitas da Cruz, Vasco; Barbosa, José Carlos; Silva, J. Santos e

    2007-01-01

    In Portugal, animal production (mainly meat and milk) represents 32% of the Agriculture Domestic Product and, in some regions, its socio-economic importance is quite relevant. Located in Southwestern Europe, Portugal has a mediterranean climate: Winter is cold and wet. Summer is hot and dry particularly in Alentejo and northeastern regions. Significantly high temperatures combined with dry air (or even wet air) may bring about serious problems or damage to livestock and losses to the farm...

  6. Satellite monitoring the rangeland degradation under the impacts of climatic and socio-economic changes over central Asia

    Science.gov (United States)

    Wang, K.; Zhang, L.; Dai, L.; Yan, D.

    2012-12-01

    Central Asia, encompassing the republics of Kazakhstan, Kyrgyz, Uzbekistan, Turkmenistan, Tajikistan and China's western Sinkiang, is a typical arid and semi-arid area. The climate in Central Asia is extreme arid, where summer is hot, cloudless and dry, and winter is moist and relatively warm in the south and cold and dry in the north. Rangeland, accounting for 46% of the entire area, is the main vegetation type in this area. Recent findings showed that climate change had caused unprecedented rangeland degradation in Central Asia over the past 30 years. Socio-economical change and environmental change due to the collapse of Soviet Union also accelerated rangeland degradation. Rangeland degradation adversely further deteriorated the environment. With the development of high resolution remote sensing images, an increasing attention has paid to study rangeland degradation in this area. However, previous investigations based on either Advanced Very High Resolution Radiometer (AVHRR) or Moderate Resolution Imaging Spectroradiometer (MODIS) data, has not integrate multi-resolution satellite data for investigating vegetation change and its response to climatic and socio-economic change . In this paper, we employed 30 years' remote sensing data, including both AVHRR ( 1982-2006) and MODIS (2000-2011) satellite data, and in-situ meteorological and social data (e.g. population, economic, and land use change data), to investigate rangeland degradation in the central Asia. We 1) analyzed the spatial-temporal variations of vegetation changes during the past 30 years, and 2) evaluated the roles of climatic and socio-economic factors as potential causes of observed vegetation changes. The results showed extensive area had statistically significant degradation trends (p<0.05). Precipitation was the main driver of rangeland degradation, while there were relatively weaker relationships between temperature and NDVI, indicating that water deficit largely limited vegetation activity

  7. Worldwide glacier monitoring as part of policy-related climate observation: development and strategy of the Global Terrestrial Network for Glaciers (GTN-G)

    Science.gov (United States)

    Haeberli, W.; Zemp, M.

    2011-12-01

    Internationally coordinated observation of long-term glacier fluctuations as a key indication of global climate changes has a long tradition, starting already in 1894. With the development of the Global Climate Observing System in support of the United Nations Framework Convention on Climate Change, glaciers and ice caps became an Essential Climate Variable within the Global Terrestrial Observing System. A corresponding Global Terrestrial Network for Glaciers (GTN-G) was indeed established as a pilot project to this program. The basic principles followed by GTN-G and similar networks are to be relevant, feasible, comprehensive and understandable to a wider scientific community and the public. Following recommendations by the International Council for Sciences, a contribution should be made to free and unrestricted international sharing of high-quality, long-term and standardized data and information products. A tiered strategy was adopted in order to bridge the gap between detailed process studies at selected field sites with global coverage through satellite remote sensing. Efforts were also made to ensure continuity of long-term measurement series by combining traditional approaches with modern, future-oriented technologies. Today, the GTN-G is jointly run by three operational bodies in glacier monitoring, which are the World Glacier Monitoring Service, the US National Snow and Ice Data Center, and the Global Land Ice Measurements from Space initiative. With an online service, GTN-G provides fast access to regularly updated information on glacier fluctuation and inventory data. Currently, this includes global information from 100,000 glaciers mainly based on aerial photographs and outlines from 95,000 glaciers mainly based on satellite images, length change series from 1,800 glaciers, mass balance series from 250 glaciers, information on special events (e.g., hazards, surges, calving instabilities) from 130 glaciers, as well as 13,000 photographs from some 500

  8. Impact of atmospheric pollution inputs and climate change on dissolved inorganic carbon fluxes in karst aquifers: evidences from a 36 years past monitoring of karstic watersheds.

    Science.gov (United States)

    Binet, Stephane; Probst, Jean-Luc; Batiot-Guilhe, Christelle; Seidel, Jean-Luc; Emblanch, Christophe; Peyraube, Nicolas; Mangin, Alain; Bakalowicz, Michel; Probst, Anne

    2017-04-01

    Atmospheric pollution is known to modify the soil CO2 consumption associated with carbonate bedrock weathering. To evidence the long term feedbacks of atmospheric pollution and climate change on this chemical reaction, we investigated the inorganic carbon fluxes monitored weekly from 1979 to 2006 in a small forested karstic watershed in the Pyrénées Mountains, characterized by a large precipitation variability, a 0.025 °C air temperature increase per year and a low agricultural pressure. The yearly average concentrations of [Ca + Mg] and dissolved inorganic carbon increases of about 0.057 meq.L-1.yr-1 and the 0.1 meq.L-1.yr-1, respectively. The gap relative to the 1:2 relationship between [Ca + Mg] and HCO3 (in mmole. L-1), noted Delta-HCO3, was founded to be driven by the atmospheric pollution inputs, producing strong acids that inhibit the consumption of carbon from soil during the carbonate dissolution processes. In addition, atmospheric temperature increase is correlated with the [Ca +Mg] change, whereas the decrease of the atmospheric acid inputs observed since the seventies, is linked with a + 0.0022 meq.L-1.yr-1 increase in Delta-HCO3. Similar trends in Delta-HCO3 change were found over other karstic watersheds monitored more recently in the framework of the SNO KARST, one the observatory networks from the OZCAR Research Infrastructure, highlighting that Delta-HCO3 changes over time were partially controlled by atmospheric pollution inputs. The re-interpretation of hydrochemical databases using this Delta-HCO3 indicator enables to evaluate better the impact of atmospheric pollution load and climate change on surface waters. In an indirect way, the dephasing between atmospheric loads recorded in precipitation and Delta-HCO3 observed in groundwater could be a new tracer method to estimate groundwater residence times.

  9. Management and monitoring of the endangered Shenandoah salamander under climate change: Workshop report 10-12 April 2012

    Science.gov (United States)

    Grant, Evan H. Campbell; Wofford, John E.B.; Smith, D.R.; Dennis, J.; Hawkins-Hoffman, C.; Schaberl, J.; Foley, M.; Bogle, M.

    2014-01-01

    Here we report on a structured decision making (SDM) process to identify management strategies to ensure persistence of the federally endangered Shenandoah salamander (Plethodon shenandoah), given that it may be at increased extinction risk under projected climate change. The focus of this report is the second of two SDM workshops; in the first workshop, participants developed a prototype of the decision, including problem frame, management objectives and a suite of potential management strategies, predictive models to inform the decision and link alternatives with the objectives to identify potential solutions, and identified data needs to reduce key uncertainties in the decision. Participants in this second workshop included experts in National Park Service policy at multiple administrative levels, who refined objectives, further evaluated the initial management alternatives, and discussed policy constraints on implementing active management for the species and its high-elevation habitat. The conclusion of the second workshop was similar to that of the first: the current state of information and objectives suggest that there is some value in considering active management to reduce the long-term extinction risk for the species, though there are institutional conservative policies to implementing active management at range-wide scales. The workshop participants also emphasized a conservative NPS management philosophy, including caution in implementing management actions that may ultimately harm the system, a stated assumption that ecosystem changes were “natural” unless demonstrated otherwise (therefore not warranting active management to mitigate), and a need to demonstrate that extinction risk is tied to anthropogenic influence prior to taking active management to mitigate specific anthropogenic influences. Even within a protected area having minimal human disturbance, intertwined environmental variables and interspecific relationships that drive population

  10. Historical Consumption of Heating Natural Gas and Thermal Monitoring of a Multifamily High-Rise Building in a Temperate/Cold Climate in Argentina

    Directory of Open Access Journals (Sweden)

    Celina Filippín

    2012-12-01

    Full Text Available This paper analyzes the historical consumption of natural gas in a multifamily high-rise building and the monitored winter thermal behavior of an apartment sample. The building is located in the center of Argentina (latitude: 36º27’S; longitude: 64º27’W, where the climate is a cold temperate with an absolute minimum temperature that may reach −10 °C. The building has two blocks, North and South. The building’s annual gas consumption and its variability between 1996 and 2008 are shown. The South block consumed 78% more gas, a situation expected due to lower solar resource availability and greater vulnerability regarding strong and cold SW winds. Indoor temperatures monitored during 2009 in four apartments are described. The outdoor minimum temperature reached −5 °C, with solar irradiance around 500 W/m2 at midday. Results showed that the average indoor temperatures were 20.1, 20.6, 24.0 and 22.1 °C. The highest consumption value corresponded to the apartment exposed to SW cold winds. Compared to the rest of the building, the apartment on the top floor consumes 59% more energy than the average for the gas consumed throughout the year. The authors assume that the energy potentials of intervention are different, and not necessarily all the apartments should have the same technological response.

  11. Indoor Climate Quality Assessment -

    DEFF Research Database (Denmark)

    Ansaldi, Roberta; Asadi, Ehsan; Costa, José Joaquim

    This Guidebook gives building professionals useful support in the practical measurements and monitoring of the indoor climate in buildings. It is evident that energy consumption in a building is directly influenced by required and maintained indoor comfort level. Wireless technologies for measure...... for measurement and monitoring have allowed a significantly increased number of possible applications, especially in existing buildings. The Guidebook illustrates several cases with the instrumentation of the monitoring and assessment of indoor climate....

  12. Analysis and Monitoring of Energy Consumption and Indoor Climate in a School Before and After Deep Energy Renovation

    DEFF Research Database (Denmark)

    Rose, Jørgen; Thomsen, Kirsten Engelund; Bergsøe, Niels Christian

    2015-01-01

    kindergartens/institutions -- that will undergo deep energy renovation over the next fewyears.The seven buildings are being energy-renovated and monitored with support from the European Union- CONCERTO initiative as part of the project titled Cost-Effective Low-Energy Advanced Sustainable Solutions -- Class1......Denmark is participating in the International Energy Agency -- Energy in Buildings and Communities (IEA-EBC) Annex 61, titled Development and Demonstration of Concepts for Deep Energy Retrofit in Government/Public Buildings. The purpose of IEA-EBC Annex 61 is to improve the decisionmaking process...... to achieve deep energy retrofits of government/ public buildings, starting with the determination of working bundles of technologies and corresponding business models using combined public and private funding. Denmark will contribute to the project with seven buildings in total -- two schools and five...

  13. Satellite-Based Monitoring of Decadal Soil Salinization and Climate Effects in a Semi-arid Region of China

    Institute of Scientific and Technical Information of China (English)

    WANG Hesong; JIA Gensuo

    2012-01-01

    Soil salinization is a common phenomenon that affects both the environment and the socio-economy in arid and semi-arid regions; it is also an important aspect of land cover change.In this study,we integrated multi-sensor remote sensing data with a field survey to analyze processes of soil salinization in a semi-arid area in China from 1979 to 2009. Generally,the area of salt-affected soils increased by 0.28% per year with remarkable acceleration from 1999 to 2009 (0.42% increase per year).In contrast,the area of surface water bodies showed a decreasing trend (-0.08% per year) in the same period.Decreases in precipitation and increases in aridity due to annual (especially summer) warming provided a favorable condition for soil salinization. The relatively flat terrain favored waterlogging at the surface,and continuous drought facilitated upward movement of soil water and accumulation of surface saline and calcium. Meanwhile,land-use practices also played a crucial role in accelerating soil salinization.The conversion to cropland from natural vegetation greatly increased the demand for groundwater irrigation and aggravated the process of soil salinization.Furthermore,there are potential feedbacks of soil salinization to regional climate.The salinization of soils can limit the efficiency of plant water use as well as photosynthesis; therefore,it reduces the amount of carbon sequestrated by terrestrial ecosystem.Soil salinization also reduces the absorbed solar radiation by increasing land surface albedo.Such conversions of land cover significantly change the energy and water balance between land and atmosphere.

  14. Developing Remote Sensing Products for Monitoring and Modeling Great Lakes Coastal Wetland Vulnerability to Climate Change and Land Use

    Science.gov (United States)

    Bourgeau-Chavez, L. L.; Miller, M. E.; Battaglia, M.; Banda, E.; Endres, S.; Currie, W. S.; Elgersma, K. J.; French, N. H. F.; Goldberg, D. E.; Hyndman, D. W.

    2014-12-01

    Spread of invasive plant species in the coastal wetlands of the Great Lakes is degrading wetland habitat, decreasing biodiversity, and decreasing ecosystem services. An understanding of the mechanisms of invasion is crucial to gaining control of this growing threat. To better understand the effects of land use and climatic drivers on the vulnerability of coastal zones to invasion, as well as to develop an understanding of the mechanisms of invasion, research is being conducted that integrates field studies, process-based ecosystem and hydrological models, and remote sensing. Spatial data from remote sensing is needed to parameterize the hydrological model and to test the outputs of the linked models. We will present several new remote sensing products that are providing important physiological, biochemical, and landscape information to parameterize and verify models. This includes a novel hybrid radar-optical technique to delineate stands of invasives, as well as natural wetland cover types; using radar to map seasonally inundated areas not hydrologically connected; and developing new algorithms to estimate leaf area index (LAI) using Landsat. A coastal map delineating wetland types including monocultures of the invaders (Typha spp. and Phragmites austrailis) was created using satellite radar (ALOS PALSAR, 20 m resolution) and optical data (Landsat 5, 30 m resolution) fusion from multiple dates in a Random Forests classifier. These maps provide verification of the integrated model showing areas at high risk of invasion. For parameterizing the hydrological model, maps of seasonal wetness are being developed using spring (wet) imagery and differencing that with summer (dry) imagery to detect the seasonally wet areas. Finally, development of LAI remote sensing high resolution algorithms for uplands and wetlands is underway. LAI algorithms for wetlands have not been previously developed due to the difficulty of a water background. These products are being used to

  15. A low cost Mobile Network System for monitoring climate and air quality of urban areas at high resolution: a preliminary application in Florence (IT) metropolitan area

    Science.gov (United States)

    Dibari, Camilla; Moriondo, Marco; Matese, Alessandro; Sabatini, Francesco; Trombi, Giacomo; Zaldei, Alessandro; Bindi, Marco

    2013-04-01

    The combination of the "Heat island effect" coupled with higher frequencies of extreme events (e.g. heat waves) due to climate change is of great concern for human health in urban areas. Anomalies of summer 2003, mentioned as possible typical climate for the near future summers (Schär et al., 2004), caused about 7,000 deaths in Italy and over 35,000 in the whole Europe. Furthermore, more than 50% of world's population is living in urban areas and, given the unprecedented urbanization rate that is expected in the next future, cities will likely be exposed to a growing environmental pressure in the following decades. Accordingly, climate monitoring of urban areas is gradually becoming a key element of planning that cannot be disregarded for an efficient public health management and for the development of a city scale Heat Waves Warning System tool, which is based on meteorological forecast of both air temperatures and humidity at a synoptic scale (Pascal et al., 2006). Building on these premises, a low cost Mobile Weather Station (MWS), to be placed on urban public transport, has been assembled. This mobile station logs every minute both meteorological variables (i.e. temperature and air humidity) and air quality parameters (i.e. atmospheric CO2 concentration and noise detection); the geographical position of each MWS's measurement is also recorded thanks to the built-in GPS antenna. The system, equipped with a data logger for data storage based on the open-source hardware platform Arduino, can also transmit data in real time via GPRS. The quality of meteorological and environmental data acquired by MWS was evaluated both on pre-existing steady meteorological stations of the metropolitan area of Florence (Petralli et al., 2010), and on professional research-grade data logger (Campbell CR800), logging air temperature in a non-aspirated shield by means of sensors at fast (thermocouple) and slower (digital) time response. Two prototypes of stations were thus designed

  16. The monitoring, evaluation, reporting, and verification of climate change mitigation projects: Discussion of issues and methodologies and review of existing protocols and guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Vine, E.; Sathaye, J.

    1997-12-01

    Because of concerns with the growing threat of global climate change from increasing emissions of greenhouse gases, the US and other countries are implementing, by themselves or in cooperation with one or more other nations (i.e., joint implementation), climate change mitigation projects. These projects will reduce greenhouse gas (GHG) emissions or sequester carbon, and will also result in non-GHG impacts (i.e., environmental, economic, and social impacts). Monitoring, evaluating, reporting, and verifying (MERV) guidelines are needed for these projects in order to accurately determine their net GHG, and other, benefits. Implementation of MERV guidelines is also intended to: (1) increase the reliability of data for estimating GHG benefits; (2) provide real-time data so that mid-course corrections can be made; (3) introduce consistency and transparency across project types and reporters; and (4) enhance the credibility of the projects with stakeholders. In this paper, the authors review the issues and methodologies involved in MERV activities. In addition, they review protocols and guidelines that have been developed for MERV of GHG emissions in the energy and non-energy sectors by governments, nongovernmental organizations, and international agencies. They comment on their relevance and completeness, and identify several topics that future protocols and guidelines need to address, such as (1) establishing a credible baseline; (2) accounting for impacts outside project boundaries through leakage; (3) net GHG reductions and other impacts; (4) precision of measurement; (5) MERV frequency; (6) persistence (sustainability) of savings, emissions reduction, and carbon sequestration; (7) reporting by multiple project participants; (8) verification of GHG reduction credits; (9) uncertainty and risk; (10) institutional capacity in conducting MERV; and (11) the cost of MERV.

  17. Trans-African Hydro-Meteorological Observatory (TAHMO): A network to monitor weather, water, and climate in Africa

    Science.gov (United States)

    Van De Giesen, N.; Hut, R.; Andreini, M.; Selker, J. S.

    2013-12-01

    The Trans-African Hydro-Meteorological Observatory (TAHMO) has a goal to design, build, install and operate a dense network of hydro-meteorological monitoring stations in sub-Saharan Africa; one every 35 km. This corresponds to a total of 20,000 stations. By applying ICT and innovative sensors, each station should cost not more than $500. The stations would be placed at schools and integrated in the environmental curriculum. Data will be combined with models and satellite observations to obtain a very complete insight into the distribution of water and energy stocks and fluxes. Within this project, we have built a prototype of an acoustic disdrometer (rain gauge) that can be produced for much less than the cost of a commercial equivalent with the same specifications. The disdrometer was developed in The Netherlands and tested in Tanzania for a total project cost of Euro 5000. First tests have been run at junior high schools in Ghana to incorporate hydro-meteorological measurements in the science curriculum. The latest activity concerns the organization of a crowdsourcing competitions across Africa to address business development and the design and building of new robust sensors. This has resulted in a wide network throughout the continent to bring this program forward.

  18. Mitigation potential of horizontal ground coupled heat pumps for current and future climatic conditions: UK environmental modelling and monitoring studies

    Science.gov (United States)

    García González, Raquel; Verhoef, Anne; Vidale, Pier Luigi; Gan, Guohui; Wu, Yupeng; Hughes, Andrew; Mansour, Majdi; Blyth, Eleanor; Finch, Jon; Main, Bruce

    2010-05-01

    An increased uptake of alternative low or non-CO2 emitting energy sources is one of the key priorities for policy makers to mitigate the effects of environmental change. Relatively little work has been undertaken on the mitigation potential of Ground Coupled Heat Pumps (GCHPs) despite the fact that a GCHP could significantly reduce CO2 emissions from heating systems. It is predicted that under climate change the most probable scenario is for UK temperatures to increase and for winter rainfall to become more abundant; the latter is likely to cause a general rise in groundwater levels. Summer rainfall may reduce considerably, while vegetation type and density may change. Furthermore, recent studies underline the likelihood of an increase in the number of heat waves. Under such a scenario, GCHPs will increasingly be used for cooling as well as heating. These factors will affect long-term performance of horizontal GCHP systems and hence their economic viability and mitigation potential during their life span ( 50 years). The seasonal temperature differences encountered in soil are harnessed by GCHPs to provide heating in the winter and cooling in the summer. The performance of a GCHP system will depend on technical factors (heat exchanger (HE) type, length, depth, and spacing of pipes), but also it will be determined to a large extent by interactions between the below-ground parts of the system and the environment (atmospheric conditions, vegetation and soil characteristics). Depending on the balance between extraction and rejection of heat from and to the ground, the soil temperature in the neighbourhood of the HE may fall or rise. The GROMIT project (GROund coupled heat pumps MITigation potential), funded by the Natural Environment Research Council (UK), is a multi-disciplinary research project, in collaboration with EarthEnergy Ltd., which aims to quantify the CO2 mitigation potential of horizontal GCHPs. It considers changing environmental conditions and combines

  19. Determining the climate impact of the German government's Integrated Energy and Climate Programme (IEKP) and proposing a plan to continuously monitor its climate impact. Summary; Ermittlung der Klimaschutzwirkung des Integrierten Energie- und Klimaschutzprogramms der Bundesregierung IEKP und Vorschlag fuer ein Konzept zur kontinuierlichen Ueberpruefung der Klimaschutzwirkung des IEKP. Zusammenfassung

    Energy Technology Data Exchange (ETDEWEB)

    Doll, Claus; Eichhammer, Wolfgang; Fleiter, Tobias [Fraunhofer-Institut fuer System- und Innovationsforschung, Karlsruhe (DE)] (and others)

    2012-02-15

    In August 2007, key elements for an Integrated Energy and Climate Programme (IEKP) were adopted in the so-called Meseberg Decisions. This programme will contribute towards reducing greenhouse gas emissions in Germany by 40 % by the year 2020. The Meseberg Decisions were implemented in two packages, which mainly contain legislative amendments and support measures. On 5 December 2007 the German cabinet presented a comprehensive package of 14 laws and regulations which the German Bundestag passed on 6 June 2008 (IEKP I). This is in addition to the measures already in place such as the KfW programme (building refurbishment programme to reduce CO{sub 2}, the ''special energy efficiency programme for SMEs'' etc.). A second package with further legislative proposals (IEKP II) was made public on 18 June 2008. Thus essential elements of the Meseberg Decisions of 2007 are already being implemented. Moreover, there are other measures of the Meseberg programme which are relevant in an EU or in an international framework. What contribution the climate protection instruments enacted under IEKP will really make to this goal must be evaluated on the basis of the concrete design (and in future the concrete implementation), in order to provide policy-makers with decision-making support when further developing climate protection policy. The Integrated Energy and Climate Programme foresees that every two years the federal government should account for the emission reductions achieved thereby and the impacts of the individual measures (programme monitoring). The present research project was conducted in preparation for this objective. Specifically, the project should meet the following goals: 1. To assess how the Meseberg Decisions of August 2007 have been implemented in specific, effective instruments at national or European level (qualitative evaluation of each instrument and the total package). 2. To create a monitoring plan for comprehensive, regular evaluation

  20. Hydrology of precipitation and groundwater in a plateau area, southward South Carpathians, Mehedinti district, Romania, identified from isotope and climate monitoring

    Science.gov (United States)

    Bojar, Ana-Voica; Halas, Stanislaw

    2014-05-01

    The investigated region of around 100 square km and is situated on a plateau between 270 and 350 m elevation, between the South Carpathians to the north and Danube to the south. The area is represented by a plateau crossed from north-west to south-east by dry valleys, which cut in the sandy and clayely deposits of Pliocene age. In the region, the primary sources of drinking and irrigation waters are related to natural springs or wells. Through the valleys, water is flowing only temporarily after strong storms or during rainy periods. Between July to September, due the hot summer continental climate, population and crops suffer of water shortage. The objectives of this study are: 1) to determine the Local Meteoric Water Line (LMWL) for the plateau area by measuring the isotopic composition of precipitation in the region; 2) to determine the position of various aquifers in the region; 3) to measure the isotopic composition of spring waters and compare it to precipitation waters, in order to evaluate the source of water. The data set consists of monthly monitoring of rain isotopic composition (for 2012 to 2013), locating the regional distribution of springs and their isotopic composition and measuring daily variations of air temperature and humidity. Water samples were analysed for hydrogen and oxygen isotopic composition at the centre of Environmental Research, Lublin, Poland. The hydrogen and oxygen isotopic composition of precipitation range from -119 to -23 permil and -14 to -4 permil, respectively. Regression of the data resulted in a meteoric water line which is highly significant (r square = 0.98). The monthly isotopic composition indicates temperature-dependent seasonality. The more negative values occur in the winter to early spring (November-April) and more positive values occur in the late spring to early fall (May-October). The deuterium excess (d-excess) value of precipitation range between 16.3 to 5.7 permil, with an amount weighted mean value of 10

  1. Indoor Climate Quality Assessment -

    DEFF Research Database (Denmark)

    Ansaldi, Roberta; Asadi, Ehsan; Costa, José Joaquim

    This Guidebook gives building professionals useful support in the practical measurements and monitoring of the indoor climate in buildings. It is evident that energy consumption in a building is directly influenced by required and maintained indoor comfort level. Wireless technologies for measure......This Guidebook gives building professionals useful support in the practical measurements and monitoring of the indoor climate in buildings. It is evident that energy consumption in a building is directly influenced by required and maintained indoor comfort level. Wireless technologies...... for measurement and monitoring have allowed a significantly increased number of possible applications, especially in existing buildings. The Guidebook illustrates several cases with the instrumentation of the monitoring and assessment of indoor climate....

  2. Climate control on silicate weathering and physical erosion rates in young orogenic belts: Case study along a runoff gradient in Pacific and Amazonian Andean basins based on SNO-HYBAM Monitoring Program data

    Science.gov (United States)

    Moquet, Jean-Sébastien; Guyot, Jean-Loup; Viers, Jérôme; Crave, Alain; Morera, Sergio; Rau, Pedro; Armijos, Elisa; Lagane, Christelle; Sven Lavado Casimiro, Waldo; Pombosa, Rodrigo; Fraizy, Pascal; Santini, William; Timouk, Franck; Vauchel, Philippe; Martinez, Jean-Michel

    2017-04-01

    At the global scale and on geological time scales, mechanical erosion and chemical weathering budgets are linked. Together, these processes contribute to the formation and the degradation of the Earth's critical zone and to the biogeochemical cycles of elements. In young orogenic belts, climate and tectonic subsidence control together the rate of these matter balance budget and their relationships. The climate gradient observed along the Andean basin in both the Pacific and the Atlantic slopes offers the opportunity to explore the role of the climate variability on the erosion and weathering budgets and on their reciprocal relationships. Based on the SNO-HYBAM Monitoring Program database (Geodynamical, hydrological and Biogeochemical control of erosion/weathering and material transport in the Amazon, Orinoco and Congo basins), we explore the relationship between climate, the lithology, silicate weathering rates and physical erosion rates along a runoff gradient in Andean basins of the Amazon River (13 gauging stations) and Pacific drainage rivers (5 gauging stations). No homogenous relationship between erosion rates (E) and chemical weathering rate (W) is observed over the monitored basins. Only the volcanic basins respond to a global relationship defined in the literature while the other basins budget may depend on anthropogenic interferences on erosion/sedimentation budget, a lithology dependence of the W-E relationship parameters or/and on the existence of a threshold in this relationship. The results presented here contribute to better understanding the role of mountains belt formation in the biogeochemical cycles and in particular in the long-term carbon cycle.Your presentation type preference.

  3. Climate forcings and feedbacks

    Science.gov (United States)

    Hansen, James

    1993-01-01

    Global temperature has increased significantly during the past century. Understanding the causes of observed global temperature change is impossible in the absence of adequate monitoring of changes in global climate forcings and radiative feedbacks. Climate forcings are changes imposed on the planet's energy balance, such as change of incoming sunlight or a human-induced change of surface properties due to deforestation. Radiative feedbacks are radiative changes induced by climate change, such as alteration of cloud properties or the extent of sea ice. Monitoring of global climate forcings and feedbacks, if sufficiently precise and long-term, can provide a very strong constraint on interpretation of observed temperature change. Such monitoring is essential to eliminate uncertainties about the relative importance of various climate change mechanisms including tropospheric sulfate aerosols from burning of coal and oil smoke from slash and burn agriculture, changes of solar irradiance changes of several greenhouse gases, and many other mechanisms. The considerable variability of observed temperature, together with evidence that a substantial portion of this variability is unforced indicates that observations of climate forcings and feedbacks must be continued for decades. Since the climate system responds to the time integral of the forcing, a further requirement is that the observations be carried out continuously. However, precise observations of forcings and feedbacks will also be able to provide valuable conclusions on shorter time scales. For example, knowledge of the climate forcing by increasing CFC's relative to the forcing by changing ozone is important to policymakers, as is information on the forcing by CO2 relative to the forcing by sulfate aerosols. It will also be possible to obtain valuable tests of climate models on short time scales, if there is precise monitoring of all forcings and feedbacks during and after events such as a large volcanic eruption

  4. Climate Reference Network Hourly02 Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. Climate Reference Network is designed specifically to monitor national climate change with best scientific practice and adherence to the accepted principles...

  5. Climate Reference Network Daily01 Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. Climate Reference Network is designed specifically to monitor national climate change with best scientific practice and adherence to the accepted principles...

  6. Radiometric & Geometric normalization of Sentinel optical data and VHR data to build-up time-series, an example in Tonga for the monitoring of mangrove health vs. climate change

    Science.gov (United States)

    Serra, Romain; Valette, Anne; Taji, Amine; Emsley, Stephen

    2017-04-01

    Building climate resilience (i.e. climate change adaptation or self-renew of ecosystems) or planning environment rehabilitations and nature-based solutions to address their vulnerabilities to disturbances has prerequisites: 1- identify the disorder, i.e. stresses caused by events such as hurricanes, tsunamis, heavy rains, hailstone falls, smog… or piled-up along-time such as warming, rainfalls, ocean acidification, soil salinization… and measured by trends; and 2- qualify its impact on the ecosystems, i.e. the resulting strains. Mitigation of threats is accordingly twofold, i. on locally temporal scales for protection, ii. on long scale for prevention and sustainability. For assessment and evaluation prior to design future scenarios, it requires concomitant acquisition of (a) climate data at global and local spatial scale which describe the changes at the various temporal scales of phenomena without signal aliasing, and of (b) the ecosystems' status at the scales of the forcing and of relaxation times, hysteresis lags, periodicities of orbits in chaotic systems, shifts from one attractor in ecosystems to the others, etc. Dissociating groups of timescales and spatial scales facilitates the analysis and help set-up monitoring schemes. The Sentinel-2 mission, with a revisit of the earth every few days and a 10m resolution on-ground is a good automatic spectro-analytical monitoring system because detecting changes in numerous optical & IR bands at proper spatial scales for the description of land parcels. Combined with photo-interpreted VHR data which describe the environment more crudely but with high precision of land parcels' border locations, it helps find the relationship between stress and strains to empirically understand the relationships. An example is provided for Tonga, courtesy of ESA support and ADB request, with a focus on time-series' consistency that requires radiometric and geometric normalisation of EO data sets. Methodologies have been developed

  7. Space for Climate

    Directory of Open Access Journals (Sweden)

    Pierre-Philippe Mathieu

    2015-09-01

    Full Text Available This paper describes how Earth Observation (EO data—in particular from satellites—can support climate science, monitoring, and services by delivering global, repetitive, consistent, and timely information on the state of the environment and its evolution. Some examples are presented of EO demonstration pilot projects performed in partnership with scientists, industry, and development practitioners to support climate science, adaptation, mitigation, and disaster risk management. In particular, the paper highlights the challenge of gathering observations and generating long-term climate data records, which provide the foundation of risk management. The paper calls for a science-based integrated approach to climate risk management supported by data and knowledge, providing decision-makers with a unique analytical lens to develop a safety net to risk and maximize opportunities related to climate change and variability.

  8. Monitoring Building Energy Systems at NASA Centers Using NASA Earth Science data, CMIP5 climate data products and RETScreen Expert Clean Energy Tool

    Science.gov (United States)

    Stackhouse, P. W., Jr.; Ganoe, R. E.; Westberg, D. J.; Leng, G. J.; Teets, E.; Hughes, J. M.; De Young, R.; Carroll, M.; Liou, L. C.; Iraci, L. T.; Podolske, J. R.; Stefanov, W. L.; Chandler, W.

    2016-12-01

    The NASA Climate Adaptation Science Investigator team is devoted to building linkages between NASA Earth Science and those within NASA responsible for infrastructure assessment, upgrades and planning. One of the focus areas is assessing NASA center infrastructure for energy efficiency, planning to meet new energy portfolio standards, and assessing future energy needs. These topics intersect at the provision of current and predicted future weather and climate data. This presentation provides an overview of the multi-center effort to access current building energy usage using Earth science observations, including those from in situ measurements, satellite measurement analysis, and global model data products as inputs to the RETScreen Expert, a clean energy decision support tool. RETScreen® Expert, sponsored by Natural Resources Canada (NRCan), is a tool dedicated to developing and providing clean energy project analysis software for the feasibility design and assessment of a wide range of building projects that incorporate renewable energy technologies. RETScreen Expert requires daily average meteorological and solar parameters that are available within less than a month of real-time. A special temporal collection of meteorological parameters was compiled from near-by surface in situ measurements. These together with NASA data from the NASA CERES (Clouds and Earth's Radiance Energy System)/FLASHFlux (Fast Longwave and SHortwave radiative Fluxes) provides solar fluxes and the NASA GMAO (Global Modeling and Assimilation Office) GEOS (Goddard Earth Observing System) operational meteorological analysis are directly used for meteorological input parameters. Examples of energy analysis for a few select buildings at various NASA centers are presented in terms of the energy usage relationship that these buildings have with changes in their meteorological environment. The energy requirements of potential future climates are then surveyed for a range of changes using the most

  9. Climate change and human health

    DEFF Research Database (Denmark)

    Warren, John A; Berner, James E; Curtis, Tine

    2005-01-01

    or degradation of permafrost. Climate change can result in damage to sanitation infrastructure resulting in the spread of disease or threatening a community's ability to maintain its economy, geographic location and cultural tradition, leading to mental stress. Through monitoring of some basic indicators...... communities can begin to develop a response to climate change. With this information, planners, engineers, health care professionals and governments can begin to develop approaches to address the challenges related to climate change....

  10. The Immatsiak network of groundwater wells in a small catchment basin in the discontinuous permafrost zone of Northern Quebec, Canada: A unique opportunity for monitoring the impacts of climate change on groundwater (Invited)

    Science.gov (United States)

    Fortier, R.; Lemieux, J.; Molson, J. W.; Therrien, R.; Ouellet, M.; Bart, J.

    2013-12-01

    During a summer drilling campaign in 2012, a network of nine groundwater monitoring wells was installed in a small catchment basin in a zone of discontinuous permafrost near the Inuit community of Umiujaq in Northern Quebec, Canada. This network, named Immatsiak, is part of a provincial network of groundwater monitoring wells to monitor the impacts of climate change on groundwater resources. It provides a unique opportunity to study cold region groundwater dynamics in permafrost environments and to assess the impacts of permafrost degradation on groundwater quality and availability as a potential source of drinking water. Using the borehole logs from the drilling campaign and other information from previous investigations, an interpretative cryo-hydrogeological cross-section of the catchment basin was produced which identified the Quaternary deposit thickness and extent, the depth to bedrock, the location of permafrost, one superficial aquifer located in a sand deposit, and another deep aquifer in fluvio-glacial sediments and till. In the summer of 2013, data were recovered from water level and barometric loggers which were installed in the wells in August 2012. Although the wells were drilled in unfrozen zones, the groundwater temperature is very low, near 0.4 °C, with an annual variability of a few tenths of a degree Celsius at a depth of 35 m. The hydraulic head in the wells varied as much as 6 m over the last year. Pumping tests performed in the wells showed a very high hydraulic conductivity of the deep aquifer. Groundwater in the wells and surface water in small thermokarst lakes and at the catchment outlet were sampled for geochemical analysis (inorganic parameters, stable isotopes of oxygen (δ18O) and hydrogen (δ2H), and radioactive isotopes of carbon (δ14C), hydrogen (tritium δ3H) and helium (δ3He)) to assess groundwater quality and origin. Preliminary results show that the signature of melt water from permafrost thawing is observed in the

  11. Analyses of the impact of changes in atmospheric deposition and climate on forest growth in European monitoring plots: A stand growth approach

    NARCIS (Netherlands)

    Solberg, S.; Dobbertin, M.; Reinds, G.J.; Andreassen, K.; Lange, H.; Garcia Fernandez, P.; Hildingsson, A.; Vries, de W.

    2009-01-01

    During the last 15 years a number of studies have shown increasing forest growth in central Europe, rather than a decline as was expected due to negative effects of air pollution. We have here used data from intensive monitoring plots spread over Europe for a five year period in order to examine the

  12. Linking hydro-climate to the sediment archive: a combined monitoring and calibration study from a varved lake in central Turkey

    Science.gov (United States)

    Roberts, C. Neil; Dean, Jonathan R.; Eastwood, Warren J.; Jones, Matthew D.; Allcock, Samantha L.; Leng, Melanie J.; Metcalfe, Sarah E.; Woodbridge, Jessie; Yiǧitbaşıoǧlu, Hakan

    2016-04-01

    Hydro-climatic reconstructions from lake sediment proxies require an understanding of modern formation processes and calibration over multiple years. Here we use Nar Gölü, a non-outlet, monomictic maar lake in central Turkey, as a field site for such a natural experiment. Fieldwork since 1997 has included observations and measurements of lake water and sediment trap samples, and automated data logging (Jones et al., 2005; Woodbridge and Roberts, 2010; Dean et al., 2015). We compare these data to isotopic, chemical and biotic proxies preserved in the lake's annually-varved sediments. Nar Gölü underwent a 3 m lake-level fall between 2000 and 2010, and δ18O in both water and carbonates is correlated with this lake-level fall, responding to the change in water balance. Over the same period, sedimentary diatom assemblages responded via changes in habitat availability and mixing regime, while conductivity inferred from diatoms showed a rise in inferred salinity, although with a non-linear response to hydro-climatic forcing. There were also non-linear shifts in carbonate mineralogy and elemental chemistry. Building on the relationship between lake water balance and the sediment isotope record, we calibrated sedimentary δ18O against local meteorological records to derive a P/E drought index for central Anatolia. Application to of this to the longer sediment core isotope record from Nar Gölü (Jones et al. 2006) highlights major drought events over the last 600 years (Yiǧitbaşıoǧlu et al., 2015). Although this lacustrine record offers an archive of annually-dated, decadally-averaged hydro-climatic change, there were also times of non-linear lake response to climate. Robust reconstruction therefore requires understanding of physical processes as well as application of statistical correlations. Dean, J.R., Eastwood, W.J., Roberts, N., Jones, M.D., Yiǧitbaşıoǧlu, H., Allcock, S.L., Woodbridge, J., Metcalfe, S.E. and Leng, M.J. (2015) Tracking the hydro-climatic

  13. Studies of the Belukha glacier plexus in the context of global glacio-climatic monitoring (on the 100th anniversary of the first ascent of the Belukha Mountain)

    OpenAIRE

    V. S. Revyakin

    2014-01-01

    The Belukha Mountain is the highest peak of the Altai. On July 26 (7th August in the new time scale) of 1914 the brothers Boris and Mikhail Tronov discovered the mountain and were the first people to climb it. The Tronov Glacier is named after them. The Belukha glacier plexus is now subject to intensive degradation caused by current climate warming. There are changes in the processes of ice-forming, the temperature regime, and the stratigraphic characteristics. The mountain slope processes ha...

  14. Stable isotope variation in tooth enamel from Neogene hippopotamids: monitor of meso and global climate and rift dynamics on the Albertine Rift, Uganda

    Science.gov (United States)

    Brachert, Thomas Christian; Brügmann, Gerhard B.; Mertz, Dieter F.; Kullmer, Ottmar; Schrenk, Friedemann; Jacob, Dorrit E.; Ssemmanda, Immaculate; Taubald, Heinrich

    2010-10-01

    The Neogene was a period of long-term global cooling and increasing climatic variability. Variations in African-Asian monsoon intensity over the last 7 Ma have been deduced from patterns of eolian dust export into the Indian Ocean and Mediterranean Sea as well as from lake level records in the East African Rift System (EARS). However, lake systems not only depend on rainfall patterns, but also on the size and physiography of river catchment areas. This study is based on stable isotope proxy data (18O/16O, 13C/12C) from tooth enamel of hippopotamids (Mammalia) and aims in unravelling long-term climate and watershed dynamics that control the evolution of palaeolake systems in the western branch of the EARS (Lake Albert, Uganda) during the Late Neogene (7.5 Ma to recent). Having no dietary preferences with respect to wooded (C3) versus grassland (C4) vegetation, these territorial, water-dependant mammals are particularly useful for palaeoclimate analyses. As inhabitants of lakes and rivers, hippopotamid tooth enamel isotope data document mesoclimates of topographic depressions, such as the rift valleys and, therefore, changes in relative valley depth instead of exclusively global climate changes. Consequently, we ascribe a synchronous maximum in 18O/16O and 13C/12C composition of hippopotamid enamel centred around 1.5-2.5 Ma to maximum aridity and/or maximum hydrological isolation of the rift floor from rift-external river catchment areas in response to the combined effects of rift shoulder uplift and subsidence of the rift valley floor. Structural rearrangements by ~2.5 Ma within the northern segment of the Albertine Rift are well constrained by reversals in river flow, cannibalisation of catchments, biogeographic turnover and uplift of the Rwenzori horst. However, a growing rain shadow is not obvious in 18O/16O signatures of the hippopotamid teeth of the Albertine Rift. According to our interpretation, this is the result of the overriding effect of evaporation on 18

  15. Monitoring the effects of climate and agriculture intensity on nutrient fluxes in lowland streams: a comparison between temperate Denmark and subtropical Uruguay

    DEFF Research Database (Denmark)

    Goyenola, Guillermo; Meerhof, Mariane; Teixeira de Mello, Franco

    2014-01-01

    or intensive agriculture. The four selected streams drained catchments of similar size (7 to 19 km2). We have established similarly equipped monitoring stations in the four micro-catchments in spring (November 2009, Uruguay; March 2010, Denmark) to monitor the effects of land use and agriculture intensity...... sampling of composite water samples for nutrient analysis (total and dissolved nitrogen and phosphorus; sampled every four hours and accumulated fortnightly). Moreover, water level and meteorological information (precipitation, air temperature, global radiation, humidity) has been recorded every 10 minutes...... and instantaneous flow measurements have been conducted at regular intervals, to facilitate the calculation of instantaneous discharge from continuous records of water level (stage-discharge relationships). We will show results of ca. 2 years from this comparative study between Uruguay and Denmark...

  16. Broad Scale Monitoring in the US Forest Service: Institutional Challenges and Collaborative Opportunites for Improving Planning and Decision-Making in an Era of Climate Change

    Science.gov (United States)

    Wurtzebach, Z.

    2016-12-01

    In 2012, the United States Forest Service promulgated new rules to guide Forest planning efforts in accordance with the National Forest Management Act (NFMA). One important component of the 2012 rule is a requirement for Regionally coordinated cross-boundary "broad scale" monitoring strategies that are designed to inform and facilitate Forest-level adaptive management and planning. This presentation will examine institutional challenges and opportunites for developing effective broad scale monitoring strategies identified in 90 interviews with USFS staff and partner organizations, and collaborative workshops held in Colorado, Wyoming, Arizona, and New Mexico. Internal barriers to development include funding and human resource constraints, organizational culture, problematic incentives and accountability structures, data management issues, and administrative barriers to collaboration. However, we also identify several opportunities for leveraging interagency collaboration, facilitating multi-level coordination, generating efficiencies in data collection and analysis, and improving strategies for reporting and communication to Forest level decision-makers and relevant stakeholders.

  17. Monitoring Coral Health to Determine Coral Bleaching Response at High Latitude Eastern Australian Reefs: An Applied Model for A Changing Climate

    OpenAIRE

    Carroll, Andrew G; Dalton, Steven J.

    2011-01-01

    Limited information is available on the bleaching susceptibility of coral species that dominate high latitude reefs along the eastern seaboard of Australia. The main aims of this study were to: (i) monitor coral health and spatial patterns of coral bleaching response at the Solitary Islands Marine Park (SIMP) and Lord Howe Island Marine Park (LHIMP), to determine variability of bleaching susceptibility among coral taxa; (ii) predict coral bleaching thresholds at 30 °S and 31.5 °S, extrapolate...

  18. Monitoring of the ground surface temperature and the active layer in NorthEastern Canadian permafrost areas using remote sensing data assimilated in a climate land surface scheme.

    Science.gov (United States)

    Marchand, N.; Royer, A.; Krinner, G.; Roy, A.

    2014-12-01

    Projected future warming is particularly strong in the Northern high latitudes where increases of temperatures are up to 2 to 6 °C. Permafrost is present on 25 % of the northern hemisphere lands and contain high quantities of « frozen » carbon, estimated at 1400 Gt (40 % of the global terrestrial carbon). The aim of this study is to improve our understanding of the climate evolution in arctic areas, and more specifically of land areas covered by snow. The objective is to describe the ground temperature year round including under snow cover, and to analyse the active layer thickness evolution in relation to the climate variability. We use satellite data (fusion of MODIS land surface temperature « LST » and microwave AMSR-E brightness temperature « Tb ») assimilated in the Canadian Land Surface Scheme (CLASS) of the Canadian climate model coupled with a simple radiative transfer model (HUT). This approach benefits from the advantages of each of the data type in order to complete two objectives : 1- build a solid methodology for retrieving the ground temperature, with and without snow cover, in taïga and tundra areas ; 2 - from those retrieved ground temperatures, derive the summer melt duration and the active layer depth. We describe the coupling of the models and the methodology that adjusts the meteorological input parameters of the CLASS model (mainly air temperature and precipitations derived from the NARR database) in order to minimise the simulated LST and Tb ouputs in comparison with satellite measurements. Using ground-based meteorological data as validation references in NorthEastern Canadian tundra, the results show that the proposed approach improves the soil temperatures estimates when using the MODIS LST and Tb at 10 and 19 GHz to constrain the model in comparison with the model outputs without satellite data. Error analysis is discussed for the summer period (2.5 - 4 K) and for the snow covered winter period (2 - 3.5 K). Further steps are

  19. Access 1996: A directory of permanent plots which monitor flora, fauna, climate, hydrology, soil, geology, and the effects of anthropogenic changes at 132 biosphere reserves in 27 countries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This directory summarizes information about environmental data collected in permanent monitoring and research plots in 132 biosphere reserves in Canada, the United States, and 25 European countries. The text of the directory is organized alphabetically by country and, within each country, alphabetically according to the name of the biosphere reserve. Tabular summaries of information on permanent plots are provided. The summaries are organized topically . A general summary of basic information on permanent plots is followed by more detailed information on permanent plots dedicated primarily to monitroing and research on particular topics.

  20. Development of clothing micro climate monitoring system for human physiological indexes%人体生理指标与服装微气候监测系统研发

    Institute of Scientific and Technical Information of China (English)

    洪岩; 杨敏; 陈雁

    2013-01-01

    This study is devoted to how to monitor human physiological indexes by observing the change of related indexes of the clothing micro climate monitoring system. Having analyzed the clothing which makes a person feel comfortable and enjoy good healthy as well as related physiological indexes, we investigated the route and method for applying the technologies of sensor and LCD to clothing, designed a smart clothing for collecting, transmitting, displaying and recording the signals from human body, and developed a smart monitoring system for human physiological indexes. The system, based on single chip microcomputer AT89C52, can be used in the clothing. This findings may serve as a reference for the application of sensor and display technologies in the field of smart clothing.%为研究人体生理特征指标和服装微气候指标的监测方法,在分析人体健康状况的生理特征指标和人体舒适感的服装的基础上,探讨了将传感器和显示器技术应用于服装产品的路径与方法,设计了应用于人体生理指标监测智能服装的信息采集、传输、显示和记录系统,研制了可以用于服装的、以AT89C52单片机为基础的智能化生理指征监测服装系统.其研究成果可以为传感器和显示器技术在智能服装领域的应用提供参考.

  1. Spatial distribution of the persistent organic pollutants across the Tibetan Plateau and its linkage with the climate systems: a 5-year air monitoring study

    Science.gov (United States)

    Wang, Xiaoping; Ren, Jiao; Gong, Ping; Wang, Chuanfei; Xue, Yonggang; Yao, Tandong; Lohmann, Rainer

    2016-06-01

    The Tibetan Plateau (TP) has been contaminated by persistent organic pollutants (POPs), including legacy organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) through atmospheric transport. The exact source regions, transport pathways and time trends of POPs to the TP are not well understood. Here polystyrene-divinylbenzene copolymer resin (XAD)-based passive air samplers (PASs) were deployed at 16 Tibetan background sites from 2007 to 2012 to gain further insight into spatial patterns and temporal trends of OCPs and PCBs. The southeastern TP was characterized by dichlorodiphenyltrichloroethane (DDT)-related chemicals delivered by Indian monsoon air masses. The northern and northwestern TP displayed the greatest absolute concentration and relative abundance of hexachlorobenzene (HCB) in the atmosphere, caused by the westerly-driven European air masses. The interactions between the DDT polluted Indian monsoon air and the clean westerly winds formed a transition zone in central Tibet, where both DDT and HCB were the dominant chemicals. Based on 5 years of continuous sampling, our data indicated declining concentrations of HCB and hexachlorocyclohexanes (HCHs) across the Tibetan region. Inter-annual trends of DDT class chemicals, however, showed less variation during this 5-year sampling period, which may be due to the ongoing usage of DDT in India. This paper demonstrates the possibility of using POP fingerprints to investigate the climate interactions and the validity of using PAS to derive inter-annual atmospheric POP time trends.

  2. A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies

    Science.gov (United States)

    Banzon, Viva; Smith, Thomas M.; Chin, Toshio Mike; Liu, Chunying; Hankins, William

    2016-04-01

    This paper describes a blended sea-surface temperature (SST) data set that is part of the National Oceanic and Atmospheric Administration (NOAA) Climate Data Record (CDR) program product suite. Using optimum interpolation (OI), in situ and satellite observations are combined on a daily and 0.25° spatial grid to form an SST analysis, i.e., a spatially complete field. A large-scale bias adjustment of the input infrared SSTs is made using buoy and ship observations as a reference. This is particularly important for the time periods when volcanic aerosols from the El Chichón and Mt. Pinatubo eruptions are widespread globally. The main source of SSTs is the Advanced Very High Resolution Radiometer (AVHRR), available from late 1981 to the present, which is also the temporal span of this CDR. The input and processing choices made to ensure a consistent data set that meets the CDR requirements are summarized. A brief history and an explanation of the forward production schedule for the preliminary and science-quality final product are also provided. The data set is produced and archived at the newly formed National Centers for Environmental Information (NCEI) in Network Common Data Form (netCDF) at doi:10.7289/V5SQ8XB5.

  3. Investigation of the 3D temperature distribution patterns above the Antarctic Peninsula using remote sensing data - A contribution for polar climate monitoring

    Science.gov (United States)

    Wachter, Paul; Höppner, Kathrin; Jacobeit, Jucundus; Diedrich, Erhard

    2015-04-01

    West Antarctica and the Antarctic Peninsula are in the focus of current studies on a changing environment and climate of the polar regions. A recently founded Junior Researchers Group at the German Aerospace Center (DLR) is studying changing processes in cryosphere and atmosphere above the Antarctic Peninsula. It is the aim of the group to make use of long-term remote sensing data sets of the land and ice surfaces and the atmosphere in order to characterize environmental changes in this highly sensitive region. One of the PhD projects focuses on the investigation of the 3D temperature distribution patterns above the Antarctic Peninsula. Temperature data sets ranging from MODIS land surface temperatures up to middle atmosphere data of AURA/MLS will be evaluated over the last approx. 12 years. This 3-dimensional view allows comprehensive investigations of the thermal structure and spatio-temporal characteristics of the southern polar atmosphere. Tropospheric data sets will be analyzed by multivariate statistical methods and will allow the identification of dominant atmospheric circulation patterns as well as their temporal variability. An overview of the data sets and first results will be presented.

  4. Climate@Home: Crowdsourcing Climate Change Research

    Science.gov (United States)

    Xu, C.; Yang, C.; Li, J.; Sun, M.; Bambacus, M.

    2011-12-01

    Climate change deeply impacts human wellbeing. Significant amounts of resources have been invested in building super-computers that are capable of running advanced climate models, which help scientists understand climate change mechanisms, and predict its trend. Although climate change influences all human beings, the general public is largely excluded from the research. On the other hand, scientists are eagerly seeking communication mediums for effectively enlightening the public on climate change and its consequences. The Climate@Home project is devoted to connect the two ends with an innovative solution: crowdsourcing climate computing to the general public by harvesting volunteered computing resources from the participants. A distributed web-based computing platform will be built to support climate computing, and the general public can 'plug-in' their personal computers to participate in the research. People contribute the spare computing power of their computers to run a computer model, which is used by scientists to predict climate change. Traditionally, only super-computers could handle such a large computing processing load. By orchestrating massive amounts of personal computers to perform atomized data processing tasks, investments on new super-computers, energy consumed by super-computers, and carbon release from super-computers are reduced. Meanwhile, the platform forms a social network of climate researchers and the general public, which may be leveraged to raise climate awareness among the participants. A portal is to be built as the gateway to the climate@home project. Three types of roles and the corresponding functionalities are designed and supported. The end users include the citizen participants, climate scientists, and project managers. Citizen participants connect their computing resources to the platform by downloading and installing a computing engine on their personal computers. Computer climate models are defined at the server side. Climate

  5. Satellite Monitoring the Spatial-Temporal Dynamics of Desertification in Response to Climate Change and Human Activities across the Ordos Plateau, China

    Directory of Open Access Journals (Sweden)

    Qiang Guo

    2017-05-01

    Full Text Available The Ordos Plateau, a typical semi-arid area in northern China, has experienced severe wind erosion events that have stripped the agriculturally important finer fraction of the topsoil and caused dust events that often impact the air quality in northern China and the surrounding regions. Both climate change and human activities have been considered key factors in the desertification process. This study used multi-spectral Landsat Thematic Mapper (TM, Enhanced Thematic Mapper Plus (ETM+ and Operational Land Imager (OLI remote sensing data collected in 2000, 2006, 2010 and 2015 to generate a temporal series of the modified soil-adjusted vegetation index (MSAVI, bare soil index (BSI and albedo products in the Ordos Plateau. Based on these satellite products and the decision tree method, we quantitatively assessed the desertification status over the past 15 years since 2000. Furthermore, a quantitative method was used to assess the roles of driving forces in desertification dynamics using net primary productivity (NPP as a commensurable indicator. The results showed that the area of non-desertification land increased from 6647 km2 in 2000 to 15,961 km2 in 2015, while the area of severe desertification land decreased from 16,161 km2 in 2000 to 8,331 km2 in 2015. During the period 2006–2015, the effect of human activities, especially the ecological recovery projects implemented in northern China, was the main cause of desertification reversion in this region. Therefore, ecological recovery projects are still required to promote harmonious development between nature and human society in ecologically fragile regions like the Ordos Plateau.

  6. New software methods in radar ornithology using WSR-88D weather data and potential application to monitoring effects of climate change on bird migration

    Science.gov (United States)

    Mead, Reginald; Paxton, John; Sojda, Richard S.; Swayne, David A.; Yang, Wanhong; Voinov, A.A.; Rizzoli, A.; Filatova, T.

    2010-01-01

    Radar ornithology has provided tools for studying the movement of birds, especially related to migration. Researchers have presented qualitative evidence suggesting that birds, or at least migration events, can be identified using large broad scale radars such as the WSR-88D used in the NEXRAD weather surveillance system. This is potentially a boon for ornithologists because such data cover a large portion of the United States, are constantly being produced, are freely available, and have been archived since the early 1990s. A major obstacle to this research, however, has been that identifying birds in NEXRAD data has required a trained technician to manually inspect a graphically rendered radar sweep. A single site completes one volume scan every five to ten minutes, producing over 52,000 volume scans in one year. This is an immense amount of data, and manual classification is infeasible. We have developed a system that identifies biological echoes using machine learning techniques. This approach begins with training data using scans that have been classified by experts, or uses bird data collected in the field. The data are preprocessed to ensure quality and to emphasize relevant features. A classifier is then trained using this data and cross validation is used to measure performance. We compared neural networks, naive Bayes, and k-nearest neighbor classifiers. Empirical evidence is provided showing that this system can achieve classification accuracies in the 80th to 90th percentile. We propose to apply these methods to studying bird migration phenology and how it is affected by climate variability and change over multiple temporal scales.

  7. Climate variability and vulnerability to climate change: a review

    Science.gov (United States)

    Thornton, Philip K; Ericksen, Polly J; Herrero, Mario; Challinor, Andrew J

    2014-01-01

    The focus of the great majority of climate change impact studies is on changes in mean climate. In terms of climate model output, these changes are more robust than changes in climate variability. By concentrating on changes in climate means, the full impacts of climate change on biological and human systems are probably being seriously underestimated. Here, we briefly review the possible impacts of changes in climate variability and the frequency of extreme events on biological and food systems, with a focus on the developing world. We present new analysis that tentatively links increases in climate variability with increasing food insecurity in the future. We consider the ways in which people deal with climate variability and extremes and how they may adapt in the future. Key knowledge and data gaps are highlighted. These include the timing and interactions of different climatic stresses on plant growth and development, particularly at higher temperatures, and the impacts on crops, livestock and farming systems of changes in climate variability and extreme events on pest-weed-disease complexes. We highlight the need to reframe research questions in such a way that they can provide decision makers throughout the food system with actionable answers, and the need for investment in climate and environmental monitoring. Improved understanding of the full range of impacts of climate change on biological and food systems is a critical step in being able to address effectively the effects of climate variability and extreme events on human vulnerability and food security, particularly in agriculturally based developing countries facing the challenge of having to feed rapidly growing populations in the coming decades. PMID:24668802

  8. Climate variability and vulnerability to climate change: a review.

    Science.gov (United States)

    Thornton, Philip K; Ericksen, Polly J; Herrero, Mario; Challinor, Andrew J

    2014-11-01

    The focus of the great majority of climate change impact studies is on changes in mean climate. In terms of climate model output, these changes are more robust than changes in climate variability. By concentrating on changes in climate means, the full impacts of climate change on biological and human systems are probably being seriously underestimated. Here, we briefly review the possible impacts of changes in climate variability and the frequency of extreme events on biological and food systems, with a focus on the developing world. We present new analysis that tentatively links increases in climate variability with increasing food insecurity in the future. We consider the ways in which people deal with climate variability and extremes and how they may adapt in the future. Key knowledge and data gaps are highlighted. These include the timing and interactions of different climatic stresses on plant growth and development, particularly at higher temperatures, and the impacts on crops, livestock and farming systems of changes in climate variability and extreme events on pest-weed-disease complexes. We highlight the need to reframe research questions in such a way that they can provide decision makers throughout the food system with actionable answers, and the need for investment in climate and environmental monitoring. Improved understanding of the full range of impacts of climate change on biological and food systems is a critical step in being able to address effectively the effects of climate variability and extreme events on human vulnerability and food security, particularly in agriculturally based developing countries facing the challenge of having to feed rapidly growing populations in the coming decades. © 2014 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

  9. Climate Change May Bring More Tainted Shellfish to Northern Seas

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_160300.html Climate Change May Bring More Tainted Shellfish to Northern Seas ... must be monitored "in the light of ongoing climate change, especially in coastal areas most heavily affected by ...

  10. Marine and coastal environmental education in the context of global climate changes - synthesis and subsidies for ReBentos (Coastal Benthic Habitats Monitoring Network

    Directory of Open Access Journals (Sweden)

    Flávio Augusto S. Berchez

    Full Text Available Abstract As changes in coastal and marine environments are expected to negatively affect Brazilian ecosystems, the importance of Marine Environmental Education (MEE comes to the fore. However, so far only 32 contributions related to this issue have been published in Brazil. The MEE workgroup of ReBentos aims at promoting EE and the communication of marine ecological research to the scholastic public as a whole, as well as to groups which exert an influence on general perception, such as the media, politicians, and scientists. This paper presents an overview of the initiatives of MEE in Brazil, with emphasis on the ReBentos projects and guidelines. The conceptual background of action is based on the Rio'92 Treaty on Environmental Education, thereby implying an MEE with Transdisciplinar, emancipatory and reflexive characteristics, directed to changes in values, principles and attitudes. During the period 2011 to 2015, 10 projects were developed from Alagoas to Santa Catarina States, involving the development, implementation and testing through scientific research of 16 MEE activity-models. The didactic material subsequently produced comprised three books and 21 book-chapters. A public of around 6,500 Conservation Unit visitors, 250 public school teachers and 800 high school students have been impacted to date. To act as monitors and multipliers, 250 undergraduate students and professionals were trained. Research project evaluation generated the publication of nine papers. As a further step, the need for protocol elaboration for each model is placed in evidence, in order to direct and facilitate future initiatives.

  11. Corporate Climate Strategies

    DEFF Research Database (Denmark)

    Bjarnø, Ole-Christian; Maltha, Jonas

    2003-01-01

    Since the 1997 Kyoto Protocol on Climate Change outlined the first embryonic plans for an emissions market, a significant uncertainty about the value on carbon, in concert with a swift development in energy business, has brought about the concept of carbon management. Carbon management aims...... strategic carbon management for medium to large companies with greenhouse gas intensive activities. The guideline framework is established on the basis of a generic strategy structure in which the factors influencing corporate climate strategies are identified. It is concluded that there is little rationale...... behind extracting of climate strategy from the Environmental Health and Safety (EHS) context - the truly innovative aspect is the construction of an operational multiple Green House Gas information system, which should 1) measure, monitor, aggregate, record, and disseminate emission data (e.g. through...

  12. From climate-smart agriculture to climate-smart landscapes

    Directory of Open Access Journals (Sweden)

    Scherr Sara J

    2012-08-01

    Full Text Available Abstract Background For agricultural systems to achieve climate-smart objectives, including improved food security and rural livelihoods as well as climate change adaptation and mitigation, they often need to be take a landscape approach; they must become ‘climate-smart landscapes’. Climate-smart landscapes operate on the principles of integrated landscape management, while explicitly incorporating adaptation and mitigation into their management objectives. Results An assessment of climate change dynamics related to agriculture suggests that three key features characterize a climate-smart landscape: climate-smart practices at the field and farm scale; diversity of land use across the landscape to provide resilience; and management of land use interactions at landscape scale to achieve social, economic and ecological impacts. To implement climate-smart agricultural landscapes with these features (that is, to successfully promote and sustain them over time, in the context of dynamic economic, social, ecological and climate conditions requires several institutional mechanisms: multi-stakeholder planning, supportive landscape governance and resource tenure, spatially-targeted investment in the landscape that supports climate-smart objectives, and tracking change to determine if social and climate goals are being met at different scales. Examples of climate-smart landscape initiatives in Madagascar’s Highlands, the African Sahel and Australian Wet Tropics illustrate the application of these elements in contrasting contexts. Conclusions To achieve climate-smart landscape initiatives widely and at scale will require strengthened technical capacities, institutions and political support for multi-stakeholder planning, governance, spatial targeting of investments and multi-objective impact monitoring.

  13. Monitoring Coral Health to Determine Coral Bleaching Response at High Latitude Eastern Australian Reefs: An Applied Model for A Changing Climate

    Directory of Open Access Journals (Sweden)

    Andrew G. Carroll

    2011-09-01

    Full Text Available Limited information is available on the bleaching susceptibility of coral species that dominate high latitude reefs along the eastern seaboard of Australia. The main aims of this study were to: (i monitor coral health and spatial patterns of coral bleaching response at the Solitary Islands Marine Park (SIMP and Lord Howe Island Marine Park (LHIMP, to determine variability of bleaching susceptibility among coral taxa; (ii predict coral bleaching thresholds at 30 °S and 31.5 °S, extrapolated from published bleaching threshold data; and (iii propose a subtropical northern New South Wales coral bleaching model from biological and physical data. Between 2005 and 2007 minor bleaching was observed in dominant coral families including Pocilloporidae, Poritidae and Dendrophylliidae in the SIMP and Pocilloporidae, Poritidae and Acroporidae (Isopora and Montipora spp. in the LHIMP, with a clear difference in bleaching susceptibility found between sites, both within and between locations. Bleaching susceptibility was highest in Porites spp. at the most offshore island site within the SIMP during summer 2005. Patterns of subtropical family bleaching susceptibility within the SIMP and LHIMP differed to those previously reported for the central Great Barrier Reef (GBR. These differences may be due to a number of factors, including temperature history and/or the coral hosts association with different zooxanthellae clades, which may have lower thermal tolerances. An analysis of published estimates of coral bleaching thresholds from the Caribbean, South Africa, GBR and central and northern Pacific regions suggests that the bleaching threshold at 30–31.5 °S ranges between 26.5–26.8 °C. This predicted threshold was confirmed by an extensive coral bleaching event on the world’s southernmost coral reef at Lord Howe Island, during the 2010 austral summer season. These results imply that dominant coral taxa at subtropical reefs along the eastern Australian

  14. Climate Change

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Hansen, Ernst Jan de Place

    2011-01-01

    This paper presents the effects of climate change relevant for Denmark, including the change in mean year values as well as the extent of maximum and minimum extremes. Described by the Intergovernmental Panel on Climate Change, the assumptions that the scenarios are based on were outlined...... and evaluated in a Danish context. The uncertainty of the scenarios leaves major challenges that, if not addressed and taken into account in building design, will grow far more serious as climate change progresses. Cases implemented in the Danish building stock illustrate adaptation to climate change...... and illustrate how building design can include mitigating measures to counteract climate change. Cases studied were individual buildings as well as the urban environment. Furthermore the paper describes some of the issues that must be addressed, as the building sector is investing in measures to adapt to climate...

  15. Climate Change

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Hansen, Ernst Jan de Place

    2011-01-01

    and illustrate how building design can include mitigating measures to counteract climate change. Cases studied were individual buildings as well as the urban environment. Furthermore the paper describes some of the issues that must be addressed, as the building sector is investing in measures to adapt to climate......This paper presents the effects of climate change relevant for Denmark, including the change in mean year values as well as the extent of maximum and minimum extremes. Described by the Intergovernmental Panel on Climate Change, the assumptions that the scenarios are based on were outlined...... and evaluated in a Danish context. The uncertainty of the scenarios leaves major challenges that, if not addressed and taken into account in building design, will grow far more serious as climate change progresses. Cases implemented in the Danish building stock illustrate adaptation to climate change...

  16. Climate Change

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Hansen, Ernst Jan de Place

    2011-01-01

    This paper presents the effects of climate change relevant for Denmark, including the change in mean year values as well as the extent of maximum and minimum extremes. Described by the Intergovernmental Panel on Climate Change, the assumptions that the scenarios are based on were outlined...... and evaluated in a Danish context. The uncertainty of the scenarios leaves major challenges that, if not addressed and taken into account in building design, will grow far more serious as climate change progresses. Cases implemented in the Danish building stock illustrate adaptation to climate change...... and illustrate how building design can include mitigating measures to counteract climate change. Cases studied were individual buildings as well as the urban environment. Furthermore the paper describes some of the issues that must be addressed, as the building sector is investing in measures to adapt to climate...

  17. Determination of elemental baseline using peltigeralean lichens from Northeastern Canada (Québec): Initial data collection for long term monitoring of the impact of global climate change on boreal and subarctic area in Canada.

    Science.gov (United States)

    Darnajoux, Romain; Lutzoni, François; Miadlikowska, Jolanta; Bellenger, Jean-Philippe

    2015-11-15

    Northeastern Canada is mostly free of anthropogenic activities. The extent to which this territory has been impacted by anthropogenic atmospheric depositions remains to be studied. The main goal of our study was to establish background levels for metals in boreal muscicolous/terricolous macrolichens over non-urbanized areas of northeastern Canada (Québec). Concentrations of 18 elements (Na, Mg, Al, P, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Cd, and Pb) were determined for three species of the genus Peltigera (Peltigera aphthosa (L.) Willd. s.l., Peltigera neopolydactyla (Gyeln.) Gyeln. s.l., Peltigera scabrosa Th. Fr. s.l.), and Nephroma arcticum (L.) Torss., along a 1080 km south-north transect and along a of 730 km west-east transect. We report that elemental contents in the sampled lichen thalli are very low and similar to background levels found in other studies performed in pristine places (high elevation or remote ecosystems) throughout the world. Overall, our results demonstrate that most of the boreal and subarctic zone of Québec (northeastern Canada) is still pristine. The elemental baseline established in these lichen populations will contribute to monitor metal pollution in boreal and sub-polar ecosystems due to global climate change and future industrial expansion.

  18. Astronomy and the Climate Crisis

    CERN Document Server

    Cooke, Antony

    2012-01-01

    Climate change is one of the most hotly debated issues of today. Increasing global temperatures will impact all of us. There are more questions than answers, however, and sweeping statements on the subject made by public figures, often with little scientific understanding, only further confuses public opinion. Astronomical factors, apart from passing references to the Sun, are given short shrift in relation to climate change. However, they might be amongst the major determinants of it.  A presentation of those that have been studied that some scientists suspect might be involved are featured in this book. Included is an in-depth look at the physics of climate itself, the potential effects of the Sun, solar storms, sunspots, solar variability, the magnetosphere, solar cycles, influences of nearby planets, orbital factors, cosmic rays, possible galactic influences, monitoring from space, even climate change elsewhere in the solar system, and much more. The greatest challenge climate change scientists face is d...

  19. Climate change and human health

    DEFF Research Database (Denmark)

    Warren, John A; Berner, James E; Curtis, Tine

    2005-01-01

    In northern regions, climate change can include changes in precipitation magnitude and frequency, reductions in sea ice extent and thickness, and climate warming and cooling. These changes can increase the frequency and severity of storms, flooding, or erosion; other changes may include drought...... or degradation of permafrost. Climate change can result in damage to sanitation infrastructure resulting in the spread of disease or threatening a community's ability to maintain its economy, geographic location and cultural tradition, leading to mental stress. Through monitoring of some basic indicators...... communities can begin to develop a response to climate change. With this information, planners, engineers, health care professionals and governments can begin to develop approaches to address the challenges related to climate change....

  20. Climate change

    NARCIS (Netherlands)

    Marchal, V.; Dellink, R.; Vuuren, D.P. van; Clapp, C.; Chateau, J.; Magné, B.; Lanzi, E.; Vliet, J. van

    2012-01-01

    This chapter analyses the policy implications of the climate change challenge. Are current emission reduction pledges made in Copenhagen/Cancun enough to stabilise the climate and limit global average temperature increase to 2 oC? If not, what will the consequences be? What alternative growth pathwa

  1. Climate Controlled?

    Science.gov (United States)

    Harney, John O.

    2014-01-01

    More than 250 higher education leaders from campuses across the U.S. met last week in Boston for the 2014 Presidential Summit on Climate Leadership. The summit was organized by Second Nature, the supporting organization for the American College & University Presidents' Climate Commitment (ACUPCC). Almost 700 colleges and universities have…

  2. Earth System Monitoring, Introduction

    Science.gov (United States)

    Orcutt, John

    This section provides sensing and data collection methodologies, as well as an understanding of Earth's climate parameters and natural and man-made phenomena, to support a scientific assessment of the Earth system as a whole, and its response to natural and human-induced changes. The coverage ranges from climate change factors and extreme weather and fires to oil spill tracking and volcanic eruptions. This serves as a basis to enable improved prediction and response to climate change, weather, and natural hazards as well as dissemination of the data and conclusions. The data collection systems include satellite remote sensing, aerial surveys, and land- and ocean-based monitoring stations. Our objective in this treatise is to provide a significant portion of the scientific and engineering basis of Earth system monitoring and to provide this in 17 detailed articles or chapters written at a level for use by university students through practicing professionals. The reader is also directed to the closely related sections on Ecological Systems, Introduction and also Climate Change Modeling Methodology, Introduction as well as Climate Change Remediation, Introduction to. For ease of use by students, each article begins with a glossary of terms, while at an average length of 25 print pages each, sufficient detail is presented for use by professionals in government, universities, and industries. The chapters are individually summarized below.

  3. Climate change: Carbon losses in the Alps

    Science.gov (United States)

    Kirk, Guy

    2016-07-01

    Soil carbon stocks depend on inputs from decomposing vegetation and return to the atmosphere as CO2. Monitoring of carbon stocks in German alpine soils has shown large losses linked to climate change and a possible positive feedback loop.

  4. The Climate Change Challenge for Land Professionals

    DEFF Research Database (Denmark)

    Enemark, Stig

    2014-01-01

    monitoring systems and systems for land administration and management should serve as a basis for climate change mitigation and adaptation as well as prevention and management of natural disasters. In facing the climate change challenge the role of land professionals is twofold: • Monitoring change...... such as sea level rise and environmental degradation through global positioning infrastructures and data interpretation and presentation; • Implementing climate change adaptation and mitigation measures into land administration systems and systems for disaster risk management. This paper provides an overall...... understanding of the climate change challenge and looks at land governance as a key means of contributing to climate change adaptation as well disaster risk prevention and management. More specifically the paper looks at identifying the role of land professionals in addressing the climate change challenge...

  5. Climate Sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Lindzen, Richard [M.I.T.

    2011-11-09

    Warming observed thus far is entirely consistent with low climate sensitivity. However, the result is ambiguous because the sources of climate change are numerous and poorly specified. Model predictions of substantial warming aredependent on positive feedbacks associated with upper level water vapor and clouds, but models are notably inadequate in dealing with clouds and the impacts of clouds and water vapor are intimately intertwined. Various approaches to measuring sensitivity based on the physics of the feedbacks will be described. The results thus far point to negative feedbacks. Problems with these approaches as well as problems with the concept of climate sensitivity will be described.

  6. Responses of alpine biodiversity to climate change

    OpenAIRE

    Yang Liu; Jian Zhang; Wanqin Yang

    2009-01-01

    The alpine belt is the temperature-driven treeless region between the timberline and the snowline. Alpine belts are ideal sites for monitoring climate change because species in mountain habitats are especially sensitive to climate change. Global warming is shifting the distribution of alpine biodiversity and is leading to glacial retreat, implying that alterations in alpine biodiversity are indicators of climate change. Therefore, more attention has been given to changes in species compositio...

  7. Entrepreneurship Development and Business Climate of Kazakhstan

    Science.gov (United States)

    Kydyrova, Zhamilya Sh.; Satymbekova, Katira B.; Kerimbek, Galymzhan E.; Imanbayev?, Zauresh O.; Saparbayev?, Saule S.; Nurgalieva, Ainash A.; Ilyas, Akylbek A.; Zhalbinova, Saule K.; Jrauovai, Kuralay S.; Kanafina, Ainura T.

    2016-01-01

    The goal is to explore the state of development of entrepreneurship and business climate for the formation of a clear mechanism of state support for small and average business in conditions of economy modernization. A special science-based methodology was developed to monitor the condition of entrepreneurship development and business climate in…

  8. Determining the climate impact of the German government's Integrated Energy and Climate Programme (IEKP) and proposing a plan to continuously monitor its climate impact. Work package 1. Qualitative assessment of the instruments in an Integrated Energy and Climate Programme (IEKP); Ermittlung der Klimaschutzwirkung des Integrierten Energie- und Klimaschutzprogramms der Bundesregierung IEKP und Vorschlag fuer ein Konzept zur kontinuierlichen Ueberpruefung der Klimaschutzwirkung des IEKP. Arbeitspaket 1. Qualitative Einschaetzung der Instrumente im Integrierten Energie- und Klimaschutzprogramm (IEKP)

    Energy Technology Data Exchange (ETDEWEB)

    Doll, Claus; Eichhammer, Wolfgang; Fleiter, Tobias [Fraunhofer-Institut fuer System- und Innovationsforschung, Karlsruhe (DE)] (and others)

    2012-02-15

    In August 2007, the key elements for an integrated energy and climate program (IECP) were adopted within the Meseberg resolutions. The implementation of the Meseberg resolutions were performed in three packages primarily including amending laws as well as support measures. The authors of the contribution under consideration compare the climate protection instruments realized by IECP with the presentations in the IECP. This comparison is based on an analysis of documents and research projects in the periphery of the IECP and on a survey of target groups and other relevant actors on the effectiveness of the IECP mechanisms. The result of this comparison is summarized in form of 27 measures.

  9. The Northeast Climate Science Center

    Science.gov (United States)

    Ratnaswamy, M. J.; Palmer, R. N.; Morelli, T.; Staudinger, M.; Holland, A. R.

    2013-12-01

    The Department of Interior Northeast Climate Science Center (NE CSC) is part of a federal network of eight Climate Science Centers created to provide scientific information, tools, and techniques that managers and other parties interested in land, water, wildlife and cultural resources can use to anticipate, monitor, and adapt to climate change. Recognizing the critical threats, unique climate challenges, and expansive and diverse nature of the northeast region, the University of Massachusetts Amherst, College of Menominee Nation, Columbia University, Marine Biological Laboratory, University of Minnesota, University of Missouri Columbia, and University of Wisconsin-Madison have formed a consortium to host the NE CSC. This partnership with the U.S. Geological Survey climate science center network provides wide-reaching expertise, resources, and established professional collaborations in both climate science and natural and cultural resources management. This interdisciplinary approach is needed for successfully meeting the regional needs for climate impact assessment, adaptive management, education, and stakeholder outreach throughout the northeast region. Thus, the NE CSC conducts research, both through its general funds and its annual competitive award process, that responds to the needs of natural resource management partners that exist, in part or whole, within the NE CSC bounds. This domain includes the North Atlantic, Upper Midwest and Great Lakes, Eastern Tallgrass and Big Rivers, and Appalachian Landscape Conservation Cooperatives (LCCs), among other management stakeholders. For example, researchers are developing techniques to monitor tree range dynamics as affected by natural disturbances which can enable adaptation of projected climate impacts; conducting a Designing Sustainable Landscapes project to assess the capability of current and potential future landscapes in the Northeast to provide integral ecosystems and suitable habitat for a suite of

  10. Climate Change

    Science.gov (United States)

    ... events, such as hurricanes and wildfires. These can cause death, injuries, stress, and mental health problems. Researchers are studying the best ways to lessen climate change and reduce its impact on our health. NIH: ...

  11. Climate Reconstructions

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Paleoclimatology Program archives reconstructions of past climatic conditions derived from paleoclimate proxies, in addition to the Program's large holdings...

  12. Design and Implementation of Special Data Service System for Climate Monitoring%气候监测业务专题数据服务系统的设计与实现

    Institute of Scientific and Technical Information of China (English)

    何文春; 高峰; 许艳; 冯明农; 孙超; 赵春燕

    2012-01-01

    为了满足气候监测业务日益突出的个性化资料需求,设计和开发了气候监测业务专题数据服务系统.在分析用户资料需求的基础上,重点介绍了系统的设计思路和实现技术.该系统由1个专题数据支撑库和4个功能模块组成,包括资料更新发现、专题数据集制作、数据服务和任务调度,其中,专题数据集制作方法和3种任务调度模式是系统设计的核心.系统实现采用SSH(Struts Spring Hibernate)框架,按数据访问层、业务逻辑层和交互表现层进行分层实现;同时,结合DWR(Direct Web Remoting)技术实现了同步异步交互方式,使用灵活的配置管理加强系统的可扩展性.系统投入运行后,已制作出13个专题数据集,提供了良好的数据服务.%Currently, the national meteorological data service systems have basically met the demand of operational systems and scientific research. But, as the deep development of the meteorological operations, it's urgent to develop special data services to meet the specific requirements. For instance, the special data service system for climate monitoring is designed and implemented. The system is made up of one supporting database and four modules: Data-update monitoring, special dataset producing, data serving and task scheduling modules. The supporting database is in charge of fetching meteorological data from basic databases and storing information for the system operation. The data-update monitoring module detects the status of data updating with the strategies designed for each dataset, and triggers the special dataset producing module. The special dataset producing module produces datasets with scientific and practical methods, including analyzing, filtering, arranging, making statistics and standardizing of original data. The data serving module provides two ways for service: Data pushing and downloading via FTP. The task scheduling module dispatches the other modules according to

  13. Climate Models

    Science.gov (United States)

    Druyan, Leonard M.

    2012-01-01

    Climate models is a very broad topic, so a single volume can only offer a small sampling of relevant research activities. This volume of 14 chapters includes descriptions of a variety of modeling studies for a variety of geographic regions by an international roster of authors. The climate research community generally uses the rubric climate models to refer to organized sets of computer instructions that produce simulations of climate evolution. The code is based on physical relationships that describe the shared variability of meteorological parameters such as temperature, humidity, precipitation rate, circulation, radiation fluxes, etc. Three-dimensional climate models are integrated over time in order to compute the temporal and spatial variations of these parameters. Model domains can be global or regional and the horizontal and vertical resolutions of the computational grid vary from model to model. Considering the entire climate system requires accounting for interactions between solar insolation, atmospheric, oceanic and continental processes, the latter including land hydrology and vegetation. Model simulations may concentrate on one or more of these components, but the most sophisticated models will estimate the mutual interactions of all of these environments. Advances in computer technology have prompted investments in more complex model configurations that consider more phenomena interactions than were possible with yesterday s computers. However, not every attempt to add to the computational layers is rewarded by better model performance. Extensive research is required to test and document any advantages gained by greater sophistication in model formulation. One purpose for publishing climate model research results is to present purported advances for evaluation by the scientific community.

  14. Climate Watch and Spoonbill Watch: Engaging Communities in Climate Science and Bird Conservation

    Science.gov (United States)

    Michel, N. L.; Baker, R.; Bergstrom, E.; Cox, D.; Cox, G.; Dale, K.; Jensen, C.; Langham, G.; LeBaron, G.; Loftus, W.; Rowden, J.; Slavin, Z.; Smithson-Stanley, L.; Wilsey, C.

    2016-12-01

    Climate change poses serious challenges for conservation scientists and policymakers. Yet with these challenges come equally great opportunities to engage communities of concerned citizens in climate science and conservation. National Audubon Society's 2014 Birds and Climate Change report found that 314 North American bird species could lose over half their breeding or wintering ranges by 2080 due to climate change. Consequently, in 2016 Audubon developed two new crowd-sourced science programs that mobilized existing birding communities (i.e., Audubon Society chapters) in partnership with scientists to evaluate climate change effects on birds, and take action to protect vulnerable populations. Climate Watch expands upon traditional monitoring programs by involving citizen scientists in hypothesis-driven science, testing predictions of climate-driven range expansion in bluebirds developed by National Audubon Society scientists. Spoonbill Watch is a partnership between an Audubon research scientist and the Pelican Island Audubon Society community, in which citizen scientists monitor a Roseate Spoonbill colony recently established in response to changing habitat and climatic conditions. Additionally, Spoonbill Watch participants and leaders have moved beyond monitoring to take action to protect the colony, by working with the Florida Fish and Wildlife Conservation Commission towards getting the site declared as a Critical Wildlife Area and by conducting local outreach and education efforts. We will present overviews, lessons learned, and conservation goals and opportunities achieved during the pilot year of Climate Watch and Spoonbill Watch. Scientific - community partnerships such as these are essential to confront the threats posed by climate change.

  15. Climate adaptation

    Science.gov (United States)

    Kinzig, Ann P.

    2015-03-01

    This paper is intended as a brief introduction to climate adaptation in a conference devoted otherwise to the physics of sustainable energy. Whereas mitigation involves measures to reduce the probability of a potential event, such as climate change, adaptation refers to actions that lessen the impact of climate change. Mitigation and adaptation differ in other ways as well. Adaptation does not necessarily have to be implemented immediately to be effective; it only needs to be in place before the threat arrives. Also, adaptation does not necessarily require global, coordinated action; many effective adaptation actions can be local. Some urban communities, because of land-use change and the urban heat-island effect, currently face changes similar to some expected under climate change, such as changes in water availability, heat-related morbidity, or changes in disease patterns. Concern over those impacts might motivate the implementation of measures that would also help in climate adaptation, despite skepticism among some policy makers about anthropogenic global warming. Studies of ancient civilizations in the southwestern US lends some insight into factors that may or may not be important to successful adaptation.

  16. Using Web GIS "Climate" for Adaptation to Climate Change

    Science.gov (United States)

    Gordova, Yulia; Martynova, Yulia; Shulgina, Tamara

    2015-04-01

    A work is devoted to the application of an information-computational Web GIS "Climate" developed by joint team of the Institute of Monitoring of Climatic and Ecological Systems SB RAS and Tomsk State University to raise awareness about current and future climate change as a basis for further adaptation. Web-GIS "Climate» (http://climate.scert.ru/) based on modern concepts of Web 2.0 provides opportunities to study regional climate change and its consequences by providing access to climate and weather models, a large set of geophysical data and means of processing and visualization. Also, the system is used for the joint development of software applications by distributed research teams, research based on these applications and undergraduate and graduate students training. In addition, the system capabilities allow creating information resources to raise public awareness about climate change, its causes and consequences, which is a necessary step for the subsequent adaptation to these changes. Basic information course on climate change is placed in the public domain and is aimed at local population. Basic concepts and problems of modern climate change and its possible consequences are set out and illustrated in accessible language. Particular attention is paid to regional climate changes. In addition to the information part, the course also includes a selection of links to popular science network resources on current issues in Earth Sciences and a number of practical tasks to consolidate the material. These tasks are performed for a particular territory. Within the tasks users need to analyze the prepared within the "Climate" map layers and answer questions of direct interest to the public: "How did the minimum value of winter temperatures change in your area?", "What are the dynamics of maximum summer temperatures?", etc. Carrying out the analysis of the dynamics of climate change contributes to a better understanding of climate processes and further adaptation

  17. Advancing place-based transboundary climate services: Lessons from the 2016 North American drought, wildfire, and climate services forum

    Science.gov (United States)

    In June 2016, nearly 50 climate science and services experts representing the North American Climate Services Partnership, North American Drought Monitor Forum, and North American Fire Forecasting Workshop joined together for an integrated workshop on drought, wildfire, and climate services across N...

  18. SORCE: Solar Radiation and Climate Experiment

    Science.gov (United States)

    Cahalan, Robert; Rottman, Gary; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Contents include the following: Understanding the Sun's influence on the Earth; How the Sun affect Earth's climate; By how much does the Sun's radiation very; Understanding Solar irradiance; History of Solar irradiance observations; The SORCE mission; How do the SORCE instruments measure solar radiation; Total irradiance monitor (TIM); Spectral irradiance monitor (SIM); Solar stellar irradiance comparison experiment (SOLSTICE); XUV photometer system (XPS).

  19. Integrating Climate Information and Decision Processes for Regional Climate Resilience

    Science.gov (United States)

    Buizer, James; Goddard, Lisa; Guido, Zackry

    2015-04-01

    under which they make their decisions, and the non-public institutions of support that are available to them. We then interpret this complex reality in terms of the demand for science-based climate products and analyze the channels through which such climate support must pass, thus linking demand assessment with the scientific capacity to create appropriate decision support tools. In summary, the approach we employ is: 1) Demand-driven, beginning with a knowledge of the impacts of climate variability and change upon targeted populations, 2) Focused on vulnerability and resilience, which requires an understanding of broader networks of institutional actors who contribute to the adaptive capacity of vulnerable peoples, 3) Needs-based in that the climate needs matrix set priorities for the assessment of relevant climate products, 4) Dynamic in that the producers of climate products are involved at the point of demand assessment and can respond directly to stated needs, 5) Reflective in that the impacts of climate product interventions are subject to monitoring and evaluation throughout the process. Methods, approaches and preliminary results of our work in the Caribbean will be presented.

  20. Permafrost and gas hydrate related methane release in the Arctic and its impact on climate change - European cooperation for long-term monitoring: COST Action PERGAMON (www.cost-pergamon.eu)

    Science.gov (United States)

    Greinert, Jens; Treude, Tina; Members, Pergamon

    2010-05-01

    The Arctic is a key area in our warming world as massive releases of terrestrial and oceanic methane could increase atmospheric methane concentrations much faster than expected. The vast Arctic shelf might become a major emitter of methane in the future. Only a few projects are engaged in research on methane seepage in this area. The exchange of information about ongoing and planned activities in the Arctic with respect to gas hydrate destabilization and permafrost thawing is low within the EU and almost non-existent at an international level. The aim of the COST Action PERGAMON is to promote networking internationally within the EU and beyond: data integration of terrestrial studies from wetlands and permafrost regions marine research on gas release from seeps due to decomposing gas hydrate and/or permafrost melting and atmospheric investigations carried out by monitoring stations and via satellite is urgently needed to achieve a better understanding of methane emission processes in high latitude areas. The "official" main objective of PERGAMON is to quantify the methane input from marine and terrestrial sources into the atmosphere in the Arctic region, and ultimately to evaluate the impact of Arctic methane seepage on the global climate. This will be achieved by studying the origin and type of occurrence (dissolved/free gas, gas hydrate) of different methane sources (both on land and in the sub-seabed) as well as methane migration mechanisms, biogeochemical turnover, release mechanisms, and finally by quantifying the flux into the atmosphere. Biannual meetings and open workshops/conferences that will be announced throughout the scientific community serve as a platform to exchange and proliferate knowledge on methane in the Arctic. At present, fourteeen European countries are partners in PERGAMON, several non-COST country institutions are currently applying to participate (e.g. the US and Russia). PERGAMON aims to be open for new members, suggestions and input at

  1. The climate protection legislation in Germany. The example North Rhine-Westphalia; Das Klimaschutzrecht in Deutschland. Das Beispiel Nordrhein-Westfalen

    Energy Technology Data Exchange (ETDEWEB)

    Flaskuehler, Christina [Europa Univ. Viadrina, Frankfurt (Oder) (Germany). Lehrstuhl fuer Oeffentliches Recht, Verwaltungs-, Europa-, Umwelt-, Agrar- und Ernaehrungswirtschaftsrecht

    2014-07-01

    The contribution on the climate protection legislation in Germany deals with the example Nordrhein-Westfalen. The covered topics include the legislative competence, climate protection targets, the climate protection plan, climate protection concepts and the climate commission and monitoring. The climate protection law is discusses in the view of sustainability and in respect with the consequences for the rural region in Nordrhein-Westfalen.

  2. Climate and development

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, A.K.

    1984-01-01

    The authors review the existing knowledge on the inter-relationships between climate and patterns of development; the impact variables on water and agricultural development; and the effects of climate on human health. A case study is also given of the effect of climatic fluctuations on human population in Mesopotamia. Contents: Climate and Development; Climate and Agriculture; Climate and Water Management; Climate and Health; Effects of Climate Fluctation on Human Populations; Study of Mesopotamian Society.

  3. Uncertainty in climate science and climate policy

    CERN Document Server

    Rougier, Jonathan

    2014-01-01

    This essay, written by a statistician and a climate scientist, describes our view of the gap that exists between current practice in mainstream climate science, and the practical needs of policymakers charged with exploring possible interventions in the context of climate change. By `mainstream' we mean the type of climate science that dominates in universities and research centres, which we will term `academic' climate science, in contrast to `policy' climate science; aspects of this distinction will become clearer in what follows. In a nutshell, we do not think that academic climate science equips climate scientists to be as helpful as they might be, when involved in climate policy assessment. Partly, we attribute this to an over-investment in high resolution climate simulators, and partly to a culture that is uncomfortable with the inherently subjective nature of climate uncertainty.

  4. Climatic changes

    DEFF Research Database (Denmark)

    Majgaard Krarup, Jonna

    2014-01-01

    According to Cleo Paskal climatic changes are environmental changes. They are global, but their impact is local, and manifests them selves in the landscape, in our cities, in open urban spaces, and in everyday life. The landscape and open public spaces will in many cases be the sites where...... be addressed in order to develop and support social sustainability and identification. This paper explore and discuss how the handling of climatic changes in landscape and open urban spaces might hold a potential for them to become common goods....... spaces. From Henri LeFebvre’s thinking we learn that the production of space is a feed back loop, where the space is constructed when we attach meaning to it, and when the space offers meaning to us. Spatial identity is thus not the same as identifying with space. Without indentifying with space, space...

  5. Metadata Access Tool for Climate and Health

    Science.gov (United States)

    Trtanji, J.

    2012-12-01

    The need for health information resources to support climate change adaptation and mitigation decisions is growing, both in the United States and around the world, as the manifestations of climate change become more evident and widespread. In many instances, these information resources are not specific to a changing climate, but have either been developed or are highly relevant for addressing health issues related to existing climate variability and weather extremes. To help address the need for more integrated data, the Interagency Cross-Cutting Group on Climate Change and Human Health, a working group of the U.S. Global Change Research Program, has developed the Metadata Access Tool for Climate and Health (MATCH). MATCH is a gateway to relevant information that can be used to solve problems at the nexus of climate science and public health by facilitating research, enabling scientific collaborations in a One Health approach, and promoting data stewardship that will enhance the quality and application of climate and health research. MATCH is a searchable clearinghouse of publicly available Federal metadata including monitoring and surveillance data sets, early warning systems, and tools for characterizing the health impacts of global climate change. Examples of relevant databases include the Centers for Disease Control and Prevention's Environmental Public Health Tracking System and NOAA's National Climate Data Center's national and state temperature and precipitation data. This presentation will introduce the audience to this new web-based geoportal and demonstrate its features and potential applications.

  6. Climate - Options for broadening climate policy

    NARCIS (Netherlands)

    Aerts JCJH; Asselt H van; Bakker SJA; Bayangos V; Beers C van; Berk MM; Biermann F; Bouwer LM; Bree L van; Coninck HC de; Dorland K; Elzen ME den; Gupta J; Heemst J van; Jansen JC; Kok MTJ; Nabuurs GJ; Veraert J; Verhagen A; Kok MTJ; Coninck HC de; ECN; KMD

    2005-01-01

    In this study ways are explored to increase the policy coherence between the climate regime and a selected number of climate relevant policy areas, by adding a non-climate policy track to national and international climate strategies. The report assesses first the potential, synergies and trade-offs

  7. Climate Concerns

    Institute of Scientific and Technical Information of China (English)

    TANG YUANKAI

    2010-01-01

    @@ From June to August 2009, the western part of northeast China's Liaoning Province suffered from drought and extremely high temperatures, which damaged about 4.9 million hectares of farmland. Almost 827,000 hectares yielded no harvest as a result of the drought and 3 million people were impacted. The villagers might not know that a conference held in December on the other side of the globe has something to do with their hard times, but many are waking up to the reality that the disastrous effects of climate change have already begun to exert great influence on people's lives.

  8. Climate Change

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    According to the National Academy of Sciences in American,the Earth's surface temperature has risen by about 1 degree Fahrenheit in the past century, with accelerated warming during the past two decades. There is new and stronger evidence that most of the warming over the last 50 years is attributable to human activities.Human activities have altered the chemical composition of the atmosphere through the buildup of greenhouse gases-primarily carbon dioxide, methane, and nitrous oxide. The heat-trapping property of these gases is undisputed although uncertainties exist about exactly how earth's climate responds to them.

  9. Does climate directly influence NPP globally?

    Science.gov (United States)

    Chu, Chengjin; Bartlett, Megan; Wang, Youshi; He, Fangliang; Weiner, Jacob; Chave, Jérôme; Sack, Lawren

    2016-01-01

    The need for rigorous analyses of climate impacts has never been more crucial. Current textbooks state that climate directly influences ecosystem annual net primary productivity (NPP), emphasizing the urgent need to monitor the impacts of climate change. A recent paper challenged this consensus, arguing, based on an analysis of NPP for 1247 woody plant communities across global climate gradients, that temperature and precipitation have negligible direct effects on NPP and only perhaps have indirect effects by constraining total stand biomass (Mtot ) and stand age (a). The authors of that study concluded that the length of the growing season (lgs ) might have a minor influence on NPP, an effect they considered not to be directly related to climate. In this article, we describe flaws that affected that study's conclusions and present novel analyses to disentangle the effects of stand variables and climate in determining NPP. We re-analyzed the same database to partition the direct and indirect effects of climate on NPP, using three approaches: maximum-likelihood model selection, independent-effects analysis, and structural equation modeling. These new analyses showed that about half of the global variation in NPP could be explained by Mtot combined with climate variables and supported strong and direct influences of climate independently of Mtot , both for NPP and for net biomass change averaged across the known lifetime of the stands (ABC = average biomass change). We show that lgs is an important climate variable, intrinsically correlated with, and contributing to mean annual temperature and precipitation (Tann and Pann ), all important climatic drivers of NPP. Our analyses provide guidance for statistical and mechanistic analyses of climate drivers of ecosystem processes for predictive modeling and provide novel evidence supporting the strong, direct role of climate in determining vegetation productivity at the global scale.

  10. Interdisciplinarity, Climate, and Change

    Science.gov (United States)

    Pulwarty, R. S.

    2016-12-01

    Interdisciplinarity has become synonymous with all things progressive about research and education. This is so not simply because of a philosophical belief in the heterogeneity of knowledge but because of the scientific and social complexities of problems of major concern. The increased demand for improved climate knowledge and information has increased pressure to support planning under changing rates of extremes event occurrence, is well-documented. The application of useful climate data, information and knowledge requires multiple networks and information services infrastructure that support planning and implementation. As widely quoted, Pasteur's quadrant is a label given to a class of scientific research methodologies that seeks fundamental understanding of scientific problems and, simultaneously, to benefit society-what Stokes called "use-inspired research". Innovation, in this context, has been defined as "the process by which individuals and organizations generate new ideas and put them into practice". A growing number of research institutes and programs have begun developing a cadre of professionals focused on integrating basic and applied research in areas such as climate risk assessment and adaptation. There are now several examples of where researchers and teams have crafted examples that include affected communities. In this presentation we will outline the lessons from several efforts including the PACE program, the RISAs, NIDIS, the Climate Services Information System and other interdisciplinary service-oriented efforts in which the author has been involved. Some early lessons include the need to: Recognize that key concerns of social innovation go beyond the projections of climate and other global changes to embrace multiple methods Continue to train scientists of all stripes of disciplinary norms, but higher education should also prepare students who plan to seek careers outside of academia by increasing flexibility in graduate training programs

  11. Assessing customer satisfaction for improving NOAA's climate products and services

    Science.gov (United States)

    Meyers, J. C.; Hawkins, M. D.; Timofeyeva, M. M.

    2009-12-01

    NOAA's National Weather Service (NWS) Climate Services Division (CSD) is developing a comprehensive climate user requirements process with the ultimate goal of producing climate services that meet the needs of NWS climate information users. An important part of this effort includes engaging users through periodical surveys conducted by the Claes Fornell International (CFI) Group using the American Customer Satisfaction Index (ACSI). The CFI Group conducted a Climate Services Satisfaction (CSS) Survey in May of 2009 to measure customer satisfaction with current products and services and to gain insight on areas for improvement. The CSS Survey rates customer satisfaction on a range of NWS climate services data and products, including Climate Prediction Center (CPC) outlooks, drought monitoring, and ENSO monitoring and forecasts, as well as NWS local climate data services. In addition, the survey assesses the users of the products to give the NWS insight into its climate customer base. The survey also addresses specific topics such as NWS forecast category names, probabilistic nature of climate products, and interpretation issues. The survey results identify user requirements for improving existing NWS climate services and introducing new ones. CSD will merge the survey recommendations with available scientific methodologies and operational capabilities to develop requirements for improved climate products and services. An overview of the 2009 survey results will be presented, such as users' satisfaction with the accuracy, reliability, display and functionality of products and services.

  12. A Bibliometric Analysis of Climate Engineering Research

    Science.gov (United States)

    Belter, C. W.; Seidel, D. J.

    2013-12-01

    The past five years have seen a dramatic increase in the number of media and scientific publications on the topic of climate engineering, or geoengineering, and some scientists are increasingly calling for more research on climate engineering as a possible supplement to climate change mitigation and adaptation strategies. In this context, understanding the current state of climate engineering research can help inform policy discussions and guide future research directions. Bibliometric analysis - the quantitative analysis of publications - is particularly applicable to fields with large bodies of literature that are difficult to summarize by traditional review methods. The multidisciplinary nature of the published literature on climate engineering makes it an ideal candidate for bibliometric analysis. Publications on climate engineering are found to be relatively recent (more than half of all articles during 1988-2011 were published since 2008), include a higher than average percentage of non-research articles (30% compared with 8-15% in related scientific disciplines), and be predominately produced by countries located in the Northern Hemisphere and speaking English. The majority of this literature focuses on land-based methods of carbon sequestration, ocean iron fertilization, and solar radiation management and is produced with little collaboration among research groups. This study provides a summary of existing publications on climate engineering, a perspective on the scientific underpinnings of the global dialogue on climate engineering, and a baseline for quantitatively monitoring the development of climate engineering research in the future.

  13. Climate Change Education for General Education Faculty

    Science.gov (United States)

    Ozbay, G.; Fox-Lykens, R.; Fuoco, M. J.; Phalen, L.; Harcourt, P.; Veron, D. E.; Rogers, M.; Merrill, J.

    2016-12-01

    As MADE-CLEAR scientists, our ultimate goal is to inform the public about climate change through education. Education will provide citizens with important tools for adapting and coping against climate change through the understanding of the cause and effects of climate change, and the role they play in counteracting these effects. MADE-CLEAR is connecting educators with resources such as lesson plans and hands-on activities so they can easily incorporate climate change into their curriculum. This past year Delaware State University held workshops for Chemistry and Math faculty to provide information and resources to help integrate climate change education into their classes. We presented them with information on climate change and demonstrated several laboratory activities that would be applicable to their classes. Such activities included a sea level rise graphing exercise, ocean acidification pH demonstration, ocean acidification's effect on organism's demonstration, carbon dioxide variability and heat trapping gas simulation. The goals of the workshops are to implement a multidisciplinary approach in climate change education. Workshops are prepared hands-on heavy followed by the lectures and video resources. Pre- and post-workshop assessment questions on the workshop contents are provided to monitor faculty understanding of the climate change content. In doing so, we aim to improve climate literacy in our higher education students.

  14. Signs of climate change in Nordic nature

    DEFF Research Database (Denmark)

    Mikkelsen, Maria; Jensen, Trine Susanne; Normander, Bo

    the most relevant indicators. It is important to stress that by selecting a set of indicators rather than individual indicators, it is then possible to evaluate more general trends and not solely separate developments. The amount and quality of data vary between the selected indicators; monitoring data......Not only is the Earth's climate changing, our natural world is also being affected by the impact of rising temperatures and changes in climatic conditions. In order to track climate-related changes in Nordic ecosystems, we have identified a number of climate change sensitive indicators. We present...... a catalogue of 14 indicator-based signs that demonstrate the impact of climate change on terrestrial, marine and freshwater ecosystems in the different bio-geographical zones of the Nordic region. The indicators have been identified using a systematic and quality, criteria based approach to discern and select...

  15. Climate change and health

    Energy Technology Data Exchange (ETDEWEB)

    Last, J.M. [Ottawa Univ., ON (Canada); Chiotti, Q.P. [Environment Canada, Ottawa, ON (Canada)

    2001-12-31

    Adverse effects such as heat-related illnesses are felt on human health as a result of climate change. Those effects can also be the increased frequency and severity of extreme weather resulting in injury and death, a wider array of insect vectors for diseases, as well as increased risk of allergic, food-borne and water-borne diseases. Coastal ecosystems are altered, sea levels are rising and millions of people will need to relocate in the next century as a result of global warming. Keeping disaster plans, maintaining epidemiological monitoring and surveillance, and issuing advisory messages concerning the risks to human health are some of the responses required from public health officials. The establishment of standards, the development of policies on food and nutrition and the defining of priorities for research are important aspects that must be kept in mind. The authors indicated that multidisciplinary approaches are better suited to find solutions to the challenges encountered due to climate change than the narrow methods used in the past. refs., 4 tabs.

  16. Agriculture: Climate Change

    Science.gov (United States)

    Climate change affects agricultural producers because agriculture and fisheries depend on specific climate conditions. Temperature changes can cause crop planting dates to shift. Droughts and floods due to climate change may hinder farming practices.

  17. Toward an Ethical Framework for Climate Services

    Science.gov (United States)

    Wilby, R.; Adams, P.; Eitland, E.; Hewitson, B.; Shumake, J.; Vaughan, C.; Zebiak, S. E.

    2015-12-01

    Climate services offer information and tools to help stakeholders anticipate and/or manage risks posed by climate change. However, climate services lack a cohesive ethical framework to govern their development and application. This paper describes a prototype, open-ended process to form a set of ethical principles to ensure that climate services are effectively deployed to manage climate risks, realize opportunities, and advance human security.We begin by acknowledging the multiplicity of competing interests and motivations across individuals and institutions. Growing awareness of potential climate impacts has raised interest and investments in climate services and led to the entrance of new providers. User demand for climate services is also rising, as are calls for new types of services. Meanwhile, there is growing pressure from funders to operationalize climate research.Our proposed ethical framework applies reference points founded on diverse experiences in western and developing countries, fundamental and applied climate research, different sectors, gender, and professional practice (academia, private sector, government). We assert that climate service providers should be accountable for both their practices and products by upholding values of integrity, transparency, humility, and collaboration.Principles of practice include: communicating all value judgements; eschewing climate change as a singular threat; engaging in the co-exploration of knowledge; establishing mechanisms for monitoring/evaluating procedures and products; declaring any conflicts of interest. Examples of principles of products include: clear and defensible provenance of information; descriptions of the extent and character of uncertainties using terms that are meaningful to intended users; tools and information that are tailored to the context of the user; and thorough documentation of methods and meta-data.We invite the community to test and refine these points.

  18. Managing Climate Change Refugia for Climate Adaptation

    Science.gov (United States)

    The concept of refugia has long been studied from theoretical and paleontological perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change ref...

  19. Managing Climate Change Refugia for Climate Adaptation

    Science.gov (United States)

    The concept of refugia has long been studied from theoretical and paleontological perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change ref...

  20. Monitoring madness

    Energy Technology Data Exchange (ETDEWEB)

    Blankinship, S.

    2006-01-15

    High quality continuous emission monitoring capability can be as essential as high quality emission control equipment. Future mercury monitoring and control requirements add to the justification for better CEMS. The article discusses two prominent mercury measurement methods - the cold vapour atomic absorptive spectrometer (CVAAs) and the atomic absorptive spectrometer (AFS). It stresses the importance of maintaining a CEMS. 1 photo.

  1. Mobility Monitor

    DEFF Research Database (Denmark)

    Schæbel, Anne-Lise; Dybbro, Karina Løvendahl; Andersen, Lisbeth Støvring;

    2015-01-01

    Undersøgelse af digital monitorering af plejehjemsbeboeres vendinger under søvn på Fremtidens Plejehjem, Nørresundby......Undersøgelse af digital monitorering af plejehjemsbeboeres vendinger under søvn på Fremtidens Plejehjem, Nørresundby...

  2. TRACKING CLIMATE MODELS

    Data.gov (United States)

    National Aeronautics and Space Administration — CLAIRE MONTELEONI*, GAVIN SCHMIDT, AND SHAILESH SAROHA* Climate models are complex mathematical models designed by meteorologists, geophysicists, and climate...

  3. Climate Change Indicators

    Science.gov (United States)

    Presents information, charts and graphs showing measured climate changes across 40 indicators related to greenhouse gases, weather and climate, oceans, snow and ice, heath and society, and ecosystems.

  4. Managing climate change refugia for climate adaptation

    Science.gov (United States)

    Toni Lyn Morelli; Christopher Daly; Solomon Z. Dobrowski; Deanna M. Dulen; Joseph L. Ebersole; Stephen T. Jackson; Jessica D. Lundquist; Connie Millar; Sean P. Maher; William B. Monahan; Koren R. Nydick; Kelly T. Redmond; Sarah C. Sawyer; Sarah Stock; Steven R. Beissinger

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that...

  5. Ground-Water Climate Response Network - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer shows the locations of wells maintained by the U.S. Geological Survey (USGS) that are used to monitor the effects of droughts and other climate...

  6. The Copernicus Climate Change Service (C3S): Open Access to a Climate Data Store

    Science.gov (United States)

    Thepaut, Jean-Noel; Dee, Dick

    2016-04-01

    In November 2014, The European Centre for Medium-range Weather Forecasts (ECMWF) signed an agreement with the European Commission to deliver two of the Copernicus Earth Observation Programme Services on the Commission's behalf. The ECMWF delivered services - the Copernicus Climate Change Service (C3S) and Atmosphere Monitoring Service (CAMS) - will bring a consistent standard to how we monitor and predict atmospheric conditions and climate change. They will maximise the potential of past, current and future earth observations - ground, ocean, airborne, satellite - and analyse these to monitor and predict atmospheric conditions and in the future, climate change. With the wealth of free and open data that the services provide, they will help business users to assess the impact of their business decisions and make informed choices, delivering a more energy efficient and climate aware economy. These sound investment decisions now will not only stimulate growth in the short term, but reduce the impact of climate change on the economy and society in the future. C3S is in its proof of concept phase and through its Climate Data Store will provide • global and regional climate data reanalyses; • multi-model seasonal forecasts; • customisable visual data to enable examination of wide range of scenarios and model the impact of changes; • access to all the underlying data, including climate data records from various satellite and in-situ observations. In addition, C3S will provide key indicators on climate change drivers (such as carbon dioxide) and impacts (such as reducing glaciers). The aim of these indicators will be to support European adaptation and mitigation policies in a number of economic sectors. At the heart of the Service is the provision of open access to a one stop shop (the Climate Data Store) of climate data and modelling, analysing more than 20 Essential Climate Variables to build a global picture of our past, present and future climate and developing

  7. Towards innovative roadside monitoring

    Science.gov (United States)

    Ojha, G.; Appel, E.; Magiera, T.

    2012-04-01

    Soil contamination along roadsides is an important factor of anthropogenic point source pollution. Climatic and traffic-specific factors influence the amount and characteristics of pollution emitted and deposited in the roadside soil. In our present study we focus on monitoring typical traffic pollutants (heavy metals HM, platinum group elements, polycyclic hydrocarbons PAH), and investigate the use of magnetic parameters, especially magnetic susceptibility (MS) as proxy. Monitoring plots were installed along roadside in areas with different climatic conditions and different traffic-specific activities (traffic density and speed, vehicle types, abrasion of tires, brake linings, petrol/diesel compounds and road maintenance). For monitoring we removed 10-15 cm of top soil at 1 m distance from the roadside edge and placed 30 plastic boxes there filled with clean quartz sand, to be sampled after regular intervals within two years. Preliminary data from the first year of monitoring are presented. Magnetic results revealed that a coarse grained magnetite-like phase is responsible for the enhancement of magnetic concentration. The mass-specific MS and concentration of pollutants (HM, PAH) all show a significant increase with time, however, there are obviously also seasonal and site-dependent effects which lead to more stable values over several months or even some decrease in the upper few cm due to migration into depth. Source identification indicates that the accumulated PAHs are primarily emissions from traffic. In order to be able to discriminate in between different kinds of transport and deposition (surface run off from the road and neighbouring soil material, splash water, air transport), we additionally established pillars at the roadside with clean quartz sampling boxes at different heights (surface, 0.5 m, 2 m). As a first surprising result we observed that the increase in the boxes at surface is not necessarily higher than at 0.5 m height. The results from our

  8. Detecting the climatic effects of increasing carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    MacCracken, M C; Luther, F M [eds.

    1985-12-01

    This report documents what is known about detecting the CO2-induced changes in climate, and describes the uncertainties and unknowns associated with this monitoring and analysis effort. The various approaches for detecting CO2-induced climate changes are discussed first, followed by a review of applications of these strategies to the various climatic variables that are expected to be changing. Recommendations are presented for research and analysis activities. Separate abstracts have been prepared for the individual papers. (ACR)

  9. Climate selection and development of climate indicators

    Energy Technology Data Exchange (ETDEWEB)

    Bowen, W.M.; Moreno, S.; Olsen, A.R.

    1982-09-01

    A climate analysis procedure for selecting climate locations which would represent the variation in climate conditions throughout the United States is documented. Separate energy analysis projects for three building categories were to use the results of the climate location project. The categories are: commercial buildings (including multifamily residences), single family residences, and mobile homes. The overall objectives, approach, and method used for all three categories are presented, then the specific application of the general method to each building category is discussed. Climate selection results, conclusions, recommendations, and limits for each building category are presented within the description of the application of the method for that category. (LEW)

  10. Planetary climates (princeton primers in climate)

    CERN Document Server

    Ingersoll, Andrew

    2013-01-01

    This concise, sophisticated introduction to planetary climates explains the global physical and chemical processes that determine climate on any planet or major planetary satellite--from Mercury to Neptune and even large moons such as Saturn's Titan. Although the climates of other worlds are extremely diverse, the chemical and physical processes that shape their dynamics are the same. As this book makes clear, the better we can understand how various planetary climates formed and evolved, the better we can understand Earth's climate history and future.

  11. Mapping Climate Change: Six U.S. Case Studies

    Science.gov (United States)

    Holmberg, Marjorie O.

    2010-01-01

    This research focuses on the current role of mapping practices in communicating climate change in the United States. This includes maps used in monitoring climate change, projecting its potential impacts, and identifying potential adaptation strategies at particular scales. Since few, if any, studies have been done specifically on mapping…

  12. Monarch Monitoring

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The US Fish and Wildlife Service has engaged in a multi-partnered, integrated strategy for monitoring conservation of the monarch butterfly (Danaus plexippus...

  13. Monitoring Hadoop

    CERN Document Server

    Singh, Gurmukh

    2015-01-01

    This book is useful for Hadoop administrators who need to learn how to monitor and diagnose their clusters. Also, the book will prove useful for new users of the technology, as the language used is simple and easy to grasp.

  14. Recombination monitor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S. Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-02-03

    This is a brief report on LEReC recombination monitor design considerations. The recombination produced Au78+ ion rate is reviewed. Based on this two designs are discussed. One is to use the large dispersion lattice. It is shown that even with the large separation of the Au78+ beam from the Au79+ beam, the continued monitoring of the recombination is not possible. Accumulation of Au78+ ions is needed, plus collimation of the Au79+ beam. In another design, it is shown that the recombination monitor can be built based on the proposed scheme with the nominal lattice. From machine operation point of view, this design is preferable. Finally, possible studies and the alternative strategies with the basic goal of the monitor are discussed.

  15. Climate Change Schools Project...

    Science.gov (United States)

    McKinzey, Krista

    2010-01-01

    This article features the award-winning Climate Change Schools Project which aims to: (1) help schools to embed climate change throughout the national curriculum; and (2) showcase schools as "beacons" for climate change teaching, learning, and positive action in their local communities. Operating since 2007, the Climate Change Schools…

  16. Climate Change Schools Project...

    Science.gov (United States)

    McKinzey, Krista

    2010-01-01

    This article features the award-winning Climate Change Schools Project which aims to: (1) help schools to embed climate change throughout the national curriculum; and (2) showcase schools as "beacons" for climate change teaching, learning, and positive action in their local communities. Operating since 2007, the Climate Change Schools Project…

  17. Climate Change Schools Project...

    Science.gov (United States)

    McKinzey, Krista

    2010-01-01

    This article features the award-winning Climate Change Schools Project which aims to: (1) help schools to embed climate change throughout the national curriculum; and (2) showcase schools as "beacons" for climate change teaching, learning, and positive action in their local communities. Operating since 2007, the Climate Change Schools…

  18. Bayesian Monitoring.

    OpenAIRE

    Kirstein, Roland

    2005-01-01

    This paper presents a modification of the inspection game: The ?Bayesian Monitoring? model rests on the assumption that judges are interested in enforcing compliant behavior and making correct decisions. They may base their judgements on an informative but imperfect signal which can be generated costlessly. In the original inspection game, monitoring is costly and generates a perfectly informative signal. While the inspection game has only one mixed strategy equilibrium, three Perfect Bayesia...

  19. Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water

    NARCIS (Netherlands)

    Wood, E.F.; Roundy, J.K.; Troy, T.J.; Beek, L.P.H. van; Bierkens, M.F.P.; Blyth, E.; Roo, A.A. de; Doll, P.; Ek, M.; Famiglietti, J.; Gochis, D.; Giesen, N. van de; Houser, P.; Jaffe, P.R.; Kollet, S.; Lehner, B.; Lettenmaier, D.P.; Peters-Liedard, C.; Sivapalan, M.; Sheffield, J.; Wade, A.; Whitehead, P.

    2011-01-01

    Monitoring Earth’s terrestrial water conditions is critically important to many hydrological applications such as global food production; assessing water resources sustainability; and flood, drought, and climate change prediction. These needs have motivated the development of pilot monitoring and

  20. The Copernicus Climate Change Service (C3S): A European Answer to Climate Change

    Science.gov (United States)

    Thepaut, Jean-Noel

    2016-04-01

    Copernicus is the European Commission's flagship Earth observation programme that delivers freely accessible operational data and information services. ECMWF has been entrusted to operate two key parts of the Copernicus programme, which will bring a consistent standard to the measurement, forecasting and prediction of atmospheric conditions and climate change: • The Copernicus Atmosphere Monitoring Service, CAMS, provides daily forecasts detailing the makeup composition of the atmosphere from the ground up to the stratosphere. • The Copernicus Climate Change Service (C3S) (in development) will routinely monitor and analyse more than 20 essential climate variables to build a global picture of our climate, from the past to the future, as well as developing customisable climate indicators for relevant economic sectors, such as energy, water management, agriculture, insurance, health…. C3S has now taken off and a number of proof-of-concept sectoral climate services have been initiated. This paper will focus on the description and expected outcome of these proof-of-concept activities as well as the definition of a roadmap towards a fully operational European Climate Change Service.

  1. Impacts of climate change on fisheries

    DEFF Research Database (Denmark)

    Brander, Keith

    2010-01-01

    experimentally and in controlled conditions. Indirect effects act via ecosystem processes and changes in the production of food or abundance of competitors, predators and pathogens. Recent studies of the effects of climate on primary production are reviewed and the consequences for fisheries production...... are evaluated through regional examples. Regional examples are also used to show changes in distribution and phenology of plankton and fish, which are attributed to climate. The role of discontinuous and extreme events (regime shifts, exceptional warm periods) is discussed. Changes in fish population processes...... and for adapting to climate change. in order to adapt to changing climate, future monitoring and research must be closely linked to responsive, flexible and reflexive management systems. (C) 2009 Elsevier B.V. All rights reserved....

  2. Assessing the effectiveness of climate adaptation

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Simon

    2011-10-15

    As governments and other agencies spend more money on adaptation to climate change they want to know that their investments are effective — that adaptation will keep development on track, that there is a fair distribution of costs and benefits, and that climate resilience is being built. But monitoring and evaluating adaptation policy and practice is not easy. Some approaches are unhelpful because they fail to integrate adaptation and development, use purely quantitative methods and do not include the perspectives of climate-vulnerable groups in their assessments. Enabling countries and organisations to effectively evaluate adaptation requires an inclusive approach built on sharing knowledge among all stakeholders — one that can capture behavioural and institutional changes and that answers to the needs of the climate-vulnerable poor.

  3. Agroclimate.Org: Tools and Information for a Climate Resilient Agriculture in the Southeast USA

    Science.gov (United States)

    Fraisse, C.

    2014-12-01

    AgroClimate (http://agroclimate.org) is a web-based system developed to help the agricultural industry in the southeastern USA reduce risks associated with climate variability and change. It includes climate related information and dynamic application tools that interact with a climate and crop database system. Information available includes climate monitoring and forecasts combined with information about crop management practices that help increase the resiliency of the agricultural industry in the region. Recently we have included smartphone apps in the AgroClimate suite of tools, including irrigation management and crop disease alert systems. Decision support tools available in AgroClimate include: (a) Climate risk: expected (probabilistic) and historical climate information and freeze risk; (b) Crop yield risk: expected yield based on soil type, planting date, and basic management practices for selected commodities and historical county yield databases; (c) Crop diseases: disease risk monitoring and forecasting for strawberry and citrus; (d) Crop development: monitoring and forecasting of growing degree-days and chill accumulation; (e) Drought: monitoring and forecasting of selected drought indices, (f) Footprints: Carbon and water footprint calculators. The system also provides background information about the main drivers of climate variability and basic information about climate change in the Southeast USA. AgroClimate has been widely used as an educational tool by the Cooperative Extension Services in the region and also by producers. It is now being replicated internationally with version implemented in Mozambique and Paraguay.

  4. Calibrating vascular plant abundance for detecting future climate changes in Oregon and Washington, USA

    Science.gov (United States)

    Timothy J. Brady; Vicente J. Monleon; Andrew N. Gray

    2010-01-01

    We propose using future vascular plant abundances as indicators of future climate in a way analogous to the reconstruction of past environments by many palaeoecologists. To begin monitoring future short-term climate changes in the forests of Oregon and Washington, USA, we developed a set of transfer functions for a present-day calibration set consisting of climate...

  5. Funding climate adaptation strategies with climate derivatives

    Directory of Open Access Journals (Sweden)

    L. Richard Little

    2015-01-01

    Full Text Available Climate adaptation requires large capital investments that could be provided not only by traditional sources like governments and banks, but also by derivatives markets. Such markets would allow two parties with different tolerances and expectations about climate risks to transact for their mutual benefit and, in so doing, finance climate adaptation. Here we calculate the price of a derivative called a European put option, based on future sea surface temperature (SST in Tasmania, Australia, with an 18 °C strike threshold. This price represents a quantifiable indicator of climate risk, and forms the basis for aquaculture industries exposed to the risk of higher SST to finance adaptation strategies through the sale of derivative contracts. Such contracts provide a real incentive to parties with different climate outlooks, or risk exposure to take a market assessment of climate change.

  6. Oregon Crest-to-Coast Environmental Monitoring Transect Dataset

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The US Environmental Protection Agency - Western Ecology Division (EPA) has been monitoring above- and belowground climate data from 23 locations along an Oregon...

  7. FUTURE CLIMATE ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    R.M. Forester

    2000-03-14

    This Analysis/Model Report (AMR) documents an analysis that was performed to estimate climatic variables for the next 10,000 years by forecasting the timing and nature of climate change at Yucca Mountain (YM), Nevada (Figure l), the site of a potential repository for high-level radioactive waste. The future-climate estimates are based on an analysis of past-climate data from analog meteorological stations, and this AMR provides the rationale for the selection of these analog stations. The stations selected provide an upper and a lower climate bound for each future climate, and the data from those sites will provide input to the infiltration model (USGS 2000) and for the total system performance assessment for the Site Recommendation (TSPA-SR) at YM. Forecasting long-term future climates, especially for the next 10,000 years, is highly speculative and rarely attempted. A very limited literature exists concerning the subject, largely from the British radioactive waste disposal effort. The discussion presented here is one method, among many, of establishing upper and lower bounds for future climate estimates. The method used here involves selecting a particular past climate from many past climates, as an analog for future climate. Other studies might develop a different rationale or select other past climates resulting in a different future climate analog.

  8. Natural Climate Variability and Future Climate Policy

    Science.gov (United States)

    Ricke, K.; Caldeira, K.

    2013-12-01

    Individual beliefs about climate change and willingness-to-pay for its mitigation are influenced by local weather and climate. Large ensemble climate modeling experiments have demonstrated the large role natural variability plays in local weather and climate on a multidecadal timescale. Here we illustrate how if support for global climate policies and subsequent implementation of those policies are determined by citizens' local experiences, natural variability could influence the timeline for implementation of emissions reduction policies by decades. The response of complex social systems to local and regional changes in weather and climate cannot be quantitatively predicted with confidence. Both the form and timing of the societal response can be affected by interactions between social systems and the physical climate system. Here, to illustrate one type of influence decadal natural variability can have on climate policy, we consider a simple example in which the only question is when, if ever, the different parties will support emissions reduction. To analyze the potential effect that unpredictable extreme events may have on the time to reach a global agreement on climate policy, we analyzed the output from a 40-member Community Climate System Model version 3 simulation ensemble to illustrate how local experiences might affect the timing of acceptance of strong climate policy measures. We assume that a nation's decision to take strong actions to abate emissions is contingent upon the local experiences of its citizens and then examine how the timelines for policy action may be influenced by variability in local weather. To illustrate, we assume that a social 'tipping point' is reached at the national level occurs when half of the population of a nation has experienced a sufficiently extreme event. If climate policies are driven by democratic consensus then variability in weather could result in significantly disparate times-to-action. For the top six CO2 emitters

  9. Organizational Climates: An Essay

    Science.gov (United States)

    Schneider, Benjamin

    1975-01-01

    The purposes of this essay are to (a) present some evidence about the importance of the climate concept as an aid in understanding employee behavior in work organizations and (b) provide a framework for guiding future climate research. (Author)

  10. Climate for Change?

    DEFF Research Database (Denmark)

    Wejs, Anja

    ’ results are presented in five journal articles. The articles’ areas of investigation take as their point of departure three planning areas that serve as planning tools for climate change integration: climate change planning, municipal spatial planning and strategic environmental assessment (SEA......Cities rather than national governments take the lead in acting on climate change. Several cities have voluntarily created climate change plans to prevent and prepare for the effects of climate change. In the literature climate change has been examined as a multilevel governance area taking place...... the constraints on climate change planning at the local level are absent. To understand these constraints, this PhD thesis investigates the institutional dynamics that influence the process of the integration of climate change into planning practices at the local level in Denmark. The examination of integration...

  11. Organizational Climates: An Essay

    Science.gov (United States)

    Schneider, Benjamin

    1975-01-01

    The purposes of this essay are to (a) present some evidence about the importance of the climate concept as an aid in understanding employee behavior in work organizations and (b) provide a framework for guiding future climate research. (Author)

  12. Climate Change and Health

    Science.gov (United States)

    ... sheets Fact files Questions & answers Features Multimedia Contacts Climate change and health Fact sheet Reviewed June 2016 Key ... in improved health, particularly through reduced air pollution. Climate change Over the last 50 years, human activities – particularly ...

  13. Doriot Climatic Chambers

    Data.gov (United States)

    Federal Laboratory Consortium — The Doriot Climatic Chambers are two, 60-feet long, 11-feet high, 15-feet wide chambers that are owned and operated by NSRDEC. The Doriot Climatic Chambers are among...

  14. Abrupt change in climate and climate models

    Directory of Open Access Journals (Sweden)

    A. J. Pitman

    2006-01-01

    Full Text Available First, we review the evidence that abrupt climate changes have occurred in the past and then demonstrate that climate models have developing capacity to simulate many of these changes. In particular, the processes by which changes in the ocean circulation drive abrupt changes appear to be captured by climate models to a degree that is encouraging. The evidence that past changes in the ocean have driven abrupt change in terrestrial systems is also convincing, but these processes are only just beginning to be included in climate models. Second, we explore the likelihood that climate models can capture those abrupt changes in climate that may occur in the future due to the enhanced greenhouse effect. We note that existing evidence indicates that a major collapse of the thermohaline circulation seems unlikely in the 21st century, although very recent evidence suggests that a weakening may already be underway. We have confidence that current climate models can capture a weakening, but a collapse in the 21st century of the thermohaline circulation is not projected by climate models. Worrying evidence of instability in terrestrial carbon, from observations and modelling studies, is beginning to accumulate. Current climate models used by the Intergovernmental Panel on Climate Change for the 4th Assessment Report do not include these terrestrial carbon processes. We therefore can not make statements with any confidence regarding these changes. At present, the scale of the terrestrial carbon feedback is believed to be small enough that it does not significantly affect projections of warming during the first half of the 21st century. However, the uncertainties in how biological systems will respond to warming are sufficiently large to undermine confidence in this belief and point us to areas requiring significant additional work.

  15. Abrupt change in climate and climate models

    Directory of Open Access Journals (Sweden)

    A. J. Pitman

    2006-07-01

    Full Text Available First, we review the evidence that abrupt climate changes have occurred in the past and then demonstrate that climate models have developing capacity to simulate many of these changes. In particular, the processes by which changes in the ocean circulation drive abrupt changes appear to be captured by climate models to a degree that is encouraging. The evidence that past changes in the ocean have driven abrupt change in terrestrial systems is also convincing, but these processes are only just beginning to be included in climate models. Second, we explore the likelihood that climate models can capture those abrupt changes in climate that may occur in the future due to the enhanced greenhouse effect. We note that existing evidence indicates that a major collapse of the thermohaline circulate seems unlikely in the 21st century, although very recent evidence suggests that a weakening may already be underway. We have confidence that current climate models can capture a weakening, but a collapse of the thermohaline circulation in the 21st century is not projected by climate models. Worrying evidence of instability in terrestrial carbon, from observations and modelling studies, is beginning to accumulate. Current climate models used by the Intergovernmental Panel on Climate Change for the 4th Assessment Report do not include these terrestrial carbon processes. We therefore can not make statements with any confidence regarding these changes. At present, the scale of the terrestrial carbon feedback is believed to be small enough that it does not significantly affect projections of warming during the first half of the 21st century. However, the uncertainties in how biological systems will respond to warming are sufficiently large to undermine confidence in this belief and point us to areas requiring significant additional work.

  16. Gender and Climate Justice

    OpenAIRE

    Ana Agostino; Rosa Lizarde

    2012-01-01

    Ana Agostino and Rosa Lizarde explore the concept of climate justice as a rights approach to climate change. They propose that those in the South who are most affected by environmental changes need to receive justice from those in the North who are most responsible for climate change. They apply a gender lens to climate change, analyzing how women have been specifically hit by the phenomenon and how they are responding.

  17. Regionalizing global climate models

    NARCIS (Netherlands)

    Pitman, A.J.; Arneth, A.; Ganzeveld, L.N.

    2012-01-01

    Global climate models simulate the Earth's climate impressively at scales of continents and greater. At these scales, large-scale dynamics and physics largely define the climate. At spatial scales relevant to policy makers, and to impacts and adaptation, many other processes may affect regional and

  18. Climate Observations from Space

    Science.gov (United States)

    Briggs, Stephen

    2016-07-01

    The latest Global Climate Observing System (GCOS) Status Report on global climate observations, delivered to the UNFCCC COP21 in November 2016, showed how satellite data are critical for observations relating to climate. Of the 50 Essential Climate Variables (ECVs) identified by GCOS as necessary for understanding climate change, about half are derived only from satellite data while half of the remainder have a significant input from satellites. Hence data from Earth observing satellite systems are now a fundamental requirement for understanding the climate system and for managing the consequences of climate change. Following the Paris Agreement of COP21 this need is only greater. Not only will satellites have to continue to provide data for modelling and predicting climate change but also for a much wider range of actions relating to climate. These include better information on loss and damage, resilience, improved adaptation to change, and on mitigation including information on greenhouse gas emissions. In addition there is an emerging need for indicators of the risks associated with future climate change which need to be better quantified, allowing policy makers both to understand what decisions need to be taken, and to see the consequences of their actions. The presentation will set out some of the ways in which satellite data are important in all aspects of understanding, managing and predicting climate change and how they may be used to support future decisions by those responsible for policy related to managing climate change and its consequences.

  19. Climate Change Law

    NARCIS (Netherlands)

    Farber, D.A.; Peeters, Marjan

    2016-01-01

    This book brings together over seventy fifty authors for a comprehensive examination of the emerging global regime of climate change law. Despite the relative youth of climate change law, we can already begin to see the outlines of legal regimes addressing climate change mitigation and adaptation (a

  20. IPCC's Climate Communication

    DEFF Research Database (Denmark)

    Almlund, Pernille

    all the IPCC’s assessment report have concluded that climate changes are human made and recently stated that 97 % of all climate researchers agree in that conclusion. Due to the theoretical work of Michel Callon, Lascoumes and Barthe (2011) and their ANT perspective, climate change can be observed...

  1. Climate models and scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Fortelius, C.; Holopainen, E.; Kaurola, J.; Ruosteenoja, K.; Raeisaenen, J. [Helsinki Univ. (Finland). Dept. of Meteorology

    1996-12-31

    In recent years the modelling of interannual climate variability has been studied, the atmospheric energy and water cycles, and climate simulations with the ECHAM3 model. In addition, the climate simulations of several models have been compared with special emphasis in the area of northern Europe

  2. Regionalizing global climate models

    NARCIS (Netherlands)

    Pitman, A.J.; Arneth, A.; Ganzeveld, L.N.

    2012-01-01

    Global climate models simulate the Earth's climate impressively at scales of continents and greater. At these scales, large-scale dynamics and physics largely define the climate. At spatial scales relevant to policy makers, and to impacts and adaptation, many other processes may affect regional and

  3. Simulating Global Climate Summits

    Science.gov (United States)

    Vesperman, Dean P.; Haste, Turtle; Alrivy, Stéphane

    2014-01-01

    One of the most persistent and controversial issues facing the global community is climate change. With the creation of the UN Framework Convention on Climate Change (UNFCCC) in 1992 and the Kyoto Protocol (1997), the global community established some common ground on how to address this issue. However, the last several climate summits have failed…

  4. Climate change assessments

    Science.gov (United States)

    Linda A. Joyce

    2008-01-01

    The science associated with climate and its effects on ecosystems, economies, and social systems is developing rapidly. Climate change assessments can serve as an important synthesis of this science and provide the information and context for management and policy decisions on adaptation and mitigation. This topic paper describes the variety of climate change...

  5. Simulating Global Climate Summits

    Science.gov (United States)

    Vesperman, Dean P.; Haste, Turtle; Alrivy, Stéphane

    2014-01-01

    One of the most persistent and controversial issues facing the global community is climate change. With the creation of the UN Framework Convention on Climate Change (UNFCCC) in 1992 and the Kyoto Protocol (1997), the global community established some common ground on how to address this issue. However, the last several climate summits have failed…

  6. Philosophy of climate science part I: observing climate change

    OpenAIRE

    Frigg, Roman; Thompson, Erica; Werndl, Charlotte

    2015-01-01

    This is the first of three parts of an introduction to the philosophy of climate science. In this first part about observing climate change, the topics of definitions of climate and climate change, data sets and data models, detection of climate change, and attribution of climate change will be discussed.

  7. Climate Leadership Awards Frequent Questions

    Science.gov (United States)

    Provides answers to frequently asked questions regarding the Climate Leadership Awards, sponsored by EPA's Center for Corporate Climate Leadership with co-sponsorship from the Center for Climate and Energy Solutions and The Climate Registry.

  8. Energy Monitoring

    DEFF Research Database (Denmark)

    Hansen, Claus T.; Madsen, Dines; Christiensen, Thomas

    Energy measurement has become an important aspect of our daily lives since we have learned that energy consumption, is one of the main source of global warming. Measuring instruments varies from a simple watt-meter to more sophisticated microprocessor control devices. The negative effects...... that fossil fuels induce on our environment has forced us to research renewable energy such as sunlight, wind etc. This new environmental awareness has also helped us to realize the importance of monitoring and controlling our energy use. The main purpose in this research is to introduce a more sophisticated...... but affordable way to monitor energy consumption of individuals or groups of home appliances. By knowing their consumption the utilization can be regulated for more efficient use. A prototype system has been constructed to demonstrate our idea....

  9. Energy Monitoring

    DEFF Research Database (Denmark)

    Hansen, Claus T.; Madsen, Dines; Christiensen, Thomas

    Energy measurement has become an important aspect of our daily lives since we have learned that energy consumption, is one of the main source of global warming. Measuring instruments varies from a simple watt-meter to more sophisticated microprocessor control devices. The negative effects...... that fossil fuels induce on our environment has forced us to research renewable energy such as sunlight, wind etc. This new environmental awareness has also helped us to realize the importance of monitoring and controlling our energy use. The main purpose in this research is to introduce a more sophisticated...... but affordable way to monitor energy consumption of individuals or groups of home appliances. By knowing their consumption the utilization can be regulated for more efficient use. A prototype system has been constructed to demonstrate our idea....

  10. Material monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kotter, W.; Zirker, L.; Hancock, J.A.

    1995-11-01

    Waste Reduction Operations Complex (WROC) facilities are located at the Idaho National Engineering Laboratory (INEL). The overall goal for the Pollution Prevention/Waste Minimization Unit is to identify and establish the correct amount of waste generated so that it can be reduced. Quarterly, the INEL Pollution Prevention (P2) Unit compares the projected amount of waste generated per process with the actual amount generated. Examples of waste streams that would be addresses for our facility would include be are not limited to: Maintenance, Upgrades, Office and Scrap Metal. There are three potential sources of this variance: inaccurate identification of those who generate the waste; inaccurate identification of the process that generates the waste; and inaccurate measurement of the actual amount generated. The Materials Monitoring Program was proposed to identify the sources of variance and reduce the variance to an acceptable level. Prior to the implementation of the Material Monitoring Program, all information that was gathered and recorded was done so through an informal estimation of waste generated by various personnel concerned with each processes. Due to the inaccuracy of the prior information gathering system, the Material Monitoring Program was established. The heart of this program consists of two main parts. In the first part potential waste generators provide information on projected waste generation process. In the second part, Maintenance, Office, Scrap Metal and Facility Upgrade wastes from given processes is disposed within the appropriate bin dedicated to that process. The Material Monitoring Program allows for the more accurate gathering of information on the various waste types that are being generated quarterly.

  11. Iterative functionalism and climate management regimes: From intergovernmental panel on climate change to intergovernmental negotiating committee

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, D.L. [Oak Ridge National Lab., TN (United States)]|[Tennessee Univ., Knoxville, TN (United States). Energy, Environment and Resources Center

    1992-06-01

    This paper contends that an iterative ``functionalist`` regime -- comprised of international organizations that monitor the global climate and perform scientific and policy research on prevention, mitigation, and adaptation strategies for response to possible global warming -- has developed over the past decade. A common global effort by scientists, diplomats, and others to negotiate a framework convention that would reduce emissions of carbon dioxide and other ``greenhouse gases`` has been brought about by this regime. Individuals that participate in this regime are engaged in several cooperative activities including: (1) international research on the causes and consequences of global change; (2) global environmental monitoring and standard-setting for analyses of climate data; and (3) negotiating a framework convention that places limits on greenhouse gas emissions by countries. The implications of this iterative approach for successful implementation of a treaty to forestall global climate change are discussed.

  12. Iterative functionalism and climate management regimes: From intergovernmental panel on climate change to intergovernmental negotiating committee

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, D.L. (Oak Ridge National Lab., TN (United States) Tennessee Univ., Knoxville, TN (United States). Energy, Environment and Resources Center)

    1992-01-01

    This paper contends that an iterative functionalist'' regime -- comprised of international organizations that monitor the global climate and perform scientific and policy research on prevention, mitigation, and adaptation strategies for response to possible global warming -- has developed over the past decade. A common global effort by scientists, diplomats, and others to negotiate a framework convention that would reduce emissions of carbon dioxide and other greenhouse gases'' has been brought about by this regime. Individuals that participate in this regime are engaged in several cooperative activities including: (1) international research on the causes and consequences of global change; (2) global environmental monitoring and standard-setting for analyses of climate data; and (3) negotiating a framework convention that places limits on greenhouse gas emissions by countries. The implications of this iterative approach for successful implementation of a treaty to forestall global climate change are discussed.

  13. Energy infrastructure in India: Profile and risks under climate change

    DEFF Research Database (Denmark)

    Garg, Amit; Naswa, Prakriti; Shukla, P.R.

    2015-01-01

    India has committed large investments to energy infrastructure assets-power plants, refineries, energy ports, pipelines, roads, railways, etc. The coastal infrastructure being developed to meet the rising energy imports is vulnerable to climate extremes. This paper provides an overview of climate...... risks to energy infrastructures in India and details two case studies - a crude oil importing port and a western coast railway transporting coal. The climate vulnerability of the port has been mapped using an index while that of the railway has been done through a damage function for RCP 4.5.0 and 8......-benefits. The key policy recommendations include: i) mandatory vulnerability assessment to future climate risks for energy infrastructures; ii) project and systemic risks in the vulnerability index; iii) adaptation funds for unmitigated climate risks; iv) continuous monitoring of climatic parameters...

  14. Addressing Climate Crisis

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    @@ A series of extreme global weather events,like floods in Pakistan and droughts in Russia,should serve as a call to the world to take action against climate change.But worries have been mounting since global climate talks stalled,partly due to rifts between developed and developing countries.What efforts should be made to force progress in the negotiating process? What role has China played in combating climate change? Su Wei,China's chief climate negotiator and Director-General of the Climate Change Department of the National Development and Reform Commission(NDRC),sat down with Beijing Review reporter Hu Yue to answer these questions and more.

  15. Mapping the landscape of climate engineering

    Science.gov (United States)

    Oldham, P.; Szerszynski, B.; Stilgoe, J.; Brown, C.; Eacott, B.; Yuille, A.

    2014-01-01

    In the absence of a governance framework for climate engineering technologies such as solar radiation management (SRM), the practices of scientific research and intellectual property acquisition can de facto shape the development of the field. It is therefore important to make visible emerging patterns of research and patenting, which we suggest can effectively be done using bibliometric methods. We explore the challenges in defining the boundary of climate engineering, and set out the research strategy taken in this study. A dataset of 825 scientific publications on climate engineering between 1971 and 2013 was identified, including 193 on SRM; these are analysed in terms of trends, institutions, authors and funders. For our patent dataset, we identified 143 first filings directly or indirectly related to climate engineering technologies—of which 28 were related to SRM technologies—linked to 910 family members. We analyse the main patterns discerned in patent trends, applicants and inventors. We compare our own findings with those of an earlier bibliometric study of climate engineering, and show how our method is consistent with the need for transparency and repeatability, and the need to adjust the method as the field develops. We conclude that bibliometric monitoring techniques can play an important role in the anticipatory governance of climate engineering. PMID:25404683

  16. The climate4impact platform: Providing, tailoring and facilitating climate model data access

    Science.gov (United States)

    Pagé, Christian; Pagani, Andrea; Plieger, Maarten; Som de Cerff, Wim; Mihajlovski, Andrej; de Vreede, Ernst; Spinuso, Alessandro; Hutjes, Ronald; de Jong, Fokke; Bärring, Lars; Vega, Manuel; Cofiño, Antonio; d'Anca, Alessandro; Fiore, Sandro; Kolax, Michael

    2017-04-01

    contribution to ESGF and contributes to the ESGF open source effort, notably through the development of search, monitoring, quality control, and metadata services. In its second phase, IS-ENES2 supports the implementation of regional climate model results from the international Coordinated Regional Downscaling Experiments (CORDEX). These services were extended within the European FP7 Climate Information Portal for Copernicus (CLIPC) project, and some could be later integrated into the European Copernicus platform.

  17. Cosmic Rays and Climate

    CERN Document Server

    Kirkby, Jasper

    2007-01-01

    Among the most puzzling questions in climate change is that of solar-climate variability, which has attracted the attention of scientists for more than two centuries. Until recently, even the existence of solar-climate variability has been controversial—perhaps because the observations had largely involved correlations between climate and the sunspot cycle that had persisted for only a few decades. Over the last few years, however, diverse reconstructions of past climate change have revealed clear associations with cosmic ray variations recorded in cosmogenic isotope archives, providing persuasive evidence for solar or cosmic ray forcing of the climate. However, despite the increasing evidence of its importance, solar-climate variability is likely to remain controversial until a physical mechanism is established. Although this remains a mystery, observations suggest that cloud cover may be influenced by cosmic rays, which are modulated by the solar wind and, on longer time scales, by the geomagnetic fiel...

  18. Climate Change in Prehistory

    Science.gov (United States)

    Burroughs, William James

    2005-06-01

    How did humankind deal with the extreme challenges of the last Ice Age? How have the relatively benign post-Ice Age conditions affected the evolution and spread of humanity across the globe? By setting our genetic history in the context of climate change during prehistory, the origin of many features of our modern world are identified and presented in this illuminating book. It reviews the aspects of our physiology and intellectual development that have been influenced by climatic factors, and how features of our lives - diet, language and the domestication of animals - are also the product of the climate in which we evolved. In short: climate change in prehistory has in many ways made us what we are today. Climate Change in Prehistory weaves together studies of the climate with anthropological, archaeological and historical studies, and will fascinate all those interested in the effects of climate on human development and history.

  19. What Is Climate?

    Science.gov (United States)

    Lovejoy, S.

    2013-01-01

    Most people have an intuitive understanding of the weather as referring to the state of the atmosphere at a given time and place and of the climate as a kind of average weather. A popular expression of this dichotomy is "the climate is what you expect, the weather is what you get" (Heinlein [1973, p. 352], although often attributed to Mark Twain). Implicit in this belief is the notion of climate as a kind of constant natural state to which the weather would converge if it were averaged over a long enough period. A corollary is that climate change is a consequence of "climate forcings," which are external to the natural climate system and which tend to prevent averages from converging to their true values. In this framework, past climate change may be attributed to orbital changes, variations in solar output, volcanic eruptions, etc. For the recent period, anthropogenic forcings can be added.

  20. Financing climate change adaptation.

    Science.gov (United States)

    Bouwer, Laurens M; Aerts, Jeroen C J H

    2006-03-01

    This paper examines the topic of financing adaptation in future climate change policies. A major question is whether adaptation in developing countries should be financed under the 1992 United Nations Framework Convention on Climate Change (UNFCCC), or whether funding should come from other sources. We present an overview of financial resources and propose the employment of a two-track approach: one track that attempts to secure climate change adaptation funding under the UNFCCC; and a second track that improves mainstreaming of climate risk management in development efforts. Developed countries would need to demonstrate much greater commitment to the funding of adaptation measures if the UNFCCC were to cover a substantial part of the costs. The mainstreaming of climate change adaptation could follow a risk management path, particularly in relation to disaster risk reduction. 'Climate-proofing' of development projects that currently do not consider climate and weather risks could improve their sustainability.

  1. Technology monitoring; Technologie-Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Eicher, H.; Rigassi, R. [Eicher und Pauli AG, Liestal (Switzerland); Ott, W. [Econcept AG, Zuerich (Switzerland)

    2003-07-01

    This study made for the Swiss Federal Office of Energy (SFOE) examines ways of systematically monitoring energy technology development and the cost of such technologies in order to pave the way to a basis for judging the economic development of new energy technologies. Initial results of a survey of the past development of these technologies are presented and estimates are made of future developments in the areas of motor-based combined heat and power systems, fuel-cell heating units for single-family homes and apartment buildings, air/water heat pumps for new housing projects and high-performance thermal insulation. The methodology used for the monitoring and analysis of the various technologies is described. Tables and diagrams illustrate the present situation and development potential of various fields of technology.

  2. Climate change and the Delta

    Science.gov (United States)

    Dettinger, Michael; Anderson, Jamie; Anderson, Michael L.; Brown, Larry R.; Cayan, Daniel; Maurer, Edwin P.

    2016-01-01

    Anthropogenic climate change amounts to a rapidly approaching, “new” stressor in the Sacramento–San Joaquin Delta system. In response to California’s extreme natural hydroclimatic variability, complex water-management systems have been developed, even as the Delta’s natural ecosystems have been largely devastated. Climate change is projected to challenge these management and ecological systems in different ways that are characterized by different levels of uncertainty. For example, there is high certainty that climate will warm by about 2°C more (than late-20th-century averages) by mid-century and about 4°C by end of century, if greenhouse-gas emissions continue their current rates of acceleration. Future precipitation changes are much less certain, with as many climate models projecting wetter conditions as drier. However, the same projections agree that precipitation will be more intense when storms do arrive, even as more dry days will separate storms. Warmer temperatures will likely enhance evaporative demands and raise water temperatures. Consequently, climate change is projected to yield both more extreme flood risks and greater drought risks. Sea level rise (SLR) during the 20th century was about 22cm, and is projected to increase by at least 3-fold this century. SLR together with land subsidence threatens the Delta with greater vulnerabilities to inundation and salinity intrusion. Effects on the Delta ecosystem that are traceable to warming include SLR, reduced snowpack, earlier snowmelt and larger storm-driven streamflows, warmer and longer summers, warmer summer water temperatures, and water-quality changes. These changes and their uncertainties will challenge the operations of water projects and uses throughout the Delta’s watershed and delivery areas. Although the effects of climate change on Delta ecosystems may be profound, the end results are difficult to predict, except that native species will fare worse than invaders. Successful

  3. Prediction of primary climate variability modes at the Beijing Climate Center

    Science.gov (United States)

    Ren, Hong-Li; Jin, Fei-Fei; Song, Lianchun; Lu, Bo; Tian, Ben; Zuo, Jinqing; Liu, Ying; Wu, Jie; Zhao, Chongbo; Nie, Yu; Zhang, Peiqun; Ba, Jin; Wu, Yujie; Wan, Jianghua; Yan, Yuping; Zhou, Fang

    2017-02-01

    Climate variability modes, usually known as primary climate phenomena, are well recognized as the most important predictability sources in subseasonal-interannual climate prediction. This paper begins by reviewing the research and development carried out, and the recent progress made, at the Beijing Climate Center (BCC) in predicting some primary climate variability modes. These include the El Niño-Southern Oscillation (ENSO), Madden-Julian Oscillation (MJO), and Arctic Oscillation (AO), on global scales, as well as the sea surface temperature (SST) modes in the Indian Ocean and North Atlantic, western Pacific subtropical high (WPSH), and the East Asian winter and summer monsoons (EAWM and EASM, respectively), on regional scales. Based on its latest climate and statistical models, the BCC has established a climate phenomenon prediction system (CPPS) and completed a hindcast experiment for the period 1991-2014. The performance of the CPPS in predicting such climate variability modes is systematically evaluated. The results show that skillful predictions have been made for ENSO, MJO, the Indian Ocean basin mode, the WPSH, and partly for the EASM, whereas less skillful predictions were made for the Indian Ocean Dipole (IOD) and North Atlantic SST Tripole, and no clear skill at all for the AO, subtropical IOD, and EAWM. Improvements in the prediction of these climate variability modes with low skill need to be achieved by improving the BCC's climate models, developing physically based statistical models as well as correction methods for model predictions. Some of the monitoring/prediction products of the BCC-CPPS are also introduced in this paper.

  4. Climate plan 2004; Plan climat 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The Climate Plan is an action plan drawn up by the French Government to respond to the climate change challenge, first by 2010 (complying with the Kyoto Protocol target), and, secondly, beyond this date. Projections for France show that national emissions could be 10% higher than the Kyoto target in 2010 if no measures are taken. This is particularly due to increasing emissions in the sectors affecting daily life (residential-tertiary sectors, transport, etc.). For this reason, the Climate Plan contains measures affecting all sectors of the economy and the daily life of all French citizens with a view to economizing the equivalent of 54 million tonnes of CO{sub 2} each year by the year 2010, which will help to reverse the trend significantly. Beyond 2010, the Climate Plan sets out a strategy for technological research which will enable France to meet a target of reducing greenhouse gas emissions four or fivefold by 2050. (author)

  5. Monitoring microcirculation.

    Science.gov (United States)

    Ocak, Işık; Kara, Atila; Ince, Can

    2016-12-01

    The clinical relevance of microcirculation and its bedside observation started gaining importance in the 1990s since the introduction of hand-held video microscopes. From then, this technology has been continuously developed, and its clinical relevance has been established in more than 400 studies. In this paper, we review the different types of video microscopes, their application techniques, the microcirculation of different organ systems, the analysis methods, and the software and scoring systems. The main focus of this review will be on the state-of-art technique, CytoCam-incident dark-field imaging, and the most recent technological and technical updates concerning microcirculation monitoring.

  6. Incorporating climate change projections into riparian restoration planning and design

    Science.gov (United States)

    Perry, Laura G.; Lindsay V. Reynolds,; Beechie, Timothy J.; Collins, Mathias J.; Shafroth, Patrick B.

    2015-01-01

    Climate change and associated changes in streamflow may alter riparian habitats substantially in coming decades. Riparian restoration provides opportunities to respond proactively to projected climate change effects, increase riparian ecosystem resilience to climate change, and simultaneously address effects of both climate change and other human disturbances. However, climate change may alter which restoration methods are most effective and which restoration goals can be achieved. Incorporating climate change into riparian restoration planning and design is critical to long-term restoration of desired community composition and ecosystem services. In this review, we discuss and provide examples of how climate change might be incorporated into restoration planning at the key stages of assessing the project context, establishing restoration goals and design criteria, evaluating design alternatives, and monitoring restoration outcomes. Restoration planners have access to numerous tools to predict future climate, streamflow, and riparian ecology at restoration sites. Planners can use those predictions to assess which species or ecosystem services will be most vulnerable under future conditions, and which sites will be most suitable for restoration. To accommodate future climate and streamflow change, planners may need to adjust methods for planting, invasive species control, channel and floodplain reconstruction, and water management. Given the considerable uncertainty in future climate and streamflow projections, riparian ecological responses, and effects on restoration outcomes, planners will need to consider multiple potential future scenarios, implement a variety of restoration methods, design projects with flexibility to adjust to future conditions, and plan to respond adaptively to unexpected change.

  7. Cardiac event monitors

    Science.gov (United States)

    ... ECG) - ambulatory; Continuous electrocardiograms (EKGs); Holter monitors; Transtelephonic event monitors ... attached. You can carry or wear a cardiac event monitor up to 30 days. You carry the ...

  8. Climate Literacy Ambassadors

    Science.gov (United States)

    Ackerman, S. A.; Mooney, M. E.

    2011-12-01

    The Climate Literacy Ambassadors program is a collaborative effort to advance climate literacy led by the Cooperative Institute of Meteorological Satellite Studies (CIMSS) at the University of Wisconsin-Madison. With support from NASA, CIMSS is coordinating a three-tiered program to train G6-12 teachers to be Ambassadors of Climate Literacy in their schools and communities. The complete training involves participation at a teacher workshop combined with web-based professional development content around Global and Regional Climate Change. The on-line course utilizes e-learning technology to clarify graphs and concepts from the 2007 Intergovernmental Panel on Climate Change Summary for Policy Makers with content intricately linked to the Climate Literacy: The Essential Principles of Climate Science. Educators who take the course for credit can develop lesson plans or opt for a project of their choosing. This session will showcase select lesson plans and projects, ranging from a district-wide action plan that engaged dozens of teachers to Ambassadors volunteering at the Aldo Leopold Climate Change Nature Center to a teacher who tested a GLOBE Student Climate Research Campaign (SCRC) learning project with plans to participate in the SCRC program. Along with sharing successes from the CIMSS Climate Literacy Ambassadors project, we will share lessons learned related to the challenges of sustaining on-line virtual educator communities.

  9. Climate change damage functions in LCA

    DEFF Research Database (Denmark)

    Callesen, Ingeborg; Beier, Claus; Bagger Jørgensen, Rikke

    will be variable (2). Modeling exercises suggest large-scale range shifts of the major biomes of the world (1). The unknown magnitude of future GHG emissions and the complexity of the climate-carbon system induce large uncertainties in the projected changes. A changed climate may result in new interactions and new...... described. How will these services be affected by the increasing atmospheric GHG concentrations ? How can the changes be expressed in a damage model for LCIA? For the area of protection ‘Natural environment’ both sensitive and robust responses to climate change may be foreseen for different species within...... ecosystems and between ecosystems. A common metric may thus show high variability. Plural metrics may be needed to adequately describe the variety of different ecosystem services in different regional settings. By evaluation of available data from e.g. global monitoring initiatives of ecosystem services...

  10. Eye tracking and climate change: How is climate literacy information processed?

    Science.gov (United States)

    Williams, C. C.; McNeal, K. S.

    2011-12-01

    The population of the Southeastern United States is perceived to be resistant to information regarding global climate change. The Climate Literacy Partnership in the Southeast (CLiPSE) project was formed to provide a resource for climate science information. As part of this project, we are evaluating the way that education materials influence the interpretation of climate change related information. At Mississippi State University, a study is being conducted examining how individuals from the Southeastern United States process climate change information and whether or not the interaction with such information impacts the interpretation of subsequent climate change related information. By observing the patterns both before and after an educational intervention, we are able to evaluate the effectiveness of the climate change information on an individual's interpretation of related information. Participants in this study view figures describing various types of climate change related information (CO2 emissions, sea levels, etc.) while their eye movements are tracked to determine a baseline for the way that they process this type of graphical data. Specifically, we are examining time spent viewing and number of fixations on critical portions of the figures prior to exposure to an educational document on climate change. Following the baseline period, we provide participants with portions of a computerized version of Climate Literacy: The Essential Principles of Climate Sciences that the participants read at their own pace while their eye movements are monitored. Participants are told that they will be given a test on the material after reading the resource. After reading the excerpt, participants are presented with a new set of climate change related figures to interpret (with eye tracking) along with a series of questions regarding information contained in the resource. We plan to evaluate changes that occur in the way that climate change related information is

  11. Climate and Health Vulnerability to Vector-Borne Diseases: Increasing Resilience under Climate Change Conditions in Africa

    Science.gov (United States)

    Ceccato, P.

    2015-12-01

    The International Research Institute for Climate and Society (IRI), the City University of New York (CUNY) and NASA Jet Propulsion Laboratory (JPL) in collaboration with NASA SERVIR are developing tools to monitor climate variables (precipitation, temperature, vegetation, water bodies, inundation) that help projects in Africa to increase resilience to climate change for vector-borne diseases ( malaria, trypanosomiasis, leishmaniasis, and schistosomiasis). Through the development of new products to monitor precipitation, water bodies and inundation, IRI, CUNY and JPL provide tools and capacity building to research communities; ministries of health; the WMO Global Framework for Climate and Services; and World Health Organization in Africa to: 1) Develop research teams' ability to appropriately use climate data as part of their research 2) Enable research teams and ministries to integrate climate information into social and economic drivers of vulnerability and opportunities for adaptation to climate change 3) Inform better policies and programs for climate change adaptation. This oral presentation will demonstrate how IRI, CUNY, and JPL developed new products, tools and capacity building to achieve the three objectives mentioned above with examples in South Africa, Zimbabwe, Tanzania and Malawi.

  12. Global Climate Change: National Security Implications

    Science.gov (United States)

    2008-05-01

    Probably long term, the single most important issue we face as a global community.” Cited in sciencepolicy.colorado.edu/ prometheus /archives/climate_ change...Surface Temperature Monitoring for Malaria Early Warning in Botswana,” American Journal of Tropical Medicine and Hygiene, Vol. 73, No. 1, 2005, pp...1950,” Tropical Medicine and International Health, Vol. 7, No. 8, pp. 657-677, August 2002. 9. Price-Smith, Contagion and Chaos. 10. E. Worral et

  13. Climate Change and Future World

    Science.gov (United States)

    2013-03-01

    fresh water. Movements of migrants from northern Africa and the Middle-East are already a security problem for Europe . This phenomenon is likely to be...Climate Change Science Program , Climate Literacy – The Essential Principles of Climate Sciences, 3. (http://library.globalchange.gov/climate...06/2013. 21 U.S. Climate Change Science Program , Climate Literacy – The Essential Principles of Climate Sciences, 3. (http

  14. Asking about climate change

    DEFF Research Database (Denmark)

    Nielsen, Jonas Østergaard; D'haen, Sarah Ann Lise

    2014-01-01

    There is increasing evidence that climate change will strongly affect people across the globe. Likely impacts of and adaptations to climate change are drawing the attention of researchers from many disciplines. In adaptation research focus is often on perceptions of climate change...... and on vulnerability and adaptation strategies in a particular region or community. But how do we research the ways in which people experience changing climatic conditions, the processes of decision-making, the actual adaptation strategies carried out and the consequences of these for actors living and dealing...... with climate change? On the basis of a literature review of all articles published in Global Environmental Change between 2000 and 2012 that deal with human dimensions of climate change using qualitative methods this paper provides some answers but also raises some concerns. The period and length of fieldwork...

  15. Monitoring Leverage

    DEFF Research Database (Denmark)

    Geanakoplos, John; Heje Pedersen, Lasse

    2014-01-01

    We argue that leverage is a central element of economic cycles and discuss how leverage can be properly monitored. While traditionally the interest rate has been regarded as the single key feature of a loan, we contend that the size of the loan, i.e., the leverage, is in fact a more important...... measure of systemic risk. Indeed, systemic crises tend to erupt when highly leveraged economic agents are forced to deleverage, sending the economy into recession. We emphasize the importance of measuring both the average leverage on old loans (which captures the economy's vulnerability) and the leverage...... offered on new loans (which captures current credit conditions) since the economy enters a crisis when leverage on new loans is low and leverage on old loans is high. While leverage plays an important role in several economic models, the data on leverage is model-free and simply needs to be collected...

  16. Treaty Monitoring

    DEFF Research Database (Denmark)

    Canty, M.; Lingenfelder, I.; Nielsen, Allan Aasbjerg;

    2009-01-01

    This volume provides the reader with an overview of the state-of-the-art Earth Observation (EO) related research that deals with national and international security. An interdisciplinary approach was adopted in this book in order to provide the reader with a broad understanding on the uses...... of remote sensing technologies. The book therefore comprises management aspects (issues and priorities of security research, crisis response), applied methodologies and process chains (treaty monitoring, estimation of population densities and characteristics, border permeability models, damage assessment......, as well as project managers and decision makers working in the field of security having an interest in technical solutions. The integrative use of many figures and sample images are ideal in enabling the non-technical reader to grasp quickly the modern technologies that are being researched in the area...

  17. Intracranial pressure monitoring

    Science.gov (United States)

    ICP monitoring; CSF pressure monitoring ... There are 3 ways to monitor pressure in the skull (intracranial pressure). INTRAVENTRICULAR CATHETER The intraventricular catheter is the most accurate monitoring method. To insert an intraventricular catheter, a ...

  18. Improved sea level record over the satellite altimetry era (1993-2010) from the Climate Change Initiative project

    DEFF Research Database (Denmark)

    Ablain, M.; Cazenave, A.; Larnicol, G.;

    2015-01-01

    Sea level is one of the 50 Essential Climate Variables (ECVs) listed by the Global Climate Observing System (GCOS) in climate change monitoring. In the past two decades, sea level has been routinely measured from space using satellite altimetry techniques. In order to address a number of importan...

  19. Climate Change in the Social Studies Classroom: A "Why" and "How To" Guide Using the C3 Framework

    Science.gov (United States)

    Kumler, Lori M.; Vosburg-Bluem, Bethany

    2014-01-01

    Weather phenomena across the United States have provided heightened attention to climate change in headlines such as "Heavy Rain and Floods: The 'New Normal' with Climate Change?" ("Christian Science Monitor," Aug. 14, 2014); "Delay Action on Climate Change by 10 Years and Costs Rocket 40%"…

  20. Climate Change in the Social Studies Classroom: A "Why" and "How To" Guide Using the C3 Framework

    Science.gov (United States)

    Kumler, Lori M.; Vosburg-Bluem, Bethany

    2014-01-01

    Weather phenomena across the United States have provided heightened attention to climate change in headlines such as "Heavy Rain and Floods: The 'New Normal' with Climate Change?" ("Christian Science Monitor," Aug. 14, 2014); "Delay Action on Climate Change by 10 Years and Costs Rocket 40%"…

  1. Climate strategy for Africa

    OpenAIRE

    Hernes, Helga; Dalfelt, Arne; Berntsen, Terje; Holtsmark, Bjart; Næss, Lars Otto; Selrod, Rolf; Aaheim, H. Asbjørn

    1995-01-01

    1. General observations Africa south of the Sahara is probably the most vulnerable region when it comes to the impact and consequences of climate changes. Yet the African continent runs a serious risk of being marginalized in the global dialogue on climate issues. Africa contributes little to the global emissions of CO2, and other greenhouse gases. The major focus of the Framework Convention on Climate Change is on abatement and mitigation of emissions rather than adaptation to the con...

  2. PALEOCLIMATE: Glacial Climate Instability.

    Science.gov (United States)

    Labeyrie, L

    2000-12-08

    Throughout the last glacial period, rapid climatic changes called Dansgaard-Oeschger (D-O) events occurred in the Northern Hemisphere. As Labeyrie discusses in his Perspective, these events are ideal targets for testing our understanding of climate change and developing climatic change models. Important steps toward understanding D-O events, particularly regarding the role of the low latitudes, are now reported by Hughen et al. and Peterson et al.

  3. Review of Climate Scenarios

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Concept and application requirements of climate scenarios were introduced briefly,meanwhile,progresses on theoretical and applied aspects of climate scenarios creation techniques were discussed systematically.Two methods on predicted regional climate changing scenarios,elevating the spatial resolution output and downscaling method,could retrieve the insufficiencies respectively.And the statistical-dynamical downscaling method will be an important developing trend in the developing of downscaling techniques.

  4. Monitoring of greenhouse gases and aerosols at Svalbard and Birkenes

    Energy Technology Data Exchange (ETDEWEB)

    Myhre, C.L.; Hermansen, O.; Fjaeraa, A.M.; Lunder, C.; Fiebig, M.; Schmidbauer, N.; Krognes, T.; Stebel, K.

    2012-07-01

    The report summaries the activities and results of the greenhouse gas monitoring at the Zeppelin and observatory situated on Svalbard in Arctic Norway during the period 2001-2010 and the greenhouse gas monitoring and aerosol observations from Birkenes for 2010. The monitoring programme is performed by the NILU - Norwegian Institute for Air Research and funded by the Norwegian Pollution Control Authority (SFT) (now Climate and Pollution Agency) and NILU - Norwegian Institute for Air Research.(Author)

  5. Review on Environment Monitoring System and Energy Efficiency

    OpenAIRE

    Nikita Gaikwad; Yogita Mistry

    2015-01-01

    The Environment monitoring is one of the applications of wireless sensor network. The most serious environment pollution is air pollution because different air pollutant causes damage to human health and causes global warming. To avoid such effect on human health and climate change Environment monitoring systems are used. This paper provides the short overview of different environmental air pollution monitoring systems and Energy efficiency in WSN to reduced the power consumption ...

  6. Review on Environment Monitoring System and Energy Efficiency

    Directory of Open Access Journals (Sweden)

    Nikita Gaikwad

    2015-07-01

    Full Text Available The Environment monitoring is one of the applications of wireless sensor network. The most serious environment pollution is air pollution because different air pollutant causes damage to human health and causes global warming. To avoid such effect on human health and climate change Environment monitoring systems are used. This paper provides the short overview of different environmental air pollution monitoring systems and Energy efficiency in WSN to reduced the power consumption of system.

  7. Rapid climate change: scientific challenges and the new NERC programme

    OpenAIRE

    Srokosz, M.A.

    2003-01-01

    In this paper the scientific challenges of observing, modelling, understanding and\\ud predicting rapid changes in climate are discussed, with a specific focus on the role\\ud of the Atlantic thermohaline circulation. The palaeo and present-day observational\\ud and modelling studies being carried out to meet these challenges, under the aegis of a new NERC Rapid Climate Change thematic programme (RAPID), are outlined.\\ud In particular, the paper describes the work being done to monitor changes i...

  8. Coral-based climate records from tropical South Atlantic

    DEFF Research Database (Denmark)

    Pereira, Natan S.; Sial, Alcides N.; Kikuchi, Ruy K.P.

    2015-01-01

    astreoides from the Rocas Atoll (offshore Brazil), a new location for climate reconstruction. We present time series of isotopic variation from profiles along the corallite valley of one colony and the apex of the corallite fan of the other colony. Significant differences in the isotopic values between...... with a bloom of endolithic algae, may indicate physiological alteration of this colony. Our findings indicate that corals from the Rocas Atoll can be used for monitoring climate oscillations in the tropical South Atlantic Ocean....

  9. Future Climate Analysis

    Energy Technology Data Exchange (ETDEWEB)

    C. G. Cambell

    2004-09-03

    This report documents an analysis that was performed to estimate climatic variables for the next 10,000 years by forecasting the timing and nature of climate change at Yucca Mountain, Nevada, the site of a repository for spent nuclear fuel and high-level radioactive waste. The future-climate estimates are based on an analysis of past-climate data from analog meteorological stations, and this report provides the rationale for the selection of these analog stations. The stations selected provide an upper and a lower climate bound for each future climate, and the data from those sites will provide input to the following reports: ''Simulation of Net Infiltration for Present-Day and Potential Future Climates'' (BSC 2004 [DIRS 170007]), ''Total System Performance Assessment (TSPA) Model/Analysis for the License Application'' (BSC 2004 [DIRS 168504]), ''Features, Events, and Processes in UZ Flow and Transport'' (BSC 2004 [DIRS 170012]), and ''Features, Events, and Processes in SZ Flow and Transport'' (BSC 2004 [DIRS 170013]). Forecasting long-term future climates, especially for the next 10,000 years, is highly speculative and rarely attempted. A very limited literature exists concerning the subject, largely from the British radioactive waste disposal effort. The discussion presented here is one available forecasting method for establishing upper and lower bounds for future climate estimates. The selection of different methods is directly dependent on the available evidence used to build a forecasting argument. The method used here involves selecting a particular past climate from many past climates, as an analog for future climate. While alternative analyses are possible for the case presented for Yucca Mountain, the evidence (data) used would be the same and the conclusions would not be expected to drastically change. Other studies might develop a different rationale or select other past

  10. Defending climate science

    Science.gov (United States)

    Showstack, Randy

    2012-01-01

    The National Center for Science Education (NCSE), which has long been in the lead in defending the teaching of evolution in public schools, has expanded its core mission to include defending climate science, the organization announced in January. “We consider climate change a critical issue in our own mission to protect the integrity of science education,” said NSCE executive director Eugenie Scott. “Climate affects everyone, and the decisions we make today will affect generations to come. We need to teach kids now about the realities of global warming and climate change so that they're prepared to make informed, intelligent decisions in the future.”

  11. Chatham Islands Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Mullan, B.; Salinger, J.; Thompson, C.; Ramsay, D.; Wild, M.

    2005-06-15

    This brief report provides guidance on climate change specific to the Chatham Islands, to complement the information recently produced for local government by the Ministry for the Environment in 'Climate Change Effects and Impacts Assessment: A guidance manual for Local Government in New Zealand' and 'Coastal Hazards and Climate Change: A guidance manual for Local Government in New Zealand'. These previous reports contain a lot of generic information on climate change, and how to assess associated risks, that is relevant to the Chatham Islands Council.

  12. DORIOT CLIMATIC CHAMBERS

    Data.gov (United States)

    Federal Laboratory Consortium — The Doriot Climatic Chambers reproduce environmental conditions occurring anywhere around the world. They provide an invaluable service by significantly reducing the...

  13. Climate and Ancient Societies

    DEFF Research Database (Denmark)

    Climate, and human responses to it, have a strongly interconnected relationship. This when climate change occurs, the result of either natural or human causes, societies should react and adapt to these. But do they? If so, what is the nature of that change, and are the responses positive...... or negative for the long-term survival of social groups? In this volume, scholars from diverse disciplines including archaeology, geology and climate sciences explore scientific and material evidence for climate changes in the past, their causes, their effects on ancient societies and how those societies...

  14. Climate Change and Roads

    DEFF Research Database (Denmark)

    Chinowsky, P.; Arndt, Channing

    2012-01-01

    Decision-makers who are responsible for determining when and where infrastructure should be developed and/or enhanced are facing a new challenge with the emerging topic of climate change. The paper introduces a stressor–response methodology where engineering-based models are used as a basis...... four climate projection scenarios, the paper details how climate change response decisions may cost the Mozambican government in terms of maintenance costs and long-term roadstock inventory reduction. Through this approach the paper details how a 14% reduction in inventory loss can be achieved through...... the adoption of a proactive, design standard evolution approach to climate change....

  15. Climate Action Tracker Update. Climate Shuffle

    Energy Technology Data Exchange (ETDEWEB)

    Hoehne, N.; Fekete, H.; Vieweg, M.; Hare, B.; Schaeffer, M.; Rocha, M.; Larkin, J.; Guetschow, J.; Jeffery, L.

    2011-11-15

    The Climate Action Tracker (CAT) compares and assesses national and global action against a range of different climate targets across all relevant time frames, starting with an ongoing analysis of countries' current emission reduction pledges. National action on climate change mitigation appears to be joining the international climate negotiations in the new and ever popular 'climate shuffle' dance. It involves maximum effort and motion while staying in the same spot, or even, in some cases, going backwards. Recent emissions trends and estimates of the effects of those policies in place and proposed lead to a new estimate that warming is likely to approach 4C by 2100, significantly above the warming that would result from full implementation of the pledges (3.3C). The continuous global fossil-fuel intensive development of the past decade suggests that high warming levels of 4C are more plausible than assuming full implementation of current pledges. Evidence is ever increasing that existing and planned policies are not sufficient for countries to meet these pledges.

  16. Applying "Climate" system to teaching basic climatology and raising public awareness of climate change issues

    Science.gov (United States)

    Gordova, Yulia; Okladnikov, Igor; Titov, Alexander; Gordov, Evgeny

    2016-04-01

    While there is a strong demand for innovation in digital learning, available training programs in the environmental sciences have no time to adapt to rapid changes in the domain content. A joint group of scientists and university teachers develops and implements an educational environment for new learning experiences in basics of climatic science and its applications. This so-called virtual learning laboratory "Climate" contains educational materials and interactive training courses developed to provide undergraduate and graduate students with profound understanding of changes in regional climate and environment. The main feature of this Laboratory is that students perform their computational tasks on climate modeling and evaluation and assessment of climate change using the typical tools of the "Climate" information-computational system, which are usually used by real-life practitioners performing such kind of research. Students have an opportunity to perform computational laboratory works using information-computational tools of the system and improve skills of their usage simultaneously with mastering the subject. We did not create an artificial learning environment to pass the trainings. On the contrary, the main purpose of association of the educational block and computational information system was to familiarize students with the real existing technologies for monitoring and analysis of data on the state of the climate. Trainings are based on technologies and procedures which are typical for Earth system sciences. Educational courses are designed to permit students to conduct their own investigations of ongoing and future climate changes in a manner that is essentially identical to the techniques used by national and international climate research organizations. All trainings are supported by lectures, devoted to the basic aspects of modern climatology, including analysis of current climate change and its possible impacts ensuring effective links between

  17. The CLIMATE BONUS - demonstrating the climate feedback service

    Energy Technology Data Exchange (ETDEWEB)

    Hyvoenen, K. (KTK National Consumer Reserach Centre); Perrels, A. (VATT Government Inst. for Economic Resarch); Saarinen, M. (MTT Agrifood Research Finland); Nissinen, A. (SYKE Finnish Environment Inst.); Hongisto, M.; Kallio, A.; Melin, M.; Kinnunen, T.; Soedergaard, C.

    2009-12-15

    In the Climate Bonus project, a demonstrative GHG-monitoring, reporting, consumer feedback and reward system for households was developed by the research consortium. The created application enables consumers to follow up accumulated GHG-emissions of their household's purchases and to compare results with several reference levels and other users of the system. They can also acquire 'bonus points' on the basis of a reduction of emission intensity. The demo version of the service covers foodstuffs, transport fuels and services, home energy and the 'other consumption' category, and utilises multi-approach methodology - i.e. combines several data sources and approaches (LCA, I/O, ETS-data) to seek emission factors for a very wide range of product categories. Foodstuffs were registered automatically for the service through a Nutrion Code system (www.nutritioncode.com) that uses the PLUSSA-key card and the information systems of Kesko and Tuulia International Oy. The rest of a household's purchases can be entered manually via a computer interface directly to the Service or by using the optical barcode recognition capabilities of the Nokia mobile phone. Based on the pilot tests, the authors believe that the climate-feedback system could activate notable voluntary emission reduction potentials, provided that the feedback system is widely used. (orig.)

  18. Climate change and forest diseases

    Science.gov (United States)

    R.N. Sturrock; Susan Frankel; A. V. Brown; Paul Hennon; J. T. Kliejunas; K. J. Lewis; J. J. Worrall; A. J. Woods

    2011-01-01

    As climate changes, the effects of forest diseases on forest ecosystems will change. We review knowledge of relationships between climate variables and several forest diseases, as well as current evidence of how climate, host and pathogen interactions are responding or might respond to climate change. Many forests can be managed to both adapt to climate change and...

  19. Monitoring protocols: Options, approaches, implementation, benefits

    Science.gov (United States)

    Karl, Jason W.; Herrick, Jeffrey E.; Pyke, David A.

    2017-01-01

    Monitoring and adaptive management are fundamental concepts to rangeland management across land management agencies and embodied as best management practices for private landowners. Historically, rangeland monitoring was limited to determining impacts or maximizing the potential of specific land uses—typically grazing. Over the past several decades, though, the uses of and disturbances to rangelands have increased dramatically against a backdrop of global climate change that adds uncertainty to predictions of future rangeland conditions. Thus, today’s monitoring needs are more complex (or multidimensional) and yet still must be reconciled with the realities of costs to collect requisite data. However, conceptual advances in rangeland ecology and management and changes in natural resource policies and societal values over the past 25 years have facilitated new approaches to monitoring that can support rangeland management’s diverse information needs. Additionally, advances in sensor technologies and remote-sensing techniques have broadened the suite of rangeland attributes that can be monitored and the temporal and spatial scales at which they can be monitored. We review some of the conceptual and technological advancements and provide examples of how they have influenced rangeland monitoring. We then discuss implications of these developments for rangeland management and highlight what we see as challenges and opportunities for implementing effective rangeland monitoring. We conclude with a vision for how monitoring can contribute to rangeland information needs in the future.

  20. Climate change refugia as a tool for climate adaptation

    Science.gov (United States)

    Climate change refugia, areas relatively buffered from contemporary climate change so as to increase persistence of valued physical, ecological, and cultural resources, are considered as potential adaptation options in the face of anthropogenic climate change. In a collaboration ...

  1. Climate strength: a new direction for climate research.

    Science.gov (United States)

    Schneider, Benjamin; Salvaggio, Amy Nicole; Subirats, Montse

    2002-04-01

    Climate strength was conceptualized within D. Chan's (1998) discussion of compositional models and the concept of culture strength from the organizational culture literature. Climate strength was operationalized in terms of within-group variability in climate perceptions-the less within-group variability, the stronger the climate. The authors studied climate strength in the context of research linking employee service climate perceptions to customer satisfaction. The hypothesis was tested that climate strength moderates the relationship between employee perceptions of service climate and customer satisfaction experiences. Partial support for the hypothesis was reported in both a concurrent and predictive (3-year) test across 118 branches of a bank. In the predictive study only the interaction of climate and climate strength predicted customer satisfaction. Implications for future research on climate and climate strength are discussed.

  2. Climate Change in New England | Energy and Global Climate ...

    Science.gov (United States)

    2017-04-10

    EPA Region 1's Energy and Climate Unit and Oceans and Coastal Unit provide information and technical assistance on climate change impacts and adaptation, resilience and preparedness to climate disruptions

  3. Influence of climate drivers on colonization and extinction dynamics of wetland-dependent species

    Science.gov (United States)

    Ray, Andrew M.; Gould, William R.; Hossack, Blake R.; Sepulveda, Adam; Thoma, David P.; Patla, Debra A.; Daley, Rob; Al-Chokhachy, Robert K.

    2016-01-01

    Freshwater wetlands are particularly vulnerable to climate change. Specifically, changes in temperature, precipitation, and evapotranspiration (i.e., climate drivers) are likely to alter flooding regimes of wetlands and affect the vital rates, abundance, and distributions of wetland-dependent species. Amphibians may be among the most climate-sensitive wetland-dependent groups, as many species rely on shallow or intermittently flooded wetland habitats for breeding. Here, we integrated multiple years of high-resolution gridded climate and amphibian monitoring data from Grand Teton and Yellowstone National Parks to explicitly model how variations in climate drivers and habitat conditions affect the occurrence and breeding dynamics (i.e., annual extinction and colonization rates) of amphibians. Our results showed that models incorporating climate drivers outperformed models of amphibian breeding dynamics that were exclusively habitat based. Moreover, climate-driven variation in extinction rates, but not colonization rates, disproportionately influenced amphibian occupancy in monitored wetlands. Long-term monitoring from national parks coupled with high-resolution climate data sets will be crucial to describing population dynamics and characterizing the sensitivity of amphibians and other wetland-dependent species to climate change. Further, long-term monitoring of wetlands in national parks will help reduce uncertainty surrounding wetland resources and strengthen opportunities to make informed, science-based decisions that have far-reaching benefits.

  4. Tropical deforestation and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Moutinho, P.; Schwartzman, S. (eds.)

    2005-07-01

    This book represents the effort of a group of contributors that believes that finding the means to promote large-scale reduction of the greenhouse gas emissions produced by tropical deforestation and forest fires, within the parameters of the UNFCCC, is an urgent necessity, both in order to prevent dangerous interference in the climate system, and to achieve sustainable development in the tropics. Part 1 contains 3 chapters on the subject Tropical deforestation, fires and emissions: measurement and monitoring. Part 2 contains 6 chapters on the subject How to reduce deforestation emissions for carbon credit: Compensated Reduction. Part 3 contains 4 chapters on the subject Policy and legal frameworks for reducing deforestation emissions. Separate abstracts were prepared for the chapters in this book.

  5. Global Framework for Climate Services (GFCS)

    Science.gov (United States)

    Lúcio, F.

    2012-04-01

    a set of international arrangements that will coordinate the activities and build on existing efforts to provide climate services that are truly focused on meeting user needs. It will be implemented through the development of five main components: 1) User Interface Platform — to provide ways for climate service users and providers to interact and improve the effectiveness of the Framework and its climate services 2) Climate Services Information System — to produce and distribute climate data and information according to the needs of users and to agreed standards 3) Observations and Monitoring - to develop agreements and standards for collecting and generating necessary climate data 4) Research, Modeling and Prediction section — to harness science capabilities and results to meet the needs of climate services 5) Capacity Building — to support the systematic development of the institutions, infrastructure and human resources needed for effective production of climate services and their application. Putting the GFCS in place will require unprecedented collaboration among agencies and across political, functional and disciplinary boundaries, and a global mobilization of effort. This communication will provide information on benefits and the process for the development of the GFCS as well as potential entry points for stakeholders to participate. In addition, it will highlight some of the research, modelling and prediction opportunities that will require intra-disciplinary science action.

  6. CEMS: A New Infrastructure For EO And Climate Science

    Science.gov (United States)

    Bennett, Victoria L.; Kershaw, Philip; Busswell, Geoff; Hilton, Richard; O'Neill, Alan

    2013-12-01

    CEMS, the facility for Climate and Environmental Monitoring from Space, has been created as a collaboration between UK academic and industrial partners at Harwell, Oxfordshire, UK, offering Climate and Earth Observation (EO) data and services. Since going operational in September 2012, CEMS has been supporting a range of research and commercial users. Applications include production of climate-quality long- term global datasets, processing satellite observations, and development of novel algorithms and products combining EO with other environmental datasets. This paper briefly describes the CEMS infrastructure, present some example uses with initial indications of benefits of the CEMS environment, and outline plans for future evolution.

  7. Contamination monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Alamares, A.L. [Philippine Nuclear Research Inst., Diliman, Quezon City (Philippines)

    1997-06-01

    By virture of Republic Act 2067, as amended the Philippine Atomic Energy Commission (PAEC), now renamed Philippine Nuclear Research Institute (PNRI) is the government agency charged with the regulations and control of radioactive materials in the Philippines. The protection against the hazards of non-ionizing radiation is being monitored by the Radiological Health Service (RHS) of the Department of Health pursuant to the provision of Presidental Decree 480. The RHS issues licenses for possession, handling, and use of x-ray machines and equipment, both industrial and medical, and provide radiation protection training to x-ray technologists and technicians. As part of its regulatory function, the PNRI is charged with the responsibility of assuring that the radiation workers and the public are protected from the hazards associated with the possession, handling, production, manufacturing, and the use of radioactive materials and atomic energy facilities in the Philippines. The protection of radiation workers from the hazards of ionizing radiation has always been a primary concern of PNRI and by limiting the exposure of radiation workers, the risk to population is kept to within acceptable level. In this paper, the following items are described: radiation protection program, radiation protection services, radiation control, and problems encountered/recommendation. (G.K.)

  8. The Copernicus Marine Environment Monitoring Service (CMEMS)

    Science.gov (United States)

    Le Traon, Pierre-Yves

    2017-04-01

    The oceans provide essential services to society. They regulate climate, they provide food and energy, and many economic activities depend on our seas and oceans. But our oceans and marine ecosystems are under threat. They are impacted by the effects of climate change as well as from other human-induced pressures. More than ever, there is a need to continuously monitor the oceans. This is imperative to understanding and predicting the evolution of our weather and climate. This is also essential for a better and sustainable management of our oceans and seas. The Copernicus Marine Environment Monitoring Service (CMEMS) has been set up to answer these challenges. CMEMS provides a unique monitoring of the global ocean and European seas based on satellite and in situ observations and models. CMEMS monitors past (over the last 30 years) and current marine conditions and provide short-term forecasts. Mercator Ocean was tasked by the EU to implement the service. The organisation is based on a strong European partnership with more than 60 marine operational and research centres in Europe that are involved in the service and its evolution. An overview of CMEMS, its drivers, organization and initial achievements will be given. The essential role of in-situ and satellite upstream observations will be discussed as well as CMEMS Service Evolution Strategy, associated R&D priorities and future scientific challenges.

  9. Climate shocks and conflict

    NARCIS (Netherlands)

    Papaioannou, Kostadis J.

    2016-01-01

    This paper offers a historical micro-level analysis of the impact of climate shocks on the incidence of civil conflict in colonial Nigeria (1912-1945). Primary historical sources on court cases, prisoners and homicides are used to capture conflict. To measure climate shocks we use the deviation f

  10. Climatization

    DEFF Research Database (Denmark)

    Grant, Stephen; Tamason, Charlotte Crim; Jensen, Peter Kjær Mackie

    2015-01-01

    wasconducted in Bangladesh. The study found recent examples of climatization related to Cyclone Aila (2009) and saltwater intrusion in Bangladesh. In most cases these disasters were climatized in order tocreate a sense of urgency in order to push for an increase in financial aid to Bangladeshand to deflect...

  11. Olivine and climate change

    NARCIS (Netherlands)

    Schuiling, R.D.

    2012-01-01

    The greenhouse effect, thanks mainly to the water vapor in our atmosphere, has created a livable climate on Earth. Climate change, however, may potentially have dire consequences. It is generally assumed that the rise in CO2 levels in the atmosphere is the main culprit, although several other

  12. Olivine and climate change

    NARCIS (Netherlands)

    Schuiling, R.D.

    2012-01-01

    The greenhouse effect, thanks mainly to the water vapor in our atmosphere, has created a livable climate on Earth. Climate change, however, may potentially have dire consequences. It is generally assumed that the rise in CO2 levels in the atmosphere is the main culprit, although several other greenh

  13. Future climate. Engineering solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ferdinand, J.F.; Hagedorn-Rasmussen, P.; Fonnesbech, B.

    2009-09-15

    Future Climate Engineering Solutions - Joint Report is the common output and a documentation of more than 1 year's effort by 13 engineering associations - in 12 countries - to demonstrate how technologies can combat climate change. The report consists of three parts: Summaries of 10 national climate plans and technology prospects, 5 Key Common Findings, and a Climate Call from Engineers to create a new global climate treaty. The basic assumption of the project is recognition that GHG emissions, and their concentration in the atmosphere, must be reduced to a sustainable level. The project definition of a sustainable level is equivalent to the best-case stabilisation scenario which was presented in the 4th Assessment Report (AR4) by the UN Intergovernmental Panel on Climate Change (IPCC), whereby the global mean temperature is most likely to stabilise at 2.0-2.4 deg. C. The Future Climate website www.futureclimate.info holds more information about the project, including possibility to download project material, including the full national climate plans.

  14. Climate variability and change

    CERN Document Server

    Grassl, H

    1998-01-01

    Many factors influence climate. The present knowledge concerning the climate relevance of earth orbital parameters, solar luminosity, volcanoes, internal interactions, and human activities will be reported as well as the vulnerability of emission scenarios for given stabilization goals for greenhouse gas concentrations and the main points of the Kyoto Protocol

  15. Climate Change Crunch Time

    Institute of Scientific and Technical Information of China (English)

    Xie Zhenhua

    2011-01-01

    CLIMATE change is a severe challenge facing humanity in the 21st century and thus the Chinese Government always attaches great importance to the problem.Actively dealing with climate change is China's important strategic policy in its social and economic development.China will make a positive contribution to the world in this regard.

  16. Climate Change Dossier

    NARCIS (Netherlands)

    Albers, R.A.W.

    2010-01-01

    Climate change is one of the great issues of our time. It is a complex, multi-facetted issue concerning flooding, energy efficiency, CO2 storage and sustainable energy, among others. TNO is actively involved in the issue, undertaking many studies relating to various aspects. The climate is changing;

  17. Climatic chamber ergometer

    CSIR Research Space (South Africa)

    Atkins, AR

    1968-01-01

    Full Text Available The design and calibration of an ergometer for exercising subjects during calorimetric studies in the climate chamber, are described. The ergometer is built into the climatic chamber and forms an integral part of the whole instrumentation system foe...

  18. Climate as an indicator

    NARCIS (Netherlands)

    Wassink, J.

    2011-01-01

    They both have Delft roots, but their standpoints in the climate discussion are by no means similar: Professor Pier Vellinga worried publicly, whereas Professor Salle Kroonenberg qualified climate change. Strangely enough, they do agree on the solutions. “If you take a long, hard look,” Prof. Vellin

  19. Climate Change and Vietnam

    Science.gov (United States)

    2013-11-01

    expansion of large hydropower and reservoir construction can increase social resilience through associated economic development . However, the same...of the most vulnerable countries globally to the consequences of climate change, Vietnam is highly likely to experience a variety of negative...iii ABSTRACT Climate Change and Vietnam As one of the most vulnerable countries globally to the consequences

  20. Clashing Over the Climate

    Institute of Scientific and Technical Information of China (English)

    HAIDER; RIZVI

    2010-01-01

    At the Copenhagen climate change summit,poor nations challenge Western domination Is the glass half empty or half full? As the year 2009 approached its end,the leaders of developing countries who attended the UN summit on climate left the Danish

  1. Future Climate Analysis

    Energy Technology Data Exchange (ETDEWEB)

    James Houseworth

    2001-10-12

    This Analysis/Model Report (AMR) documents an analysis that was performed to estimate climatic variables for the next 10,000 years by forecasting the timing and nature of climate change at Yucca Mountain (YM), Nevada (Figure 1), the site of a potential repository for high-level radioactive waste. The future-climate estimates are based on an analysis of past-climate data from analog meteorological stations, and this AMR provides the rationale for the selection of these analog stations. The stations selected provide an upper and a lower climate bound for each future climate, and the data from those sites will provide input to the infiltration model (USGS 2000) and for the total system performance assessment for the Site Recommendation (TSPA-SR) at YM. Forecasting long-term future climates, especially for the next 10,000 years, is highly speculative and rarely attempted. A very limited literature exists concerning the subject, largely from the British radioactive waste disposal effort. The discussion presented here is one method, among many, of establishing upper and lower bounds for future climate estimates. The method used here involves selecting a particular past climate from many past climates, as an analog for future climate. Other studies might develop a different rationale or select other past climates resulting in a different future climate analog. Revision 00 of this AMR was prepared in accordance with the ''Work Direction and Planning Document for Future Climate Analysis'' (Peterman 1999) under Interagency Agreement DE-AI08-97NV12033 with the U.S. Department of Energy (DOE). The planning document for the technical scope, content, and management of ICN 01 of this AMR is the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (BSC 2001a). The scope for the TBV resolution actions in this ICN is described in the ''Technical Work Plan for: Integrated Management of Technical

  2. Vegetation and climate interactions: an introduction

    Science.gov (United States)

    Ramstein, Gilles; de Boer, Hugo; Soh, Wuu-Kuang

    2017-04-01

    Plants play a key role in the climate system by influencing the hydrological cycle and the carbon cycle, as well as by affecting the Earths energy balance via changes in albedo. Moreover, changes in climate may result in adaptive responses in vegetation that can feedback to the climate system. The processes that are most dominantly affected depend on the time scale of interest. This session will explore climate and plant interactions and feedbacks through a very large spectrum of processes and time spans. At very short time scale (several minutes) plants may influence the formation of shallow cumulus clouds. At geological time scales (millions of years) evolutionary changes in plant functional traits, such as rooting depth, may influence mineral weathering rates and subsequent atmospheric CO2 levels. To introduce this session we will show that as soon as plants colonized continents the climate was deeply modified. This major change took place during Devonian and corresponds to the opening of a new terrestrial carbon reservoir (soil and vegetation) and therefore contribute to a large decrease of atmospheric CO2. But, this period is also associated with a large change in terrestrial albedo from dessert to vegetation cover. We shall explore the climate impact of such a "terrestrialisation" during Late Devonian (375 Ma). Building on from here, this session will investigate the climate-vegetation interactions through geological time (Late Paleozoic, Cretaceous, Holocene…) and Anthropocene projections. In modern times we are introducing a large quantity of CO2 to the atmospheric reservoir at extreme rates that is affecting the vegetation globally. Owing to recent developments the consequences of terrestrial biosphere interactions for climate change are accurately monitored and simulated through a hierarchy of different co=mplexity models. Therefore, we may predict major interactions which could take place during this century in terms of changes in the water cycle and

  3. Climate Change Adaptation Challenges and EO Business Opportunities

    Science.gov (United States)

    Lopez-Baeza, Ernesto; Mathieu, Pierre-Philippe; Bansal, Rahul; Del Rey, Maria; Mohamed, Ebrahim; Ruiz, Paz; Signes, Marcos

    Climate change is one of the defining challenges of the 21st century, but is no longer a matter of just scientific concern. It encompasses economics, sociology, global politics as well as national and local politics, law, health and environmental security, etc. The challenge of facing the impacts of climate change is often framed in terms of two potential paths that civilization might take: mitigation and adaptation. On the one hand, mitigation involves reducing the magnitude of climate change itself and is composed of emissions reductions and geoengineering. On the other hand and by contrast, adaptation involves efforts to limit our vulnerability to climate change impacts through various measures. It refers to our ability to adjust ourselves to climate change -including climate variability and extremes, to moderate potential damage, to take advantage of opportunities, or to cope with the consequences. Therefore, we are now faced with a double challenge: next to deep cuts in greenhouse gas emissions, we also need to adapt to the changing climate conditions. The use of satellites to monitor processes and trends at the global scale is essential in the context of climate change. Earth Observation has the potential to improve our predictive vision and to advance climate models. Space sciences and technologies constitute a significant issue in Education and Public Awareness of Science. Space missions face the probably largest scientific and industrial challenges of humanity. It is thus a fact that space drives innovation in the major breakthrough and cutting edge technological advances of mankind (techniques, processes, new products, … as well as in markets and business models). Technology and innovation is the basis of all space activities. Space agencies offer an entire range of space-related activities - from space science and environmental monitoring to industrial competitiveness and end-user services. More specifically, Earth Observation satellites have a unique

  4. Cosmic rays and climate

    CERN Document Server

    CERN. Geneva

    2009-01-01

    The current understanding of climate change in the industrial age is that it is predominantly caused by anthropogenic greenhouse gases, with relatively small natural contributions due to solar irradiance and volcanoes. However, palaeoclimatic reconstructions show that the climate has frequently varied on 100-year time scales during the Holocene (last 10 kyr) by amounts comparable to the present warming - and yet the mechanism or mechanisms are not understood. Some of these reconstructions show clear associations with solar variability, which is recorded in the light radio-isotope archives that measure past variations of cosmic ray intensity. However, despite the increasing evidence of its importance, solar-climate variability is likely to remain controversial until a physical mechanism is established. Estimated changes of solar irradiance on these time scales appear to be too small to account for the climate observations. This raises the question of whether cosmic rays may directly affect the climate, provi...

  5. Climate, Anchovy, and Sardine

    Science.gov (United States)

    Checkley, David M.; Asch, Rebecca G.; Rykaczewski, Ryan R.

    2017-01-01

    Anchovy and sardine populated productive ocean regions over hundreds of thousands of years under a naturally varying climate, and are now subject to climate change of equal or greater magnitude occurring over decades to centuries. We hypothesize that anchovy and sardine populations are limited in size by the supply of nitrogen from outside their habitats originating from upwelling, mixing, and rivers. Projections of the responses of anchovy and sardine to climate change rely on a range of model types and consideration of the effects of climate on lower trophic levels, the effects of fishing on higher trophic levels, and the traits of these two types of fish. Distribution, phenology, nutrient supply, plankton composition and production, habitat compression, fishing, and acclimation and adaptation may be affected by ocean warming, acidification, deoxygenation, and altered hydrology. Observations of populations and evaluation of model skill are essential to resolve the effects of climate change on these fish.

  6. Addressing Climate Crisis

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A series of extreme global weather events,like floods in Pakistan and droughts in Russia,should serve as a call to the world to take action against climate change.But worries have been mounting since global climate talks stalled,partly due to rifts between developed and developing countries.What efforts should be made to force progress in the negotiating process?What role has China played in combating climate change?Su Wei,China’s chief climate negotiator and Director-General of the Climate Change Department of the National Development and Reform Commission(NDRC),sat down with Beijing Review reporter Hu Yue to answer these questions and more.Edited excerpts follow

  7. Communities under climate change

    DEFF Research Database (Denmark)

    Nogues, David Bravo; Rahbek, Carsten

    2011-01-01

    The distribution of species on Earth and the interactions among them are tightly linked to historical and contemporary climate, so that global climate change will transform the world in which we live. Biological models can now credibly link recent decadal trends in field data to climate change......, but predicting future impacts on biological communities is a major challenge. Attempts to move beyond general macroecological predictions of climate change impact on one hand, and observations from specific, local-scale cases, small-scale experiments, or studies of a few species on the other, raise a plethora...... of unanswered questions. On page 1124 of this issue, Harley (1) reports results that cast new light on how biodiversity, across different trophic levels, responds to climate change....

  8. Climate Change: Good for Us?

    Science.gov (United States)

    Oblak, Jackie

    2000-01-01

    Presents an activity with the objective of encouraging students to think about the effects of climate change. Explains background information on dependence to climate and discuses whether climate change is important. Provides information for the activity, extensions, and evaluation. (YDS)

  9. Does Climate Literacy Matter?

    Science.gov (United States)

    Bedford, D. P.

    2014-12-01

    One obstacle to climate science education is the perception that climate literacy plays little or no role in the formation of opinions about the reality and seriousness of anthropogenic global warming (AGW), or that members of the non-specialist public already know enough climate science to hold an informed opinion. Why engage in climate science education if climate literacy does not matter? The idea that resistance to or dismissal of the findings and policy implications of climate science can be addressed simply by providing more and better information—the 'deficit model'—has been heavily critiqued in recent years. However, the pendulum is in danger of swinging too far in the opposite direction, with the view that information deficits either do not exist or are not relevant at all to attitude formation, and that cultural perspectives are sufficient by themselves to explain attitudes to AGW. This paper briefly reviews several recent publications that find a correlation between higher levels of climate literacy and greater acceptance of or concern about AGW, then presents results from a survey completed by 458 students at a primarily undergraduate institution in northern Utah in April-May 2013. These data indicate that attitudes to AGW are largely tribal, based on political outlook, Democrats being more concerned, Republicans less concerned. Overall levels of climate literacy demonstrated by respondents were low, but concern about AGW increased with higher levels of climate literacy among Republicans—though not among Democrats, for whom acceptance of AGW appears to be more an article of faith or badge of identity. Findings such as this suggest that, contrary to some recent critiques of the deficit model, information deficits do exist and do matter for opinion formation on AGW, although cultural factors are clearly also of great importance. Climate science education therefore can potentially help engage members of the public in issues related to AGW.

  10. Building Energy Monitoring and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tianzhen; Feng, Wei; Lu, Alison; Xia, Jianjun; Yang, Le; Shen, Qi; Im, Piljae; Bhandari, Mahabir

    2013-06-01

    U.S. and China are the world’s top two economics. Together they consumed one-third of the world’s primary energy. It is an unprecedented opportunity and challenge for governments, researchers and industries in both countries to join together to address energy issues and global climate change. Such joint collaboration has huge potential in creating new jobs in energy technologies and services. Buildings in the US and China consumed about 40% and 25% of the primary energy in both countries in 2010 respectively. Worldwide, the building sector is the largest contributor to the greenhouse gas emission. Better understanding and improving the energy performance of buildings is a critical step towards sustainable development and mitigation of global climate change. This project aimed to develop a standard methodology for building energy data definition, collection, presentation, and analysis; apply the developed methods to a standardized energy monitoring platform, including hardware and software, to collect and analyze building energy use data; and compile offline statistical data and online real-time data in both countries for fully understanding the current status of building energy use. This helps decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyze good building energy data to provide valuable and actionable information for key stakeholders.

  11. Improved sea level record over the satellite altimetry era (1993-2010) from the Climate Change Initiative project

    DEFF Research Database (Denmark)

    Ablain, M.; Cazenave, A.; Larnicol, G.

    2015-01-01

    Sea level is one of the 50 Essential Climate Variables (ECVs) listed by the Global Climate Observing System (GCOS) in climate change monitoring. In the past two decades, sea level has been routinely measured from space using satellite altimetry techniques. In order to address a number of importan...... present preliminary independent validations of the SL_cci products, based on tide gauges comparison and a sea level budget closure approach, as well as comparisons with ocean reanalyses and climate model outputs....

  12. Lake volume monitoring from space

    Science.gov (United States)

    Crétaux, Jean-Francois; Abarca Del Rio, Rodrigo; Berge-Nguyen, Muriel; Arsen, Adalbert; Drolon, Vanessa; Maisongrande, Philippe

    2016-04-01

    Lakes are integrator of environmental changes occurring at regional to global scale and present a high variety of behaviors on a variety of time scales (cyclic and secular) depending on the climate conditions and their morphology. In addition their crucial importance as water stocks and retaining, given the significant environment changes occurring worldwide at many anthropocentric levels, has increased the necessity of monitoring all its morphodynamics characteristics, say water level, surface (water contour) and volume. The satellite altimetry and satellite imagery together are now widely used for the calculation of lakes and reservoirs water storage changes worldwide. However strategies and algorithms to calculate these characteristics are not straightforward and need development of specific approaches. We intend to present a review of some of these methodologies by using the lakes over the Tibetan Plateau to illustrate some critical aspects and issues (technical and scientific) linked with the survey of climate changes impacts on surface waters from remote sensing data. Many authors have measured water variations using the short period of remote sensing measurements available, although time series are probably too short to lead to definitive conclusions to link these results directly with the framework of climate changes. Indeed, many processes beyond the observations are still uncertain, for example the influence of morphology of the lakes. The time response for a lake to reach new state of equilibrium is one of the key aspects often neglected in the current literature. Observations over long period of time, therein maintaining a constellation of comprehensive and complementary satellite missions with a continuity of services over decades, especially when ground gauges network is too limited is therefore a necessity. In addition, the design of future satellite missions with new instrumental concepts (e.g. SAR, SARin, Ka band altimetry, Ka interferometry) is

  13. Visual Sensing for Urban Flood Monitoring.

    Science.gov (United States)

    Lo, Shi-Wei; Wu, Jyh-Horng; Lin, Fang-Pang; Hsu, Ching-Han

    2015-08-14

    With the increasing climatic extremes, the frequency and severity of urban flood events have intensified worldwide. In this study, image-based automated monitoring of flood formation and analyses of water level fluctuation were proposed as value-added intelligent sensing applications to turn a passive monitoring camera into a visual sensor. Combined with the proposed visual sensing method, traditional hydrological monitoring cameras have the ability to sense and analyze the local situation of flood events. This can solve the current problem that image-based flood monitoring heavily relies on continuous manned monitoring. Conventional sensing networks can only offer one-dimensional physical parameters measured by gauge sensors, whereas visual sensors can acquire dynamic image information of monitored sites and provide disaster prevention agencies with actual field information for decision-making to relieve flood hazards. The visual sensing method established in this study provides spatiotemporal information that can be used for automated remote analysis for monitoring urban floods. This paper focuses on the determination of flood formation based on image-processing techniques. The experimental results suggest that the visual sensing approach may be a reliable way for determining the water fluctuation and measuring its elevation and flood intrusion with respect to real-world coordinates. The performance of the proposed method has been confirmed; it has the capability to monitor and analyze the flood status, and therefore, it can serve as an active flood warning system.

  14. Visual Sensing for Urban Flood Monitoring

    Directory of Open Access Journals (Sweden)

    Shi-Wei Lo

    2015-08-01

    Full Text Available With the increasing climatic extremes, the frequency and severity of urban flood events have intensified worldwide. In this study, image-based automated monitoring of flood formation and analyses of water level fluctuation were proposed as value-added intelligent sensing applications to turn a passive monitoring camera into a visual sensor. Combined with the proposed visual sensing method, traditional hydrological monitoring cameras have the ability to sense and analyze the local situation of flood events. This can solve the current problem that image-based flood monitoring heavily relies on continuous manned monitoring. Conventional sensing networks can only offer one-dimensional physical parameters measured by gauge sensors, whereas visual sensors can acquire dynamic image information of monitored sites and provide disaster prevention agencies with actual field information for decision-making to relieve flood hazards. The visual sensing method established in this study provides spatiotemporal information that can be used for automated remote analysis for monitoring urban floods. This paper focuses on the determination of flood formation based on image-processing techniques. The experimental results suggest that the visual sensing approach may be a reliable way for determining the water fluctuation and measuring its elevation and flood intrusion with respect to real-world coordinates. The performance of the proposed method has been confirmed; it has the capability to monitor and analyze the flood status, and therefore, it can serve as an active flood warning system.

  15. Climate and happiness

    Energy Technology Data Exchange (ETDEWEB)

    Rehdanz, Katrin [Centre for Marine and Climate Research, Hamburg University, Hamburg (Germany); Maddison, David [Department of Economics, University of Southern Denmark, Odense (Denmark)

    2005-01-05

    Climate is an important input to many human activities. Climate affects heating and cooling requirements, health, clothing and nutritional needs as well as recreational activities. As such, it is to be expected that individuals will have a preference for particular types of climate. This paper analyses a panel of 67 countries attempting to explain differences in self-reported levels of happiness by reference to, amongst other things, temperature and precipitation. Various indices are used for each of these variables, including means, extremes and the number of hot, cold, wet and dry months. Using a panel-corrected least squares approach, the paper demonstrates that, even when controlling for a range of other factors, climate variables have a highly significant effect on country-wide self-reported levels of happiness. On the basis of these results, it is determined that differential patterns of anthropogenically induced climate change might alter dramatically the distribution of happiness between nations, with some countries moving towards a preferred climate and others moving further away. We find that high-latitude countries included in our dataset might benefit from temperature changes. Countries already characterized by very high summer temperatures would most likely suffer losses from climate change.

  16. Effectively Rebutting Climate Misinformation

    Science.gov (United States)

    Cook, J.

    2011-12-01

    Climate science faces one of the best funded misinformation campaigns in history. The challenge for climate communicators is that misinformation is extremely difficult to dislodge, even after people understand that it's incorrect. Understanding how the human brain processes information is crucial to successful rebuttal. To avoid the danger of reinforcing misinformation (known as the 'backfire effect'), emphasis should be on positive facts, not the myth. Another key to dislodging myths is replacing them with an alternate narrative. In order to provide a narrative about arguments that misrepresent climate science, a broader understanding of how these arguments mislead is required. Movements that deny a scientific consensus have 5 characteristics in common and these also apply to climate denial. The arguments against the scientific consensus involve conspiracy theories, fake experts, cherry picking, logical fallacies and misrepresentation or impossible expectations. Learning to identify these rhetorical techniques is an important tool in the climate communication toolbox. I discuss examples of misrepresentations of climate science and the rhetorical techniques employed. I demonstrate how to respond to these arguments by explaining the facts of climate science while in the process, providing an alternate narrative.

  17. Climate change governance

    Energy Technology Data Exchange (ETDEWEB)

    Knieling, Joerg [HafenCity Univ. Hamburg (Germany). Urban Planning and Regional Development; Leal Filho, Walter (eds.) [HAW Hamburg (Germany). Research and Transfer Centre Applications of Life Science

    2013-07-01

    Climate change is a cause for concern both globally and locally. In order for it to be tackled holistically, its governance is an important topic needing scientific and practical consideration. Climate change governance is an emerging area, and one which is closely related to state and public administrative systems and the behaviour of private actors, including the business sector, as well as the civil society and non-governmental organisations. Questions of climate change governance deal both with mitigation and adaptation whilst at the same time trying to devise effective ways of managing the consequences of these measures across the different sectors. Many books have been produced on general matters related to climate change, such as climate modelling, temperature variations, sea level rise, but, to date, very few publications have addressed the political, economic and social elements of climate change and their links with governance. This book will address this gap. Furthermore, a particular feature of this book is that it not only presents different perspectives on climate change governance, but it also introduces theoretical approaches and brings these together with practical examples which show how main principles may be implemented in practice.

  18. Making Better Use of Monitoring Data

    DEFF Research Database (Denmark)

    Hollesen, Jørgen; Matthiesen, Henning; Møller, Anders Bjørn

    2016-01-01

    Large amounts of environmental monitoring data have been collected at Europe’s archaeological sites over the last decades. Nevertheless, very few examples exist where the collected data have been used directly to document the effects of environmental change on preservation conditions and the speed...... at which the archaeological record is lost. As a consequence, heritage managers are starting to question the use of environmental monitoring — why monitor if the efforts do not provide a proper basis for decisions on protection and mitigation strategies? At the same time, urban development and climate...... change are increasingly threatening the continued preservation of archaeological sites. This leaves us with a great challenge in how to secure a balance between developing new and more reasonable monitoring strategies without overlooking sites that are suddenly undergoing rapid decay. In recent years we...

  19. Climate change and compensation

    DEFF Research Database (Denmark)

    Jensen, Karsten Klint; Flanagan, Tine Bech

    2013-01-01

    This paper presents a case for compensation of actual harm from climate change in the poorest countries. First, it is shown that climate change threatens to reverse the fight to eradicate poverty. Secondly, it is shown how the problems raised in the literature for compensation to some extent...... climate change. The first argument appeals to the principle that if it is an injustice to cause risk of incurring harm in the future, then it is also an injustice to cause a similar harm now. The second argument appeals to the principle that if there is moral reason to reduce the risk of specific harms...

  20. Climate Museum and Garden

    Science.gov (United States)

    Gregg, Jay; Bille, Dorthe

    2017-04-01

    The Climate Museum and Garden is conceived as a cross-disciplinary experience, where the arts and sciences link together to increase understanding of the Earth's climate and its relevance to our fate as a species. This would be a place of inspiration. The Climate Museum and Garden would merge concepts of modern art museums and modern science museums, with exhibitions, live music and theater performances, visitor interaction, unique discoveries and reflection. It would be a place where visitors are immersed in experiences, lingering indoors and out in quiet consideration and gratitude for our planet's atmosphere. The story of climate change is compelling in its own right; theories of the greenhouse effect go back over century and climate policy has stretched back a few decades. Whereas scientific researchers have been contributing to understanding the mechanisms and impacts of climate change for many decades; whereas researchers have participated in climate summits and informed policy makers; whereas researchers have taught classes of gifted students; in all of this, the public has mostly missed out. This public relations gap has been unfortunately filled by those that would seek to politicize and mislead the public, leading to an engagement gap among the general public. Now we stand on a precipice. Therefore we see a ripe opportunity to reach out and inspire the population. We build off of current pedagogic research that shows that experienced-based learning is more impactful when it engages the senses and elicits an emotional response. People understand what they experience, what they feel, and this serves as the basis for personal reflection. In this sense the visitor experience is generative, in that it promotes further personal investigation and interaction. The Climate Museum and Garden would be a start. In the future, we envisage a future network of climate museums in all major cities. It would be a flagship attraction for any city, along with their art

  1. Asking about climate change

    DEFF Research Database (Denmark)

    Nielsen, Jonas Østergaard; D'haen, Sarah Ann Lise

    2014-01-01

    and on vulnerability and adaptation strategies in a particular region or community. But how do we research the ways in which people experience changing climatic conditions, the processes of decision-making, the actual adaptation strategies carried out and the consequences of these for actors living and dealing...... with climate change? On the basis of a literature review of all articles published in Global Environmental Change between 2000 and 2012 that deal with human dimensions of climate change using qualitative methods this paper provides some answers but also raises some concerns. The period and length of fieldwork...

  2. Climate Benchmark Missions: CLARREO

    Science.gov (United States)

    Wielicki, Bruce A.; Young, David F.

    2010-01-01

    CLARREO (Climate Absolute Radiance and Refractivity Observatory) is one of the four Tier 1 missions recommended by the recent NRC decadal survey report on Earth Science and Applications from Space (NRC, 2007). The CLARREO mission addresses the need to rigorously observe climate change on decade time scales and to use decadal change observations as the most critical method to determine the accuracy of climate change projections such as those used in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4). A rigorously known accuracy of both decadal change observations as well as climate projections is critical in order to enable sound policy decisions. The CLARREO mission accomplishes this critical objective through highly accurate and SI traceable decadal change observations sensitive to many of the key uncertainties in climate radiative forcings, responses, and feedbacks that in turn drive uncertainty in current climate model projections. The same uncertainties also lead to uncertainty in attribution of climate change to anthropogenic forcing. The CLARREO breakthrough in decadal climate change observations is to achieve the required levels of accuracy and traceability to SI standards for a set of observations sensitive to a wide range of key decadal change variables. These accuracy levels are determined both by the projected decadal changes as well as by the background natural variability that such signals must be detected against. The accuracy for decadal change traceability to SI standards includes uncertainties of calibration, sampling, and analysis methods. Unlike most other missions, all of the CLARREO requirements are judged not by instantaneous accuracy, but instead by accuracy in large time/space scale average decadal changes. Given the focus on decadal climate change, the NRC Decadal Survey concluded that the single most critical issue for decadal change observations was their lack of accuracy and low confidence in

  3. The last interglacial climate

    DEFF Research Database (Denmark)

    Pedersen, Rasmus A.; Langen, Peter L.; Vinther, Bo M.

    2016-01-01

    The last interglacial climate was influenced by substantial changes in the annual insolation cycle that led to a warmer climate state with pronounced high northern latitude warming. We analyze the impact of the insolation changes 125,000 years before present using an equilibrium snapshot simulation...... with the EC-Earth coupled climate model at high spatial resolution. Using additional atmosphere-only simulations, we separate the direct impact from the changed insolation from the secondary contribution from changed sea surface conditions. These simulations are forced with a combination of last interglacial...

  4. Climate change and cities

    Energy Technology Data Exchange (ETDEWEB)

    Satterthwaite, David

    2006-10-15

    What is done, or not done, in cities in relation to climate change over the next 5-10 years will affect hundreds of millions of people, because their lives and livelihoods are at risk from global warming. What is done in cities will also have a major influence on whether the escalating risks for the whole planet will be reduced or eliminated. Climate change needs to be considered in all development plans and investments - local, regional, national and international. Urban growth must be made more climate-resilient and help reduce, rather than increase, greenhouse gas emissions. This will not be done by the market; it can only be done by governments.

  5. Climate Prediction Center (CPC) Western Pacific Basin Cyclone Monitoring

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Tropical cyclones are one of the nature?s destructive phenomena, causing loss of lives and property damage. The affected countries associated with the cyclones of...

  6. Climate Prediction Center (CPC)Stratospheric Monitoring Ozone Blended Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 3-D global ozone mixing ratio (ppm) and total column ozone (DU) dataset analyzed from daily Solar Backscatter Ultraviolet Instrument(SBUV/2) and TIROS Operational...

  7. 3D thermal climate monitoring in factory buildings

    NARCIS (Netherlands)

    Posselt, G.; Booij, P.S.; Thiede, S.; Fransman, J.E.; Driessen, B.J.F.; Herrmann, C.

    2015-01-01

    Guaranteeing defined conditions, such as the temperature levels inside the factory's building shell, is often important to produce high-quality products. Heating, ventilation and air conditioning (HVAC) equipment, as part of the technical building services, is energy intensive and accounts for a maj

  8. Absolute gravimetry - for monitoring climate change and geodynamics in Greenland

    DEFF Research Database (Denmark)

    Nielsen, Jens Emil

    with the GPS data, it is possible to separate the different signals. The method used in this study is absolute gravimetry. An absolute gravimeter of the A10 type has been purchased by DTU Space for this purpose. This instrument can measure gravity changes as small as 6µGal (= 60nm=s2), which provides....... The time allocated for a PhD project is not sufficient to gather enough data for an elaborated analysis of the different signals which can be detected in Greenland. However, as will be presented in this thesis, the preliminary results indicate interesting possibilities for the use of absolute gravimetry...

  9. 3D thermal climate monitoring in factory buildings

    NARCIS (Netherlands)

    Posselt, G.; Booij, P.S.; Thiede, S.; Fransman, J.E.; Driessen, B.J.F.; Herrmann, C.

    2015-01-01

    Guaranteeing defined conditions, such as the temperature levels inside the factory's building shell, is often important to produce high-quality products. Heating, ventilation and air conditioning (HVAC) equipment, as part of the technical building services, is energy intensive and accounts for a

  10. Climate Prediction Center (CPC) Monitoring of Global Monsoons

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Patterns of totals (or means) and their anomalies in the past week (or pentad for precipitation and outgoing longwave radiation - OLR), month, and season are shown...

  11. 3D thermal climate monitoring in factory buildings

    NARCIS (Netherlands)

    Posselt, G.; Booij, P.S.; Thiede, S.; Fransman, J.E.; Driessen, B.J.F.; Herrmann, C.

    2015-01-01

    Guaranteeing defined conditions, such as the temperature levels inside the factory's building shell, is often important to produce high-quality products. Heating, ventilation and air conditioning (HVAC) equipment, as part of the technical building services, is energy intensive and accounts for a maj

  12. National Security Implications of Climate-related Risks and a Changing Climate

    Science.gov (United States)

    2015-07-23

    management . U.S. Central Command (USCENTCOM) similarly monitors resource scarcity (e.g., water, food , energy) in its arid AOR, and accounts for...private sector, and academia to focus on projected climate changes in the Arctic. Resources and Timeline • Acquisition and supply chain requirements...over basic resources such as food and water.1 These impacts are already occurring, and the scope, scale, and intensity of these impacts are projected

  13. NOAA Climate Information and Tools for Decision Support Services

    Science.gov (United States)

    Timofeyeva, M. M.; Higgins, W.; Strager, C.; Horsfall, F. M.

    2013-12-01

    NOAA is an active participant of the Global Framework for Climate Services (GFCS) contributing data, information, analytical capabilities, forecasts, and decision support services to the Climate Services Partnership (CSP). These contributions emerge from NOAA's own climate services, which have evolved to respond to the urgent and growing need for reliable, trusted, transparent, and timely climate information across all sectors of the U.S. economy. Climate services not only enhance development opportunities in many regions, but also reduce vulnerability to climate change around the world. The NOAA contribution lies within the NOAA Climate Goal mission, which is focusing its efforts on four key climate priority areas: water, extremes, coastal inundation, and marine ecosystems. In order to make progress in these areas, NOAA is exploiting its fundamental capabilities, including foundational research to advance understanding of the Earth system, observations to preserve and build the climate data record and monitor changes in climate conditions, climate models to predict and project future climate across space and time scales, and the development and delivery of decision support services focused on risk management. NOAA's National Weather Services (NWS) is moving toward provision of Decision Support Services (DSS) as a part of the Roadmap on the way to achieving a Weather Ready National (WRN) strategy. Both short-term and long-term weather, water, and climate information are critical for DSS and emergency services and have been integrated into NWS in the form of pilot projects run by National and Regional Operations Centers (NOC and ROCs respectively) as well as several local offices. Local offices with pilot projects have been focusing their efforts on provision of timely and actionable guidance for specific tasks such as DSS in support of Coastal Environments and Integrated Environmental Studies. Climate information in DSS extends the concept of climate services to

  14. Climate engineering research : A precautionary response to climate change?

    NARCIS (Netherlands)

    Reynolds, J.L.; Fleurke, F.M.

    2013-01-01

    In the face of dire forecasts for anthropogenic climate change, climate engineering is increasingly discussed as a possible additional set of responses to reduce climate change’s threat. These proposals have been controversial, in part because they – like climate change itself – pose uncertain risks

  15. Climate engineering research : A precautionary response to climate change?

    NARCIS (Netherlands)

    Reynolds, J.L.; Fleurke, F.M.

    2013-01-01

    In the face of dire forecasts for anthropogenic climate change, climate engineering is increasingly discussed as a possible additional set of responses to reduce climate change’s threat. These proposals have been controversial, in part because they – like climate change itself – pose uncertain risks

  16. [Air pollution, climate change and health].

    Science.gov (United States)

    Ballester, Ferran

    2005-01-01

    Emissions into the atmosphere related to the climate change may further worsen the effects which air pollution has on the health of our citizens, not only indirectly due to the impact of weather phenomenon, but directly, due to the direct effects pollutants have on health. However, the efforts throughout most of the world have been aimed at dealing with these two problems separately for too many years. In fact, it is very often believed that the climate's health-safeguarding benefits would be achieved in the long term. To the contrary, what has become obvious over recent years is that the actions for reducing the emissions of polluting gases could redound in beneficial effects in the short term due to the reduction of the impact of air pollutants on the health of our citizens. This article presents the possible risks of the pollutants most closely related to climate changes, such as ozone and fine particles. Bearing in mind the uncertainties and unknowns related to this subject, the main implications for the policies related to this matter in Spain, as well as the needs for research are set out herein. In this regard, both from the standpoint of monitoring as well as research, it is considered necessary for an epidemiological monitoring system of the effects of air pollution and the relationship thereof to global changes to be established.

  17. Relationships between School Climate and Adolescent Students' Self-Reports of Ethnic and Moral Identity

    Science.gov (United States)

    Aldridge, Jill M.; Ala'i, Kate G.; Fraser, Barry J.

    2016-01-01

    This article reports research into associations between students' perceptions of the school climate and self-reports of ethnic and moral identity in high schools in Western Australia. An instrument was developed to assess students' perceptions of their school climate (as a means of monitoring and guiding schools as they are challenged to become…

  18. Building wind design methodology for Italian climatic areas (second report). Advancement

    Energy Technology Data Exchange (ETDEWEB)

    Ciolfi, A. [UTS Engineering, Roma (Italy)

    1994-12-31

    The present work, carried out through information of the Meteorological Service of the Italian Military Aeronautic, is the first step to carry out a bioclimatic design methodology based on monitored statistical dates of wind characteristics in Italian climatic areas. The first dates obtained are relative to climatic areas of littoral latium and middle interland and they are: Pratica di Mare, Fiumicino, Ciampino, Guidonia. (orig.)

  19. Holter and Event Monitors

    Science.gov (United States)

    ... Share this page from the NHLBI on Twitter. Holter and Event Monitors Also known as ambulatory EKG; continuous EKG; EKG event monitors. Holter and event monitors are small, portable electrocardiogram devices ...

  20. Climate Informatics: Accelerating Discovering in Climate Science with Machine Learning

    Science.gov (United States)

    Monteleoni, Claire; Schmidt, Gavin A.; McQuade, Scott

    2014-01-01

    The goal of climate informatics, an emerging discipline, is to inspire collaboration between climate scientists and data scientists, in order to develop tools to analyze complex and ever-growing amounts of observed and simulated climate data, and thereby bridge the gap between data and understanding. Here, recent climate informatics work is presented, along with details of some of the field's remaining challenges. Given the impact of climate change, understanding the climate system is an international priority. The goal of climate informatics is to inspire collaboration between climate scientists and data scientists, in order to develop tools to analyze complex and ever-growing amounts of observed and simulated climate data, and thereby bridge the gap between data and understanding. Here, recent climate informatics work is presented, along with details of some of the remaining challenges.

  1. Megacities, air quality and climate: Seamless prediction approach

    Science.gov (United States)

    Baklanov, Alexander; Molina, Luisa T.; Gauss, Michael

    2016-04-01

    The rapid urbanization and growing number of megacities and urban complexes requires new types of research and services that make best use of science and available technology. With an increasing number of humans now living in urban sprawls, there are urgent needs of examining what the rising number of megacities means for air pollution, local climate and the effects these changes have on global climate. Such integrated studies and services should assist cities in facing hazards such as storm surge, flooding, heat waves, and air pollution episodes, especially in changing climates. While important advances have been made, new interdisciplinary research studies are needed to increase our understanding of the interactions between emissions, air quality, and regional and global climates. Studies need to address both basic and applied research and bridge the spatial and temporal scales connecting local emissions and air pollution and local weather, global atmospheric chemistry and climate. This paper reviews the current status of studies of the complex interactions between climate, air quality and megacities, and identifies the main gaps in our current knowledge as well as further research needs in this important field of research. Highlights • Climate, air quality and megacities interactions: gaps in knowledge, research needs. • Urban hazards: pollution episodes, storm surge, flooding, heat waves, public health. • Global climate change affects megacities' climate, environment and comfort. • Growing urbanization requires integrated weather, environment and climate monitoring systems. • New generation of multi-scale models and seamless integrated urban services are needed. Reference Baklanov, A., L.T. Molina, M. Gauss (2016) Megacities, air quality and climate. Atmospheric Environment, 126: 235-249. doi:10.1016/j.atmosenv.2015.11.059

  2. Climate change and compensation

    DEFF Research Database (Denmark)

    Jensen, Karsten Klint; Flanagan, Tine Bech

    2013-01-01

    This paper presents a case for compensation of actual harm from climate change in the poorest countries. First, it is shown that climate change threatens to reverse the fight to eradicate poverty. Secondly, it is shown how the problems raised in the literature for compensation to some extent...... are based on misconceptions and do not apply to compensation of present actual harm. Finally, two arguments are presented to the effect that, in so far as developed countries accept a major commitment to mitigate climate change, they should also accept a commitment to address or compensate actual harm from...... climate change. The first argument appeals to the principle that if it is an injustice to cause risk of incurring harm in the future, then it is also an injustice to cause a similar harm now. The second argument appeals to the principle that if there is moral reason to reduce the risk of specific harms...

  3. Pathfinder Climate Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA/NASA Pathfinder climate data CD-ROM contains seven data sets: Advanced Very High Resolution Radiometer (AVHRR)Land and Ocean, TIROS Operational Vertical...

  4. Criminality and climate change

    Science.gov (United States)

    White, Rob

    2016-08-01

    The impacts of climate change imply a reconceptualization of environment-related criminality. Criminology can offer insight into the definitions and dynamics of this behaviour, and outline potential areas of redress.

  5. Modelling Interglacial Climate

    DEFF Research Database (Denmark)

    Pedersen, Rasmus Anker

    Past warm climate states could potentially provide information on future global warming. The past warming was driven by changed insolation rather than an increased greenhouse effect, and thus the warm climate states are expected to be different. Nonetheless, the response of the climate system...... the impact of a changing sea ice cover. The first part focusses on the last interglacial climate (125,000 years before present) which was characterized by substantial warming at high northern latitudes due to an increased insolation during summer. The simulations reveal that the oceanic changes dominate...... the response at high northern latitudes, while the direct insolation impact is more dominant in the tropics. On Greenland, the simulated warming is low compared to the ice core reconstructions. Surface mass balance calculations indicate that the oceanic conditions favor increased accumulation in the southeast...

  6. Climate Record Books

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Climate Record Books contain daily, monthly, seasonal, and annual averages, extremes, or occurrences. Most data are sequential by period of record 1871-1910,...

  7. Adapting to climate change

    DEFF Research Database (Denmark)

    Arndt, Channing; Strzepek, Kenneth; Tarp, Finn

    2011-01-01

    Mozambique, like many African countries, is already highly susceptible to climate variability and extreme weather events. Climate change threatens to heighten this vulnerability. In order to evaluate potential impacts and adaptation options for Mozambique, we develop an integrated modeling...... framework that translates atmospheric changes from general circulation model projections into biophysical outcomes via detailed hydrologic, crop, hydropower and infrastructure models. These sector models simulate a historical baseline and four extreme climate change scenarios. Sector results are then passed...... down to a dynamic computable general equilibrium model, which is used to estimate economy-wide impacts on national welfare, as well as the total cost of damages caused by climate change. Potential damages without changes in policy are significant; our discounted estimates range from US2.3 to US2.3toUS7...

  8. Climate Action Benefits: Electricity

    Science.gov (United States)

    This page provides background on the relationship between electricity and climate change and describes what the CIRA Electricity analyses cover. It provides links to the subsectors Electricity Demand and Electricity Supply.

  9. Fisheries and climate

    DEFF Research Database (Denmark)

    Brander, Keith

    2009-01-01

    Fish stocks and the fisheries based on them have always experienced variability due to climate. Changes in temperature, salinity, winds, ocean currents, oxygen, and other factors affect their distribution, growth, survival, and recruitment. Examples of such effects are given for several regions...... of the oceans and the processes are described. Poleward distribution shifts have occurred since the 1960s and can be attributed to the effects of anthropogenic climate change with a high degree of confidence. In addition to climate effects, fisheries are subjected to other anthropogenic stresses, including high...... fishing mortality, loss of habitat, pollution, and introduction of alien species. These interact and may reduce the resilience of exploited stocks, although climate change may also increase productivity in some cases. Fisheries production depends on primary production, but to date we have low confidence...

  10. Climate adaptation futures

    National Research Council Canada - National Science Library

    Palutikof, J. P

    2013-01-01

    Adaptation is the poor cousin of the climate change challenge - the glamour of international debate is around global mitigation agreements, while the bottom-up activities of adaptation, carried out...

  11. Climate Forcing Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Records of changes in solar irradiance, volcanic aerosols, atmospheric trace gases, and other properties thought to influence climate in the past. Parameter keywords...

  12. Population and Climate Change

    Science.gov (United States)

    O'Neill, Brian C.; Landis MacKellar, F.; Lutz, Wolfgang

    2000-11-01

    Population and Climate Change provides the first systematic in-depth treatment of links between two major themes of the 21st century: population growth (and associated demographic trends such as aging) and climate change. It is written by a multidisciplinary team of authors from the International Institute for Applied Systems Analysis who integrate both natural science and social science perspectives in a way that is comprehensible to members of both communities. The book will be of primary interest to researchers in the fields of climate change, demography, and economics. It will also be useful to policy-makers and NGOs dealing with issues of population dynamics and climate change, and to teachers and students in courses such as environmental studies, demography, climatology, economics, earth systems science, and international relations.

  13. Climate Change Adaptation Training

    Science.gov (United States)

    A list of on-line training modules to help local government officials and those interested in water management issues better understand how the changing climate affects the services and resources they care about

  14. Space for Climate

    National Research Council Canada - National Science Library

    Pierre-Philippe Mathieu

    2015-01-01

    ..., and disaster risk management. In particular, the paper highlights the challenge of gathering observations and generating long-term climate data records, which provide the foundation of risk management...

  15. CITYZEN climate impact studies

    Energy Technology Data Exchange (ETDEWEB)

    Schutz, Martin (ed.)

    2011-07-01

    We have estimated the impact of climate change on the chemical composition of the troposphere due to changes in climate from current climate (2000-2010) looking 40 years ahead (2040-2050). The climate projection has been made by the ECHAM5 model and was followed by chemistry-transport modelling using a global model, Oslo CTM2 (Isaksen et al., 2005; Srvde et al., 2008), and a regional model, EMEP. In this report we focus on carbon monoxide (CO) and surface ozone (O3) which are measures of primary and secondary air pollution. In parallel we have estimated the change in the same air pollutants resulting from changes in emissions over the same time period. (orig.)

  16. Fisheries and climate

    DEFF Research Database (Denmark)

    Brander, Keith

    2009-01-01

    Fish stocks and the fisheries based on them have always experienced variability due to climate. Changes in temperature, salinity, winds, ocean currents, oxygen, and other factors affect their distribution, growth, survival, and recruitment. Examples of such effects are given for several regions...... of the oceans and the processes are described. Poleward distribution shifts have occurred since the 1960s and can be attributed to the effects of anthropogenic climate change with a high degree of confidence. In addition to climate effects, fisheries are subjected to other anthropogenic stresses, including high...... fishing mortality, loss of habitat, pollution, and introduction of alien species. These interact and may reduce the resilience of exploited stocks, although climate change may also increase productivity in some cases. Fisheries production depends on primary production, but to date we have low confidence...

  17. Climate Summit in Copenhagen

    DEFF Research Database (Denmark)

    Delman, Jørgen

      Together with the United States, China has moved to centre stage in the running up to the Climate Summit in Copenhagen 7-18 December 2009. To make the Summit a success, the two countries have started signalling positive commitment to formulation of quantitative targets and engage constructively...... in elaborating a reasonably ambitious, yet realistic framework for the implementation of a new global post-Kyoto regime that will have to take effect from 2012. China's leadership has already acknowledged that climate change may exacerbate an exceedingly unsustainable development path over the next decades...... if action is not taken to change its course dramatically. The challenges are formidable, yet the window of opportunity to take action is quite narrow. For these reasons and due to international pressure, China's position on climate change has been made gradually clearer as the climate negotiations have...

  18. Architecture, energy and climate

    DEFF Research Database (Denmark)

    Lauring, Michael

    2010-01-01

    Architecture has always had to relate to climatic conditions while providing shelter from the sun, the rain, the winds or the cold. This is a main purpose of buildings: To establish an indoor climate different from the outdoor. In the Nordic countries fuels for heating buildings has been a vital...... necessity almost as basic as food and water, and lack of wood has caused illness and migration - scarcity of energy is not a new topic either [Kjærgaard]. The new aspects are that human civilization is in danger of causing severe global climate changes, secondly that we can foresee using up the global non......-renewable reserves of oil, gas and uranium, both aspects capable of pulling the carpet under human civilization itself as we know it. The huge energy consumption especially in the northern hemisphere is closely linked to industrialization, and the response from those aware of energy and climate problems has in some...

  19. Global Climate Summaries

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Hourly Summaries are simple indicators of observational normals which include climatic data summarizations and frequency distributions. These typically...

  20. Greenland climate change

    DEFF Research Database (Denmark)

    Masson-Delmotte, Valerie; Swingedouw, D.; Landais, A.

    2012-01-01

    Climate archives available from deep-sea and marine shelf sediments, glaciers, lakes and ice cores in and around Greenland allow us to place the current trends in regional climate, ice sheet dynamics, and land surface changes in a broader perspective. We show that during the last decade (2000s...... regional climate and ice sheet dynamics. The magnitude and rate of future changes in Greenland temperature, in response to increasing greenhouse gas emissions, may be faster than any past abrupt events occurring under interglacial conditions. Projections indicate that within one century Greenland may......), atmospheric and sea-surface temperatures are reaching levels last encountered millennia ago when northern high latitude summer insolation was higher due to a different orbital configuration. Concurrently, records from lake sediments in southern Greenland document major environmental and climatic conditions...

  1. Topologies of climate change

    DEFF Research Database (Denmark)

    Blok, Anders

    2010-01-01

    Climate change is quickly becoming a ubiquitous socionatural reality, mediating extremes of sociospatial scale from the bodily to the planetary. Although environmentalism invites us to ‘think globally and act locally', the meaning of these scalar designations remains ambiguous. This paper explores...... the topological presuppositions of social theory in the context of global climate change, asking how carbon emissions ‘translate' into various sociomaterial forms. Staging a meeting between Tim Ingold's phenomenology of globes and spheres and the social topologies of actor-network theory (ANT), the paper advances...... a ‘relational-scalar' analytics of spatial practices, technoscience, and power. As technoscience gradually constructs a networked global climate, this ‘grey box' comes to circulate within fluid social spaces, taking on new shades as it hybridizes knowledges, symbols, and practices. Global climates thus come...

  2. Climate Change Adaptation

    DEFF Research Database (Denmark)

    Hudecz, Adriána

    -operation and research into the common problems of the Northern Periphery. This report is an output of the ROADEX “Implementing Accessibility” project (2009-2012). It gives a summary of the results of research into adaptation measures to combat climate change effects on low volume roads in the Northern Periphery....... The research was carried out between January 2000 and March 2012. One of the biggest challenges that mankind has to face is the prospect of climate change resulting from emissions of greenhouse gases. These gases trap energy in the atmosphere and cause global surface temperatures to rise. This warming in turn...... causes changes in other climatic variables such as rainfall, humidity and wind speed that impact on the functioning of infrastructure such road networks. This paper discusses the climate changes predicted by the world’s meteorological organisations and considers how these may impact on the public...

  3. The Portuguese Climate Portal

    Science.gov (United States)

    Gomes, Sandra; Deus, Ricardo; Nogueira, Miguel; Viterbo, Pedro; Miranda, Miguel; Antunes, Sílvia; Silva, Alvaro; Miranda, Pedro

    2016-04-01

    The Portuguese Local Warming Website (http://portaldoclima.pt) has been developed in order to support the society in Portugal in preparing for the adaptation to the ongoing and future effects of climate change. The climate portal provides systematic and easy access to authoritative scientific data ready to be used by a vast and diverse user community from different public and private sectors, key players and decision makers, but also to high school students, contributing to the increase in knowledge and awareness on climate change topics. A comprehensive set of regional climate variables and indicators are computed, explained and graphically presented. Variables and indicators were built in agreement with identified needs after consultation of the relevant social partners from different sectors, including agriculture, water resources, health, environment and energy and also in direct cooperation with the Portuguese National Strategy for Climate Change Adaptation (ENAAC) group. The visual interface allows the user to dynamically interact, explore, quickly analyze and compare, but also to download and import the data and graphics. The climate variables and indicators are computed from state-of-the-art regional climate model (RCM) simulations (e.g., CORDEX project), at high space-temporal detail, allowing to push the limits of the projections down to local administrative regions (NUTS3) and monthly or seasonal periods, promoting local adaptation strategies. The portal provides both historical data (observed and modelled for the 1971-2000 period) and future climate projections for different scenarios (modelled for the 2011-2100 period). A large effort was undertaken in order to quantify the impacts of the risk of extreme events, such as heavy rain and flooding, droughts, heat and cold waves, and fires. Furthermore the different climate scenarios and the ensemble of RCM models, with high temporal (daily) and spatial (~11km) detail, is taken advantage in order to

  4. Permafrost monitoring K12 outreach program

    Science.gov (United States)

    Yoshikawa, K.; Saito, T.; Romanovsky, V.

    2007-12-01

    The objective of this project is to establish long-term permafrost monitoring sites adjacent to schools along the circum polar permafrost region. Permafrost will be one of the important indicators for monitoring climatic change in the future. Change in permafrost conditions also affects local ecosystems, hydrological regimes and natural disasters. The purpose of the long-term permafrost observation is fitting for future science objectives, and can also benefit students and teachers in remote village schools. Most remote villages depend on a subsistence lifestyle and will be directly affected by changing climate and permafrost condition. Monitoring the permafrost temperature in the arctic for a better understanding of the spatial distribution of permafrost and having students participate to collect the data is an ideal IPY project. Our outreach project involves drilling boreholes at village schools and installing the micro data logger with temperature sensors to measure hourly air and permafrost temperatures. Trained teachers help students download data several times a year and discuss the results in class. The data gathered from these stations is shared and can be viewed by anyone through the Internet (http://www.uaf.edu/permafrost). Using the Internet teachers can also compare their data with data form other monitoring stations. This project is becoming an useful science project for these remote villages, which tends to have limited exposure to science, despite the changing surroundings that they're daily lives depend on. NSF (EPSCoR) funded the previous seeding outreach program. Currently NSF/NASA and the International Polar Year (IPY) program support this project. In the 2006 field season, thirty-one schools participated in installing the monitoring stations. In 2007 we propose the expansion of this project to involve an additional 100 villages along the arctic. The broader impacts of this project are 1). This project will provide opportunities for field

  5. The development of climates

    Energy Technology Data Exchange (ETDEWEB)

    Kandel, R. (Centre National de la Recherche Scientifique (CNRS), 75 - Paris (FR))

    1990-02-01

    After a description of atmospheric meteorological phenomenas in connection with oceans and continental surfaces or ice caps, climates and weather forecast modelisations are explained. Concentration balances of carbon dioxide, ozone, freon, methane... coming from human activities or from nature itself are made. The green house effect is discussed with some models. Analysis instruments for past and present climates are listed. Political aspects of climatology are presented. 15 refs.

  6. Station Climatic Summaries, Asia

    Science.gov (United States)

    1989-07-01

    OCDS) ................................................... 077 BIRJAND 408090 8612 (OCDS) ............................................. ( 381 BUSHEHR...ALL HOURS # 2 1 0 1 0 # 0 # 1 # 1 1 CACECR-IB 080 OPERATIONAL CLIMATIC DATA SUMM ARY STATION: BIRJAND , IRAN STATION #: 408090 ICAO ID...082. L@ OPERATIONAL CLIMATIC DATA SIJ44ARY STATION: BIRJAND , IRAN STATION #: 408090 ICAO ID: OIMB LOCATION: 32054’N, 59016’E ELEVATION (FEET): 4823 LST

  7. Northwest Regional Climate Assessment

    Science.gov (United States)

    Lipschultz, Fred

    2011-01-01

    Objectives are to establish a continuing, inclusive National process that: 1) synthesizes relevant science and information 2) increases understanding of what is known & not known 3) identifies information needs related to preparing for climate variability and change, and reducing climate impacts and vulnerability 4) evaluates progress of adaptation & mitigation activities 5) informs science priorities 6) builds assessment capacity in regions and sectors 7) builds understanding & skilled use of findings

  8. Climate change and skin.

    Science.gov (United States)

    Balato, N; Ayala, F; Megna, M; Balato, A; Patruno, C

    2013-02-01

    Global climate appears to be changing at an unprecedented rate. Climate change can be caused by several factors that include variations in solar radiation received by earth, oceanic processes (such as oceanic circulation), plate tectonics, and volcanic eruptions, as well as human-induced alterations of the natural world. Many human activities, such as the use of fossil fuel and the consequent accumulation of greenhouse gases in the atmosphere, land consumption, deforestation, industrial processes, as well as some agriculture practices are contributing to global climate change. Indeed, many authors have reported on the current trend towards global warming (average surface temperature has augmented by 0.6 °C over the past 100 years), decreased precipitation, atmospheric humidity changes, and global rise in extreme climatic events. The magnitude and cause of these changes and their impact on human activity have become important matters of debate worldwide, representing climate change as one of the greatest challenges of the modern age. Although many articles have been written based on observations and various predictive models of how climate change could affect social, economic and health systems, only few studies exist about the effects of this change on skin physiology and diseases. However, the skin is the most exposed organ to environment; therefore, cutaneous diseases are inclined to have a high sensitivity to climate. For example, global warming, deforestation and changes in precipitation have been linked to variations in the geographical distribution of vectors of some infectious diseases (leishmaniasis, lyme disease, etc) by changing their spread, whereas warm and humid environment can also encourage the colonization of the skin by bacteria and fungi. The present review focuses on the wide and complex relationship between climate change and dermatology, showing the numerous factors that are contributing to modify the incidence and the clinical pattern of many

  9. Cuba confronts climate change.

    Science.gov (United States)

    Alonso, Gisela; Clark, Ismael

    2015-04-01

    Among environmental problems, climate change presents the greatest challenges to developing countries, especially island nations. Changes in climate and the resulting effects on human health call for examination of the interactions between environmental and social factors. Important in Cuba's case are soil conditions, food availability, disease burden, ecological changes, extreme weather events, water quality and rising sea levels, all in conjunction with a range of social, cultural, economic and demographic conditions.

  10. Climate and architecture

    DEFF Research Database (Denmark)

    Tind Kristensen, Eva; Friis Møller, Winnie; Rotne, Georg

    2010-01-01

    Climate and Architecture analyserer klimaets rolle i arkitekturen. Intentionen med bogen er at pege på nogle af de mange muligheder for bygningers klimaregulering, som et mere detaljeret studie af de lokale klimatiske forhold og den stedlige byggeskik tilbyder.......Climate and Architecture analyserer klimaets rolle i arkitekturen. Intentionen med bogen er at pege på nogle af de mange muligheder for bygningers klimaregulering, som et mere detaljeret studie af de lokale klimatiske forhold og den stedlige byggeskik tilbyder....

  11. The remote impacts of climate feedbacks on regional climate predictability

    OpenAIRE

    Roe, Gerard H.; Feldl, Nicole; Armour, Kyle C.; Hwang, Yen-Ting; Frierson, Dargan M. W.

    2015-01-01

    Uncertainty in the spatial pattern of climate change is dominated by divergent predictions among climate models. Model differences are closely linked to their representation of climate feedbacks, that is, the additional radiative fluxes that are caused by changes in clouds, water vapour, surface albedo, and other factors, in response to an external climate forcing. Progress in constraining this uncertainty is therefore predicated on understanding how patterns of individual climate feedbacks a...

  12. Monitoring Knowledge Base (MKB)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Monitoring Knowledge Base (MKB) is a compilation of emissions measurement and monitoring techniques associated with air pollution control devices, industrial...

  13. The politics of climate

    Energy Technology Data Exchange (ETDEWEB)

    Tirkkonen, J. [Tampere Univ. (Finland). Dept. of Regional Studies; Wilenius, M. [Helsinki Univ. (Finland). Inst. for Cooperative Studies

    1996-12-31

    One of the aims of SILMU, the Finnish Research Programme for Climate Change, was to produce information for decision-makers concerning climate change and its mitigation. One integrative project for this purpose was PAATE, an inquiry into the present state and future possibilities of interaction between researchers and decision-makers. The aims of the PAATE project can be summarised as follows: (1) to conduct a survey of the state of climate change research and climate policy in Finland, (2) to develop the interaction between climate research, policy makers and different societal organisations, (3) to acquire methodological experiences on the realisation of projects of this type, (4) to provide material for the final report of the SILMU project and for further action, and (5) to promote the rational development of climate policy. Methodologically, the PAATE project used the Delphi technique employed chiefly in futurological research. A method based on expert knowledge, the Delphi technique assesses the possibilities and conditions of future development through e.g. panel discussions between experts. Also the experiences of the similar project conducted in Netherlands were utilised

  14. Arts and Climate

    Science.gov (United States)

    Cegnar, T.

    2010-09-01

    Arts and climate science have more in common points than it appears at first glance. Artistic works can help us to directly or indirectly learn about climatic conditions and weather events in the past, but are also very efficient in raising awareness about climate change nowadays. Long scientific articles get very little response among general public, because most people don't want to read long articles. There is a need to communicate climate change issues more powerfully and more directly, with simple words, pictures, sculptures, installations. Artistic works can inspire people to take concrete action. A number of communication media can fit this purpose. Artists can speak to people on an emotional and intellectual level; they can help people to see things from another perspective and in new ways. Artists can motivate change; they have the freedom to weave facts, opinions, thoughts, emotion and colour all together. Paintings are witnesses of the past climatic conditions. We can learn from paintings, architectural constructions and sculptures about the vegetation, weather events, animals, and way of living. Mentioning only some few examples: old paintings in caves, also Flemish painters are often shown for their winter landscapes, and paintings are very useful to illustrate how fast glaciers are melting. At the end, we shall not forget that dilapidation of art masterpieces often depends on climatic conditions.

  15. Sonification of Climate Data

    Science.gov (United States)

    Vogt, Katharina; Visda, Goudarzi

    2013-04-01

    Sonification is the acoustic analogue of data visualization and takes advantage of human perceptual and cognitive capabilities. The amount of data being processed today is steadily increasing, and both scientists and society need new ways to understand scientific data and their implications. Sonification is especially suited to the preliminary exploration of complex, dynamic, and multidimensional data sets, as can be found in climate science. In the research project SysSon (https://sysson.kug.ac.at/), we apply a systematic approach to design sonifications to climate data. In collaboration with the Wegener Center for Climate and Global Change (http://www.wegcenter.at/) we assessed the metaphors climate scientists use and their typical workflows, and chose data sets where sonification has high potential revealing new phenomena. This background will be used to develop an audio interface which is directly linked to the visualization interfaces for data analysis the scientists use today. The protoype will be evaluated according to its functionality, intuitivity for climate scientists, and aesthetic criteria. In the current stage of the project, conceptual links between climate science and sound have been elaborated and first sonification designs have been developed. The research is mainly carried out at the Institute of Electronic Music and Acoustics (http://iem.kug.ac.at/), which has extensive experience in interactive sonification with multidimensional data sets.

  16. Organizational climate and culture.

    Science.gov (United States)

    Schneider, Benjamin; Ehrhart, Mark G; Macey, William H

    2013-01-01

    Organizational climate and organizational culture theory and research are reviewed. The article is first framed with definitions of the constructs, and preliminary thoughts on their interrelationships are noted. Organizational climate is briefly defined as the meanings people attach to interrelated bundles of experiences they have at work. Organizational culture is briefly defined as the basic assumptions about the world and the values that guide life in organizations. A brief history of climate research is presented, followed by the major accomplishments in research on the topic with regard to levels issues, the foci of climate research, and studies of climate strength. A brief overview of the more recent study of organizational culture is then introduced, followed by samples of important thinking and research on the roles of leadership and national culture in understanding organizational culture and performance and culture as a moderator variable in research in organizational behavior. The final section of the article proposes an integration of climate and culture thinking and research and concludes with practical implications for the management of effective contemporary organizations. Throughout, recommendations are made for additional thinking and research.

  17. Climate science and famine early warning

    Science.gov (United States)

    Verdin, J.; Funk, C.; Senay, G.; Choularton, R.

    2005-01-01

    Food security assessment in sub-Saharan Africa requires simultaneous consideration of multiple socio-economic and environmental variables. Early identification of populations at risk enables timely and appropriate action. Since large and widely dispersed populations depend on rainfed agriculture and pastoralism, climate monitoring and forecasting are important inputs to food security analysis. Satellite rainfall estimates (RFE) fill in gaps in station observations, and serve as input to drought index maps and crop water balance models. Gridded rainfall time-series give historical context, and provide a basis for quantitative interpretation of seasonal precipitation forecasts. RFE are also used to characterize flood hazards, in both simple indices and stream flow models. In the future, many African countries are likely to see negative impacts on subsistence agriculture due to the effects of global warming. Increased climate variability is forecast, with more frequent extreme events. Ethiopia requires special attention. Already facing a food security emergency, troubling persistent dryness has been observed in some areas, associated with a positive trend in Indian Ocean sea surface temperatures. Increased African capacity for rainfall observation, forecasting, data management and modelling applications is urgently needed. Managing climate change and increased climate variability require these fundamental technical capacities if creative coping strategies are to be devised. ?? 2005 The Royal Society.

  18. Community responses to extreme climatic conditions

    Directory of Open Access Journals (Sweden)

    Frédéric JIGUET, Lluis BROTONS, Vincent DEVICTOR

    2011-06-01

    Full Text Available Species assemblages and natural communities are increasingly impacted by changes in the frequency and severity of extreme climatic events. Here we propose a brief overview of expected and demonstrated direct and indirect impacts of extreme events on animal communities. We show that differential impacts on basic biological parameters of individual species can lead to strong changes in community composition and structure with the potential to considerably modify the functional traits of the community. Sudden disequilibria have even been shown to induce irreversible shifts in marine ecosystems, while cascade effects on various taxonomic groups have been highlighted in Mediterranean forests. Indirect effects of extreme climatic events are expected when event-induced habitat changes (e.g. soil stability, vegetation composition, water flows altered by droughts, floods or hurricanes have differential consequences on species assembled within the communities. Moreover, in increasing the amplitude of trophic mismatches, extreme events are likely to turn many systems into ecological traps under climate change. Finally, we propose a focus on the potential impacts of an extreme heat wave on local assemblages as an empirical case study, analysing monitoring data on breeding birds collected in France. In this example, we show that despite specific populations were differently affected by local temperature anomalies, communities seem to be unaffected by a sudden heat wave. These results suggest that communities are tracking climate change at the highest possible rate [Current Zoology 57 (3: 406–413, 2011].

  19. Climate science and famine early warning.

    Science.gov (United States)

    Verdin, James; Funk, Chris; Senay, Gabriel; Choularton, Richard

    2005-11-29

    Food security assessment in sub-Saharan Africa requires simultaneous consideration of multiple socio-economic and environmental variables. Early identification of populations at risk enables timely and appropriate action. Since large and widely dispersed populations depend on rainfed agriculture and pastoralism, climate monitoring and forecasting are important inputs to food security analysis. Satellite rainfall estimates (RFE) fill in gaps in station observations, and serve as input to drought index maps and crop water balance models. Gridded rainfall time-series give historical context, and provide a basis for quantitative interpretation of seasonal precipitation forecasts. RFE are also used to characterize flood hazards, in both simple indices and stream flow models. In the future, many African countries are likely to see negative impacts on subsistence agriculture due to the effects of global warming. Increased climate variability is forecast, with more frequent extreme events. Ethiopia requires special attention. Already facing a food security emergency, troubling persistent dryness has been observed in some areas, associated with a positive trend in Indian Ocean sea surface temperatures. Increased African capacity for rainfall observation, forecasting, data management and modelling applications is urgently needed. Managing climate change and increased climate variability require these fundamental technical capacities if creative coping strategies are to be devised.

  20. Community responses to extreme climatic conditions

    Institute of Scientific and Technical Information of China (English)

    Frédéric JIGUET; Lluis BROTONS; Vincent DEVICTOR

    2011-01-01

    Species assemblages and natural communities are increasingly impacted by changes in the frequency and severity of extreme climatic events. Here we propose a brief overview of expected and demonstrated direct and indirect impacts of extreme events on animal communities. We show that differential impacts on basic biological parameters of individual species can lead to strong changes in community composition and structure with the potential to considerably modify the functional traits of the community. Sudden disequilibria have even been shown to induce irreversible shifts in marine ecosystems, while cascade effects on various taxonomic groups have been highlighted in Mediterranean forests. Indirect effects of extreme climatic events are expected when event-induced habitat changes (e.g. Soil stability, vegetation composition, water flows altered by droughts, floods or hurricanes) have differential consequences on species assembled within the communities. Moreover, in increasing the amplitude of trophic mismatches, extreme events are likely to turn many systems into ecological traps under climate change. Finally, we propose a focus on the potential impacts of an extreme heat wave on local assemblages as an empirical case study, analysing monitoring data on breeding birds collected in France. In this example, we show that despite specific populations were differently affected by local temperature anomalies, communities seem to be unaffected by a sudden heat wave. These results suggest that communities are tracking climate change at the highest possible rate.

  1. Organizational Climate of the American Association for Agricultural Education

    Science.gov (United States)

    McKim, Billy R.; Rutherford, Tracy A.; Torres, Robert M.; Murphy, Tim H.

    2011-01-01

    Monitoring and evaluating programs and outcomes is common practice in educational arenas; less frequent in professional societies and organizations. A clear understanding of the climate of an organization is important, potentially providing leadership with an understanding of how to improve the functionality of an organization. The purpose of this…

  2. Do regional climate models represent regional climate?

    Science.gov (United States)

    Maraun, Douglas; Widmann, Martin

    2014-05-01

    When using climate change scenarios - either from global climate models or further downscaled - to assess localised real world impacts, one has to ensure that the local simulation indeed correctly represents the real world local climate. Representativeness has so far mainly been discussed as a scale issue: simulated meteorological variables in general represent grid box averages, whereas real weather is often expressed by means of point values. As a result, in particular simulated extreme values are not directly comparable with observed local extreme values. Here we argue that the issue of representativeness is more general. To illustrate this point, assume the following situations: first, the (GCM or RCM) simulated large scale weather, e.g., the mid-latitude storm track, might be systematically distorted compared to observed weather. If such a distortion at the synoptic scale is strong, the simulated local climate might be completely different from the observed. Second, the orography even of high resolution RCMs is only a coarse model of true orography. In particular in mountain ranges the simulated mesoscale flow might therefore considerably deviate from the observed flow, leading to systematically displaced local weather. In both cases, the simulated local climate does not represent observed local climate. Thus, representativeness also encompasses representing a particular location. We propose to measure this aspect of representativeness for RCMs driven with perfect boundary conditions as the correlation between observations and simulations at the inter-annual scale. In doing so, random variability generated by the RCMs is largely averaged out. As an example, we assess how well KNMIs RACMO2 RCM at 25km horizontal resolution represents winter precipitation in the gridded E-OBS data set over the European domain. At a chosen grid box, RCM precipitation might not be representative of observed precipitation, in particular in the rain shadow of major moutain ranges

  3. Pan-tropical monitoring of deforestation

    Energy Technology Data Exchange (ETDEWEB)

    Achard, F [Institute for Environment and Sustainability, Joint Research Centre of the European Commission, I-21020 Ispra (Italy); DeFries, R [Department of Geography and Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20742 (United States); Eva, H [Institute for Environment and Sustainability, Joint Research Centre of the European Commission, I-21020 Ispra (Italy); Hansen, M [Geographic Information Science Center of Excellence, South Dakota State University, Box 506B, Brookings, SD 57007 (United States); Mayaux, P [Institute for Environment and Sustainability, Joint Research Centre of the European Commission, I-21020 Ispra (Italy); Stibig, H-J [Institute for Environment and Sustainability, Joint Research Centre of the European Commission, I-21020 Ispra (Italy)

    2007-10-15

    This paper reviews the technical capabilities for monitoring deforestation from a pan-tropical perspective in response to the United Nations Framework Convention on Climate Change (UNFCCC) process, which is studying the technical issues surrounding the ability to reduce greenhouse gas emissions from deforestation in developing countries. The successful implementation of such policies requires effective forest monitoring systems that are reproducible, provide consistent results, meet standards for mapping accuracy, and can be implemented from national to pan-tropical levels. Remotely sensed data, supported by ground observations, are crucial to such efforts. Recent developments in global to regional monitoring of forests can contribute to reducing the uncertainties in estimates of emissions from deforestation. Monitoring systems at national levels in developing countries can also benefit from pan-tropical and regional observations, mainly by identifying hot spots of change and prioritizing areas for monitoring at finer spatial scales. A pan-tropical perspective is also required to ensure consistency between different national monitoring systems. Data sources already exist to determine baseline periods in the 1990s as historical reference points. Key requirements for implementing such monitoring programs, both at pan-tropical and at national scales, are international commitment of resources to increase capacity, coordination of observations to ensure pan-tropical coverage, access to free or low-cost data, and standardized, consensus protocols for data interpretation and analysis.

  4. Pan-tropical monitoring of deforestation

    Science.gov (United States)

    Achard, F.; DeFries, R.; Eva, H.; Hansen, M.; Mayaux, P.; Stibig, H.-J.

    2007-10-01

    This paper reviews the technical capabilities for monitoring deforestation from a pan-tropical perspective in response to the United Nations Framework Convention on Climate Change (UNFCCC) process, which is studying the technical issues surrounding the ability to reduce greenhouse gas emissions from deforestation in developing countries. The successful implementation of such policies requires effective forest monitoring systems that are reproducible, provide consistent results, meet standards for mapping accuracy, and can be implemented from national to pan-tropical levels. Remotely sensed data, supported by ground observations, are crucial to such efforts. Recent developments in global to regional monitoring of forests can contribute to reducing the uncertainties in estimates of emissions from deforestation. Monitoring systems at national levels in developing countries can also benefit from pan-tropical and regional observations, mainly by identifying hot spots of change and prioritizing areas for monitoring at finer spatial scales. A pan-tropical perspective is also required to ensure consistency between different national monitoring systems. Data sources already exist to determine baseline periods in the 1990s as historical reference points. Key requirements for implementing such monitoring programs, both at pan-tropical and at national scales, are international commitment of resources to increase capacity, coordination of observations to ensure pan-tropical coverage, access to free or low-cost data, and standardized, consensus protocols for data interpretation and analysis.

  5. Occultations for probing atmosphere and climate

    CERN Document Server

    Foelsche, Ulrich; Steiner, Andrea

    2004-01-01

    Use of occultation methodology for observing the Earth's atmosphere and climate has become so broad as to comprise solar, lunar, stellar, navigation and satellite­ crosslink occultation methods. The atmospheric parameters obtained extend from the fundamental variables temperature, density, pressure, water vapor, and ozone via a multitude of trace gas species to particulate species such as aerosols and cloud liquid water. Ionospheric electron density is sensed as well. The methods all share the key properties of self-calibration, high accuracy and vertical resolution, global coverage, and (if using radio signals) all-weather capability. Occultation data are thus of high value in a wide range of fields including climate monitoring and research, atmospheric physics and chemistry, operational meteorology, and other fields such as space weather and planetary science. This wide area of variants and uses of the occultation method has led to a diversi­ fication of the occultation-related scientific community into a...

  6. Climate Change Impacts and Responses: Societal Indicators for the National Climate Assessment

    Science.gov (United States)

    Kenney, Melissa A.; Chen, Robert S.; Maldonado, Julie; Quattrochi, Dale

    2011-01-01

    The Climate Change Impacts and Responses: Societal Indicators for the National Climate Assessment workshop, sponsored by the National Aeronautics and Space Administration (NASA) for the National Climate Assessment (NCA), was held on April 28-29, 2011 at The Madison Hotel in Washington, DC. A group of 56 experts (see list in Appendix B) convened to share their experiences. Participants brought to bear a wide range of disciplinary expertise in the social and natural sciences, sector experience, and knowledge about developing and implementing indicators for a range of purposes. Participants included representatives from federal and state government, non-governmental organizations, tribes, universities, and communities. The purpose of the workshop was to assist the NCA in developing a strategic framework for climate-related physical, ecological, and socioeconomic indicators that can be easily communicated with the U.S. population and that will support monitoring, assessment, prediction, evaluation, and decision-making. The NCA indicators are envisioned as a relatively small number of policy-relevant integrated indicators designed to provide a consistent, objective, and transparent overview of major variations in climate impacts, vulnerabilities, adaptation, and mitigation activities across sectors, regions, and timeframes. The workshop participants were asked to provide input on a number of topics, including: (1) categories of societal indicators for the NCA; (2) alternative approaches to constructing indicators and the better approaches for NCA to consider; (3) specific requirements and criteria for implementing the indicators; and (4) sources of data for and creators of such indicators. Socioeconomic indicators could include demographic, cultural, behavioral, economic, public health, and policy components relevant to impacts, vulnerabilities, and adaptation to climate change as well as both proactive and reactive responses to climate change. Participants provided

  7. Response of Groundwater to Climate Change under Extreme Climate Conditions in North China Plain

    Institute of Scientific and Technical Information of China (English)

    Ying Zhang; Jincui Wang; Jihong Jing; Jichao Sun

    2014-01-01

    The North China Plain (NCP) is one of the water shortage areas of China. Lack of water resources restricted the economic and social development of North China area and resulted in deterio-ration of ecosystem and natural environment. Influenced by the climate change and human activities, the water circulation of NCP was largely changed and the crisis of water resources was aggravated. Therefore, it is important to study the features of the extreme climate and the response mechanism of groundwater to climate change. We analyzed the trend of climate change and extreme climate features in the past 60 years based on the monitoring data of meteorological stations. And then the response characteristics of groundwater to climate change were discussed. The average temperature of NCP was in an obviously upward trend. The overall precipitation variation was in a downward trend. The cli-mate change in this area showed a warming-drying trend. The intensity of extreme precipitation dis-played a trend of declining and then increasing from north to south as well as declining from eastern coastal plain to the piedmont plain. Grey correlation degree analysis indicated that groundwater depth had a close relationship with precipitation and human activities in NCP. The response of groundwater level to precipitation differed from the piedmont alluvial-pluvial plain to the coastal plain. The response was more obvious in the coastal plain than the piedmont alluvial-pluvial plain and the middle plain. The precipitation influenced the groundwater depth both directly and indirectly. Under the condition of extreme precipitation, the impact would aggravate, in the forms of rapid or lag raise of groundwater levels.

  8. Public health responses to the risks of climate variability and change in the United States.

    Science.gov (United States)

    Ebi, Kristie L

    2009-01-01

    Discuss issues related to the capacity of the United States to effectively adapt to current and future climate change. Review literature on public health adaptation measures to reduce the burden of climate-sensitive health outcomes. Most health risks of concern with climate change already exist in the United States. Current interventions may need to be augmented or deployed in new regions to prevent additional climate change-related morbidity and mortality. Monitoring and surveillance systems will need to be modified to ensure programs remain effective under a changing climate. Explicit consideration of climate change is needed in the many programs and research activities within federal, state, and local agencies that are relevant to adaptation to ensure that they have maximum effectiveness in reducing future vulnerability to the projected health impacts of climate change.

  9. Conceptualizing Climate Change in the Context of a Climate System: Implications for Climate and Environmental Education

    Science.gov (United States)

    Shepardson, Daniel P.; Niyogi, Dev; Roychoudhury, Anita; Hirsch, Andrew

    2012-01-01

    Today there is much interest in teaching secondary students about climate change. Much of this effort has focused directly on students' understanding of climate change. We hypothesize, however, that in order for students to understand climate change they must first understand climate as a system and how changes to this system due to both natural…

  10. A common-sense climate index: is climate changing noticeably?

    Science.gov (United States)

    Hansen, J.; Sato, M.; Glascoe, J.; Ruedy, R.

    1998-01-01

    We propose an index of climate change based on practical climate indicators such as heating degree days and the frequency of intense precipitation. We find that in most regions the index is positive, the sense predicted to accompany global warming. In a few regions, especially in Asia and western North America, the index indicates that climate change should be apparent already, but in most places climate trends are too small to stand out above year-to-year variability. The climate index is strongly correlated with global surface temperature, which has increased as rapidly as projected by climate models in the 1980s. We argue that the global area with obvious climate change will increase notably in the next few years. But we show that the growth rate of greenhouse gas climate forcing has declined in recent years, and thus there is an opportunity to keep climate change in the 21st century less than "business-as-usual" scenarios.

  11. Climate services within a regional climate adaptation project

    Science.gov (United States)

    Hänsel, Stephanie; Heidenreich, Majana; Franke, Johannes; Riedel, Kathrin; Matschullat, Jörg; Bernhofer, Christian

    2013-04-01

    In recent years the demand for adapting to climate variability and change became more and more obvious. Thus a multitude of projects dealing with climate adaptation strategies and concrete measures was launched. Commonly, developing adaptation options is based on downscaled climate model outputs. These outputs have to be provided within the projects, but just providing the data is far from being sufficient. Obstacles connected with using climate projections for climate adaptation include uncertainties and bandwidths of climate projections and the inability of models to describe parameters such as extreme weather events, which are particularly relevant for many climate adaptation decisions. Climate scientists know that model outputs are no climate data and cannot be treated as observational data were treated in the past. Still, many practitioners demand precise values for future climate to replace past CLINO-values and to run their applications. Thus, climate adaptation involves adapting the instruments and processes used in deriving climate-related decisions. Communicating the challenges arising from this need in rethinking common procedures is of outstanding significance for any successful adaptation practice. Dealing with uncertainties of climate projections is a constant necessity, since they are always based on several simplifications, parameterisations and assumptions, e.g., on the future socioeconomic development or on climate sensitivity. Future climate should thus be communicated in bandwidths. Working with just one scenario, one climate model, or even working with ensemble means is risky as it evokes a higher than appropriate perceived confidence in the results. It encourages using familiar tools in processing climate information, rather than caution. Consequences are suboptimal adaption and misallocation of finances. We encourage working with bandwidths and testing climate adaptation options against a broad range of possible future climates. Climate

  12. An Analog Earth Climate Model

    Science.gov (United States)

    Varekamp, J. C.

    2010-12-01

    The earth climate is broadly governed by the radiative power of the sun as well as the heat retention and convective cooling of the atmosphere. I have constructed an analog earth model for an undergraduate climate class that simulates mean climate using these three parameters. The ‘earth’ is a hollow, black, bronze sphere (4 cm diameter) mounted on a thin insulated rod, and illuminated by two opposite optic fibers, with light focused on the sphere by a set of lenses. The sphere is encased in a large double-walled aluminum cylinder (34 cm diameter by 26 cm high) with separate water cooling jackets at the top, bottom, and sides. The cylinder can be filled with a gas of choice at a variety of pressures or can be run in vacuum. The exterior is cladded with insulation, and the temperature of the sphere, atmosphere and walls is monitored with thermocouples. The temperature and waterflow of the three cooling jackets can be monitored to establish the energy output of the whole system; the energy input is the energy yield of the two optic fibers. A small IR transmissive lens at the top provides the opportunity to hook up the fiber of a hyper spectrometer to monitor the emission spectrum of the black ‘earth’ sphere. A pressure gauge and gas inlet-outlet system for flushing of the cell completes it. The heat yield of the cooling water at the top is the sum of the radiative and convective components, whereas the bottom jacket only carries off the radiative heat of the sphere. Undergraduate E&ES students at Wesleyan University have run experiments with dry air, pure CO2, N2 and Ar at 1 atmosphere, and a low vacuum run was accomplished to calibrate the energy input. For each experiment, the lights are flipped on, the temperature acquisition routine is activated, and the sphere starts to warm up until an equilibrium temperature has been reached. The lights are then flipped off and the cooling sequence towards ambient is registered. The energy input is constant for a given

  13. Climatic indicators of desertification in Basilicata, Italy

    Directory of Open Access Journals (Sweden)

    2005-01-01

    Full Text Available Climate changes such as the increase, in intensity and frequency, of extreme phenomena - hurricanes, thunder storms, flooding, drought -, of temperature and of biodiversity loss can influence land morphogenetic processes and prime a severe decreasing of natural resources such as the desertification. Desertification, that is the progressive loss of large areas of globe removed from human activities, is one of the most urgent problems in the last decades and is a phenomenon occurring on the most part of Mediterranean countries, such as Italy and in particular its Southern area. The most interested areas and regions are: Sicily, Sardinia, Pelage island, Pantelleria, Egadi island, Ustica, Calabria and Basilicata. The National Action Plane against Desertification (in Italian PAN calls for synergy between resources and expertises of Basilicata Regional Office, APAT, ARPAB and research organizations for monitoring the Desertification Status Indicators. ARPAB monitoring Section developed a project to monitor indices and indicators. In this project, we focused on climatology, that is the study of climate and its variability; in particular we characterized rainfalls regimes, homogeneous rainfall areas and extreme rainfall events. Until now, this study produced historical trends of temperature and rainfall, and maps of indicators of desertification, in particular annual maps of aridity, and monthly and quarterly maps of drought. The analysis of the thematic maps of precipitation, drought and aridity gave us the possibility of evaluating the Region Basilicata tendency to the desertification phenomenon and, in particular, by considering the climatic and morphological variability. Concerning the observation periods (80 years of precipitations, 10 years of aridity, last 3 years of drought data the region susceptibility to drought and aridity is higher in the NW and SE areas as compared to the Apennine areas on the NE-SW direction.

  14. Monitor resultaten geluid 2000

    NARCIS (Netherlands)

    Jabben J; Potma CJM; Swart WJR; LLO

    2001-01-01

    As part of an enhanced effort in monitoring the environmental quality in 1999, the RIVM set up a noise monitoring programme. This programme forms part of the project, "Development of a monitoring system for noise and disturbance", which aims at establishing a number of permanent sites for monitoring

  15. Tree-ring d18O in African mahogany (Entandrophragma utile) records regional precipitation and can be used for climate reconstructions

    NARCIS (Netherlands)

    Sleen, van der J.P.; Groenendijk, P.; Zuidema, P.

    2015-01-01

    The availability of instrumental climate data in West and Central Africa is very restricted, both in space and time. This limits the understanding of the regional climate system and the monitoring of climate change and causes a need for proxies that allow the reconstruction of paleoclimatic

  16. Tree-ring d18O in African mahogany (Entandrophragma utile) records regional precipitation and can be used for climate reconstructions

    NARCIS (Netherlands)

    Sleen, van der J.P.; Groenendijk, P.; Zuidema, P.

    2015-01-01

    The availability of instrumental climate data in West and Central Africa is very restricted, both in space and time. This limits the understanding of the regional climate system and the monitoring of climate change and causes a need for proxies that allow the reconstruction of paleoclimatic variabil

  17. The Surface Elevation Table and Marker Horizon Technique: A Protocol for Monitoring Wetland Elevation Dynamics

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The National Park Service, in response to the growing evidence and awareness of the effects of climate change on federal lands, determined that monitoring wetland...

  18. Climate change matters.

    Science.gov (United States)

    Macpherson, Cheryl Cox

    2014-04-01

    One manifestation of climate change is the increasingly severe extreme weather that causes injury, illness and death through heat stress, air pollution, infectious disease and other means. Leading health organisations around the world are responding to the related water and food shortages and volatility of energy and agriculture prices that threaten health and health economics. Environmental and climate ethics highlight the associated challenges to human rights and distributive justice but rarely address health or encompass bioethical methods or analyses. Public health ethics and its broader umbrella, bioethics, remain relatively silent on climate change. Meanwhile global population growth creates more people who aspire to Western lifestyles and unrestrained socioeconomic growth. Fulfilling these aspirations generates more emissions; worsens climate change; and undermines virtues and values that engender appreciation of, and protections for, natural resources. Greater understanding of how virtues and values are evolving in different contexts, and the associated consequences, might nudge the individual and collective priorities that inform public policy toward embracing stewardship and responsibility for environmental resources necessary to health. Instead of neglecting climate change and related policy, public health ethics and bioethics should explore these issues; bring transparency to the tradeoffs that permit emissions to continue at current rates; and offer deeper understanding about what is at stake and what it means to live a good life in today's world.

  19. Climate change and amphibians

    Directory of Open Access Journals (Sweden)

    Corn, P. S.

    2005-01-01

    Full Text Available Amphibian life histories are exceedingly sensitive to temperature and precipitation, and there is good evidence that recent climate change has already resulted in a shift to breeding earlier in the year for some species. There are also suggestions that the recent increase in the occurrence of El Niño events has caused declines of anurans in Central America and is linked to elevated mortality of amphibian embryos in the northwestern United States. However, evidence linking amphibian declines in Central America to climate relies solely on correlations, and the mechanisms underlying the declines are not understood. Connections between embryo mortality and declines in abundance have not been demonstrated. Analyses of existing data have generally failed to find a link between climate and amphibian declines. It is likely, however, that future climate change will cause further declines of some amphibian species. Reduced soil moisture could reduce prey species and eliminate habitat. Reduced snowfall and increased summer evaporation could have dramatic effects on the duration or occurrence of seasonal wetlands, which are primary habitat for many species of amphibians. Climate change may be a relatively minor cause of current amphibian declines, but it may be the biggest future challenge to the persistence of many species

  20. Global Framework for Climate Services (GFCS): status of implementation

    Science.gov (United States)

    Lucio, Filipe

    2014-05-01

    The GFCS is a global partnership of governments and UN and international agencies that produce and use climate information and services. WMO, which is leading the initiative in collaboration with UN ISDR, WHO, WFP, FAO, UNESCO, UNDP and other UN and international partners are pooling their expertise and resources in order to co-design and co-produce knowledge, information and services to support effective decision making in response to climate variability and change in four priority areas (agriculture and fod security, water, health and disaster risk reduction). To address the entire value chain for the effective production and application of climate services the GFCS main components or pillars are being implemented, namely: • User Interface Platform — to provide ways for climate service users and providers to interact to identify needs and capacities and improve the effectiveness of the Framework and its climate services; • Climate Services Information System — to produce and distribute climate data, products and information according to the needs of users and to agreed standards; • Observations and Monitoring - to generate the necessary data for climate services according to agreed standards; • Research, Modelling and Prediction — to harness science capabilities and results and develop appropriate tools to meet the needs of climate services; • Capacity Building — to support the systematic development of the institutions, infrastructure and human resources needed for effective climate services. Activities are being implemented in various countries in Africa, the Caribbean and South pacific Islands. This paper will provide details on the status of implementation of the GFCS worldwider.

  1. Extreme weather and climate events with ecological relevance: a review.

    Science.gov (United States)

    Ummenhofer, Caroline C; Meehl, Gerald A

    2017-06-19

    Robust evidence exists that certain extreme weather and climate events, especially daily temperature and precipitation extremes, have changed in regard to intensity and frequency over recent decades. These changes have been linked to human-induced climate change, while the degree to which climate change impacts an individual extreme climate event (ECE) is more difficult to quantify. Rapid progress in event attribution has recently been made through improved understanding of observed and simulated climate variability, methods for event attribution and advances in numerical modelling. Attribution for extreme temperature events is stronger compared with other event types, notably those related to the hydrological cycle. Recent advances in the understanding of ECEs, both in observations and their representation in state-of-the-art climate models, open new opportunities for assessing their effect on human and natural systems. Improved spatial resolution in global climate models and advances in statistical and dynamical downscaling now provide climatic information at appropriate spatial and temporal scales. Together with the continued development of Earth System Models that simulate biogeochemical cycles and interactions with the biosphere at increasing complexity, these make it possible to develop a mechanistic understanding of how ECEs affect biological processes, ecosystem functioning and adaptation capabilities. Limitations in the observational network, both for physical climate system parameters and even more so for long-term ecological monitoring, have hampered progress in understanding bio-physical interactions across a range of scales. New opportunities for assessing how ECEs modulate ecosystem structure and functioning arise from better scientific understanding of ECEs coupled with technological advances in observing systems and instrumentation.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events

  2. Tracking climate impacts on the migratory monarch butterfly

    Science.gov (United States)

    Zipkin, Elise F.; Ries, Leslie; Reeves, Rick; Regetz, James; Oberhauser, Karen S.

    2012-01-01

    Understanding the impacts of climate on migratory species is complicated by the fact that these species travel through several climates that may be changing in diverse ways throughout their complete migratory cycle. Most studies are not designed to tease out the direct and indirect effects of climate at various stages along the migration route. We assess the impacts of spring and summer climate conditions on breeding monarch butterflies, a species that completes its annual migration cycle over several generations. No single, broad-scale climate metric can explain summer breeding phenology or the substantial year-to-year fluctuations observed in population abundances. As such, we built a Poisson regression model to help explain annual arrival times and abundances in the Midwestern United States. We incorporated the climate conditions experienced both during a spring migration/breeding phase in Texas as well as during subsequent arrival and breeding during the main recruitment period in Ohio. Using data from a state-wide butterfly monitoring network in Ohio, our results suggest that climate acts in conflicting ways during the spring and summer seasons. High spring precipitation in Texas is associated with the largest annual population growth in Ohio and the earliest arrival to the summer breeding ground, as are intermediate spring temperatures in Texas. On the other hand, the timing of monarch arrivals to the summer breeding grounds is not affected by climate conditions within Ohio. Once in Ohio for summer breeding, precipitation has minimal impacts on overall abundances, whereas warmer summer temperatures are generally associated with the highest expected abundances, yet this effect is mitigated by the average seasonal temperature of each location in that the warmest sites receive no benefit of above average summer temperatures. Our results highlight the complex relationship between climate and performance for a migrating species and suggest that attempts to

  3. A 'whole building' path to climate control.

    Science.gov (United States)

    Durbin, John

    2010-10-01

    With September having seen the end of the registration period for the introductory phase of the Carbon Reduction Commitment (CRC) Energy Efficiency Scheme, healthcare sector participants should already be monitoring their energy usage, and preparing their carbon reduction strategies. John Durbin, engineering department manager at air conditioning equipment specialist Daikin U.K., argues that, to minimise an organisation's legal liabilities and trade successfully in carbon allowances, a holistic view should be taken of climate control systems across health estates--"and that means incorporating the latest heat recovery techniques".

  4. Enhancing climate literacy by melding the atmospheric and geospatial sciences

    Science.gov (United States)

    Dupigny-Giroux, L.; Toolin, R.; Morrissey, L.; Fortney, M. D.; Hogan, S.; Pontius, J.; Berryman, B.; Shafer, J.; Atkins, N.; Shepherd, M.; Mote, T. L.; Raphael, M. N.

    2012-12-01

    Climate literacy involves an understanding of the interconnectedness of various components of the climate system over space and time, as well as the influence of humans on that system and the ability to use that understanding to "act accordingly". Understanding the climate system relies on techniques that include statistics, modelling, visualization and geospatial technologies such as remote sensing and geographic information science (GIS). The melding of these geospatial technologies with the atmospheric and climate sciences has become increasingly common and ubiquitous from the nightly weather presentations to the weekly U.S. Drought Monitor. This presentation will delve into the successes and ongoing challenges for a climate literate society that exist at the transdisciplinary border of the atmospheric and geospatial sciences. Two National Science Foundation (NSF) funded programs will be highlighted. The first is the Satellites, Weather and Climate (SWAC) professional development program for K-12 teachers and the second is the Diversity Climate Network (D-ClimNet) for high school to graduate students.

  5. Exploring Connections between Global Climate Indices and African Vegetation Phenology

    Science.gov (United States)

    Brown, Molly E.; deBeurs, Kirsten; Vrieling, Anton

    2009-01-01

    Variations in agricultural production due to rainfall and temperature fluctuations are a primary cause of food insecurity on the continent in Africa. Agriculturally destructive droughts and floods are monitored from space using satellite remote sensing by organizations seeking to provide quantitative and predictive information about food security crises. Better knowledge on the relation between climate indices and food production may increase the use of these indices in famine early warning systems and climate outlook forums on the continent. Here we explore the relationship between phenology metrics derived from the 26 year AVHRR NDVI record and the North Atlantic Oscillation index (NAO), the Indian Ocean Dipole (IOD), the Pacific Decadal Oscillation (PDO), the Multivariate ENSO Index (MEI) and the Southern Oscillation Index (SOI). We explore spatial relationships between growing conditions as measured by the NDVI and the five climate indices in Eastern, Western and Southern Africa to determine the regions and periods when they have a significant impact. The focus is to provide a clear indication as to which climate index has the most impact on the three regions during the past quarter century. We found that the start of season and cumulative NDVI were significantly affected by variations in the climate indices. The particular climate index and the timing showing highest correlation depended heavily on the region examined. The research shows that climate indices can contribute to understanding growing season variability in Eastern, Western and Southern Africa.

  6. Climate change and the water cycle in newly irrigated areas.

    Science.gov (United States)

    Abrahão, Raphael; García-Garizábal, Iker; Merchán, Daniel; Causapé, Jesús

    2015-02-01

    Climate change is affecting agriculture doubly: evapotranspiration is increasing due to increments in temperature while the availability of water resources is decreasing. Furthermore, irrigated areas are expanding worldwide. In this study, the dynamics of climate change impacts on the water cycle of a newly irrigated watershed are studied through the calculation of soil water balances. The study area was a 752-ha watershed located on the left side of the Ebro river valley, in Northeast Spain. The soil water balance procedures were carried out throughout 1827 consecutive days (5 years) of hydrological and agronomical monitoring in the study area. Daily data from two agroclimatic stations were used as well. Evaluation of the impact of climate change on the water cycle considered the creation of two future climate scenarios for comparison: 2070 decade with climate change and 2070 decade without climate change. The main indicators studied were precipitation, irrigation, reference evapotranspiration, actual evapotranspiration, drainage from the watershed, and irrigation losses. The aridity index was also applied. The results represent a baseline scenario in which adaptation measures may be included and tested to reduce the impacts of climate change in the studied area and other similar areas.

  7. Climate Change, Disaster and Sentiment Analysis over Social Media Mining

    Science.gov (United States)

    Lee, J.; McCusker, J. P.; McGuinness, D. L.

    2012-12-01

    Accelerated climate change causes disasters and disrupts people living all over the globe. Disruptive climate events are often reflected in expressed sentiments of the people affected. Monitoring changes in these sentiments during and after disasters can reveal relationships between climate change and mental health. We developed a semantic web tool that uses linked data principles and semantic web technologies to integrate data from multiple sources and analyze them together. We are converting statistical data on climate change and disaster records obtained from the World Bank data catalog and the International Disaster Database into a Resource Description Framework (RDF) representation that was annotated with the RDF Data Cube vocabulary. We compare these data with a dataset of tweets that mention terms from the Emotion Ontology to get a sense of how disasters can impact the affected populations. This dataset is being gathered using an infrastructure we developed that extracts term uses in Twitter with controlled vocabularies. This data was also converted to RDF structure so that statistical data on the climate change and disasters is analyzed together with sentiment data. To visualize and explore relationship of the multiple data across the dimensions of time and location, we use the qb.js framework. We are using this approach to investigate the social and emotional impact of climate change. We hope that this will demonstrate the use of social media data as a valuable source of understanding on global climate change.

  8. A review of frameworks for developing environmental health indicators for climate change and health.

    Science.gov (United States)

    Hambling, Tammy; Weinstein, Philip; Slaney, David

    2011-07-01

    The role climate change may play in altering human health, particularly in the emergence and spread of diseases, is an evolving area of research. It is important to understand this relationship because it will compound the already significant burden of diseases on national economies and public health. Authorities need to be able to assess, anticipate, and monitor human health vulnerability to climate change, in order to plan for, or implement action to avoid these eventualities. Environmental health indicators (EHIs) provide a tool to assess, monitor, and quantify human health vulnerability, to aid in the design and targeting of interventions, and measure the effectiveness of climate change adaptation and mitigation activities. Our aim was to identify the most suitable framework for developing EHIs to measure and monitor the impacts of climate change on human health and inform the development of interventions. Using published literature we reviewed the attributes of 11 frameworks. We identified the Driving force-Pressure-State-Exposure-Effect-Action (DPSEEA) framework as the most suitable one for developing EHIs for climate change and health. We propose the use of EHIs as a valuable tool to assess, quantify, and monitor human health vulnerability, design and target interventions, and measure the effectiveness of climate change adaptation and mitigation activities. In this paper, we lay the groundwork for the future development of EHIs as a multidisciplinary approach to link existing environmental and epidemiological data and networks. Analysis of such data will contribute to an enhanced understanding of the relationship between climate change and human health.

  9. Modelling Interglacial Climate

    DEFF Research Database (Denmark)

    Pedersen, Rasmus Anker

    , with maximum warming occurring in winter. The three scenarios all affect the climate beyond the Arctic, especially the mid-latitude circulation which is sensitive to the location of the ice loss. Together, the results presented in this thesis illustrate that the changes in the Arctic sea ice cover......, while the insolation appears to be the dominant cause of the expected ice sheet reduction. The second part explores the atmospheric sensitivity to the location of sea ice loss. Three investigated sea ice scenarios with ice loss in different regions all exhibit substantial near-surface warming...... involves some of the same mechanisms in the two climate states. This thesis aims to investigate these mechanisms through climate model experiments. This two-part study has a special focus on the Arctic region, and the main paleoclimate experiments are supplemented by idealized experiments detailing...

  10. The Sun and climate

    Science.gov (United States)

    ,

    2000-01-01

    Many geologic records of climatic and environmental change based on various proxy variables exhibit distinct cyclicities that have been attributed to extraterrestrial forcing. The best known of these are the changes in Earth’s orbital geometry called Milankovitch Cycles, with periodicities of tens to hundreds of thousands of years. However, many cycles seem to have subMilankovitch periodicities, commonly on decadal and centennial scales, similar to those of known solar cycles. A direct connection between solar irradiance (solar constant) and weather and climate has been suggested for more than 100 years but generally rejected by most scientists, who assume that the effect of solar variations would be small. However, recent satellite radiometer measurements and modeling studies indicate that small changes in total solar irradiance could produce global temperature changes of the magnitude suggested for climatic events such as the Little Ice Age (A.D. 1550–1700).

  11. Embedding Climate Services

    Science.gov (United States)

    Shafer, M.; Boone, M.; Keim, B. D.

    2015-12-01

    With the rapidly-increasing number of climate services providers, the landscape for putting climate into practice is getting both easier to access and more confusing. Each provider serves a different clientele, and in so doing draws more stakeholder organizations into the sphere of those using climate information in decision-making. The challenge has been in connecting these new stakeholders with expertise that may reside within a different provider organization. To help close the gap, the Southern Climate Impacts Planning Program (SCIPP; http://www.southernclimate.org), a NOAA RISA Team, initiated a summer internship program, where students with expertise in meteorology or climatology would work for an organization more closely aligned with another climate services provider network. The format was patterned after the successful NSF-funded Research Experience for Undergraduates (REU) program at the National Weather Center, where students are selected from undergraduate programs across the nation to spend a summer conducting research under a scientific mentor. The SCIPP initiative flipped this model, instead sending students to organizations with operational needs for climate information to work under their mentorship in partnership with SCIPP scientists. Over the past two summers, SCIPP has recruited students to work at landscape-based (Gulf Coast Joint Venture and National Wetlands Research Center) and community-based (Tulsa Partners) organizations. Students worked alongside the organizations' staff on a daily basis and were supported through periodic calls with the SCIPP team to help identify appropriate datasets and work through methodological issues. This presentation will discuss how these relationships were created, the expertise of each of the organizations involved, and outcomes from the projects.

  12. Poverty and Climate Change

    Science.gov (United States)

    van der Vink, G.; Franco, E.; Fuckar, N. S.; Kalmbach, E. R.; Kayatta, E.; Lankester, K.; Rothschild, R. E.; Sarma, A.; Wall, M. L.

    2008-05-01

    The poor are disproportionately vulnerable to environmental change because they have the least amount of resources with which to adapt, and they live in areas (e.g. flood plains, low-lying coastal areas, and marginal drylands) that are particularly vulnerable to the manifestations of climate change. By quantifying the various environmental, economic, and social factors that can contribute to poverty, we identify populations that are most vulnerable to poverty and poverty traps due to environmental change. We define vulnerability as consisting of risk (probability of event and exposed elements), resiliency, and capacity to respond. Resiliency captures the social system's ability to absorb a natural disaster while retaining the same basic structure, organization, and ways of functioning, as well as its general capacity to adapt to stress and change. Capacity to respond is a surrogate for technical skills, institutional capabilities, and efficacy within countries and their economies. We use a "climate change multiplier" to account for possible increases in the frequency and severity of natural events due to climate change. Through various analytical methods, we quantify the social, political, economic, and environmental factors that contribute to poverty or poverty traps. These data sets are then used to determine vulnerability through raster multiplication in geospatial analysis. The vulnerability of a particular location to climate change is then mapped, with areas of high vulnerability clearly delineated. The success of this methodology indicates that it is indeed possible to quantify the effects of climate change on global vulnerability to natural disasters, and can be used as a mechanism to identify areas where proactive measures, such as improving adaptation or capacity to respond, can reduce the humanitarian and economic impacts of climate change.

  13. Framework for a hydrologic climate-response network in New England

    Science.gov (United States)

    Lent, Robert M.; Hodgkins, Glenn A.; Dudley, Robert W.; Schalk, Luther F.

    2015-01-01

    Many climate-related hydrologic variables in New England have changed in the past century, and many are expected to change during the next century. It is important to understand and monitor these changes because they can affect human water supply, hydroelectric power generation, transportation infrastructure, and stream and riparian ecology. This report describes a framework for hydrologic monitoring in New England by means of a climate-response network. The framework identifies specific inland hydrologic variables that are sensitive to climate variation; identifies geographic regions with similar hydrologic responses; proposes a fixed-station monitoring network composed of existing streamflow, groundwater, lake ice, snowpack, and meteorological data-collection stations for evaluation of hydrologic response to climate variation; and identifies streamflow basins for intensive, process-based studies and for estimates of future hydrologic conditions.

  14. Improvements in Spatiotemporal Ecosystem Monitoring in Greenland

    DEFF Research Database (Denmark)

    Westergaard-Nielsen, Andreas

    resulted in a marked decline in sea ice and changes in magnitude of terrestrial snow cover. In combination with warmer surface air temperatures, this is expected to have severe implications for the ecological, physical, and cultural systems in the region. Moreover, a number of these implications are likely...... ecosystem monitoring at several spatial scales are consequently of great importance when evaluating methods to adapt to and mitigate climatic changes in the Arctic. This PhD defense will focus on the use and scaling of multiplatform remotely sensed data in the monitoring of snow cover dynamics, vegetation...... productivity and phenology in Greenland. Specifically, emphasis will be put on: the application of broad band digital cameras in the monitoring of Arctic phenology; the use of digital camera data as a proxy for ecosystem productivity in sparsely vegetated biomes; investigations of the interactions between snow...

  15. Climate Change and Poverty Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Simon

    2011-08-15

    Climate change will make it increasingly difficult to achieve and sustain development goals. This is largely because climate effects on poverty remain poorly understood, and poverty reduction strategies do not adequately support climate resilience. Ensuring effective development in the face of climate change requires action on six fronts: investing in a stronger climate and poverty evidence base; applying the learning about development effectiveness to how we address adaptation needs; supporting nationally derived, integrated policies and programmes; including the climate-vulnerable poor in developing strategies; and identifying how mitigation strategies can also reduce poverty and enable adaptation.

  16. Physical Processes Controlling Earth's Climate

    Science.gov (United States)

    Genio, Anthony Del

    2013-01-01

    As background for consideration of the climates of the other terrestrial planets in our solar system and the potential habitability of rocky exoplanets, we discuss the basic physics that controls the Earths present climate, with particular emphasis on the energy and water cycles. We define several dimensionless parameters relevant to characterizing a planets general circulation, climate and hydrological cycle. We also consider issues associated with the use of past climate variations as indicators of future anthropogenically forced climate change, and recent advances in understanding projections of future climate that might have implications for Earth-like exoplanets.

  17. CLIMATE CHANGE, Change International Negociations?

    Institute of Scientific and Technical Information of China (English)

    Gao Xiaosheng

    2009-01-01

    @@ Climate change is one of key threats to human beings who have to deal with.According to Bali Action Plan released after the 2007 Bali Climate Talk held in Indonesia,the United Nations Framework on Climate Change(UNFCCC) has launched a two-year process to negotiate a post-2012 climate arrangement after the Kyoto Protocol expires in 2012 and the Copenhagen Climate Change Conference will seal a final deal on post-2012 climate regime in December,2009.For this,the United Nation Chief Ban Ki Moon called 2009"the year ofclimate change".

  18. Pliocene climate lessons

    Science.gov (United States)

    Robinson, Marci M.

    2011-01-01

    The middle portion of the Pliocene Epoch—about three million years ago—is the most recent period when global temperatures were sustained at levels comparable to those we may see at the end of this century due to climate change. One way to seek a more accurate view of a warmer Earth is to look closely at that time. Paleoclimate studies of the mid-Pliocene are also emerging as a ground truth for testing the accuracy of computer models used to predict Earth’s future climate.

  19. Climates, Landscapes, and Civilizations

    Science.gov (United States)

    Schultz, Colin

    2013-10-01

    Humans are now the dominant driver of global climate change. From ocean acidification to sea level rise, changes in precipitation patterns, and rising temperatures, global warming is presenting us with an uncertain future. However, this is not the first time human civilizations have faced a changing world. In the AGU monograph Climates, Landscapes, and Civilizations, editors Liviu Giosan, Dorian Q. Fuller, Kathleen Nicoll, Rowan K. Flad, and Peter C. Clift explore how some ancient peoples weathered the shifting storms while some faded away. In this interview, Eos speaks with Liviu Giosan about the decay of civilizations, ancient adaptation, and the surprisingly long history of humanity's effect on the Earth.

  20. Urban Climate Risk Communities

    DEFF Research Database (Denmark)

    Blok, Anders

    2016-01-01

    Ulrich Beck’s cosmopolitan sociology affords a much-needed rethinking of the transnational politics of climate change, not least in pointing to an emerging inter-urban geography of world cities as a potential new source of community, change and solidarity. This short essay, written in honour...... of Beck’s forward-looking agenda for a post-Euro-centric social science, outlines the contours of such an urban-cosmopolitan ‘realpolitik’ of climate risks, as this is presently unfolding across East Asian world cities. Much more than a theory-building endeavour, the essay suggests, Beck’s sociology...

  1. Corporate Climate Strategies

    DEFF Research Database (Denmark)

    Bjarnø, Ole-Christian; Maltha, Jonas

    2003-01-01

    Since the 1997 Kyoto Protocol on Climate Change outlined the first embryonic plans for an emissions market, a significant uncertainty about the value on carbon, in concert with a swift development in energy business, has brought about the concept of carbon management. Carbon management aims...... close integration with existing EMS), 2) verify, certify and report data, 3) identify reduction potentials and develop marginal abatement cost estimations (carbon pricing), and 4) coordinate and administer trades and exchange of quotas and credits. To conclude we suggest a framework, which despite...... the limited empirical background, provides indications of how to approach a climate strategy....

  2. Climate friendly dietary guidelines

    DEFF Research Database (Denmark)

    Trolle, Ellen; Mogensen, Lisbeth; Thorsen, Anne Vibeke

    2014-01-01

    The aim of this study was to investigate how the present Danish diet could be changed in a climate friendly direction that follows the recommendations of a healthy diet. The carbon footprint (CF) of an average Danish diet was calculated and compared to CF of a recommended healthy diet by 1......%, if the healthy diet was eaten instead of the average current diet. However, if the diet was climate optimized by choosing foods with a low CF within the food groups; meat, vegetables and fruit, CF of this diet may be reduced by 23 % compared to CF of the average diet....

  3. Multifrenic Climate Discourses

    DEFF Research Database (Denmark)

    Rasmussen, Tove Arendt; Andersen, Maria Wael; Halgaard Nielsen, Marie

    On the basis of qualitative interviews on ’Energibyen Frederikshavn’ (Energy City Frederikshavn), the article reveals various rationales underlying modern consumers' often contradictory opinions and attitudes to climate change and energy consumption. It may seem hard to decide whether the interest...... in sustainable, alternative sources of energy is conditioned by the soaring price of oil or present threats of climate change. The paper will discuss the energy discourses produced by the people in the participating focus group in the light of three rather different, theoretical positions. And, finally, we...

  4. The Copernicus programme and its Climate Change Service (C3S): a European answer to Climate Change

    Science.gov (United States)

    Pinty, Bernard; Thepaut, Jean-Noel; Dee, Dick

    2016-07-01

    In November 2014, The European Centre for Medium-range Weather Forecasts (ECMWF) signed an agreement with the European Commission to deliver two of the Copernicus Earth Observation Programme Services on the Commission's behalf. The ECMWF delivered services - the Copernicus Climate Change Service (C3S) and Atmosphere Monitoring Service (CAMS) - will bring a consistent standard to how we measure and predict atmospheric conditions and climate change. They will maximise the potential of past, current and future earth observations - ground, ocean, airborne, satellite - and analyse these to monitor and predict atmospheric conditions and in the future, climate change. With the wealth of free and open data that the services provide, they will help business users to assess the impact of their business decisions and make informed choices, delivering a more energy efficient and climate aware economy. These sound investment decisions now will not only stimulate growth in the short term, but reduce the impact of climate change on the economy and society in the future. C3S is in its proof of concept phase and through its climate data store will provide global and regional climate data reanalyses; multi-model seasonal forecasts; customisable visual data to enable examination of wide range of scenarios and model the impact of changes; access to all the underlying data, including climate data records from various satellite and in-situ observations. In addition, C3S will provide key indicators on climate change drivers (such as carbon dioxide) and impacts (such as reducing glaciers). The aim of these indicators will be to support European adaptation and mitigation policies in a number of economic sectors. The presentation will provide an overview of this newly created Service, its various components and activities, and a roadmap towards achieving a fully operational European Climate Service at the horizon 2019-2020. It will focus on the requirements for quality-assured Observation

  5. Climate Leadership webinar on Integrating Energy and Climate Risk Management

    Science.gov (United States)

    Allergan, a multi-specialty healthcare company and pharmaceutical manufacturer, discusses how it manages climate and energy risks, how these areas are linked, and how energy and climate management strategies pervade critical business decisions.

  6. Lack of Climate Expertise Among Climate Change Educators

    Science.gov (United States)

    Doesken, N.

    2015-12-01

    It is hard to know enough about anything. Many educators fully accept the science as well as the hype associated with climate change and try very hard to be climate literate. But many of these same educators striving for greater climate literacy are surprisingly ignorant about the climate itself (typical seasonal cycles, variations, extremes, spatial patterns and the drivers that produce them). As a result, some of these educators and their students are tempted to interpret each and every hot or cold and wet or dry spell as convincing evidence of climate change even as climate change "skeptics" view those same fluctuations as normal. Educators' overreaction risks a backfire reaction resulting in loss of credibility among the very groups they are striving to educate and influence. This presentation will include reflections on climate change education and impacts based on 4 decades of climate communication in Colorado.

  7. Greenhouse effect and climate; Effet de serre et climat

    Energy Technology Data Exchange (ETDEWEB)

    Poitou, J

    2008-04-15

    In the framework of the climatic change, the author aims to explain the phenomena of greenhouse effect. He details the historical aspects of the scientific knowledge in the domain, the gases produced, some characteristic of the greenhouse effect, the other actors which contribute to the climate, the climate simulation, the different factors of climate change since 1750 and the signs of the global heating. (A.L.B.)

  8. Projected Future Climate Analogues and Climate "Velocities" in North America

    Science.gov (United States)

    Shafer, S. L.; Bartlein, P. J.

    2014-12-01

    Future climate changes may have significant effects on many North American ecosystems. One way of assessing the potential impacts of future climate change is to use future climate analogues of present climate to evaluate the spatial extent and rates of future climate change. We used a set of Coupled Model Intercomparison Project phase 5 (CMIP5) coupled atmosphere-ocean general circulation model (AOGCM) future climate simulations (2006-2100) produced under representative concentration pathway scenario RCP8.5. We regridded these data to a 10-km equal-area grid of North America. Modern climate data (1961-1990 30-year mean) were interpolated to the same 10-km grid. The projected future climate data were analyzed using 10-year mean values of monthly and seasonal temperature and precipitation and a set of derived annual bioclimatic variables (e.g., growing degree days) considered to be ecologically significant. Potential future climate analogues were calculated for each grid cell using Euclidean distances to identify similar climates occurring elsewhere in North America. We identify regions that are projected to retain climates similar to present in the future (e.g., parts of the southeastern United States) and regions where present climates are projected to become less common or to disappear in the future (e.g., high elevation sites in western North America). We also calculate the rates of change in locations of similar climates (i.e., climate analogue velocities) and compare our results with simulated paleoclimate velocities over the past 22 kyr (from TraCE-21ka transient climate simulations for 22 ka-present). We discuss the implications of these results for conservation and natural resource management in North America. We also describe a web application being developed to allow researchers, decision makers, and members of the public, to visualize, explore, and use the climate analogue data.

  9. Connecting today's climates to future climate analogs to facilitate movement of species under climate change.

    Science.gov (United States)

    Littlefield, Caitlin E; McRae, Brad H; Michalak, Julia L; Lawler, Joshua J; Carroll, Carlos

    2017-03-24

    Increasing connectivity is an important strategy for facilitating species range shifts and maintaining biodiversity in the face of climate change. To date, however, few researchers have included future climate projections in efforts to prioritize areas for increasing connectivity. We identified key areas likely to facilitate climate-induced species' movement across western North America. Using historical climate data sets and future climate projections, we mapped potential species' movement routes that link current climate conditions to analogous climate conditions in the future (i.e., future climate analogs) with a novel moving-window analysis based on electrical circuit theory. In addition to tracing shifting climates, the approach accounted for landscape permeability and empirically derived species' dispersal capabilities. We compared connectivity maps generated with our climate-change-informed approach with maps of connectivity based solely on the degree of human modification of the landscape. Including future climate projections in connectivity models substantially shifted and constrained priority areas for movement to a smaller proportion of the landscape than when climate projections were not considered. Potential movement, measured as current flow, decreased in all ecoregions when climate projections were included, particularly when dispersal was limited, which made climate analogs inaccessible. Many areas emerged as important for connectivity only when climate change was modeled in 2 time steps rather than in a single time step. Our results illustrate that movement routes needed to track changing climatic conditions may differ from those that connect present-day landscapes. Incorporating future climate projections into connectivity modeling is an important step toward facilitating successful species movement and population persistence in a changing climate. © 2017 Society for Conservation Biology.

  10. Climate project screening tool: an aid for climate change adaptation

    Science.gov (United States)

    Toni Lyn Morelli; Sharon Yeh; Nikola M. Smith; Mary Beth Hennessy; Constance I. Millar

    2012-01-01

    To address the impacts of climate change, land managers need techniques for incorporating adaptation into ongoing or impending projects. We present a new tool, the Climate Project Screening Tool (CPST), for integrating climate change considerations into project planning as well as for developing concrete adaptation options for land managers. We designed CPST as part of...

  11. Climate programs update: USDA Southwest Regional Climate Hub update

    Science.gov (United States)

    PROGRAM OVERVIEW: The overarching goal of the USDA SW Climate Hub is to assist farmers, ranchers and foresters in addressing the effects of climate change including prolonged drought, increased insect outbreaks and severe wildfires. In the first year of operations, the SW Climate Hub (est. Februa...

  12. A Climate System Model, Numerical Simulation and Climate Predictability

    Institute of Scientific and Technical Information of China (English)

    ZENG Qingcun; WANG Huijun; LIN Zhaohui; ZHOU Guangqing; YU Yongqiang

    2007-01-01

    @@ The implementation of the project has lasted for more than 20 years. As a result, the following key innovative achievements have been obtained, ranging from the basic theory of climate dynamics, numerical model development and its related computational theory to the dynamical climate prediction using the climate system models:

  13. Exploring the Ocean Through Climate Indicators: What Do Research, Predictions, and Decision-makers Need to Know?

    Science.gov (United States)

    Arrigo, J. S.

    2015-12-01

    There are several new and ongoing efforts around communicating climate and global change and variability by developing Climate Indicators (e.g. the US Global Change Research Project's Pilot Indicators Program, the US EPA's Climate Change Indicators, and the Ocean Observations Panel for Climate State of the Ocean indicators). Indicators provide information tailored to identified stakeholders and facilitate monitoring status, trends, extremes and variability of important climate features or processes. NOAA's Climate Monitoring program is in the middle of a three-year initiative toward supporting research toward the development of Ocean Climate Indicators for research, prediction, and decision makers. These indices combine ocean observations, climate data and products from platforms like (but not limited to) the drifting buoy, Argo, satellite, and buoy arrays that provide fundamental observations that contribute towards climate understanding, predictions, and projections. The program is supporting eight distinct projects that focus on primarily regional indices that target varied stakeholders and outreach strategies - from public awareness and education to targeted model performance improvement. This presentation will discuss the diverse set of projects, initial results, and discuss possibilities for and examples of using the indicators and processes for developing them for broader science outreach and education, with an eye toward the aim of organizing the ocean climate and observing community around developing a comprehensive ocean monitoring and indicators system.

  14. Beyond local climate

    DEFF Research Database (Denmark)

    D'haen, Sarah Ann Lise; Nielsen, Jonas Østergaard; Lambin, Eric F.

    2014-01-01

    At the household level, nonfarm activities are thought to help rural poor households buffer against agricultural risks related to local climate variability by providing them with cash to buy food in the case of harvest shortfalls. Over the recent decades, households in rural Sub-Sahara have been...

  15. Tackling Climate Change

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Representatives from nearly 200 countries and regions have gathered in Durban,South Africa,for the 17th session of the Conference of the Parties to the United Nations Framework Convention on Climate Change (UNFCCC) and the 7th session of the Meeting of the Parties to the Kyoto Protocol.The meeting is the follow-up conference to tacklin

  16. Turfgrass and climate change

    Science.gov (United States)

    Climate change is occurring and is manifesting its impact on biological systems through increased temperatures, precipitation, and carbon dioxide. These effects have been documented for a few agricultural species, primarily the grain crops and pasture and rangeland species. The extension of these re...

  17. Teaching Climate Change

    Science.gov (United States)

    O'Donoghue, A.

    2011-09-01

    In giving public presentations about climate change, we face the barriers of mis-information in the political debate and lack of science literacy that extends to science phobia for some. In climate issues, the later problem is compounded by the fact that the science - reconstruction of past climate through the use of proxy sources, such as isotopes of oxygen and hydrogen - is complex, making it more challenging for general audiences. Also, the process of science, particularly peer review, is suspected by some to be a way of keeping science orthodox instead of keeping it honest. I approach these barriers by focusing on the data and the fact that the data have been carefully acquired over decades and centuries by dedicated people with no political agenda. I have taught elderhostel courses twice and have given many public talks on this topic. Thus I have experience in this area to share with others. I would also like to learn of others' approaches to the vast amount of scientific information and getting past the politics. A special interest group on climate change will allow those of us to speak on this important topic to share how we approach both the science and the politics of this issue.

  18. Carbon Dioxide and Climate.

    Science.gov (United States)

    Brewer, Peter G.

    1978-01-01

    The amount of carbon dioxide in the atmosphere is increasing at a rate that could cause significant warming of the Earth's climate in the not too distant future. Oceanographers are studying the role of the ocean as a source of carbon dioxide and as a sink for the gas. (Author/BB)

  19. Birth of a Climate

    Institute of Scientific and Technical Information of China (English)

    陈树仁

    1994-01-01

    The glaciers of the last ice age began to retreat about 15, 000 yearsago, but the warm climate we know today did not emerge directly. For aperiod lasting from about 13, 000 to 11. 700 years ago, the North Atlanticregion relapsed into frigid conditions. Researchers have long known that

  20. Diversity cognition and climates

    NARCIS (Netherlands)

    van Knippenberg, D.; Homan, A.C.; van Ginkel, W.; Roberson, Q.M.

    2013-01-01

    Demographic diversity at work can yield performance benefits but also invite psychological disengagement and be a source of interpersonal tension. In managing this double-edged sword of demographic diversity, the role of diversity cognition (beliefs, attitudes) and climates seems particularly