WorldWideScience

Sample records for monitoring astronaut health

  1. Astronaut health monitoring

    Science.gov (United States)

    Inscore, Frank; Shende, Chetan; Gift, Alan; Maksymiuk, Paul; Farquharson, Stuart

    2006-10-01

    Extended weightlessness causes numerous deleterious changes in human physiology, including space motion sickness, cephalad fluid shifts, reduced immune response, and breakdown of muscle tissue with subsequent loss of bone mass and formation of renal stones. Furthermore, these physiological changes also influence the metabolism of drugs used by astronauts to minimize these deleterious effects. Unfortunately, the changes in human physiology in space are also reflected in drug metabolism, and current pre-flight analyses designed to set dosage are inadequate. Furthermore, current earth-based analytical laboratory methods that employ liquid or gas chromatography for separation and fluorescence or mass spectrometry for trace detection are labor intensive, slow, massive, and not cost-effective for operation in space. In an effort to overcome these instrument limitations we have been developing a sampling device to both separate these drugs and metabolites from urine, and generate surface-enhanced Raman (SER) spectra. The detailed molecular vibrational information afforded by Raman scattering allows chemical identification, while the surface-enhancement increases sensitivity by six or more orders of magnitude and allows detection of nanogram per milliliter concentrations. Generally no more than 1 milliliter of sample is required and complete analysis can be performed in 5 minutes using a portable, light-weight Raman spectrometer. Here we present the SER analysis of several drugs used by astronauts measured in synthetic urine and reconstituted urine.

  2. Safeguarding the Health of the NASA Astronaut Community: the Need for Expanded Medical Monitoring for Former NASA Astronauts Under the Astronaut Occupational Health Program

    Science.gov (United States)

    Rossi, Meredith; Lee, Lesley; Wear, Mary; Van Baalen, Mary; Rhodes, Bradley

    2016-01-01

    The astronaut community is unique, and may be disproportionately exposed to occupational hazards not commonly seen in other communities. The extent to which the demands of the astronaut occupation and exposure to spaceflight-related hazards affect the health of the astronaut population over the life course is not completely known. Provision of health screening services to active and former astronauts ensures individual, mission, and community health and safety. Currently, the NASA Johnson Space Center (JSC) Flight Medicine Clinic (FMC) provides extensive medical monitoring to active astronauts throughout their careers. Upon retirement, astronauts may voluntarily return to the JSC FMC for an annual preventive exam. However, current retiree monitoring includes only selected screening tests, representing an opportunity for augmentation. The potential latent health effects of spaceflight demand an expanded framework of testing for former astronauts. The need is two-fold: screening tests widely recommended for other aging communities are necessary for astronauts to rule out conditions resulting from the natural aging process (e.g., colonoscopy, mammography), as opposed to conditions resulting directly from the astronaut occupation; and increased breadth of monitoring services will improve the understanding of occupational health risks and longitudinal health of the astronaut community, past, present, and future. To meet this need, NASA has begun an extensive exploration of the overall approach, cost, and policy implications of expanding existing medical monitoring under the Astronaut Occupational Health program for former NASA astronauts.

  3. Radiation health consequences for astronauts: mechanisms, monitoring and prevention

    Science.gov (United States)

    Neyfakh, E.

    During space flights crews are exposed chronically to uneven irradiation of enhanced bioefficiency following with significant elevation for chromosomal aberrations as minimum. To protect in space rationally monitoring and preventing of health radiogenic individual primary consequences for astronauts are of high importance. Majority of Chernobyl-touched population has some common etiologic radiogenic mechanisms and radioloads with astronauts ones during long-term missions and former is able to be used well as the close ground-level model. Primary radiogenic deviations. Two radiogenic pathologies as lipoperoxic ( LP ) stress with coupled deficits for essential bioantioxidants ( BAO ) were typical for chronic low-dose Chernobyl-touched contingents. When BAO expenditure had led to their subnormal levels, radiogenic free radical chain -b ranched LP processes occurred in vivo hyperbolically. Catabolites and their free radicals of the abnormal LP cascade are known to be toxic, mutagenic / carcinogenic and teratogenic factors as such, as they are for retinol and tocopherol deficiencies. Both coupled pathogenic factors interrelated synergistically. Simultaneous dysbalances for LP and / or BAO systems were evaluated as the cause and markers for metabolic disregulations. Human LP stress was proved to be the most radiosensible known marker to mo nitor least invasively of blood microsamples in a ground lab via the developed PC Program. But for capsule conditions the best approach is assumed to be LP monitoring via skin ultraweak green-blue chemiluminescence ( CL ) caused by recombination of peroxyl radicals. CL from surfaces of organs was embedded first ( E. Neyfakh, 1964 - 71 ) to reflect their internal LP velocities in vivo and it is the non-invasive on-line simple method of the highest sensitivity, supplying with data transmissible to the ground directly. Related deviations. a) Radiogenic hypermutagenesis: LP catabolites and their free radicals are responsible for direct DNA

  4. Protecting the Health of Astronauts: Enhancing Occupational Health Monitoring and Surveillance for Former NASA Astronauts to Understand Long-Term Outcomes of Spaceflight-Related Exposures

    Science.gov (United States)

    Rossi, Meredith; Lee, Lesley; Wear, Mary; Van Baalen, Mary; Rhodes, Bradley

    2017-01-01

    The astronaut community is unique, and may be disproportionately exposed to occupational hazards not commonly seen in other communities. The extent to which the demands of the astronaut occupation and exposure to spaceflight-related hazards affect the health of the astronaut population over the life course is not completely known. A better understanding of the individual, population, and mission impacts of astronaut occupational exposures is critical to providing clinical care, targeting occupational surveillance efforts, and planning for future space exploration. The ability to characterize the risk of latent health conditions is a significant component of this understanding. Provision of health screening services to active and former astronauts ensures individual, mission, and community health and safety. Currently, the NASA-Johnson Space Center (JSC) Flight Medicine Clinic (FMC) provides extensive medical monitoring to active astronauts throughout their careers. Upon retirement, astronauts may voluntarily return to the JSC FMC for an annual preventive exam. However, current retiree monitoring includes only selected screening tests, representing an opportunity for augmentation. The potential long-term health effects of spaceflight demand an expanded framework of testing for former astronauts. The need is two-fold: screening tests widely recommended for other aging populations are necessary to rule out conditions resulting from the natural aging process (e.g., colonoscopy, mammography); and expanded monitoring will increase NASA's ability to better characterize conditions resulting from astronaut occupational exposures. To meet this need, NASA has begun an extensive exploration of the overall approach, cost, and policy implications of e an Astronaut Occupational Health program to include expanded medical monitoring of former NASA astronauts. Increasing the breadth of monitoring services will ultimately enrich the existing evidence base of occupational health risks

  5. Recommended Methods for Monitoring Skeletal Health in Astronauts to Distinguish Specific Effects of Prolonged Spaceflight

    Science.gov (United States)

    Vasadi, Lukas J.; Spector, Elizabeth R.; Smith, Scott A.; Yardley, Gregory L.; Evans, Harlan J.; Sibonga, Jean D.

    2016-01-01

    NASA uses areal bone mineral density (aBMD) by dual-energy X-ray absorptiometry (DXA) to monitor skeletal health in astronauts after typical 180-day spaceflights. The osteoporosis field and NASA, however, recognize the insufficiency of DXA aBMD as a sole surrogate for fracture risk. This is an even greater concern for NASA as it attempts to expand fracture risk assessment in astronauts, given the complicated nature of spaceflight-induced bone changes and the fact that multiple 1-year missions are planned. In the past decade, emerging analyses for additional surrogates have been tested in clinical trials; the potential use of these technologies to monitor the biomechanical integrity of the astronaut skeleton will be presented. OVERVIEW: An advisory panel of osteoporosis policy-makers provided NASA with an evidence-based assessment of astronaut biomedical and research data. The panel concluded that spaceflight and terrestrial bone loss have significant differences and certain factors may predispose astronauts to premature fractures. Based on these concerns, a proposed surveillance program is presented which a) uses Quantitative Computed Tomography (QCT) scans of the hip to monitor the recovery of spaceflight-induced deficits in trabecular BMD by 2 years after return, b) develops Finite Element Models [FEM] of QCT data to evaluate spaceflight effect on calculated hip bone strength and c) generates Trabecular Bone Score [TBS] from serial DXA scans of the lumbar spine to evaluate the effect of age, spaceflight and countermeasures on this novel index of bone microarchitecture. SIGNIFICANCE: DXA aBMD is a widely-applied, evidence-based predictor for fractures but not applicable as a fracture surrogate for premenopausal females and males parameters is a limitation for assessing changes in bone integrity with and without countermeasures. Collective use of aBMD, TBS, QCT, and FEM analysis for astronaut surveillance could accommodate NASA's aggressive schedule for risk

  6. Monitoring Astronaut Health at the Nanoscale Cellular Level Through the Eye

    Science.gov (United States)

    Ansari, Rafat R.; Singh, Bhim S.; Rovati, Luigi; Docchio, Franco; Sebag, Jerry

    2000-01-01

    A user friendly goggles-like head-mounted device equipped with a suite of instruments for several non-invasive and quantitative medical evaluation of the eye, skin, and brain is desired for monitoring the health of astronauts during space travel and exploration of neighboring and distant planets. Real-time non-invasive evaluation of the different structures within the above organs can provide indices of the health of not just these organs, but the entire body. The techniques such as dynamic light scattering (for the early detection of uveitis, cholesterol levels, cataract, changes in the vitreous and possibly Alzheimer's disease), corneal autofluorescence (to assess extracellular matrix biology e.g., in diabetes), optical activity measurements (of anterior ocular fluid to evaluate blood-glucose levels), laser Doppler velocimetry (to assess retinal, optic nerve, and choroidal blood flow), reflectometry/oximetry (for assessing ocular and central nervous system oxygen metabolism), optical coherence tomography (to determine retinal tissue microstructure) and possibly scanning laser technology (for intraocular tissue imaging and scanning) will he integrated into this compact device. Skin sensors will also be mounted on the portion of the device in contact with the periocular region. This will enable monitoring of body temperature, EEG, and electrolyte status. This device will monitor astronaut health during long-duration space travel by detecting aberrations from pre-established "nonns", enabling prompt diagnosis and possibly the initiation of early preventative/curative therapy. The non-invasive nature of the device technologies permits frequent repetition of tests, enabling real-time complete crew health monitoring. This device may ultimately be useful in tele-medicine to bring modern healthcare to under-served areas on Earth as well as in so-called "advanced" care settings (e.g. diabetes in the USA).

  7. Bone Health Monitoring in Astronauts: Recommended Use of Quantitative Computed Tomography [QCT] for Clinical and Operational Decisions

    Science.gov (United States)

    Sibonga, J. D.; Truskowski, P.

    2010-01-01

    This slide presentation reviews the concerns that astronauts in long duration flights might have a greater risk of bone fracture as they age than the general population. A panel of experts was convened to review the information and recommend mechanisms to monitor the health of bones in astronauts. The use of Quantitative Computed Tomography (QCT) scans for risk surveillance to detect the clinical trigger and to inform countermeasure evaluation is reviewed. An added benefit of QCT is that it facilitates an individualized estimation of bone strength by Finite Element Modeling (FEM), that can inform approaches for bone rehabilitation. The use of FEM is reviewed as a process that arrives at a composite number to estimate bone strength, because it integrates multiple factors.

  8. Monitoring Bone Health after Spaceflight: Data Mining to Support an Epidemiological Analysis of Age-related Bone Loss in Astronauts

    Science.gov (United States)

    Baker, K. S,; Amin, S.; Sibonga, Jean D.

    2009-01-01

    Through the epidemiological analysis of bone data, HRP is seeking evidence as to whether the prolonged exposure to microgravity of low earth orbit predisposes crewmembers to an earlier onset of osteoporosis. While this collaborative Epidemiological Project may be currently limited by the number of ISS persons providing relevant spaceflight medical data, a positive note is that it compares medical data of astronauts to data of an age-matched (not elderly) population that is followed longitudinally with similar technologies. The inclusion of data from non-ISS and non-NASA crewmembers is also being pursued. The ultimate goal of this study is to provide critical information for NASA to understand the impact of low physical or minimal weight-bearing activity on the aging process as well as to direct its development of countermeasures and rehabilitation programs to influence skeletal recovery. However, in order to optimize these results NASA needs to better define the requirements for long term monitoring and encourage both active and retired astronauts to contribute to a legacy of data that will define human health risks in space.

  9. Automated Miniaturized Instrument for Space Biology Applications and the Monitoring of the Astronauts Health Onboard the ISS

    Science.gov (United States)

    Karouia, Fathi; Peyvan, Kia; Danley, David; Ricco, Antonio J.; Santos, Orlando; Pohorille, Andrew

    2011-01-01

    Human space travelers experience a unique environment that affects homeostasis and physiologic adaptation. The spacecraft environment subjects the traveler to noise, chemical and microbiological contaminants, increased radiation, and variable gravity forces. As humans prepare for long-duration missions to the International Space Station (ISS) and beyond, effective measures must be developed, verified and implemented to ensure mission success. Limited biomedical quantitative capabilities are currently available onboard the ISS. Therefore, the development of versatile instruments to perform space biological analysis and to monitor astronauts' health is needed. We are developing a fully automated, miniaturized system for measuring gene expression on small spacecraft in order to better understand the influence of the space environment on biological systems. This low-cost, low-power, multi-purpose instrument represents a major scientific and technological advancement by providing data on cellular metabolism and regulation. The current system will support growth of microorganisms, extract and purify the RNA, hybridize it to the array, read the expression levels of a large number of genes by microarray analysis, and transmit the measurements to Earth. The system will help discover how bacteria develop resistance to antibiotics and how pathogenic bacteria sometimes increase their virulence in space, facilitating the development of adequate countermeasures to decrease risks associated with human spaceflight. The current stand-alone technology could be used as an integrated platform onboard the ISS to perform similar genetic analyses on any biological systems from the tree of life. Additionally, with some modification the system could be implemented to perform real-time in-situ microbial monitoring of the ISS environment (air, surface and water samples) and the astronaut's microbiome using 16SrRNA microarray technology. Furthermore, the current system can be enhanced

  10. Lunar Health Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — During the Phase II Lunar Health Monitor program, Orbital Research will develop a second generation wearable sensor suite for astronaut physiologic monitoring. The...

  11. Improving Bone-Health Monitoring in Astronauts: Recommended Use of Quantitative Computed Tomography [QCT] for Clinical and Operational Decisions by NASA

    Science.gov (United States)

    Sibonga, J. D.; Truszkowski, P.

    2010-01-01

    DXA measurement of areal bone mineral density [aBMD,g/cm2] is required by NASA for assessing skeletal integrity in astronauts. Due to the abundance of population-based data that correlate hip and spine BMDs to fragility fractures, BMD is widely applied as a predictor of fractures in the general aging population. In contrast, QCT is primarily a research technology that measures three-dimensional , volumetric BMD (vBMD,mg/cm3) of bone and is therefore capable of differentiating between cortical and trabecular components. Additionally, when combined with Finite Element Modeling [FEM], a computational tool, QCT data can be used to estimate the whole bone strength of the hip [FE strength] for a specific load vector. A recent report demonstrated that aBMD failed to correlate with incurred changes in FE strength (for fall and stance loading) by astronauts over typical 180-day ISS (International Space Station) missions. While there are no current guidelines for using QCT data in clinical practice, QCT increases the understanding of how bone structure and mineral content are affected by spaceflight and recovery on Earth. In order to understand/promote/consider the use of QCT, NASA convened a panel of clinicians specializing in osteoporosis. After reviewing the available, albeit limited, medical and research information from long-duration astronauts (e.g., data from DXA, QCT, FEM, biochemistry analyses, medical records and in-flight exercise performance) the panelists were charged with recommending how current and future research data and analyses could inform clinical and operational decisions. The Panel recommended that clinical bone tests on astronauts should include QCT (hip and lumbar spine) for occupational risk surveillance and for the estimation of whole hip bone strength as derived by FEM. FE strength will provide an improved index that NASA could use to select astronauts of optimal bone health for extended duration missions, for repeat missions or for specific

  12. Astronautical Hygiene - A New Discipline to Protect the Health of Astronauts Working in Space

    Science.gov (United States)

    Cain, J. R.

    This paper outlines the rationale for a new scientific discipline namely astronautical hygiene. Astronautical hygiene is an applied science that utilises a knowledge of space toxicology, space medicine, astronautics, occupational hygiene etc. to identify the hazards, assess the exposure risks to health, and thereby determine the measures to mitigate exposure to protect the health of astronauts during living and working in space. This paper describes the nature of the hazards (i.e. physical, chemical, microbial and psychological) encountered during space flight. It discusses exposure risk assessment and the use of sampling techniques to assess astronaut health risks. This paper then discusses the measures used to mitigate exposure to the exposure hazards during space exploration. A case study of the application of the principles of astronautical hygiene to control lunar dust exposure is then described.

  13. Astronaut Twins Give Clues to Health Hazards of Spaceflight

    Science.gov (United States)

    ... https://medlineplus.gov/news/fullstory_163391.html Astronaut Twins Give Clues to Health Hazards of Spaceflight NASA ... aboard the International Space Station, and his identical twin Mark, a retired astronaut. Mark remained on Earth ...

  14. Microminiature Monitor for Vital Electrolyte and Metabolite Levels of Astronauts

    Science.gov (United States)

    Tohda, Koji; Gratzl, Miklos

    2004-01-01

    Ions, such as proton (pH) and potassium, play a crucial role in body fluids to maintain proper basic functioning of cells and tissues. Metabolites, such as glucose, control the energy available to the entire human body in normal as well as stress situations, and before, during, and after meals. These molecules diffuse easily between blood in the capillaries and the interstitial fluid residing between cells and tissues. We have developed and approach to monitoring of critical ions (called electrolytes) and glucose in the interstitial fluid under the human skin. Proton and potassium levels sensed using optode technology that translates the respective ionic concentrations into variable colors of corresponding ionophore/dye/polymeric liquid membranes. Glucose is monitored indirectly, by coupling through immobilized glucose oxidase with local pH that is then detected using a similar color scheme. The monitor consists of a tiny plastic bar, 100-200 microns wide and 1-2 mm long, placed just under the skin, with color changing spots for each analyte as well as blanks. The colors are read and translated into concentration values by a CCD camera. Direct optical coupling between the in vivo sensing bar and the ex vivo detector device requires no power, and thus eliminates the need for wires or optical fibers crossing the skin. The microminiature bar penetrates the skin easily and painlessly, so that astronauts could insert it themselves. The approach is fully compatible with telemetry in space, and thus, in vivo clinical data will be available real time in the Earth based command center once the device is fully developed. The information provided can be used for collecting hitherto unavailable vital data on clinical effects of space travel. Managing clinical emergencies in space with the sensor already in place should also become much more efficient than without a continuous monitor, as is currently the case. Civilian applications may include better glucose control of

  15. Microminiature Monitor for Vital Electrolyte and Metabolite Levels of Astronauts

    Science.gov (United States)

    Tohda, Koji; Gratzl, Miklos

    2004-01-01

    Ions, such as proton (pH) and potassium, play a crucial role in body fluids to maintain proper basic functioning of cells and tissues. Metabolites, such as glucose, control the energy available to the entire human body in normal as well as stress situations, and before, during, and after meals. These molecules diffuse easily between blood in the capillaries and the interstitial fluid residing between cells and tissues. We have developed and approach to monitoring of critical ions (called electrolytes) and glucose in the interstitial fluid under the human skin. Proton and potassium levels sensed using optode technology that translates the respective ionic concentrations into variable colors of corresponding ionophore/dye/polymeric liquid membranes. Glucose is monitored indirectly, by coupling through immobilized glucose oxidase with local pH that is then detected using a similar color scheme. The monitor consists of a tiny plastic bar, 100-200 microns wide and 1-2 mm long, placed just under the skin, with color changing spots for each analyte as well as blanks. The colors are read and translated into concentration values by a CCD camera. Direct optical coupling between the in vivo sensing bar and the ex vivo detector device requires no power, and thus eliminates the need for wires or optical fibers crossing the skin. The microminiature bar penetrates the skin easily and painlessly, so that astronauts could insert it themselves. The approach is fully compatible with telemetry in space, and thus, in vivo clinical data will be available real time in the Earth based command center once the device is fully developed. The information provided can be used for collecting hitherto unavailable vital data on clinical effects of space travel. Managing clinical emergencies in space with the sensor already in place should also become much more efficient than without a continuous monitor, as is currently the case. Civilian applications may include better glucose control of

  16. Biomedical performance monitoring and assessment of astronauts by means of an ocular vestibular monitoring system

    Science.gov (United States)

    Souvestre, Philippe A.; Landrock, Clinton

    2007-02-01

    The paper focuses on the strong correlation between unmitigated symptoms exhibited by post Space flight astronauts, and symptoms associated with postural deficiency syndrome (PDS) that can be correctly assessed, identified, and monitored via a neurophysiological ocular-vestibular monitoring system (OVMS). From examining clinical data taken over a 10-year period from patients experiencing PDS related acute and chronic post-traumatic medical conditions, the authors show the potential for current assessment and monitoring techniques to examine better the impacts on astronaut neurophysiology. The data presented provide strong evidence that this biomedical monitoring and assessment methodology along with appropriate technology can lead to a better understanding of astronaut post-flight neurophysiology, which is necessary if human exploration in Space is to continue on a successful path.

  17. Lunar Health Monitor (LHM)

    Science.gov (United States)

    Lisy, Frederick J.

    2015-01-01

    Orbital Research, Inc., has developed a low-profile, wearable sensor suite for monitoring astronaut health in both intravehicular and extravehicular activities. The Lunar Health Monitor measures respiration, body temperature, electrocardiogram (EKG) heart rate, and other cardiac functions. Orbital Research's dry recording electrode is central to the innovation and can be incorporated into garments, eliminating the need for conductive pastes, adhesives, or gels. The patented dry recording electrode has been approved by the U.S. Food and Drug Administration. The LHM is easily worn under flight gear or with civilian clothing, making the system completely versatile for applications where continuous physiological monitoring is needed. During Phase II, Orbital Research developed a second-generation LHM that allows sensor customization for specific monitoring applications and anatomical constraints. Evaluations included graded exercise tests, lunar mission task simulations, functional battery tests, and resting measures. The LHM represents the successful integration of sensors into a wearable platform to capture long-duration and ambulatory physiological markers.

  18. Wearable Health Monitoring Systems

    Science.gov (United States)

    Bell, John

    2015-01-01

    The shrinking size and weight of electronic circuitry has given rise to a new generation of smart clothing that enables biological data to be measured and transmitted. As the variation in the number and type of deployable devices and sensors increases, technology must allow their seamless integration so they can be electrically powered, operated, and recharged over a digital pathway. Nyx Illuminated Clothing Company has developed a lightweight health monitoring system that integrates medical sensors, electrodes, electrical connections, circuits, and a power supply into a single wearable assembly. The system is comfortable, bendable in three dimensions, durable, waterproof, and washable. The innovation will allow astronaut health monitoring in a variety of real-time scenarios, with data stored in digital memory for later use in a medical database. Potential commercial uses are numerous, as the technology enables medical personnel to noninvasively monitor patient vital signs in a multitude of health care settings and applications.

  19. Biofeedback monitoring-devices for astronauts in space environment

    Science.gov (United States)

    Rotondo, G.; Pancheri, P.; Monesi, F.; Grantaliano, G.; DePascalis, V.

    After a reconsideration of the state-of-the-art in biofeedback research the implementation of biofeedback systems is envisioned as a countermeasure of stress for the psychoprophylaxis of the astronaut. A one-session experiment performed on two groups of subjects to assess the interference from EMG-feedback on the performance in a simultaneous psychomotor trial with a view to expanding biofeedback application is described. The results show that the experimental group performed in the same way as the control without feedback, but with less CNS activation. Some general conclusions are drawn from the advances in technology.

  20. Individualized Behavioral Health Monitoring Tool

    Science.gov (United States)

    Mollicone, Daniel

    2015-01-01

    Behavioral health risks during long-duration space exploration missions are among the most difficult to predict, detect, and mitigate. Given the anticipated extended duration of future missions and their isolated, extreme, and confined environments, there is the possibility that behavior conditions and mental disorders will develop among astronaut crew. Pulsar Informatics, Inc., has developed a health monitoring tool that provides a means to detect and address behavioral disorders and mental conditions at an early stage. The tool integrates all available behavioral measures collected during a mission to identify possible health indicator warning signs within the context of quantitatively tracked mission stressors. It is unobtrusive and requires minimal crew time and effort to train and utilize. The monitoring tool can be deployed in space analog environments for validation testing and ultimate deployment in long-duration space exploration missions.

  1. Prognostics and health management (PHM) for astronauts: a collaboration project on the International Space Station

    Science.gov (United States)

    Popov, Alexandre; Fink, Wolfgang; Hess, Andrew

    2016-05-01

    Long-duration missions bring numerous risks that must be understood and mitigated in order to keep astronauts healthy, rather than treat a diagnosed health disorder. Having a limited medical support from mission control center on space exploration missions, crew members need a personal health-tracking tool to predict and assess his/her health risks if no preventive measures are taken. This paper refines a concept employing technologies from Prognostics and Health Management (PHM) for systems, namely real-time health monitoring and condition-based health maintenance with predictive diagnostics capabilities. Mapping particular PHM-based solutions to some Human Health and Performance (HH&P) technology candidates, namely by NASA designation, the Autonomous Medical Decision technology and the Integrated Biomedical Informatics technology, this conceptual paper emphasize key points that make the concept different from that of both current conventional medicine and telemedicine including space medicine. The primary benefit of the technologies development for the HH&P domain is the ability to successfully achieve affordable human space missions to Low Earth Orbit (LEO) and beyond. Space missions on the International Space Station (ISS) program directly contribute to the knowledge base and advancements in the HH&P domain, thanks to continued operations on the ISS, a unique human-tended test platform and the only test bed within the space environment. The concept is to be validated on the ISS, the only "test bed" on which to prepare for future manned exploration missions. The paper authors believe that early self-diagnostic coupled with autonomous identification of proper preventive responses on negative trends are critical in order to keep astronauts healthy.

  2. Monitoring for Renal Stone Recurrence in Astronauts With History of Stone

    Science.gov (United States)

    Reyes, David P.; Sargsyan, Ashot; Locke, James; Davis, Jeffrey

    2014-01-01

    After an initial stone episode persons are at increased risk for future stone formation. A systematic approach is required to monitor the efficacy of treatment and preventive measures, and to assess the risk of developing new stones. This is important for persons working in critical jobs or austere environments, such as astronauts. A literature review of the current standards of care for renal stone monitoring and imaging was done. Military and civil aviation standards were also reviewed, as well as the medical precedents from the space program. Additionally, a new, more effective, renal stone ultrasound protocol has been developed. Using this work, a monitoring algorithm was proposed that takes into consideration the unique mission and operational environment of spaceflight. The approach to imaging persons with history of renal stones varies widely in the literature. Imaging is often done yearly or biannually, which may be too long for mission critical personnel. In the proposed algorithm astronauts with a history of renal stone, who may be under consideration for assignment, are imaged by a detailed, physiciandriven, ultrasound protocol. Unassigned personnel are monitored by yearly ultrasound and urine studies. Any positive ultrasound study is then followed by low-dose renal computed tomography scan. Other criteria are also established. The proposed algorithm provides a balanced approach between efficacy and reduced radiation exposure for the monitoring of astronauts with a renal stone history. This may eventually allow a transition from a risk-averse, to a risk-modifying approach that can enable continued service of individuals with history of renal stone that have adequately controlled risk factors.

  3. Space Radiation: The Number One Risk to Astronaut Health beyond Low Earth Orbit

    OpenAIRE

    Jeffery C. Chancellor; Scott, Graham B. I.; Sutton, Jeffrey P.

    2014-01-01

    Projecting a vision for space radiobiological research necessitates understanding the nature of the space radiation environment and how radiation risks influence mission planning, timelines and operational decisions. Exposure to space radiation increases the risks of astronauts developing cancer, experiencing central nervous system (CNS) decrements, exhibiting degenerative tissue effects or developing acute radiation syndrome. One or more of these deleterious health effects could develop duri...

  4. Space Radiation: The Number One Risk to Astronaut Health beyond Low Earth Orbit

    Directory of Open Access Journals (Sweden)

    Jeffery C. Chancellor

    2014-09-01

    Full Text Available Projecting a vision for space radiobiological research necessitates understanding the nature of the space radiation environment and how radiation risks influence mission planning, timelines and operational decisions. Exposure to space radiation increases the risks of astronauts developing cancer, experiencing central nervous system (CNS decrements, exhibiting degenerative tissue effects or developing acute radiation syndrome. One or more of these deleterious health effects could develop during future multi-year space exploration missions beyond low Earth orbit (LEO. Shielding is an effective countermeasure against solar particle events (SPEs, but is ineffective in protecting crew members from the biological impacts of fast moving, highly-charged galactic cosmic radiation (GCR nuclei. Astronauts traveling on a protracted voyage to Mars may be exposed to SPE radiation events, overlaid on a more predictable flux of GCR. Therefore, ground-based research studies employing model organisms seeking to accurately mimic the biological effects of the space radiation environment must concatenate exposures to both proton and heavy ion sources. New techniques in genomics, proteomics, metabolomics and other “omics” areas should also be intelligently employed and correlated with phenotypic observations. This approach will more precisely elucidate the effects of space radiation on human physiology and aid in developing personalized radiological countermeasures for astronauts.

  5. Space Radiation: The Number One Risk to Astronaut Health beyond Low Earth Orbit.

    Science.gov (United States)

    Chancellor, Jeffery C; Scott, Graham B I; Sutton, Jeffrey P

    2014-09-11

    Projecting a vision for space radiobiological research necessitates understanding the nature of the space radiation environment and how radiation risks influence mission planning, timelines and operational decisions. Exposure to space radiation increases the risks of astronauts developing cancer, experiencing central nervous system (CNS) decrements, exhibiting degenerative tissue effects or developing acute radiation syndrome. One or more of these deleterious health effects could develop during future multi-year space exploration missions beyond low Earth orbit (LEO). Shielding is an effective countermeasure against solar particle events (SPEs), but is ineffective in protecting crew members from the biological impacts of fast moving, highly-charged galactic cosmic radiation (GCR) nuclei. Astronauts traveling on a protracted voyage to Mars may be exposed to SPE radiation events, overlaid on a more predictable flux of GCR. Therefore, ground-based research studies employing model organisms seeking to accurately mimic the biological effects of the space radiation environment must concatenate exposures to both proton and heavy ion sources. New techniques in genomics, proteomics, metabolomics and other "omics" areas should also be intelligently employed and correlated with phenotypic observations. This approach will more precisely elucidate the effects of space radiation on human physiology and aid in developing personalized radiological countermeasures for astronauts.

  6. Ultrasonic wireless health monitoring

    Science.gov (United States)

    Petit, Lionel; Lefeuvre, Elie; Guyomar, Daniel; Richard, Claude; Guy, Philippe; Yuse, Kaori; Monnier, Thomas

    2006-03-01

    The integration of autonomous wireless elements in health monitoring network increases the reliability by suppressing power supplies and data transmission wiring. Micro-power piezoelectric generators are an attractive alternative to primary batteries which are limited by a finite amount of energy, a limited capacity retention and a short shelf life (few years). Our goal is to implement such an energy harvesting system for powering a single AWT (Autonomous Wireless Transmitter) using our SSH (Synchronized Switch Harvesting) method. Based on a non linear process of the piezoelement voltage, this SSH method optimizes the energy extraction from the mechanical vibrations. This AWT has two main functions : The generation of an identifier code by RF transmission to the central receiver and the Lamb wave generation for the health monitoring of the host structure. A damage index is derived from the variation between the transmitted wave spectrum and a reference spectrum. The same piezoelements are used for the energy harvesting function and the Lamb wave generation, thus reducing mass and cost. A micro-controller drives the energy balance and synchronizes the functions. Such an autonomous transmitter has been evaluated on a 300x50x2 mm 3 composite cantilever beam. Four 33x11x0.3 mm 3 piezoelements are used for the energy harvesting and for the wave lamb generation. A piezoelectric sensor is placed at the free end of the beam to track the transmitted Lamb wave. In this configuration, the needed energy for the RF emission is 0.1 mJ for a 1 byte-information and the Lamb wave emission requires less than 0.1mJ. The AWT can harvested an energy quantity of approximately 20 mJ (for a 1.5 Mpa lateral stress) with a 470 μF storage capacitor. This corresponds to a power density near to 6mW/cm 3. The experimental AWT energy abilities are presented and the damage detection process is discussed. Finally, some envisaged solutions are introduced for the implementation of the required data

  7. Lunar Health Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Orbital Research has successfully demonstrated a dry electrode (no electrolyte or gel required) for heart rate and ECG monitoring. Preliminary data has indicated...

  8. Wearable Health Monitoring Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposal is to demonstrate the feasibility of producing a wearable health monitoring system for the human body that is functional, comfortable,...

  9. Wearable Health Monitoring Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposal is to demonstrate the feasibility of producing a wearable health monitoring system for the human body that is functional, comfortable,...

  10. Skeletal health in long-duration astronauts: nature, assessment, and management recommendations from the NASA Bone Summit.

    Science.gov (United States)

    Orwoll, Eric S; Adler, Robert A; Amin, Shreyasee; Binkley, Neil; Lewiecki, E Michael; Petak, Steven M; Shapses, Sue A; Sinaki, Mehrsheed; Watts, Nelson B; Sibonga, Jean D

    2013-06-01

    Concern about the risk of bone loss in astronauts as a result of prolonged exposure to microgravity prompted the National Aeronautics and Space Administration to convene a Bone Summit with a panel of experts at the Johnson Space Center to review the medical data and research evidence from astronauts who have had prolonged exposure to spaceflight. Data were reviewed from 35 astronauts who had served on spaceflight missions lasting between 120 and 180 days with attention focused on astronauts who (1) were repeat fliers on long-duration missions, (2) were users of an advanced resistive exercise device (ARED), (3) were scanned by quantitative computed tomography (QCT) at the hip, (4) had hip bone strength estimated by finite element modeling, or (5) had lost >10% of areal bone mineral density (aBMD) at the hip or lumbar spine as measured by dual-energy X-ray absorptiometry (DXA). Because of the limitations of DXA in describing the effects of spaceflight on bone strength, the panel recommended that the U.S. space program use QCT and finite element modeling to further study the unique effects of spaceflight (and recovery) on bone health in order to better inform clinical decisions. Copyright © 2013 American Society for Bone and Mineral Research.

  11. Diver Health Monitoring System

    Science.gov (United States)

    2011-09-15

    Software - Small Business Innovative Research (SBIR) Program clause contained in the above identified contract. No restrictions apply after the...safety and effectiveness—their body. The goal of this Small Business Technology Transfer (STTR) Phase II project is the development of a Diver Health...Between DHMS and Biopac -0.47 ± 0.86 -0.57 ± 1.39 -0.52 i 1.16 Across all tests, however, a standard deviation of 1.16 bpm is small and validates the

  12. Human health monitoring technology

    Science.gov (United States)

    Kim, Byung-Hyun; Yook, Jong-Gwan

    2017-05-01

    Monitoring vital signs from human body is very important to healthcare and medical diagnosis, because they contain valuable information about arterial occlusions, arrhythmia, atherosclerosis, autonomous nervous system pathologies, stress level, and obstructive sleep apnea. Existing methods, such as electrocardiogram (ECG) sensor and photoplethysmogram (PPG) sensor, requires direct contact to the skin and it can causes skin irritation and the inconvenience of long-term wearing. For reducing the inconvenience in the conventional sensors, microwave and millimeter-wave sensors have been proposed since 1970s using micro-Doppler effect from one's cardiopulmonary activity. The Doppler radar sensor can remotely detect the respiration and heartbeat up to few meters away from the subject, but they have a multiple subject issue and are not suitable for an ambulatory subject. As a compromise, a noncontact proximity vital sign sensor has been recently proposed and developed. The purpose of this paper is to review the noncontact proximity vital sign sensors for detection of respiration, heartbeat rate, and/or wrist pulse. This sensor basically employs near-field perturbation of radio-frequency (RF) planar resonator due to the proximity of the one's chest or radial artery at the wrist. Various sensing systems based on the SAW filter, phase-locked loop (PLL) synthesizer, reflectometer, and interferometer have been proposed. These self-sustained systems can measure the nearfield perturbation and transform it into DC voltage variation. Consequently, they can detect the respiration and heartbeat rate near the chest of subject and pulse from radial artery at the wrist.

  13. Lifetime Surveillance of Astronaut Health (LSAH) / Life Sciences Data Archive (LSDA) Data Request Helpdesk

    Science.gov (United States)

    Young, Millennia; Van Baalen, Mary

    2016-01-01

    This session is intended to provide to HRP IWS attendees instant feedback on archived astronaut data, including such topics as content of archives, access, request processing, and data format. Members of the LSAH and LSDA teams will be available at a 'help desk' during the poster sessions to answer questions from researchers.

  14. Intelligent system for pilot and astronaut Psychophysiological status monitoring and recuperating.

    Science.gov (United States)

    Janicki, Andrzej; -Bogumila Pecyna, S. Maria

    called intelligent computations, and their methodology is called “computational intelligence”. The absence of gravity which causes significant physiological stress with broad biomedical changes generated key problems for researchers and practitioners of aviations and space flight. Following previous experiences we had on the matter, some current results achieved on the bases of FlexComp Infinity/Biograph Infiniti, V6.1™ of Thought Technology ltd. [Janicki, Pecyna, 2014] are underlined. A particular emphasis has been placed on the ability of the distributed parallel computations connected with the sophisticated application of the NASA Autogenic Feedback Training AFTE [PS Cowings, 2011] method combined biofeedback and Autogenic Therapy exercises [WIML-NASA, 2011]. The present paper reports on the results of a serious preliminary experiments addressed especially to space disorientation and/or awareness of reality problem. Keywords: pilot’s decision making process; intelligent a agent; coherency; psychophysiological pilot status; remote monitoring; remote training; synthetic indicators; scientific information system; three-factor utility function; space disorientation;Near-Infrared Hemoencephalography; References: A.Janicki “three-factor utility function” in LabTSI™ Modeling and Simulation Platform, KUL Univ. publication 2011 - in polish, page 95-103 M.B. Pecyna and M. Pokorski "Near-Infrared Hemoencephalography for Monitoring Blood Oxygenation in Prefrontal Cortical Areas in diagnosis and Therapy of Developmental Dyslexia" in "Neurobiology of Respiration" Springer Science+Business Media Dordrecht 2013 page 175 - 180. NASA-WIML Workshop on 2011, Psychophysiological Aspects of Flight Safety In Aerospace Operations, WIML 2011

  15. Wearable sensors for health monitoring

    Science.gov (United States)

    Suciu, George; Butca, Cristina; Ochian, Adelina; Halunga, Simona

    2015-02-01

    In this paper we describe several wearable sensors, designed for monitoring the health condition of the patients, based on an experimental model. Wearable sensors enable long-term continuous physiological monitoring, which is important for the treatment and management of many chronic illnesses, neurological disorders, and mental health issues. The system is based on a wearable sensors network, which is connected to a computer or smartphone. The wearable sensor network integrates several wearable sensors that can measure different parameters such as body temperature, heart rate and carbon monoxide quantity from the air. After the portable sensors measuring parameter values, they are transmitted by microprocessor through the Bluetooth to the application developed on computer or smartphone, to be interpreted.

  16. A REMOTE HEALTH MONITORING MESSENGER

    Directory of Open Access Journals (Sweden)

    Sharmili Minu.DH

    2013-02-01

    Full Text Available Health is an important factor of every human being. Remote health monitoring messenger is needed for the people to reduce their inconvenience in travel to hospitals due to ailing health. Ill-patientrequires accurate decision to be taken immediately in critical situations, so that life-protecting and lifesaving therapy can be properly applied. In recent years, sensors are used in each and every fast developing application for designing the miniaturized system which is much easier for people use. A remote health monitoring messenger informs the doctor about the patient condition through wireless media such as Global System for Mobile communication. The system specifically deals with the signal conditioning and data acquisition of heart beat, temperature, and blood pressure of human body. The Heart beat sensor is used to read the patient’s beats per minute (bpm and temperature sensor to measure the body temperature of patient externally and pressure sensor to measure the level of pressure in blood. Signals obtained from sensors are fed into the microcontroller for processing and medicine is prescribed as first aid for patient to control the parameters through visual basic. A message is then sent to the doctor for further actions to be taken for treatment of patient after first aid. The system has a very good response time and it is cost effective.

  17. Harnessing functional food strategies for the health challenges of space travel—Fermented soy for astronaut nutrition

    Science.gov (United States)

    Buckley, Nicole D.; Champagne, Claude P.; Masotti, Adriana I.; Wagar, Lisa E.; Tompkins, Thomas A.; Green-Johnson, Julia M.

    2011-04-01

    Astronauts face numerous health challenges during long-duration space missions, including diminished immunity, bone loss and increased risk of radiation-induced carcinogenesis. Changes in the intestinal flora of astronauts may contribute to these problems. Soy-based fermented food products could provide a nutritional strategy to help alleviate these challenges by incorporating beneficial lactic acid bacteria, while reaping the benefits of soy isoflavones. We carried out strain selection for the development of soy ferments, selecting strains of lactic acid bacteria showing the most effective growth and fermentation ability in soy milk ( Streptococcus thermophilus ST5, Bifidobacterium longum R0175 and Lactobacillus helveticus R0052). Immunomodulatory bioactivity of selected ferments was assessed using an in vitro challenge system with human intestinal epithelial and macrophage cell lines, and selected ferments show the ability to down-regulate production of the pro-inflammatory cytokine interleukin-8 following challenge with tumour necrosis factor-alpha. The impact of fermentation on vitamin B1 and B6 levels and on isoflavone biotransformation to agluconic forms was also assessed, with strain variation-dependent biotransformation ability detected. Overall this suggests that probiotic bacteria can be successfully utilized to develop soy-based fermented products targeted against health problems associated with long-term space travel.

  18. Solder Joint Health Monitoring Testbed

    Science.gov (United States)

    Delaney, Michael M.; Flynn, James G.; Browder, Mark E.

    2009-01-01

    A method of monitoring the health of selected solder joints, called SJ-BIST, has been developed by Ridgetop Group Inc. under a Small Business Innovative Research (SBIR) contract. The primary goal of this research program is to test and validate this method in a flight environment using realistically seeded faults in selected solder joints. An additional objective is to gather environmental data for future development of physics-based and data-driven prognostics algorithms. A test board is being designed using a Xilinx FPGA. These boards will be tested both in flight and on the ground using a shaker table and an altitude chamber.

  19. Female Astronauts

    Science.gov (United States)

    1992-01-01

    Astronauts Dr. N. Jan Davis (left) and Dr. Mae C. Jemison (right) were mission specialists on board the STS-47 mission. Born on November 1, 1953 in Cocoa Beach, Florida, Dr. N. Jan Davis received a Master degree in Mechanical Engineering in 1983 followed by a Doctorate in Engineering from the University of Alabama in Huntsville in 1985. In 1979 she joined NASA Marshall Space Flight Center as an aerospace engineer. A veteran of three space flights, Dr. Davis has logged over 678 hours in space since becoming an astronaut in 1987. She flew as a mission specialist on STS-47 in 1992 and STS-60 in 1994, and was the payload commander on STS-85 in 1997. In July 1999, she transferred to the Marshall Space Flight Center, where she became Director of Flight Projects. Dr. Mae C. Jemison, the first African-American woman in space, was born on October 17, 1956 in Decatur, Alabama but considers Chicago, Illinois her hometown. She received a Bachelor degree in Chemical Engineering (and completed the requirements for a Bachelor degree in African and Afro-American studies) at Stanford University in 1977, and a Doctorate degree in medicine from Cornell University in 1981. After receiving her doctorate, she worked as a General Practitioner while attending graduate engineering classes in Los Angeles. She was named an astronaut candidate in 1987, and flew her first flight as a science mission specialists on STS-47, Spacelab-J, in September 1992, logging 190 hours, 30 minutes, 23 seconds in space. In March 1993, Dr. Jemison resigned from NASA, thought she still resides in Houston, Texas. She went on to publish her memoirs, Find Where the Wind Goes: Moments from My Life, in 2001. The astronauts are shown preparing to deploy the lower body negative pressure (LBNP) apparatus in this 35mm frame taken in the science module aboard the Earth-orbiting Space Shuttle Endeavor. Fellow astronauts Robert L. Gibson (Commander), Curtis L. Brown (Junior Pilot), Mark C. Lee (Payload Commander), Jay Apt

  20. Evolutionary Autonomous Health Monitoring System (EAHMS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For supporting NASA's Robotics, Tele-Robotics and Autonomous Systems Roadmap, we are proposing the "Evolutionary Autonomous Health Monitoring System" (EAHMS) for...

  1. Forest health monitoring: 2006 national technical report

    Science.gov (United States)

    Mark J. Ambrose; Barbara L. Conkling

    2009-01-01

    The Forest Health Monitoring Program’s annual national technical reportpresents results of forest health analyses from a national perspective usingdata from a variety of sources. The report is organized according to the

  2. Management of Asymptomatic Renal Stones in Astronauts

    Science.gov (United States)

    Reyes, David; Locke, James

    2016-01-01

    Introduction: Management guidelines were created to screen and manage asymptomatic renal stones in U.S. astronauts. The risks for renal stone formation in astronauts due to bone loss and hypercalcuria are unknown. Astronauts have a stone risk which is about the same as commercial aviation pilots, which is about half that of the general population. However, proper management of this condition is still crucial to mitigate health and mission risks in the spaceflight environment. Methods: An extensive review of the literature and current aeromedical standards for the monitoring and management of renal stones was done. The NASA Flight Medicine Clinic's electronic medical record and Longitudinal Survey of Astronaut Health were also reviewed. Using this work, a screening and management algorithm was created that takes into consideration the unique operational environment of spaceflight. Results: Renal stone screening and management guidelines for astronauts were created based on accepted standards of care, with consideration to the environment of spaceflight. In the proposed algorithm, all astronauts will receive a yearly screening ultrasound for renal calcifications, or mineralized renal material (MRM). Any areas of MRM, 3 millimeters or larger, are considered a positive finding. Three millimeters approaches the detection limit of standard ultrasound, and several studies have shown that any stone that is 3 millimeters or less has an approximately 95 percent chance of spontaneous passage. For mission-assigned astronauts, any positive ultrasound study is followed by low-dose renal computed tomography (CT) scan, and flexible ureteroscopy if CT is positive. Other specific guidelines were also created. Discussion: The term "MRM" is used to account for small areas of calcification that may be outside the renal collecting system, and allows objectivity without otherwise constraining the diagnostic and treatment process for potentially very small calcifications of uncertain

  3. Management of Asymptomatic Renal Stones in Astronauts

    Science.gov (United States)

    Reyes, David; Locke, James

    2016-01-01

    Introduction: Management guidelines were created to screen and manage asymptomatic renal stones in U.S. astronauts. The risks for renal stone formation in astronauts due to bone loss and hypercalcuria are unknown. Astronauts have a stone risk which is about the same as commercial aviation pilots, which is about half that of the general population. However, proper management of this condition is still crucial to mitigate health and mission risks in the spaceflight environment. Methods: An extensive review of the literature and current aeromedical standards for the monitoring and management of renal stones was done. The NASA Flight Medicine Clinic's electronic medical record and Longitudinal Survey of Astronaut Health were also reviewed. Using this work, a screening and management algorithm was created that takes into consideration the unique operational environment of spaceflight. Results: Renal stone screening and management guidelines for astronauts were created based on accepted standards of care, with consideration to the environment of spaceflight. In the proposed algorithm, all astronauts will receive a yearly screening ultrasound for renal calcifications, or mineralized renal material (MRM). Any areas of MRM, 3 millimeters or larger, are considered a positive finding. Three millimeters approaches the detection limit of standard ultrasound, and several studies have shown that any stone that is 3 millimeters or less has an approximately 95 percent chance of spontaneous passage. For mission-assigned astronauts, any positive ultrasound study is followed by low-dose renal computed tomography (CT) scan, and flexible ureteroscopy if CT is positive. Other specific guidelines were also created. Discussion: The term "MRM" is used to account for small areas of calcification that may be outside the renal collecting system, and allows objectivity without otherwise constraining the diagnostic and treatment process for potentially very small calcifications of uncertain

  4. Structural health monitoring meets data mining

    NARCIS (Netherlands)

    Miao, Shengfa

    2014-01-01

    With the development of sensing and data processing techniques, monitoring physical systems in the field with a sensor network is becoming a feasible option for many domains. Such monitoring systems are referred to as Structural Health Monitoring (SHM) systems. By definition, SHM is the process of i

  5. Local measurement for structural health monitoring

    Institute of Scientific and Technical Information of China (English)

    G.Z.Qi; Guo Xun; Qi Xiaozhai; W. Dong; P.Chang

    2005-01-01

    Localized nature of damage in structures requires local measurements for structural health monitoring. The local measurement means to measure the local, usually higher modes of the vibration in a structure. Three fundamental issues about the local measurement for structural health monitoring including (1) the necessity of making local measurement, (2) the difficulty of making local measurement and (3) how to make local measurement are addressed in this paper. The results from both the analysis and the tests show that the local measurement can successfully monitor the structural health status as long as the local modes are excited. Unfortunately, the results also illustrate that it is difficult to excite local modes in a structure.Therefore, in order to carry structural health monitoring into effect, we must (1) ensure that the local modes are excited, and (2) deploy enough sensors in a structure so that the local modes can be monitored.

  6. Forest health monitoring: 2001 national technical report

    Science.gov (United States)

    Barbara L. Conkling; John W. Coulston; Mark J. Ambrose

    2005-01-01

    The Forest Health Monitoring (FHM) Program’s annual national report uses FHM data, as well as data from a variety of other programs, to provide an overview of forest health based on the criteria and indicators of sustainable forestry framework of the Santiago Declaration. It presents information about the status of and trends in various forest health indicators...

  7. Screening and Management of Asymptomatic Renal Stones in Astronauts

    Science.gov (United States)

    Reyes, David; Locke, James; Sargsyan, Ashot; Garcia, Kathleen

    2017-01-01

    Management guidelines were created to screen and manage asymptomatic renal stones in U.S. astronauts. The true risk for renal stone formation in astronauts due to the space flight environment is unknown. Proper management of this condition is crucial to mitigate health and mission risks. The NASA Flight Medicine Clinic electronic medical record and the Lifetime Surveillance of Astronaut Health databases were reviewed. An extensive review of the literature and current aeromedical standards for the monitoring and management of renal stones was also done. This work was used to develop a screening and management protocol for renal stones in astronauts that is relevant to the spaceflight operational environment. In the proposed guidelines all astronauts receive a yearly screening and post-flight renal ultrasound using a novel ultrasound protocol. The ultrasound protocol uses a combination of factors, including: size, position, shadow, twinkle and dispersion properties to confirm the presence of a renal calcification. For mission-assigned astronauts, any positive ultrasound study is followed by a low-dose renal computed tomography scan and urologic consult. Other specific guidelines were also created. A small asymptomatic renal stone within the renal collecting system may become symptomatic at any time, and therefore affect launch and flight schedules, or cause incapacitation during a mission. Astronauts in need of definitive care can be evacuated from the International Space Station, but for deep space missions evacuation is impossible. The new screening and management algorithm has been implemented and the initial round of screening ultrasounds is under way. Data from these exams will better define the incidence of renal stones in U.S. astronauts, and will be used to inform risk mitigation for both short and long duration spaceflights.

  8. Screening and Management of Asymptomatic Renal Stones in Astronauts

    Science.gov (United States)

    Reyes, David; Locke, James; Sargsyan, Ashot; Garcia, Kathleen

    2017-01-01

    Management guidelines were created to screen and manage asymptomatic renal stones in U.S. astronauts. The true risk for renal stone formation in astronauts due to the space flight environment is unknown. Proper management of this condition is crucial to mitigate health and mission risks. The NASA Flight Medicine Clinic electronic medical record and the Lifetime Surveillance of Astronaut Health databases were reviewed. An extensive review of the literature and current aeromedical standards for the monitoring and management of renal stones was also done. This work was used to develop a screening and management protocol for renal stones in astronauts that is relevant to the spaceflight operational environment. In the proposed guidelines all astronauts receive a yearly screening and post-flight renal ultrasound using a novel ultrasound protocol. The ultrasound protocol uses a combination of factors, including: size, position, shadow, twinkle and dispersion properties to confirm the presence of a renal calcification. For mission-assigned astronauts, any positive ultrasound study is followed by a low-dose renal computed tomography scan and urologic consult. Other specific guidelines were also created. A small asymptomatic renal stone within the renal collecting system may become symptomatic at any time, and therefore affect launch and flight schedules, or cause incapacitation during a mission. Astronauts in need of definitive care can be evacuated from the International Space Station, but for deep space missions evacuation is impossible. The new screening and management algorithm has been implemented and the initial round of screening ultrasounds is under way. Data from these exams will better define the incidence of renal stones in U.S. astronauts, and will be used to inform risk mitigation for both short and long duration spaceflights.

  9. Structural health monitoring using genetic fuzzy systems

    CERN Document Server

    Pawar, Prashant M

    2014-01-01

    The high profile of structural health monitoring (SHM) will add urgency to this detailed treatment of intelligent SHM development and implementation via the evolutionary system, which uses a genetic algorithm to automate the development of the fuzzy system.

  10. Multiphoton tomography of astronauts

    Science.gov (United States)

    König, Karsten; Weinigel, Martin; Pietruszka, Anna; Bückle, Rainer; Gerlach, Nicole; Heinrich, Ulrike

    2015-03-01

    Weightlessness may impair the astronaut's health conditions. Skin impairments belong to the most frequent health problems during space missions. Within the Skin B project, skin physiological changes during long duration space flights are currently investigated on three European astronauts that work for nearly half a year at the ISS. Measurements on the hydration, the transepidermal water loss, the surface structure, elasticity and the tissue density by ultrasound are conducted. Furthermore, high-resolution in vivo histology is performed by multiphoton tomography with 300 nm spatial and 200 ps temporal resolution. The mobile certified medical tomograph with a flexible 360° scan head attached to a mechano-optical arm is employed to measure two-photon autofluorescence and SHG in the volar forearm of the astronauts. Modification of the tissue architecture and of the fluorescent biomolecules NAD(P)H, keratin, melanin and elastin are detected as well as of SHG-active collagen. Thinning of the vital epidermis, a decrease of the autofluoresence intensity, an increase in the long fluorescence lifetime, and a reduced skin ageing index SAAID based on an increased collagen level in the upper dermis have been found. Current studies focus on recovery effects.

  11. Integrating structural health and condition monitoring

    DEFF Research Database (Denmark)

    May, Allan; Thöns, Sebastian; McMillan, David

    2015-01-01

    There is a large financial incentive to minimise operations and maintenance (O&M) costs for offshore wind power by optimising the maintenance plan. The integration of condition monitoring (CM) and structural health monitoring (SHM) may help realise this. There is limited work on the integration...

  12. UWB Radar for health monitoring applications

    OpenAIRE

    Trullenque Ortiz, Martín

    2016-01-01

    There is a need for non-invasive monitoring system of key cardio-pulmonary functions and other internal structures. UWB radar offers advantages for health monitoring applications: - Skin contact not required - Works through clothing and skin - Extremely high-resolution UWB able to detect sub-mm movement of internal structures - Insensitive to environmental conditions - Low-power transceivers are relatively inexpensive and easily miniaturized - Enables a new class of wearable/wireless health m...

  13. Mobile health monitoring system for community health workers

    CSIR Research Space (South Africa)

    Sibiya, G

    2014-09-01

    Full Text Available . Functional description The application provides technology for real time, dependable and intelligent health monitoring by health workers in the field. It integrates a set of wearable wireless sensors with a mobile computing device, such as a 3... communities remain a challenge for many governments, technological innovations that can increase prevention and control of NCDs are needed. Wearable health devices such as ambulatory blood pressure (ABP) monitors are a step in the right direction. ABP...

  14. On the value of structural health monitoring

    DEFF Research Database (Denmark)

    Faber, Michael Havbro; Thöns, Sebastian

    2014-01-01

    Health monitoring has, over the last 2-3 decades, become a topic of significant interest within the structural engineering research community, but also in the broader areas of civil and mechanical engineering. Whereas the merits of Structural Health Monitoring (SHM) are generally appreciated in q...... of SHM an example is provided. The example addresses the life-cycle benefit maximization for offshore jacket structures subject to fatigue crack growth utilizing monitoring of near field fatigue stresses as a means of optimizing risk based inspection and maintenance strategies....

  15. Forest health monitoring: 2003 national technical report

    Science.gov (United States)

    John W. Coulston; Mark J. Ambrose; Kurt H. Riitters; Barbara L. Conkling; William D. Smith

    2005-01-01

    The Forest Health Monitoring Program’s annual national reports present results from forest health data analyses focusing on a national perspective. The Criteria and Indicators for the Conservation and Sustainable Management of Temperate and Boreal Forests are used as a reporting framework. This report has five main sections. The first contains introductory material....

  16. Hybrid Modeling Improves Health and Performance Monitoring

    Science.gov (United States)

    2007-01-01

    Scientific Monitoring Inc. was awarded a Phase I Small Business Innovation Research (SBIR) project by NASA's Dryden Flight Research Center to create a new, simplified health-monitoring approach for flight vehicles and flight equipment. The project developed a hybrid physical model concept that provided a structured approach to simplifying complex design models for use in health monitoring, allowing the output or performance of the equipment to be compared to what the design models predicted, so that deterioration or impending failure could be detected before there would be an impact on the equipment's operational capability. Based on the original modeling technology, Scientific Monitoring released I-Trend, a commercial health- and performance-monitoring software product named for its intelligent trending, diagnostics, and prognostics capabilities, as part of the company's complete ICEMS (Intelligent Condition-based Equipment Management System) suite of monitoring and advanced alerting software. I-Trend uses the hybrid physical model to better characterize the nature of health or performance alarms that result in "no fault found" false alarms. Additionally, the use of physical principles helps I-Trend identify problems sooner. I-Trend technology is currently in use in several commercial aviation programs, and the U.S. Air Force recently tapped Scientific Monitoring to develop next-generation engine health-management software for monitoring its fleet of jet engines. Scientific Monitoring has continued the original NASA work, this time under a Phase III SBIR contract with a joint NASA-Pratt & Whitney aviation security program on propulsion-controlled aircraft under missile-damaged aircraft conditions.

  17. Optical Structural Health Monitoring Device

    Science.gov (United States)

    Buckner, Benjamin D.; Markov, Vladimir; Earthman, James C.

    2010-01-01

    This non-destructive, optical fatigue detection and monitoring system relies on a small and unobtrusive light-scattering sensor that is installed on a component at the beginning of its life in order to periodically scan the component in situ. The method involves using a laser beam to scan the surface of the monitored component. The device scans a laser spot over a metal surface to which it is attached. As the laser beam scans the surface, disruptions in the surface cause increases in scattered light intensity. As the disruptions in the surface grow, they will cause the light to scatter more. Over time, the scattering intensities over the scanned line can be compared to detect changes in the metal surface to find cracks, crack precursors, or corrosion. This periodic monitoring of the surface can be used to indicate the degree of fatigue damage on a component and allow one to predict the remaining life and/or incipient mechanical failure of the monitored component. This wireless, compact device can operate for long periods under its own battery power and could one day use harvested power. The prototype device uses the popular open-source TinyOS operating system on an off-the-shelf Mica2 sensor mote, which allows wireless command and control through dynamically reconfigurable multi-node sensor networks. The small size and long life of this device could make it possible for the nodes to be installed and left in place over the course of years, and with wireless communication, data can be extracted from the nodes by operators without physical access to the devices. While a prototype has been demonstrated at the time of this reporting, further work is required in the system s development to take this technology into the field, especially to improve its power management and ruggedness. It should be possible to reduce the size and sensitivity as well. Establishment of better prognostic methods based on these data is also needed. The increase of surface roughness with

  18. In situ health monitoring of piezoelectric sensors

    Science.gov (United States)

    Jensen, Scott L. (Inventor); Drouant, George J. (Inventor)

    2013-01-01

    An in situ health monitoring apparatus may include an exciter circuit that applies a pulse to a piezoelectric transducer and a data processing system that determines the piezoelectric transducer's dynamic response to the first pulse. The dynamic response can be used to evaluate the operating range, health, and as-mounted resonance frequency of the transducer, as well as the strength of a coupling between the transducer and a structure and the health of the structure.

  19. Forest health monitoring: 2004 national technical report

    Science.gov (United States)

    John W. Coulston; Mark J. Ambrose; Kurt H. Riitters; Barbara L. Conkling

    2005-01-01

    The Forest Health Monitoring (FHM) Program’s annual national technical report presents results of forest health analyses from a national perspective using data from a variety of sources. Results presented in the report pertain to the Santiago Declaration’s Criterion 1— Conservation of Biological Diversity and Criterion 3—Maintenance of Forest Ecosystem Health and...

  20. Forest health monitoring: 2002 national technical report

    Science.gov (United States)

    John W. Coulston; Mark J. Ambrose; Kurt H. Riitters; Barbara L. Conkling

    2005-01-01

    The Forest Health Monitoring (FHM) Program’s annual national technical report presents results of forest health analyses from a national perspective using data from a variety of sources. This annual report focuses on “Criterion 3—Maintenance of Forest Ecosystem Health and Vitality” from the “Criteria and Indicators of Sustainable Forestry of the Santiago Declaration”...

  1. Small Autonomous Aircraft Servo Health Monitoring

    Science.gov (United States)

    Quintero, Steven

    2008-01-01

    Small air vehicles offer challenging power, weight, and volume constraints when considering implementation of system health monitoring technologies. In order to develop a testbed for monitoring the health and integrity of control surface servos and linkages, the Autonomous Aircraft Servo Health Monitoring system has been designed for small Uninhabited Aerial Vehicle (UAV) platforms to detect problematic behavior from servos and the air craft structures they control, This system will serve to verify the structural integrity of an aircraft's servos and linkages and thereby, through early detection of a problematic situation, minimize the chances of an aircraft accident. Embry-Riddle Aeronautical University's rotary-winged UAV has an Airborne Power management unit that is responsible for regulating, distributing, and monitoring the power supplied to the UAV's avionics. The current sensing technology utilized by the Airborne Power Management system is also the basis for the Servo Health system. The Servo Health system measures the current draw of the servos while the servos are in Motion in order to quantify the servo health. During a preflight check, deviations from a known baseline behavior can be logged and their causes found upon closer inspection of the aircraft. The erratic behavior nay include binding as a result of dirt buildup or backlash caused by looseness in the mechanical linkages. Moreover, the Servo Health system will allow elusive problems to be identified and preventative measures taken to avoid unnecessary hazardous conditions in small autonomous aircraft.

  2. Maintaining the Health of Software Monitors

    Science.gov (United States)

    Person, Suzette; Rungta, Neha

    2013-01-01

    Software health management (SWHM) techniques complement the rigorous verification and validation processes that are applied to safety-critical systems prior to their deployment. These techniques are used to monitor deployed software in its execution environment, serving as the last line of defense against the effects of a critical fault. SWHM monitors use information from the specification and implementation of the monitored software to detect violations, predict possible failures, and help the system recover from faults. Changes to the monitored software, such as adding new functionality or fixing defects, therefore, have the potential to impact the correctness of both the monitored software and the SWHM monitor. In this work, we describe how the results of a software change impact analysis technique, Directed Incremental Symbolic Execution (DiSE), can be applied to monitored software to identify the potential impact of the changes on the SWHM monitor software. The results of DiSE can then be used by other analysis techniques, e.g., testing, debugging, to help preserve and improve the integrity of the SWHM monitor as the monitored software evolves.

  3. Remote personal health monitoring with radio waves

    Science.gov (United States)

    Nguyen, Andrew

    2008-03-01

    We present several techniques utilizing radio-frequency identification (RFID) technology for personal health monitoring. One technique involves using RFID sensors external to the human body, while another technique uses both internal and external RFID sensors. Simultaneous monitoring of many patients in a hospital setting can also be done using networks of RFID sensors. All the monitoring are done wirelessly, either continuously or periodically in any interval, in which the sensors collect information on human parts such as the lungs or heart and transmit this information to a router, PC or PDA device connected to the internet, from which patient's condition can be diagnosed and viewed by authorized medical professionals in remote locations. Instantaneous information allows medical professionals to intervene properly and timely to prevent possible catastrophic effects to patients. The continuously monitored information provides medical professionals more complete and long-term studies of patients. All of these result in not only enhancement of the health treatment quality but also significant reduction of medical expenditure. These techniques demonstrate that health monitoring of patients can be done wirelessly at any time and any place without interfering with the patients' normal activities. Implementing the RFID technology would not only help reduce the enormous and significantly growing medical costs in the U.S.A., but also help improve the health treatment capability as well as enhance the understanding of long-term personal health and illness.

  4. Structural health monitoring with fiber optic sensors

    Institute of Scientific and Technical Information of China (English)

    F.ANSARI

    2009-01-01

    Optical fiber sensors have been successfully implemented in aeronautics, mechanical systems, and medical applications. Civil structures pose further challenges in monitoring mainly due to their large dimensions, diversity and heterogeneity of materials involved, and hostile construction environment. This article provides a summary of basic principles pertaining to practical health monitoring of civil engineering structures with optical fiber sensors. The issues discussed include basic sensor principles, strain transfer mechanism, sensor packaging, sensor placement in construction environment, and reliability and survivability of the sensors.

  5. Acoustic Techniques for Structural Health Monitoring

    Science.gov (United States)

    Frankenstein, B.; Augustin, J.; Hentschel, D.; Schubert, F.; Köhler, B.; Meyendorf, N.

    2008-02-01

    Future safety and maintenance strategies for industrial components and vehicles are based on combinations of monitoring systems that are permanently attached to or embedded in the structure, and periodic inspections. The latter belongs to conventional nondestructive evaluation (NDE) and can be enhanced or partially replaced by structural health monitoring systems. However, the main benefit of this technology for the future will consist of systems that can be differently designed based on improved safety philosophies, including continuous monitoring. This approach will increase the efficiency of inspection procedures at reduced inspection times. The Fraunhofer IZFP Dresden Branch has developed network nodes, miniaturized transmitter and receiver systems for active and passive acoustical techniques and sensor systems that can be attached to or embedded into components or structures. These systems have been used to demonstrate intelligent sensor networks for the monitoring of aerospace structures, railway systems, wind energy generators, piping system and other components. Material discontinuities and flaws have been detected and monitored during full scale fatigue testing. This paper will discuss opportunities and future trends in nondestructive evaluation and health monitoring based on new sensor principles and advanced microelectronics. It will outline various application examples of monitoring systems based on acoustic techniques and will indicate further needs for research and development.

  6. Privacy by design in personal health monitoring.

    Science.gov (United States)

    Nordgren, Anders

    2015-06-01

    The concept of privacy by design is becoming increasingly popular among regulators of information and communications technologies. This paper aims at analysing and discussing the ethical implications of this concept for personal health monitoring. I assume a privacy theory of restricted access and limited control. On the basis of this theory, I suggest a version of the concept of privacy by design that constitutes a middle road between what I call broad privacy by design and narrow privacy by design. The key feature of this approach is that it attempts to balance automated privacy protection and autonomously chosen privacy protection in a way that is context-sensitive. In personal health monitoring, this approach implies that in some contexts like medication assistance and monitoring of specific health parameters one single automatic option is legitimate, while in some other contexts, for example monitoring in which relatives are receivers of health-relevant information rather than health care professionals, a multi-choice approach stressing autonomy is warranted.

  7. On-farm udder health monitoring.

    Science.gov (United States)

    Lam, T J G M; van Veersen, J C L; Sampimon, O C; Olde Riekerink, R G M

    2011-01-01

    In this article an on-farm monitoring approach on udder health is presented. Monitoring of udder health consists of regular collection and analysis of data and of the regular evaluation of management practices. The ultimate goal is to manage critical control points in udder health management, such as hygiene, body condition, teat ends and treatments, in such a way that results (udder health parameters) are always optimal. Mastitis, however, is a multifactorial disease, and in real life it is not possible to fully prevent all mastitis problems. Therefore udder health data are also monitored with the goal to pick up deviations before they lead to (clinical) problems. By quantifying udder health data and management, a farm is approached as a business, with much attention for efficiency, thought over processes, clear agreements and goals, and including evaluation of processes and results. The whole approach starts with setting SMART (Specific, Measurable, Acceptable, Realistic, Time-bound) goals, followed by an action plan to realize these goals.

  8. [Health economical aspects of telemedical glaucoma monitoring].

    Science.gov (United States)

    Swierk, T; Jürgens, C; Grossjohann, R; Flessa, S; Tost, F

    2011-04-01

    Telemedical home monitoring of glaucoma patients is not covered by health insurance in Germany. Various clinical studies have indicated that 24 h monitoring of intraocular and blood pressure of glaucoma patients allows a better evaluation of the individual disease condition. If the necessary parameters can be collected with telemedical home monitoring it will be possible to reduce the number of 24 h intraocular pressure profiles which necessitate hospital admission. Therefore inpatient 24 h profiles have been chosen as a health economical allocation base with a presentable economical value for the comparative examination. Assuming an at least identical or even higher clinical outcome of the telemedical glaucoma home monitoring inpatient 24 h profiles were chosen as a health economical allocation base to compare and contrast these methods. All procedures of the inpatient 24 h profiles at the ophthalmic clinic of Greifswald were measured using the stopwatch method. In a 1 day test run all activities of the medical staff were identified and documented in a list and afterwards measurements were carried out over 7 days with several stopwatches to allow the documentation of parallel activities. To determine the consumption of resources in telemedical home monitoring the self-documentation of all employees involved in the research project TT-MV were evaluated. Expert interviews helped to determine the economically relevant data about the applied medical technology, e.g. measuring devices, server and electronic health records. The number and complexity of the subprocesses of the inpatient 24 h intraocular pressure profiles were significantly higher compared to telemedical home monitoring. The total costs of the inpatient 24 h profiles were 571.21 € per patient including 291.21 € for medical care and 280 € for accommodation. In contrast the total costs of telemedical home monitoring were 288.72 € per patient. A direct cost comparison shows that telemedical home

  9. Physicians' appraisal of mobile health monitoring

    NARCIS (Netherlands)

    Okazaki, Shintaro; Castaneda, J. Alberto; Sanz, Silvia; Henseler, Jörg

    2013-01-01

    This study addresses what factors influence and moderate Japanese physicians' mobile health monitoring (MHM) adoption for diabetic patients. In light of the multilevel sequential check theory, the study tests whether novelty seeking, self-efficacy, and compatibility moderate the effects of overall q

  10. Wearable Sensors for Remote Health Monitoring.

    Science.gov (United States)

    Majumder, Sumit; Mondal, Tapas; Deen, M Jamal

    2017-01-12

    Life expectancy in most countries has been increasing continually over the several few decades thanks to significant improvements in medicine, public health, as well as personal and environmental hygiene. However, increased life expectancy combined with falling birth rates are expected to engender a large aging demographic in the near future that would impose significant  burdens on the socio-economic structure of these countries. Therefore, it is essential to develop cost-effective, easy-to-use systems for the sake of elderly healthcare and well-being. Remote health monitoring, based on non-invasive and wearable sensors, actuators and modern communication and information technologies offers an efficient and cost-effective solution that allows the elderly to continue to live in their comfortable home environment instead of expensive healthcare facilities. These systems will also allow healthcare personnel to monitor important physiological signs of their patients in real time, assess health conditions and provide feedback from distant facilities. In this paper, we have presented and compared several low-cost and non-invasive health and activity monitoring systems that were reported in recent years. A survey on textile-based sensors that can potentially be used in wearable systems is also presented. Finally, compatibility of several communication technologies as well as future perspectives and research challenges in remote monitoring systems will be discussed.

  11. Wearable Sensors for Remote Health Monitoring

    Directory of Open Access Journals (Sweden)

    Sumit Majumder

    2017-01-01

    Full Text Available Life expectancy in most countries has been increasing continually over the several few decades thanks to significant improvements in medicine, public health, as well as personal and environmental hygiene. However, increased life expectancy combined with falling birth rates are expected to engender a large aging demographic in the near future that would impose significant  burdens on the socio-economic structure of these countries. Therefore, it is essential to develop cost-effective, easy-to-use systems for the sake of elderly healthcare and well-being. Remote health monitoring, based on non-invasive and wearable sensors, actuators and modern communication and information technologies offers an efficient and cost-effective solution that allows the elderly to continue to live in their comfortable home environment instead of expensive healthcare facilities. These systems will also allow healthcare personnel to monitor important physiological signs of their patients in real time, assess health conditions and provide feedback from distant facilities. In this paper, we have presented and compared several low-cost and non-invasive health and activity monitoring systems that were reported in recent years. A survey on textile-based sensors that can potentially be used in wearable systems is also presented. Finally, compatibility of several communication technologies as well as future perspectives and research challenges in remote monitoring systems will be discussed.

  12. Design Optimization of Structural Health Monitoring Systems

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, Eric B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-03-06

    Sensor networks drive decisions. Approach: Design networks to minimize the expected total cost (in a statistical sense, i.e. Bayes Risk) associated with making wrong decisions and with installing maintaining and running the sensor network itself. Search for optimal solutions using Monte-Carlo-Sampling-Adapted Genetic Algorithm. Applications include structural health monitoring and surveillance.

  13. Wearable Sensors for Remote Health Monitoring

    Science.gov (United States)

    Majumder, Sumit; Mondal, Tapas; Deen, M. Jamal

    2017-01-01

    Life expectancy in most countries has been increasing continually over the several few decades thanks to significant improvements in medicine, public health, as well as personal and environmental hygiene. However, increased life expectancy combined with falling birth rates are expected to engender a large aging demographic in the near future that would impose significant  burdens on the socio-economic structure of these countries. Therefore, it is essential to develop cost-effective, easy-to-use systems for the sake of elderly healthcare and well-being. Remote health monitoring, based on non-invasive and wearable sensors, actuators and modern communication and information technologies offers an efficient and cost-effective solution that allows the elderly to continue to live in their comfortable home environment instead of expensive healthcare facilities. These systems will also allow healthcare personnel to monitor important physiological signs of their patients in real time, assess health conditions and provide feedback from distant facilities. In this paper, we have presented and compared several low-cost and non-invasive health and activity monitoring systems that were reported in recent years. A survey on textile-based sensors that can potentially be used in wearable systems is also presented. Finally, compatibility of several communication technologies as well as future perspectives and research challenges in remote monitoring systems will be discussed. PMID:28085085

  14. Intelligent Control and Health Monitoring. Chapter 3

    Science.gov (United States)

    Garg, Sanjay; Kumar, Aditya; Mathews, H. Kirk; Rosenfeld, Taylor; Rybarik, Pavol; Viassolo, Daniel E.

    2009-01-01

    Advanced model-based control architecture overcomes the limitations state-of-the-art engine control and provides the potential of virtual sensors, for example for thrust and stall margin. "Tracking filters" are used to adapt the control parameters to actual conditions and to individual engines. For health monitoring standalone monitoring units will be used for on-board analysis to determine the general engine health and detect and isolate sudden faults. Adaptive models open up the possibility of adapting the control logic to maintain desired performance in the presence of engine degradation or to accommodate any faults. Improved and new sensors are required to allow sensing at stations within the engine gas path that are currently not instrumented due in part to the harsh conditions including high operating temperatures and to allow additional monitoring of vibration, mass flows and energy properties, exhaust gas composition, and gas path debris. The environmental and performance requirements for these sensors are summarized.

  15. Astronaut Scott Carpenter

    Science.gov (United States)

    1959-01-01

    Astronaut Scott Carpenter, one of the original seven astronauts for Mercury Project selected by NASA on April 27, 1959. Boosted by the Mercury-Atlas vehicle, the MA-7 mission made the second marned orbital flight by the United States, and carried Astronaut Carpenter aboard Aurora 7 spacecraft to orbit the Earth three times.

  16. Principles in wireless building health monitoring systems.

    Science.gov (United States)

    Pentaris, F. P.; Makris, J. P.; Stonham, J.; Vallianatos, F.

    2012-04-01

    Monitoring the structural state of a building is essential for the safety of the people who work, live, visit or just use it as well as for the civil protection of urban areas. Many factors can affect the state of the health of a structure, namely man made, like mistakes in the construction, traffic, heavy loads on the structures, explosions, environmental impacts like wind loads, humidity, chemical reactions, temperature changes and saltiness, and natural hazards like earthquakes and landslides. Monitoring the health of a structure provides the ability to anticipate structural failures and secure the safe use of buildings especially those of public services. This work reviews the state of the art and the challenges of a wireless Structural Health Monitoring (WiSHM). Literature review reveals that although there is significant evolution in wireless structural health monitoring, in many cases, monitoring by itself is not enough to predict when a structure becomes inappropriate and/or unsafe for use, and the damage or low durability of a structure cannot be revealed (Chintalapudi, et al., 2006; Ramos, Aguilar, & Lourenço, 2011). Several features and specifications of WiSHM like wireless sensor networking, reliability and autonomy of sensors, algorithms of data transmission and analysis should still be evolved and improved in order to increase the predictive effectiveness of the SHM (Jinping Ou & Hui Li, 2010; Lu & Loh, 2010) . Acknowledgments This work was supported in part by the ARCHEMEDES III Program of the Ministry of Education of Greece and the European Union in the framework of the project entitled «Interdisciplinary Multi-Scale Research of Earthquake Physics and Seismotectonics at the front of the Hellenic Arc (IMPACT-ARC) ».

  17. Vibration health monitoring for tensegrity structures

    Science.gov (United States)

    Ashwear, Nasseradeen; Eriksson, Anders

    2017-02-01

    Tensegrities are assembly structures, getting their equilibrium from the interaction between tension in cables and compression in bars. During their service life, slacking in their cables and nearness to buckling in their bars need to be monitored to avoid a sudden collapse. This paper discusses how to design the tensegrities to make them feasible for vibrational health monitoring methods. Four topics are discussed; suitable finite elements formulation, pre-measurements analysis to find the locations of excitation and sensors for the interesting modes, the effects from some environmental conditions, and the pre-understanding of the effects from different slacking scenarios.

  18. Assessing the value of structural health monitoring

    DEFF Research Database (Denmark)

    Thöns, S.; Faber, Michael Havbro

    2013-01-01

    Structural Health Monitoring (SHM) systems are designed for assisting owners and operators with information and forecasts concerning the fitness for purpose of structures and building systems. The benefit associated with the implementation of SHM may in some cases be intuitively anticipated......-posterior decision analysis. The quantification of the value of SHM builds upon the quantification of the value of information (VoI) or rather the benefit of monitoring. The suggested approach involves a probabilistic representation of the loads and environmental conditions acting on structures as well...

  19. Monitoring Obesity Trends in Health Japan 21.

    Science.gov (United States)

    Nishi, Nobuo

    2015-01-01

    Prevention of non-communicable diseases is more important than ever especially for the elderly to live a healthy life in the super-aged society of Japan. In 2000, the Ministry of Health, Labor and Welfare of Japan started Health Japan 21 as goal-oriented health promotion plan like Healthy People in the US and the Health of the Nation in the UK. Its second term started in 2013 with the aim of prolonging healthy life expectancy and reducing health inequalities. Improvement in both individuals' lifestyle and their social environment will help achieve the goal of the 2nd Health Japan 21. The National Health and Nutrition Survey (NHNS) is conducted every year to monitor the health and nutritional situation of the Japanese using a representative population. The NHNS data are useful for target setting and evaluation of the 2nd Health Japan 21, and the NHNS has shown an increasing trend of overweight (BMI≥25) only for male adults in the most recent 10 y. In contrast, the dietary intake survey of the NHNS shows a decreasing trend of total energy intake both in male and female adults aged 69 y old or younger, and the trend for physical activity is not well known. Thus, we need further investigations on the causes of the obesity trend in Japan.

  20. 76 FR 6475 - Emergency Responder Health Monitoring and Surveillance

    Science.gov (United States)

    2011-02-04

    ... HUMAN SERVICES Centers for Disease Control and Prevention Emergency Responder Health Monitoring and... responder safety and health by monitoring and conducting surveillance of their health and safety during the... of a response. The proposed system is referred to as the ``Emergency Responder Health Monitoring...

  1. Identification methods for structural health monitoring

    CERN Document Server

    Papadimitriou, Costas

    2016-01-01

    The papers in this volume provide an introduction to well known and established system identification methods for structural health monitoring and to more advanced, state-of-the-art tools, able to tackle the challenges associated with actual implementation. Starting with an overview on fundamental methods, introductory concepts are provided on the general framework of time and frequency domain, parametric and non-parametric methods, input-output or output only techniques. Cutting edge tools are introduced including, nonlinear system identification methods; Bayesian tools; and advanced modal identification techniques (such as the Kalman and particle filters, the fast Bayesian FFT method). Advanced computational tools for uncertainty quantification are discussed to provide a link between monitoring and structural integrity assessment. In addition, full scale applications and field deployments that illustrate the workings and effectiveness of the introduced monitoring schemes are demonstrated.

  2. Optical metabolic imaging for monitoring tracheal health

    Science.gov (United States)

    Sharick, Joe T.; Gil, Daniel A.; Choma, Michael A.; Skala, Melissa C.

    2016-04-01

    The health of the tracheal mucosa and submucosa is a vital yet poorly understood component of critical care medicine, and a minimally-invasive method is needed to monitor tracheal health in patients. Of particular interest are the ciliated cells of the tracheal epithelium that move mucus away from the lungs and prevent respiratory infection. Optical metabolic imaging (OMI) allows cellular-level measurement of metabolism, and is a compelling method for assessing tracheal health because ciliary motor proteins require ATP to function. In this pilot study, we apply multiphoton imaging of the fluorescence intensities and lifetimes of metabolic co-enzymes NAD(P)H and FAD to the mucosa and submucosa of ex vivo mouse trachea. We demonstrate the feasibility and potential diagnostic utility of these measurements for assessing tracheal health and pathophysiology at the single-cell level.

  3. Nuclear propulsion control and health monitoring

    Science.gov (United States)

    Walter, P. B.; Edwards, R. M.

    1993-01-01

    An integrated control and health monitoring architecture is being developed for the Pratt & Whitney XNR2000 nuclear rocket. Current work includes further development of the dynamic simulation modeling and the identification and configuration of low level controllers to give desirable performance for the various operating modes and faulted conditions. Artificial intelligence and knowledge processing technologies need to be investigated and applied in the development of an intelligent supervisory controller module for this control architecture.

  4. New trends in structural health monitoring

    CERN Document Server

    Güemes, J

    2013-01-01

    Experts actively working in structural health monitoring and control techniques present the current research, areas of application and tendencies for the future of this technology, including various design issues involved. Examples using some of the latest hardware and software tools, experimental data from small scale laboratory demonstrators and measurements made on real structures illustrate the book. It will be a reference for professionals and students in the areas of engineering, applied natural sciences and engineering management.

  5. Flexible Structural-Health-Monitoring Sheets

    Science.gov (United States)

    Qing, Xinlin; Kuo, Fuo

    2008-01-01

    A generic design for a type of flexible structural-health-monitoring sheet with multiple sensor/actuator types and a method of manufacturing such sheets has been developed. A sheet of this type contains an array of sensing and/or actuation elements, associated wires, and any other associated circuit elements incorporated into various flexible layers on a thin, flexible substrate. The sheet can be affixed to a structure so that the array of sensing and/or actuation elements can be used to analyze the structure in accordance with structural-health-monitoring techniques. Alternatively, the sheet can be designed to be incorporated into the body of the structure, especially if the structure is made of a composite material. Customarily, structural-health monitoring is accomplished by use of sensors and actuators arrayed at various locations on a structure. In contrast, a sheet of the present type can contain an entire sensor/actuator array, making it unnecessary to install each sensor and actuator individually on or in a structure. Sensors of different types such as piezoelectric and fiber-optic can be embedded in the sheet to form a hybrid sensor network. Similarly, the traces for electric communication can be deposited on one or two layers as required, and an entirely separate layer can be employed to shield the sensor elements and traces.

  6. Lightweight, Wearable Metal Rubber-Textile Sensor for In-Situ Lunar Autonomous Health Monitoring Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA Phase II SBIR program would develop comfortable garments with multiple integrated sensor functions for the monitoring of astronauts during long duration...

  7. An autonomous structural health monitoring solution

    Science.gov (United States)

    Featherston, Carol A.; Holford, Karen M.; Pullin, Rhys; Lees, Jonathan; Eaton, Mark; Pearson, Matthew

    2013-05-01

    Combining advanced sensor technologies, with optimised data acquisition and diagnostic and prognostic capability, structural health monitoring (SHM) systems provide real-time assessment of the integrity of bridges, buildings, aircraft, wind turbines, oil pipelines and ships, leading to improved safety and reliability and reduced inspection and maintenance costs. The implementation of power harvesting, using energy scavenged from ambient sources such as thermal gradients and sources of vibration in conjunction with wireless transmission enables truly autonomous systems, reducing the need for batteries and associated maintenance in often inaccessible locations, alongside bulky and expensive wiring looms. The design and implementation of such a system however presents numerous challenges. A suitable energy source or multiple sources capable of meeting the power requirements of the system, over the entire monitoring period, in a location close to the sensor must be identified. Efficient power management techniques must be used to condition the power and deliver it, as required, to enable appropriate measurements to be taken. Energy storage may be necessary, to match a continuously changing supply and demand for a range of different monitoring states including sleep, record and transmit. An appropriate monitoring technique, capable of detecting, locating and characterising damage and delivering reliable information, whilst minimising power consumption, must be selected. Finally a wireless protocol capable of transmitting the levels of information generated at the rate needed in the required operating environment must be chosen. This paper considers solutions to some of these challenges, and in particular examines SHM in the context of the aircraft environment.

  8. Augmented Fish Health Monitoring, 1987 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Michak, Patty

    1989-04-01

    Washington Department of Fisheries has divided the sampling and data collection into three major groups: adult analysis, juvenile analysis and database development. The adult analysis done at spawning includes screening for viral pathogens and Bacterial Kidney Disease (BKD). Pre-spawning mortalities are sampled for the presence of bacterial pathogens and parasites to determine causes of pre-spawning loss. Juvenile analysis involves monthly monitoring; pre-release examinations for viral pathogens, BKD and, where appropriate, whirling disease (M. cerebralis); completion of the Organosomatic analysis on four index stocks, and midterm exams on yearling groups for BKD and M. cerebralis. Database development required constructing fish health monitoring forms and a computer based data entry and retrieval system. We have completed a full year of sampling and data collection, January, 1987 to January, 1988. This report will present and analyze this information.

  9. Augmented Fish Health Monitoring, 1989 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Michak, Patty

    1990-05-01

    Since 1986 Washington Department of Fisheries (WDF) has participated in the Columbia Basin Augmented Fish Health Monitoring Project, funded by Bonneville Power Administration (BPA). This interagency project was developed to provide a standardized level of fish health information from all Agencies rearing fish in the Columbia Basin. Agencies involved in the project are: WDF, Washington Department of Wildlife, Oregon Fish and Wildlife, Idaho Fish and Game, and the US Fish and Wildlife Service. WDF has actively participated in this project, and completed its third year of fish health monitoring, data collection and pathogen inspection during 1989. This report will present data collected from January 1, 1989 to December 31, 1989 and will compare sampling results from screening at spawning for viral pathogens and bacterial kidney disease (BKD), and evaluation of causes of pre-spawning loss. The juvenile analysis will include pre-release examination results, mid-term rearing exam results and evaluation of the Organosomatic Analysis completed on stocks. 2 refs., 4 figs., 15 tabs.

  10. Health monitoring method for composite materials

    Science.gov (United States)

    Watkins, Jr., Kenneth S.; Morris, Shelby J [Hampton, VA

    2011-04-12

    An in-situ method for monitoring the health of a composite component utilizes a condition sensor made of electrically conductive particles dispersed in a polymeric matrix. The sensor is bonded or otherwise formed on the matrix surface of the composite material. Age-related shrinkage of the sensor matrix results in a decrease in the resistivity of the condition sensor. Correlation of measured sensor resistivity with data from aged specimens allows indirect determination of mechanical damage and remaining age of the composite component.

  11. NASA Applications of Structural Health Monitoring Technology

    Science.gov (United States)

    Richards, W Lance; Madaras, Eric I.; Prosser, William H.; Studor, George

    2013-01-01

    This presentation provides examples of research and development that has recently or is currently being conducted at NASA, with a special emphasis on the application of structural health monitoring (SHM) of aerospace vehicles. SHM applications on several vehicle programs are highlighted, including Space Shuttle Orbiter, International Space Station, Uninhabited Aerial Vehicles, and Expandable Launch Vehicles. Examples of current and previous work are presented in the following categories: acoustic emission impact detection, multi-parameter fiber optic strain-based sensing, wireless sensor system development, and distributed leak detection.

  12. Augmented Fish Health Monitoring in Idaho, 1992 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Munson, A.Douglas

    1993-12-01

    This report documents the progress of Idaho Department of Fish and Game`s fish health monitoring during the past five years and will serve as a completion report for the Augmented Fish Health Monitoring Project. Anadromous fish at twelve IDFG facilities were monitored for various pathogens and organosomatic analyses were performed to anadromous fish prior to their release. A fish disease database has been developed and data is presently being entered. Alternate funding has been secured to continue fish health monitoring.

  13. Valve Health Monitoring System Utilizing Smart Instrumentation

    Science.gov (United States)

    Jensen, Scott L.; Drouant, George J.

    2006-01-01

    The valve monitoring system is a stand alone unit with network capabilities for integration into a higher level health management system. The system is designed for aiding in failure predictions of high-geared ball valves and linearly actuated valves. It performs data tracking and archiving for identifying degraded performance. The data collection types are cryogenic cycles, total cycles, inlet temperature, body temperature torsional strain, linear bonnet strain, preload position, total travel and total directional changes. Events are recorded and time stamped in accordance with the IRIG B True Time. The monitoring system is designed for use in a Class 1 Division II explosive environment. The basic configuration consists of several instrumentation sensor units and a base station. The sensor units are self contained microprocessor controlled and remotely mountable in three by three by two inches. Each unit is potted in a fire retardant substance without any cavities and limited to low operating power for maintaining safe operation in a hydrogen environment. The units are temperature monitored to safeguard against operation outside temperature limitations. Each contains 902-928 MHz band digital transmitters which meet Federal Communication Commission's requirements and are limited to a 35 foot transmission radius for preserving data security. The base-station controller correlates data from the sensor units and generates data event logs on a compact flash memory module for database uploading. The entries are also broadcast over an Ethernet network. Nitrogen purged National Electrical Manufactures Association (NEMA) Class 4 enclosures are used to house the base-station

  14. Augmented Fish Health Monitoring, 1988 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Warren, James W.

    1989-08-15

    Augmented Fish Health Monitoring Contract AI79-87BP35585 was implemented on July 20, 1987. Second year activities focused on full implementation of disease surveillance activities and histopathological support services to participating state agencies. Persistent and sometimes severe disease losses were caused by infectious hematopoietic necrosis (IHN) in summer steelhead trout in Idaho and in spring chinook salmon at hatcheries on the lower Columbia River. Diagnostic capability was enhanced by the installation, for field use, of enzyme-linked immunosorbent assay (ELISA) technology at the Dworshak Fish Health Center for the detection and assay of bacterial kidney disease and by a dot-blot'' training session for virus identification at the Lower Columbia Fish Health Center. Complete diagnostic and inspection services were provided to 13 Columbia River basin National Fish hatcheries. Case history data was fully documented in a computerized data base for storage and analysis. This report briefly describes work being done to meet contract requirements for fish disease surveillance at Service facilities in the Columbia River basin. It also summarizes the health status of fish reared at those hatcheries and provides a summary of case history data for calendar year 1988. 2 refs., 4 tabs.

  15. Structural health monitoring of wind turbine blades

    Science.gov (United States)

    Rumsey, Mark A.; Paquette, Joshua A.

    2008-03-01

    As electric utility wind turbines increase in size, and correspondingly, increase in initial capital investment cost, there is an increasing need to monitor the health of the structure. Acquiring an early indication of structural or mechanical problems allows operators to better plan for maintenance, possibly operate the machine in a de-rated condition rather than taking the unit off-line, or in the case of an emergency, shut the machine down to avoid further damage. This paper describes several promising structural health monitoring (SHM) techniques that were recently exercised during a fatigue test of a 9 meter glass-epoxy and carbon-epoxy wind turbine blade. The SHM systems were implemented by teams from NASA Kennedy Space Center, Purdue University and Virginia Tech. A commercial off-the-shelf acoustic emission (AE) NDT system gathered blade AE data throughout the test. At a fatigue load cycle rate around 1.2 Hertz, and after more than 4,000,000 fatigue cycles, the blade was diagnostically and visibly failing at the out-board blade spar-cap termination point at 4.5 meters. For safety reasons, the test was stopped just before the blade completely failed. This paper provides an overview of the SHM and NDT system setups and some current test results.

  16. Aircraft fiber optic structural health monitoring

    Science.gov (United States)

    Mrad, Nezih

    2012-06-01

    Structural Health Monitoring (SHM) is a sought after concept that is expected to advance military maintenance programs, increase platform operational safety and reduce its life cycle cost. Such concept is further considered to constitute a major building block of any Integrated Health Management (IHM) capability. Since 65% to 80% of military assets' Life Cycle Cost (LCC) is devoted to operations and support (O&S), the aerospace industry and military sectors continue to look for opportunities to exploit SHM systems, capability and tools. Over the past several years, countless SHM concepts and technologies have emerged. Among those, fiber optic based systems were identified of significant potential. This paper introduces the elements of an SHM system and investigates key issues impeding the commercial implementation of fiber optic based SHM capability. In particular, this paper presents an experimental study of short gauge, intrinsic, spectrometric-based in-fiber Bragg grating sensors, for potential use as a component of an SHM system. Fiber optic Bragg grating sensors are evaluated against resistance strain gauges for strain monitoring, sensitivity, accuracy, reliability, and fatigue durability. Strain field disturbance is also investigated by "embedding" the sensors under a photoelastic coating in order to illustrate sensor intrusiveness in an embedded configuration.

  17. Data driven innovations in structural health monitoring

    Science.gov (United States)

    Rosales, M. J.; Liyanapathirana, R.

    2017-05-01

    At present, substantial investments are being allocated to civil infrastructures also considered as valuable assets at a national or global scale. Structural Health Monitoring (SHM) is an indispensable tool required to ensure the performance and safety of these structures based on measured response parameters. The research to date on damage assessment has tended to focus on the utilization of wireless sensor networks (WSN) as it proves to be the best alternative over the traditional visual inspections and tethered or wired counterparts. Over the last decade, the structural health and behaviour of innumerable infrastructure has been measured and evaluated owing to several successful ventures of implementing these sensor networks. Various monitoring systems have the capability to rapidly transmit, measure, and store large capacities of data. The amount of data collected from these networks have eventually been unmanageable which paved the way to other relevant issues such as data quality, relevance, re-use, and decision support. There is an increasing need to integrate new technologies in order to automate the evaluation processes as well as to enhance the objectivity of data assessment routines. This paper aims to identify feasible methodologies towards the application of time-series analysis techniques to judiciously exploit the vast amount of readily available as well as the upcoming data resources. It continues the momentum of a greater effort to collect and archive SHM approaches that will serve as data-driven innovations for the assessment of damage through efficient algorithms and data analytics.

  18. Monitoring 'monitoring' and evaluating 'evaluation': an ethical framework for monitoring and evaluation in public health.

    Science.gov (United States)

    Gopichandran, Vijayaprasad; Indira Krishna, Anil Kumar

    2013-01-01

    Monitoring and evaluation (M&E) is an essential part of public health programmes. Since M&E is the backbone of public health programmes, ethical considerations are important in their conduct. Some of the key ethical considerations are avoiding conflicts of interest, maintaining independence of judgement, maintaining fairness, transparency, full disclosure, privacy and confidentiality, respect, responsibility, accountability, empowerment and sustainability. There are several ethical frameworks in public health, but none focusing on the monitoring and evaluation process. There is a need to institutionalise the ethical review of M&E proposals. A theoretical framework for ethical considerations is proposed in this paper. This proposed theoretical framework can act as the blueprint for building the capacity of ethics committees to review M&E proposals. A case study is discussed in this context. After thorough field testing, this practical and field-based ethical framework can be widely used by donor agencies, M&E teams, institutional review boards and ethics committees.

  19. Application of principles of space medicine to health monitoring of the aging population

    Directory of Open Access Journals (Sweden)

    Roman М. Baevsky

    2015-05-01

    Full Text Available Monitoring the health of astronauts based on the assessment of the functional state of the body within the realms of norm and pathology. The area of functional states qualifies as the yellow score of health on a notional scale "traffic light of health": Modern medicine is particularly interested in studying the health of the yellow score, because of the preventative measures that could still be taken before making contact with the healthcare system. This method has been used in a study of a group of people (mean age >70 during their stay at a resort in northern Ontario. Data were obtained by a spectral analysis of HRV. High-frequency oscillations (HF,%, indicating the increased activity of the parasympathetic system, which protects the body from stress was significantly increased. Centralization of control of autonomic functions (IC was decreased as well as heart rate. All these changes indicate growth of functional reserves, aimed at increasing protection against stress’ effect due to environmental factors. This research shows that the method based on space medicine assessment in health can be successfully utilized within various fields of physiology and medicine, particularly in gerontological practice to dynamically monitor and research ways to improve the health of the elderly.

  20. Astronautics summary and prospects

    CERN Document Server

    Kiselev, Anatoly Ivanovich; Menshikov, Valery Alexandrovich

    2003-01-01

    The monograph by A.I.Kiselev, A.A. Medvedev and Y.A.Menshikov, Astronautics: Summary and Prospects, aroused enthusiasm both among experts and the public at large. This is due to the felicitous choice of presentation that combines a simple description of complex space matters with scientificsubstantiation of the sub­ jectmatter described. The wealth of color photos makes the book still more attractive, and it was nominated for an award at the 14th International Moscow Book Fair, being singled out as the "best publication of the book fair". The book's popularity led to a second edition, substantially revised and enlarged. Since the first edition did not sufficiently cover the issues of space impact on ecology and the prospective development of space systems, the authors revised the entire volume, including in it the chapter "Space activity and ecology" and the section "Multi-function space systems". Using the federal monitoring system, now in the phase of system engi­ neering, as an example, the authors consi...

  1. Health Monitoring and Life on the Mississippi

    Directory of Open Access Journals (Sweden)

    Lynne S. Wilcox

    2004-04-01

    Full Text Available Designing health monitoring systems is a complex task. This issue of Preventing Chronic Disease includes a report and commentary on measuring the burden of diabetes at the individual level in minority populations (1,2 and a report on measuring heart disease and stroke indicators at the policy level (3. To inspire stalwart professionals to design such systems, I turn to an individual recognized for his insightful commentary — Mark Twain, also known as Samuel Clemens. Twain had a keen eye for the idiosyncrasies of human behavior, and his nonfiction works suggest he was adept at amateur qualitative research. Though he was a man of letters rather than a scientist, he clearly appreciated the issues involved in gathering quality information: There is something fascinating about science. One gets such wholesome returns of conjecture out of such a trifling investment of fact (4. The balance of conjecture and fact is a source of ongoing tension in public health: collecting data is time-consuming and costly, but operating health programs based on conjecture is risky.

  2. Augmented Fish Health Monitoring, 1990 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Warren, James W.

    1990-08-15

    Augmented Fish Health Monitoring Contract AI79-87BP35585 was implemented on July 20, 1987. This report briefly describes third-year work being done to meet contract requirements for fish disease surveillance at Service facilities in the Columbia River basin and for histopathological support services provided to participating state agencies. It also summarizes the health status of fish reared at participating Service hatcheries and provides a summary of case history data for calendar year 1989. Items of note included severe disease losses to infectious hematopoietic necrosis (IHN) in summer steelhead trout in Idaho, the detection of IHN virus in juvenile spring chinook salmon at hatcheries on the lower Columbia River, and improved bacterial kidney disease (BKD) detection and adult assay by enzyme-linked immunosorbent assay (ELISA) technology at the Dworshak Fish Health Center. Complete diagnostic and inspection services were provided to 13 Columbia River Basin National Fish Hatcheries. Case history data was fully documented in a computerized data base for storage and analysis and is summarized herein. 2 refs., 1 fig., 4 tabs.

  3. Fiber Optic Thermal Health Monitoring of Composites

    Science.gov (United States)

    Wu, Meng-Chou; Winfree, William P.; Moore, Jason P.

    2010-01-01

    A recently developed technique is presented for thermographic detection of flaws in composite materials by performing temperature measurements with fiber optic Bragg gratings. Individual optical fibers with multiple Bragg gratings employed as surface temperature sensors were bonded to the surfaces of composites with subsurface defects. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The data obtained from grating sensors were analyzed with thermal modeling techniques of conventional thermography to reveal particular characteristics of the interested areas. Results were compared with the calculations using numerical simulation techniques. Methods and limitations for performing in-situ structural health monitoring are discussed.

  4. Structural health monitoring apparatus and methodology

    Science.gov (United States)

    Giurgiutiu, Victor (Inventor); Yu, Lingyu (Inventor); Bottai, Giola Santoni (Inventor)

    2011-01-01

    Disclosed is an apparatus and methodology for structural health monitoring (SHM) in which smart devices interrogate structural components to predict failure, expedite needed repairs, and thus increase the useful life of those components. Piezoelectric wafer active sensors (PWAS) are applied to or integrated with structural components and various data collected there from provide the ability to detect and locate cracking, corrosion, and disbanding through use of pitch-catch, pulse-echo, electro/mechanical impedance, and phased array technology. Stand alone hardware and an associated software program are provided that allow selection of multiple types of SHM investigations as well as multiple types of data analysis to perform a wholesome investigation of a structure.

  5. Towards spacecraft applications of structural health monitoring

    Directory of Open Access Journals (Sweden)

    Adrian TOADER

    2012-12-01

    Full Text Available The first part of the paper presents recent developments in the field of structural health monitoring (SHM with special attention on the piezoelectric wafer active sensors (PWAS technologies utilizing guided waves (GW as propagating waves (pitch-catch, pulse-echo, standing wave (electromechanical impedance, and phased arrays. The second part of the paper describes the challenges of extending the PWAS GW SHM approach to in-space applications. Three major issues are identified, (a cryogenic temperatures; (b high temperatures; and (c space radiation exposure. Preliminary results in which these three issues were address in a series of carefully conducted experiments are presented and discussed. The third part of the paper discusses a new project that is about to start in collaboration between three Romanian institutes to address the issues and challenging of developing space SHM technologies based on PWAS concepts. The paper finishes with conclusions and suggestions for further work.

  6. Ultrasonic vibration for structural health monitoring

    Science.gov (United States)

    Liang, Y.; Yan, F.; Borigo, C.; Rose, J. L.

    2013-01-01

    Guided waves and vibration analysis are two useful techniques in Nondestructive Evaluation and Structural Health Monitoring. Bridging the gap between guided waves and vibration, a novel testing method ultrasonic vibration is demonstrated here. Ultrasonic vibration is capable to achieve defect detection sensitivity as ultrasonic guided waves, while maintaining the efficiency of traditional vibration in the way of adopting several sensors to cover the whole structure. In this new method, continuous guided wave energy will impinge into the structure to make the structure vibrate steadily. The steady state vibration is achieved after multiple boundary reflections of the continuous guided wave. In ultrasonic vibration experiments, annual array transducer is used as the actuator. The loading functions are tuned by the frequencies and phase delays among each transducer element. Experiments demonstrate good defect detection ability of by optimally selecting guided wave loadings.

  7. Three-Dimensional Health Monitoring of Sandwich Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project delivers a single-chip structural health-monitoring (SHM) system that uses the impedance method to monitor bulk interiors and wave propagation...

  8. [The research and expectation on wearable health monitoring system].

    Science.gov (United States)

    Chang, Feiba; Yin, Jun; Zhang, Hehua; Yan, Lexian; Li, Shuying; Zhou, Deqiang

    2015-01-01

    Wearable health monitoring systems that use wearable biosensors capturing human motion and physiological parameters, to achieve the wearer's movement and health management needs. Wearable health monitoring system is a noninvasive continuous detection of human physiological information, data wireless transmission and real-time processing capabilities of integrated system, can satisfy physiological condition monitoring under the condition of low physiological and psychological load. This paper first describes the wearable health monitoring system structure and the relevant technology applied to wearable health monitoring system, and focuses on the current research work what we have done associated with wearable monitoring that wearable respiration and ECG acquisition and construction of electric multi-parameter body area network. Finally, the wearable monitoring system for the future development direction is put forward a simple expectation.

  9. [Current state and prospects of military personnel health monitoring].

    Science.gov (United States)

    Rezvantsev, M V; Kuznetsov, S M; Ivanov, V V; Zakurdaev, V V

    2014-01-01

    The current article is dedicated to some features of the Russian Federation Armed Forces military personnel health monitoring such as legal and informational provision, methodological basis of functioning, historical aspect of formation and development of the social and hygienic monitoring in the Russian Federation Armed Forces. The term "military personnel health monitoring" is defined as an analytical system of constant and long-term observation, analysis, assessment, studying of factors determined the military personnel health, these factors correlations, health risk factors management in order to minimize them. The current state of the military personnel health monitoring allows coming to the conclusion that the military health system does have forces and resources for state policy of establishing the population health monitoring system implementation. The following directions of the militarily personnel health monitoring improvement are proposed: the Russian Federation Armed Forces medical service record and report system reorganization bringing it closer to the civilian one, implementation of the integrated approach to the medical service informatisation, namely, military personnel health status and medical service resources monitoring. The leading means in this direction are development and introduction of a military serviceman individual health status monitoring system on the basis of a serviceman electronic medical record card. Also it is proposed the current Russian Federation Armed Forces social and hygienic monitoring improvement at the expense of informational interaction between the two subsystems on the basis of unified military medical service space.

  10. Accelerated Aging Experiments for Capacitor Health Monitoring and Prognostics

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper discusses experimental setups for health monitoring and prognostics of electrolytic capacitors under nominal operation and accelerated aging conditions....

  11. Levee Health Monitoring With Radar Remote Sensing

    Science.gov (United States)

    Jones, C. E.; Bawden, G. W.; Deverel, S. J.; Dudas, J.; Hensley, S.; Yun, S.

    2012-12-01

    Remote sensing offers the potential to augment current levee monitoring programs by providing rapid and consistent data collection over large areas irrespective of the ground accessibility of the sites of interest, at repeat intervals that are difficult or costly to maintain with ground-based surveys, and in rapid response to emergency situations. While synthetic aperture radar (SAR) has long been used for subsidence measurements over large areas, applying this technique directly to regional levee monitoring is a new endeavor, mainly because it requires both a wide imaging swath and fine spatial resolution to resolve individual levees within the scene, a combination that has not historically been available. Application of SAR remote sensing directly to levee monitoring has only been attempted in a few pilot studies. Here we describe how SAR remote sensing can be used to assess levee conditions, such as seepage, drawing from the results of two levee studies: one of the Sacramento-San Joaquin Delta levees in California that has been ongoing since July 2009 and a second that covered the levees near Vicksburg, Mississippi, during the spring 2011 floods. These studies have both used data acquired with NASA's UAVSAR L-band synthetic aperture radar, which has the spatial resolution needed for this application (1.7 m single-look), sufficiently wide imaging swath (22 km), and the longer wavelength (L-band, 0.238 m) required to maintain phase coherence between repeat collections over levees, an essential requirement for applying differential interferometry (DInSAR) to a time series of repeated collections for levee deformation measurement. We report the development and demonstration of new techniques that employ SAR polarimetry and differential interferometry to successfully assess levee health through the quantitative measurement of deformation on and near levees and through detection of areas experiencing seepage. The Sacramento-San Joaquin Delta levee study, which covers

  12. Framework for monitoring equity in access and health systems ...

    African Journals Online (AJOL)

    paper, proposes a framework for monitoring equity in access and health .... get additional data through in—depth and qualitative studies. Equity and health .... characteristics of HIV infected patients seeking care in relation to access to the Drug ...

  13. Smart health monitoring systems: an overview of design and modeling.

    Science.gov (United States)

    Baig, Mirza Mansoor; Gholamhosseini, Hamid

    2013-04-01

    Health monitoring systems have rapidly evolved during the past two decades and have the potential to change the way health care is currently delivered. Although smart health monitoring systems automate patient monitoring tasks and, thereby improve the patient workflow management, their efficiency in clinical settings is still debatable. This paper presents a review of smart health monitoring systems and an overview of their design and modeling. Furthermore, a critical analysis of the efficiency, clinical acceptability, strategies and recommendations on improving current health monitoring systems will be presented. The main aim is to review current state of the art monitoring systems and to perform extensive and an in-depth analysis of the findings in the area of smart health monitoring systems. In order to achieve this, over fifty different monitoring systems have been selected, categorized, classified and compared. Finally, major advances in the system design level have been discussed, current issues facing health care providers, as well as the potential challenges to health monitoring field will be identified and compared to other similar systems.

  14. Non-Intrusive Battery Health Monitoring

    Directory of Open Access Journals (Sweden)

    Gajewski Laurent

    2017-01-01

    Full Text Available The “Non-intrusive battery health monitoring”, developed by Airbus Defence and Space (ADS in cooperation with the CIRIMAT-CNRS laboratory and supported by CNES, aims at providing a diagnosis of the battery ageing in flight, called State of Health (SOH, using only the post-treatment of the battery telemetries. The battery current and voltage telemetries are used by a signal processing tool on ground to characterize and to model the battery at low frequencies which allows monitoring the evolution of its degradation with great accuracy. The frequential behaviour estimation is based on inherent disturbances on the current during the nominal functioning of the battery. For instance, on-board thermal control or equipment consumption generates random disturbances on battery current around an average current. The battery voltage response to these current random disturbances enables to model the low frequency impedance of the battery by a signal processing tool. The re-created impedance is then compared with the evolution model of the low frequencies impedance as a function of the battery ageing to estimate accurately battery degradation. Hence, this method could be applied to satellites which are already in orbit and whose battery telemetries acquisition system fulfils the constraints determined in the study. This innovative method is an improvement of present state-of-the-art and is important to have a more accurate in-flight knowledge of battery ageing which is crucial for mission and operation planning and also for possible satellite mission extension or deorbitation. This method is patented by Airbus Defence and Space and CNES.

  15. Wearable Beat-to-Beat Blood Pressure Monitor

    Science.gov (United States)

    Lee, Yong Jin

    2015-01-01

    Linea Research Corporation has developed a wearable noninvasive monitor that provides continuous blood pressure and heart rate measurements in extreme environments. Designed to monitor the physiological effects of astronauts' prolonged exposure to reduced-gravity environments as well as the effectiveness of various countermeasures, the device offers wireless connectivity to allow transfer of both real-time and historical data. It can be modified to monitor the health status of astronaut crew members during extravehicular missions.

  16. Smart sensors for health and environment monitoring

    CERN Document Server

    2015-01-01

    This book covers two most important applications of smart sensors, namely bio-health sensing and environmental monitoring.   The approach taken is holistic and covers the complete scope of the subject matter from the principles of the sensing mechanism, through device physics, circuit and system implementation techniques, and energy issues  to wireless connectivity solutions. It is written at a level suitable mainly for post-graduate level researchers interested in practical applications. The chapters are independent but complementary to each other, and the book works within the wider perspective of essential smart sensors for the Internet of Things (IoT).   This is the second of three books based on the Integrated Smart Sensors research project, which describe the development of innovative devices, circuits, and system-level enabling technologies.  The aim of the project was to develop common platforms on which various devices and sensors can be loaded, and to create systems offering significant improve...

  17. Structural health monitoring for ship structures

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, Charles [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory; Angel, Marian [Los Alamos National Laboratory; Bement, Matthew [Los Alamos National Laboratory; Salvino, Liming [NSWC, CADEROCK

    2009-01-01

    Currently the Office of Naval Research is supporting the development of structural health monitoring (SHM) technology for U.S. Navy ship structures. This application is particularly challenging because of the physical size of these structures, the widely varying and often extreme operational and environmental conditions associated with these ships missions, lack of data from known damage conditions, limited sensing that was not designed specifically for SHM, and the management of the vast amounts of data that can be collected during a mission. This paper will first define a statistical pattern recognition paradigm for SHM by describing the four steps of (1) Operational Evaluation, (2) Data Acquisition, (3) Feature Extraction, and (4) Statistical Classification of Features as they apply to ship structures. Note that inherent in the last three steps of this process are additional tasks of data cleansing, compression, normalization and fusion. The presentation will discuss ship structure SHM challenges in the context of applying various SHM approaches to sea trials data measured on an aluminum multi-hull high-speed ship, the HSV-2 Swift. To conclude, the paper will discuss several outstanding issues that need to be addressed before SHM can make the transition from a research topic to actual field applications on ship structures and suggest approaches for addressing these issues.

  18. Wireless sensor networks for structural health monitoring

    CERN Document Server

    Cao, Jiannong

    2016-01-01

    This brief covers the emerging area of wireless sensor network (WSN)-based structural health monitoring (SHM) systems, and introduces the authors’ WSN-based platform called SenetSHM. It helps the reader differentiate specific requirements of SHM applications from other traditional WSN applications, and demonstrates how these requirements are addressed by using a series of systematic approaches. The brief serves as a practical guide, explaining both the state-of-the-art technologies in domain-specific applications of WSNs, as well as the methodologies used to address the specific requirements for a WSN application. In particular, the brief offers instruction for problem formulation and problem solving based on the authors’ own experiences implementing SenetSHM. Seven concise chapters cover the development of hardware and software design of SenetSHM, as well as in-field experiments conducted while testing the platform. The brief’s exploration of the SenetSHM platform is a valuable feature for civil engine...

  19. FOREWORD: Structural Health Monitoring and Intelligent Infrastructure

    Science.gov (United States)

    Wu, Zhishen; Fujino, Yozo

    2005-06-01

    This special issue collects together 19 papers that were originally presented at the First International Conference on Structural Health Monitoring and Intelligent Infrastructure (SHMII-1'2003), held in Tokyo, Japan, on 13-15 November 2003. This conference was organized by the Japan Society of Civil Engineers (JSCE) with partial financial support from the Japan Society for the Promotion of Science (JSPS) and the Ministry of Education, Culture, Sport, Science and Technology, Japan. Many related organizations supported the conference. A total of 16 keynote papers including six state-of-the-art reports from different counties, six invited papers and 154 contributed papers were presented at the conference. The conference was attended by a diverse group of about 300 people from a variety of disciplines in academia, industry and government from all over the world. Structural health monitoring (SHM) and intelligent materials, structures and systems have been the subject of intense research and development in the last two decades and, in recent years, an increasing range of applications in infrastructure have been discovered both for existing structures and for new constructions. SHMII-1'2003 addressed progress in the development of building, transportation, marine, underground and energy-generating structures, and other civilian infrastructures that are periodically, continuously and/or actively monitored where there is a need to optimize their performance. In order to focus the current needs on SHM and intelligent technologies, the conference theme was set as 'Structures/Infrastructures Sustainability'. We are pleased to have the privilege to edit this special issue on SHM and intelligent infrastructure based on SHMII-1'2003. We invited some of the presenters to submit a revised/extended version of their paper that was included in the SHMII-1'2003 proceedings for possible publication in the special issue. Each paper included in this special issue was edited with the same

  20. Improving physical health monitoring for patients with chronic mental health problems who receive antipsychotic medications

    Science.gov (United States)

    Abdallah, Nihad; Conn, Rory; Latif Marini, Abdel

    2016-01-01

    Physical health monitoring is an integral part of caring for patients with mental health problems. It is proven that serious physical health problems are more common among patients with severe mental health illness (SMI), this monitoring can be challenging and there is a need for improvement. The project aimed at improving the physical health monitoring among patients with SMI who are receiving antipsychotic medications. The improvement process focused on ensuring there is a good communication with general practitioners (GPs) as well as patient's education and education of care home staff. GP letters requesting physical health monitoring were updated; care home staff and patients were given more information about the value of regular physical health monitoring. There was an improvement in patients' engagement with the monitoring and the monitoring done by GPs was more adherent to local and national guidelines and was communicated with the mental health service. PMID:27559474

  1. Improving physical health monitoring for patients with chronic mental health problems who receive antipsychotic medications.

    Science.gov (United States)

    Abdallah, Nihad; Conn, Rory; Latif Marini, Abdel

    2016-01-01

    Physical health monitoring is an integral part of caring for patients with mental health problems. It is proven that serious physical health problems are more common among patients with severe mental health illness (SMI), this monitoring can be challenging and there is a need for improvement. The project aimed at improving the physical health monitoring among patients with SMI who are receiving antipsychotic medications. The improvement process focused on ensuring there is a good communication with general practitioners (GPs) as well as patient's education and education of care home staff. GP letters requesting physical health monitoring were updated; care home staff and patients were given more information about the value of regular physical health monitoring. There was an improvement in patients' engagement with the monitoring and the monitoring done by GPs was more adherent to local and national guidelines and was communicated with the mental health service.

  2. Structural health monitoring with a wireless vibration sensor network

    NARCIS (Netherlands)

    Basten, T.G.H.; Sas, P; Schiphorst, F.B.A.; Jonckheere, S.; Moens, D.

    2012-01-01

    Advanced maintenance strategies for infrastructure assets such as bridges or off shore wind turbines require actual and reliable information of the maintenance status. Structural health monitoring based on vibration sensing can help in supplying the input needed for structural health monitoring appl

  3. Structural health monitoring with a wireless vibration sensor network

    NARCIS (Netherlands)

    Basten, T.G.H.; Sas, P; Schiphorst, F.B.A.; Jonckheere, S.; Moens, D.

    2012-01-01

    Advanced maintenance strategies for infrastructure assets such as bridges or off shore wind turbines require actual and reliable information of the maintenance status. Structural health monitoring based on vibration sensing can help in supplying the input needed for structural health monitoring

  4. Structural health monitoring with a wireless vibration sensor network

    NARCIS (Netherlands)

    Basten, T.G.H.; Schiphorst, F.B.A.

    2012-01-01

    Advanced maintenance strategies for infrastructure assets such as bridges or off shore wind turbines require actual and reliable information of the maintenance status. Structural health monitoring based on vibration sensing can help in supplying the input needed for structural health monitoring appl

  5. Structural health monitoring system/method using electroactive polymer fibers

    Science.gov (United States)

    Scott-Carnell, Lisa A. (Inventor); Siochi, Emilie J. (Inventor)

    2013-01-01

    A method for monitoring the structural health of a structure of interest by coupling one or more electroactive polymer fibers to the structure and monitoring the electroactive responses of the polymer fiber(s). Load changes that are experienced by the structure cause changes in the baseline responses of the polymer fiber(s). A system for monitoring the structural health of the structure is also provided.

  6. Health Monitoring System Technology Assessments: Cost Benefits Analysis

    Science.gov (United States)

    Kent, Renee M.; Murphy, Dennis A.

    2000-01-01

    The subject of sensor-based structural health monitoring is very diverse and encompasses a wide range of activities including initiatives and innovations involving the development of advanced sensor, signal processing, data analysis, and actuation and control technologies. In addition, it embraces the consideration of the availability of low-cost, high-quality contributing technologies, computational utilities, and hardware and software resources that enable the operational realization of robust health monitoring technologies. This report presents a detailed analysis of the cost benefit and other logistics and operational considerations associated with the implementation and utilization of sensor-based technologies for use in aerospace structure health monitoring. The scope of this volume is to assess the economic impact, from an end-user perspective, implementation health monitoring technologies on three structures. It specifically focuses on evaluating the impact on maintaining and supporting these structures with and without health monitoring capability.

  7. Asset health monitors: development, sustainment, advancement

    Science.gov (United States)

    Mauss, Fredrick J.

    2011-04-01

    Pacific Northwest National Laboratory (PNNL) has developed the Captive Carry Health Monitor Unit (HMU) and the Humidity Indicator HMU. Each of these devices provides end users information that can be used to ensure the proper maintenance and performance of the missile. These two efforts have led to the ongoing development and evolution of the next generation Captive Carry HMU and the next generation Humidity Indicator HMU. These next generation efforts are in turn, leading to the future of HMUs. This evolutionary development process inherently allows for direct and indirect impact toward new HMU functionality, operability and performance characteristics by influencing their requirements, testing, communications, data archival, and user interaction. Current designs allow systems to operate in environments outside the limits of typical consumer electronics for up to or exceeding 10 years. These designs are battery powered and typically provided in custom mechanical packages that employ sensors for temperature, shock/vibration, and humidity measurements. The data taken from these sensors is then analyzed onboard using unique algorithms. The algorithms are developed from test data and fielded prototypes. Onboard data analysis provides field users with a simple indication of missile exposure. The HMU provides missile readiness information to the user based on storage and use conditions observed. To continually advance current designs PNNL evaluates the potential for enhancing sensor capabilities by improving performance or power saving features, increasing algorithm and processing abilities, and adding new features. Future work at PNNL includes the utilization of power harvesting, using a defined wireless protocol, and defining a data/information structure. These efforts will lead to improved performance allowing the HMUs to benefit users with direct access to HMUs in the field as well as benefiting those with the ability to make strategic and high-level supply and

  8. Electronic Health Monitoring for Space Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Prognostic monitoring capabilities for space exploration aircrafts are crucial to enable safety and reliability in these platforms. Nokomis proposes to develop and...

  9. 76 FR 13969 - Notice of Request for Approval of an Information Collection; National Animal Health Monitoring...

    Science.gov (United States)

    2011-03-15

    ...; National Animal Health Monitoring System; Needs Assessments AGENCY: Animal and Plant Health Inspection... National Animal Health Monitoring System needs assessments. DATES: We will consider all comments that we...-2908. SUPPLEMENTARY INFORMATION: Title: National Animal Health Monitoring System; Needs...

  10. Recommendations for Health Monitoring and Reporting for Zebrafish Research Facilities.

    Science.gov (United States)

    Collymore, Chereen; Crim, Marcus J; Lieggi, Christine

    2016-07-01

    The presence of subclinical infection or clinical disease in laboratory zebrafish may have a significant impact on research results, animal health and welfare, and transfer of animals between institutions. As use of zebrafish as a model of disease increases, a harmonized method for monitoring and reporting the health status of animals will facilitate the transfer of animals, allow institutions to exclude diseases that may negatively impact their research programs, and improve animal health and welfare. All zebrafish facilities should implement a health monitoring program. In this study, we review important aspects of a health monitoring program, including choice of agents, samples for testing, available testing methodologies, housing and husbandry, cost, test subjects, and a harmonized method for reporting results. Facilities may use these recommendations to implement their own health monitoring program.

  11. A New Architecture of a Ubiquitous Health Monitoring System: A Prototype Of Cloud Mobile Health Monitoring System

    CERN Document Server

    Bourouis, Abderrahim; Bouchachia, Abdelhamid

    2012-01-01

    Wireless Body Area Sensor Networks (WBASN) is an emerging technology which uses wireless sensors to implement real-time wearable health monitoring of patients to enhance independent living. In this paper we propose a prototype of cloud mobile health monitoring system. The system uses WBASN and Smartphone application that uses cloud computing, location data and a neural network to determine the state of patients.

  12. A Taxonomy of Injuries for Public Health Monitoring and Reporting

    Science.gov (United States)

    2017-07-25

    of Injuries for Public Health Monitoring and Reporting 15 codes are required to make this distinction. Because surveillance data and field...overall burden of care required for these injuries. PHIP No. 12-01-0717, A Taxonomy of Injuries for Public Health Monitoring and Reporting...is no mandatory reporting requirement in the military health system or the civilian sector for providers and coders to use cause codes. Many medical

  13. Promoting health equity: WHO health inequality monitoring at global and national levels

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Hosseinpoor

    2015-09-01

    Full Text Available Background: Health equity is a priority in the post-2015 sustainable development agenda and other major health initiatives. The World Health Organization (WHO has a history of promoting actions to achieve equity in health, including efforts to encourage the practice of health inequality monitoring. Health inequality monitoring systems use disaggregated data to identify disadvantaged subgroups within populations and inform equity-oriented health policies, programs, and practices. Objective: This paper provides an overview of a number of recent and current WHO initiatives related to health inequality monitoring at the global and/or national level. Design: We outline the scope, content, and intended uses/application of the following: Health Equity Monitor database and theme page; State of inequality: reproductive, maternal, newborn, and child health report; Handbook on health inequality monitoring: with a focus on low- and middle-income countries; Health inequality monitoring eLearning module; Monitoring health inequality: an essential step for achieving health equity advocacy booklet and accompanying video series; and capacity building workshops conducted in WHO Member States and Regions. Conclusions: The paper concludes by considering how the work of the WHO can be expanded upon to promote the establishment of sustainable and robust inequality monitoring systems across a variety of health topics among Member States and at the global level.

  14. Latent Herpes Viral Reactivation in Astronauts

    Science.gov (United States)

    Pierson, D. L.; Mehta, S. K.; Stowe, R.

    2008-01-01

    Latent viruses are ubiquitous and reactivate during stressful periods with and without symptoms. Latent herpes virus reactivation is used as a tool to predict changes in the immune status in astronauts and to evaluate associated health risks. Methods: Viral DNA was detected by real time polymerase chain reaction in saliva and urine from astronauts before, during and after short and long-duration space flights. Results and Discussion: EpsteinBarr virus (EBV), cytomegalovirus (CMV), and varicella zoster virus (VZV) reactivated, and viral DNA was shed in saliva (EBV and VZV) or urine (CMV). EBV levels in saliva during flight were 10fold higher than baseline levels. Elevations in EBV specific CD8+ T-cells, viral antibody titers, and specific cytokines were consistent with viral reactivation. Intracellular levels of cytokines were reduced in EBVspecific Tcells. CMV, rarely present in urine of healthy individuals, was shed in urine of 27% of astronauts during all phases of spaceflight. VZV, not found in saliva of asymptomatic individuals, was found in saliva of 50% of astronauts during spaceflight and 35 days after flight. VZV recovered from astronaut saliva was found to be live, infectious virus. DNA sequencing demonstrated that the VZV recovered from astronauts was from the common European strain of VZV. Elevation of stress hormones accompanied viral reactivation indicating involvement of the hypothalmic-pituitary-adrenal and sympathetic adrenal-medullary axes in the mechanism of viral reactivation in astronauts. A study of 53 shingles patients found that all shingles patients shed VZV DNA in their saliva and the VZV levels correlated with the severity of the disease. Lower VZV levels in shingles patients were similar to those observed in astronauts. We proposed a rapid, simple, and cost-effective assay to detect VZV in saliva of patients with suspected shingles. Early detection of VZV infection allows early medical intervention.

  15. Latent Herpes Viral Reactivation in Astronauts

    Science.gov (United States)

    Pierson, D. L.; Mehta, S. K.; Stowe, R.

    2008-01-01

    Latent viruses are ubiquitous and reactivate during stressful periods with and without symptoms. Latent herpes virus reactivation is used as a tool to predict changes in the immune status in astronauts and to evaluate associated health risks. Methods: Viral DNA was detected by real time polymerase chain reaction in saliva and urine from astronauts before, during and after short and long-duration space flights. Results and Discussion: EpsteinBarr virus (EBV), cytomegalovirus (CMV), and varicella zoster virus (VZV) reactivated, and viral DNA was shed in saliva (EBV and VZV) or urine (CMV). EBV levels in saliva during flight were 10fold higher than baseline levels. Elevations in EBV specific CD8+ T-cells, viral antibody titers, and specific cytokines were consistent with viral reactivation. Intracellular levels of cytokines were reduced in EBVspecific Tcells. CMV, rarely present in urine of healthy individuals, was shed in urine of 27% of astronauts during all phases of spaceflight. VZV, not found in saliva of asymptomatic individuals, was found in saliva of 50% of astronauts during spaceflight and 35 days after flight. VZV recovered from astronaut saliva was found to be live, infectious virus. DNA sequencing demonstrated that the VZV recovered from astronauts was from the common European strain of VZV. Elevation of stress hormones accompanied viral reactivation indicating involvement of the hypothalmic-pituitary-adrenal and sympathetic adrenal-medullary axes in the mechanism of viral reactivation in astronauts. A study of 53 shingles patients found that all shingles patients shed VZV DNA in their saliva and the VZV levels correlated with the severity of the disease. Lower VZV levels in shingles patients were similar to those observed in astronauts. We proposed a rapid, simple, and cost-effective assay to detect VZV in saliva of patients with suspected shingles. Early detection of VZV infection allows early medical intervention.

  16. Forest health monitoring: national status, trends, and analysis 2016

    Science.gov (United States)

    Kevin M. Potter; Barbara L. Conkling

    2017-01-01

    The annual national report of the Forest Health Monitoring (FHM) Program of the Forest Service, U.S. Department of Agriculture, presents forest health status and trends from a national or multi-State regional perspective using a variety of sources, introducesnew techniques for analyzing forest health data, and summarizes results of recently completed...

  17. The Combat-Wireless Health Monitoring System

    Science.gov (United States)

    2009-12-01

    not monitor concussions sustained by casualties. This article proposes the develop- ment of a new C-WHMS as an alterna- tive to the WPSM. The C-WHMS...monitoring system embedded within the Advanced Combat Helmet (ACH), which measures concussions sustained during the execution of combat operations. The...component of the C-WHMS, as embedded in the ACH. Concussions sus- tained by soldiers are a major concern of military leadership. The goal is to quickly

  18. Aircraft Control Augmentation and Health Monitoring Using FADS Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I research proposal is aimed at demonstrating the feasibility of an innovative architecture comprising control augmentation and on-line health monitoring...

  19. Human monitoring, smart health and assisted living techniques and technologies

    CERN Document Server

    Longhi, Sauro; Freddi, Alessandro

    2017-01-01

    This book covers the three main scientific and technological areas critical for improving people's quality of life - namely human monitoring, smart health and assisted living - from both the research and development points of view.

  20. Distributed Rocket Engine Testing Health Monitoring System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Leveraging the Phase I achievements of the Distributed Rocket Engine Testing Health Monitoring System (DiRETHMS) including its software toolsets and system building...

  1. Distributed Rocket Engine Testing Health Monitoring System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The on-ground and Distributed Rocket Engine Testing Health Monitoring System (DiRETHMS) provides a system architecture and software tools for performing diagnostics...

  2. Multinational surveys for monitoring eHealth policy implementations

    DEFF Research Database (Denmark)

    Gilstad, Heidi; Faxvaag, Arild; Hyppönen, Hannele;

    2014-01-01

    Development of multinational variables for monitoring eHealth policy implementations is a complex task and requires multidisciplinary, knowledgebased international collaboration. Experts in an interdisciplinary workshop identified useful data and pitfalls for comparative variable development...

  3. Monitoring and evaluation of health sector reforms in the WHO ...

    African Journals Online (AJOL)

    Data synthesis: In terms of context and design of the cost recovery reform, there ... of appropriate policies and information to monitor and/or influence the process. ... of health services; equitable service utilisation; social sustainability through ...

  4. Passive Wireless Sensor System for Structural Health Monitoring Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Albido proposes to develop a Passive Wireless Sensor System for Structural Health Monitoring capable of measuring high-bandwidth temperature and strain of space and...

  5. Patient monitoring in mobile health: opportunities and challenges.

    Science.gov (United States)

    Mohammadzadeh, Niloofar; Safdari, Reza

    2014-01-01

    In most countries chronic diseases lead to high health care costs and reduced productivity of people in society. The best way to reduce costs of health sector and increase the empowerment of people is prevention of chronic diseases and appropriate health activities management through monitoring of patients. To enjoy the full benefits of E-health, making use of methods and modern technologies is very important. This literature review articles were searched with keywords like Patient monitoring, Mobile Health, and Chronic Disease in Science Direct, Google Scholar and Pub Med databases without regard to the year of publications. Applying remote medical diagnosis and monitoring system based on mobile health systems can help significantly to reduce health care costs, correct performance management particularly in chronic disease management. Also some challenges are in patient monitoring in general and specific aspects like threats to confidentiality and privacy, technology acceptance in general and lack of system interoperability with electronic health records and other IT tools, decrease in face to face communication between doctor and patient, sudden interruptions of telecommunication networks, and device and sensor type in specific aspect. It is obvious identifying the opportunities and challenges of mobile technology and reducing barriers, strengthening the positive points will have a significant role in the appropriate planning and promoting the achievements of the health care systems based on mobile and helps to design a roadmap for improvement of mobile health.

  6. Design of smart neonatal health monitoring system using SMCC.

    Science.gov (United States)

    De, Debashis; Mukherjee, Anwesha; Sau, Arkaprabha; Bhakta, Ishita

    2017-02-01

    Automated health monitoring and alert system development is a demanding research area today. Most of the currently available monitoring and controlling medical devices are wired which limits freeness of working environment. Wireless sensor network (WSN) is a better alternative in such an environment. Neonatal intensive care unit is used to take care of sick and premature neonates. Hypothermia is an independent risk factor for neonatal mortality and morbidity. To prevent it an automated monitoring system is required. In this Letter, an automated neonatal health monitoring system is designed using sensor mobile cloud computing (SMCC). SMCC is based on WSN and MCC. In the authors' system temperature sensor, acceleration sensor and heart rate measurement sensor are used to monitor body temperature, acceleration due to body movement and heart rate of neonates. The sensor data are stored inside the cloud. The health person continuously monitors and accesses these data through the mobile device using an Android Application for neonatal monitoring. When an abnormal situation arises, an alert is generated in the mobile device of the health person. By alerting health professional using such an automated system, early care is provided to the affected babies and the probability of recovery is increased.

  7. Special Tests for Monitoring Fetal Health

    Science.gov (United States)

    ... growth problems, Rh sensitization , or high blood pressure • Decreased movement of the fetus • Pregnancy that goes past ... on how far along you are in your pregnancy, you may have another BPP within the next ... BPP performed? The fetal heart rate is monitored in the same way it is ...

  8. Micro-Accelerometers Monitor Equipment Health

    Science.gov (United States)

    2014-01-01

    Glenn Research Center awarded SBIR funding to Ann Arbor, Michigan-based Evigia Systems to develop a miniaturized accelerometer to account for gravitational effects in space experiments. The company has gone on to implement the technology in its suite of prognostic sensors, which are used to monitor the integrity of industrial machinery. As a result, five employees have been hired.

  9. Three Conservation Applications of Astronaut Photographs of Earth: Tidal Flat Loss (Japan), Elephant Impacts on Vegetation (Botswana), and Seagrass and Mangrove Monitoring (Australia)

    Science.gov (United States)

    Lulla, Kamlesh P.; Robinson, Julie A.; Minorukashiwagi; Maggiesuzuki; Duanenellis, M.; Bussing, Charles E.; Leelong, W. J.; McKenzie, Andlen J.

    2000-01-01

    NASA photographs taken from low Earth orbit can provide information relevant to conservation biology. This data source is now more accessible due to improvements in digitizing technology, Internet file transfer, and availability of image processing software. We present three examples of conservation-related projects that benefited from using orbital photographs. (1) A time series of photographs from the Space Shuttle showing wetland conversion in Japan was used as a tool for communicating about the impacts of tidal flat loss. Real-time communication with astronauts about a newsworthy event resulted in acquiring current imagery. These images and the availability of other high resolution digital images from NASA provided timely public information on the observed changes. (2) A Space Shuttle photograph of Chobe National Park in Botswana was digitally classified and analyzed to identify the locations of elephant-impacted woodland. Field validation later confirmed that areas identified on the image showed evidence of elephant impacts. (3) A summary map from intensive field surveys of seagrasses in Shoalwater Bay, Australia was used as reference data for a supervised classification of a digitized photograph taken from orbit. The classification was able to distinguish seagrasses, sediments and mangroves with accuracy approximating that in studies using other satellite remote sensing data. Orbital photographs are in the public domain and the database of nearly 400,000 photographs from the late 1960s to the present is available at a single searchable location on the Internet. These photographs can be used by conservation biologists for general information about the landscape and in quantitative applications.

  10. Assessing the value of structural health monitoring

    DEFF Research Database (Denmark)

    Thöns, S.; Faber, Michael Havbro

    2013-01-01

    or proven by past experiences but in general there appears to be no rational or systematic approach for assessing the value of SHM systems a-priory to their implementation. The present paper addresses the assessment of the value of SHM with basis in structural risk assessments and the Bayesian pre......-posterior decision analysis. The quantification of the value of SHM builds upon the quantification of the value of information (VoI) or rather the benefit of monitoring. The suggested approach involves a probabilistic representation of the loads and environmental conditions acting on structures as well...... of the uncertainty associated with the performance of SHM on the value of SHM. Moreover, in order to illustrate the potential of the application of approach for monitoring of structural systems an optimal strategy for SHM is determined for a system comprised of three welded details. © 2013 Taylor & Francis Group...

  11. Prognostics and Health Monitoring of High Power LED

    Directory of Open Access Journals (Sweden)

    Chris Bailey

    2012-02-01

    Full Text Available Prognostics is seen as a key component of health usage monitoring systems, where prognostics algorithms can both detect anomalies in the behavior/performance of a micro-device/system, and predict its remaining useful life when subjected to monitored operational and environmental conditions. Light Emitting Diodes (LEDs are optoelectronic micro-devices that are now replacing traditional incandescent and fluorescent lighting, as they have many advantages including higher reliability, greater energy efficiency, long life time and faster switching speed. For some LED applications there is a requirement to monitor the health of LED lighting systems and predict when failure is likely to occur. This is very important in the case of safety critical and emergency applications. This paper provides both experimental and theoretical results that demonstrate the use of prognostics and health monitoring techniques for high power LEDs subjected to harsh operating conditions.

  12. Evaluating Bone Loss in ISS Astronauts.

    Science.gov (United States)

    Sibonga, Jean D; Spector, Elisabeth R; Johnston, Smith L; Tarver, William J

    2015-12-01

    The measurement of bone mineral density (BMD) by dual-energy X-ray absorptiometry (DXA) is the Medical Assessment Test used at the NASA Johnson Space Center to evaluate whether prolonged exposure to spaceflight increases the risk for premature osteoporosis in International Space Station (ISS) astronauts. The DXA scans of crewmembers' BMD during the first decade of the ISS existence showed precipitous declines in BMD for the hip and spine after the typical 6-mo missions. However, a concern exists that skeletal integrity cannot be sufficiently assessed solely by DXA measurement of BMD. Consequently, use of relatively new research technologies is being proposed to NASA for risk surveillance and to enhance long-term management of skeletal health in long-duration astronauts. Sibonga JD, Spector ER, Johnston SL, Tarver WJ. Evaluating bone loss in ISS astronauts.

  13. Monitoring intervention coverage in the context of universal health coverage.

    Directory of Open Access Journals (Sweden)

    Ties Boerma

    2014-09-01

    Full Text Available Monitoring universal health coverage (UHC focuses on information on health intervention coverage and financial protection. This paper addresses monitoring intervention coverage, related to the full spectrum of UHC, including health promotion and disease prevention, treatment, rehabilitation, and palliation. A comprehensive core set of indicators most relevant to the country situation should be monitored on a regular basis as part of health progress and systems performance assessment for all countries. UHC monitoring should be embedded in a broad results framework for the country health system, but focus on indicators related to the coverage of interventions that most directly reflect the results of UHC investments and strategies in each country. A set of tracer coverage indicators can be selected, divided into two groups-promotion/prevention, and treatment/care-as illustrated in this paper. Disaggregation of the indicators by the main equity stratifiers is critical to monitor progress in all population groups. Targets need to be set in accordance with baselines, historical rate of progress, and measurement considerations. Critical measurement gaps also exist, especially for treatment indicators, covering issues such as mental health, injuries, chronic conditions, surgical interventions, rehabilitation, and palliation. Consequently, further research and proxy indicators need to be used in the interim. Ideally, indicators should include a quality of intervention dimension. For some interventions, use of a single indicator is feasible, such as management of hypertension; but in many areas additional indicators are needed to capture quality of service provision. The monitoring of UHC has significant implications for health information systems. Major data gaps will need to be filled. At a minimum, countries will need to administer regular household health surveys with biological and clinical data collection. Countries will also need to improve the

  14. Monitoring intervention coverage in the context of universal health coverage.

    Science.gov (United States)

    Boerma, Ties; AbouZahr, Carla; Evans, David; Evans, Tim

    2014-09-01

    Monitoring universal health coverage (UHC) focuses on information on health intervention coverage and financial protection. This paper addresses monitoring intervention coverage, related to the full spectrum of UHC, including health promotion and disease prevention, treatment, rehabilitation, and palliation. A comprehensive core set of indicators most relevant to the country situation should be monitored on a regular basis as part of health progress and systems performance assessment for all countries. UHC monitoring should be embedded in a broad results framework for the country health system, but focus on indicators related to the coverage of interventions that most directly reflect the results of UHC investments and strategies in each country. A set of tracer coverage indicators can be selected, divided into two groups-promotion/prevention, and treatment/care-as illustrated in this paper. Disaggregation of the indicators by the main equity stratifiers is critical to monitor progress in all population groups. Targets need to be set in accordance with baselines, historical rate of progress, and measurement considerations. Critical measurement gaps also exist, especially for treatment indicators, covering issues such as mental health, injuries, chronic conditions, surgical interventions, rehabilitation, and palliation. Consequently, further research and proxy indicators need to be used in the interim. Ideally, indicators should include a quality of intervention dimension. For some interventions, use of a single indicator is feasible, such as management of hypertension; but in many areas additional indicators are needed to capture quality of service provision. The monitoring of UHC has significant implications for health information systems. Major data gaps will need to be filled. At a minimum, countries will need to administer regular household health surveys with biological and clinical data collection. Countries will also need to improve the production of

  15. Autonomic neural control and implications for remote medical monitoring in space.

    Science.gov (United States)

    Cooke, William H

    2007-07-01

    Long-duration space travel or extended stays on the moon or Mars will pose new challenges for maintaining and monitoring the health status of astronauts. Remote medical monitoring systems will need to be developed for a number of applications, including providing decision support for care-givers in the event of traumatic injury in space. The focus of this brief review is to introduce potential methods of monitoring astronaut status remotely from simple ECG recordings.

  16. Getting to the Heart of Cardiovascular Risk Assessment in Astronauts for Exploration Class Missions

    Science.gov (United States)

    Elgart, S. R.; Shavers, M. R.; Chappell, L.; Milder, C. M.; Huff, J. L.; Semones, E. J.; Simonsen, L. C.; Patel, Z. S.

    2017-01-01

    average expected 70 years of age in the general population. Remarkably, all 41 living early astronauts outlived our calculated expected age at death for members of their birth cohort; furthermore, 13 of the 20 deceased astronauts who did not die in NASA/non-NASA accidents exceeded this age. There was no difference in IHD between the astronaut cohort and the comparison population; therefore, it is not possible to associate IHD mortality with radiation in that astronaut cohort. As NASA looks toward future exploration-class missions, early astronaut cohorts provide a convenient option for assessing these risks and for developing mitigation strategies. However, many challenges still exist when assessing such limited evidence, including small cohort size, health and lifestyle confounders (such as smoking and drinking), the high accident mortality rate, and the fact that many of these astronauts are still alive, outliving many of their birth-cohort peers. Future analysis should include a longitudinal study, monitoring cases as they occur in the cohort. As this cohort is currently followed-up over time, and as more IHD cases are anticipated in a population of this age, this type of study is not as resource-intensive as would normally be the case.

  17. Sentinel areas: a monitoring strategy in public health

    Directory of Open Access Journals (Sweden)

    Teixeira Maria da Glória

    2002-01-01

    Full Text Available Available techniques for monitoring the health situation have proven insufficient, thus leading to a discussion of the need for their improvement based on new data collection strategies allowing for data use by local health systems. This article presents the methodological basis for a strategy to monitor health problems utilizing demarcated intra-urban spaces called "sentinel areas" to collect fundamental social, economic, behavioral, and biological data for public health that allow for a closer approach to the reality of complex social spaces. The authors present an experience that is being developed in Salvador, Bahia, Brazil, to evaluate the epidemiological impact of an environmental sanitation program. They discuss selection criteria for the areas and the potential uses of this strategy allowing for the rapid utilization of epidemiological resources by health services and the timely application of the results to reorient and enhance health intervention practices.

  18. Watershed health assessment to monitor land degradation

    Science.gov (United States)

    Hamidreza Sadeghi, Seyed; Hazbavi, Zeinab; Cerdà, Artemi

    2017-04-01

    Land degradation is a worldwide issue that affects the Planet and the fate of the humankind (Cerdà et al., 2009; Choudhury et al., 2016; Fernández et al., 2016; Ferreira et al., 2016). Several processes affect the sustainability of the ecosystems, from soil erosion to soil compation, deforestation, Climate Change or water, soil and air pollution (Sadeghi et al., 2015a; 2015b; Gómez-Acanta et al., 2016; Mengistu et al., 2016; Mukai, 2016). Several ecosystem theories have been presented in the scientific literatures to monitor land degradation (Cerdà et al., 2016; Davudirad et al., 2016; Fava et al., 2016; Mahyou et al., 2016; Soulard et al., 2016). Besides the scientific tasks of improving the indication, the conviction of the potential users to change their concepts toward a higher consideration of ecosystem attributes, and toward a fruitful application of the health or integrity concepts, will be a main task of future activities. Reliability, resilience and vulnerability (R-R-V) indicators are often used in combination for quantifying risk and decision making in many systems. However, the use of hydrological series data for R-R-V computations has been rather limited. Toward this, the overall objective of this paper is to conduct a risk assessment analysis on stream flow discharge from Shazand Watershed located in the south western of Markazi Province in Iran for the period of 1972-2014 using R-R-V indicators. Based on the R-R-V analysis conducted in this study, the stream flow discharge of the study region followed a cyclic pattern with a decreasing trend. The results further showed a decreasing trend in reliability and resilience and an increasing trend in vulnerability in the Shazand Watershed. It may be concluded that the Shazand Watershed was in overall in unhealthy condition from view of stream flow discharge. Acknowledgements This research was funded by the European Union Seventh Framework Programme (FP7/2007-2013) under grant no. 603498 (RECARE Project

  19. Approaches to integrated monitoring for environmental health impact assessment

    Directory of Open Access Journals (Sweden)

    Liu Hai-Ying

    2012-11-01

    Full Text Available Abstract Although Integrated Environmental Health Monitoring (IEHM is considered an essential tool to better understand complex environmental health issues, there is no consensus on how to develop such a programme. We reviewed four existing frameworks and eight monitoring programmes in the area of environmental health. We identified the DPSEEA (Driving Force-Pressure-State-Exposure-Effect-Action framework as most suitable for developing an IEHM programme for environmental health impact assessment. Our review showed that most of the existing monitoring programmes have been designed for specific purposes, resulting in narrow scope and limited number of parameters. This therefore limits their relevance for studying complex environmental health topics. Other challenges include limited spatial and temporal data availability, limited development of data sharing mechanisms, heterogeneous data quality, a lack of adequate methodologies to link disparate data sources, and low level of interdisciplinary cooperation. To overcome some of these challenges, we propose a DPSEEA-based conceptual framework for an IEHM programme that would enable monitoring and measuring the impact of environmental changes on human health. We define IEHM as ‘a systemic process to measure, analyse and interpret the state and changes of natural-eco-anthropogenic systems and its related health impact over time at the same location with causative explanations across the various compartments of the cause-effect chain’. We develop a structural work process to integrate information that is based on existing environmental health monitoring programmes. Such a framework allows the development of combined monitoring systems that exhibit a large degree of compatibility between countries and regions.

  20. Self-report in Youth Health Monitoring: evidence from the Rotterdam Youth Monitor

    NARCIS (Netherlands)

    P.M. van de Looij-Jansen (Petra)

    2010-01-01

    textabstractUnder Dutch law, preventive youth healthcare organisations have a duty to ensure the early identification of children with health or developmental problems. Similarly, municipalities have a duty to monitor young people’s health at least every four years. For problem identification and mo

  1. Self-report in Youth Health Monitoring: evidence from the Rotterdam Youth Monitor

    NARCIS (Netherlands)

    P.M. van de Looij-Jansen (Petra)

    2010-01-01

    textabstractUnder Dutch law, preventive youth healthcare organisations have a duty to ensure the early identification of children with health or developmental problems. Similarly, municipalities have a duty to monitor young people’s health at least every four years. For problem identification and

  2. Vulnerability analysis for design of bridge health monitoring system

    Science.gov (United States)

    Sun, L. M.; Yu, G.

    2010-03-01

    The recent engineering implementation of health monitoring system for long span bridges show difficulties for precisely assessing structural physical condition as well as for accurately alarming on structural damages, although hundreds of sensors were installed on a structure and a great amount of data were collected from the monitoring system. The allocation of sensors and the alarming algorithm are still two of the most important tasks to be considered when designing the structural health monitoring system. Vulnerability, in its original meaning, is the system susceptibility to local damage. For a structural system, the vulnerability can thus be regarded as structural performance susceptibility to local damage of structure. The purpose of this study is to propose concepts and methods of structural vulnerability for determining monitoring components which are more vulnerable than others and the corresponding warning threshold once the damages occur. The structural vulnerability performances to various damage scenarios depend upon structural geometrical topology, loading pattern on the structure and the degradation of component performance. A two-parameters structural vulnerability evaluation method is proposed in this paper. The parameters are the damage consequence and the relative magnitude of the damage scenarios to the structural system, respectively. Structural vulnerability to various damage scenarios can be regarded as the tradeoff between the two parameters. Based on the results of structural vulnerability analysis, the limited structural information from health monitoring can be utilized efficiently. The approach of the design of bridge health monitoring system is illustrated for a cable-stayed bridge.

  3. An Integrated Health Monitoring System for Fission Surface Power

    Science.gov (United States)

    Hashemian, H. M.; Shumaker, B. D.; McCulley, J. R.; Morton, G. W.

    Based on such criteria as safety and mission success, programmatic risk, affordability, and extensibility/flexibility, the National Aeronautics and Space Administration (NASA) has chosen fission surface power (FSP) as the primary energy source for building a sustained human presence on the Moon, exploring Mars, and extremely long-duration space missions. The current benchmark FSP system has a mission life of at least 8 years during which time there is no opportunity for repair, sensor calibrations, or periodic maintenance tasks that are normally performed on terrestrial-based nuclear power plants during scheduled outages. Current technology relies heavily on real-time human interaction, monitoring and control. However; due to the long communication times between the Earth and Moon, or Mars, real-time human control is not possible, resulting in a critical need to develop autonomous health monitoring technology for FSP systems.This paper describes the design and development of an autonomous health monitoring system that will (1) provide on-line calibration monitoring, (2) reduce uncertainties in sensor measurements, and (3) provide sensor validation and fault detection capabilities for the control systems of various FSP subsystems. The health monitoring system design integrates a number of signal processing algorithms and techniques such as cross-calibration, empirical modeling using neural networks, and physical modeling under a modular signal processing platform that will enable robust sensor and system monitoring without the need for human interaction. Prototypes of the health monitoring system have been tested and validated on data acquired from preliminary subsystem testing of NASA's FSP Technology Demonstration Unit (TDU) as well as simulated laboratory data. Results from this testing have demonstrated the utility and benefits that such autonomous health monitoring systems can provide to FSP subsystems and other potential applications within NASA such as launch

  4. Mental health care Monitor Older adults (MEMO) : monitoring patient characteristics and outcome in Dutch mental health services for older adults

    NARCIS (Netherlands)

    Veerbeek, Marjolein; Voshaar, Richard Oude; Depla, Marja; Pot, Anne Margriet

    2013-01-01

    Information on which older adults attend mental health care and whether they profit from the care they receive is important for policy-makers. To assess this information in daily practice, the Mental health care Monitor Older adults (MEMO) was developed in the Netherlands. The aim of this paper is t

  5. Augmented Fish Health Monitoring; Volume II of II, Completion Report.

    Energy Technology Data Exchange (ETDEWEB)

    Michak, Patty

    1991-12-01

    The Bonneville Power Administration (BPA) initiated the Augmented Fish Health Monitoring project in 1986. This project was a five year interagency project involving fish rearing agencies in the Columbia Basin. Participating agencies included: Washington Department of Fisheries (WDF), Oregon Department of Fish and Wildlife, Idaho Department of Fish and Game, and the US Fish and Wildlife Service (USFWS). This is the final data report for the Augmented Fish Health Monitoring project. Data collected and sampling results for 1990 and 1991 are presented within this report. An evaluation of this project can be found in Augmented Fish Health Monitoring, Volume 1, Completion Report.'' May, 1991. Pathogen detection methods remained the same from methods described in Augmented Fish Health Monitoring, Annual Report 1989,'' May, 1990. From January 1, 1990 to June 30, 1991 fish health monitoring sampling was conducted. In 1990 21 returning adult stocks were sampled. Juvenile pre-release exams were completed on 20 yearling releases, and 13 sub-yearling releases in 1990. In 1991 17 yearling releases and 11 sub-yearling releases were examined. Midterm sampling was completed on 19 stocks in 1990. Organosomatic analysis was performed at release on index station stocks; Cowlitz spring and fall chinook, Lewis river early coho and Lyons Ferry fall chinook.

  6. Astronaut Charles Conrad trims hair of Astronaut Paul Weitz

    Science.gov (United States)

    1973-01-01

    Astronaut Charles Conrad Jr., Skylab 2 commander, trims the hair of Astronaut Paul J. Weitz, Skylab 2 pilot, during the 28-day Skylab 2 mission in Earth orbit. They are in the crew quarters wardroom of the Orbital Workshop of the Skylab 1 and 2 space station. Weitz is holding a vacuum hose in his right hand. This picture was taken by Scientist-Astronaut Joseph P. Kerwin, Skylab 2 science pilot.

  7. Integrated electronic system for ultrasonic structural health monitoring

    OpenAIRE

    Ruiz González, Mariano; Monje, Pedro María; Casado, Luciano; Aranguren, Gerardo; Cokonaj, Valerijan; Barrera Lopez de Turiso, Eduardo

    2012-01-01

    A fully integrated on-board electronic system that can perform in-situ structural health monitoring (SHM) of aircraft?s structures using specifically designed equipment for SHM based on guided wave ultrasonic method or Lamb waves? method is introduced. This equipment is called Phased Array Monitoring for Enhanced Life Assessment (PAMELA III) and is an essential part of overall PAMELA SHM? system. PAMELA III can generate any kind of excitation signals, acquire the response signals that propaga...

  8. Distributed Data Storage Model for Cattle Health Monitoring Using WSN

    Directory of Open Access Journals (Sweden)

    Ankit R. Bhavsar

    2013-05-01

    Full Text Available Now a day, wireless sensor networks (WSN are being deployed in various applications like industrial, environmental, health care, societal monitoring. The sensor networks have tendency to generate huge amount of data. Hence data storage techniques become a critical issue for the success of these applications. In this paper, we have proposed a distributed data storage model used for WSN based cattle health monitoring. We have also defined the structure for the same. We have divided this model into two levels namely a local level and a central level. The main aim of storing data locally is to get quick response for any query raised by the user. The second level where the data is centralized is used to make long term decision, planning and policy for the cattle health monitoring.

  9. Smart Materials in Structural Health Monitoring, Control and Biomechanics

    CERN Document Server

    Soh, Chee-Kiong; Bhalla, Suresh

    2012-01-01

    "Smart Materials in Structural Health Monitoring, Control and Biomechanics" presents the latest developments in structural health monitoring, vibration control and biomechanics using smart materials. The book mainly focuses on piezoelectric, fibre optic and ionic polymer metal composite materials. It introduces concepts from the very basics and leads to advanced modelling (analytical/ numerical), practical aspects (including software/ hardware issues) and case studies spanning civil, mechanical and aerospace structures, including bridges, rocks and underground structures. This book is intended for practicing engineers, researchers from academic and R&D institutions and postgraduate students in the fields of smart materials and structures, structural health monitoring, vibration control and biomedical engineering. Professor Chee-Kiong Soh and Associate Professor Yaowen Yang both work at the School of Civil and Environmental Engineering, Nanyang Technological University, Singapore. Dr. Suresh Bhalla is an A...

  10. Structural health monitoring of grandstands: a review

    Directory of Open Access Journals (Sweden)

    Gómez-Casero Fuentes Miguel Ángel

    2015-01-01

    Full Text Available This article is a state of the art about Grandstands. The Grandstands are slender structures designed to accommodate a large number of people, which are specially under the actions of wind and the human-structure interaction. Over the years, it has been discuss of this topic, although still the number of publications still remain low. The human-structure interaction is a complex issue, where the loads may have different behaviours, depending many factors, including: type of audience (active or passive, public behaviour (jumping, walking, running, clapping, vandal loads, type of event (sports, concerts, meeting, position and posture of the individual, even influences the type of seat (with or without back, stiffness. However, the structure will behave differently when empty or fully occupied. Another load to consider is the wind, especially when the structure has a roof, screens, large-scale advertising, etc. These two types of loads can interact together, which implies an increase in the normal number of load combinations to consider. There are biomechanical models of human behaviour, used for design these types of structures. In addition, there are mathematical models to simulate the behaviour of the Grandstands by numerical methods. In recent years, all these models are throwing good results, against laboratory tests performed. It has also been monitored real Grandstands. This paper compiles all existing information on this topic.

  11. Structural Health Monitoring of AN Aircraft Joint

    Science.gov (United States)

    Mickens, T.; Schulz, M.; Sundaresan, M.; Ghoshal, A.; Naser, A. S.; Reichmeider, R.

    2003-03-01

    A major concern with ageing aircraft is the deterioration of structural components in the form of fatigue cracks at fastener holes, loose rivets and debonding of joints. These faults in conjunction with corrosion can lead to multiple-site damage and pose a hazard to flight. Developing a simple vibration-based method of damage detection for monitoring ageing structures is considered in this paper. The method is intended to detect damage during operation of the vehicle before the damage can propagate and cause catastrophic failure of aircraft components. It is typical that only a limited number of sensors could be used on the structure and damage can occur anywhere on the surface or inside the structure. The research performed was to investigate use of the chirp vibration responses of an aircraft wing tip to detect, locate and approximately quantify damage. The technique uses four piezoelectric patches alternatively as actuators and sensors to send and receive vibration diagnostic signals.Loosening of selected screws simulated damage to the wing tip. The results obtained from the testing led to the concept of a sensor tape to detect damage at joints in an aircraft structure.

  12. Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge

    Science.gov (United States)

    Yap, Keng C.

    2010-01-01

    This viewgraph presentation reviews Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge. The Wing Leading Edge Impact Detection System (WLE IDS) and the Impact Analysis Process are also described to monitor WLE debris threats. The contents include: 1) Risk Management via SHM; 2) Hardware Overview; 3) Instrumentation; 4) Sensor Configuration; 5) Debris Hazard Monitoring; 6) Ascent Response Summary; 7) Response Signal; 8) Distribution of Flight Indications; 9) Probabilistic Risk Analysis (PRA); 10) Model Correlation; 11) Impact Tests; 12) Wing Leading Edge Modeling; 13) Ascent Debris PRA Results; and 14) MM/OD PRA Results.

  13. Structural health monitoring an advanced signal processing perspective

    CERN Document Server

    Chen, Xuefeng; Mukhopadhyay, Subhas

    2017-01-01

    This book highlights the latest advances and trends in advanced signal processing (such as wavelet theory, time-frequency analysis, empirical mode decomposition, compressive sensing and sparse representation, and stochastic resonance) for structural health monitoring (SHM). Its primary focus is on the utilization of advanced signal processing techniques to help monitor the health status of critical structures and machines encountered in our daily lives: wind turbines, gas turbines, machine tools, etc. As such, it offers a key reference guide for researchers, graduate students, and industry professionals who work in the field of SHM.

  14. Astronauts Clown Around in Space

    Science.gov (United States)

    1984-01-01

    Astronauts are clowning around in space in this STS-51A onboard photo. Astronaut Gardner, holds a 'For Sale' sign after the retrieval of two malfunctioning satellites; the Western Union Telegraph Communication Satellite (WESTAR VI); and the PALAPA-B2 Satellite. Astronaut Allen, who is standing on the Remote Manipulator System (RMS) is reflected in Gardner's helmet visor. The 51A mission launched aboard the Space Shuttle Discovery on November 8, 1984.

  15. Integrating Social Media Monitoring Into Public Health Emergency Response Operations.

    Science.gov (United States)

    Hadi, Tamer A; Fleshler, Keren

    2016-10-01

    Social media monitoring for public health emergency response and recovery is an essential response capability for any health department. The value of social media for emergency response lies not only in the capacity to rapidly communicate official and critical incident information, but as a rich source of incoming data that can be gathered to inform leadership decision-making. Social media monitoring is a function that can be formally integrated into the Incident Command System of any response agency. The approach to planning and required resources, such as staffing, logistics, and technology, is flexible and adaptable based on the needs of the agency and size and scope of the emergency. The New York City Department of Health and Mental Hygiene has successfully used its Social Media Monitoring Team during public health emergency responses and planned events including major Ebola and Legionnaires' disease responses. The concepts and implementations described can be applied by any agency, large or small, interested in building a social media monitoring capacity. (Disaster Med Public Health Preparedness. 2016;page 1 of 6).

  16. mHealthMon: toward energy-efficient and distributed mobile health monitoring using parallel offloading.

    Science.gov (United States)

    Ahnn, Jong Hoon; Potkonjak, Miodrag

    2013-10-01

    Although mobile health monitoring where mobile sensors continuously gather, process, and update sensor readings (e.g. vital signals) from patient's sensors is emerging, little effort has been investigated in an energy-efficient management of sensor information gathering and processing. Mobile health monitoring with the focus of energy consumption may instead be holistically analyzed and systematically designed as a global solution to optimization subproblems. This paper presents an attempt to decompose the very complex mobile health monitoring system whose layer in the system corresponds to decomposed subproblems, and interfaces between them are quantified as functions of the optimization variables in order to orchestrate the subproblems. We propose a distributed and energy-saving mobile health platform, called mHealthMon where mobile users publish/access sensor data via a cloud computing-based distributed P2P overlay network. The key objective is to satisfy the mobile health monitoring application's quality of service requirements by modeling each subsystem: mobile clients with medical sensors, wireless network medium, and distributed cloud services. By simulations based on experimental data, we present the proposed system can achieve up to 10.1 times more energy-efficient and 20.2 times faster compared to a standalone mobile health monitoring application, in various mobile health monitoring scenarios applying a realistic mobility model.

  17. Monitoring Rangeland Health With MODIS Vegetation Index Data

    Science.gov (United States)

    Brown, J. F.

    2004-12-01

    Rangelands cover approximately one third of the land area of the conterminous U.S. These lands supply much of the forage for the U.S. cattle industry. Large area monitoring of these vast expanses of range has proved challenging since most of these lands are in the western U.S., are relatively sparsely populated, and are not well covered by meteorological weather stations. Improvements in the spatial and temporal precision of rangeland health information would be useful both for the cattle industry and for scientific studies of soil erosion, water runoff, ecosystem health, and carbon cycling. Optical multispectral remote sensing data from satellites are an objective source of synoptic, timely information for monitoring rangeland health. The objective of this study is to develop and evaluate a method for measuring and monitoring rangeland health over large areas. In the past, data collected by the Advanced Very High Resolution Radiometer has proved useful for this purpose, however the basic 1 km spatial resolution is not ideal when scaling up from ground observations. This study assesses MODIS 250 meter resolution vegetation index data for this purpose. MODIS data not only have finer spatial resolution and improved geolocation, but they also exhibit enhanced vegetation sensitivity and minimized variations associated with external atmospheric and non-atmospheric effects. Ground data collected over 51 sites in western South Dakota over four years are used as training for regression tree models of range health. Range health maps for the growing season derived from the models are presented and evaluated.

  18. Astronauts For Hire The Emergence of a Commercial Astronaut Corps

    CERN Document Server

    Seedhouse, Erik

    2012-01-01

    The spaceflight industry is being revolutionized. It is no longer the sole preserve of professional astronauts working on government-funded manned spaceflight programs. As private companies are being encouraged to build and operate launch vehicles, and even spacecraft that can be hired on a contract basis, a new breed of astronauts is coming into being. Astronauts for Hire describes how this commercial astronaut corps will be selected and trained. It provides a unique insight into the kinds of missions and tasks that the astronauts will be involved in, from suborbital science missions to commercial trips to low Earth orbit. The book also describes the new fleet of commercial spaceships being developed - reusable rocket-propelled vehicles that will offer quick, routine, and affordable access to the edge of space. The author also explores the possibility of private enterprise establishing interplanetary spaceports, lunar bases, and outposts on the surface of Mars.

  19. [Biological monitoring: concepts and applications in public health].

    Science.gov (United States)

    Pivetta, F; Machado, J M; Araújo, U C; Moreira, M F; Apostoli, P

    2001-01-01

    This study provides an overview of the theoretical discussion on potential uses for biological monitoring of exposure to chemical substances as related to human health, considering different concepts: definitions, uses, and limitations of internal dose and biological effect indicators and their availability for the substances to be quantified; knowledge of reference values, action levels, and limits based on health and negotiated patterns in biological monitoring interpretation and perspectives; and ethical and social problems in practice and within different preventive practices and their use in public health. Biological monitoring is the result of an exposure situation with conclusions based on scientific and consensus values, rules, and legislation. Biological monitoring as a continuous process and related to actually observed cases has helped establish technological exposure reference values and consensus levels as indicators for improving the environment and the workplace. As a step in the decision-making process in risk analysis, biological monitoring needs to be critically assessed as to its ethical aspects in light of the end use of results and values, which are references for application of this methodology.

  20. Course Modules on Structural Health Monitoring with Smart Materials

    Science.gov (United States)

    Shih, Hui-Ru; Walters, Wilbur L.; Zheng, Wei; Everett, Jessica

    2009-01-01

    Structural Health Monitoring (SHM) is an emerging technology that has multiple applications. SHM emerged from the wide field of smart structures, and it also encompasses disciplines such as structural dynamics, materials and structures, nondestructive testing, sensors and actuators, data acquisition, signal processing, and possibly much more. To…

  1. Time-frequency Methods for Structural Health Monitoring

    NARCIS (Netherlands)

    Pyayt, A.L.; Kozionov, A.P.; Mokhov, I.I.; Lang, B.; Meijer, R.J.; Krzhizhanovskaya, V.V.; Sloot, P.M.A.

    2014-01-01

    Detection of early warning signals for the imminent failure of large and complex engineered structures is a daunting challenge with many open research questions. In this paper we report on novel ways to perform Structural Health Monitoring (SHM) of flood protection systems (levees, earthen dikes and

  2. Time-frequency methods for structural health monitoring

    NARCIS (Netherlands)

    Pyayt, A.L.; Kozionov, A.P.; Mokhov, I.I.; Lang, B.; Meijer, R.J.; Krzhizhanovskaya, V.V.; Sloot, P.M.A.

    2014-01-01

    Detection of early warning signals for the imminent failure of large and complex engineered structures is a daunting challenge with many open research questions. In this paper we report on novel ways to perform Structural Health Monitoring (SHM) of flood protection systems (levees, earthen dikes and

  3. Multidisciplinary health monitoring of a steel bridge deck structure

    NARCIS (Netherlands)

    Pahlavan, P.L.; Pijpers, R.J.M.; Paulissen, J.H.; Hakkesteegt, H.C.; Jansen, T.H.

    2013-01-01

    Fatigue cracks in orthotropic bridge decks are an important cause for the necessary renovation of existing bridges. Parallel utilization of various technologies based on different physical sensing principles can potentially maximize the efficiency of structural health monitoring (SHM) systems for th

  4. Nonlinear feature identification of impedance-based structural health monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, A. C. (Amanda C.); Park, G. H. (Gyu Hae); Sohn, H. (Hoon); Farrar, C. R. (Charles R.)

    2004-01-01

    The impedance-based structural health monitoring technique, which utilizes electromechanical coupling properties of piezoelectric materials, has shown feasibility for use in a variety of structural health monitoring applications. Relying on high frequency local excitations (typically > 30 kHz), this technique is very sensitive to minor changes in structural integrity in the near field of piezoelectric sensors. Several damage sensitive features have been identified and used coupled with the impedance methods. Most of these methods are, however, limited to linearity assumptions of a structure. This paper presents the use of experimentally identified nonlinear features, combined with impedance methods, for structural health monitoring. Their applicability to damage detection in various frequency ranges is demonstrated using actual impedance signals measured from a portal frame structure. The performance of the nonlinear feature is compared with those of conventional impedance methods. This paper reinforces the utility of nonlinear features in structural health monitoring and suggests that their varying sensitivity in different frequency ranges may be leveraged for certain applications.

  5. Model-based health monitoring of hybrid systems

    CERN Document Server

    Wang, Danwei; Low, Chang Boon; Arogeti, Shai

    2013-01-01

    Offers in-depth comprehensive study on health monitoring for hybrid systems Includes new concepts, such as GARR, mode tracking and multiple failure prognosis Contains many examples, making the developed techniques easily understandable and accessible Introduces state-of-the-art algorithms and methodologies from experienced researchers

  6. Monitoring health related quality of life in adolescents with diabetes

    DEFF Research Database (Denmark)

    de Wit, M; Delemarre-van de Waal, Henriette A; Pouwer, F

    2007-01-01

    Particularly in chronic conditions, monitoring health related quality of life (HRQoL) of adolescents in clinical practice is increasingly advocated. We set out to identify and review the clinical utility of available generic and diabetes specific HRQoL questionnaires suitable for use in adolescents...

  7. A Survey of Current Rotorcraft Propulsion Health Monitoring Technologies

    Science.gov (United States)

    Delgado, Irebert R.; Dempsey, Paula J.; Simon, Donald L.

    2012-01-01

    A brief review is presented on the state-of-the-art in rotorcraft engine health monitoring technologies including summaries on current practices in the area of sensors, data acquisition, monitoring and analysis. Also, presented are guidelines for verification and validation of Health Usage Monitoring System (HUMS) and specifically for maintenance credits to extend part life. Finally, a number of new efforts in HUMS are summarized as well as lessons learned and future challenges. In particular, gaps are identified to supporting maintenance credits to extend rotorcraft engine part life. A number of data sources were consulted and include results from a survey from the HUMS community, Society of Automotive Engineers (SAE) documents, American Helicopter Society (AHS) papers, as well as references from Defence Science & Technology Organization (DSTO), Civil Aviation Authority (CAA), and Federal Aviation Administration (FAA).

  8. Mission X: Train Like an Astronaut Challenge

    Science.gov (United States)

    Lloyd, Charles W.

    2016-01-01

    The Mission X: Train Like an Astronaut Challenge was developed in 2011 to encourage proper exercise and nutrition at an early age by teaching young people to live and eat like space explorers. The strong correlation between an unhealthy childhood diet and adolescent fitness, and the onset of chronic diseases as an adult is the catalyst for Mission X. Mission X is dedicated to assisting people on a global scale to live healthier lifestyles and learn about human space exploration. The Mission X: Train Like an Astronaut 2015 (MX15) International Challenge hosted almost 40,000 children on 800 teams, 28 countries affiliated with 12 space agencies. The MX15 website included 17 languages. MX15, the fifth annual international fitness challenges sponsored by the NASA Human Research Program worked with the European Space Agency and other space agencies from around the world. In comparison to MX14, MX15 expanded to include four additional new countries, increased the number of students by approximately 68% and the number of teams by 29%. Chile' and South Korea participated in the new fall Astro Charlie Walk Around the Earth Challenge. Pre-challenge training materials were made more readily available from the website. South Korea completed a prospective assessment of the usability of the MX content for improving health and fitness in 212 preschool children and their families. Mission X is fortunate to have the support of the NASA, ESA and JAXA astronaut corps. In MX15, they participated in the opening and closing events as well as while on-board the International Space Station. Italian Astronaut Samantha Cristoretti participated as the MX15 Astronaut Ambassador for health and fitness providing the opening video and other videos from ISS. United Kingdom Astronaut Tim Peake and US Astronaut Kate Rubins have agreed to be the MX Ambassadors for 2016 and 2017 respectively. The MX15 International Working Group Face-to-Face meeting and Closing Event were held at the Agenzia Spaziale

  9. Universal values of Canadian astronauts

    Science.gov (United States)

    Brcic, Jelena; Della-Rossa, Irina

    2012-11-01

    Values are desirable, trans-situational goals, varying in importance, that guide behavior. Research has demonstrated that universal values may alter in importance as a result of major life events. The present study examines the effect of spaceflight and the demands of astronauts' job position as life circumstances that affect value priorities. We employed thematic content analysis for references to Schwartz's well-established value markers in narratives (media interviews, journals, and pre-flight interviews) of seven Canadian astronauts and compared the results to the values of National Aeronautics and Space Administration (NASA) and Russian Space Agency (RKA) astronauts. Space flight did alter the level of importance of Canadian astronauts' values. We found a U-shaped pattern for the values of Achievement and Tradition before, during, and after flight, and a linear decrease in the value of Stimulation. The most frequently mentioned values were Achievement, Universalism, Security, and Self-Direction. Achievement and Self Direction are also within the top 4 values of all other astronauts; however, Universalism was significantly higher among the Canadian astronauts. Within the value hierarchy of Canadian astronauts, Security was the third most frequently mentioned value, while it is in seventh place for all other astronauts. Interestingly, the most often mentioned value marker (sub-category) in this category was Patriotism. The findings have important implications in understanding multi-national crew relations during training, flight, and reintegration into society.

  10. Educating Astronauts About Conservation Biology

    Science.gov (United States)

    Robinson, Julie A.

    2001-01-01

    This article reviews the training of astronauts in the interdisciplinary work of conservation biology. The primary responsibility of the conservation biologist at NASA is directing and supporting the photography of the Earth and maintaining the complete database of the photographs. In order to perform this work, the astronauts who take the pictures must be educated in ecological issues.

  11. Piezoelectric Driven Antenna System for Health Monitoring Gadgets

    Directory of Open Access Journals (Sweden)

    Omar A. Saraereh

    2016-10-01

    Full Text Available Advancement in medical science is emerging day by day, and application of engineering technology in the field of medical science plays a very important role. In this paper, a novel method to monitor the health condition of an individual is developed. The proposed system uses piezoelectric devices to operate a health monitoring gadget with antenna that is suitable to operate for the piezoelectric based power source. The present day health monitoring gadgets require battery replacement or need to be charged. These would be a problem for the user when the device runs out of the charge. In order to overcome these challenges, the concept of piezoelectricity is applied to charge the gadget. The gadget consists of a transmitter, which is a wearable device, which will be worn by the patient, whose health condition has to be monitored. The receiver unit is placed in the nearest hospital, which will receive the physical conditions of the patient and, monitoring of the health condition is done. Piezoelectric based charging system is used to drive the proposed gadget. The transmission and reception is accomplished by GSM. In order to achieve better performance, microstrip antenna is used for transmission and reception. The simulation of the proposed system is done using Multisim, and simulation results are presented. The piezoelectric simulation is done using MATLAB and also the simulation of micro strip antenna is presented. Here the microstrip antennas will be stimulated for frequency range of 2-3 GHz and 5-6 GHz (preferably 2.2 and 2.5 GHz, using HFSS and MATLAB. The piezoelectric beam is simulated and the voltage produced for the deflection is noted. It was found that for deflection of 33um, a voltage of 100V is produced.The various performance parameters of the antenna, such as impedance, VSWR, reflection coefficient, return loss are obtained and presented.

  12. Astronaut Bones: Stable Calcium Isotopes in Urine as a Biomarker of Bone Mineral Balance

    Science.gov (United States)

    Skulan, J.; Gordon, G. W.; Romaniello, S. J.; Anbar, A. D.; Smith, S. M.; Zwart, S.

    2016-12-01

    Bone loss is a common health concern, in conditions ranging from osteoporosis to cancer. Bone loss due to unloading is also an important health issue for astronauts. We demonstrate stable calcium isotopes, a tool developed in geochemistry, are capable of detecting real-time quantitative changes in net bone mineral balance (BMB) using serum and urine [1]. We validated this technique by comparing with DEXA and biomarker data in subjects during bed rest, a ground-based analog of space flight effects [2-4]. We now apply this tool to assess changes in astronauts' BMB before, during and after 4-6 month space missions. There is stable isotope fractionation asymmetry between bone formation and resorption. During bone formation there is a mass-dependent preference for "lighter" calcium isotopes to be removed from serum and incorporated into bone mineral. During bone resorption, there is no measurable isotopic discrimination between serum and bone. Hence, when bone formation rates exceed that of resorption, serum and urine become isotopically "heavy" due to the sequestration of "light" calcium in bone. Conversely, when bone resorption exceeds bone formation, serum and urine become isotopically "light" due to the release of the sequestered light calcium from bone. We measured Ca isotopes in urine of thirty International Space Station astronauts. Average Ca isotope values in astronauts' urine shift isotopically lighter during microgravity, consistent with negative net BMB. Within a month of return to Earth, astronauts returned to within error of their δ44Ca value prior to departure. Urine samples from astronauts testing bone loss countermeasures showed bisphosphonates provide a viable pharmacological countermeasure. Some, but not all, individuals appear able to resist bone loss through diet and intensive resistive exercise alone. This is a promising new technique for monitoring BMB in astronauts, and hopefully someday on the way to/from Mars, this also has important clinical

  13. Augmented Fish Health Monitoring, 1987-1988 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Warren, James W.

    1988-08-01

    Augmented Fish Health Monitoring Contract DE-AI79-87BP35585 was implemented on July 20, 1987. First year highlights included remodeling of the Olympia (WA) Fish Health Center to provide laboratory space for histopathological support services to participating state agencies, acquisition of gas monitoring equipment for hatchery water systems, expanded disease detection work for bacterial kidney disease and erythrocytic inclusion body syndrome in fish stocks at 13 Columbia River Basin National Fish Hatcheries and advancements in computerized case history data storage and analysis. This report summarizes the health status of fish reared at Service facilities in the Columbia River basin, briefly describes work being done to meet contract requirements for fish disease surveillance at those hatcheries and provides a summary of case history data for calendar years 1984, 1985, 1986 and 1987. 1 ref.

  14. Augmented Fish Health Monitoring, 1987-1988 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Warren, James W.

    1988-08-01

    Augmented Fish Health Monitoring Contract DE-AI79-87BP35585 was implemented on July 20, 1987. First year highlights included remodeling of the Olympia (WA) Fish Health Center to provide laboratory space for histopathological support services to participating state agencies, acquisition of gas monitoring equipment for hatchery water systems, expanded disease detection work for bacterial kidney disease and erythrocytic inclusion body syndrome in fish stocks at 13 Columbia River Basin National Fish Hatcheries and advancements in computerized case history data storage and analysis. This report summarizes the health status of fish reared at Service facilities in the Columbia River basin, briefly describes work being done to meet contract requirements for fish disease surveillance at those hatcheries and provides a summary of case history data for calendar years 1984, 1985, 1986 and 1987. 1 ref.

  15. A Battery Health Monitoring Framework for Planetary Rovers

    Science.gov (United States)

    Daigle, Matthew J.; Kulkarni, Chetan Shrikant

    2014-01-01

    Batteries have seen an increased use in electric ground and air vehicles for commercial, military, and space applications as the primary energy source. An important aspect of using batteries in such contexts is battery health monitoring. Batteries must be carefully monitored such that the battery health can be determined, and end of discharge and end of usable life events may be accurately predicted. For planetary rovers, battery health estimation and prediction is critical to mission planning and decision-making. We develop a model-based approach utilizing computaitonally efficient and accurate electrochemistry models of batteries. An unscented Kalman filter yields state estimates, which are then used to predict the future behavior of the batteries and, specifically, end of discharge. The prediction algorithm accounts for possible future power demands on the rover batteries in order to provide meaningful results and an accurate representation of prediction uncertainty. The framework is demonstrated on a set of lithium-ion batteries powering a rover at NASA.

  16. A motivational health companion in the home as part of an intelligent health monitoring sensor network

    NARCIS (Netherlands)

    Evers, V.; Wildvuur, S.; Kröse, B.

    2010-01-01

    This paper describes our work in progress to develop a personal monitoring system that can monitor the physical and emotional condition of a patient by using contextual information from a sensor network, provide the patient with feedback concerning their health status and motivate the patient to ado

  17. GIS Mapping and Monitoring of Health Problems Among the Elderly.

    Science.gov (United States)

    Dermatis, Zacharias; Tsaloukidis, Nikolaos; Zacharopoulou, Georgia; Lazakidou, Athina

    2017-01-01

    The electronic survey in conjunction with GIS in the current study aims at presenting the needs and health problems of the elderly in individual Open Elderly Care Centres in Greece. The online GIS survey enables the continuous monitoring and developing of the health problems of the elderly and helps them in their early care by the healthcare units. GIS survey123 is a customizable tool, which can be used to conduct research that is then published on an Android, iOS, and web platform. The ArcGIS software was used for the geographic mapping of data collected from a wide range of sources, so that health care professionals can investigate the factors associated with the onset of the diseases. Also, direct geographic mapping aims at identifying health problems of the elderly in Greece and transferring information to health care professionals in order to impose proper control measures in a very small period of time.

  18. Challenges in Data Quality Assurance in Pervasive Health Monitoring Systems

    Science.gov (United States)

    Sriram, Janani; Shin, Minho; Kotz, David; Rajan, Anand; Sastry, Manoj; Yarvis, Mark

    Wearable, portable, and implantable medical sensors have ushered in a new paradigm for healthcare in which patients can take greater responsibility and caregivers can make well-informed, timely decisions. Health-monitoring systems built on such sensors have huge potential benefit to the quality of healthcare and quality of life for many people, such as patients with chronic medical conditions (such as blood-sugar sensors for diabetics), people seeking to change unhealthy behavior (such as losing weight or quitting smoking), or athletes wishing to monitor their condition and performance. To be effective, however, these systems must provide assurances about the quality of the sensor data. The sensors must be applied to the patient by a human, and the sensor data may be transported across multiple networks and devices before it is presented to the medical team. While no system can guarantee data quality, we anticipate that it will help for the system to annotate data with some measure of confidence. In this paper, we take a deeper look at potential health-monitoring usage scenarios and highlight research challenges required to ensure and assess quality of sensor data in health-monitoring systems.

  19. FBG sensor for physiologic monitoring in M-health application

    Science.gov (United States)

    Lee, Chi Chung; Hung, Kevin; Chan, Wai-Man; Wu, Y. K.; Choy, Sheung-On; Kwok, Paul

    2011-12-01

    In this paper, a wearable physiologic monitoring system using FBG sensors is investigated. The FBG sensors with the capability of sensing temperature, movement, and respiration are connected to the wireless transceiver, microcontroller and server for wireless and long distance physiologic monitoring and analysis. Biosignals recorded experimentally are analyzed and compared with the data obtained in the traditional medical data acquisition system. The system investigated in this paper can be used in an m-health shirt, which has the capability to measure and wirelessly transmit electrocardiogram, respiration, movement, and body temperature signal to a remote station, with other plug-in modules.

  20. Printed strain sensor array for application to structural health monitoring

    Science.gov (United States)

    Zymelka, Daniel; Togashi, Kazuyoshi; Ohigashi, Ryoichi; Yamashita, Takahiro; Takamatsu, Seiichi; Itoh, Toshihiro; Kobayashi, Takeshi

    2017-10-01

    We demonstrate the development and practical use of low-cost printed strain sensor arrays built for applications in structural health monitoring. Sensors embedded in the array were designed to provide compensation for temperature variations and to enable their use in different seasons. The evaluation was carried out in laboratory tests and with practical application on a highway bridge. Measurements on the bridge were performed 7 months and 1 year after their installation. The developed devices were fully operational and could detect and localize cracks accurately in the monitored bridge structure.

  1. Oscillometric continuous blood pressure sensing for wearable health monitoring system

    CERN Document Server

    Gelao, Gennaro; Passaro, Vittorio M N; Perri, Anna Gina

    2015-01-01

    In this paper we present an acquisition chain for the measurement of blood arterial pressure based on the oscillometric method. This method does not suffer from any limitation as the well-known auscultatory method and it is suited for wearable health monitoring systems. The device uses a pressure sensor whose signal is filtered, digitalized and analyzed by a microcontroller. Local analysis allows the evaluation of the systolic and diastolic pressure values which can be used for local alarms, data collection and remote monitoring.

  2. Advanced Machine learning Algorithm Application for Rotating Machine Health Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kanemoto, Shigeru; Watanabe, Masaya [The University of Aizu, Aizuwakamatsu (Japan); Yusa, Noritaka [Tohoku University, Sendai (Japan)

    2014-08-15

    The present paper tries to evaluate the applicability of conventional sound analysis techniques and modern machine learning algorithms to rotating machine health monitoring. These techniques include support vector machine, deep leaning neural network, etc. The inner ring defect and misalignment anomaly sound data measured by a rotating machine mockup test facility are used to verify the above various kinds of algorithms. Although we cannot find remarkable difference of anomaly discrimination performance, some methods give us the very interesting eigen patterns corresponding to normal and abnormal states. These results will be useful for future more sensitive and robust anomaly monitoring technology.

  3. PRISM: A DATA-DRIVEN PLATFORM FOR MONITORING MENTAL HEALTH.

    Science.gov (United States)

    Kamdar, Maulik R; Wu, Michelle J

    2016-01-01

    Neuropsychiatric disorders are the leading cause of disability worldwide and there is no gold standard currently available for the measurement of mental health. This issue is exacerbated by the fact that the information physicians use to diagnose these disorders is episodic and often subjective. Current methods to monitor mental health involve the use of subjective DSM-5 guidelines, and advances in EEG and video monitoring technologies have not been widely adopted due to invasiveness and inconvenience. Wearable technologies have surfaced as a ubiquitous and unobtrusive method for providing continuous, quantitative data about a patient. Here, we introduce PRISM-Passive, Real-time Information for Sensing Mental Health. This platform integrates motion, light and heart rate data from a smart watch application with user interactions and text entries from a web application. We have demonstrated a proof of concept by collecting preliminary data through a pilot study of 13 subjects. We have engineered appropriate features and applied both unsupervised and supervised learning to develop models that are predictive of user-reported ratings of their emotional state, demonstrating that the data has the potential to be useful for evaluating mental health. This platform could allow patients and clinicians to leverage continuous streams of passive data for early and accurate diagnosis as well as constant monitoring of patients suffering from mental disorders.

  4. Development of structural health monitoring techniques using dynamics testing

    Energy Technology Data Exchange (ETDEWEB)

    James, G.H. III [Sandia National Labs., Albuquerque, NM (United States). Experimental Structural Dynamics Dept.

    1996-03-01

    Today`s society depends upon many structures (such as aircraft, bridges, wind turbines, offshore platforms, buildings, and nuclear weapons) which are nearing the end of their design lifetime. Since these structures cannot be economically replaced, techniques for structural health monitoring must be developed and implemented. Modal and structural dynamics measurements hold promise for the global non-destructive inspection of a variety of structures since surface measurements of a vibrating structure can provide information about the health of the internal members without costly (or impossible) dismantling of the structure. In order to develop structural health monitoring for application to operational structures, developments in four areas have been undertaken within this project: operational evaluation, diagnostic measurements, information condensation, and damage identification. The developments in each of these four aspects of structural health monitoring have been exercised on a broad range of experimental data. This experimental data has been extracted from structures from several application areas which include aging aircraft, wind energy, aging bridges, offshore structures, structural supports, and mechanical parts. As a result of these advances, Sandia National Laboratories is in a position to perform further advanced development, operational implementation, and technical consulting for a broad class of the nation`s aging infrastructure problems.

  5. Mobile health-monitoring system through visible light communication.

    Science.gov (United States)

    Tan, Yee-Yong; Chung, Wan-Young

    2014-01-01

    Promising development in the light emitting diode (LED) technology has spurred the interest to adapt LED for both illumination and data transmission. This has fostered the growth of interest in visible light communication (VLC), with on-going research to utilize VLC in various applications. This paper presents a mobile-health monitoring system, where healthcare information such as biomedical signals and patient information are transmitted via the LED lighting. A small and portable receiver module is designed and developed to be attached to the mobile device, providing a seamless monitoring environment. Three different healthcare information including ECG, PPG signals and HL7 text information is transmitted simultaneously, using a single channel VLC. This allows for a more precise and accurate monitoring and diagnosis. The data packet size is carefully designed, to transmit information in a minimal packet error rate. A comprehensive monitoring application is designed and developed through the use of a tablet computer in our study. Monitoring and evaluation such as heart rate and arterial blood pressure measurement can be performed concurrently. Real-time monitoring is demonstrated through experiment, where non-hazardous transmission method can be implemented alongside a portable device for better and safer healthcare service.

  6. 78 FR 58268 - Notice of Request for Approval of an Information Collection; National Animal Health Monitoring...

    Science.gov (United States)

    2013-09-23

    ...; National Animal Health Monitoring System; Cervid 2014 Study AGENCY: Animal and Plant Health Inspection... intention to request approval of a new information collection for the National Animal Health Monitoring...: National Animal Health Monitoring System; Cervid 2014 Study. OMB Number: 0579-XXXX. Type of...

  7. 78 FR 58269 - Notice of Request for Approval of an Information Collection; National Animal Health Monitoring...

    Science.gov (United States)

    2013-09-23

    ...; National Animal Health Monitoring System; Bison 2014 Study AGENCY: Animal and Plant Health Inspection... intention to request approval of a new information collection for the National Animal Health Monitoring...: National Animal Health Monitoring System; Bison 2014 Study. OMB Number: 0579-XXXX. Type of...

  8. Optimized Radar Remote Sensing for Levee Health Monitoring

    Science.gov (United States)

    Jones, Cathleen E.

    2013-01-01

    Radar remote sensing offers great potential for high resolution monitoring of ground surface changes over large areas at one time to detect movement on and near levees and for location of seepage through levees. Our NASA-funded projects to monitor levees in the Sacramento Delta and the Mississippi River have developed and demonstrated methods to use radar remote sensing to measure quantities relevant to levee health and of great value to emergency response. The DHS-funded project will enable us is to define how to optimally monitor levees in this new way and set the stage for transition to using satellite SAR (synthetic aperture radar) imaging for better temporal and spatial coverage at lower cost to the end users.

  9. Ubiquitous Mobile Health Monitoring System for Elderly (UMHMSE)

    CERN Document Server

    Bourouis, Abderrahim; Bouchachia, Abdelhamid

    2011-01-01

    Recent research in ubiquitous computing uses technologies of Body Area Networks (BANs) to monitor the person's kinematics and physiological parameters. In this paper we propose a real time mobile health system for monitoring elderly patients from indoor or outdoor environments. The system uses a bio- signal sensor worn by the patient and a Smartphone as a central node. The sensor data is collected and transmitted to the intelligent server through GPRS/UMTS to be analyzed. The prototype (UMHMSE) monitors the elderly mobility, location and vital signs such as Sp02 and Heart Rate. Remote users (family and medical personnel) might have a real time access to the collected information through a web application.

  10. UBIQUITOUS MOBILE HEALTH MONITORING SYSTEM FOR ELDERLY (UMHMSE

    Directory of Open Access Journals (Sweden)

    Abderrahim BOUROUIS

    2011-06-01

    Full Text Available Recent research in ubiquitous computing uses technologies of Body Area Networks (BANs to monitor the person's kinematics and physiological parameters. In this paper we propose a real time mobile health system for monitoring elderly patients from indoor or outdoor environments. The system uses a biosignal sensor worn by the patient and a Smartphone as a central node. The sensor data is collected and transmitted to the intelligent server through GPRS/UMTS to be analyzed. The prototype (UMHMSE monitors the elderly mobility, location and vital signs such as Sp02 and Heart Rate. Remote users (family and medical personnel might have a real time access to the collected information through a web application.

  11. Patient Health Monitoring Using Wireless Body Area Network

    Directory of Open Access Journals (Sweden)

    Hsu Myat Thwe

    2015-06-01

    Full Text Available Abstract Nowadays remote patient health monitoring using wireless technology plays very vigorous role in a society. Wireless technology helps monitoring of physiological parameters like body temperature heart rate respiration blood pressure and ECG. The main aim of this paper is to propose a wireless sensor network system in which both heart rate and body temperature ofmultiplepatients can monitor on PC at the same time via RF network. The proposed prototype system includes two sensor nodes and receiver node base station. The sensor nodes are able to transmit data to receiver using wireless nRF transceiver module.The nRF transceiver module is used to transfer the data from microcontroller to PC and a graphical user interface GUI is developed to display the measured data and save to database. This system can provide very cheaper easier and quick respondent history of patient.

  12. Astronaut Joseph Kerwin takes blood sample from Astronaut Charles Conrad

    Science.gov (United States)

    1973-01-01

    Scientist-Astronaut Joseph P. Kerwin (right), Skylab 2 science pilot and a doctor of medicine, takes a blood sample from Astronaut Charles Conrad Jr., Sylab 2 commander, as seen in this reproduction taken from a color television transmission made by a TV camera aboard the Skylab 1 and 2 space station cluster in Earth orbit. The blood sampling was part of the Skylab Hematology and Immunology Experiment M110 series.

  13. Investigation of Wireless Sensor Networks for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2012-01-01

    Full Text Available Wireless sensor networks (WSNs are one of the most able technologies in the structural health monitoring (SHM field. Through intelligent, self-organising means, the contents of this paper will test a variety of different objects and different working principles of sensor nodes connected into a network and integrated with data processing functions. In this paper the key issues of WSN applied in SHM are discussed, including the integration of different types of sensors with different operational modalities, sampling frequencies, issues of transmission bandwidth, real-time ability, and wireless transmitter frequency. Furthermore, the topology, data fusion, integration, energy saving, and self-powering nature of different systems will be investigated. In the FP7 project “Health Monitoring of Offshore Wind Farms,” the above issues are explored.

  14. TPS In-Flight Health Monitoring Project Progress Report

    Science.gov (United States)

    Kostyk, Chris; Richards, Lance; Hudston, Larry; Prosser, William

    2007-01-01

    Progress in the development of new thermal protection systems (TPS) is reported. New approaches use embedded lightweight, sensitive, fiber optic strain and temperature sensors within the TPS. Goals of the program are to develop and demonstrate a prototype TPS health monitoring system, develop a thermal-based damage detection algorithm, characterize limits of sensor/system performance, and develop ea methodology transferable to new designs of TPS health monitoring systems. Tasks completed during the project helped establish confidence in understanding of both test setup and the model and validated system/sensor performance in a simple TPS structure. Other progress included complete initial system testing, commencement of the algorithm development effort, generation of a damaged thermal response characteristics database, initial development of a test plan for integration testing of proven FBG sensors in simple TPS structure, and development of partnerships to apply the technology.

  15. Airborne Transducer Integrity under Operational Environment for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Mohammad Saleh Salmanpour

    2016-12-01

    Full Text Available This paper investigates the robustness of permanently mounted transducers used in airborne structural health monitoring systems, when exposed to the operational environment. Typical airliners operate in a range of conditions, hence, structural health monitoring (SHM transducer robustness and integrity must be demonstrated for these environments. A set of extreme temperature, altitude and vibration environment test profiles are developed using the existing Radio Technical Commission for Aeronautics (RTCA/DO-160 test methods. Commercially available transducers and manufactured versions bonded to carbon fibre reinforced polymer (CFRP composite materials are tested. It was found that the DuraAct transducer is robust to environmental conditions tested, while the other transducer types degrade under the same conditions.

  16. Thermal sensitivity of Lamb waves for structural health monitoring applications.

    Science.gov (United States)

    Dodson, J C; Inman, D J

    2013-03-01

    One of the drawbacks of the current Lamb wave structural health monitoring methods are the false positives due to changing environmental conditions such as temperature. To create an environmental insensitive damage detection scheme, the physics of thermal effects on Lamb waves must be understood. Dispersion and thermal sensitivity curves for an isotropic plate with thermal stress and thermally varying elastic modulus are presented. The thermal sensitivity of dispersion curves is analytically developed and validated by experimental measurements. The group velocity thermal sensitivity highlights temperature insensitive features at two critical frequencies. The thermal sensitivity gives us insight to how temperature affects Lamb wave speeds in different frequency ranges and will help those developing structural health monitoring algorithms.

  17. Signature Optical Cues: Emerging Technologies for Monitoring Plant Health

    Directory of Open Access Journals (Sweden)

    Anand K. Asundi

    2008-05-01

    Full Text Available Optical technologies can be developed as practical tools for monitoring plant health by providing unique spectral signatures that can be related to specific plant stresses. Signatures from thermal and fluorescence imaging have been used successfully to track pathogen invasion before visual symptoms are observed. Another approach for noninvasive plant health monitoring involves elucidating the manner with which light interacts with the plant leaf and being able to identify changes in spectral characteristics in response to specific stresses. To achieve this, an important step is to understand the biochemical and anatomical features governing leaf reflectance, transmission and absorption. Many studies have opened up possibilities that subtle changes in leaf reflectance spectra can be analyzed in a plethora of ways for discriminating nutrient and water stress, but with limited success. There has also been interest in developing transgenic phytosensors to elucidate plant status in relation to environmental conditions. This approach involves unambiguous signal creation whereby genetic modification to generate reporter plants has resulted in distinct optical signals emitted in response to specific stressors. Most of these studies are limited to laboratory or controlled greenhouse environments at leaf level. The practical translation of spectral cues for application under field conditions at canopy and regional levels by remote aerial sensing remains a challenge. The movement towards technology development is well exemplified by the Controlled Ecological Life Support System under development by NASA which brings together technologies for monitoring plant status concomitantly with instrumentation for environmental monitoring and feedback control.

  18. Health Monitoring of TPS Structures by Measuring Their Electrical Resistance

    Science.gov (United States)

    Preci, Arianit; Herdrich, Georg; Steinbeck, Andreas; Auweter-Kurtz, Monika

    Health Monitoring in aerospace applications becomes an emerging technology leading to the development of systems capable of continuously monitoring structures for damage with minimal human intervention. A promising sensing method to be applied on hot structures and thermal protection systems is the electrical resistance measurement technique, which is barely investigated up to now. This method benefits from the advantageous characteristics of self-monitoring materials, such as carbon fiber-reinforced materials. By measuring the variation of the electrical resistance of these materials information on possibly present mechanical damage can be derived. In order to set up a database on electric properties of relevant materials under relevant conditions and to perform a proof-of-concept for this health monitoring method a facility has been laid out, which allows for the measurement of the electrical resistance of thermal protection system relevant materials at temperatures up to 2000°C. First preliminary measurements of the surface resistance of a graphite sample have been performed and are presented. It has been proven necessary to make some modifications to the setup. Therefore, the remaining measurements with graphite and C/C-SiC samples are subject of further investigation which will be performed in the future.

  19. Monitoring Indoor Air Quality for Enhanced Occupational Health.

    Science.gov (United States)

    Pitarma, Rui; Marques, Gonçalo; Ferreira, Bárbara Roque

    2017-02-01

    Indoor environments are characterized by several pollutant sources. Because people spend more than 90% of their time in indoor environments, several studies have pointed out the impact of indoor air quality on the etiopathogenesis of a wide number of non-specific symptoms which characterizes the "Sick Building Syndrome", involving the skin, the upper and lower respiratory tract, the eyes and the nervous system, as well as many building related diseases. Thus, indoor air quality (IAQ) is recognized as an important factor to be controlled for the occupants' health and comfort. The majority of the monitoring systems presently available is very expensive and only allow to collect random samples. This work describes the system (iAQ), a low-cost indoor air quality monitoring wireless sensor network system, developed using Arduino, XBee modules and micro sensors, for storage and availability of monitoring data on a web portal in real time. Five micro sensors of environmental parameters (air temperature, humidity, carbon monoxide, carbon dioxide and luminosity) were used. Other sensors can be added for monitoring specific pollutants. The results reveal that the system can provide an effective indoor air quality assessment to prevent exposure risk. In fact, the indoor air quality may be extremely different compared to what is expected for a quality living environment. Systems like this would have benefit as public health interventions to reduce the burden of symptoms and diseases related to "sick buildings".

  20. Health monitoring of composite structures throughout the life cycle

    Science.gov (United States)

    Chilles, James; Croxford, Anthony; Bond, Ian

    2016-04-01

    This study demonstrates the capability of inductively coupled piezoelectric sensors to monitor the state of health throughout the lifetime of composite structures. A single sensor which generated guided elastic waves was embedded into the stacking sequence of a large glass fiber reinforced plastic plate. The progress of cure was monitored by measuring variations in the amplitude and velocity of the waveforms reflected from the plate's edges. Baseline subtraction techniques were then implemented to detect barely visible impact damage (BVID) created by a 10 Joule impact, at a distance of 350 mm from the sensor embedded in the cured plate. To investigate the influence of mechanical loading on sensor performance, a single sensor was embedded within a glass fiber panel and subjected to tensile load. The panel was loaded up to a maximum strain of 1%, in increments of 0.1% strain. Guided wave measurements were recorded by the embedded sensor before testing, when the panel was under load, and after testing. The ultrasonic measurements showed a strong dependence on the applied load. Upon removal of the mechanical load the guided wave measurements returned to their original values recorded before testing. The results in this work show that embedded piezoelectric sensors can be used to monitor the state of health throughout the life-cycle of composite parts, even when subjected to relatively large strains. However the influence of load on guided wave measurements has implications for online monitoring using embedded piezoelectric transducers.

  1. Structural health monitoring of bridges in the State of Connecticut

    Institute of Scientific and Technical Information of China (English)

    Chengyin Liu; Joshua Olund; Alan Cardini; Paul D'Attilio; Erie Feldblum; John DeWolf

    2008-01-01

    A joint effort between the Connecticut Department of Transportation and the University of Connecticut has been underway for more than 20 years to utilize various structural monitoring approaches to assess different bridges in Connecticut.This has been done to determine the performance of existing bridges,refine techniques needed to evaluate different bridge components,and develop approaches that can be used to provide a continuous status of a bridge's structural integrity,This paper briefly introduces the background of these studies,with emphasis on recent research and the development of structural health monitoring concepts.This paper presents the results from three different bridge types:a post-tensioned curved concrete box girder bridge,a curved steel box-girder bridge,and a steel multi-girder bridge.The structural health monitoring approaches to be discussed have been successfully tested using field data collected during multi-year monitoring periods,and are based on vibrations,rotations and strains.The goal has been to develop cost-effective strategies to provide critical information needed to manage the State of Connecticut's bridge infrastructure.

  2. CFRP Structural Health Monitoring by Ultrasonic Phased Array Technique

    OpenAIRE

    Boychuk, A.S.; Generalov, A.S.; A.V. Stepanov

    2014-01-01

    International audience; The report deals with ultrasonic phased array (PA) application for high-loaded CFRP structural health monitoring in aviation. Principles of phased array technique and most dangerous types of damages are briefly described. High-performance inspection technology suitable for periodic plane structure check is suggested. The results of numerical estimation of detection probability for impact damages and delaminations by PA technique are presented. The experience of PA impl...

  3. Statistical Process Control Charts for Public Health Monitoring

    Science.gov (United States)

    2014-12-01

    Poisson counts) [21-23].  Cumulative sum ( CUSUM ) and exponentially weighted moving average (EWMA) control charts are often used with Phase II data. These...charts have been shown to more quickly detect small changes than traditional Shewhart charts. There have been several applications of CUSUM charts in...distribution, a CUSUM or EWMA chart would be required.  Risk adjustment for health data has been applied when monitoring variables that can be

  4. Bayesian Computational Sensor Networks for Aircraft Structural Health Monitoring

    Science.gov (United States)

    2016-02-02

    emissions as well as delamination-dominated and fiber-dominated damage. The three frequency regions identified were 10 - 100 kHz, 100 - 250 kHz, and 250...the RD patterns can be used for Bayesian model accuracy assessment of the difference between a uniform grid layout of the nodes versus an irregular... grid due to error in node placement. SLAMBOT: Structural Health Monitoring Robot using Lamb Waves We developed the combination of a mobile robot and

  5. On Structural Health Monitoring of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Skov, Jonas falk; Ulriksen, Martin Dalgaard; Dickow, Kristoffer Ahrens

    2013-01-01

    The aim of the present paper is to provide a state-of-the-art outline of structural health monitoring (SHM) techniques, utilizing temperature, noise and vibration, for wind turbine blades, and subsequently perform a typology on the basis of the typical four damage identification levels in SHM....... Before presenting the state-of-the-art outline, descriptions of structural damages typically occurring in wind turbine blades are provided along with a brief description of the four damage identification levels....

  6. New applications of biological monitoring for environmental exposure and susceptibility monitoring. Report of the 7th International Symposium on Biological Monitoring in Occupational and Environmental Health.

    NARCIS (Netherlands)

    Scheepers, P.T.J.; Heussen, G.A.

    2008-01-01

    Validated biological monitoring methods are used in large-scale monitoring programmes involving determination of ubiquitous environmental pollutants such as metals and pesticides. Some programmes focus on children's exposure, and policies to prevent adverse health effects. Most of these initiatives

  7. New applications of biological monitoring for environmental exposure and susceptibility monitoring. Report of the 7th International Symposium on Biological Monitoring in Occupational and Environmental Health.

    NARCIS (Netherlands)

    Scheepers, P.T.J.; Heussen, G.A.

    2008-01-01

    Validated biological monitoring methods are used in large-scale monitoring programmes involving determination of ubiquitous environmental pollutants such as metals and pesticides. Some programmes focus on children's exposure, and policies to prevent adverse health effects. Most of these initiatives

  8. Monitoring of health care personnel employee and occupational health immunization program practices in the United States.

    Science.gov (United States)

    Carrico, Ruth M; Sorrells, Nikka; Westhusing, Kelly; Wiemken, Timothy

    2014-01-01

    Recent studies have identified concerns with various elements of health care personnel immunization programs, including the handling and management of the vaccine. The purpose of this study was to assess monitoring processes that support evaluation of the care of vaccines in health care settings. An 11-question survey instrument was developed for use in scripted telephone surveys. State health departments in all 50 states in the United States and the District of Columbia were the target audience for the surveys. Data from a total of 47 states were obtained and analyzed. No states reported an existing monitoring process for evaluation of health care personnel immunization programs in their states. Our assessment indicates that vaccine evaluation processes for health care facilities are rare to nonexistent in the United States. Identifying existing practice gaps and resultant opportunities for improvements may be an important safety initiative that protects patients and health care personnel.

  9. Astronaut Bone Medical Standards Derived from Finite Element (FE) Models of QCT Scans from Population Studies

    Science.gov (United States)

    Sibonga, J. D.; Feiveson, A. H.

    2014-01-01

    This work was accomplished in support of the Finite Element [FE] Strength Task Group, NASA Johnson Space Center [JSC], Houston, TX. This group was charged with the task of developing rules for using finite-element [FE] bone-strength measures to construct operating bands for bone health that are relevant to astronauts following exposure to spaceflight. FE modeling is a computational tool used by engineers to estimate the failure loads of complex structures. Recently, some engineers have used this tool to characterize the failure loads of the hip in population studies that also monitored fracture outcomes. A Directed Research Task was authorized in July, 2012 to investigate FE data from these population studies to derive these proposed standards of bone health as a function of age and gender. The proposed standards make use of an FE-based index that integrates multiple contributors to bone strength, an expanded evaluation that is critical after an astronaut is exposed to spaceflight. The current index of bone health used by NASA is the measurement of areal BMD. There was a concern voiced by a research and clinical advisory panel that the sole use of areal BMD would be insufficient to fully evaluate the effects of spaceflight on the hip. Hence, NASA may not have a full understanding of fracture risk, both during and after a mission, and may be poorly estimating in-flight countermeasure efficacy. The FE Strength Task Group - composed of principal investigators of the aforementioned population studies and of FE modelers -donated some of its population QCT data to estimate of hip bone strength by FE modeling for this specific purpose. Consequently, Human Health Countermeasures [HHC] has compiled a dataset of FE hip strengths, generated by a single FE modeling approach, from human subjects (approx.1060) with ages covering the age range of the astronauts. The dataset has been analyzed to generate a set of FE strength cutoffs for the following scenarios: a) Qualify an

  10. STRUCTURAL HEALTH MONITORING SYSTEM – AN EMBEDDED SENSOR APPROACH

    Directory of Open Access Journals (Sweden)

    Dhivya. A

    2013-02-01

    Full Text Available Structural Health monitoring system is the implementation of improving the maintenance of any structures like buildings and bridges. It encompasses damage detection, identification and prevention of structures from natural disasters like earth quake and rain. This paper is mainly proposed for three modules. First module constitutes recognizing and alerting of abnormal vibration of the building due to an earth quake. This consists of two types of sensor to predict the abnormal vibration induced by an earth quake. Second module portrays the prediction of damage in the buildings after an earth quake or heavy rain. Damage detection includes identification of crack and the moisture content in wall bricks in real time buildings. Third module presents the smart auditorium which is used to reduce the power consumption. Depending on the number of audience inside the auditorium it can control the electric appliances like fans, lights and speakers. In any real time structural health monitoring system the main issue is the time synchronization. This paper also proposes to overcome the general issue arises in structural health monitoring system. ZigBee based reliable communication is used among the client node and server node. For the secured wireless communication between the nodes ZigBee is used.

  11. Smart sensor systems for human health breath monitoring applications.

    Science.gov (United States)

    Hunter, G W; Xu, J C; Biaggi-Labiosa, A M; Laskowski, D; Dutta, P K; Mondal, S P; Ward, B J; Makel, D B; Liu, C C; Chang, C W; Dweik, R A

    2011-09-01

    Breath analysis techniques offer a potential revolution in health care diagnostics, especially if these techniques can be brought into standard use in the clinic and at home. The advent of microsensors combined with smart sensor system technology enables a new generation of sensor systems with significantly enhanced capabilities and minimal size, weight and power consumption. This paper discusses the microsensor/smart sensor system approach and provides a summary of efforts to migrate this technology into human health breath monitoring applications. First, the basic capability of this approach to measure exhaled breath associated with exercise physiology is demonstrated. Building from this foundation, the development of a system for a portable asthma home health care system is described. A solid-state nitric oxide (NO) sensor for asthma monitoring has been identified, and efforts are underway to miniaturize this NO sensor technology and integrate it into a smart sensor system. It is concluded that base platform microsensor technology combined with smart sensor systems can address the needs of a range of breath monitoring applications and enable new capabilities for healthcare.

  12. Design and Analysis of Architectures for Structural Health Monitoring Systems

    Science.gov (United States)

    Mukkamala, Ravi; Sixto, S. L. (Technical Monitor)

    2002-01-01

    During the two-year project period, we have worked on several aspects of Health Usage and Monitoring Systems for structural health monitoring. In particular, we have made contributions in the following areas. 1. Reference HUMS architecture: We developed a high-level architecture for health monitoring and usage systems (HUMS). The proposed reference architecture is shown. It is compatible with the Generic Open Architecture (GOA) proposed as a standard for avionics systems. 2. HUMS kernel: One of the critical layers of HUMS reference architecture is the HUMS kernel. We developed a detailed design of a kernel to implement the high level architecture.3. Prototype implementation of HUMS kernel: We have implemented a preliminary version of the HUMS kernel on a Unix platform.We have implemented both a centralized system version and a distributed version. 4. SCRAMNet and HUMS: SCRAMNet (Shared Common Random Access Memory Network) is a system that is found to be suitable to implement HUMS. For this reason, we have conducted a simulation study to determine its stability in handling the input data rates in HUMS. 5. Architectural specification.

  13. Structural Health Monitoring for a Z-Type Special Vehicle

    Directory of Open Access Journals (Sweden)

    Chaolin Yuan

    2017-06-01

    Full Text Available Nowadays there exist various kinds of special vehicles designed for some purposes, which are different from regular vehicles in overall dimension and design. In that case, accidents such as overturning will lead to large economical loss and casualties. There are still no technical specifications to follow to ensure the safe operation and driving of these special vehicles. Owing to the poor efficiency of regular maintenance, it is more feasible and effective to apply real-time monitoring during the operation and driving process. In this paper, the fiber Bragg grating (FBG sensors are used to monitor the safety of a z-type special vehicle. Based on the structural features and force distribution, a reasonable structural health monitoring (SHM scheme is presented. Comparing the monitoring results with the finite element simulation results guarantees the accuracy and reliability of the monitoring results. Large amounts of data are collected during the operation and driving progress to evaluate the structural safety condition and provide reference for SHM systems developed for other special vehicles.

  14. Analysis and assessment of bridge health monitoring mass data—progress in research/development of "Structural Health Monitoring"

    Institute of Scientific and Technical Information of China (English)

    LI AiQun; DING YouLiang; WANG Hao; GUO Tong

    2012-01-01

    The "Structural Health Monitoring" is a project supported by National Natural Science Foundation for Distinguished Young Scholars of China (Grant No.50725828).To meet the urgent requirements of analysis and assessment of mass monitoring data of bridge environmental actions and structural responses,the monitoring of environmental actions and action effect modeling methods,dynamic performance monitoring and early warning methods,condition assessment and operation maintenance methods of key members are systematically studied in close combination with structural characteristics of long-span cable-stayed bridges and suspension bridges.The paper reports the progress of the project as follows.(1) The environmental action modeling methods of long-span bridges are established based on monitoring data of temperature,sustained wind and typhoon.The action effect modeling methods are further developed in combination with the multi-scale baseline finite element modeling method for long-span bridges.(2) The identification methods of global dynamic characteristics and internal forces of cables and hangers for long-span cable-stayed bridges and suspension bridges are proposed using the vibration monitoring data,on the basis of which the condition monitoring and early warning methods of bridges are developed using the environmental-condition-normalization technique.(3) The analysis methods for fatigue loading effect of welded details of steel box girder,temperature and traffic loading effect of expansion joint are presented based on long-term monitoring data of strain and beam-end displacement,on the basis of which the service performance assessment and remaining life prediction methods are developed.

  15. Real-Time Monitoring System and Advanced Characterization Technique for Civil Infrastructure Health Monitoring

    Directory of Open Access Journals (Sweden)

    V. Bennett

    2011-01-01

    Full Text Available Real-time monitoring of civil infrastructure provides valuable information to assess the health and condition of the associated systems. This paper presents the recently developed shape acceleration array (SAA and local system identification (SI technique, which constitute a major step toward long-term effective health monitoring and analysis of soil and soil-structure systems. The SAA is based on triaxial micro-electro-mechanical system (MEMS sensors to measure in situ deformation (angles relative to gravity and dynamic accelerations up to a depth of one hundred meters. This paper provides an assessment of this array's performance for geotechnical instrumentation applications by reviewing the recorded field data from a bridge replacement site and a full-scale levee test facility. The SI technique capitalizes on the abundance of static and dynamic measurements from the SAA. The geotechnical properties and constitutive response of soil contained within a locally instrumented zone are analyzed and identified independently of adjacent soil strata.

  16. Integration of structural health monitoring solutions onto commercial aircraft via the Federal Aviation Administration structural health monitoring research program

    Science.gov (United States)

    Swindell, Paul; Doyle, Jon; Roach, Dennis

    2017-02-01

    The Federal Aviation Administration (FAA) started a research program in structural health monitoring (SHM) in 2011. The program's goal was to understand the technical gaps of implementing SHM on commercial aircraft and the potential effects on FAA regulations and guidance. The program evolved into a demonstration program consisting of a team from Sandia National Labs Airworthiness Assurance NDI Center (AANC), the Boeing Corporation, Delta Air Lines, Structural Monitoring Systems (SMS), Anodyne Electronics Manufacturing Corp (AEM) and the FAA. This paper will discuss the program from the selection of the inspection problem, the SHM system (Comparative Vacuum Monitoring-CVM) that was selected as the inspection solution and the testing completed to provide sufficient data to gain the first approved use of an SHM system for routine maintenance on commercial US aircraft.

  17. Effective coverage: a metric for monitoring Universal Health Coverage.

    Directory of Open Access Journals (Sweden)

    Marie Ng

    2014-09-01

    Full Text Available A major challenge in monitoring universal health coverage (UHC is identifying an indicator that can adequately capture the multiple components underlying the UHC initiative. Effective coverage, which unites individual and intervention characteristics into a single metric, offers a direct and flexible means to measure health system performance at different levels. We view effective coverage as a relevant and actionable metric for tracking progress towards achieving UHC. In this paper, we review the concept of effective coverage and delineate the three components of the metric - need, use, and quality - using several examples. Further, we explain how the metric can be used for monitoring interventions at both local and global levels. We also discuss the ways that current health information systems can support generating estimates of effective coverage. We conclude by recognizing some of the challenges associated with producing estimates of effective coverage. Despite these challenges, effective coverage is a powerful metric that can provide a more nuanced understanding of whether, and how well, a health system is delivering services to its populations.

  18. Wireless Zigbee strain gage sensor system for structural health monitoring

    Science.gov (United States)

    Ide, Hiroshi; Abdi, Frank; Miraj, Rashid; Dang, Chau; Takahashi, Tatsuya; Sauer, Bruce

    2009-05-01

    A compact cell phone size radio frequency (ZigBee) wireless strain measurement sensor system to measure the structural strain deformation was developed. The developed system provides an accurate strain measurement data stream to the Internet for further Diagnostic and Prognostic (DPS) correlation. Existing methods of structural measurement by strain sensors (gauges) do not completely satisfy problems posed by continuous structural health monitoring. The need for efficient health monitoring methods with real-time requirements to bidirectional data flow from sensors and to a commanding device is becoming critical for keeping our daily life safety. The use of full-field strain measurement techniques could reduce costly experimental programs through better understanding of material behavior. Wireless sensor-network technology is a monitoring method that is estimated to grow rapidly providing potential for cost savings over traditional wired sensors. The many of currently available wireless monitoring methods have: the proactive and constant data rate character of the data streams rather than traditional reactive, event-driven data delivery; mostly static node placement on structures with limited number of nodes. Alpha STAR Electronics' wireless sensor network system, ASWN, addresses some of these deficiencies, making the system easier to operate. The ASWN strain measurement system utilizes off-the-shelf sensors, namely strain gauges, with an analog-to-digital converter/amplifier and ZigBee radio chips to keep cost lower. Strain data is captured by the sensor, converted to digital form and delivered to the ZigBee radio chip, which in turn broadcasts the information using wireless protocols to a Personal Data Assistant (PDA) or Laptop/Desktop computers. From here, data is forwarded to remote computers for higher-level analysis and feedback using traditional cellular and satellite communication or the Ethernet infrastructure. This system offers a compact size, lower cost

  19. Inflatable Habitat Health Monitoring: Implementation, Lessons Learned, and Application to Lunar or Martian Habitat Health Monitoring

    Science.gov (United States)

    Rojdev, Kristina; Hong, Todd; Hafermalz, Scott; Hunkins, Robert; Valle, Gerald; Toups, Larry

    2009-01-01

    NASA's exploration mission is to send humans to the Moon and Mars, in which the purpose is to learn how to live and work safely in those harsh environments. A critical aspect of living in an extreme environment is habitation, and within that habitation element there are key systems which monitor the habitation environment to provide a safe and comfortable living and working space for humans. Expandable habitats are one of the options currently being considered due to their potential mass and volume efficiencies. This paper discusses a joint project between the National Science Foundation (NSF), ILC Dover, and NASA in which an expandable habitat was deployed in the extreme environment of Antarctica to better understand the performance and operations over a one-year period. This project was conducted through the Innovative Partnership Program (IPP) where the NSF provided the location at McMurdo Station in Antarctica and support at the location, ILC Dover provided the inflatable habitat, and NASA provided the instrumentation and data system for monitoring the habitat. The outcome of this project provided lessons learned in the implementation of an inflatable habitat and the systems that support that habitat. These lessons learned will be used to improve current habitation capabilities and systems to meet the objectives of exploration missions to the moon and Mars.

  20. Implementation of foetal e-health monitoring system through biotelemetry.

    Science.gov (United States)

    Chourasia, Vijay S; Tiwari, Anil Kumar

    2012-01-01

    Continuous foetal monitoring of physiological signals is of particular importance for early detection of complexities related to the foetus or the mother's health. The available conventional methods of monitoring mostly perform off-line analysis and restrict the mobility of subjects within a hospital or a room. Hence, the aim of this paper is to develop a foetal e-health monitoring system using mobile phones and wireless sensors for providing advanced healthcare services in the home environment. The system is tested by recording the real-time Foetal Phonocardiography (fPCG) signals from 15 subjects with different gestational periods. The performance of the developed system is compared with the existing ultrasound based Doppler shift technique, ensuring an overall accuracy of 98% of the developed system. The developed framework is non-invasive, cost-effective and simple enough to be used in home care application. It offers advanced healthcare facilities even to the pregnant women living in rural areas and avoids their unnecessary visits at the healthcare centres.

  1. Ultrasonic wave-based structural health monitoring embedded instrument

    Energy Technology Data Exchange (ETDEWEB)

    Aranguren, G.; Monje, P. M., E-mail: pedromaria.monje@ehu.es [Electronic Design Group, Faculty of Engineering of Bilbao, University of the Basque Country, Bilbao (Spain); Cokonaj, Valerijan [AERnnova Engineering Solutions Ibérica S.A., Madrid (Spain); Barrera, Eduardo; Ruiz, Mariano [Instrumentation and Applied Acoustic Research Group of the Technical University of Madrid, Madrid (Spain)

    2013-12-15

    Piezoelectric sensors and actuators are the bridge between electronic and mechanical systems in structures. This type of sensor is a key element in the integrity monitoring of aeronautic structures, bridges, pressure vessels, wind turbine blades, and gas pipelines. In this paper, an all-in-one system for Structural Health Monitoring (SHM) based on ultrasonic waves is presented, called Phased Array Monitoring for Enhanced Life Assessment. This integrated instrument is able to generate excitation signals that are sent through piezoelectric actuators, acquire the received signals in the piezoelectric sensors, and carry out signal processing to check the health of structures. To accomplish this task, the instrument uses a piezoelectric phased-array transducer that performs the actuation and sensing of the signals. The flexibility and strength of the instrument allow the user to develop and implement a substantial part of the SHM technique using Lamb waves. The entire system is controlled using configuration software and has been validated through functional, electrical loading, mechanical loading, and thermal loading resistance tests.

  2. Ultrasonic wave-based structural health monitoring embedded instrument.

    Science.gov (United States)

    Aranguren, G; Monje, P M; Cokonaj, Valerijan; Barrera, Eduardo; Ruiz, Mariano

    2013-12-01

    Piezoelectric sensors and actuators are the bridge between electronic and mechanical systems in structures. This type of sensor is a key element in the integrity monitoring of aeronautic structures, bridges, pressure vessels, wind turbine blades, and gas pipelines. In this paper, an all-in-one system for Structural Health Monitoring (SHM) based on ultrasonic waves is presented, called Phased Array Monitoring for Enhanced Life Assessment. This integrated instrument is able to generate excitation signals that are sent through piezoelectric actuators, acquire the received signals in the piezoelectric sensors, and carry out signal processing to check the health of structures. To accomplish this task, the instrument uses a piezoelectric phased-array transducer that performs the actuation and sensing of the signals. The flexibility and strength of the instrument allow the user to develop and implement a substantial part of the SHM technique using Lamb waves. The entire system is controlled using configuration software and has been validated through functional, electrical loading, mechanical loading, and thermal loading resistance tests.

  3. A Microwave Blade Tip Clearance Sensor for Propulsion Health Monitoring

    Science.gov (United States)

    Woike, Mark R.; Abdul-Aziz, Ali; Bencic, Timothy J.

    2010-01-01

    Microwave sensor technology is being investigated by the NASA Glenn Research Center as a means of making non-contact structural health measurements in the hot sections of gas turbine engines. This type of sensor technology is beneficial in that it is accurate, it has the ability to operate at extremely high temperatures, and is unaffected by contaminants that are present in turbine engines. It is specifically being targeted for use in the High Pressure Turbine (HPT) and High Pressure Compressor (HPC) sections to monitor the structural health of the rotating components. It is intended to use blade tip clearance to monitor blade growth and wear and blade tip timing to monitor blade vibration and deflection. The use of microwave sensors for this application is an emerging concept. Techniques on their use and calibration needed to be developed. As a means of better understanding the issues associated with the microwave sensors, a series of experiments have been conducted to evaluate their performance for aero engine applications. This paper presents the results of these experiments.

  4. 75 FR 57736 - Notice of Request for Approval of an Information Collection; National Animal Health Monitoring...

    Science.gov (United States)

    2010-09-22

    ... Information Collection; National Animal Health Monitoring System; Small-Scale Livestock Operations 2011 Study... National Animal Health Monitoring System Small-Scale Livestock Operations 2011 Study. DATES: We will... INFORMATION: Title: National Animal Health Monitoring System; Small-Scale Livestock Operations 2011 Study....

  5. 76 FR 28414 - Notice of Request for Approval of an Information Collection; National Animal Health Monitoring...

    Science.gov (United States)

    2011-05-17

    ...; National Animal Health Monitoring System; Emergency Epidemiologic Investigations AGENCY: Animal and Plant... to support the National Animal Health Monitoring System. DATES: We will consider all comments that we... Coordinator, at (301) 851-2908. SUPPLEMENTARY INFORMATION: Title: National Animal Health Monitoring...

  6. Health monitoring of bonded composite repair in bridge rehabilitation

    Science.gov (United States)

    Wu, Zhanjun; Qing, Xinlin P.; Ghosh, Kumar; Karbhar, Vistasp; Chang, Fu-Kuo

    2008-08-01

    Structural rehabilitation with carbon fiber reinforced composite materials has proven to be an excellent way to enhance/repair steel reinforced concrete structures and prolong their service lives. However, disbonds between composite repair patches and host structures continue to be a great concern of this technology. In this paper, a built-in piezoelectric sensor network based structural health monitoring system is introduced for monitoring the disbonds between composite repair patches and the host structures. This diagnostic system combines the sensor network, diagnostic hardware and data analysis software allowing for real-time monitoring of the integrity of the bonded repair. The effectiveness of detecting disbonds using the system has been demonstrated on a full scale bridge model in a laboratory setting. The bridge model was loaded incrementally to failure, and disbond monitoring was carried out during the loading intervals. Test results showed that the system could detect the disbonds before they have a noticeable effect on the global stiffness of the bridge model.

  7. Evaluation of Space Food for Commercial Astronauts

    Science.gov (United States)

    Ahlstrom, Britt Karin

    As commercial aerospace companies advance toward manned spaceflight, they must overcome many hurdles - not only technical, but also human. One of the greatest human challenges they face is food. Throughout the history of human spaceflight, astronauts have primarily eaten food developed by government space agencies. Now, with manned commercial flights on the horizon, astronauts will be provided with an entirely new diet - one comprised of commercially available, ready-to-eat food. Yet will this diet keep astronauts nourished, satisfied with their diet, and both psychologically and physically healthy? The purpose of this parallel crossover design study was to evaluate (a) nutrient intake, (b) food satisfaction, (c) psychological health, and (d) physical health in commercial aerospace employees (N = 7) as they ate a diet of commercial, ready-to-eat food for four days, as compared to eating as normal for four days. Findings from this study showed that the ready-to-eat diet did not lead to any significant changes in caloric intake, psychological health, or physical health, aside from weight loss. It is not clear whether this weight loss was due to the loss of body fat, muscle, or water. When eating the ready-to-eat food, participants reported being slightly less satisfied with the variety, reported lower cravings for sweets, and reported the food was slightly less hedonically rewarding. In post-study interviews, participants reported they wanted to see more meats, fruits, vegetables, and desserts added to the ready-to-eat diet, so as to provide more meal-like structure. Overall, these findings show the diet could be used in commercial spaceflight after making simple changes. The diet could also be used by individuals in remote areas on Earth and to provide food assistance to individuals in disaster or emergency situations. Due to the increasing popularity of ready-to-eat food around the world, these findings also provide knowledge about the potential consequences of

  8. Printing of microstructure strain sensor for structural health monitoring

    Science.gov (United States)

    Le, Minh Quyen; Ganet, Florent; Audigier, David; Capsal, Jean-Fabien; Cottinet, Pierre-Jean

    2017-05-01

    Recent advances in microelectronics and materials should allow the development of integrated sensors with transduction properties compatible with being printed directly onto a 3D substrate, especially metallic and polymer substrates. Inorganic and organic electronic materials in microstructured and nanostructured forms, intimately integrated in ink, offer particularly attractive characteristics, with realistic pathways to sophisticated embodiments. Here, we report on these strategies and demonstrate the potential of 3D-printed microelectronics based on a structural health monitoring (SHM) application for the precision weapon systems. We show that our printed sensors can be employed in non-invasive, high-fidelity and continuous strain monitoring of handguns, making it possible to implement printed sensors on a 3D substrate in either SHM or remote diagnostics. We propose routes to commercialization and novel device opportunities and highlight the remaining challenges for research.

  9. A nonlinear cointegration approach with applications to structural health monitoring

    Science.gov (United States)

    Shi, H.; Worden, K.; Cross, E. J.

    2016-09-01

    One major obstacle to the implementation of structural health monitoring (SHM) is the effect of operational and environmental variabilities, which may corrupt the signal of structural degradation. Recently, an approach inspired from the community of econometrics, called cointegration, has been employed to eliminate the adverse influence from operational and environmental changes and still maintain sensitivity to structural damage. However, the linear nature of cointegration may limit its application when confronting nonlinear relations between system responses. This paper proposes a nonlinear cointegration method based on Gaussian process regression (GPR); the method is constructed under the Engle-Granger framework, and tests for unit root processes are conducted both before and after the GPR is applied. The proposed approach is examined with real engineering data from the monitoring of the Z24 Bridge.

  10. Optical Fiber Sensors for Aircraft Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Iker García

    2015-06-01

    Full Text Available Aircraft structures require periodic and scheduled inspection and maintenance operations due to their special operating conditions and the principles of design employed to develop them. Therefore, structural health monitoring has a great potential to reduce the costs related to these operations. Optical fiber sensors applied to the monitoring of aircraft structures provide some advantages over traditional sensors. Several practical applications for structures and engines we have been working on are reported in this article. Fiber Bragg gratings have been analyzed in detail, because they have proved to constitute the most promising technology in this field, and two different alternatives for strain measurements are also described. With regard to engine condition evaluation, we present some results obtained with a reflected intensity-modulated optical fiber sensor for tip clearance and tip timing measurements in a turbine assembled in a wind tunnel.

  11. Optical Fiber Sensors for Aircraft Structural Health Monitoring.

    Science.gov (United States)

    García, Iker; Zubia, Joseba; Durana, Gaizka; Aldabaldetreku, Gotzon; Illarramendi, María Asunción; Villatoro, Joel

    2015-06-30

    Aircraft structures require periodic and scheduled inspection and maintenance operations due to their special operating conditions and the principles of design employed to develop them. Therefore, structural health monitoring has a great potential to reduce the costs related to these operations. Optical fiber sensors applied to the monitoring of aircraft structures provide some advantages over traditional sensors. Several practical applications for structures and engines we have been working on are reported in this article. Fiber Bragg gratings have been analyzed in detail, because they have proved to constitute the most promising technology in this field, and two different alternatives for strain measurements are also described. With regard to engine condition evaluation, we present some results obtained with a reflected intensity-modulated optical fiber sensor for tip clearance and tip timing measurements in a turbine assembled in a wind tunnel.

  12. Probabilistic Structural Health Monitoring of the Orbiter Wing Leading Edge

    Science.gov (United States)

    Yap, Keng C.; Macias, Jesus; Kaouk, Mohamed; Gafka, Tammy L.; Kerr, Justin H.

    2011-01-01

    A structural health monitoring (SHM) system can contribute to the risk management of a structure operating under hazardous conditions. An example is the Wing Leading Edge Impact Detection System (WLEIDS) that monitors the debris hazards to the Space Shuttle Orbiter s Reinforced Carbon-Carbon (RCC) panels. Since Return-to-Flight (RTF) after the Columbia accident, WLEIDS was developed and subsequently deployed on board the Orbiter to detect ascent and on-orbit debris impacts, so as to support the assessment of wing leading edge structural integrity prior to Orbiter re-entry. As SHM is inherently an inverse problem, the analyses involved, including those performed for WLEIDS, tend to be associated with significant uncertainty. The use of probabilistic approaches to handle the uncertainty has resulted in the successful implementation of many development and application milestones.

  13. Structural Health Monitoring with Fiber Bragg Grating and Piezo Arrays

    Science.gov (United States)

    Black, Richard J.; Faridian, Ferey; Moslehi, Behzad; Sotoudeh, Vahid

    2012-01-01

    Structural health monitoring (SHM) is one of the most important tools available for the maintenance, safety, and integrity of aerospace structural systems. Lightweight, electromagnetic-interference- immune, fiber-optic sensor-based SHM will play an increasing role in more secure air transportation systems. Manufacturers and maintenance personnel have pressing needs for significantly improving safety and reliability while providing for lower inspection and maintenance costs. Undetected or untreated damage may grow and lead to catastrophic structural failure. Damage can originate from the strain/stress history of the material, imperfections of domain boundaries in metals, delamination in multi-layer materials, or the impact of machine tools in the manufacturing process. Damage can likewise develop during service life from wear and tear, or under extraordinary circumstances such as with unusual forces, temperature cycling, or impact of flying objects. Monitoring and early detection are key to preventing a catastrophic failure of structures, especially when these are expected to perform near their limit conditions.

  14. Wake-up transceivers for structural health monitoring of bridges

    Science.gov (United States)

    Kumberg, T.; Kokert, J.; Younesi, V.; Koenig, S.; Reindl, L. M.

    2016-04-01

    In this article we present a wireless sensor network to monitor the structural health of a large-scale highway bridge in Germany. The wireless sensor network consists of several sensor nodes that use wake-up receivers to realize latency free and low-power communication. The sensor nodes are either equipped with very accurate tilt sensor developed by Northrop Grumman LITEF GmbH or with a Novatel OEM615 GNSS receiver. Relay nodes are required to forward measurement data to a base station located on the bridge. The base station is a gateway that transmits the local measurement data to a remote server where it can be further analyzed and processed. Further on, we present an energy harvesting system to supply the energy demanding GNSS sensor nodes to realize long term monitoring.

  15. Fiber Optic Sensors for Structural Health Monitoring of Air Platforms

    Directory of Open Access Journals (Sweden)

    Jianping Yao

    2011-03-01

    Full Text Available Aircraft operators are faced with increasing requirements to extend the service life of air platforms beyond their designed life cycles, resulting in heavy maintenance and inspection burdens as well as economic pressure. Structural health monitoring (SHM based on advanced sensor technology is potentially a cost-effective approach to meet operational requirements, and to reduce maintenance costs. Fiber optic sensor technology is being developed to provide existing and future aircrafts with SHM capability due to its unique superior characteristics. This review paper covers the aerospace SHM requirements and an overview of the fiber optic sensor technologies. In particular, fiber Bragg grating (FBG sensor technology is evaluated as the most promising tool for load monitoring and damage detection, the two critical SHM aspects of air platforms. At last, recommendations on the implementation and integration of FBG sensors into an SHM system are provided.

  16. Pipelining in structural health monitoring wireless sensor network

    Science.gov (United States)

    Li, Xu; Dorvash, Siavash; Cheng, Liang; Pakzad, Shamim

    2010-04-01

    Application of wireless sensor network (WSN) for structural health monitoring (SHM), is becoming widespread due to its implementation ease and economic advantage over traditional sensor networks. Beside advantages that have made wireless network preferable, there are some concerns regarding their performance in some applications. In long-span Bridge monitoring the need to transfer data over long distance causes some challenges in design of WSN platforms. Due to the geometry of bridge structures, using multi-hop data transfer between remote nodes and base station is essential. This paper focuses on the performances of pipelining algorithms. We summarize several prevent pipelining approaches, discuss their performances, and propose a new pipelining algorithm, which gives consideration to both boosting of channel usage and the simplicity in deployment.

  17. Skin-mountable stretch sensor for wearable health monitoring.

    Science.gov (United States)

    Pegan, Jonathan D; Zhang, Jasmine; Chu, Michael; Nguyen, Thao; Park, Sun-Jun; Paul, Akshay; Kim, Joshua; Bachman, Mark; Khine, Michelle

    2016-10-06

    This work presents a wrinkled Platinum (wPt) strain sensor with tunable strain sensitivity for applications in wearable health monitoring. These stretchable sensors show a dynamic range of up to 185% strain and gauge factor (GF) of 42. This is believed to be the highest reported GF of any metal thin film strain sensor over a physiologically relevant dynamic range to date. Importantly, sensitivity and dynamic range are tunable to the application by adjusting wPt film thickness. Performance is reliable over 1000 cycles with low hysteresis after sensor conditioning. The possibility of using such a sensor for real-time respiratory monitoring by measuring chest wall displacement and correlating with lung volume is demonstrated.

  18. Performance Health Monitoring of Large-Scale Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rajamony, Ram [IBM Research, Austin, TX (United States)

    2014-11-20

    This report details the progress made on the ASCR funded project Performance Health Monitoring for Large Scale Systems. A large-­scale application may not achieve its full performance potential due to degraded performance of even a single subsystem. Detecting performance faults, isolating them, and taking remedial action is critical for the scale of systems on the horizon. PHM aims to develop techniques and tools that can be used to identify and mitigate such performance problems. We accomplish this through two main aspects. The PHM framework encompasses diagnostics, system monitoring, fault isolation, and performance evaluation capabilities that indicates when a performance fault has been detected, either due to an anomaly present in the system itself or due to contention for shared resources between concurrently executing jobs. Software components called the PHM Control system then build upon the capabilities provided by the PHM framework to mitigate degradation caused by performance problems.

  19. Progress Monitoring in an Integrated Health Care System: Tracking Behavioral Health Vital Signs.

    Science.gov (United States)

    Steinfeld, Bradley; Franklin, Allie; Mercer, Brian; Fraynt, Rebecca; Simon, Greg

    2016-05-01

    Progress monitoring implementation in an integrated health care system is a complex process that must address factors such as measurement, technology, delivery system care processes, patient needs and provider requirements. This article will describe how one organization faced these challenges by identifying the key decision points (choice of measure, process for completing rating scale, interface with electronic medical record and clinician engagement) critical to implementation. Qualitative and quantitative data will be presented describing customer and stakeholder satisfaction with the mental health progress monitoring tool (MHPMT) as well as organizational performance with key measurement targets.

  20. A Simple Demonstration of Concrete Structural Health Monitoring Framework

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, Sankaran [Idaho National Lab. (INL), Idaho Falls, ID (United States); Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cai, Guowei [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nath, Paromita [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bao, Yanqing [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bru Brea, Jose Maria [Idaho National Lab. (INL), Idaho Falls, ID (United States); Koester, David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Adams, Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kosson, David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high confidence actionable information regarding structural integrity that supports operational and maintenance decisions. This ongoing research project is seeking to develop a probabilistic framework for health diagnosis and prognosis of aging concrete structures in a nuclear power plant subjected to physical, chemical, environment, and mechanical degradation. The proposed framework consists of four elements—damage modeling, monitoring, data analytics, and uncertainty quantification. This report describes a proof-of-concept example on a small concrete slab subjected to a freeze-thaw experiment that explores techniques in each of the four elements of the framework and their integration. An experimental set-up at Vanderbilt University’s Laboratory for Systems Integrity and Reliability is used to research effective combination of full-field techniques that include infrared thermography, digital image correlation, and ultrasonic measurement. The measured data are linked to the probabilistic framework: the thermography, digital image correlation data, and ultrasonic measurement data are used for Bayesian calibration of model parameters, for diagnosis of damage, and for prognosis of future damage. The proof-of-concept demonstration presented in this report highlights the significance of each element of the framework and their integration.

  1. Philosophy on astronaut protection: Perspective of an astronaut

    Energy Technology Data Exchange (ETDEWEB)

    Baker, E.

    1997-04-30

    There are significant differences in the risks during the launch of a spacecraft, its journey, and its subsequent return to earth, as contrasted to the risks of latent cancers that may develop as a result of the associated radiation exposures. Once the spacecraft has landed, following a successful mission, the risks of accidental death are over. The risks of latent cancers, however, will remain with the astronauts for the rest of their lives. The same may be true for many of the effects of the space environment, including microgravity. Compounding the problem with respect to radiation are the large uncertainties accompanying the estimates of the associated latent cancer risks. In addition to radiation doses received as a result of being exposed in space, astronauts have received significant does of radiation in conjunction with medical examinations and experiments conducted to obtain data on the effects of the space environment on humans. The experiments were considered to be a part of the {open_quotes}job{close_quotes} of being an astronaut, and the resulting doses were included in the medical records. Following this approach, the accompanying doses were counted against the career limits being imposed on each astronaut. As a result, volunteering for such experiments could cause an earlier termination of the career of an astronaut than would otherwise have occurred and add to the total radiation exposure, thereby increasing one`s risk of subsequent illness. Through cooperative efforts, these does have been significantly reduced in recent years. In fact, one of the outcomes of these efforts has been the incorporation of the ALARA concept into the radiation protection program for the astronauts. The fact that a space mission has a range of risks, including some that are relatively large, is no justification for failing to reduce the accompanying radiation risk.

  2. Monitoring the health of sugar maple, Acer saccharum

    Science.gov (United States)

    Carlson, Martha

    The sugar maple, Acer saccharum, is projected to decline and die in 88 to 100 percent of its current range in the United States. An iconic symbol of the northeastern temperate forest and a dominant species in this forest, the sugar maple is identified as the most sensitive tree in its ecosystem to rising temperatures and a warming climate. This study measures the health of sugar maples on 12 privately owned forests and at three schools in New Hampshire. Laboratory quantitative analyses of leaves, buds and sap as well as qualitative measures of leaf and bud indicate that record high beat in 2012 stressed the sugar maple. The study identifies several laboratory and qualitative tests of health which seem most sensitive and capable of identifying stress early when intervention in forest management or public policy change might counter decline of the species. The study presents evidence of an unusual atmospheric pollution event which defoliated sugar maples in 2010. The study examines the work of citizen scientists in Forest Watch, a K-12 school program in which students monitor the impacts of ozone on white pine, Pinus strobus, another keystone species in New Hampshire's forest. Finally, the study examines three simple measurements of bud, leaf and the tree's acclimation to light. The findings of these tests illuminate findings in the first study. And they present examples of what citizen scientists might contribute to long-term monitoring of maples. A partnership between science and citizens is proposed to begin long-term monitoring and to report on the health of sugar maples.

  3. ChemAND - a system health monitor for plant chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Turner, C.W.; Mitchel, G.R.; Tosello, G.; Balakrishnan, P.V.; McKay, G.; Thompson, M. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Dundar, Y.; Bergeron, M.; Laporte, R. [Hydro-Quebec, Groupe Chimie, Centrale Nucleaire Gentilly-2, Gentilly, Quebec (Canada)

    2001-03-01

    Effective management of plant systems throughout their lifetime requires much more than data acquisition and display - it requires that the plant's system health be continually monitored and managed. AECL has developed a System Health Monitor called ChemAND for CANDU plant chemistry. ChemAND, a Chemistry ANalysis and Diagnostic system, monitors key chemistry parameters in the heat transport system, moderator-cover gas, annulus gas, and the steam cycle during full-power operation. These parameters can be used as inputs to models that calculate the effect of current plant operating conditions on the present and future health of the system. Chemistry data from each of the systems are extracted on a regular basis from the plant's Historical Data Server and are sorted according to function, e.g., indicators for condenser in-leakage, air in-leakage, heavy water leakage into the annulus gas, fuel failure, etc. Each parameter is conveniently displayed and is trended along with its alarm limits. ChemAND currently includes two analytical models developed for the balance-of-plant. The first model, ChemSolv, calculates crevice chemistry conditions in the steam generator (SG) from either the SG blowdown chemistry conditions or from a simulated condenser leak. This information can be used by plant staff to evaluate the susceptibility of the SG tubes to crevice corrosion. ChemSolv also calculates chemistry conditions throughout the steam-cycle system as determined by the transport of volatile species such as ammonia, hydrazine, morpholine, and oxygen. The second model, SLUDGE, calculates the deposit loading and distribution in the SG as a function of time, based on concentrations of corrosion product in the final feedwater for both normal and start-up conditions. Operations personnel can use this information to predict where to inspect and when to clean. (author)

  4. Monitoring health interventions – who's afraid of LQAS?

    Directory of Open Access Journals (Sweden)

    Lorenzo Pezzoli

    2013-11-01

    Full Text Available Lot quality assurance sampling (LQAS is used to evaluate health services. Subunits of a population (lots are accepted or rejected according to the number of failures in a random sample (N of a given lot. If failures are greater than decision value (d, we reject the lot and recommend corrective actions in the lot (i.e. intervention area; if they are equal to or less than d, we accept it. We used LQAS to monitor coverage during the last 3 days of a meningitis vaccination campaign in Niger. We selected one health area (lot per day reporting the lowest administrative coverage in the previous 2 days. In the sampling plan we considered: N to be small enough to allow us to evaluate one lot per day, deciding to sample 16 individuals from the selected villages of each health area, using probability proportionate to population size; thresholds and d to vary according to administrative coverage reported; α≤5% (meaning that, if we would have conducted the survey 100 times, we would have accepted the lot up to five times when real coverage was at an unacceptable level and β≤20% (meaning that we would have rejected the lot up to 20 times, when real coverage was equal or above the satisfactory level. We classified all three lots as with the acceptable coverage. LQAS appeared to be a rapid, simple, and statistically sound method for in-process coverage assessment. We encourage colleagues in the field to consider using LQAS in complement with other monitoring techniques such as house-to-house monitoring.

  5. Astronaut Aldrin is photographed by Astronaut Armstrong on the Moon

    Science.gov (United States)

    1969-01-01

    The deployment of the early Apollo scientific experiments package is photographed by Astronaut Neil A. Armstrong during the Apollo 11 EVA. Here, Astronaut Aldrin is deploying the passive seismic experiments package. Already deployed is the Lunar ranging retro- reflector, which can be seen to the left and farther in the background. In the right background is the Lunar Module (LM). A flag of the United States is deployed near the LM. In the far left background is the deployed black and white lunar surface television camera. Armstrong took this picture with the 70mm lunar surface camera.

  6. Structural Health Monitoring of Bridges with Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    Francisco Navarro-Henríquez

    2014-11-01

    Systems with fiber optic sensors FBG (Fiber Bragg Grating are consolidated in the Structural Health Monitoring (SMH of bridges, Nondestructive Testing (NDT static and dynamic measurements of deformation, displacement, deflection, temperature and vibration. This article provides a brief introduction to the technology and the fundamentals of fiber optic sensors, also present comparative advantages over its traditional counterpart is presented. Their characteristics are described and measurement graphics are presented as an application example of the FBG sensors. Finally, some key aspects to consider for proper use in the field are mentioned.

  7. Risk-Adjusted Control Charts for Health Care Monitoring

    Directory of Open Access Journals (Sweden)

    Willem Albers

    2011-01-01

    the distribution involved is negative binomial. However, in health care monitoring, (groups of patients will often belong to different risk categories. In the present paper, we will show how information about category membership can be used to adjust the basic negative binomial charts to the actual risk incurred. Attention is also devoted to comparing such conditional charts to their unconditional counterparts. The latter do take possible heterogeneity into account but refrain from risk-adjustment. Note that in the risk adjusted case several parameters are involved, which will all be typically unknown. Hence, the potentially considerable estimation effects of the new charts will be investigated as well.

  8. Uniform circular array for structural health monitoring of composite structures

    Science.gov (United States)

    Stepinski, Tadeusz; Engholm, Marcus

    2008-03-01

    Phased array with all-azimuth angle coverage would be extremely useful in structural health monitoring (SHM) of planar structures. One method to achieve the 360° coverage is to use uniform circular arrays (UCAs). In this paper we present the concept of UCA adapted for SHM applications. We start from a brief presentation of UCA beamformers based on the principle of phase mode excitation. UCA performance is illustrated by the results of beamformer simulations performed for the narrowband and wideband ultrasonic signals. Preliminary experimental results obtained with UCA used for the reception of ultrasonic signals propagating in an aluminum plate are also presented.

  9. Feature Comparison in Structural Health Monitoring of a Vehicle Crane

    Directory of Open Access Journals (Sweden)

    J. Kullaa

    2008-01-01

    Full Text Available Vibration-based structural health monitoring of a vehicle crane was studied. The performance of different features to detect damage was investigated after eliminating the normal operational variations using factor analysis. Using eight accelerometers, ten AR parameters from each record were identified for damage detection. Also transmissibilities between sensors were estimated. Damage was introduced with additional masses at different locations of the structure. All damage cases could be detected from either features using control charts, but transmissibilities proved to be more sensitive to damage than the AR coefficients.

  10. Improvements to the Ionizing Radiation Risk Assessment Program for NASA Astronauts

    Science.gov (United States)

    Semones, E. J.; Bahadori, A. A.; Picco, C. E.; Shavers, M. R.; Flores-McLaughlin, J.

    2011-01-01

    To perform dosimetry and risk assessment, NASA collects astronaut ionizing radiation exposure data from space flight, medical imaging and therapy, aviation training activities and prior occupational exposure histories. Career risk of exposure induced death (REID) from radiation is limited to 3 percent at a 95 percent confidence level. The Radiation Health Office at Johnson Space Center (JSC) is implementing a program to integrate the gathering, storage, analysis and reporting of astronaut ionizing radiation dose and risk data and records. This work has several motivations, including more efficient analyses and greater flexibility in testing and adopting new methods for evaluating risks. The foundation for these improvements is a set of software tools called the Astronaut Radiation Exposure Analysis System (AREAS). AREAS is a series of MATLAB(Registered TradeMark)-based dose and risk analysis modules that interface with an enterprise level SQL Server database by means of a secure web service. It communicates with other JSC medical and space weather databases to maintain data integrity and consistency across systems. AREAS is part of a larger NASA Space Medicine effort, the Mission Medical Integration Strategy, with the goal of collecting accurate, high-quality and detailed astronaut health data, and then securely, timely and reliably presenting it to medical support personnel. The modular approach to the AREAS design accommodates past, current, and future sources of data from active and passive detectors, space radiation transport algorithms, computational phantoms and cancer risk models. Revisions of the cancer risk model, new radiation detection equipment and improved anthropomorphic computational phantoms can be incorporated. Notable hardware updates include the Radiation Environment Monitor (which uses Medipix technology to report real-time, on-board dosimetry measurements), an updated Tissue-Equivalent Proportional Counter, and the Southwest Research Institute

  11. Toward flexible and wearable human-interactive health-monitoring devices.

    Science.gov (United States)

    Takei, Kuniharu; Honda, Wataru; Harada, Shingo; Arie, Takayuki; Akita, Seiji

    2015-03-11

    This Progress Report introduces flexible wearable health-monitoring devices that interact with a person by detecting from and stimulating the body. Interactive health-monitoring devices should be highly flexible and attach to the body without awareness like a bandage. This type of wearable health-monitoring device will realize a new class of electronics, which will be applicable not only to health monitoring, but also to other electrical devices. However, to realize wearable health-monitoring devices, many obstacles must be overcome to economically form the active electrical components on a flexible substrate using macroscale fabrication processes. In particular, health-monitoring sensors and curing functions need to be integrated. Here recent developments and advancements toward flexible health-monitoring devices are presented, including conceptual designs of human-interactive devices.

  12. Smart coatings for health monitoring and nondestructive evaluation (Invited Paper)

    Science.gov (United States)

    Bencic, Timothy J.; Eldridge, Jeffrey I.

    2005-05-01

    Luminescent coatings applications have been increased dramatically over the last decade as imaging capacities have advanced. These coatings have been used to monitor surface temperature and air pressure (oxygen sensing) in testing facilities around the world. Through the commercial suppliers of these coatings, custom assembled hardware systems and especially data reduction and analysis software, the use of smart luminescent coatings are starting to find their way in to inspection monitoring and nondestructive evaluation testing. The use of a temperature sensitive paint for example, can be a potential replacement for infrared imaging where IR techniques are limited due to access, reflections and complex geometries. Detection of the luminescent signal can use simple intensity ratio methods with synchronized pulsing systems to capture frequency responses in imaging applications. Time or frequency methods allow signals to be detected in the presence of high background noise that allow measurements that were previously unobtainable. This paper describes general luminescent sensors, detection methods and examples of coatings that are applied over test examples or embedded in materials to measure or monitor the health of a specimen.

  13. HISTORIC BIM: A NEW REPOSITORY FOR STRUCTURAL HEALTH MONITORING

    Directory of Open Access Journals (Sweden)

    F. Banfi

    2017-05-01

    Full Text Available Recent developments in Building Information Modelling (BIM technologies are facilitating the management of historic complex structures using new applications. This paper proposes a generative method combining the morphological and typological aspects of the historic buildings (H-BIM, with a set of monitoring information. This combination of 3D digital survey, parametric modelling and monitoring datasets allows for the development of a system for archiving and visualizing structural health monitoring (SHM data (Fig. 1. The availability of a BIM database allows one to integrate a different kind of data stored in different ways (e.g. reports, tables, graphs, etc. with a representation directly connected to the 3D model of the structure with appropriate levels of detail (LoD. Data can be interactively accessed by selecting specific objects of the BIM, i.e. connecting the 3D position of the sensors installed with additional digital documentation. Such innovative BIM objects, which form a new BIM family for SHM, can be then reused in other projects, facilitating data archiving and exploitation of data acquired and processed. The application of advanced modeling techniques allows for the reduction of time and costs of the generation process, and support cooperation between different disciplines using a central workspace. However, it also reveals new challenges for parametric software and exchange formats. The case study presented is the medieval bridge Azzone Visconti in Lecco (Italy, in which multi-temporal vertical movements during load testing were integrated into H-BIM.

  14. Historic Bim: a New Repository for Structural Health Monitoring

    Science.gov (United States)

    Banfi, F.; Barazzetti, L.; Previtali, M.; Roncoroni, F.

    2017-05-01

    Recent developments in Building Information Modelling (BIM) technologies are facilitating the management of historic complex structures using new applications. This paper proposes a generative method combining the morphological and typological aspects of the historic buildings (H-BIM), with a set of monitoring information. This combination of 3D digital survey, parametric modelling and monitoring datasets allows for the development of a system for archiving and visualizing structural health monitoring (SHM) data (Fig. 1). The availability of a BIM database allows one to integrate a different kind of data stored in different ways (e.g. reports, tables, graphs, etc.) with a representation directly connected to the 3D model of the structure with appropriate levels of detail (LoD). Data can be interactively accessed by selecting specific objects of the BIM, i.e. connecting the 3D position of the sensors installed with additional digital documentation. Such innovative BIM objects, which form a new BIM family for SHM, can be then reused in other projects, facilitating data archiving and exploitation of data acquired and processed. The application of advanced modeling techniques allows for the reduction of time and costs of the generation process, and support cooperation between different disciplines using a central workspace. However, it also reveals new challenges for parametric software and exchange formats. The case study presented is the medieval bridge Azzone Visconti in Lecco (Italy), in which multi-temporal vertical movements during load testing were integrated into H-BIM.

  15. Logic-centered architecture for ubiquitous health monitoring.

    Science.gov (United States)

    Lewandowski, Jacek; Arochena, Hisbel E; Naguib, Raouf N G; Chao, Kuo-Ming; Garcia-Perez, Alexeis

    2014-09-01

    One of the key points to maintain and boost research and development in the area of smart wearable systems (SWS) is the development of integrated architectures for intelligent services, as well as wearable systems and devices for health and wellness management. This paper presents such a generic architecture for multiparametric, intelligent and ubiquitous wireless sensing platforms. It is a transparent, smartphone-based sensing framework with customizable wireless interfaces and plug'n'play capability to easily interconnect third party sensor devices. It caters to wireless body, personal, and near-me area networks. A pivotal part of the platform is the integrated inference engine/runtime environment that allows the mobile device to serve as a user-adaptable personal health assistant. The novelty of this system lays in a rapid visual development and remote deployment model. The complementary visual Inference Engine Editor that comes with the package enables artificial intelligence specialists, alongside with medical experts, to build data processing models by assembling different components and instantly deploying them (remotely) on patient mobile devices. In this paper, the new logic-centered software architecture for ubiquitous health monitoring applications is described, followed by a discussion as to how it helps to shift focus from software and hardware development, to medical and health process-centered design of new SWS applications.

  16. Autonomous health monitoring of a stiffened composite plate

    Science.gov (United States)

    Mal, Ajit K.; Banerjee, Sauvik; Ricci, Fabrizio; Monaco, Ernesto; Lecce, L.

    2006-03-01

    The paper presents a unified computer assisted automatic damage identification technique based on a damage index, associated with changes in the vibrational and wave propagation characteristics in damaged structures. An improved ultrasonic and vibration test setup consisting of distributed, high fidelity, intelligent, surface mounted sensor arrays is used to examine the change in the dynamical properties of realistic composite structural components with the appearance of damage. The sensors are assumed to provide both the low frequency global response (i.e., modal frequencies, mode shapes) of the structure to external loads and the (local) high frequency signals due to wave propagation effects in either passive or active mode of the ultrasonic array. Using the initial measurements performed on an undamaged structure as baseline, the damage indices are evaluated from the comparison of the frequency response of the monitored structure with an unknown damage. The technique is applied to identify impact damage in a woven stiffened composite plate that presents practical difficulties in transmitting waves across it due to scattering and other energy dissipation effects present in the material and the geometry of the structure. Moreover, a sensitivity analysis has been carried out in order to estimate a threshold value of the index below which no reliable information about the state of health of the structure can be achieved. The feasibility of developing a practical Intelligent Structural Health Monitoring (ISHM) System, based on the concept of "a structure requesting service when needed," is discussed.

  17. Implementation of a piezoelectric energy harvester in railway health monitoring

    Science.gov (United States)

    Li, Jingcheng; Jang, Shinae; Tang, Jiong

    2014-03-01

    With development of wireless sensor technology, wireless sensor network has shown a great potential for railway health monitoring. However, how to supply continuous power to the wireless sensor nodes is one of the critical issues in long-term full-scale deployment of the wireless smart sensors. Some energy harvesting methodologies have been available including solar, vibration, wind, etc; among them, vibration-based energy harvester using piezoelectric material showed the potential for converting ambient vibration energy to electric energy in railway health monitoring even for underground subway systems. However, the piezoelectric energy harvester has two major problems including that it could only generate small amount of energy, and that it should match the exact narrow band natural frequency with the excitation frequency. To overcome these problems, a wide band piezoelectric energy harvester, which could generate more power on various frequencies regions, has been designed and validated with experimental test. Then it was applied to a full-scale field test using actual railway train. The power generation of the wide band piezoelectric array has been compared to a narrow-band, resonant-based, piezoelectric energy harvester.

  18. Accelerated Aging Experiments for Capacitor Health Monitoring and Prognostics

    Science.gov (United States)

    Kulkarni, Chetan S.; Celaya, Jose Ramon; Biswas, Gautam; Goebel, Kai

    2012-01-01

    This paper discusses experimental setups for health monitoring and prognostics of electrolytic capacitors under nominal operation and accelerated aging conditions. Electrolytic capacitors have higher failure rates than other components in electronic systems like power drives, power converters etc. Our current work focuses on developing first-principles-based degradation models for electrolytic capacitors under varying electrical and thermal stress conditions. Prognostics and health management for electronic systems aims to predict the onset of faults, study causes for system degradation, and accurately compute remaining useful life. Accelerated life test methods are often used in prognostics research as a way to model multiple causes and assess the effects of the degradation process through time. It also allows for the identification and study of different failure mechanisms and their relationships under different operating conditions. Experiments are designed for aging of the capacitors such that the degradation pattern induced by the aging can be monitored and analyzed. Experimental setups and data collection methods are presented to demonstrate this approach.

  19. Carbon Nanotube-Based Structural Health Monitoring Sensors

    Science.gov (United States)

    Wincheski, Russell; Jordan, Jeffrey; Oglesby, Donald; Watkins, Anthony; Patry, JoAnne; Smits, Jan; Williams, Phillip

    2011-01-01

    Carbon nanotube (CNT)-based sensors for structural health monitoring (SHM) can be embedded in structures of all geometries to monitor conditions both inside and at the surface of the structure to continuously sense changes. These CNTs can be manipulated into specific orientations to create small, powerful, and flexible sensors. One of the sensors is a highly flexible sensor for crack growth detection and strain field mapping that features a very dense and highly ordered array of single-walled CNTs. CNT structural health sensors can be mass-produced, are inexpensive, can be packaged in small sizes (0.5 micron(sup 2)), require less power than electronic or piezoelectric transducers, and produce less waste heat per square centimeter than electronic or piezoelectric transducers. Chemically functionalized lithographic patterns are used to deposit and align the CNTs onto metallic electrodes. This method consistently produces aligned CNTs in the defined locations. Using photo- and electron-beam lithography, simple Cr/Au thin-film circuits are patterned onto oxidized silicon substrates. The samples are then re-patterned with a CNT-attracting, self-assembled monolayer of 3-aminopropyltriethoxysilane (APTES) to delineate the desired CNT locations between electrodes. During the deposition of the solution-suspended single- wall CNTs, the application of an electric field to the metallic contacts causes alignment of the CNTs along the field direction. This innovation is a prime candidate for smart skin technologies with applications ranging from military, to aerospace, to private industry.

  20. Passive and Active Sensing Technologies for Structural Health Monitoring

    Science.gov (United States)

    Do, Richard

    A combination of passive and active sensing technologies is proposed as a structural health monitoring solution for several applications. Passive sensing is differentiated from active sensing in that with the former, no energy is intentionally imparted into the structure under test; sensors are deployed in a pure detection mode for collecting data mined for structural health monitoring purposes. In this thesis, passive sensing using embedded fiber Bragg grating optical strain gages was used to detect varying degrees of impact damage using two different classes of features drawn from traditional spectral analysis and auto-regressive time series modeling. The two feature classes were compared in detail through receiver operating curve performance analysis. The passive detection problem was then augmented with an active sensing system using ultrasonic guided waves (UGWs). This thesis considered two main challenges associated with UGW SHM including in-situ wave propagation property determination and thermal corruption of data. Regarding determination of wave propagation properties, of which dispersion characteristics are the most important, a new dispersion curve extraction method called sparse wavenumber analysis (SWA) was experimentally validated. Also, because UGWs are extremely sensitive to ambient temperature changes on the structure, it significantly affects the wave propagation properties by causing large errors in the residual error in the processing of the UGWs from an array. This thesis presented a novel method that compensates for uniform temperature change by considering the magnitude and phase of the signal separately and applying a scalable transformation.

  1. Structural health monitoring feature design by genetic programming

    Science.gov (United States)

    Harvey, Dustin Y.; Todd, Michael D.

    2014-09-01

    Structural health monitoring (SHM) systems provide real-time damage and performance information for civil, aerospace, and other high-capital or life-safety critical structures. Conventional data processing involves pre-processing and extraction of low-dimensional features from in situ time series measurements. The features are then input to a statistical pattern recognition algorithm to perform the relevant classification or regression task necessary to facilitate decisions by the SHM system. Traditional design of signal processing and feature extraction algorithms can be an expensive and time-consuming process requiring extensive system knowledge and domain expertise. Genetic programming, a heuristic program search method from evolutionary computation, was recently adapted by the authors to perform automated, data-driven design of signal processing and feature extraction algorithms for statistical pattern recognition applications. The proposed method, called Autofead, is particularly suitable to handle the challenges inherent in algorithm design for SHM problems where the manifestation of damage in structural response measurements is often unclear or unknown. Autofead mines a training database of response measurements to discover information-rich features specific to the problem at hand. This study provides experimental validation on three SHM applications including ultrasonic damage detection, bearing damage classification for rotating machinery, and vibration-based structural health monitoring. Performance comparisons with common feature choices for each problem area are provided demonstrating the versatility of Autofead to produce significant algorithm improvements on a wide range of problems.

  2. Wireless Health Data Exchange for Home Healthcare Monitoring Systems

    Directory of Open Access Journals (Sweden)

    Malrey Lee

    2010-04-01

    Full Text Available Ubiquitous home healthcare systems have been playing an increasingly significant role in the treatment and management of chronic diseases, such as diabetes and hypertension, but progress has been hampered by the lack of standardization in the exchange of medical health care information. In an effort to establish standardization, this paper proposes a home healthcare monitoring system data exchange scheme between the HL7 standard and the IEEE1451 standard. IEEE1451 is a standard for special sensor networks, such as industrial control and smart homes, and defines a suite of interfaces that communicate among heterogeneous networks. HL7 is the standard for medical information exchange among medical organizations and medical personnel. While it provides a flexible data exchange in health care domains, it does not provide for data exchange with sensors. Thus, it is necessary to develop a data exchange schema to convert data between the HL7 and the IEEE1451 standard. This paper proposes a schema that can exchange data between HL7 devices and the monitoring device, and conforms to the IEEE 1451 standard. The experimental results and conclusions of this approach are presented and show the feasibility of the proposed exchange schema.

  3. Integrating social determinants of health in the universal health coverage monitoring framework.

    Science.gov (United States)

    Vega, Jeanette; Frenz, Patricia

    2013-12-01

    Underpinning the global commitment to universal health coverage (UHC) is the fundamental role of health for well-being and sustainable development. UHC is proposed as an umbrella health goal in the post-2015 sustainable development agenda because it implies universal and equitable effective delivery of comprehensive health services by a strong health system, aligned with multiple sectors around the shared goal of better health. In this paper, we argue that social determinants of health (SDH) are central to both the equitable pursuit of healthy lives and the provision of health services for all and, therefore, should be expressly incorporated into the framework for monitoring UHC. This can be done by: (a) disaggregating UHC indicators by different measures of socioeconomic position to reflect the social gradient and the complexity of social stratification; and (b) connecting health indicators, both outcomes and coverage, with SDH and policies within and outside of the health sector. Not locating UHC in the context of action on SDH increases the risk of going down a narrow route that limits the right to health to coverage of services and financial protection.

  4. Health Monitoring System Based on Intra-Body Communication

    Science.gov (United States)

    Razak, A. H. A.; Ibrahim, I. W.; Ayub, A. H.; Amri, M. F.; Hamzi, M. H.; Halim, A. K.; Ahmad, A.; Junid, S. A. M. Al

    2015-11-01

    This paper presents a model of a Body Area Network (BAN) health monitoring system based on Intra-Body Communication. Intra-body Communication (IBC) is a communication technique that uses the human body as a medium for electrical signal communication. One of the visions in the health care industry is to provide autonomous and continuous self and the remote health monitoring system. This can be achieved via BAN, LAN and WAN integration. The BAN technology itself consists of short range data communication modules, sensors, controller and actuators. The information can be transmitted to the LAN and WAN via the RF technology such as Bluetooth, ZigBee and ANT. Although the implementations of RF communication have been successful, there are still limitations in term of power consumption, battery lifetime, interferences and signal attenuations. One of the solutions for Medical Body Area Network (MBANs) to overcome these issues is by using an IBC technique because it can operate at lower frequencies and power consumption compared to the existing techniques. The first objective is to design the IBC's transmitter and receiver modules using the off the shelf components. The specifications of the modules such as frequency, data rate, modulation and demodulation coding system were defined. The individual module were designed and tested separately. The modules was integrated as an IBC system and tested for functionality then was implemented on PCB. Next objective is to model and implement the digital parts of the transmitter and receiver modules on the Altera's FPGA board. The digital blocks were interfaced with the FPGA's on board modules and the discrete components. The signals that have been received from the transmitter were converted into a proper waveform and it can be viewed via external devices such as oscilloscope and Labview. The signals such as heartbeats or pulses can also be displayed on LCD. In conclusion, the IBC project presents medical health monitoring model

  5. Health monitoring of pipeline girth weld using empirical mode decomposition

    Science.gov (United States)

    Rezaei, Davood; Taheri, Farid

    2010-05-01

    In the present paper the Hilbert-Huang transform (HHT), as a time-series analysis technique, has been combined with a local diagnostic approach in an effort to identify flaws in pipeline girth welds. This method is based on monitoring the free vibration signals of the pipe at its healthy and flawed states, and processing the signals through the HHT and its associated signal decomposition technique, known as empirical mode decomposition (EMD). The EMD method decomposes the vibration signals into a collection of intrinsic mode functions (IMFs). The deviations in structural integrity, measured from a healthy-state baseline, are subsequently evaluated by two damage sensitive parameters. The first is a damage index, referred to as the EM-EDI, which is established based on an energy comparison of the first or second IMF of the vibration signals, before and after occurrence of damage. The second parameter is the evaluation of the lag in instantaneous phase, a quantity derived from the HHT. In the developed methodologies, the pipe's free vibration is monitored by piezoceramic sensors and a laser Doppler vibrometer. The effectiveness of the proposed techniques is demonstrated through a set of numerical and experimental studies on a steel pipe with a mid-span girth weld, for both pressurized and nonpressurized conditions. To simulate a crack, a narrow notch is cut on one side of the girth weld. Several damage scenarios, including notches of different depths and at various locations on the pipe, are investigated. Results from both numerical and experimental studies reveal that in all damage cases the sensor located at the notch vicinity could successfully detect the notch and qualitatively predict its severity. The effect of internal pressure on the damage identification method is also monitored. Overall, the results are encouraging and promise the effectiveness of the proposed approaches as inexpensive systems for structural health monitoring purposes.

  6. Wireless Structural Sensing for Health Monitoring and Control Applications

    Science.gov (United States)

    Lynch, J. P.

    2003-12-01

    health monitoring) have been included in the unit's computational core. Additionally, an actuation interface has recently been added to the sensing unit design to allow for direct operation of structural actuators. With a computational core capable of real-time data processing, the data acquisition and actuation interfaces can be coupled through discrete-time feedback control loops implemented in software. Looking to the future, this intelligent monitoring infrastructure can possibly tune a structural control system in real-time after early warning of a pending seismic disturbance has been communicated to the wireless sensor network.

  7. Structural Health Monitoring of Composite Structures Using Fiber Optic Sensors

    Science.gov (United States)

    Whitaker, Anthony

    Structural health monitoring is the process of detecting damage to a structure, where damage can be characterized as changes to material/mechanical properties including but not limited to plastically deforming the material or the modification of connections. Fiber optic cables with fiber Bragg gratings have emerged as a reliable method of locally measuring strains within a structure. During the manufacturing of composite structures, the fiber optic cables can be embedded between lamina plies, allowing the ability to measure strain at discrete locations within the structure as opposed to electrical strain gauges, which must typically be applied to the surface only. The fiber optic sensors may be used to see if the local strain at the sensor location is beyond desired limits, or the array response may be mined to determine additional information about the loading applied to the structure. The work presented in this thesis is to present novel and potential applications of FBG sensors being used to assess the health of the structure. The first application is the dual application of the FBG sensor as a method to determine the strain around a bolt connection as well as the preload of the fastener using a single fiber optic sensor. The composite material around the bolted connections experience stress concentrations and are often the location of damage to the structure from operational cyclic loading over the lifetime of the structure. The degradation can occur more quickly if the fastener is insufficiently tight to transfer load properly. The second application is the ability to locate the impact location of a projectile with damaging and non-damaging energy. By locating and quantifying the damage, the sensor array provides the basis for a structural health monitoring system that has the potential to determine if the damage is extensive enough to replace, or if the part can be salvaged and retrofitted.

  8. Time-Frequency Methods for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Alexander L. Pyayt

    2014-03-01

    Full Text Available Detection of early warning signals for the imminent failure of large and complex engineered structures is a daunting challenge with many open research questions. In this paper we report on novel ways to perform Structural Health Monitoring (SHM of flood protection systems (levees, earthen dikes and concrete dams using sensor data. We present a robust data-driven anomaly detection method that combines time-frequency feature extraction, using wavelet analysis and phase shift, with one-sided classification techniques to identify the onset of failure anomalies in real-time sensor measurements. The methodology has been successfully tested at three operational levees. We detected a dam leakage in the retaining dam (Germany and “strange” behaviour of sensors installed in a Boston levee (UK and a Rhine levee (Germany.

  9. Air quality monitoring in NIS (SERBIA) and health impact assessment.

    Science.gov (United States)

    Nikic, Dragana; Bogdanovic, Dragan; Nikolic, Maja; Stankovic, Aleksandra; Zivkovic, Nenad; Djordjevic, Amelija

    2009-11-01

    The aim of this study is to indicate the significance of air quality monitoring and to determine the air quality fields for the assessment of air pollution health effects, with special attention to risk population. Radial basis function network was used for air quality index mapping. Between 1991 and 2005, on the territory of Nis, several epidemiological studies were performed on risk groups (pre-school children, school children, pregnant women and persons older than 65). The total number of subjects was 5837. The exposed group comprised individuals living in the areas with unhealthy AQI, while the control group comprised individuals living in city areas with good or moderate AQI. It was determined that even relatively low levels of air pollution had impact on respiratory system and the occurrence of anaemia, allergy and skin symptoms.

  10. Lamb wave propagation modeling for structure health monitoring

    Institute of Scientific and Technical Information of China (English)

    Xiaoyue ZHANG; Shenfang YUAN; Tong HAO

    2009-01-01

    This study aims to model the propagation of Lamb waves used in structure health monitoring. A number of different numerical computational techniques have been developed for wave propagation studies. The local interaction simulation approach, used for modeling sharp interfaces and discontinuities in complex media (LISA/SIM theory), has been effectively applied to numerical simulations of elastic wave interaction. This modeling is based on the local interaction simulation approach theory and is finally accomplished through the finite elements software Ansys11. In this paper, the Lamb waves propagating characteristics and the LISA/SIM theory are introduced. The finite difference equations describing wave propagation used in the LISA/SIM theory are obtained. Then, an anisotropic metallic plate model is modeled and a simulating Lamb waves signal is loaded on. Finally, the Lamb waves propagation modeling is implemented.

  11. Converting signals to knowledge in structural health monitoring systems

    Science.gov (United States)

    Brownjohn, James M. W.; Moyo, Pilate; Omenzetter, Piotr; Chakraboorty, Sushanta

    2005-04-01

    Academic approaches in structural health monitoring (SHM) usually focus on fine detail or on aspects of the technology such as sensors and data collection, and areas that may be less useful to operators than information about the level of performance of their structures. The steps in the process of SHM such as data management, data mining, conversion to knowledge of structural behaviour and integrity are frequently absent, and even the most operationally successful SHM systems may lack the component where deep understanding on the nature of the structure performance is obtained. This paper presents experience gained in a number of SHM exercises where static and dynamic response data have been interpreted, with or without the aid of calibrated structural models, in order to characterise the mechanisms at work and the experiences of the structure.

  12. Networked Computing in Wireless Sensor Networks for Structural Health Monitoring

    CERN Document Server

    Jindal, Apoorva

    2010-01-01

    This paper studies the problem of distributed computation over a network of wireless sensors. While this problem applies to many emerging applications, to keep our discussion concrete we will focus on sensor networks used for structural health monitoring. Within this context, the heaviest computation is to determine the singular value decomposition (SVD) to extract mode shapes (eigenvectors) of a structure. Compared to collecting raw vibration data and performing SVD at a central location, computing SVD within the network can result in significantly lower energy consumption and delay. Using recent results on decomposing SVD, a well-known centralized operation, into components, we seek to determine a near-optimal communication structure that enables the distribution of this computation and the reassembly of the final results, with the objective of minimizing energy consumption subject to a computational delay constraint. We show that this reduces to a generalized clustering problem; a cluster forms a unit on w...

  13. Damage detection and health monitoring of operational structures

    Energy Technology Data Exchange (ETDEWEB)

    James, G.; Mayes, R.; Carne, T.; Reese, G.

    1994-09-01

    Initial damage detection/health monitoring experiments have been performed on three different operational structures: a fracture critical bridge, a composite wind turbine blade, and an aging aircraft. An induced damage test was performed on the Rio Grande/I40 bridge before its demolition. The composite wind turbine test was fatgued to failure with periodic modal testing performed throughout the testing. The front fuselage of a DC-9 aircraft was used as the testbed for an induced damage test. These tests have yielded important insights into techniques for experimental damage detection on real structures. Additionally, the data are currently being used with current damage detection algorithms to further develop the numerical technology. State of the art testing technologies such as, high density modal testing, scanning laser vibrometry and natural excitation testing have also been utilized for these tests.

  14. Dynamic time warping for temperature compensation in structural health monitoring

    Science.gov (United States)

    Douglass, Alexander; Harley, Joel B.

    2017-02-01

    Guided wave structural health monitoring uses ultrasonic waves to identify changes in structures. To identify these changes, most guided wave methods require a pristine baseline measurement with which other measurements are compared. Damage signatures arise when there is a deviation between the baseline and the recorded measurement. However, temperature significantly complicates this analysis by creating misalignment between the baseline and measurements. This leads to false alarms of damage and significantly reduces the reliability of these systems. Several methods have been created to account for these temperature perturbations. Yet, most of these compensation methods fail in harsh, highly variable temperature conditions or require a prohibitive amount of prior data. In this paper, we use an algorithm known as dynamic time warping to compensate for temperature in these harsh conditions. We demonstrate that dynamic time warping is able to account for temperature variations whereas the more traditional baseline signal stretch method is unable to resolve damage under high temperature fluctuations.

  15. 3D Ultrasonic Wave Simulations for Structural Health Monitoring

    Science.gov (United States)

    Campbell, Leckey Cara A/; Miler, Corey A.; Hinders, Mark K.

    2011-01-01

    Structural health monitoring (SHM) for the detection of damage in aerospace materials is an important area of research at NASA. Ultrasonic guided Lamb waves are a promising SHM damage detection technique since the waves can propagate long distances. For complicated flaw geometries experimental signals can be difficult to interpret. High performance computing can now handle full 3-dimensional (3D) simulations of elastic wave propagation in materials. We have developed and implemented parallel 3D elastodynamic finite integration technique (3D EFIT) code to investigate ultrasound scattering from flaws in materials. EFIT results have been compared to experimental data and the simulations provide unique insight into details of the wave behavior. This type of insight is useful for developing optimized experimental SHM techniques. 3D EFIT can also be expanded to model wave propagation and scattering in anisotropic composite materials.

  16. Fiber Optic Thermal Health Monitoring of Aerospace Structures and Materials

    Science.gov (United States)

    Wu, Meng-Chou; Winfree, William P.; Allison, Sidney G.

    2009-01-01

    A new technique is presented for thermographic detection of flaws in materials and structures by performing temperature measurements with fiber Bragg gratings. Individual optical fibers with multiple Bragg gratings employed as surface temperature sensors were bonded to the surfaces of structures with subsurface defects or thickness variations. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. The data obtained from grating sensors were further analyzed with thermal modeling to reveal particular characteristics of the interested areas. These results were found to be consistent with those from conventional thermography techniques. Limitations of the technique were investigated using both experimental and numerical simulation techniques. Methods for performing in-situ structural health monitoring are discussed.

  17. Redirection of Lamb Waves for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    W. H. Ong

    2012-01-01

    Full Text Available Currently, structures are designed without structural health monitoring (SHM in mind. It is proposed that SHM should be addressed at the design stage of new structures. This paper explores the benefit which can be gained from such considerations. The scope encompasses Lamb-wave-based SHM and a given fatigue critical location (FCL. Optimization is performed using specialised ray tracing. A case study is carried out using a specimen that simulates a hard-to-inspect region in a fuel vent hole in wings structures of aircraft. This work will report on the potential use of the focussing of stress wave to improve detectability of defect in this hard-to-inspect location. Following optimization, results are produced numerically and experimentally. The results revealed sensitivity to damage is nearly doubled while minimum detectable damage size is significantly decreased. As a result, this study brings together an assortment of specialised tools to form a workflow ready for implementation.

  18. Predictive simulation of guide-wave structural health monitoring

    Science.gov (United States)

    Giurgiutiu, Victor

    2017-04-01

    This paper presents an overview of recent developments on predictive simulation of guided wave structural health monitoring (SHM) with piezoelectric wafer active sensor (PWAS) transducers. The predictive simulation methodology is based on the hybrid global local (HGL) concept which allows fast analytical simulation in the undamaged global field and finite element method (FEM) simulation in the local field around and including the damage. The paper reviews the main results obtained in this area by researchers of the Laboratory for Active Materials and Smart Structures (LAMSS) at the University of South Carolina, USA. After thematic introduction and research motivation, the paper covers four main topics: (i) presentation of the HGL analysis; (ii) analytical simulation in 1D and 2D; (iii) scatter field generation; (iv) HGL examples. The paper ends with summary, discussion, and suggestions for future work.

  19. Analysis of remote reflection spectroscopy to monitor plant health.

    Science.gov (United States)

    Woodhouse, R; Heeb, M; Berry, W; Hoshizaki, T; Wood, M

    1994-11-01

    Remote non-contact reflection spectroscopy is examined as a method for detecting stress in Controlled Ecological Life Support System CELSS type crops. Lettuce (Lactuca [correction of Latuca] Sativa L. cv. Waldmans Green) and wheat (Triticum Aestivum L. cv. Yecora Rojo) were grown hydroponically. Copper and zinc treatments provided toxic conditions. Nitrogen, phosphorous, and potassium treatments were used for deficiency conditions. Water stress was also induced in test plants. Reflectance spectra were obtained in the visible and near infrared (400nm to 2600nm) wavebands. Numerous effects of stress conditions can be observed in the collected spectra and this technique appears to have promise as a remote monitor of plant health, but significant research remains to be conducted to realize the promise.

  20. Review on pressure sensors for structural health monitoring

    Science.gov (United States)

    Sikarwar, Samiksha; Satyendra; Singh, Shakti; Yadav, B. C.

    2017-08-01

    This paper reports the state of art in a variety of pressure and the detailed study of various matrix based pressure sensors. The performances of the bridges, buildings, etc. are threatened by earthquakes, material degradations, and other environmental effects. Structural health monitoring (SHM) is crucial to protect the people and also for assets planning. This study is a contribution in developing the knowledge about self-sensing smart materials and structures for the construction industry. It deals with the study of self-sensing as well as mechanical and electrical properties of different matrices based on pressure sensors. The relationships among the compression, tensile strain, and crack length with electrical resistance change are also reviewed.

  1. Assessment of an Anomaly Detector for Jet Engine Health Monitoring

    Directory of Open Access Journals (Sweden)

    Sebastien Borguet

    2011-01-01

    Full Text Available The goal of module performance analysis is to reliably assess the health of the main components of an aircraft engine. A predictive maintenance strategy can leverage this information to increase operability and safety as well as to reduce costs. Degradation undergone by an engine can be divided into gradual deterioration and accidental events. Kalman filters have proven very efficient at tracking progressive deterioration but are poor performers in the face of abrupt events. Adaptive estimation is considered as an appropriate solution to this deficiency. This paper reports the evaluation of the detection capability of an adaptive diagnosis tool on the basis of simulated scenarios that may be encountered during the operation of a commercial turbofan engine. The diagnosis tool combines a Kalman filter and a secondary system that monitors the residuals. This auxiliary component implements a generalised likelihood ratio test in order to detect abrupt events.

  2. Inspection of Piezoceramic Transducers Used for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Inka Mueller

    2017-01-01

    Full Text Available The use of piezoelectric wafer active sensors (PWAS for structural health monitoring (SHM purposes is state of the art for acousto-ultrasonic-based methods. For system reliability, detailed information about the PWAS itself is necessary. This paper gives an overview on frequent PWAS faults and presents the effects of these faults on the wave propagation, used for active acousto-ultrasonics-based SHM. The analysis of the wave field is based on velocity measurements using a laser Doppler vibrometer (LDV. New and established methods of PWAS inspection are explained in detail, listing advantages and disadvantages. The electro-mechanical impedance spectrum as basis for these methods is discussed for different sensor faults. This way this contribution focuses on a detailed analysis of PWAS and the need of their inspection for an increased reliability of SHM systems.

  3. Analysis of remote reflectin spectroscopy to monitor plant health

    Science.gov (United States)

    Woodhouse, R.; Heeb, M.; Berry, W.; Hoshizaki, T.; Wood, M.

    1994-01-01

    Remote non-contact reflection spectroscopy is examined as a method for detecting stress in Controlled Ecological Life Support System (CELSS) type crops. Lettuce (Latuca Sativa L. cv. Waldmans Green) and wheat (Triticum Aestivum L. cv. Yecora Rojo) were grown hydroponically. Copper and zinc treatments provided toxic conditions. Nitrogen, phosphorous, and potassium treatments were used for deficiency conditions. Water stress was also induced in test plants. Reflectance spectra were obtained in the visible and near infrared (400nm to 2600nm) wavebands. Numerous effects of stress conditions can be observed in the collected spectra and this technique appears to have promise as a remote monitor of plant health, but significant research remains to be conducted to realize the promise.

  4. Analysis of remote reflection spectroscopy to monitor plant health

    Science.gov (United States)

    Woodhouse, R.; Heeb, M.; Berry, W.; Hoshizaki, T.; Wood, M.

    1994-11-01

    Remote non-contact reflection spectroscopy is examined as a method for detecting stress in Controlled Ecological Life Support System CELSS type crops. Lettuce (Latuca Sativa L. cv. Waldmans Green) and wheat (Triticum Aestivum L. cv. Yecora Rojo) were grown hydroponically. Copper and zinc treatments provided toxic conditions. Nitrogen, phosphorous, and potassium treatments were used for deficiency conditions. Water stress was also induced in test plants. Reflectance spectra were obtained in the visible and near infrared (400nm to 2600nm) wavebands. Numerous effects of stress conditions can be observed in the collected spectra and this technique appears to have promise as a remote monitor of plant health, but significant research remains to be conducted to realize the promise.

  5. On structural health monitoring of aircraft adhesively bonded repairs

    Science.gov (United States)

    Pavlopoulou, Sofia

    The recent interest in life extension of ageing aircraft and the need to address the repair challenges in the new age composite ones, led to the investigation of new repair methodologies such as adhesively bonded repair patches. The present thesis focuses on structural health monitoring aspects of the repairs, evaluating their performance with guided ultrasonic waves aiming to develop a monitoring strategy which would eliminate unscheduled maintenance and unnecessary inspection costs. To address the complex nature of the wave propagation phenomena, a finite element based model identified the existing challenges by exploring the interaction of the excitation waves with different levels of damage. The damage sensitivity of the first anti-symmetric mode was numerically investigated. An external bonded patch and a scarf repair, were further tested in static and dynamic loadings, and their performance was monitored with Lamb waves, excited by surface-bonded piezoelectric transducers.. The response was processed by means of advanced pattern recognition and data dimension reduction techniques such as novelty detection and principal component analysis. An optimisation of these tools enabled an accurate damage detection under complex conditions. The phenomena of mode isolation and precise arrival time determination under a noisy environment and the problem of inadequate training data were investigated and solved through appropriate transducer arrangements and advanced signal processing respectively. The applicability of the established techniques was demonstrated on an aluminium repaired helicopter tail stabilizer. Each case study utilised alternative non-destructive techniques for validation such as 3D digital image correlation, X-ray radiography and thermography. Finally a feature selection strategy was developed through the analysis of the instantaneous properties of guided waves for damage detection purposes..

  6. Smart Structures and Intelligent Systems for Health Monitoring and Diagnostics

    Directory of Open Access Journals (Sweden)

    M. A. El-Sherif

    2005-01-01

    Full Text Available “Smart and intelligent” structures are defined as structures capable of monitoring their own “health” condition and structural behavior, such structures are capable of sensing external environmental conditions, making decisions, and sending the information to other locations. Available conventional devices and systems are not technologically mature for such applications. New classes of miniature devices and networking systems are urgently needed for such applications. In this paper, two examples of the successful work achieved so far, in biomedical application of smart structures, are presented. The first one is based on the development of a smart bone fixation device for rehabilitation and treatment. This device includes a smart composite bar that can sense physical stress applied to the fractured bones, and send the information to the patient's physician remotely. The second is on the development of smart fabrics for many applications including health monitoring and diagnostics. Successful development of such smart fabrics with embedded fiber optic sensors and networks is mainly dependent on the development of the proper miniature sensor technology, and on the integration of these sensors into textile structures. The developed smart structures will be discussed and samples of the results will be presented.

  7. Mobile Personal Health System for Ambulatory Blood Pressure Monitoring

    Directory of Open Access Journals (Sweden)

    Luis J. Mena

    2013-01-01

    Full Text Available The ARVmobile v1.0 is a multiplatform mobile personal health monitor (PHM application for ambulatory blood pressure (ABP monitoring that has the potential to aid in the acquisition and analysis of detailed profile of ABP and heart rate (HR, improve the early detection and intervention of hypertension, and detect potential abnormal BP and HR levels for timely medical feedback. The PHM system consisted of ABP sensor to detect BP and HR signals and smartphone as receiver to collect the transmitted digital data and process them to provide immediate personalized information to the user. Android and Blackberry platforms were developed to detect and alert of potential abnormal values, offer friendly graphical user interface for elderly people, and provide feedback to professional healthcare providers via e-mail. ABP data were obtained from twenty-one healthy individuals (>51 years to test the utility of the PHM application. The ARVmobile v1.0 was able to reliably receive and process the ABP readings from the volunteers. The preliminary results demonstrate that the ARVmobile 1.0 application could be used to perform a detailed profile of ABP and HR in an ordinary daily life environment, bedsides of estimating potential diagnostic thresholds of abnormal BP variability measured as average real variability.

  8. Development of smart sensing system for structural health monitoring

    Science.gov (United States)

    Lu, Kung-Chun; Loh, Chin-Hsiung; Weng, Jian Huang

    2010-04-01

    The objective of this paper is to upgrade a wireless sensing unit which can meet the following requirements: 1) Improvement of system powering and analog signal processing 2) Enhancement of signal resolution and provide reliable wireless communication data, 3) Enhance capability for continuous long-term monitoring. Based on the prototype of the wireless sensing unit developed by Prof. Lynch at the Stanford University, the following upgrading steps are summarized: 1. Reduce system noise by using SMD passive elements and preventing the coupling digital and analog circuits, and increasing the capacity of power. 2. Improve the ADC sampling resolution and accuracy with a higher resolution Analog-to-Digital Converter (ADC): a 24bits ADC with programmable gain amplifier. 3. Improve wireless communication by using the wireless radio 9XTend which supported by the router (Digi MESH) communication function using 900MHz frequency band. Based on the upgrade wireless sensing unit, verification of the new wireless sensing unit was conducted from the ambient vibration survey of a base-isolated building. This new upgrade wireless sensing unit can provide more reliable data for continuous structural health monitoring. Incorporated with the identification software (modified stochastic subspace identification method) the smart sensing system for SHM is developed.

  9. Automated structural health monitoring based on adaptive kernel spectral clustering

    Science.gov (United States)

    Langone, Rocco; Reynders, Edwin; Mehrkanoon, Siamak; Suykens, Johan A. K.

    2017-06-01

    Structural health monitoring refers to the process of measuring damage-sensitive variables to assess the functionality of a structure. In principle, vibration data can capture the dynamics of the structure and reveal possible failures, but environmental and operational variability can mask this information. Thus, an effective outlier detection algorithm can be applied only after having performed data normalization (i.e. filtering) to eliminate external influences. Instead, in this article we propose a technique which unifies the data normalization and damage detection steps. The proposed algorithm, called adaptive kernel spectral clustering (AKSC), is initialized and calibrated in a phase when the structure is undamaged. The calibration process is crucial to ensure detection of early damage and minimize the number of false alarms. After the calibration, the method can automatically identify new regimes which may be associated with possible faults. These regimes are discovered by means of two complementary damage (i.e. outlier) indicators. The proposed strategy is validated with a simulated example and with real-life natural frequency data from the Z24 pre-stressed concrete bridge, which was progressively damaged at the end of a one-year monitoring period.

  10. Manufacturing of Wearable Sensors for Human Health and Performance Monitoring

    Science.gov (United States)

    Alizadeh, Azar

    2015-03-01

    Continuous monitoring of physiological and biological parameters is expected to improve performance and medical outcomes by assessing overall health status and alerting for life-saving interventions. Continuous monitoring of these parameters requires wearable devices with an appropriate form factor (lightweight, comfortable, low energy consuming and even single-use) to avoid disrupting daily activities thus ensuring operation relevance and user acceptance. Many previous efforts to implement remote and wearable sensors have suffered from high cost and poor performance, as well as low clinical and end-use acceptance. New manufacturing and system level design approaches are needed to make the performance and clinical benefits of these sensors possible while satisfying challenging economic, regulatory, clinical, and user-acceptance criteria. In this talk we will review several recent design and manufacturing efforts aimed at designing and building prototype wearable sensors. We will discuss unique opportunities and challenges provided by additive manufacturing, including 3D printing, to drive innovation through new designs, faster prototyping and manufacturing, distributed networks, and new ecosystems. We will also show alternative hybrid self-assembly based integration techniques for low cost large scale manufacturing of single use wearable devices. Coauthors: Prabhjot Singh and Jeffrey Ashe.

  11. Application of Machine Learning to Rotorcraft Health Monitoring

    Science.gov (United States)

    Cody, Tyler; Dempsey, Paula J.

    2017-01-01

    Machine learning is a powerful tool for data exploration and model building with large data sets. This project aimed to use machine learning techniques to explore the inherent structure of data from rotorcraft gear tests, relationships between features and damage states, and to build a system for predicting gear health for future rotorcraft transmission applications. Classical machine learning techniques are difficult, if not irresponsible to apply to time series data because many make the assumption of independence between samples. To overcome this, Hidden Markov Models were used to create a binary classifier for identifying scuffing transitions and Recurrent Neural Networks were used to leverage long distance relationships in predicting discrete damage states. When combined in a workflow, where the binary classifier acted as a filter for the fatigue monitor, the system was able to demonstrate accuracy in damage state prediction and scuffing identification. The time dependent nature of the data restricted data exploration to collecting and analyzing data from the model selection process. The limited amount of available data was unable to give useful information, and the division of training and testing sets tended to heavily influence the scores of the models across combinations of features and hyper-parameters. This work built a framework for tracking scuffing and fatigue on streaming data and demonstrates that machine learning has much to offer rotorcraft health monitoring by using Bayesian learning and deep learning methods to capture the time dependent nature of the data. Suggested future work is to implement the framework developed in this project using a larger variety of data sets to test the generalization capabilities of the models and allow for data exploration.

  12. Ferroelectric thin-film active sensors for structural health monitoring

    Science.gov (United States)

    Lin, Bin; Giurgiutiu, Victor; Yuan, Zheng; Liu, Jian; Chen, Chonglin; Jiang, Jiechao; Bhalla, Amar S.; Guo, Ruyan

    2007-04-01

    Piezoelectric wafer active sensors (PWAS) have been proven a valuable tool in structural health monitoring. Piezoelectric wafer active sensors are able to send and receive guided Lamb/Rayleigh waves that scan the structure and detect the presence of incipient cracks and structural damage. In-situ thin-film active sensor deposition can eliminate the bonding layer to improve the durability issue and reduce the acoustic impedance mismatch. Ferroelectric thin films have been shown to have piezoelectric properties that are close to those of single-crystal ferroelectrics but the fabrication of ferroelectric thin films on structural materials (steel, aluminum, titanium, etc.) has not been yet attempted. In this work, in-situ fabrication method of piezoelectric thin-film active sensors arrays was developed using the nano technology approach. Specification for the piezoelectric thin-film active sensors arrays was based on electro-mechanical-acoustical model. Ferroelectric BaTiO3 (BTO) thin films were successfully deposited on Ni tapes by pulsed laser deposition under the optimal synthesis conditions. Microstructural studies by X-ray diffractometer and transmission electron microscopy reveal that the as-grown BTO thin films have the nanopillar structures with an average size of approximately 80 nm in diameter and the good interface structures with no inter-diffusion or reaction. The dielectric and ferroelectric property measurements exhibit that the BTO films have a relatively large dielectric constant, a small dielectric loss, and an extremely large piezoelectric response with a symmetric hysteresis loop. The research objective is to develop the fabrication and optimum design of thin-film active sensor arrays for structural health monitoring applications. The short wavelengths of the micro phased arrays will permit the phased-array imaging of smaller parts and smaller damage than is currently not possible with existing technology.

  13. Autonomus I&C Maintenance and Health Monitoring System for Fission Surface Power Project

    Data.gov (United States)

    National Aeronautics and Space Administration — There currently exists no end-to-end reactor/power conversion monitoring system that can provide both autonomous health monitoring, but also in-situ sensor...

  14. Monitoring hemlock crown health in Delaware Water Gap National Recreation Area

    Science.gov (United States)

    Michael E. Montgomery; Bradley Onken; Richard A. Evans; Richard A. Evans

    2005-01-01

    Decline of the health of hemlocks in Delaware Water Gap National Recreation Area was noticeable in the southern areas of the park by 1992. The following year, a series of plots were established to monitor hemlock health and the abundance of hemlock woolly adelgid. This poster examines only the health rating of the hemlocks in the monitoring plots.

  15. Official portrait of astronaut Robert C. Springer

    Science.gov (United States)

    1988-01-01

    Official portrait of astronaut Robert C. Springer, United Stated Marine Corps (USMC) Colonel, member of Astronaut Class 9 (1980), and mission specialist. Springer wears launch and entry suit (LES) while holding helmet.

  16. Real-time Monitoring of our Warfighters Health State: The Good, The Bad, and The Ugly

    Science.gov (United States)

    2008-04-05

    time Monitoring of our Warfighters Health State: The Good , The Bad , and The Ugly 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...Status Physiological Monitor Concept 98 The GOOD Technologies & a solution framework have been greatly advanced. Health state monitoring is no...Medical Monitoring Telemetry System – In Action Results – Physiology, Real Time Display Th e GO OD The BAD Unique challenges make the creation and

  17. Home health monitoring – EyKos HealthHub (product design concept)

    OpenAIRE

    Phillips, Mark; Dulake, Nick; Willox, Matt; Gwilt, Ian; Craig, Claire; Auton, Kevin

    2015-01-01

    This work focused on creating a product design concept for a home health monitoring system, known as EyKos HealthHub, which is intended to be a ‘crossover product’ in the emerging medical/consumer product space. Working collaboratively with Aseptika Ltd, the team carried out product concept design and interaction design for the EyKos system, and undertook further design and prototyping work to create an object for use in research. Aseptika is carrying out technical development of this project...

  18. New smart materials to address issues of structural health monitoring.

    Energy Technology Data Exchange (ETDEWEB)

    Chaplya, Pavel Mikhail

    2004-12-01

    Nuclear weapons and their storage facilities may benefit from in-situ structural health monitoring systems. Appending health-monitoring functionality to conventional materials and structures has been only marginally successful. The purpose of this project was to evaluate feasibility of a new smart material that includes self-sensing health monitoring functions similar to that of a nervous system of a living organism. Reviews of current efforts in the fields of heath-monitoring, nanotechnology, micro-electromechanical systems (MEMS), and wireless sensor networks were conducted. Limitations of the current nanotechnology methods were identified and new approaches were proposed to accelerate the development of self-sensing materials. Wireless networks of MEMS sensors have been researched as possible prototypes of self-sensing materials. Sensor networks were also examined as enabling technologies for dense data collection techniques to be used for validation of numerical methods and material parameter identification. Each grain of the envisioned material contains sensors that are connected in a dendritic manner similar to networks of neurons in a nervous system. Each sensor/neuron can communicate with the neighboring grains. Both the state of the sensor (on/off) and the quality of communication signal (speed/amplitude) should indicate not only a presence of a structural defect but the nature of the defect as well. For example, a failed sensor may represent a through-grain crack, while a lost or degraded communication link may represent an inter-granular crack. A technology to create such material does not exist. While recent progress in the fields of MEMS and nanotechnology allows to envision these new smart materials, it is unrealistic to expect creation of self-sensing materials in the near future. The current state of MEMS, nanotechnology, communication, sensor networks, and data processing technologies indicates that it will take more than ten years for the

  19. Health Monitoring Survey of Bell 412EP Transmissions

    Science.gov (United States)

    Tucker, Brian E.; Dempsey, Paula J.

    2016-01-01

    Health and usage monitoring systems (HUMS) use vibration-based Condition Indicators (CI) to assess the health of helicopter powertrain components. A fault is detected when a CI exceeds its threshold value. The effectiveness of fault detection can be judged on the basis of assessing the condition of actual components from fleet aircraft. The Bell 412 HUMS-equipped helicopter is chosen for such an evaluation. A sample of 20 aircraft included 12 aircraft with confirmed transmission and gearbox faults (detected by CIs) and eight aircraft with no known faults. The associated CI data is classified into "healthy" and "faulted" populations based on actual condition and these populations are compared against their CI thresholds to quantify the probability of false alarm and the probability of missed detection. Receiver Operator Characteristic analysis is used to optimize thresholds. Based on the results of the analysis, shortcomings in the classification method are identified for slow-moving CI trends. Recommendations for improving classification using time-dependent receiver-operator characteristic methods are put forth. Finally, lessons learned regarding OEM-operator communication are presented.

  20. Distributed Health Monitoring System for Reusable Liquid Rocket Engines

    Science.gov (United States)

    Lin, C. F.; Figueroa, F.; Politopoulos, T.; Oonk, S.

    2009-01-01

    The ability to correctly detect and identify any possible failure in the systems, subsystems, or sensors within a reusable liquid rocket engine is a major goal at NASA John C. Stennis Space Center (SSC). A health management (HM) system is required to provide an on-ground operation crew with an integrated awareness of the condition of every element of interest by determining anomalies, examining their causes, and making predictive statements. However, the complexity associated with relevant systems, and the large amount of data typically necessary for proper interpretation and analysis, presents difficulties in implementing complete failure detection, identification, and prognostics (FDI&P). As such, this paper presents a Distributed Health Monitoring System for Reusable Liquid Rocket Engines as a solution to these problems through the use of highly intelligent algorithms for real-time FDI&P, and efficient and embedded processing at multiple levels. The end result is the ability to successfully incorporate a comprehensive HM platform despite the complexity of the systems under consideration.

  1. Intelligent Wireless Sensor Networks for System Health Monitoring

    Science.gov (United States)

    Alena, Rick

    2011-01-01

    Wireless sensor networks (WSN) based on the IEEE 802.15.4 Personal Area Network (PAN) standard are finding increasing use in the home automation and emerging smart energy markets. The network and application layers, based on the ZigBee 2007 Standard, provide a convenient framework for component-based software that supports customer solutions from multiple vendors. WSNs provide the inherent fault tolerance required for aerospace applications. The Discovery and Systems Health Group at NASA Ames Research Center has been developing WSN technology for use aboard aircraft and spacecraft for System Health Monitoring of structures and life support systems using funding from the NASA Engineering and Safety Center and Exploration Technology Development and Demonstration Program. This technology provides key advantages for low-power, low-cost ancillary sensing systems particularly across pressure interfaces and in areas where it is difficult to run wires. Intelligence for sensor networks could be defined as the capability of forming dynamic sensor networks, allowing high-level application software to identify and address any sensor that joined the network without the use of any centralized database defining the sensors characteristics. The IEEE 1451 Standard defines methods for the management of intelligent sensor systems and the IEEE 1451.4 section defines Transducer Electronic Datasheets (TEDS), which contain key information regarding the sensor characteristics such as name, description, serial number, calibration information and user information such as location within a vehicle. By locating the TEDS information on the wireless sensor itself and enabling access to this information base from the application software, the application can identify the sensor unambiguously and interpret and present the sensor data stream without reference to any other information. The application software is able to read the status of each sensor module, responding in real-time to changes of

  2. Locomotor problems of supersonic aviation and astronautics.

    Science.gov (United States)

    Remes, P

    1989-04-01

    Modern high-speed aviation and space flight are fraught with many problems and require a high standard of health and fitness. Those responsible for the health of pilots must appreciate the importance of early diagnosis even before symptoms appear. This is particularly true in terms of preventing spinal injuries where even a single Schmorl's node may make a pilot unfit for high-speed flying. Spinal fractures are frequent during emergency ejection and landing. Helicopter crews are particularly prone to spinal disc degeneration due to vibration. By effective lowering of vibration by changes in the seats, a reduction in such lesions is possible. The osteoporosis and muscle atrophy occurring among astronauts subjected to prolonged weightlessness can be prevented by regular physical exercises.

  3. Hybrid Nanostructured Textile Bioelectrode for Unobtrusive Health Monitoring

    Science.gov (United States)

    Rai, Pratyush

    Coronary heart disease, cardiovascular diseases and strokes are the leading causes of mortality in United States of America. Timely point-of-care health diagnostics and therapeutics for person suffering from these diseases can save thousands of lives. However, lack of accessible minimally intrusive health monitoring systems makes timely diagnosis difficult and sometimes impossible. To remedy this problem, a textile based nano-bio-sensor was developed and evaluated in this research. The sensor was made of novel array of vertically standing nanostructures that are conductive nano-fibers projecting from a conductive fabric. These sensor electrodes were tested for the quality of electrical contact that they made with the skin based on the fundamental skin impedance model and electromagnetic theory. The hybrid nanostructured dry electrodes provided large surface area and better contact with skin that improved electrode sensitivity and reduced the effect of changing skin properties, which are the problems usually faced by conventional dry textile electrodes. The dry electrodes can only register strong physiological signals because of high background noise levels, thus limiting the use of existing dry electrodes to heart rate measurement and respiration. Therefore, dry electrode systems cannot be used for recording complete ECG waveform, EEG or measurement of bioimpedance. Because of their improved sensitivity these hybrid nanostructured dry electrodes can be applied to measurement of ECG and bioimpedance with very low baseline noise. These textile based electrodes can be seamlessly integrated into garments of daily use such as vests and bra. In combination with embedded wireless network device that can communicate with smart phone, laptop or GPRS, they can function as wearable wireless health diagnostic systems.

  4. Astronaut Office Scheduling System Software

    Science.gov (United States)

    Brown, Estevancio

    2010-01-01

    AOSS is a highly efficient scheduling application that uses various tools to schedule astronauts weekly appointment information. This program represents an integration of many technologies into a single application to facilitate schedule sharing and management. It is a Windows-based application developed in Visual Basic. Because the NASA standard office automation load environment is Microsoft-based, Visual Basic provides AO SS developers with the ability to interact with Windows collaboration components by accessing objects models from applications like Outlook and Excel. This also gives developers the ability to create newly customizable components that perform specialized tasks pertaining to scheduling reporting inside the application. With this capability, AOSS can perform various asynchronous tasks, such as gathering/ sending/ managing astronauts schedule information directly to their Outlook calendars at any time.

  5. Metabolic changes observed in astronauts

    Science.gov (United States)

    Leach, Carolyn S.; Cintron, N. M.; Krauhs, J. M.

    1991-01-01

    Results of medical experiments with astronauts reveal rapid loss of volume (2 l) from the legs and a transient early increase in left ventricular volume index. These findings indicate that, during space flight, fluid is redistributed from the legs toward the head. In about 2 days, total body water decreases 2 to 3 percent. Increased levels of plasma renin activity and antidiuretic hormone while blood sodium and plasma volume are reduced suggest that space flight-associated factors are influencing the regulatory systems. In addition to fluid and electrolyte loss, Skylab astronauts lost an estimated 0.3 kg of protein. Endocrine factors, including increased cortisol and thyroxine and decreased insulin, are favorable for protein catabolism. The body appears to adapt to weightlessness at some physiologic cost. Readaptation to earth's gravity at landing becomes another physiologic challenge.

  6. Flexible High Energy-Conversion Sensing Materials for Structural Health Monitoring Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The applicant is developing flexible highly-efficient piezoelectric materials for use in structural health monitoring (SHM) as contemplated in the solicitation...

  7. Highly Reliable Structural Health Monitoring of Smart Composite Vanes for Jet Engine Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Intelligent Fiber Optic Systems and Auburn University propose a Fiber Bragg Grating (FBG) integrated Structural Health Monitoring (SHM) sensor system capable of...

  8. Highly Reliable Structural Health Monitoring of Smart Composite Vanes for Jet Engine Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase 1, Intelligent Fiber Optic Systems (IFOS) successfully demonstrated a Fiber Bragg Grating (FBG) based integrated Structural Health Monitoring (SHM) sensor...

  9. Structural Health Monitoring with Fiber Bragg Grating and Piezo Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — IFOS and its research institute collaborator, Washington State University (WSU), have demonstrated feasibility of a structural health monitoring (SHM) system for...

  10. A methodological review of piezoelectric based acoustic wave generation and detection techniques for structural health monitoring

    National Research Council Canada - National Science Library

    Sun, Z; Rocha, B; Wu, K.-T; Mrad, N

    2013-01-01

    .... As condition based maintenance has emerged as a valuable approach to enhancing continued aircraft airworthiness while reducing the life cycle cost, its enabling structural health monitoring (SHM...

  11. Astronautics in an integrating world

    Science.gov (United States)

    Hansson, A.

    If Astronautics is to survive it is necessary to introduce a space transportation system that is designed not on political assessment but on engineering. It is also necessary to establish an international certification unit and separate security issues. With such a framework, it should be possible to look forward to space industrialisation as the fourth industrialisation via space power and tourism in Low Earth Orbit. This would follow the integration already at hand from space based communication.

  12. Methodology for astronaut reconditioning research.

    Science.gov (United States)

    Beard, David J; Cook, Jonathan A

    2017-01-01

    Space medicine offers some unique challenges, especially in terms of research methodology. A specific challenge for astronaut reconditioning involves identification of what aspects of terrestrial research methodology hold and which require modification. This paper reviews this area and presents appropriate solutions where possible. It is concluded that spaceflight rehabilitation research should remain question/problem driven and is broadly similar to the terrestrial equivalent on small populations, such as rare diseases and various sports. Astronauts and Medical Operations personnel should be involved at all levels to ensure feasibility of research protocols. There is room for creative and hybrid methodology but careful systematic observation is likely to be more achievable and fruitful than complex trial based comparisons. Multi-space agency collaboration will be critical to pool data from small groups of astronauts with the accepted use of standardised outcome measures across all agencies. Systematic reviews will be an essential component. Most limitations relate to the inherent small sample size available for human spaceflight research. Early adoption of a co-operative model for spaceflight rehabilitation research is therefore advised.

  13. Latent Herpes Viruses Reactivation in Astronauts

    Science.gov (United States)

    Mehta, Satish K.; Pierson, Duane L.

    2008-01-01

    Space flight has many adverse effects on human physiology. Changes in multiple systems, including the cardiovascular, musculoskeletal, neurovestibular, endocrine, and immune systems have occurred (12, 32, 38, 39). Alterations in drug pharmacokinetics and pharmacodynamics (12), nutritional needs (31), renal stone formation (40), and microbial flora (2) have also been reported. Evidence suggests that the magnitude of some changes may increase with time in space. A variety of changes in immunity have been reported during both short (.16 days) and long (>30 days) space missions. However, it is difficult to determine the medical significance of these immunological changes in astronauts. Astronauts are in excellent health and in superb physical condition. Illnesses in astronauts during space flight are not common, are generally mild, and rarely affect mission objectives. In an attempt to clarify this issue, we identified the latent herpes viruses as medically important indicators of the effects of space flight on immunity. This chapter demonstrates that space flight leads to asymptomatic reactivation of latent herpes viruses, and proposes that this results from marked changes in neuroendocrine function and immunity caused by the inherent stressfullness of human space flight. Astronauts experience uniquely stressful environments during space flight. Potential stressors include confinement in an unfamiliar, crowded environment, isolation, separation from family, anxiety, fear, sleep deprivation, psychosocial issues, physical exertion, noise, variable acceleration forces, increased radiation, and others. Many of these are intermittent and variable in duration and intensity, but variable gravity forces (including transitions from launch acceleration to microgravity and from microgravity to planetary gravity) and variable radiation levels are part of each mission and contribute to a stressful environment that cannot be duplicated on Earth. Radiation outside the Earth

  14. Active sensors for health monitoring of aging aerospace structures

    Energy Technology Data Exchange (ETDEWEB)

    GIURGIUTIU,VICTOR; REDMOND,JAMES M.; ROACH,DENNIS P.; RACKOW,KIRK A.

    2000-02-29

    A project to develop non-intrusive active sensors that can be applied on existing aging aerospace structures for monitoring the onset and progress of structural damage (fatigue cracks and corrosion) is presented. The state of the art in active sensors structural health monitoring and damage detection is reviewed. Methods based on (a) elastic wave propagation and (b) electro-mechanical (E/M) impedance technique are cited and briefly discussed. The instrumentation of these specimens with piezoelectric active sensors is illustrated. The main detection strategies (E/M impedance for local area detection and wave propagation for wide area interrogation) are discussed. The signal processing and damage interpretation algorithms are tuned to the specific structural interrogation method used. In the high-frequency E/M impedance approach, pattern recognition methods are used to compare impedance signatures taken at various time intervals and to identify damage presence and progression from the change in these signatures. In the wave propagation approach, the acousto-ultrasonic methods identifying additional reflection generated from the damage site and changes in transmission velocity and phase are used. Both approaches benefit from the use of artificial intelligence neural networks algorithms that can extract damage features based on a learning process. Design and fabrication of a set of structural specimens representative of aging aerospace structures is presented. Three built-up specimens (pristine, with cracks, and with corrosion damage) are used. The specimen instrumentation with active sensors fabricated at the University of South Carolina is illustrated. Preliminary results obtained with the E/M impedance method on pristine and cracked specimens are presented.

  15. Advanced instrumentation for acousto-ultrasonic based structural health monitoring

    Science.gov (United States)

    Smithard, Joel; Galea, Steve; van der Velden, Stephen; Powlesland, Ian; Jung, George; Rajic, Nik

    2016-04-01

    Structural health monitoring (SHM) systems using structurally-integrated sensors potentially allow the ability to inspect for damage in aircraft structures on-demand and could provide a basis for the development of condition-based maintenance approaches for airframes. These systems potentially offer both substantial cost savings and performance improvements over conventional nondestructive inspection (NDI). Acousto-ultrasonics (AU), using structurallyintegrated piezoelectric transducers, offers a promising basis for broad-field damage detection in aircraft structures. For these systems to be successfully applied in the field the hardware for AU excitation and interrogation needs to be easy to use, compact, portable, light and, electrically and mechanically robust. Highly flexible and inexpensive instrumentation for basic background laboratory investigations is also required to allow researchers to tackle the numerous scientific and engineering issues associated with AU based SHM. The Australian Defence Science and Technology Group (DST Group) has developed the Acousto Ultrasonic Structural health monitoring Array Module (AUSAM+), a compact device for AU excitation and interrogation. The module, which has the footprint of a typical current generation smart phone, provides autonomous control of four send and receive piezoelectric elements, which can operate in pitch-catch or pulse-echo modes and can undertake electro-mechanical impedance measurements for transducer and structural diagnostics. Modules are designed to operate synchronously with other units, via an optical link, to accommodate larger transducer arrays. The module also caters for fibre optic sensing of acoustic waves with four intensity-based optical inputs. Temperature and electrical resistance strain gauge inputs as well as external triggering functionality are also provided. The development of a Matlab hardware object allows users to easily access the full hardware functionality of the device and

  16. Feature and Statistical Model Development in Structural Health Monitoring

    Science.gov (United States)

    Kim, Inho

    All structures suffer wear and tear because of impact, excessive load, fatigue, corrosion, etc. in addition to inherent defects during their manufacturing processes and their exposure to various environmental effects. These structural degradations are often imperceptible, but they can severely affect the structural performance of a component, thereby severely decreasing its service life. Although previous studies of Structural Health Monitoring (SHM) have revealed extensive prior knowledge on the parts of SHM processes, such as the operational evaluation, data processing, and feature extraction, few studies have been conducted from a systematical perspective, the statistical model development. The first part of this dissertation, the characteristics of inverse scattering problems, such as ill-posedness and nonlinearity, reviews ultrasonic guided wave-based structural health monitoring problems. The distinctive features and the selection of the domain analysis are investigated by analytically searching the conditions of the uniqueness solutions for ill-posedness and are validated experimentally. Based on the distinctive features, a novel wave packet tracing (WPT) method for damage localization and size quantification is presented. This method involves creating time-space representations of the guided Lamb waves (GLWs), collected at a series of locations, with a spatially dense distribution along paths at pre-selected angles with respect to the direction, normal to the direction of wave propagation. The fringe patterns due to wave dispersion, which depends on the phase velocity, are selected as the primary features that carry information, regarding the wave propagation and scattering. The following part of this dissertation presents a novel damage-localization framework, using a fully automated process. In order to construct the statistical model for autonomous damage localization deep-learning techniques, such as restricted Boltzmann machine and deep belief network

  17. Structural health monitoring of compression connectors for overhead transmission lines

    Science.gov (United States)

    Wang, Hong; Wang, Jy-An John; Swindeman, Joseph P.; Ren, Fei; Chan, John

    2017-04-01

    Two-stage aluminum conductor steel-reinforced (ACSR) compression connectors are extensively used in US overhead transmission lines. The connectors are made by crimping a steel sleeve onto a steel core and an aluminum sleeve over electrical conducting aluminum strands. The connectors are designed to operate at temperatures up to 125°C, but their performance is increasingly degrading because of overloading of lines. Currently, electric utilities conduct routine line inspections using thermal and electrical measurements, but these methods do not provide information about the structural integrity of connectors. In this work, structural health monitoring (SHM) of compression connectors was studied using electromechanical impedance (EMI) analysis. Lead zirconate titanate (PZT)-5A was identified as a smart material for SHM. A flexible high-temperature bonding layer was used to address challenges in PZT integration due to a significant difference in the coefficients of thermal expansion of PZT and the aluminum substrate. The steel joint on the steel core was investigated because it is responsible for the ultimate tensile strength of the connector. Tensile testing was used to induce structural damage to the joint, or steel core pullout, and thermal cycling introduced additional structural perturbations. EMI measurements were conducted between the tests. The root mean square deviation (RMSD) of EMI was identified as a damage index. The use of steel joints has been shown to enable SHM under simulated conditions. The EMI signature is sensitive to variations in structural conditions. RMSD can be correlated to the structural health of a connector and has potential for use in the SHM and structural integrity evaluation.

  18. Improved Stochastic Subspace System Identification for Structural Health Monitoring

    Science.gov (United States)

    Chang, Chia-Ming; Loh, Chin-Hsiung

    2015-07-01

    Structural health monitoring acquires structural information through numerous sensor measurements. Vibrational measurement data render the dynamic characteristics of structures to be extracted, in particular of the modal properties such as natural frequencies, damping, and mode shapes. The stochastic subspace system identification has been recognized as a power tool which can present a structure in the modal coordinates. To obtain qualitative identified data, this tool needs to spend computational expense on a large set of measurements. In study, a stochastic system identification framework is proposed to improve the efficiency and quality of the conventional stochastic subspace system identification. This framework includes 1) measured signal processing, 2) efficient space projection, 3) system order selection, and 4) modal property derivation. The measured signal processing employs the singular spectrum analysis algorithm to lower the noise components as well as to present a data set in a reduced dimension. The subspace is subsequently derived from the data set presented in a delayed coordinate. With the proposed order selection criteria, the number of structural modes is determined, resulting in the modal properties. This system identification framework is applied to a real-world bridge for exploring the feasibility in real-time applications. The results show that this improved system identification method significantly decreases computational time, while qualitative modal parameters are still attained.

  19. Energy Harvesting for Structural Health Monitoring Sensor Networks

    Energy Technology Data Exchange (ETDEWEB)

    Park, G.; Farrar, C. R.; Todd, M. D.; Hodgkiss, T.; Rosing, T.

    2007-02-26

    This report has been developed based on information exchanges at a 2.5-day workshop on energy harvesting for embedded structural health monitoring (SHM) sensing systems that was held June 28-30, 2005, at Los Alamos National Laboratory. The workshop was hosted by the LANL/UCSD Engineering Institute (EI). This Institute is an education- and research-focused collaboration between Los Alamos National Laboratory (LANL) and the University of California, San Diego (UCSD), Jacobs School of Engineering. A Statistical Pattern Recognition paradigm for SHM is first presented and the concept of energy harvesting for embedded sensing systems is addressed with respect to the data acquisition portion of this paradigm. Next, various existing and emerging sensing modalities used for SHM and their respective power requirements are summarized, followed by a discussion of SHM sensor network paradigms, power requirements for these networks and power optimization strategies. Various approaches to energy harvesting and energy storage are discussed and limitations associated with the current technology are addressed. This discussion also addresses current energy harvesting applications and system integration issues. The report concludes by defining some future research directions and possible technology demonstrations that are aimed at transitioning the concept of energy harvesting for embedded SHM sensing systems from laboratory research to field-deployed engineering prototypes.

  20. Bridges analysis, design, structural health monitoring, and rehabilitation

    CERN Document Server

    Bakht, Baidar

    2015-01-01

    This book offers a valuable guide for practicing bridge engineers and graduate students in structural engineering; its main purpose is to present the latest concepts in bridge engineering in fairly easy-to-follow terms. The book provides details of easy-to-use computer programs for: ·      Analysing slab-on-girder bridges for live load distribution. ·      Analysing slab and other solid bridge components for live load distribution. ·      Analysing and designing concrete deck slab overhangs of girder bridges under vehicular loads. ·      Determining the failure loads of concrete deck slabs of girder bridges under concentrated wheel loads. In addition, the book includes extensive chapters dealing with the design of wood bridges and soil-steel bridges. Further, a unique chapter on structural health monitoring (SHM) will help bridge engineers determine the actual load carrying capacities of bridges, as opposed to their perceived analytical capacities. The chapter addressing structures...

  1. Defect classification in sparsity-based structural health monitoring

    Science.gov (United States)

    Golato, Andrew; Ahmad, Fauzia; Santhanam, Sridhar; Amin, Moeness G.

    2017-05-01

    Guided waves have gained popularity in structural health monitoring (SHM) due to their ability to inspect large areas with little attenuation, while providing rich interactions with defects. For thin-walled structures, the propagating waves are Lamb waves, which are a complex but well understood type of guided waves. Recent works have cast the defect localization problem of Lamb wave based SHM within the sparse reconstruction framework. These methods make use of a linear model relating the measurements with the scene reflectivity under the assumption of point-like defects. However, most structural defects are not perfect points but tend to assume specific forms, such as surface cracks or internal cracks. Knowledge of the "type" of defects is useful in the assessment phase of SHM. In this paper, we present a dual purpose sparsity-based imaging scheme which, in addition to accurately localizing defects, properly classifies the defects present simultaneously. The proposed approach takes advantage of the bias exhibited by certain types of defects toward a specific Lamb wave mode. For example, some defects strongly interact with the anti-symmetric modes, while others strongly interact with the symmetric modes. We build model based dictionaries for the fundamental symmetric and anti-symmetric wave modes, which are then utilized in unison to properly localize and classify the defects present. Simulated data of surface and internal defects in a thin Aluminum plate are used to validate the proposed scheme.

  2. Simultaneous excitation system for efficient guided wave structural health monitoring

    Science.gov (United States)

    Hua, Jiadong; Michaels, Jennifer E.; Chen, Xin; Lin, Jing

    2017-10-01

    Many structural health monitoring systems utilize guided wave transducer arrays for defect detection and localization. Signals are usually acquired using the ;pitch-catch; method whereby each transducer is excited in turn and the response is received by the remaining transducers. When extensive signal averaging is performed, the data acquisition process can be quite time-consuming, especially for metallic components that require a low repetition rate to allow signals to die out. Such a long data acquisition time is particularly problematic if environmental and operational conditions are changing while data are being acquired. To reduce the total data acquisition time, proposed here is a methodology whereby multiple transmitters are simultaneously triggered, and each transmitter is driven with a unique excitation. The simultaneously transmitted waves are captured by one or more receivers, and their responses are processed by dispersion-compensated filtering to extract the response from each individual transmitter. The excitation sequences are constructed by concatenating a series of chirps whose start and stop frequencies are randomly selected from a specified range. The process is optimized using a Monte-Carlo approach to select sequences with impulse-like autocorrelations and relatively flat cross-correlations. The efficacy of the proposed methodology is evaluated by several metrics and is experimentally demonstrated with sparse array imaging of simulated damage.

  3. A Wireless Laser Displacement Sensor Node for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Se Woon Choi

    2013-09-01

    Full Text Available This study describes a wireless laser displacement sensor node that measures displacement as a representative damage index for structural health monitoring (SHM. The proposed measurement system consists of a laser displacement sensor (LDS and a customized wireless sensor node. Wireless communication is enabled by a sensor node that consists of a sensor module, a code division multiple access (CDMA communication module, a processor, and a power module. An LDS with a long measurement distance is chosen to increase field applicability. For a wireless sensor node driven by a battery, we use a power control module with a low-power processor, which facilitates switching between the sleep and active modes, thus maximizing the power consumption efficiency during non-measurement and non-transfer periods. The CDMA mode is also used to overcome the limitation of communication distance, which is a challenge for wireless sensor networks and wireless communication. To evaluate the reliability and field applicability of the proposed wireless displacement measurement system, the system is tested onsite to obtain the required vertical displacement measurements during the construction of mega-trusses and an edge truss, which are the primary structural members in a large-scale irregular building currently under construction. The measurement values confirm the validity of the proposed wireless displacement measurement system and its potential for use in safety evaluations of structural elements.

  4. A wireless laser displacement sensor node for structural health monitoring.

    Science.gov (United States)

    Park, Hyo Seon; Kim, Jong Moon; Choi, Se Woon; Kim, Yousok

    2013-09-30

    This study describes a wireless laser displacement sensor node that measures displacement as a representative damage index for structural health monitoring (SHM). The proposed measurement system consists of a laser displacement sensor (LDS) and a customized wireless sensor node. Wireless communication is enabled by a sensor node that consists of a sensor module, a code division multiple access (CDMA) communication module, a processor, and a power module. An LDS with a long measurement distance is chosen to increase field applicability. For a wireless sensor node driven by a battery, we use a power control module with a low-power processor, which facilitates switching between the sleep and active modes, thus maximizing the power consumption efficiency during non-measurement and non-transfer periods. The CDMA mode is also used to overcome the limitation of communication distance, which is a challenge for wireless sensor networks and wireless communication. To evaluate the reliability and field applicability of the proposed wireless displacement measurement system, the system is tested onsite to obtain the required vertical displacement measurements during the construction of mega-trusses and an edge truss, which are the primary structural members in a large-scale irregular building currently under construction. The measurement values confirm the validity of the proposed wireless displacement measurement system and its potential for use in safety evaluations of structural elements.

  5. Applications of nonlinear system identification to structural health monitoring.

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, C. R. (Charles R.); Sohn, H. (Hoon); Robertson, A. N. (Amy N.)

    2004-01-01

    The process of implementing a damage detection strategy for aerospace, civil and mechanical engineering infrastructure is referred to as structural health monitoring (SHM). In many cases damage causes a structure that initially behaves in a predominantly linear manner to exhibit nonlinear response when subject to its operating environment. The formation of cracks that subsequently open and close under operating loads is an example of such damage. The damage detection process can be significantly enhanced if one takes advantage of these nonlinear effects when extracting damage-sensitive features from measured data. This paper will provide an overview of nonlinear system identification techniques that are used for the feature extraction process. Specifically, three general approaches that apply nonlinear system identification techniques to the damage detection process are discussed. The first two approaches attempt to quantify the deviation of the system from its initial linear characteristics that is a direct result of damage. The third approach is to extract features from the data that are directly related to the specific nonlinearity associated with the damaged condition. To conclude this discussion, a summary of outstanding issues associated with the application of nonlinear system identification techniques to the SHM problem is presented.

  6. A Model-Driven Framework to Develop Personalized Health Monitoring

    Directory of Open Access Journals (Sweden)

    Algimantas Venčkauskas

    2016-07-01

    Full Text Available Both distributed healthcare systems and the Internet of Things (IoT are currently hot topics. The latter is a new computing paradigm to enable advanced capabilities in engineering various applications, including those for healthcare. For such systems, the core social requirement is the privacy/security of the patient information along with the technical requirements (e.g., energy consumption and capabilities for adaptability and personalization. Typically, the functionality of the systems is predefined by the patient’s data collected using sensor networks along with medical instrumentation; then, the data is transferred through the Internet for treatment and decision-making. Therefore, systems creation is indeed challenging. In this paper, we propose a model-driven framework to develop the IoT-based prototype and its reference architecture for personalized health monitoring (PHM applications. The framework contains a multi-layered structure with feature-based modeling and feature model transformations at the top and the application software generation at the bottom. We have validated the framework using available tools and developed an experimental PHM to test some aspects of the functionality of the reference architecture in real time. The main contribution of the paper is the development of the model-driven computational framework with emphasis on the synergistic effect of security and energy issues.

  7. PVDF Multielement Lamb Wave Sensor for Structural Health Monitoring.

    Science.gov (United States)

    Ren, Baiyang; Lissenden, Cliff J

    2016-01-01

    The characteristics of Lamb waves, which are multimodal and dispersive, provide both challenges and opportunities for structural health monitoring (SHM). Methods for nondestructive testing with Lamb waves are well established. For example, mode content can be determined by moving a sensor to different positions and then transforming the spatial-temporal data into the wavenumber-frequency domain. This mode content information is very useful because at every frequency each mode has a unique wavestructure, which is largely responsible for its sensitivity to material damage. Furthermore, mode conversion occurs when the waves interact with damage, making mode content an excellent damage detection feature. However, in SHM, the transducers are typically at fixed locations and are immovable. Here, an affixed polyvinylidene fluoride (PVDF) multielement sensor is shown to provide these same capabilities. The PVDF sensor is bonded directly to the waveguide surface, conforms to curved surfaces, has low mass, low profile, low cost, and minimal influence on passing Lamb waves. While the mode receivability is dictated by the sensor being located on the surface of the waveguide, both symmetric and antisymmetric modes can be detected and group velocities measured.

  8. Temperature effects in ultrasonic Lamb wave structural health monitoring systems.

    Science.gov (United States)

    Lanza di Scalea, Francesco; Salamone, Salvatore

    2008-07-01

    There is a need to better understand the effect of temperature changes on the response of ultrasonic guided-wave pitch-catch systems used for structural health monitoring. A model is proposed to account for all relevant temperature-dependent parameters of a pitch-catch system on an isotropic plate, including the actuator-plate and plate-sensor interactions through shear-lag behavior, the piezoelectric and dielectric permittivity properties of the transducers, and the Lamb wave dispersion properties of the substrate plate. The model is used to predict the S(0) and A(0) response spectra in aluminum plates for the temperature range of -40-+60 degrees C, which accounts for normal aircraft operations. The transducers examined are monolithic PZT-5A [PZT denotes Pb(Zr-Ti)O3] patches and flexible macrofiber composite type P1 patches. The study shows substantial changes in Lamb wave amplitude response caused solely by temperature excursions. It is also shown that, for the transducers considered, the response amplitude changes follow two opposite trends below and above ambient temperature (20 degrees C), respectively. These results can provide a basis for the compensation of temperature effects in guided-wave damage detection systems.

  9. Fundamental modeling issues on benchmark structure for structural health monitoring

    Institute of Scientific and Technical Information of China (English)

    HU; Sau-Lon; James

    2009-01-01

    The IASC-ASCE Structural Health Monitoring Task Group developed a series of benchmark problems, and participants of the benchmark study were charged with using a 12-degree-of-freedom (DOF) shear building as their identification model. The present article addresses improperness, including the parameter and modeling errors, of using this particular model for the intended purpose of damage detec- tion, while the measurements of damaged structures are synthesized from a full-order finite-element model. In addressing parameter errors, a model calibration procedure is utilized to tune the mass and stiffness matrices of the baseline identification model, and a 12-DOF shear building model that preserves the first three modes of the full-order model is obtained. Sequentially, this calibrated model is employed as the baseline model while performing the damage detection under various damage scenarios. Numerical results indicate that the 12-DOF shear building model is an over-simplified identification model, through which only idealized damage situations for the benchmark structure can be detected. It is suggested that a more sophisticated 3-dimensional frame structure model should be adopted as the identification model, if one intends to detect local member damages correctly.

  10. Structural Health Monitoring under Nonlinear Environmental or Operational Influences

    Directory of Open Access Journals (Sweden)

    Jyrki Kullaa

    2014-01-01

    Full Text Available Vibration-based structural health monitoring is based on detecting changes in the dynamic characteristics of the structure. It is well known that environmental or operational variations can also have an influence on the vibration properties. If these effects are not taken into account, they can result in false indications of damage. If the environmental or operational variations cause nonlinear effects, they can be compensated using a Gaussian mixture model (GMM without the measurement of the underlying variables. The number of Gaussian components can also be estimated. For the local linear components, minimum mean square error (MMSE estimation is applied to eliminate the environmental or operational influences. Damage is detected from the residuals after applying principal component analysis (PCA. Control charts are used for novelty detection. The proposed approach is validated using simulated data and the identified lowest natural frequencies of the Z24 Bridge under temperature variation. Nonlinear models are most effective if the data dimensionality is low. On the other hand, linear models often outperform nonlinear models for high-dimensional data.

  11. Statistical Pattern-Based Assessment of Structural Health Monitoring Data

    Directory of Open Access Journals (Sweden)

    Mohammad S. Islam

    2014-01-01

    Full Text Available In structural health monitoring (SHM, various sensors are installed at critical locations of a structure. The signals from sensors are either continuously or periodically analyzed to determine the state and performance of the structure. An objective comparison of the sensor data at different time ranges is essential for assessing the structural condition or excessive load experienced by the structure which leads to potential damage in the structure. The objectives of the current study are to establish a relationship between the data from various sensors to estimate the reliability of the data and potential damage using the statistical pattern matching techniques. In order to achieve these goals, new methodologies based on statistical pattern recognition techniques have been developed. The proposed methodologies have been developed and validated using sensor data obtained from an instrumented bridge and road test data from heavy vehicles. The application of statistical pattern matching techniques are relatively new in SHM data interpretation and current research demonstrates that it has high potential in assessing structural conditions, especially when the data are noisy and susceptible to environmental disturbances.

  12. On Assessing the Robustness of Structural Health Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Stull, Christopher J. [Los Alamos National Laboratory; Hemez, Francois M. [Los Alamos National Laboratory; Farrar, Charles R. [Los Alamos National Laboratory

    2012-08-24

    As Structural Health Monitoring (SHM) continues to gain popularity, both as an area of research and as a tool for use in industrial applications, the number of technologies associated with SHM will also continue to grow. As a result, the engineer tasked with developing a SHM system is faced with myriad hardware and software technologies from which to choose, often adopting an ad hoc qualitative approach based on physical intuition or past experience to making such decisions. This paper offers a framework that aims to provide the engineer with a quantitative approach for choosing from among a suite of candidate SHM technologies. The framework is outlined for the general case, where a supervised learning approach to SHM is adopted, and the presentation will focus on applying the framework to two commonly encountered problems: (1) selection of damage-sensitive features and (2) selection of a damage classifier. The data employed for these problems will be drawn from a study that examined the feasibility of applying SHM to the RAPid Telescopes for Optical Response observatory network.

  13. Health monitoring studies on composite structures for aerospace applications

    Energy Technology Data Exchange (ETDEWEB)

    James, G.; Roach, D.; Hansche, B.; Meza, R.; Robinson, N.

    1996-02-01

    This paper discusses ongoing work to develop structural health monitoring techniques for composite aerospace structures such as aircraft control surfaces, fuselage sections or repairs, and reusable launch vehicle fuel tanks. The overall project is divided into four tasks: Operational evaluation, diagnostic measurements, information condensation, and damage detection. Five composite plates were constructed to study delaminations, disbonds, and fluid retention issues as the initial step in creating an operational system. These four square feet plates were graphite-epoxy with nomex honeycomb cores. The diagnostic measurements are composed of modal tests with a scanning laser vibrometer at over 500 scan points per plate covering the frequency range up to 2000 Hz. This data has been reduced into experimental dynamics matrices using a generic, software package developed at the University of Colorado at Boulder. The continuing effort will entail performing a series of damage identification studies to detect, localize, and determine the extent of the damage. This work is providing understanding and algorithm development for a global NDE technique for composite aerospace structures.

  14. Fundamental modeling issues on benchmark structure for structural health monitoring

    Institute of Scientific and Technical Information of China (English)

    LI HuaJun; ZHANG Min; WANG JunRong; HU Sau-Lon James

    2009-01-01

    The IASC-ASCE Structural Health Monitoring Task Group developed a series of benchmark problems,and participants of the benchmark study were charged with using a 12-degree-of-freedom (DOF) shear building as their identification model. The present article addresses improperness, including the parameter and modeling errors, of using this particular model for the intended purpose of damage detection, while the measurements of damaged structures are synthesized from a full-order finite-element model. In addressing parameter errors, a model calibration procedure is utilized to tune the mass and stiffness matrices of the baseline identification model, and a 12-DOF shear building model that preserves the first three modes of the full-order model is obtained. Sequentially, this calibrated model is employed as the baseline model while performing the damage detection under various damage scenarios. Numerical results indicate that the 12-DOF shear building model is an over-simplified identification model, through which only idealized damage situations for the benchmark structure can be detected. It is suggested that a more sophisticated 3-dimensional frame structure model should be adopted as the identification model, if one intends to detect local member damages correctly.

  15. Phase Space Dissimilarity Measures for Structural Health Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bubacz, Jacob A [ORNL; Chmielewski, Hana T [ORNL; Pape, Alexander E [ORNL; Depersio, Andrew J [ORNL; Hively, Lee M [ORNL; Abercrombie, Robert K [ORNL; Boone, Shane [ORNL

    2011-11-01

    A novel method for structural health monitoring (SHM), known as the Phase Space Dissimilarity Measures (PSDM) approach, is proposed and developed. The patented PSDM approach has already been developed and demonstrated for a variety of equipment and biomedical applications. Here, we investigate SHM of bridges via analysis of time serial accelerometer measurements. This work has four aspects. The first is algorithm scalability, which was found to scale linearly from one processing core to four cores. Second, the same data are analyzed to determine how the use of the PSDM approach affects sensor placement. We found that a relatively low-density placement sufficiently captures the dynamics of the structure. Third, the same data are analyzed by unique combinations of accelerometer axes (vertical, longitudinal, and lateral with respect to the bridge) to determine how the choice of axes affects the analysis. The vertical axis is found to provide satisfactory SHM data. Fourth, statistical methods were investigated to validate the PSDM approach for this application, yielding statistically significant results.

  16. Health Monitor for Multitasking, Safety-Critical, Real-Time Software

    Science.gov (United States)

    Zoerner, Roger

    2011-01-01

    Health Manager can detect Bad Health prior to a failure occurring by periodically monitoring the application software by looking for code corruption errors, and sanity-checking each critical data value prior to use. A processor s memory can fail and corrupt the software, or the software can accidentally write to the wrong address and overwrite the executing software. This innovation will continuously calculate a checksum of the software load to detect corrupted code. This will allow a system to detect a failure before it happens. This innovation monitors each software task (thread) so that if any task reports "bad health," or does not report to the Health Manager, the system is declared bad. The Health Manager reports overall system health to the outside world by outputting a square wave signal. If the square wave stops, this indicates that system health is bad or hung and cannot report. Either way, "bad health" can be detected, whether caused by an error, corrupted data, or a hung processor. A separate Health Monitor Task is started and run periodically in a loop that starts and stops pending on a semaphore. Each monitored task registers with the Health Manager, which maintains a count for the task. The registering task must indicate if it will run more or less often than the Health Manager. If the task runs more often than the Health Manager, the monitored task calls a health function that increments the count and verifies it did not go over max-count. When the periodic Health Manager runs, it verifies that the count did not go over the max-count and zeroes it. If the task runs less often than the Health Manager, the periodic Health Manager will increment the count. The monitored task zeroes the count, and both the Health Manager and monitored task verify that the count did not go over the max-count.

  17. Strategy Developed for Selecting Optimal Sensors for Monitoring Engine Health

    Science.gov (United States)

    2004-01-01

    Sensor indications during rocket engine operation are the primary means of assessing engine performance and health. Effective selection and location of sensors in the operating engine environment enables accurate real-time condition monitoring and rapid engine controller response to mitigate critical fault conditions. These capabilities are crucial to ensure crew safety and mission success. Effective sensor selection also facilitates postflight condition assessment, which contributes to efficient engine maintenance and reduced operating costs. Under the Next Generation Launch Technology program, the NASA Glenn Research Center, in partnership with Rocketdyne Propulsion and Power, has developed a model-based procedure for systematically selecting an optimal sensor suite for assessing rocket engine system health. This optimization process is termed the systematic sensor selection strategy. Engine health management (EHM) systems generally employ multiple diagnostic procedures including data validation, anomaly detection, fault-isolation, and information fusion. The effectiveness of each diagnostic component is affected by the quality, availability, and compatibility of sensor data. Therefore systematic sensor selection is an enabling technology for EHM. Information in three categories is required by the systematic sensor selection strategy. The first category consists of targeted engine fault information; including the description and estimated risk-reduction factor for each identified fault. Risk-reduction factors are used to define and rank the potential merit of timely fault diagnoses. The second category is composed of candidate sensor information; including type, location, and estimated variance in normal operation. The final category includes the definition of fault scenarios characteristic of each targeted engine fault. These scenarios are defined in terms of engine model hardware parameters. Values of these parameters define engine simulations that generate

  18. VA Health Care: Processes to Evaluate, Implement, and Monitor Organizational Structure Changes Needed

    Science.gov (United States)

    2016-09-01

    VA HEALTH CARE Processes to Evaluate, Implement, and Monitor Organizational Structure Changes Needed Report to...Monitor Organizational Structure Changes Needed What GAO Found Recent internal and external reviews of Veterans Health Administration (VHA...operations have identified deficiencies in its organizational structure and recommended changes that would require significant restructuring to address

  19. Tunable Laser Development for In-flight Fiber Optic Based Structural Health Monitoring Systems

    Science.gov (United States)

    Richards, Lance; Parker, Allen; Chan, Patrick

    2014-01-01

    The objective of this task is to investigate, develop, and demonstrate a low-cost swept lasing light source for NASA DFRC's fiber optics sensing system (FOSS) to perform structural health monitoring on current and future aerospace vehicles. This is the regular update of the Tunable Laser Development for In-flight Fiber Optic Based Structural Health Monitoring Systems website.

  20. Design of an embedded health monitoring infrastructure for accessing multi-processor soc degradation

    NARCIS (Netherlands)

    Kerkhoff, Hans G.; Zhao, Yong

    An embedded health-monitoring infrastructure for a highly reliable MP-SoC for data-streaming systems is presented. Different from the traditional approach of a dependable design, our infrastructure is based on life-time prognostics from health- monitoring sensors that are embedded near the target

  1. National Surveys of Population Health: Big Data Analytics for Mobile Health Monitors.

    Science.gov (United States)

    Schatz, Bruce R

    2015-12-01

    At the core of the healthcare crisis is fundamental lack of actionable data. Such data could stratify individuals within populations to predict which persons have which outcomes. If baselines existed for all variations of all conditions, then managing health could be improved by matching the measuring of individuals to their cohort in the population. The scale required for complete baselines involves effective National Surveys of Population Health (NSPH). Traditionally, these have been focused upon acute medicine, measuring people to contain the spread of epidemics. In recent decades, the focus has moved to chronic conditions as well, which require smaller measures over longer times. NSPH have long utilized quality of life questionnaires. Mobile Health Monitors, where computing technologies eliminate manual administration, provide richer data sets for health measurement. Older technologies of telephone interviews will be replaced by newer technologies of smartphone sensors to provide deeper individual measures at more frequent timings across larger-sized populations. Such continuous data can provide personal health records, supporting treatment guidelines specialized for population cohorts. Evidence-based medicine will become feasible by leveraging hundreds of millions of persons carrying mobile devices interacting with Internet-scale services for Big Data Analytics.

  2. New smart materials to address issues of structural health monitoring.

    Energy Technology Data Exchange (ETDEWEB)

    Chaplya, Pavel Mikhail

    2004-12-01

    Nuclear weapons and their storage facilities may benefit from in-situ structural health monitoring systems. Appending health-monitoring functionality to conventional materials and structures has been only marginally successful. The purpose of this project was to evaluate feasibility of a new smart material that includes self-sensing health monitoring functions similar to that of a nervous system of a living organism. Reviews of current efforts in the fields of heath-monitoring, nanotechnology, micro-electromechanical systems (MEMS), and wireless sensor networks were conducted. Limitations of the current nanotechnology methods were identified and new approaches were proposed to accelerate the development of self-sensing materials. Wireless networks of MEMS sensors have been researched as possible prototypes of self-sensing materials. Sensor networks were also examined as enabling technologies for dense data collection techniques to be used for validation of numerical methods and material parameter identification. Each grain of the envisioned material contains sensors that are connected in a dendritic manner similar to networks of neurons in a nervous system. Each sensor/neuron can communicate with the neighboring grains. Both the state of the sensor (on/off) and the quality of communication signal (speed/amplitude) should indicate not only a presence of a structural defect but the nature of the defect as well. For example, a failed sensor may represent a through-grain crack, while a lost or degraded communication link may represent an inter-granular crack. A technology to create such material does not exist. While recent progress in the fields of MEMS and nanotechnology allows to envision these new smart materials, it is unrealistic to expect creation of self-sensing materials in the near future. The current state of MEMS, nanotechnology, communication, sensor networks, and data processing technologies indicates that it will take more than ten years for the

  3. Recent Advances in Energy Harvesting Technologies for Structural Health Monitoring Applications

    OpenAIRE

    Joseph Davidson; Changki Mo

    2014-01-01

    This paper reviews recent developments in energy harvesting technologies for structural health monitoring applications. Many industries have a great deal of interest in obtaining technology that can be used to monitor the health of machinery and structures. In particular, the need for autonomous monitoring of structures has been ever-increasing in recent years. Autonomous SHM systems typically include embedded sensors, data acquisition, wireless communication, and energy harvesting systems. A...

  4. Data Processing Algorithms in Wireless Sensor Networks får Structural Health Monitoring

    OpenAIRE

    Danna, Nigatu Mitiku; Mekonnen, Esayas Getachew

    2012-01-01

    The gradual deterioration and failure of old buildings, bridges and other civil engineering structures invoked the need for Structural Health Monitoring (SHM) systems to develop a means to monitor the health of structures. Dozens of sensing, processing and monitoring mechanisms have been implemented and widely deployed with wired sensors. Wireless sensor networks (WSNs), on the other hand, are networks of large numbers of low cost wireless sensor nodes that communicate through a wireless medi...

  5. Systems Health Monitoring — From Ground to Air — The Aerospace Challenges

    Science.gov (United States)

    Austin, Mary

    2007-03-01

    The aerospace industry and the government are significantly investing in jet engine systems health monitoring. Government organizations such as the Air Force, Navy, Army, National Labs and NASA are investing in the development of state aware sensing for health monitoring of jet engines such as the Joint Strike Fighter, F119 and F100's. This paper will discuss on-going work in systems health monitoring for jet engines. Topics will include a general discussion of the approaches to engine structural health monitoring and the prognosis of engine component life. Real-world implementation challenges on the ground and in the air will be reviewed. The talk will conclude with a prediction of where engine health monitoring will be in twenty years.

  6. 健康监测的发展动态%Health monitoring development

    Institute of Scientific and Technical Information of China (English)

    张岩

    2009-01-01

    首先介绍了桥梁健康监测的概况,接着论述了桥梁健康监测系统的组成,然后阐述了桥梁健康监测系统在国内外的应用,最后对桥梁健康监测进行了展望,从而进一步改进桥梁健康监测技术.%It introduces the general situation of bridge health monitoring first, discusses the constitution of bridge health monitoring system, il-lustrates the application of bridge health monitoring system in country and abroad, and prospects bridge health monitoring, so as to further im-prove bridge health monitoring technology.

  7. Application of Wireless Monitoring System to Structural Health Monitoring of Long-Spanned Cable-Stayed Bridge

    Institute of Scientific and Technical Information of China (English)

    MENG Qing-cheng; QI Xin; Li Qiao

    2007-01-01

    The remote monitoring system applied to the construction control and health monitoring of the Nanjing Third Yangtze River Bridge is introduced. The system makes it possible to get the structure capabilities and environmental parameters of the bridge at the predetermined moment. It sends the collected data over a long distance to an assigned position for display and analysis. The related methods and working condition of the wireless monitoring system are discussed. The measured data during 48 h are employed to determine the feasibility for the closure of the bridge.

  8. Stennis Space Center's approach to liquid rocket engine health monitoring using exhaust plume diagnostics

    Science.gov (United States)

    Gardner, D. G.; Tejwani, G. D.; Bircher, F. E.; Loboda, J. A.; Van Dyke, D. B.; Chenevert, D. J.

    1991-01-01

    Details are presented of the approach used in a comprehensive program to utilize exhaust plume diagnostics for rocket engine health-and-condition monitoring and assessing SSME component wear and degradation. This approach incorporates both spectral and video monitoring of the exhaust plume. Video monitoring provides qualitative data for certain types of component wear while spectral monitoring allows both quantitative and qualitative information. Consideration is given to spectral identification of SSME materials and baseline plume emissions.

  9. Automated Impedance Tomography for Monitoring Permeable Reactive Barrier Health

    Energy Technology Data Exchange (ETDEWEB)

    LaBrecque, D J; Adkins, P L

    2009-07-02

    The objective of this research was the development of an autonomous, automated electrical geophysical monitoring system which allows for near real-time assessment of Permeable Reactive Barrier (PRB) health and aging and which provides this assessment through a web-based interface to site operators, owners and regulatory agencies. Field studies were performed at four existing PRB sites; (1) a uranium tailing site near Monticello, Utah, (2) the DOE complex at Kansas City, Missouri, (3) the Denver Federal Center in Denver, Colorado and (4) the Asarco Smelter site in East Helena, Montana. Preliminary surface data over the PRB sites were collected (in December, 2005). After the initial round of data collection, the plan was modified to include studies inside the barriers in order to better understand barrier aging processes. In September 2006 an autonomous data collection system was designed and installed at the EPA PRB and the electrode setups in the barrier were revised and three new vertical electrode arrays were placed in dedicated boreholes which were in direct contact with the PRB material. Final data were collected at the Kansas City, Denver and Monticello, Utah PRB sites in the fall of 2007. At the Asarco Smelter site in East Helena, Montana, nearly continuous data was collected by the autonomous monitoring system from June 2006 to November 2007. This data provided us with a picture of the evolution of the barrier, enabling us to examine barrier changes more precisely and determine whether these changes are due to installation issues or are normal barrier aging. Two rounds of laboratory experiments were carried out during the project. We conducted column experiments to investigate the effect of mineralogy on the electrical signatures resulting from iron corrosion and mineral precipitation in zero valent iron (ZVI) columns. In the second round of laboratory experiments we observed the electrical response from simulation of actual field PRBs at two sites: the

  10. Ultrasonic guided wave mechanics for composite material structural health monitoring

    Science.gov (United States)

    Gao, Huidong

    The ultrasonic guided wave based method is very promising for structural health monitoring of aging and modern aircraft. An understanding of wave mechanics becomes very critical for exploring the potential of this technology. However, the guided wave mechanics in complex structures, especially composite materials, are very challenging due to the nature of multi-layer, anisotropic, and viscoelastic behavior. The purpose of this thesis is to overcome the challenges and potentially take advantage of the complex wave mechanics for advanced sensor design and signal analysis. Guided wave mechanics is studied in three aspects, namely wave propagation, excitation, and damage sensing. A 16 layer quasi-isotropic composite with a [(0/45/90/-45)s]2 lay up sequence is used in our study. First, a hybrid semi-analytical finite element (SAFE) and global matrix method (GMM) is used to simulate guided wave propagation in composites. Fast and accurate simulation is achieved by using SAFE for dispersion curve generation and GMM for wave structure calculation. Secondly, the normal mode expansion (NME) technique is used for the first time to study the wave excitation characteristics in laminated composites. A clear and simple definition of wave excitability is put forward as a result of NME analysis. Source influence for guided wave excitation is plotted as amplitude on a frequency and phase velocity spectrum. This spectrum also provides a guideline for transducer design in guided wave excitation. The ultrasonic guided wave excitation characteristics in viscoelastic media are also studied for the first time using a modified normal mode expansion technique. Thirdly, a simple physically based feature is developed to estimate the guided wave sensitivity to damage in composites. Finally, a fuzzy logic decision program is developed to perform mode selection through a quantitative evaluation of the wave propagation, excitation and sensitivity features. Numerical simulation algorithms are

  11. Health Care Utilization and Expenditures Associated With Remote Monitoring in Patients With Implantable Cardiac Devices.

    Science.gov (United States)

    Ladapo, Joseph A; Turakhia, Mintu P; Ryan, Michael P; Mollenkopf, Sarah A; Reynolds, Matthew R

    2016-05-01

    Several randomized trials and decision analysis models have found that remote monitoring may reduce health care utilization and expenditures in patients with cardiac implantable electronic devices (CIEDs), compared with in-office monitoring. However, little is known about the generalizability of these findings to unselected populations in clinical practice. To compare health care utilization and expenditures associated with remote monitoring and in-office monitoring in patients with CIEDs, we used Truven Health MarketScan Commercial Claims and Medicare Supplemental Databases. We selected patients newly implanted with an implantable cardioverter defibrillators (ICD), cardiac resynchronization therapy defibrillator (CRT-D), or permanent pacemaker (PPM), in 2009, who had continuous health plan enrollment 2 years after implantation. Generalized linear models and propensity score matching were used to adjust for confounders and estimate differences in health care utilization and expenditures in patients with remote or in-office monitoring. We identified 1,127; 427; and 1,295 pairs of patients with a similar propensity for receiving an ICD, CRT-D, or PPM, respectively. Remotely monitored patients with ICDs experienced fewer emergency department visits resulting in discharge (p = 0.050). Remote monitoring was associated with lower health care expenditures in office visits among patients with PPMs (p = 0.025) and CRT-Ds (p = 0.006) and lower total inpatient and outpatient expenditures in patients with ICDs (p monitoring of patients with CIEDs may be associated with reductions in health care utilization and expenditures compared with exclusive in-office care.

  12. A correlation between pulse diagnosis of human body and health monitoring of structures

    Institute of Scientific and Technical Information of China (English)

    C.C.Chang; Henry T. Y. Yang

    2004-01-01

    The concept of health monitoring is a key aspect of the field of medicine that has been practiced for a long time. A commonly used diagnostic and health monitoring practice is pulse diagnosis, which can be traced back approximately five thousand years in the recorded history of China. With advances in the development of modem technology, the concept of health monitoring of a variety of engineering structures in several applications has begun to attract widespread attention.Of particular interest in this study is the health monitoring of civil structures. It seems natural, and even beneficial, that these two health-monitoring methods, one as applies to the human body and the other to civil structures, should be analyzed and compared. In this paper, the basic concepts and theories of the two monitoring methods are first discussed. Similarities are then summarized and commented upon. It is hoped that this correlation analysis may help provide structural engineers with some insights into the intrinsic concept of using pulse diagnosis in human health monitoring, which may be of some benefit in the development of modern structural health monitoring methods.

  13. Roller Bearing Health Monitoring Using CPLE Frequency Analysis Method

    Science.gov (United States)

    Jong, Jen-Yi; Jones, Jess H.

    2007-01-01

    This paper describes a unique vibration signature analysis technique Coherence Phase Line Enhancer (CPLE) Frequency Analysis - for roller bearing health monitoring. Defects of roller bearing (e.g. wear, foreign debris, crack in bearing supporting structure, etc.) can cause small bearing characteristic frequency shifts due to minor changes in bearing geometry. Such frequency shifts are often too small to detect by the conventional Power Spectral Density (PSD) due to its frequency bandwidth limitation. This Coherent Phase Line Enhancer technology has been evolving over the last few years and has culminated in the introduction of a new and novel frequency spectrum which is fully described in this paper. This CPLE technology uses a "key phasor" or speed probe as a preprocessor for this analysis. With the aid of this key phasor, this CPLE technology can develop a two dimensional frequency spectrum that preserves both amplitude and phase that is not normally obtained using conventional frequency analysis. This two-dimensional frequency transformation results in several newly defined spectral functions; i. e. CPLE-PSD, CPLE-Coherence and the CPLE-Frequency. This paper uses this CPLE frequency analysis to detect subtle, low level bearing related signals in the High Pressure Fuel Pump (HPFP) of the Space Shuttle Main Engine (SSME). For many rotating machinery applications, a key phasor is an essential measurement that is used in the detection of bearing related signatures. There are times however, when a key phasor is not available; i. e. during flight of any of the SSME turbopumps or on the SSME High Pressure Oxygen Turbopump (HPOTP) where no speed probe is present. In this case, the CPLE analysis approach can still be achieved using a novel Pseudo Key Phasor (PKP) technique to reconstruct a 1/Rev PKP signal directly from external vibration measurements. This paper develops this Pseudo Key Phasor technique and applies it to the SSME vibration data.

  14. Optical sensor for precision in-situ spindle health monitoring

    Science.gov (United States)

    Zhao, Rui

    An optical sensor which can record in-situ measurements of the dynamic runout of a precision miniature spindle system in a simple and low-cost manner is proposed in this dissertation. Spindle error measurement technology utilizes a cylindrical or spherical target artifact attached to the miniature spindle with non-contact sensors, typically capacitive sensors which are calibrated with a flat target surface not a curved target surface. Due to the different behavior of an electric field between a flat plate and a curved surface and an electric field between two flat plates, capacitive sensors is not suitable for measuring target surfaces smaller than its effective sensing area. The proposed sensor utilizes curved-edge diffraction (CED), which uses the effect of cylindrical surface curvature on the diffraction phenomenon in the transition regions adjacent to shadow, transmission, and reflection boundaries. The laser diodes light incident on the cylindrical surface of precision spindle and photodetectors collect the total field produced by the diffraction around the target surface. Laser diode in the different two direction are incident to the spindle shaft edges along the X and Y axes, four photodetectors collect the total fields produced by interference of multiple waves due to CED around the spindle shaft edges. The X and Y displacement can be obtained from the total fields using two differential amplifier configurations, respectively. Precision miniature spindle (shaft φ5.0mm) runout was measured, and the proposed sensor can perform curve at the different speed of rotation from 1500rpm to 8000rpm in the X and Y axes, respectively. On the other hand, CED also show changes for different running time and temperature of spindle. These results indicate that the proposed sensor promises to be effective for in-situ monitoring of the miniature spindle's health with high resolution, wide bandwidth, and low-cost.

  15. Development of a model based Structural-Health-Monitoring-Systems for condition monitoring of rotor blades; Entwicklung eines modellgestuetzten Structural-Health-Monitoring-Systems zur Zustandsueberwachung von Rotorblaettern

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, C.; Friedmann, H.; Henkel, F.O. [Woelfel Beratende Ingenieure GmbH und Co.KG, Hoechberg (Germany); Frankenstein, B.; Schubert, L. [Fraunhofer-Institut fuer Zerstoerungsfreie Pruefverfahren, Dresden (Germany)

    2010-07-01

    The authors of the contribution under consideration report on a development of a Structural-Health-Monitoring-System which is to supervise the condition of the rotor blades of wind power plants and to detect in time structural changes before total failures. It is based on a combination of measuring techniques from the areas of the led rollers in the ultrasonic range and low-frequency modal analysis. The combination of both techniques was already promisingly used with past investigations of rotor blades. By means of modal analysis, statements to the total behaviour of the structure of rotor blades are possible. Endangered and strongly stressed areas additionally are supervised by led rollers within the ultrasonic range. The authors also report on the conception and execution of a fatigue test at a material rotor blade with a length by 39.1 m.

  16. Hardware Specific Integration Strategy for Impedance-Based Structural Health Monitoring of Aerospace Systems

    Science.gov (United States)

    Owen, Robert B.; Gyekenyesi, Andrew L.; Inman, Daniel J.; Ha, Dong S.

    2011-01-01

    The Integrated Vehicle Health Management (IVHM) Project, sponsored by NASA's Aeronautics Research Mission Directorate, is conducting research to advance the state of highly integrated and complex flight-critical health management technologies and systems. An effective IVHM system requires Structural Health Monitoring (SHM). The impedance method is one such SHM technique for detection and monitoring complex structures for damage. This position paper on the impedance method presents the current state of the art, future directions, applications and possible flight test demonstrations.

  17. [Four axiological considerations in social epidemiology for the monitoring of health inequality].

    Science.gov (United States)

    Mújica, Oscar J

    2015-12-01

    As the conceptual components of the most important contemporary public health agendas at the global and regional levels are brought into alignment and as it becomes more clearly understood that equity is a constitutive principle of these agendas, there is also a growing awareness of the strategic value of monitoring social inequalities in health. This is the health intelligence tool par excellence, not only for objectively assessing progress towards achieving health equity, but also for reporting action on the social determinants of health, progress towards the attainment of health for all, and the success of intersectoral efforts that take a "health in all policies" approach. These transformations are taking place in the context of an increasingly evident paradigm shift in public health. This essay presents four axiological considerations inherent to-and essential for -conceptualizing and implementing ways to measure and monitor health inequalities: ecoepidemiology as an emerging field in contemporary public health; the determinants of health as the causal model and core of the new paradigm; the relationship between the social hierarchy and health to understand the health gradient; and the practical need for a socioeconomic classification system that captures the social dimension in the determinants of health. The essay argues that these four axiological considerations lend epidemiologic coherence and rationality to the process of measuring and monitoring health inequalities and, by extension, to the development of pro-equity health policy proposals.

  18. Monitoring progress towards universal health coverage at country and global levels.

    Science.gov (United States)

    Boerma, Ties; Eozenou, Patrick; Evans, David; Evans, Tim; Kieny, Marie-Paule; Wagstaff, Adam

    2014-09-01

    Universal health coverage (UHC) has been defined as the desired outcome of health system performance whereby all people who need health services (promotion, prevention, treatment, rehabilitation, and palliation) receive them, without undue financial hardship. UHC has two interrelated components: the full spectrum of good-quality, essential health services according to need, and protection from financial hardship, including possible impoverishment, due to out-of-pocket payments for health services. Both components should benefit the entire population. This paper summarizes the findings from 13 country case studies and five technical reviews, which were conducted as part of the development of a global framework for monitoring progress towards UHC. The case studies show the relevance and feasibility of focusing UHC monitoring on two discrete components of health system performance: levels of coverage with health services and financial protection, with a focus on equity. These components link directly to the definition of UHC and measure the direct results of strategies and policies for UHC. The studies also show how UHC monitoring can be fully embedded in often existing, regular overall monitoring of health sector progress and performance. Several methodological and practical issues related to the monitoring of coverage of essential health services, financial protection, and equity, are highlighted. Addressing the gaps in the availability and quality of data required for monitoring progress towards UHC is critical in most countries.

  19. Monitoring progress towards universal health coverage at country and global levels.

    Directory of Open Access Journals (Sweden)

    Ties Boerma

    2014-09-01

    Full Text Available Universal health coverage (UHC has been defined as the desired outcome of health system performance whereby all people who need health services (promotion, prevention, treatment, rehabilitation, and palliation receive them, without undue financial hardship. UHC has two interrelated components: the full spectrum of good-quality, essential health services according to need, and protection from financial hardship, including possible impoverishment, due to out-of-pocket payments for health services. Both components should benefit the entire population. This paper summarizes the findings from 13 country case studies and five technical reviews, which were conducted as part of the development of a global framework for monitoring progress towards UHC. The case studies show the relevance and feasibility of focusing UHC monitoring on two discrete components of health system performance: levels of coverage with health services and financial protection, with a focus on equity. These components link directly to the definition of UHC and measure the direct results of strategies and policies for UHC. The studies also show how UHC monitoring can be fully embedded in often existing, regular overall monitoring of health sector progress and performance. Several methodological and practical issues related to the monitoring of coverage of essential health services, financial protection, and equity, are highlighted. Addressing the gaps in the availability and quality of data required for monitoring progress towards UHC is critical in most countries.

  20. Designing Interfaces for Astronaut Autonomy in Space

    Science.gov (United States)

    Hillenius, Steve

    2015-01-01

    As we move towards human deep space missions, astronauts will no longer be able to say, Houston, we have a problem. The restricted contact with mission control because of the incredible distance from Earth will require astronauts to make autonomous decisions. How will astronauts take on the roles of mission control? This is an area of active research that has far reaching implications for the future of distant spaceflight. Come to this talk to hear how we are using design and user research to come up with innovative solutions for astronauts to effectively explore the Moon, Mars, and beyond.

  1. Geoscience Training for NASA Astronaut Candidates

    Science.gov (United States)

    Young, K. E.; Evans, C. A.; Bleacher, J. E.; Graff, T. G.; Zeigler, R.

    2017-01-01

    After being selected to the astronaut office, crewmembers go through an initial two year training flow, astronaut candidacy, where they learn the basic skills necessary for spaceflight. While the bulk of astronaut candidate training currently centers on the multiple subjects required for ISS operations (EVA skills, Russian language, ISS systems, etc.), training also includes geoscience training designed to train crewmembers in Earth observations, teach astronauts about other planetary systems, and provide field training designed to investigate field operations and boost team skills. This training goes back to Apollo training and has evolved to support ISS operations and future exploration missions.

  2. Smart homes and home health monitoring technologies for older adults: A systematic review.

    Science.gov (United States)

    Liu, Lili; Stroulia, Eleni; Nikolaidis, Ioanis; Miguel-Cruz, Antonio; Rios Rincon, Adriana

    2016-07-01

    Around the world, populations are aging and there is a growing concern about ways that older adults can maintain their health and well-being while living in their homes. The aim of this paper was to conduct a systematic literature review to determine: (1) the levels of technology readiness among older adults and, (2) evidence for smart homes and home-based health-monitoring technologies that support aging in place for older adults who have complex needs. We identified and analyzed 48 of 1863 relevant papers. Our analyses found that: (1) technology-readiness level for smart homes and home health monitoring technologies is low; (2) the highest level of evidence is 1b (i.e., one randomized controlled trial with a PEDro score ≥6); smart homes and home health monitoring technologies are used to monitor activities of daily living, cognitive decline and mental health, and heart conditions in older adults with complex needs; (3) there is no evidence that smart homes and home health monitoring technologies help address disability prediction and health-related quality of life, or fall prevention; and (4) there is conflicting evidence that smart homes and home health monitoring technologies help address chronic obstructive pulmonary disease. The level of technology readiness for smart homes and home health monitoring technologies is still low. The highest level of evidence found was in a study that supported home health technologies for use in monitoring activities of daily living, cognitive decline, mental health, and heart conditions in older adults with complex needs. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Simulated Partners and Collaborative Exercise (SPACE) to boost motivation for astronauts: study protocol

    OpenAIRE

    Feltz, Deborah L.; Ploutz-Snyder, Lori; Winn, Brian; Kerr, Norbert L.; Pivarnik, James M; Ede, Alison; Hill, Christopher; Samendinger, Stephen; Jeffery, William

    2016-01-01

    Background Astronauts may have difficulty adhering to exercise regimens at vigorous intensity levels during long space missions. Vigorous exercise is important for aerobic and musculoskeletal health during space missions and afterwards. A key impediment to maintaining vigorous exercise is motivation. Finding ways to motivate astronauts to exercise at levels necessary to mitigate reductions in musculoskeletal health and aerobic capacity have not been explored. The focus of Simulated Partners a...

  4. An online substructure identification method for local structural health monitoring

    Science.gov (United States)

    Hou, Jilin; Jankowski, Łukasz; Ou, Jinping

    2013-09-01

    This paper proposes a substructure isolation method, which uses time series of measured local response for online monitoring of substructures. The proposed monitoring process consists of two key steps: construction of the isolated substructure, and its identification. The isolated substructure is an independent virtual structure, which is numerically isolated from the global structure by placing virtual supports on the interface. First, the isolated substructure is constructed by a specific linear combination of time series of its measured local responses. Then, the isolated substructure is identified using its local natural frequencies extracted from the combined responses. The substructure is assumed to be linear; the outside part of the global structure can have any characteristics. The method has no requirements on the initial state of the structure, and so the process can be carried out repetitively for online monitoring. Online isolation and monitoring is illustrated in a numerical example with a frame model, and then verified in a cantilever beam experiment.

  5. Astronaut Clothing for Exploration Missions

    Science.gov (United States)

    Poritz, Darwin H.; Orndoff, Evelyne; Kaspranskiy, Rustem R.; Schesinger, Thilini; Byrne, Vicky

    2016-01-01

    Astronaut clothes for exploration missions beyond low Earth orbit need to satisfy several challenges not met by the currently-used mostly-cotton clothing. A laundering system is not expected to be available, and thus soiled garments must be trashed. Jettisoning waste does not seem feasible at this time. The cabin oxygen concentration is expected to be higher than standard, and thus fabrics must better resist ignition and burning. Fabrics need to be identified that reduce logistical mass, that can be worn longer before disposal, that are at least as comfortable as cotton, and that resist ignition or that char immediately after ignition. Human factors and psychology indicate that crew well-being and morale require a variety of colors and styles to accommodate personal identity and preferences. Over the past four years, the Logistics Reduction Project under NASA's Advanced Exploration Systems Program has sponsored the Advanced Clothing System Task to conduct several ground studies and one ISS study. These studies have evaluated length of wear and personal preferences of commercially-available exercise- and routine-wear garments made from several fabrics (cotton, polyester, Merino wool, and modacrylic), woven and knitted. Note that Merino wool and modacrylic char like cotton in ambient air, while polyester unacceptably melts. This paper focuses on the two components of an International Space Station study, onboard and on the ground, with astronauts and cosmonauts. Fabrics were randomized to participants. Length of wear was assessed by statistical survival analysis, and preference by exact binomial confidence limits. Merino wool and modacrylic t-shirts were worn longer on average than polyester t-shirts. Interestingly, self-assessed preferences were inconsistent with length-of-wear behavior, as polyester was preferred to Merino wool and modacrylic.

  6. Use of FBG sensors for health monitoring of pipelines

    Science.gov (United States)

    Felli, Ferdinando; Paolozzi, Antonio; Vendittozzi, Cristian; Paris, Claudio; Asanuma, Hiroshi

    2016-04-01

    The infrastructures for oil and gas production and distribution need reliable monitoring systems. The risks for pipelines, in particular, are not only limited to natural disasters (landslides, earthquakes, extreme environmental conditions) and accidents, but involve also the damages related to criminal activities, such as oil theft. The existing monitoring systems are not adequate for detecting damages from oil theft, and in several occasion the illegal activities resulted in leakage of oil and catastrophic environmental pollution. Systems based on fiber optic FBG (Fiber Bragg Grating) sensors present a number of advantages for pipeline monitoring. FBG sensors can withstand harsh environment, are immune to interferences, and can be used to develop a smart system for monitoring at the same time several physical characteristics, such as strain, temperature, acceleration, pressure, and vibrations. The monitoring station can be positioned tens of kilometers away from the measuring points, lowering the costs and the complexity of the system. This paper describes tests on a sensor, based on FBG technology, developed specifically for detecting damages of pipeline due to illegal activities (drilling of the pipes), that can be integrated into a smart monitoring chain.

  7. The CINDI Health Monitor Survey. Health behaviour among the Italian adult population, 2001-2002

    Directory of Open Access Journals (Sweden)

    Maria Teresa Tenconi

    2004-12-01

    Full Text Available

    In accordance to the WHO-CINDI (Countrywide Integrated Non-communicable Diseases Intervention Programme, in 2001-2002 Italy participated in the Health Monitor Survey (HMS along with all the other CINDI member countries.

    The survey aimed to investigate, by the use of a standard questionnaire, the self-reported health status, life-habits, social and health conditions, use of health services and other features of the study population.

    Following the international CINDI protocol, the adult population (25-64 years of age from six Italian demonstration areas were chosen: Bassiano-Lenola (LT, Brisighella (RA, Rovescala (PV, Sardinia (CA, SS, Udine (UD; Valle dell’Irno (SA. A total number of 4095 subjects, including both males and females were enrolled, with a participation rate of 53%, equal to 2202 subjects [45.7% males (M and 54.3% females (F]. All age groups were equally represented. From the analysis of the age-standardised rates, the following results were obtained. Self-reported “good state of health”: M 71%, F 56.9%; Hypertension: M 15.6%, F 17.5%; Diabetes: M 6.1%, F 4.2%; Back-illness: M 18%, F 22%; Gastritis: M 12.8%, F 12.6%; Headache: M 31.7%, F 54.6%; Insomnia: M 15.9%, F 28.5%; Daily smokers: M 35.7%, F 23.5%; Daily consumption of wine: M 40.2%, F 15.7%; BMI ≥ 30: M 12.3%, F 13.5%; Regular leisure physical activity: M 27.6%, F 23.1%; Hard physical activity: M 40.5%, F 24%. The results demonstrate how rural areas (Rovescala and Valle dell’Irno experience worse health conditions. Thanks to the HMS, the population’s health needs have been focused and compared to those of other CINDI countries, in order to plan specific interventions aimed at the improvement of lifestyle and health conditions.

  8. Remote health monitoring with wearable non-invasive mobile system: The HealthWear project.

    Science.gov (United States)

    Paradiso, R; Alonso, A; Cianflone, D; Milsis, A; Vavouras, T; Malliopoulos, C

    2008-01-01

    This paper focuses on the technical solutions enabling the monitoring of health conditions by means of ECG, HR, oxygen saturation, impedance pneumography and activity patterns. The Healthwear service is based on the Wealthy prototype system. A new design has been made to increase comfort in wearing of the system during daily patient activities. The cloth is connected to a patient portable electronic unit (PPU) that acquires and elaborates the signals from the sensors. The PPU transmits the signal to a central processing site through the use of GPRS wireless technology. This service is applied to three distinct clinical contexts: rehabilitation of cardiac patients, following an acute event; early discharge program in chronic respiration patients; promotion of physical activity in ambulatory stable cardio-respiratory patients.

  9. Preliminary analysis of the use of smartwatches for longitudinal health monitoring.

    Science.gov (United States)

    Jovanov, Emil

    2015-08-01

    New generations of smartwatches feature continuous measurement of physiological parameters, such as heart rate, galvanic skin resistance (GSR), and temperature. In this paper we present the results of preliminary analysis of the use of Basis Peak smartwatch for longitudinal health monitoring during a 4 month period. Physiological measurements during sleep are validated using Zephyr Bioharness 3 monitor and SOMNOscreen+ polysomnographic monitoring system from SOMNOmedics. Average duration of sequences with no missed data was 49.9 minutes, with maximum length of 17 hours, and they represent 88.88% of recording time. Average duration of the charging event was 221.9 min, and average time between charges was 54 hours, with maximum duration of the charging event of 16.3 hours. Preliminary results indicate that the physiological monitoring performance of existing smartwatches provides sufficient performance for longitudinal monitoring of health status and analysis of health and wellness trends.

  10. Statistical Evaluation of Causal Factors Associated with Astronaut Shoulder Injury in Space Suits.

    Science.gov (United States)

    Anderson, Allison P; Newman, Dava J; Welsch, Roy E

    2015-07-01

    Shoulder injuries due to working inside the space suit are some of the most serious and debilitating injuries astronauts encounter. Space suit injuries occur primarily in the Neutral Buoyancy Laboratory (NBL) underwater training facility due to accumulated musculoskeletal stress. We quantitatively explored the underlying causal mechanisms of injury. Logistic regression was used to identify relevant space suit components, training environment variables, and anthropometric dimensions related to an increased propensity for space-suited injury. Two groups of subjects were analyzed: those whose reported shoulder incident is attributable to the NBL or working in the space suit, and those whose shoulder incidence began in active duty, meaning working in the suit could be a contributing factor. For both groups, percent of training performed in the space suit planar hard upper torso (HUT) was the most important predictor variable for injury. Frequency of training and recovery between training were also significant metrics. The most relevant anthropometric dimensions were bideltoid breadth, expanded chest depth, and shoulder circumference. Finally, record of previous injury was found to be a relevant predictor for subsequent injury. The first statistical model correctly identifies 39% of injured subjects, while the second model correctly identifies 68% of injured subjects. A review of the literature suggests this is the first work to quantitatively evaluate the hypothesized causal mechanisms of all space-suited shoulder injuries. Although limited in predictive capability, each of the identified variables can be monitored and modified operationally to reduce future impacts on an astronaut's health.

  11. Combined Effects of Spaceflight and Age in Astronauts as Assessed by Areal Bone Mineral Density [BMD] and Trabecular Bone Score

    Science.gov (United States)

    Sibonga, Jean D.; Spector, Elizabeth R.; Ploutz-Snyder, R.; Evans, H. J.; King, L.; Watts, N. B.; Hans, D.; Smith, S. A.

    2013-01-01

    Spaceflight is a potential risk factor for secondary osteoporosis in astronauts. Although lumbar spine (LS) BMD declines rapidly, more than expected for age, there have been no fragility fractures in astronauts that can clearly be attributed to spaceflight. Recently, astronauts have been returning from 6-month spaceflights with absolute BMD still above young adult mean BMD. In spite of these BMD measurements, we project that the rapid loss in bone mass over long-duration spaceflight affects the bone microarchitecture of the LS which might predispose astronauts to premature vertebral fractures. Thus, we evaluated TBS, a novel texture index correlated with vertebral bone microarchitecture, as a means of monitoring changes to bone microarchitecture in astronauts as they age. We previously reported that TBS detects an effect of spaceflight (6-month duration), independent of BMD, in 51 astronauts (47+/-4 y) (Smith et al, J Clin Densitometry 2014). Hence, TBS was evaluated in serial DXA scans (Hologic Discovery W) conducted triennially in all active and retired astronauts and more frequently (before spaceflight, after spaceflight and until recovery) in the subset of astronauts flying 4-6- month missions. We used non-linear models to describe trends in observations (BMD or TBS) plotted as a function of astronaut age. We fitted 1175 observations of 311 astronauts, pre-flight and then postflight starting 3 years after landing or after astronaut's BMD for LS was restored to within 2% of preflight BMD. Observations were then grouped and defined as follows: 1) LD: after exposure to at least one long-duration spaceflight > 100 days and 2) SD: before LD and after exposure to at least one short-duration spaceflight lumbar spine to monitor the combined changes due to spaceflight and due to aging. This increased knowledge may enhance the ability to identify an intervention trigger for premature vertebral fractures in astronauts.

  12. On-Orbit Health Monitoring and Repair Assessment of Thermal Protection Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project delivers On-orbit health MoNItoring and repair assessment of THERMal protection systems (OMNI_THERM). OMNI_THERM features impedance-based...

  13. Application of near field communication for health monitoring in daily life.

    Science.gov (United States)

    Strömmer, Esko; Kaartinen, Jouni; Pärkkä, Juha; Ylisaukko-Oja, Arto; Korhonen, Ilkka

    2006-01-01

    We study the possibility of applying an emerging RFID-based communication technology, NFC (Near Field Communication), to health monitoring. We suggest that NFC is, compared to other competing technologies, a high-potential technology for short-range connectivity between health monitoring devices and mobile terminals. We propose practices to apply NFC to some health monitoring applications and study the benefits that are attainable with NFC. We compare NFC to other short-range communication technologies such as Bluetooth and IrDA, and study the possibility of improving the usability of health monitoring devices with NFC. We also introduce a research platform for technical evaluation, applicability study and application demonstrations of NFC.

  14. Time Reversal Acoustic Structural Health Monitoring Using Array of Embedded Sensors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Time Reversal Acoustic (TRA) structural health monitoring with an embedded sensor array represents a new approach to in-situ nondestructive evaluation of air-space...

  15. Space Qualified Non-Destructive Evaluation and Structural Health Monitoring Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NextGen Aeronautics is proposing an innovative space qualified non-destructive evaluation and health monitoring technology. The technology is built on concepts...

  16. Airspora concentrations in the Vaal-triangle-monitoring and potential health-effects.2, fungal spores

    CSIR Research Space (South Africa)

    Vismer, HF

    1995-08-01

    Full Text Available Atmospheric fungal spores were monitored in Vanderbijlpark for the period 1991-92 as part of the Vaal triangle air pollution health study of the medical research council and the CSIR. Cladosporium, Aspergillus/ Penicillium, Alternaria and Epicoccum...

  17. Autonomus I&C Maintenance and Health Monitoring System for Fission Surface Power Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The primary goal of this project is to design and develop an autonomous instrumentation and control (I&C) health monitoring system for space nuclear power...

  18. Unpowered Wireless Ultrasound Generation and Sensing for Structural Health Monitoring of Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Damage detection based on ultrasonic waves is one of the most popular inspection schemes employed by many structural health monitoring (SHM) systems. We propose a...

  19. Health Monitoring and Management for Manufacturing Workers in Adverse Working Conditions.

    Science.gov (United States)

    Xu, Xiaoya; Zhong, Miao; Wan, Jiafu; Yi, Minglun; Gao, Tiancheng

    2016-10-01

    In adverse working conditions, environmental parameters such as metallic dust, noise, and environmental temperature, directly affect the health condition of manufacturing workers. It is therefore important to implement health monitoring and management based on important physiological parameters (e.g., heart rate, blood pressure, and body temperature). In recent years, new technologies, such as body area networks, cloud computing, and smart clothing, have allowed the improvement of the quality of services. In this article, we first give five-layer architecture for health monitoring and management of manufacturing workers. Then, we analyze the system implementation process, including environmental data processing, physical condition monitoring and system services and management, and present the corresponding algorithms. Finally, we carry out an evaluation and analysis from the perspective of insurance and compensation for manufacturing workers in adverse working conditions. The proposed scheme will contribute to the improvement of workplace conditions, realize health monitoring and management, and protect the interests of manufacturing workers.

  20. Tunable Laser Development for In-flight OFDR Structural Health Monitoring Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of a cost-effective, robust, tunable, miniaturized, ruggedized, and flight tested swept laser for in-flight structural health monitoring. The objective...

  1. Rotor health monitoring combining spin tests and data-driven anomaly detection methods

    Data.gov (United States)

    National Aeronautics and Space Administration — Health monitoring is highly dependent on sensor systems that are capable of performing in various engine environmental conditions and able to transmit a signal upon...

  2. Lightweight, Wearable Metal Rubber-Textile Sensor for In Situ Lunar Autonomous Health Monitoring Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NanoSonic proposes to develop a low-weight, non-invasive in situ autonomous health-monitoring system for crewmembers' lunar extravehicular activity (EVA). This novel...

  3. Propulsion Health Monitoring of a Turbine Engine Disk using Spin Test Data

    Data.gov (United States)

    National Aeronautics and Space Administration — On line detection techniques to monitor the health of rotating engine components are becoming increasingly attractive options to aircraft engine companies in order...

  4. Data Analysis Algorithm Suitable for Structural Health Monitoring Based on Dust Network Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposed project will attempt to develop a data analysis system for structural health monitoring on space structures. The data analysis software will be a key...

  5. Wireless Health Monitoring for Large Arrays of MEMS Sensors and Actuators Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this Phase I project is to demonstrate an automated on-line structural health monitoring system for aircraft structures using a combination of...

  6. SAFETY ANALYSIS AND RISK ASSESSMENT FOR BRIDGES HEALTH MONITORING WITH MONTE CARLO METHODS

    OpenAIRE

    2016-01-01

    With the increasing requirements of building safety in the past few decades, healthy monitoring and risk assessment of structures is of more and more importance. Especially since traffic loads are heavier, risk Assessment for bridges are essential. In this paper we take advantage of Monte Carlo Methods to analysis the safety of bridge and monitoring the destructive risk. One main goal of health monitoring is to reduce the risk of unexpected damage of artificial objects

  7. A new approach for structural health monitoring by applying anomaly detection on strain sensor data

    NARCIS (Netherlands)

    Trichias, K.; Pijpers, R.J.M.; Meeuwissen, H.B.

    2014-01-01

    Structural Health Monitoring (SHM) systems help to monitor critical infrastructures (bridges, tunnels, etc.) remotely and provide up-to-date information about their physical condition. In addition, it helps to predict the structure’s life and required maintenance in a cost-efficient way. Typically,

  8. Self-monitoring of health data by patients with a chronic disease: does disease controllability matter?

    NARCIS (Netherlands)

    Huygens, M.W.J.; Swinkels, I.C.S.; Jong, J.D. de; Heijmans, M.J.W.M.; Friele, R.D.; Schayck, O.C.P. van; Witte, L.P. de

    2017-01-01

    Background: There is a growing emphasis on self-monitoring applications that allow patients to measure their own physical health parameters. A prerequisite for achieving positive effects is patients’ willingness to self-monitor. The controllability of disease types, patients’ percei

  9. Volunteer Watershed Health Monitoring by Local Stakeholders: New Mexico Watershed Watch

    Science.gov (United States)

    Fleming, William

    2003-01-01

    Volunteers monitor watershed health in more than 700 programs in the US, involving over 400,000 local stakeholders. New Mexico Watershed Watch is a student-based watershed monitoring program sponsored by the state's Department of Game and Fish which provides high school teachers and students with instruction on methods for water quality…

  10. Children Become "Real Scientists" as They Help to Monitor the Health of Their Local Estuary

    Science.gov (United States)

    Beaumont, Brent

    2014-01-01

    The author explains how the children at his primary school in New Zealand are inspired by their involvement in environmental monitoring. Shellfish surveys are conducted annually in New Zealand in order to establish the health of their estuaries. By involving the children in this national monitoring programme, prepared by the Hauraki Gulf Forum (an…

  11. A new approach for structural health monitoring by applying anomaly detection on strain sensor data

    NARCIS (Netherlands)

    Trichias, K.; Pijpers, R.J.M.; Meeuwissen, H.B.

    2014-01-01

    Structural Health Monitoring (SHM) systems help to monitor critical infrastructures (bridges, tunnels, etc.) remotely and provide up-to-date information about their physical condition. In addition, it helps to predict the structure’s life and required maintenance in a cost-efficient way. Typically,

  12. State of Idaho Augmented Anadromous Fish Health Monitoring, 1988 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Foott, J. Scott; Hauch, A. Kent

    1989-05-01

    This report documents the progress in the assigned tasks which have occurred during the second year of the Augmented Anadromous Fish Health Monitoring Project. Fish at seven Idaho Department of Fish and Game facilities were monitored for various pathogens and organosomatic analyses were performed on smolts prior to their release in the Spring of 1989. A disease database has been developed and facility impediments to fish health have been identified.

  13. Sustainable Development Goals for Monitoring Action to Improve Global Health.

    Science.gov (United States)

    Cesario, Sandra K

    2016-01-01

    Women and children compose the largest segment of the more than 1 billion people worldwide who are unable to access needed health care services. To address this and other global health issues, the United Nations brought together world leaders to address growing health inequities, first by establishing the Millennium Development Goals in 2000 and more recently establishing Sustainable Development Goals, which are an intergovernmental set of 17 goals consisting of 169 targets with 304 indicators to measure compliance; they were designed to be applicable to all countries. Goal number 3, "Good Health and Well-Being: Ensure Heathy Lives and Promote Well-Being for All at All Ages," includes targets to improve the health of women and newborns.

  14. A Dual-Core System Solution for Wearable Health Monitors

    NARCIS (Netherlands)

    Santana Arnaiz, O.A.; Bouwens, F.; Huisken, J.A.; De Groot, H.; Bennebroek, M.T.; Van Meerbergen, J.L.; Abbo, A.A.; Fraboulet, A.

    2011-01-01

    This paper presents a system design study for wearable sensor devices intended for healthcare and lifestyle applications based on ECG,EEG and activity monitoring. In order to meet the low-power requirement of these applications, a dual-core signal processing system is proposed which combines an ultr

  15. Cow status monitoring (health and oestrus) using detection sensors

    NARCIS (Netherlands)

    Maatje, K.; Mol, de R.M.; Rossing, W.

    1997-01-01

    In-line sensors were used to measure quarter milk conductivity and milk temperature in the milking claw for monitoring mastitis in dairy cows. In a preliminary experiment, sensor data were used to develop algorithms and threshold values for the detection of mastitis. In a later experiment, these thr

  16. Cow status monitoring (health and oestrus) using detection sensors

    NARCIS (Netherlands)

    Maatje, K.; Mol, de R.M.; Rossing, W.

    1997-01-01

    In-line sensors were used to measure quarter milk conductivity and milk temperature in the milking claw for monitoring mastitis in dairy cows. In a preliminary experiment, sensor data were used to develop algorithms and threshold values for the detection of mastitis. In a later experiment, these

  17. Oxygen Sensors Monitor Bioreactors and Ensure Health and Safety

    Science.gov (United States)

    2014-01-01

    In order to cultivate healthy bacteria in bioreactors, Kennedy Space Center awarded SBIR funding to Needham Heights, Massachusetts-based Polestar Technologies Inc. to develop sensors that could monitor oxygen levels. The result is a sensor now widely used by pharmaceutical companies and medical research universities. Other sensors have also been developed, and in 2013 alone the company increased its workforce by 50 percent.

  18. The consistency of shingles and its significance for health monitoring.

    NARCIS (Netherlands)

    Fleming, D.M.; Bartelds, A.; Chapman, R.S.; Cross, K.W.

    2004-01-01

    Accurate estimation of monitored populations is essential for epidemiological study. Many countries do not have systems of patient registration and routine disease surveillance is thereby hindered. We studied the incidence of shingles over time and investigated the hypothesis that the incidence is c

  19. Equity-oriented monitoring in the context of universal health coverage.

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Hosseinpoor

    2014-09-01

    Full Text Available Monitoring inequalities in health is fundamental to the equitable and progressive realization of universal health coverage (UHC. A successful approach to global inequality monitoring must be intuitive enough for widespread adoption, yet maintain technical credibility. This article discusses methodological considerations for equity-oriented monitoring of UHC, and proposes recommendations for monitoring and target setting. Inequality is multidimensional, such that the extent of inequality may vary considerably across different dimensions such as economic status, education, sex, and urban/rural residence. Hence, global monitoring should include complementary dimensions of inequality (such as economic status and urban/rural residence as well as sex. For a given dimension of inequality, subgroups for monitoring must be formulated taking into consideration applicability of the criteria across countries and subgroup heterogeneity. For economic-related inequality, we recommend forming subgroups as quintiles, and for urban/rural inequality we recommend a binary categorization. Inequality spans populations, thus appropriate approaches to monitoring should be based on comparisons between two subgroups (gap approach or across multiple subgroups (whole spectrum approach. When measuring inequality absolute and relative measures should be reported together, along with disaggregated data; inequality should be reported alongside the national average. We recommend targets based on proportional reductions in absolute inequality across populations. Building capacity for health inequality monitoring is timely, relevant, and important. The development of high-quality health information systems, including data collection, analysis, interpretation, and reporting practices that are linked to review and evaluation cycles across health systems, will enable effective global and national health inequality monitoring. These actions will support equity-oriented progressive

  20. Space Plants for Astronaut Consumption

    Science.gov (United States)

    Mickens, Matthew A.; Grandpre, Ayla Moriah; Boehm, Emma; Barnwell, Payton

    2017-01-01

    Growing plants in space will be an essential part of sustaining astronauts during long-range missions. During the summer of 2017, three female NASA interns, have been engaged in research relevant to food production in space, and will present their projects to an all female program known as Girls in STEM camp. Ayla Grandpre, a senior from Rocky Mountain College, has performed data mining and analysis of crop growth results gathered through Fairchild Botanical Gardens program, Growing Beyond Earth. Ninety plants were downselected to three for testing in controlled environment chambers at KSC. Ayla has also managed an experiment testing a modified hydroponics known as PONDS, to grow mizuna mustard greens and red robin cherry tomatoes. Emma Boehm, a senior from the University of Minnesota, has investigated methods to sterilize seeds and analyzed the most common microbial communities on seed surfaces. She has tested a bleach fuming method and an ethanol treatment. Emma has also tested Tokyo bekana Chinese cabbage seeds from four commercial seed vendors to identity differences in germination and growth variability. Lastly, Payton Barnwell, a junior from Florida Polytechnic University has shown that light recipes provided by LEDs can alter the growth and nutrition of 'Outredgeous' lettuce, Chinese cabbage, and Mizuna. The results of her light quality experiments will provide light recipe recommendations for space crops that grown in the Advanced Plant Habitat currently aboard the International Space Station.

  1. Wearable sweat detector device design for health monitoring and clinical diagnosis

    Science.gov (United States)

    Wu, Qiuchen; Zhang, Xiaodong; Tian, Bihao; Zhang, Hongyan; Yu, Yang; Wang, Ming

    2017-06-01

    Miniaturized sensor is necessary part for wearable detector for biomedical applications. Wearable detector device is indispensable for online health care. This paper presents a concept of an wearable digital health monitoring device design for sweat analysis. The flexible sensor is developed to quantify the amount of hydrogen ions in sweat and skin temperature in real time. The detection system includes pH sensor, temperature sensor, signal processing module, power source, microprocessor, display module and so on. The sweat monitoring device is designed for sport monitoring or clinical diagnosis.

  2. Process/health monitoring for wind turbine blade by using FBG sensors with multiplexing techniques

    Science.gov (United States)

    Eum, S. H.; Kageyama, K.; Murayama, H.; Uzawa, K.; Ohsawa, I.; Kanai, M.; Igawa, H.

    2008-04-01

    In this study, we applied fiber Bragg grating sensors to conduct process/health monitoring of wind turbine blade manufactured by VaRTM. In this study, we used a long gauge FBG (about 100mm) based optical frequency domain reflectometory (OFDR) and 8 FBGs on a single fiber based wavelength division multiplexing (WDM). Resin flow front and resin cure were detected during VaRTM. After manufacturing, structural health monitoring was conducted with the blades. These sensors with multiplexing techniques were able to monitor VaRTM process and wind turbine blade successfully.

  3. Self-Assembled Nanostructured Health Monitoring Sensors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the proposed NASA SBIR program is to design, fabricate and evaluate the performance of self-assembled nanostructured sensors for the health...

  4. Prognostics Design Solutions in Structural Health Monitoring Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — The chapter describes the application of prognostic techniques to the domain of structural health and demonstrates the efficacy of the methods using fatigue data...

  5. [Indicators to monitor the evolution of the economic crisis and its effects on health and health inequalities. SESPAS report 2014].

    Science.gov (United States)

    Pérez, Glòria; Rodríguez-Sanz, Maica; Domínguez-Berjón, Felicitas; Cabeza, Elena; Borrell, Carme

    2014-06-01

    The economic crisis has adverse effects on determinants of health and health inequalities. The aim of this article was to present a set of indicators of health and its determinants to monitor the effects of the crisis in Spain. On the basis of the conceptual framework proposed by the Commission for the Reduction of Social Health Inequalities in Spain, we searched for indicators of social, economic, and political (structural and intermediate) determinants of health, as well as for health indicators, bearing in mind the axes of social inequality (gender, age, socioeconomic status, and country of origin). The indicators were mainly obtained from official data sources published on the internet. The selected indicators are periodically updated and are comparable over time and among territories (among autonomous communities and in some cases among European Union countries), and are available for age groups, gender, socio-economic status, and country of origin. However, many of these indicators are not sufficiently reactive to rapid change, which occurs in the economic crisis, and consequently require monitoring over time. Another limitation is the lack of availability of indicators for the various axes of social inequality. In conclusion, the proposed indicators allow for progress in monitoring the effects of the economic crisis on health and health inequalities in Spain.

  6. Wireless body sensor networks for health-monitoring applications.

    Science.gov (United States)

    Hao, Yang; Foster, Robert

    2008-11-01

    Current wireless technologies, such as wireless body area networks and wireless personal area networks, provide promising applications in medical monitoring systems to measure specified physiological data and also provide location-based information, if required. With the increasing sophistication of wearable and implantable medical devices and their integration with wireless sensors, an ever-expanding range of therapeutic and diagnostic applications is being pursued by research and commercial organizations. This paper aims to provide a comprehensive review of recent developments in wireless sensor technology for monitoring behaviour related to human physiological responses. It presents background information on the use of wireless technology and sensors to develop a wireless physiological measurement system. A generic miniature platform and other available technologies for wireless sensors have been studied in terms of hardware and software structural requirements for a low-cost, low-power, non-invasive and unobtrusive system.

  7. Exploring Implementation of m-Health Monitoring in Postpartum Women with Hypertension.

    Science.gov (United States)

    Rhoads, Sarah J; Serrano, Christina I; Lynch, Christian E; Ounpraseuth, Songthip T; Gauss, C Heath; Payakachat, Nalin; Lowery, Curtis L; Eswaran, Hari

    2017-05-05

    Preeclampsia is a hypertensive disorder in pregnancy where a patients' blood pressure and warning signs of worsening disease need to be closely monitored during pregnancy and the postpartum period. No studies have examined remote patient monitoring using mobile health (m-health) technologies in obstetrical care for women with preeclampsia during the postpartum period. Remote monitoring and m-health technologies can expand healthcare coverage to the patient's home. This may be especially beneficial to patients with chronic conditions who live far from a healthcare facility. The study was designed to identify and examine the potential factors that influenced use of m-health technology and adherence to monitoring symptoms related to preeclampsia in postpartum women. A sample of 50 women enrolled into the study. Two participants were excluded, leaving a total sample size of 48 women. Users were given m-health devices to monitor blood pressure, weight, pulse, and oxygen saturation over a 2-week period. Nonusers did not receive equipment. The nurse call center monitored device readings and contacted participants as needed. Both groups completed a baseline and follow-up survey. Women who elected to use the m-health technology on average had lower levels of perceived technology barriers, higher facilitating condition scores, and higher levels of perceived benefits of the technology compared with nonusers. Additionally, among users, there was no statistical difference between full and partial users at follow-up related to perceived ease of use, perceived satisfaction, or perceived benefits. This study provided a basis for restructuring the management of care for postpartum women with hypertensive disorders through the use of m-health technology. Mobile health technology may be beneficial during pregnancy and the postpartum period for women with preeclampsia to closely manage and monitor their blood pressure and warning signs of worsening disease.

  8. Expanding the Description of Spaceflight Effects beyond Bone Mineral Density [BMD]: Trabecular Bone Score [TBS] in ISS Astronauts

    Science.gov (United States)

    Sibonga, J. D.; Spector, E. R.; King, L. J.; Evans, H. J.; Smith, S. A.

    2014-01-01

    Dual-energy x-ray absorptiometry [DXA] is the widely-applied bone densitometry method used to diagnose osteoporosis in a terrestrial population known to be at risk for age-related bone loss. This medical test, which measures areal bone mineral density [aBMD] of clinically-relevant skeletal sites (e.g., hip and spine), helps the clinician to identify which persons, among postmenopausal women and men older than 50 years, are at high risk for low trauma or fragility fractures and might require an intervention. The most recognized osteoporotic fragility fracture is the vertebral compression fracture which can lead to kyphosis or hunched backs typically seen in the elderly. DXA measurement of BMD however is recognized to be insufficient as a sole index for assessing fracture risk. DXA's limitation may be related to its inability to monitor changes in structural parameters, such as trabecular vs. cortical bone volumes, bone geometry or trabecular microarchitecture. Hence, in order to understand risks to human health and performance due to space exposure, NASA needs to expand its measurements of bone to include other contributors to skeletal integrity. To this aim, the Bone and Mineral Lab conducted a pilot study for a novel measurement of bone microarchitecture that can be obtained by retrospective analysis of DXA scans. Trabecular Bone Score (TBS) assesses changes to trabecular microarchitecture by measuring the grey color "texture" information extracted from DXA images of the lumbar spine. An analysis of TBS in 51 ISS astronauts was conducted to assess if TBS could detect 1) an effect of spaceflight and 2) a response to countermeasures independent of DXA BMD. In addition, changes in trunk body lean tissue mass and in trunk body fat tissue mass were also evaluated to explore an association between body composition, as impacted by ARED exercise, and bone microarchitecture. The pilot analysis of 51 astronaut scans of the lumbar spine suggests that, following an ISS

  9. General Purpose Data-Driven Online System Health Monitoring with Applications to Space Operations

    Science.gov (United States)

    Iverson, David L.; Spirkovska, Lilly; Schwabacher, Mark

    2010-01-01

    Modern space transportation and ground support system designs are becoming increasingly sophisticated and complex. Determining the health state of these systems using traditional parameter limit checking, or model-based or rule-based methods is becoming more difficult as the number of sensors and component interactions grows. Data-driven monitoring techniques have been developed to address these issues by analyzing system operations data to automatically characterize normal system behavior. System health can be monitored by comparing real-time operating data with these nominal characterizations, providing detection of anomalous data signatures indicative of system faults, failures, or precursors of significant failures. The Inductive Monitoring System (IMS) is a general purpose, data-driven system health monitoring software tool that has been successfully applied to several aerospace applications and is under evaluation for anomaly detection in vehicle and ground equipment for next generation launch systems. After an introduction to IMS application development, we discuss these NASA online monitoring applications, including the integration of IMS with complementary model-based and rule-based methods. Although the examples presented in this paper are from space operations applications, IMS is a general-purpose health-monitoring tool that is also applicable to power generation and transmission system monitoring.

  10. Real-time health monitoring of civil infrastructure systems in Colombia

    Science.gov (United States)

    Thomson, Peter; Marulanda Casas, Johannio; Marulanda Arbelaez, Johannio; Caicedo, Juan

    2001-08-01

    Colombia's topography, climatic conditions, intense seismic activity and acute social problems place high demands on the nations deteriorating civil infrastructure. Resources that are available for maintenance of the road and railway networks are often misdirected and actual inspection methods are limited to a visual examination. New techniques for inspection and evaluation of safety and serviceability of civil infrastructure, especially bridges, must be developed. Two cases of civil structures with health monitoring systems in Colombia are presented in this paper. Construction of the Pereria-Dos Quebradas Viaduct was completed in 1997 with a total cost of 58 million dollars, including 1.5 million dollars in health monitoring instrumentation provided and installed by foreign companies. This health monitoring system is not yet fully operational due to the lack of training of national personnel in system operation and extremely limited technical documentation. In contrast to the Pereria-Dos Quebradas Viaduct monitoring system, the authors have proposed a relatively low cost health monitoring system via telemetry. This system has been implemented for real-time monitoring of accelerations of El Hormiguero Bridge spanning the Cauca River using the Colombian Southwest Earthquake Observatory telemetry systems. This two span metallic bridge, located along a critical road between the cities of Puerto Tejada and Cali in the Cauca Valley, was constructed approximately 50 years ago. Experiences with this system demonstrate how effective low cost systems can be used to remotely monitor the structural integrity of deteriorating structures that are continuously subject to high loading conditions.

  11. Features of long-term health monitored strains of a bridge with wavelet analysis

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    This paper analyses the five years' monitored strains collected from a long-term health monitoring system installed on a bridge with wavelet transform.In the analysis,the monitored strains are pre-processed,features of the monitored data are summarized briefly.The influences of the base functions on the results of wavelet analysis are studied simultaneously.The results show that the db wavelet is a good mother wavelet function in the analysis,and the order N should be larger than 20,but less than 46 in deco...

  12. Health and usage monitoring system for the small aircraft composite structure

    Science.gov (United States)

    Růžička, Milan; Dvořák, Milan; Schmidová, Nikola; Šašek, Ladislav; Štěpánek, Martin

    2017-07-01

    This paper is focused on the design of the health and usage monitoring system (HUMS) of the composite ultra-light aircrafts. A multichannel measuring system was developed and installed for recording of the long-term operational measurements of the UL airplane. Many fiber Bragg grating sensors were implemented into the composite aircraft structure, mainly in the glue joints. More than ten other analog functions and signals of the aircraft is monitored and can be correlated together. Changing of the FBG sensors responses in monitored places and their correlations, comparing with the calibration and recalibration procedures during a monitored life may indicate damage (eg. in bonded joints) and complements the HUMS system.

  13. An intelligent health monitoring system using radio-frequency identification technology.

    Science.gov (United States)

    Lai, Yeong-Lin; Chen, Chin-Ling; Chang, Ching-Hisang; Hsu, Chih-Yu; Lai, Yeong-Kang; Tseng, Kuo-Kun; Chen, Chih-Cheng; Zheng, Chun-Yi

    2015-01-01

    Long-term care (LTC) for the elderly has become extremely important in recent years. It is necessary for the different physiological monitoring systems to be integrated on the same interface to help oversee and manage the elderly's needs. This paper presents a novel health monitoring system for LTC services using radio-frequency identification (RFID) technology. Dual-band RFID protocols were included in the system, in which the high-frequency (HF) band of 13.56 MHz was used to identify individuals and the microwave band of 2.45 GHz was used to monitor physiological information. Distinct physiological data, including oxyhemoglobin saturation by pulse oximetry (SpO2), blood pressure, blood sugar, electrocardiogram (ECG) readings, body temperature, and respiration rate, were monitored by various biosensors. The intelligent RFID health monitoring system provided the features of the real-time acquisition of biomedical signals and the identification of personal information pertaining to the elderly and patients in nursing homes.

  14. An expert system for astronaut scientists

    Science.gov (United States)

    Young, L. R.

    1991-01-01

    A novel application of expert system technology is developed for real-time advice to an astronaut during the performance of a crew intensive experiment. The provision of an on-board computer expert, containing much of the reasoning base of the real Principal Investigator, will permit the astronaut to act more as a scientist co-worker in future Spacelab and Space Station missions. The long duration of flight increments and the large number of experiments envisioned for Space Station Freedom make the increase in astronaut productivity particularly valuable. A first version of the system was evaluated on the ground during the recent Spacelab SLS-1 flight.

  15. Body sensor networks for Mobile Health Monitoring: Experience in Europe and Australia

    NARCIS (Netherlands)

    Jones, Valerie M.; Gay, V.C.J.; Leijdekkers, Peter

    2010-01-01

    Remote ambulatory monitoring is widely seen as playing a key part in addressing the impending crisis in health care provision. We describe two mobile health solutions, one developed in the Netherlands and one in Australia. In both cases patients’ biosignals are measured by means of body worn sensors

  16. Body sensor networks for Mobile Health Monitoring: Experience in Europe and Australia

    NARCIS (Netherlands)

    Jones, Val; Gay, Valerie; Leijdekkers, Peter

    2009-01-01

    Remote ambulatory monitoring is widely seen as playing a key part in addressing the impending crisis in health care provision. We describe two mobile health solutions, one developed in the Netherlands and one in Australia. In both cases a patient’s biosignals are measured by means of a body sensor n

  17. Performance-based financing for monitoring and evaluation of health system in Cameroon

    Directory of Open Access Journals (Sweden)

    Zakariaou Njoumemi

    2013-09-01

    Full Text Available Objective: To describe the context of, types of and approaches to monitoring and evaluation and the stakeholders’ perceptions of Performance-based financing (PBF in Cameroon.Methods: This research used secondary data, both qualitative and quantitative, from the PBF monitoring and evaluation plan, reports and documents, and information from 380 qualitative interviews of stakeholders. Data was analysed using a systematic process of triangulation of responses in tabular form to assess the contribution of PBF towards strengthening the national system of monitoring and evaluation. Descriptive statistics were presented in form of frequencies.Results: The context of decentralisation and results-based management put monitoring and evaluation at the centre of public policy actions. Performance is measured in terms of effectiveness, efficiency, equity, accountability and transparency. The expected effect of PBF is not to reinforce the monitoring and evaluation system but to increase its performance. In conception, the design of PBF relies on substantial efforts of systematic monitoring and evaluation that can strengthen the national health system. The PBF brought changes to all the organisational systems of the supply of health services according to the monitoring and evaluation objectives, which were aligned to those of the national health system and management health information. Stakeholders were positive about the resulting performance of the central tool for monitoring and evaluation of PBF.Conclusion: Several types of monitoring and evaluation are conducted in the implementation of the PBF scheme, showing great potential to strengthen the national system through the harmonisation and standardisation of indicators and norms at all levels of the national health system pyramid.

  18. Government monitoring of the mental health of children in Canada: five surveys (part I).

    Science.gov (United States)

    Junek, Wade

    2012-02-01

    Canadian governments spend billions of dollars yearly on programmatic interventions, intended to improve the mental health of children, without recommended monitoring of children's mental health. The Canadian Academy of Child and Adolescent Psychiatry monitored governments' progress in producing reports. Five evolving surveys were done during 2002, 2004, 2005, 2006 and 2008. Initially, progress was monitored then later surveys examined challenges that inhibited monitoring, the need for a national strategy, an indicator framework and an agency to do the monitoring and the role of non-government organizations. The 2008 survey requested the three most important indicators governments desired, and created clarity in the definition of monitoring reports in contents, criteria, qualities of indicators and potential names. For comparison purposes, a Partnership Model to survey populations was evaluated. Over five surveys, 13 of 14 governments affirmed the desire for monitoring and 64 publications were reviewed and categorized. No reports met criteria for 'monitoring reports'. The Partnership Model was used successfully in 11 Provincial-Territorial governments. It was reassuring that governments supported monitoring and were producing reports. The Partnership Model may offer a suitable alternative for governments. Results of 2006 and 2008, discussion, conclusions and references are in Part II.

  19. European Health Examination Survey--towards a sustainable monitoring system.

    Science.gov (United States)

    Tolonen, Hanna; Koponen, Päivikki; Mindell, Jennifer; Männistö, Satu; Kuulasmaa, Kari

    2014-04-01

    Health examination surveys (HESs), including both questionnaire and physical measurements, and in most cases also collection of biological samples, can provide objective health indicators. This information complements data from health interview surveys and administrative registers, and is important for evidence-based planning of health policies and prevention activities. HESs are valuable data sources for research. The first national HESs in Europe were conducted in the late 1950s and early 1960s. They have recently been carried out in an increasing number of countries, but there has been no joint standardization between the countries. The European Health Examination Survey Pilot Project was conducted in 2009-2012. The European Health Examination Survey Pilot Reference Centre was established and pilot surveys were conducted in 12 countries.  European standardized protocols for key measurements on main chronic disease risk factors (height, weight, waist circumference, blood pressure, blood lipids and fasting glucose or HbA1c) were prepared. European-level training and external quality assessment were organized. Although the level of earlier experience, infrastructures, economic status and cultural settings varied between the pilot countries, it was possible to standardize measurements of HESs across the populations. Obtaining high participation rates was challenging.  HESs provide high-quality and representative population data to support policy decisions and research. For future national HESs, centralized coordination, training and external quality assessment are needed to ensure comparability of the results. Further studies on effects of different survey methods on comparability of the results and on recruitment and motivation of survey participants are needed.

  20. Standardization and Innovation for Smart e-Health Monitoring Devices

    DEFF Research Database (Denmark)

    Mihovska, Albena D.; Kyriazakos, Sofoklis; Mihaylov, Mihail Rumenov

    2015-01-01

    user and usage scenarios. In addition, there is the challenge of protection of privacy and the maintenance of trust. This paper aims to show the evidence of the correlation between standardization and innovation in the area of ehealth technology. It describes a capability framework proposed...... for the delivery of e-Health services in support of independent living. The proposed framework incorporates innovative research and standardized solutions. The paper addresses the correlation between standardization and innovation, in particular for the area of e-Health. It analyzes the potential of research...

  1. First Class of Female Astronauts

    Science.gov (United States)

    1979-01-01

    From left to right are Shannon W. Lucid, Margaret Rhea Seddon, Kathryn D. Sullivan, Judith A. Resnik, Anna L. Fisher, and Sally K. Ride. NASA selected all six women as their first female astronaut candidates in January 1978, allowing them to enroll in a training program that they completed in August 1979. Shannon W. Lucid was born on January 14, 1943 in Shanghai, China but considers Bethany, Oklahoma to be her hometown. She spent many years at the University of Oklahoma, receiving a Bachelor in chemistry in 1963, a Master in biochemistry in 1970, and a Doctorate in biochemistry in 1973. Dr. Lucid flew on the STS-51G Discovery, STS-34 Atlantis, STS-43 Atlantis, and STS-58 Columbia shuttle missions, setting the record for female astronauts by logging 838 hours and 54 minutes in space. She also currently holds the United States single mission space flight endurance record for her 188 days on the Russian Space Station Mir. From February 2002 to September 2003, she served as chief scientist at NASA Headquarters before returning to JSC to help with the Return to Flight program after the STS-107 accident. Born November 8, 1947, in Murfreesboro, Tennessee, Margaret Rhea Seddon received a Doctorate of Medicine in 1973 from the University of Tennessee. She flew on space missions STS-51 Discovery, STS-40 Columbia, and STS-58 Columbia for a total of over 722 hours in space. Dr. Seddon retired from NASA in November 1997, taking on a position as the Assistant Chief Medical Officer of the Vanderbilt Medical Group in Nashville, Tennessee. Kathryn Sullivan was born October 3, 1951 in Patterson, New Jersey but considers Woodland Hills, California to be her hometown. She received a Bachelor in Earth Sciences from the University of California, Santa Cruz in 1973 and a Doctorate in Geology from Dalhousie University in Halifax, Nova Scotia in 1978. She flew on space missions STS-41G, STS-31, and STS-45 and logged a total of 532 hours in space. Dr. Sullivan left NASA in August 1992 to

  2. System Identification of Wind Turbines for Structural Health Monitoring

    DEFF Research Database (Denmark)

    Perisic, Nevena

    . Thanks to the advanced system identification methods, the majority of these signals can be indirectly measured by assuming a realistic sensor scenario. This thesis addresses the problem of using system identification techniques on monitoring time-varying signals that direct measuring is prevented due...... techniques for time-varying system identification. The test case chosen hereto concerns blade bearing friction estimation. Different nonlinear system identification algorithms are considered and their performances are benchmarked on problems of time-varying parameter estimation in a blade bearing friction...

  3. New seismic array solution for earthquake observations and hydropower plant health monitoring

    Science.gov (United States)

    Antonovskaya, Galina N.; Kapustian, Natalya K.; Moshkunov, Alexander I.; Danilov, Alexey V.; Moshkunov, Konstantin A.

    2017-03-01

    We present the novel fusion of seismic safety monitoring data of the hydropower plant in Chirkey (Caucasus Mountains, Russia). This includes new hardware solutions and observation methods, along with technical limitations for three types of applications: (a) seismic monitoring of the Chirkey reservoir area, (b) structure monitoring of the dam, and (c) monitoring of turbine vibrations. Previous observations and data processing for health monitoring do not include complex data analysis, while the new system is more rational and less expensive. The key new feature of the new system is remote monitoring of turbine vibration. A comparison of the data obtained at the test facilities and by hydropower plant inspection with remote sensors enables early detection of hazardous hydrodynamic phenomena.

  4. New seismic array solution for earthquake observations and hydropower plant health monitoring

    Science.gov (United States)

    Antonovskaya, Galina N.; Kapustian, Natalya K.; Moshkunov, Alexander I.; Danilov, Alexey V.; Moshkunov, Konstantin A.

    2017-09-01

    We present the novel fusion of seismic safety monitoring data of the hydropower plant in Chirkey (Caucasus Mountains, Russia). This includes new hardware solutions and observation methods, along with technical limitations for three types of applications: (a) seismic monitoring of the Chirkey reservoir area, (b) structure monitoring of the dam, and (c) monitoring of turbine vibrations. Previous observations and data processing for health monitoring do not include complex data analysis, while the new system is more rational and less expensive. The key new feature of the new system is remote monitoring of turbine vibration. A comparison of the data obtained at the test facilities and by hydropower plant inspection with remote sensors enables early detection of hazardous hydrodynamic phenomena.

  5. Validity and reliability of the South African health promoting schools monitoring questionnaire.

    Science.gov (United States)

    Struthers, Patricia; Wegner, Lisa; de Koker, Petra; Lerebo, Wondwossen; Blignaut, Renette J

    2016-10-02

    Health promoting schools, as conceptualised by the World Health Organisation, have been developed in many countries to facilitate the health-education link. In 1994, the concept of health promoting schools was introduced in South Africa. In the process of becoming a health promoting school, it is important for schools to monitor and evaluate changes and developments taking place. The Health Promoting Schools (HPS) Monitoring Questionnaire was developed to obtain opinions of students about their school as a health promoting school. It comprises 138 questions in seven sections: socio-demographic information; General health promotion programmes; health related Skills and knowledge; Policies; Environment; Community-school links; and support Services. This paper reports on the reliability and face validity of the HPS Monitoring Questionnaire. Seven experts reviewed the questionnaire and agreed that it has satisfactory face validity. A test-retest reliability study was conducted with 83 students in three high schools in Cape Town, South Africa. The kappa-coefficients demonstrate mostly fair (κ-scores between 0.21 and 0.4) to moderate (κ-scores between 0.41 and 0.6) agreement between test-retest General and Environment items; poor (κ-scores up to 0.2) agreement between Skills and Community test-retest items, fair agreement between Policies items, and for most of the questions focussing on Services a fair agreement was found. The study is a first effort at providing a tool that may be used to monitor and evaluate students' opinions about changes in health promoting schools. Although the HPS Monitoring Questionnaire has face validity, the results of the reliability testing were inconclusive. Further research is warranted.

  6. Preservation Health Check: Monitoring Threats to Digital Repository Content

    Science.gov (United States)

    Kool, Wouter; van der Werf, Titia; Lavoie, Brian

    2014-01-01

    The Preservation Health Check (PHC) project, undertaken as a joint effort by Open Planets Foundation (OPF) and OCLC Research, aims to evaluate the usefulness of the preservation metadata created and maintained by operational repositories for assessing basic preservation properties. The PHC project seeks to develop an implementable logic to support…

  7. Standardization and Innovation for Smart e-Health Monitoring Devices

    DEFF Research Database (Denmark)

    Mihovska, Albena D.; Kyriazakos, Sofoklis; Mihaylov, Mihail Rumenov

    2015-01-01

    The challenges faced by standardization in relation to the potential of wireless communication technologies to deliver lower cost, higher efficiency, enhanced quality of experience and diversified smart e-Health services, are multi-fold and determined by the complexity of the myriad of emerging u...

  8. Op naar meerwaarde! eHealth-monitor 2014.

    NARCIS (Netherlands)

    Krijgsman, J.; Peeters, J.; Burghouts, A.; Brabers, A.; Jong, J. de; Beenkens, F.; Friele, R.; Gennip, L. van

    2014-01-01

    Nederlandse patiënten zijn in vergelijking met vorig jaar beter op de hoogte van het bestaan van eHealth-mogelijkheden bij hun zorgverleners. Voorbeelden zijn online herhaalrecepten aanvragen of vragen stellen aan de dokter via e-mail. Nederlandse artsen maken in vergelijking met vorig jaar nog meer

  9. Forest health monitoring: national status, trends, and analysis 2015

    Science.gov (United States)

    Kevin M. Potter; Barbara L. Conkling

    2016-01-01

    The annual national report of the Forest Health Monitoring (FHM) Program of the Forest Service, U.S. Department of Agriculture, presents forest health status and trends from a national or multi- State regional perspective using a variety of sources, introduces new techniques for analyzing forest health data, and summarizes results of recently completed Evaluation...

  10. Active structural health monitoring of composite plates and sandwiches

    Directory of Open Access Journals (Sweden)

    Sadílek P.

    2013-12-01

    Full Text Available The aim of presented work is to design, assemble and test a functional system, that is able to reveal damage from impact loading. This is done by monitoring of change of spectral characteristics on a damaged structure that is caused by change of mechanical properties of material or by change of structure’s geometry. Excitation and monitoring of structures was done using piezoelectric patches. Unidirectional composite plate was tested for eigenfrequencies using chirp signal. The eigenfrequencies were compared to results from experiments with an impact hammer and consequently with results from finite element method. Same method of finding eigenfrequencies was used on a different unidirectional composite specimen. Series of impacts were performed. Spectrum of eigenfrequencies was measured on undamaged plate and then after each impact. Measurements of the plate with different level of damage were compared. Following experiments were performed on sandwich materials where more different failures may happen. Set of sandwich beams (cut out from one plate made of two outer composite layers and a foam core was investigated and subjected to several impacts. Several samples were impacted in the same manner to get comparable results. The impacts were performed with growing impact energy.

  11. Local Leak Detection and Health Monitoring of Pressurized Tanks

    Science.gov (United States)

    Polzin, Kurt; Witherow, William; Korman, Valentin; Sinko, John; Hendrickson, Adam

    2011-01-01

    An optical gas-detection sensor safely monitors pressurized systems (such as cryogenic tanks) and distribution systems for leaks. This sensor system is a fiber-coupled, solid optical body interferometer that allows for the miniaturized sensing element of the device to be placed in the smallest of recesses, and measures a wide range of gas species and densities (leaks). The deflection of the fringe pattern is detected and recorded to yield the time-varying gas density in the gap. This technology can be used by manufacturers or storage facilities with toxic, hazardous, or explosive gases. The approach is to monitor the change in the index of refraction associated with low-level gas leaks into a vacuum environment. The completion of this work will provide NASA with an enabling capability to detect gas system leaks in space, and to verify that pressurized systems are in a safe (i.e. non-leaking) condition during manned docking and transit operations. By recording the output of the sensor, a time-history of the leak can be constructed to indicate its severity. Project risk is mitigated by having several interferometric geometries and detection techniques available, each potentially leveraging hardware and lessons learned to enhance detectability.

  12. Structural health condition monitoring of rails using acoustic emission techniques

    Science.gov (United States)

    Yilmazer, Pinar

    In-service rails can develop several types of structural defects due to fatigue and wear caused by rolling stock passing over them. Most rail defects will develop gradually over time thus permitting inspection engineers to detect them in time before final failure occurs. In the UK, certain types of severe rail defects such as tache ovales, require the fitting of emergency clamps and the imposing of an Emergency Speed Restriction (ESR) until the defects are removed. Acoustic emission (AE) techniques can be applied for the detection and continuous monitoring of defect growth therefore removing the need of imposing strict ESRs. The work reported herewith aims to develop a sound methodology for the application of AE in order to detect and subsequently monitor damage evolution in rails. To validate the potential of the AE technique, tests have been carried out under laboratory conditions on three and four-point bending samples manufactured from 260 grade rail steel. Further tests, simulating the background noise conditions caused by passing rolling stock have been carried out using special experimental setups. The crack growth events have been simulated using a pencil tip break..

  13. The 'global health' education framework: a conceptual guide for monitoring, evaluation and practice

    Directory of Open Access Journals (Sweden)

    Tinnemann Peter

    2011-04-01

    Full Text Available Abstract Background In the past decades, the increasing importance of and rapid changes in the global health arena have provoked discussions on the implications for the education of health professionals. In the case of Germany, it remains yet unclear whether international or global aspects are sufficiently addressed within medical education. Evaluation challenges exist in Germany and elsewhere due to a lack of conceptual guides to develop, evaluate or assess education in this field. Objective To propose a framework conceptualising 'global health' education (GHE in practice, to guide the evaluation and monitoring of educational interventions and reforms through a set of key indicators that characterise GHE. Methods Literature review; deduction. Results and Conclusion Currently, 'new' health challenges and educational needs as a result of the globalisation process are discussed and linked to the evolving term 'global health'. The lack of a common definition of this term complicates attempts to analyse global health in the field of education. The proposed GHE framework addresses these problems and presents a set of key characteristics of education in this field. The framework builds on the models of 'social determinants of health' and 'globalisation and health' and is oriented towards 'health for all' and 'health equity'. It provides an action-oriented construct for a bottom-up engagement with global health by the health workforce. Ten indicators are deduced for use in monitoring and evaluation.

  14. Astronaut Neil Armstrong participates in simulation training

    Science.gov (United States)

    1969-01-01

    Astronaut Neil A. Armstrong, Apollo 11 commander, participates in simulation training in preparation for the scheduled lunar landing mission. He is in the Apollo Lunar Module Mission SImulator in the Kennedy Space Center's Flight Crew Training Building.

  15. Official portrait of astronaut Guy S. Gardner

    Science.gov (United States)

    1990-01-01

    Official portrait of Guy S. Gardner, United States Air Force Colonel, member of Astronaut Class 9 (1980), and space shuttle pilot. Gardner wears a launch and entry suit (LES) with the helmet displayed on his left.

  16. Haige astronaut venitab Atlantise missiooni / Liisi Poll

    Index Scriptorium Estoniae

    Poll, Liisi, 1980-

    2008-01-01

    Saksamaa astronaut ei saanud haiguse tõttu minna avakosmosesse, mistõttu lükkus edasi ka Euroopa Kosmoseagentuuri laborimooduli paigaldamine rahvusvahelisse kosmosejaama (ISS). Lisa: Teaduslabor Columbos

  17. Astronaut Judith Resnik participates in WETF training

    Science.gov (United States)

    1984-01-01

    Astronaut Judith Resnik participates in extravehicular activity (EVA) training in the Weightless Environment Training Facility (WETF). She is wearing an extravehicular mobility unit (EMU) and is being assisted to don her gloves.

  18. Astronaut Neil Armstrong during thermovacuum training

    Science.gov (United States)

    1969-01-01

    Astronaut Neil A. Armstrong, commander of the Apollo 11 lunar landing mission, is photographed during thermovacuum training in Chamber B of the Space Environment Simulation Laboratory, Building 32, Manned Spacecraft Center. He is wearing an Extravehicular Mobility Unit. The training simulated lunar surface vacuum and thermal conditions during astronaut operations outside the Lunar Module on the moon's surface. The mirror was used to reflect solar light.

  19. Noise in space. [effect on Skylab astronauts

    Science.gov (United States)

    Rader, W. P.; Baratono, J.; Bandgren, H.; Erwin, R.

    1975-01-01

    The Skylab program presented an excellent opportunity to investigate the effects of noise on man confined in limited space for long periods of time. This paper summarizes the results of a 4-year study to achieve a habitable noise environment for the Skylab astronauts. Noise control measures are described and noise measurements obtained during the Skylab missions are presented, as well as the astronauts' reactions to and evaluations of the noise environment.

  20. Assessment of an anomaly detector for jet engine health monitoring

    OpenAIRE

    Sebastien Borguet; Olivier Léonard

    2011-01-01

    The goal of module performance analysis is to reliably assess the health of the main components of an aircraft engine. A predictive maintenance strategy can leverage this information to increase operability and safety as well as to reduce costs. Degradation undergone by an engine can be divided into gradual deterioration and accidental events. Kalman filters have proven very efficient at tracking progressive deterioration but are poor performers in the face of abrupt events. Adaptive estimati...

  1. Relationships Between Animal Health Monitoring and the Risk Assessment Process

    Directory of Open Access Journals (Sweden)

    Salman MD

    2001-03-01

    Full Text Available Risk assessment is part of the risk analysis process as it is used in veterinary medicine to estimate risks related to international trade and food safety. Data from monitoring and surveillance systems (MO&SS are used throughout the risk assessment process for hazard identification, release assessment, exposure assessment and consequence assessment. As the quality of risk assessments depends to a large extent on the availability and quality of input data, there is a close relationship between MO&SS and risk assessment. In order to improve the quality of risk assessments, MO&SS should be designed according to minimum quality standards. Second, recent scientific developments on state-of-the-art design and analysis of surveys need to be translated into field applications and legislation. Finally, knowledge about the risk assessment process among MO&SS planners and managers should be promoted in order to assure high-quality data.

  2. Structural Health Monitoring of Frame Structures Using Piezo-Transducer

    Science.gov (United States)

    Shanker, R.; Bhalla, S.; Gupta, A.

    2008-07-01

    Monitoring of civil structures is crucial for their proper functioning. Any crack in a structure changes its static and dynamic behaviours. To detect the damage/crack at the initiating time itself is challenging task in modern time. This paper describes an experimental study to extract the dynamic characteristics of a frame structure using piezo-electric ceramic (PZT) transducers. Tests are conducted on steel frame to extract the natural frequencies and the experimental mode shapes. Free vibration response is first acquired in the time domain and then transformed into frequency domain using Fast Fourier Transforms (FFT) analyser. Only single PZT patch is sufficient to extract the first nine modes shape of the steel frame .By using numerical model, mode shapes are extracted corresponding to each identified natural frequency. After determining natural frequencies and experimental mode shape, damages can be located by method of Naidu and Soh (2004). This approach can be used for damage/crack detection at very earlier stage.

  3. Plume spectrometry for liquid rocket engine health monitoring

    Science.gov (United States)

    Powers, William T.; Sherrell, F. G.; Bridges, J. H., III; Bratcher, T. W.

    1988-01-01

    An investigation of Space Shuttle Main Engine (SSME) testing failures identified optical events which appeared to be precursors of those failures. A program was therefore undertaken to detect plume trace phenomena characteristic of the engine and to design a monitoring system, responsive to excessive activity in the plume, capable of delivering a warning of an anomalous condition. By sensing the amount of extraneous material entrained in the plume and considering engine history, it may be possible to identify wearing of failing components in time for a safe shutdown and thus prevent a catastrophic event. To investigate the possibilities of safe shutdown and thus prevent a monitor to initiate the shutdown procedure, a large amount of plume data were taken from SSME firings using laboratory instrumentation. Those data were used to design a more specialized instrument dedicated to rocket plume diagnostics. The spectral wavelength range of the baseline data was about 220 nanometers (nm) to 15 micrometer with special attention given to visible and near UV. The data indicates that a satisfactory design will include a polychromator covering the range of 250 nM to 1000 nM, along with a continuous coverage spectrometer, each having a resolution of at least 5A degrees. The concurrent requirements for high resolution and broad coverage are normally at odds with one another in commercial instruments, therefore necessitating the development of special instrumentation. The design of a polychromator is reviewed herein, with a detailed discussion of the continuous coverage spectrometer delayed to a later forum. The program also requires the development of applications software providing detection, variable background discrimination, noise reduction, filtering, and decision making based on varying historical data.

  4. Demonstrating Change with Astronaut Photography Using Object Based Image Analysis

    Science.gov (United States)

    Hollier, Andi; Jagge, Amy

    2017-01-01

    Every day, hundreds of images of Earth flood the Crew Earth Observations database as astronauts use hand held digital cameras to capture spectacular frames from the International Space Station. The variety of resolutions and perspectives provide a template for assessing land cover change over decades. We will focus on urban growth in the second fastest growing city in the nation, Houston, TX, using Object-Based Image Analysis. This research will contribute to the land change science community, integrated resource planning, and monitoring of the rapid rate of urban sprawl.

  5. Propulsion health monitoring of a turbine engine disk using spin test data

    Science.gov (United States)

    Abdul-Aziz, Ali; Woike, Mark; Oza, Nikunj; Matthews, Bryan; Baakilini, George

    2010-03-01

    On line detection techniques to monitor the health of rotating engine components are becoming increasingly attractive options to aircraft engine companies in order to increase safety of operation and lower maintenance costs. Health monitoring remains a challenging feature to easily implement, especially, in the presence of scattered loading conditions, crack size, component geometry and materials properties. The current trend, however, is to utilize noninvasive types of health monitoring or nondestructive techniques to detect hidden flaws and mini cracks before any catastrophic event occurs. These techniques go further to evaluate materials' discontinuities and other anomalies that have grown to the level of critical defects which can lead to failure. Generally, health monitoring is highly dependent on sensor systems that are capable of performing in various engine environmental conditions and able to transmit a signal upon a predetermined crack length, while acting in a neutral form upon the overall performance of the engine system. Efforts are under way at NASA Glenn Research Center through support of the Intelligent Vehicle Health Management Project (IVHM) to develop and implement such sensor technology for a wide variety of applications. These efforts are focused on developing high temperature, wireless, low cost and durable products. Therefore, in an effort to address the technical issues concerning health monitoring of a rotor disk, this paper considers data collected from an experimental study using high frequency capacitive sensor technology to capture blade tip clearance and tip timing measurements in a rotating engine-like-disk-to predict the disk faults and assess its structural integrity. The experimental results collected at a range of rotational speeds from tests conducted at the NASA Glenn Research Center's Rotordynamics Laboratory will be evaluated using multiple data-driven anomaly detection techniques to identify anomalies in the disk. This study

  6. Interoperability as a quality label for portable & wearable health monitoring systems.

    Science.gov (United States)

    Chronaki, Catherine E; Chiarugi, Franco

    2005-01-01

    Advances in ICT promising universal access to high quality care, reduction of medical errors, and containment of health care costs, have renewed interest in electronic health records (EHR) standards and resulted in comprehensive EHR adoption programs in many European states. Health cards, and in particular the European health insurance card, present an opportunity for instant cross-border access to emergency health data including allergies, medication, even a reference ECG. At the same time, research and development in miniaturized medical devices and wearable medical sensors promise continuous health monitoring in a comfortable, flexible, and fashionable way. These trends call for the seamless integration of medical devices and intelligent wearables into an active EHR exploiting the vast information available to increase medical knowledge and establish personal wellness profiles. In a mobile connected world with empowered health consumers and fading barriers between health and healthcare, interoperability has a strong impact on consumer trust. As a result, current interoperability initiatives are extending the traditional standardization process to embrace implementation, validation, and conformance testing. In this paper, starting from the OpenECG initiative, which promotes the consistent implementation of interoperability standards in electrocardiography and supports a worldwide community with data sets, open source tools, specifications, and online conformance testing, we discuss EHR interoperability as a quality label for personalized health monitoring systems. Such a quality label would support big players and small enterprises in creating interoperable eHealth products, while opening the way for pervasive healthcare and the take-up of the eHealth market.

  7. [Living a good live with e-health: anticipating ethical consequences and monitoring them].

    Science.gov (United States)

    Horstman, Klasien

    2014-01-01

    E-health incorporates a range of digital techniques that are interlinked because they promise to improve people's health and quality of life. The question of how these techniques actually contribute to "living a good live" is not so easy to answer, because scientific, commercial and patients' perspectives all come into play. Research on the unintended consequences of e-health applications clearly shows that it is necessary to anticipate social consequences as early as in the design phase. However, because it is not possible to predict some outcomes, it is also necessary to properly monitor how these techniques affect daily life. It is crucial to pay attention to how these techniques affect people with different educational backgrounds.. Digital techniques have a great capacity to democratise healthcare, but may also unintentionally increase health inequalities. The ethical consequences of e-health applications need to be anticipated and monitored in order to prevent this happening as much as possible.

  8. The role of Environmental Health System air quality monitors in Space Station Contingency Operations

    Science.gov (United States)

    Limero, Thomas F.; Wilson, Steve; Perlot, Susan; James, John

    1992-01-01

    This paper describes the Space Station Freedom (SSF) Environmental Health System's air-quality monitoring strategy and instrumentation. A two-tier system has been developed, consisting of first-alert instruments that warn the crew of airborne contamination and a volatile organic analyzer that can identify volatile organic contaminants in near-real time. The strategy for air quality monitoring on SSF is designed to provide early detection so that the contamination can be confined to one module and so that crew health and safety can be protected throughout the contingency event. The use of air-quality monitors in fixed and portable modes will be presented as a means of following the progress of decontamination efforts and ensuring acceptable air quality in a module after an incident. The technology of each instrument will be reviewed briefly; the main focus of this paper, however, will be the use of air-quality monitors before, during, and after contingency incidents.

  9. Closing the loop from continuous M-health monitoring to fuzzy logic-based optimized recommendations.

    Science.gov (United States)

    Benharref, Abdelghani; Serhani, Mohamed Adel; Nujum, Al Ramzana

    2014-01-01

    Continuous sensing of health metrics might generate a massive amount of data. Generating clinically validated recommendations, out of these data, to patients under monitoring is of prime importance to protect them from risk of falling into severe health degradation. Physicians also can be supported with automated recommendations that gain from historical data and increasing learning cycles. In this paper, we propose a Fuzzy Expert System that relies on data collected from continuous monitoring. The monitoring scheme implements preprocessing of data for better data analytics. However, data analytics implements the loopback feature in order to constantly improve fuzzy rules, knowledge base, and generated recommendations. Both techniques reduced data quantity, improved data quality and proposed recommendations. We evaluate our solution through a series of experiments and the results we have obtained proved that our fuzzy expert system combined with the intelligent monitoring and analytic techniques provide a high accuracy of collected data and valid advices.

  10. New possibilities for the teaching of nursing in mental health: an experience in monitoring

    Directory of Open Access Journals (Sweden)

    Karina Faine da Silva Freitas

    2014-12-01

    Full Text Available This study aimed at reflecting on the possibilities of applying new methodological strategies in the teaching and learning in nursing. The study is a report of an experiment conducted from a monitoring project of a syllabus activity of nursing in mental and psychiatry health. The methodology was developed by introducing the student/monitor in the contents of theoretical practical learning that were performed by means of Active Methodologies in three academic semesters in 2010 and 2011, in the Nursing School of the Universade Federal do Pará, Brazil. The monitor performed activities to support professors as the ‘Ciclo de Estudos Aprender Fazendo’ (Cycle of Studies Learning Experiencing. It was revealed as a strengthening factor the new pedagogical proposal of the course and shown that the monitoring experience is presented as a new possibility of teaching in mental health from the introduction of different ways to approach the topic in class.

  11. Cardiovascular Disease Risk in NASA Astronauts Across the Lifespan: Historical Cohort Studies

    Science.gov (United States)

    Charvat, Jacqueline M.; Lee, Stuart M. C.; Davenport, Eddie; Barlow, Carolyn E.; Radford, Nina B.; De Fina, Laura F.; Stenger, Michael B.; Van Baalen, Mary

    2017-01-01

    Acute effects of spaceflight on the cardiovascular system have been studied extensively, but the combined chronic effects of spaceflight and aging are not well understood. Preparation for and participation in space flight activities are potentially associated with cardiovascular disease risk factors (e.g., altered dietary and exercise habits, physical and emotional stress, circadian shifts, radiation). Further, astronauts who travel into space multiple times may be at an increased risk across their lifespan. However, comparing the risk of cardiovascular disease in astronauts to other large cohorts is difficult. For example, comparisons between astronauts and large national cohorts, such as the National Health and Nutrition Examination Survey and the National Health Information Survey, are hampered by significant differences in health status between astronauts and the general population, and most of these national studies fail to provide longitudinal data on population health. To address those limitations, NASA's Longitudinal Study of Astronaut Health previously sought to compare the astronauts to a cohort of civil servants employed at the Johnson Space Center. However, differences between the astronauts and civil servants at the beginning of the study, as well as differential follow up, limited the ability to interpret the results. To resolve some of these limitations, two unique cohorts of healthy workers, U.S. Air Force aviators and Cooper Center Longitudinal Study participants, have been identified as potential comparison populations for the astronaut corps. The Air Force cohort was chosen due to similarities in health at selection, screening, and some occupational exposures that Air Force aviators endure, many of which mirror that of the astronaut corps. The Cooper Clinic cohort, a generally healthy prevention cohort, was chosen for the vast array of clinical cardiovascular measures collected in a longitudinal manner complementary to those collected on

  12. Pilot Variability Study for Federal Aviation Administration Health and Usage Monitoring Mock Certification

    Science.gov (United States)

    2015-09-01

    Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302 Respondents should be aware that notwithstanding any other provision of law, no person shall...health and usage monitoring systems and to reduce the effect of any bias that may result due to changes in pilots. The objective of the statistical...usage monitoring systems (HUMS) and to reduce the effect of any bias that may result due to changes in pilots. The objective of the DOE is to support

  13. Resource consumption and management associated with monitoring of warfarin treatment in primary health care in Sweden

    Directory of Open Access Journals (Sweden)

    Nilsson Gunnar H

    2006-11-01

    Full Text Available Abstract Background Warfarin is used for the prevention and treatment of various thromboembolic complications. It is an efficacious anticoagulant, but it has a narrow therapeutic range, and regular monitoring is required to ensure therapeutic efficacy and at the same time avoid life-threatening adverse events. The objective was to assess management and resource consumption associated with patient monitoring episodes during warfarin treatment in primary health care in Sweden. Methods Delphi technique was used to systematically explore attitudes, demands and priorities, and to collect informed judgements related to monitoring of warfarin treatment. Two separate Delphi-panels were performed in three and two rounds, respectively, one concerning tests taken in primary health care centres, involving 34 GPs and 10 registered nurses, and one concerning tests taken in patients' homes, involving 49 district nurses. Results In the primary health care panel 10 of the 34 GPs regularly collaborated with a registered nurse. Average time for one monitoring episode was estimated to 10.1 minutes for a GP and 21.4 minutes for a nurse, when a nurse assisted a doctor. The average time for monitoring was 17.6 minutes for a GP when not assisted by a nurse. Considering all the monitoring episodes, 11.6% of patient blood samples were taken in the individual patient's home. Average time for such a monitoring episode was estimated to 88.2 minutes. Of all the visits, 8.2% were performed in vain and took on average 44.6 minutes. In both studies, approximately 20 different elements of work concerning management of patients during warfarin treatment were identified. Conclusion Monitoring of patients during treatment with warfarin in primary health care in Sweden involves many elements of work, and demands large resources, especially when tests are taken in the patient's home.

  14. Structural health monitoring system of soccer arena based on optical sensors

    Science.gov (United States)

    Shishkin, Victor V.; Churin, Alexey E.; Kharenko, Denis S.; Zheleznova, Maria A.; Shelemba, Ivan S.

    2014-05-01

    A structural health monitoring system based on optical sensors has been developed and installed on the indoor soccer arena "Zarya" in Novosibirsk. The system integrates 119 fiber optic sensors: 85 strain, 32 temperature and 2 displacement sensors. In addition, total station is used for measuring displacement in 45 control points. All of the constituents of the supporting structure are subjects for monitoring: long-span frames with under floor ties, connections, purlins and foundation.

  15. Framework for a space shuttle main engine health monitoring system

    Science.gov (United States)

    Hawman, Michael W.; Galinaitis, William S.; Tulpule, Sharayu; Mattedi, Anita K.; Kamenetz, Jeffrey

    1990-01-01

    A framework developed for a health management system (HMS) which is directed at improving the safety of operation of the Space Shuttle Main Engine (SSME) is summarized. An emphasis was placed on near term technology through requirements to use existing SSME instrumentation and to demonstrate the HMS during SSME ground tests within five years. The HMS framework was developed through an analysis of SSME failure modes, fault detection algorithms, sensor technologies, and hardware architectures. A key feature of the HMS framework design is that a clear path from the ground test system to a flight HMS was maintained. Fault detection techniques based on time series, nonlinear regression, and clustering algorithms were developed and demonstrated on data from SSME ground test failures. The fault detection algorithms exhibited 100 percent detection of faults, had an extremely low false alarm rate, and were robust to sensor loss. These algorithms were incorporated into a hierarchical decision making strategy for overall assessment of SSME health. A preliminary design for a hardware architecture capable of supporting real time operation of the HMS functions was developed. Utilizing modular, commercial off-the-shelf components produced a reliable low cost design with the flexibility to incorporate advances in algorithm and sensor technology as they become available.

  16. High Temperatures Health Monitoring of the Condensed Water Height in Steam Pipe Systems

    Science.gov (United States)

    Lih, Shyh-Shiuh; Bar-Cohen, Yoseph; Lee, Hyeong Jae; Badescu, Mircea; Bao, Xiaoqi; Sherrit, Stewart; Takano, Nobuyuki; Ostlund, Patrick; Blosiu, Julian

    2013-01-01

    Ultrasonic probes were designed, fabricated and tested for high temperature health monitoring system. The goal of this work was to develop the health monitoring system that can determine the height level of the condensed water through the pipe wall at high temperature up to 250 deg while accounting for the effects of surface perturbation. Among different ultrasonic probe designs, 2.25 MHz probes with air backed configuration provide satisfactory results in terms of sensitivity, receiving reflections from the target through the pipe wall. A series of tests were performed using the air-backed probes under irregular conditions, such as surface perturbation and surface disturbance at elevated temperature, to qualify the developed ultrasonic system. The results demonstrate that the fabricated air-backed probes combined with advanced signal processing techniques offer the capability of health monitoring of steam pipe under various operating conditions.

  17. High Temperatures Health Monitoring of the Condensed Water Height in Steam Pipe Systems

    Science.gov (United States)

    Lih, Shyh-Shiuh; Bar-Cohen, Yoseph; Lee, Hyeong Jae; Badescu, Mircea; Bao, Xiaoqi; Sherrit, Stewart; Takano, Nobuyuki; Ostlund, Patrick; Blosiu, Julian

    2013-01-01

    Ultrasonic probes were designed, fabricated and tested for high temperature health monitoring system. The goal of this work was to develop the health monitoring system that can determine the height level of the condensed water through the pipe wall at high temperature up to 250 deg while accounting for the effects of surface perturbation. Among different ultrasonic probe designs, 2.25 MHz probes with air backed configuration provide satisfactory results in terms of sensitivity, receiving reflections from the target through the pipe wall. A series of tests were performed using the air-backed probes under irregular conditions, such as surface perturbation and surface disturbance at elevated temperature, to qualify the developed ultrasonic system. The results demonstrate that the fabricated air-backed probes combined with advanced signal processing techniques offer the capability of health monitoring of steam pipe under various operating conditions.

  18. Integrity mechanism for eHealth tele-monitoring system in smart home environment.

    Science.gov (United States)

    Mantas, Georgios; Lymberopoulos, Dimitrios; Komninos, Nikos

    2009-01-01

    During the past few years, a lot of effort has been invested in research and development of eHealth tele-monitoring systems that will provide many benefits for healthcare delivery from the healthcare provider to the patient's home. However, there is a plethora of security requirements in eHealth tele-monitoring systems. Data integrity of the transferred medical data is one of the most important security requirements that should be satisfied in these systems, since medical information is extremely sensitive information, and even sometimes life threatening information. In this paper, we present a data integrity mechanism for eHealth tele-monitoring system that operates in a smart home environment. Agent technology is applied to achieve data integrity with the use of cryptographic smart cards. Furthermore, the overall security infrastructure and its various components are described.

  19. Defining the role of omics in assessing ecosystem health: Perspectives from the Canadian environmental monitoring program.

    Science.gov (United States)

    Bahamonde, Paulina A; Feswick, April; Isaacs, Meghan A; Munkittrick, Kelly R; Martyniuk, Christopher J

    2016-01-01

    Scientific reviews and studies continue to describe omics technologies as the next generation of tools for environmental monitoring, while cautioning that there are limitations and obstacles to overcome. However, omics has not yet transitioned into national environmental monitoring programs designed to assess ecosystem health. Using the example of the Canadian Environmental Effects Monitoring (EEM) program, the authors describe the steps that would be required for omics technologies to be included in such an established program. These steps include baseline collection of omics endpoints across different species and sites to generate a range of what is biologically normal within a particular ecosystem. Natural individual variability in the omes is not adequately characterized and is often not measured in the field, but is a key component to an environmental monitoring program, to determine the critical effect size or action threshold for management. Omics endpoints must develop a level of standardization, consistency, and rigor that will allow interpretation of the relevance of changes across broader scales. To date, population-level consequences of routinely measured endpoints such as reduced gonad size or intersex in fish is not entirely clear, and the significance of genome-wide molecular, proteome, or metabolic changes on organism or population health is further removed from the levels of ecological change traditionally managed. The present review is not intended to dismiss the idea that omics will play a future role in large-scale environmental monitoring studies, but rather outlines the necessary actions for its inclusion in regulatory monitoring programs focused on assessing ecosystem health.

  20. Health monitoring of electric power communication line using a distributed optical fiber sensor

    Science.gov (United States)

    Lu, Lidong; Liang, Yun; Li, Binglin; Guo, Jinghong; Zhang, Hao; Zhang, Xuping

    2014-11-01

    Optical fiber ground wire (OPGW) is used for both the earth line and communication line in electric power systems. It is important to find an effective to monitor the status of OPGW and diagnose some possible damages. Fault location of the optical fiber transmission line, lightning stroke location and early-warning of ice covering of OPGW are common tasks for OPGW health monitoring and maintenance. As to these issues, Brillouin optical time domain reflectometry (BOTDR) is employed for the health monitoring of OPGW. In experiment, a positive electrode with high pulsed current and a negative electrode are adopted to form a lightning impulse system with duration time of 200ms for simulation of the lightning stroke process, and a tensile force loading apparatus is also constructed to simulate the strain influence of the ice covering on the OPGW. Experimental results demonstrate that the BOTDR can sensitively locate the lightning stroke incidents with the quantity of electric discharging larger than 100C and the strain component has little interference on temperature monitoring as the fiber contained in the OPGW is generally free of strain, and in the ice covering condition the strain feature appears only when the extra tensile force on the OPGW is over 30kN. In addition, the vibration of OPGW does not disturb both the temperature and strain monitoring. As to further applications of distributed optical fiber sensors (DOFS) for the OPGW health monitoring, it is important to enhance its spatial resolution.

  1. Engineering approach to in-situ bridge health monitoring with fiber bragg gratings

    Institute of Scientific and Technical Information of China (English)

    WU Zhan-jun; ZHANG Bo-ming; WAN Li-bing; ZHOU Zhi; OU Jin-ping

    2006-01-01

    In this presentation the feasibility and capability of fiber Bragg gratings (FBG) employed in bridge health monitoring are demonstrated on a real bridge. FBG's wavelength shift depending on strain variance has been tested. The technique of FBG installation on bridges has been developed. 12 FBG strain sensors and 3temperature sensors have been successfully embedded in the prestressed concrete box girder during the construction of Heilongjiang Hulan River Bridge. The prestressing tension process and quasi-static loading process of the girder were monitored with those sensors before it was installed onto the bridge. After the bridge was completed,the FBG sensors embedded have been utilized to monitor the strain shift of the beam under quasi-static load,traffic load and temperature. The results show that the traffic fluxes, possible fatigue damage and deflection of the bridge can be revealed conveniently through strain measurements with these FBG sensors, which provide key information for structural health diagnosis. The fact that the FBG strain sensors have withstood the ordeal of harsh construction process and lasted for more than one year proves that their durability and stability can satisfy the requirements for bridge health monitoring. It is also shown that the FBG strain sensor is more adaptive to long-term structural health monitoring than the electric resistance strain gauge.

  2. Smart home-based health platform for behavioral monitoring and alteration of diabetes patients.

    Science.gov (United States)

    Helal, Abdelsalam; Cook, Diane J; Schmalz, Mark

    2009-01-01

    Researchers and medical practitioners have long sought the ability to continuously and automatically monitor patients beyond the confines of a doctor's office. We describe a smart home monitoring and analysis platform that facilitates the automatic gathering of rich databases of behavioral information in a manner that is transparent to the patient. Collected information will be automatically or manually analyzed and reported to the caregivers and may be interpreted for behavioral modification in the patient. Our health platform consists of five technology layers. The architecture is designed to be flexible, extensible, and transparent, to support plug-and-play operation of new devices and components, and to provide remote monitoring and programming opportunities. The smart home-based health platform technologies have been tested in two physical smart environments. Data that are collected in these implemented physical layers are processed and analyzed by our activity recognition and chewing classification algorithms. All of these components have yielded accurate analyses for subjects in the smart environment test beds. This work represents an important first step in the field of smart environment-based health monitoring and assistance. The architecture can be used to monitor the activity, diet, and exercise compliance of diabetes patients and evaluate the effects of alternative medicine and behavior regimens. We believe these technologies are essential for providing accessible, low-cost health assistance in an individual's own home and for providing the best possible quality of life for individuals with diabetes. © Diabetes Technology Society

  3. Integrated system of structural health monitoring and intelligent management for a cable-stayed bridge.

    Science.gov (United States)

    Chen, Bin; Wang, Xu; Sun, Dezhang; Xie, Xu

    2014-01-01

    It is essential to construct structural health monitoring systems for large important bridges. Zhijiang Bridge is a cable-stayed bridge that was built recently over the Hangzhou Qiantang River (the largest river in Zhejiang Province). The length of Zhijiang Bridge is 478 m, which comprises an arched twin-tower space and a twin-cable plane structure. As an example, the present study describes the integrated system of structural health monitoring and intelligent management for Zhijiang Bridge, which comprises an information acquisition system, data management system, evaluation and decision-making system, and application service system. The monitoring components include the working environment of the bridge and various factors that affect bridge safety, such as the stress and strain of the main bridge structure, vibration, cable force, temperature, and wind speed. In addition, the integrated system includes a forecasting and decision-making module for real-time online evaluation, which provides warnings and makes decisions based on the monitoring information. From this, the monitoring information, evaluation results, maintenance decisions, and warning information can be input simultaneously into the bridge monitoring center and traffic emergency center to share the monitoring data, thereby facilitating evaluations and decision making using the system.

  4. Temporal Informative Analysis in Smart-ICU Monitoring: M-HealthCare Perspective.

    Science.gov (United States)

    Bhatia, Munish; Sood, Sandeep K

    2016-08-01

    The rapid introduction of Internet of Things (IoT) Technology has boosted the service deliverance aspects of health sector in terms of m-health, and remote patient monitoring. IoT Technology is not only capable of sensing the acute details of sensitive events from wider perspectives, but it also provides a means to deliver services in time sensitive and efficient manner. Henceforth, IoT Technology has been efficiently adopted in different fields of the healthcare domain. In this paper, a framework for IoT based patient monitoring in Intensive Care Unit (ICU) is presented to enhance the deliverance of curative services. Though ICUs remained a center of attraction for high quality care among researchers, still number of studies have depicted the vulnerability to a patient's life during ICU stay. The work presented in this study addresses such concerns in terms of efficient monitoring of various events (and anomalies) with temporal associations, followed by time sensitive alert generation procedure. In order to validate the system, it was deployed in 3 ICU room facilities for 30 days in which nearly 81 patients were monitored during their ICU stay. The results obtained after implementation depicts that IoT equipped ICUs are more efficient in monitoring sensitive events as compared to manual monitoring and traditional Tele-ICU monitoring. Moreover, the adopted methodology for alert generation with information presentation further enhances the utility of the system.

  5. Health monitoring of aeronautical structures based on vibrations measurements

    Science.gov (United States)

    Bovio, Igor; Lecce, Leonardo

    2006-03-01

    Purpose of the paper is to present an innovative application inside the Non Destructive Testing field based on vibrations measurements, developed by the authors during the last three years, and already tested for analysing damage of many structural elements. The proposed new method is based on the acquisition and comparison of Frequency Response Functions (FRFs) of the monitored structure before and after an occurred damage. Structural damage modify the dynamical behaviour of the structure such as mass, stiffened and damping, and consequently the FRFs of the damaged structure in comparison with the FRFs of the sound structure, making possible to identify, to localize and quantify a structural damage. The activities, presented in the paper, mostly focused on a new FRFs processing technique based on the determining of a representative "Damage Index" for identifying and analysing damage both on real scale aeronautical structural components, like large-scale fuselage reinforced panels, and on aeronautical composite panels. Besides it has been carried out a dedicated neural network algorithm aiming at obtaining a "recognition-based learning"; this kind of learning methodology permits to train the neural network in order to let it recognises only "positive" examples discarding as a consequence the "negative" ones. Within the structural NDT a "positive" example means "healthy" state of the analysed structural component and, obviously, a "negative" one means a "damaged" or perturbed state. From an architectural point of view piezoceramic patches have been tested as actuators and sensors. Besides it has been used a laser-scanning vibrometer system to validate the behaviour of the piezoceramic patches.

  6. Monitoring of physical health parameters for inpatients on a child and adolescent mental health unit receiving regular antipsychotic therapy.

    Science.gov (United States)

    Pasha, Nida; Saeed, Shoaib; Drewek, Katherine

    2015-01-01

    Physical health monitoring of patients receiving antipsychotics is vital. Overall it is estimated that individuals suffering with conditions like schizophrenia have a 20% shorter life expectancy than the average population, moreover antipsychotic use has been linked to a number of conditions including diabetes, obesity, and cardiovascular disease.[1-4] The severity of possible adverse effects to antipsychotics in adults has raised awareness of the importance of monitoring physical health in this population. However, there is little literature available as to the adverse effects of these medications in the child and adolescent community, which make physical health monitoring in this predominantly antipsychotic naïve population even more important. An expert group meeting in the UK has laid down recommendations in regards to screening and management of adult patients receiving antipsychotics, however no specific guidelines have been put in place for the child and adolescent age group.[5] The aim of this audit was to establish whether in-patients receiving antipsychotics had the following investigations pre-treatment and 12 weeks after treatment initiation: body mass index, hip-waist circumference, blood pressure, ECG, urea and electrolytes, full blood count, lipid profile, random glucose level, liver function test, and prolactin. This is in addition to a pre-treatment VTE risk assessment. These standards were derived from local trust guidelines, NICE guidelines on schizophrenia [6] and The Maudsley Prescribing Guidelines.[7] We retrospectively reviewed 39 electronic case notes in total, of which 24 cases were post intervention. Intervention included the use of a prompting tool. This tool was filed in the physical health files of all patients receiving antipsychotics which was intended as a reminder to doctors regarding their patient's need for physical health monitoring. Professionals involved in the monitoring of such parameters were educated in the importance and

  7. SPN-model based simulation of a wearable health monitoring system.

    Science.gov (United States)

    Pantelopoulos, Alexandros; Bourbakis, Nikolaos

    2009-01-01

    The deployment of Wearable Health Monitoring Systems (WHMS) can potentially enable ubiquitous and continuous monitoring of a patient's physiological parameters. Moreover by incorporating multiple biosensors in such a system a comprehensive estimation of the user's health condition can possibly be derived. In this paper we present a Stochastic Petri Net (SPN) model of a multi-sensor WHMS along with a corresponding simulation framework implemented in Java. The proposed model is built on top of a previously published multisensor data fusion strategy, which has been expanded in this work to take into account synchronization issues and temporal dependencies between the measured bio-signals.

  8. Personal recognition using head-top image for health-monitoring system in the home.

    Science.gov (United States)

    Nakajima, K; Sasaki, K

    2004-01-01

    Automatic health-monitoring systems for the smart house are being developed for the elderly. An automatic health-monitoring system needs a way of personal recognition when two or more aged persons live together. We propose a personal recognition method based on the space spectrum of the head-top image. We examined 33 head-top images from eleven subjects and achieved a personal recognition rate of 86.4 percent. When one subject with thinning hair was excluded, the personal recognition rate was 90.0 percent in 30 head-top images from ten subjects.

  9. Applications of Piezoelectric Materials in Structural Health Monitoring and Repair: Selected Research Examples

    Directory of Open Access Journals (Sweden)

    Ser Tong Quek

    2010-12-01

    Full Text Available The paper reviews the recent applications of piezoelectric materials in structural health monitoring and repair conducted by the authors. First, commonly used piezoelectric materials in structural health monitoring and structure repair are introduced. The analysis of plain piezoelectric sensors and actuators and interdigital transducer and their applications in beam, plate and pipe structures for damage detection are reviewed in detail. Second, an overview is presented on the recent advances in the applications of piezoelectric materials in structural repair. In addition, the basic principle and the current development of the technique are examined.

  10. A system for ubiquitous health monitoring in the bedroom via a Bluetooth network and wireless LAN.

    Science.gov (United States)

    Choi, J M; Choi, B H; Seo, J W; Sohn, R H; Ryu, M S; Yi, W; Park, K S

    2004-01-01

    Advances in information technology have enabled ubiquitous health monitoring at home, which is particularly useful for patients, who have to live alone. We have focused on the automatic and unobtrusive measurement of biomedical signals and activities of patients. We have constructed wireless communication networks in order to transfer data. The networks consist of Bluetooth and Wireless Local Area Network (WLAN). In this paper, we present the concept of a ubiquitous-Bedroom (u-Bedroom) which is a part of a ubiquitous-House (u-House) and we present our systems for ubiquitous health monitoring.

  11. Localizing the HL7 Personal Health Monitoring Record for Danish Telemedicine

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak

    2014-01-01

    Telemedicine holds a promise of lowering cost in health care and improving the life quality of chronic ill patients by allowing monitoring in the home. The Personal Health Monitoring Record (PHMR) is an international HL7 standard data format for encoding measurements made by devices in the home....... However, the standard needs localization to national requirements in order to facilitate semantic interoperability between clinical systems. In this paper, we report experiences and decisions from the current effort to localize PHMR in Denmark, and highlight issues relevant for any adoption...

  12. Adaptive Sleep Scheduling for Health Monitoring System Based on the IEEE 802.15.4 Standard

    Directory of Open Access Journals (Sweden)

    Nurul Fahmi

    2016-08-01

    Full Text Available In the recent years, Wireless Sensor Networks (WSNs have become a very popular technology for research in various fields. One of the technologies which is developed using WSN is environmental health monitoring. However, there is a problem when we want to optimize the performance of the environmental health monitoring such as the limitation of the energy. In this paper, we proposed a method for the environmental health monitoring using the fuzzy logic approach according to the environmental health conditions. We use that condition to determine the sleep time in the system based on IEEE 802.15.4 standard protocol. The main purpose of this method is to extend the life and minimize the energy consumption of the battery. We implemented this system in the real hardware test-bed using temperature, humidity, CO and CO2 sensors. We compared the performance without sleep scheduling, with sleep scheduling and adaptive sleep scheduling. The power consumption spent during the process of testing without sleep scheduling is 52%, for the sleep scheduling is 13%, while using the adaptive sleep scheduling is around 7%. The users also can monitor the health condition via mobile phone or web-based application, in real-time anywhere and anytime.

  13. Simultaneous Structural Health Monitoring and Vibration Control of Adaptive Structures Using Smart Materials

    Directory of Open Access Journals (Sweden)

    Myung-Hyun Kim

    2002-01-01

    Full Text Available The integration of actuators and sensors using smart materials enabled various applications including health monitoring and structural vibration control. In this study, a robust control technique is designed and implemented in order to reduce vibration of an active structure. Special attention is given to eliminating the possibility of interaction between the health monitoring system and the control system. Exploiting the disturbance decoupling characteristic of the sliding mode observer, it is demonstrated that the proposed observer can eliminate the possible high frequency excitation from the health monitoring system. At the same time, a damage identification scheme, which tracks the changes of mechanical impedance due to the presence of damage, has been applied to assess the health condition of structures. The main objective of this paper is to examine the potential of combining the two emerging techniques together. Using the collocated piezoelectric sensors/actuators for vibration suppression as well as for health monitoring, this technique enabled to reduce the number of system components, while enhancing the performance of structures. As an initial study, both simulation and experimental investigations were performed for an active beam structure. The results show that this integrated technique can provide substantial vibration reductions, while detecting damage on the structure at the same time.

  14. The Mexican experience in monitoring and evaluation of public policies addressing social determinants of health.

    Science.gov (United States)

    Valle, Adolfo Martinez

    2016-01-01

    Monitoring and evaluation (M&E) have gradually become important and regular components of the policy-making process in Mexico since, and even before, the World Health Organization (WHO) Commission on Social Determinants of Health (CSDH) called for interventions and policies aimed at tackling the social determinants of health (SDH). This paper presents two case studies to show how public policies addressing the SDH have been monitored and evaluated in Mexico using reliable, valid, and complete information, which is not regularly available. Prospera, for example, evaluated programs seeking to improve the living conditions of families in extreme poverty in terms of direct effects on health, nutrition, education and income. Monitoring of Prospera's implementation has also helped policy-makers identify windows of opportunity to improve the design and operation of the program. Seguro Popular has monitored the reduction of health inequalities and inequities evaluated the positive effects of providing financial protection to its target population. Useful and sound evidence of the impact of programs such as Progresa and Seguro Popular plus legal mandates, and a regulatory evaluation agency, the National Council for Social Development Policy Evaluation, have been fundamental to institutionalizing M&E in Mexico. The Mexican experience may provide useful lessons for other countries facing the challenge of institutionalizing the M&E of public policy processes to assess the effects of SDH as recommended by the WHO CSDH.

  15. NDE using sensor based approach to propulsion health monitoring of a turbine engine disk

    Science.gov (United States)

    Abdul-Aziz, Ali; Woike, Mark R.; Abumeri, G.; Lekki, John D.; Baaklini, George Y.

    2009-03-01

    Rotor health monitoring and on-line damage detection have been increasingly gaining interest to manufacturers of aircraft engines, primarily to increase safety of operation and lower the high maintenance costs. But health monitoring in the presence of scatter in the loading conditions, crack size, disk geometry, and material property is rather challenging. However, detection factors that cause fractures and hidden internal cracks can be implemented via noninvasive types of health monitoring and or nondestructive evaluation techniques. These evaluations go further to inspect materials discontinuities and other anomalies that have grown to become critical defects that can lead to failure. To address the bulk of these concerning issues and understand the technical aspects leading to these outcomes, a combined analytical and experimental study is being thought. Results produced from the experiments such as blade tip displacement and other data collected from tests conducted at the NASA Glenn Research Center's Rotordynamics Laboratory, a high precision spin rig, are evaluated, discussed and compared with data predicted from finite element analysis simulating the engine rotor disk spinning at various rotational speeds. Further computations using the progressive failure analysis (PFA) approach with GENOA code [6] to additionally assess the structural response, damage initiation, propagation, and failure criterion are also performed. This study presents an inclusive evaluation of an on-line health monitoring of a rotating disk and an examination for the capability of the in-house spin system in support of ongoing research under the NASA Integrated Vehicle Health Management (IVHM) program.

  16. The Mexican experience in monitoring and evaluation of public policies addressing social determinants of health

    Directory of Open Access Journals (Sweden)

    Adolfo Martinez Valle

    2016-02-01

    Full Text Available Monitoring and evaluation (M&E have gradually become important and regular components of the policy-making process in Mexico since, and even before, the World Health Organization (WHO Commission on Social Determinants of Health (CSDH called for interventions and policies aimed at tackling the social determinants of health (SDH. This paper presents two case studies to show how public policies addressing the SDH have been monitored and evaluated in Mexico using reliable, valid, and complete information, which is not regularly available. Prospera, for example, evaluated programs seeking to improve the living conditions of families in extreme poverty in terms of direct effects on health, nutrition, education and income. Monitoring of Prospera's implementation has also helped policy-makers identify windows of opportunity to improve the design and operation of the program. Seguro Popular has monitored the reduction of health inequalities and inequities evaluated the positive effects of providing financial protection to its target population. Useful and sound evidence of the impact of programs such as Progresa and Seguro Popular plus legal mandates, and a regulatory evaluation agency, the National Council for Social Development Policy Evaluation, have been fundamental to institutionalizing M&E in Mexico. The Mexican experience may provide useful lessons for other countries facing the challenge of institutionalizing the M&E of public policy processes to assess the effects of SDH as recommended by the WHO CSDH.

  17. Load monitoring and compensation strategies for guided-waves based structural health monitoring using piezoelectric transducers

    Science.gov (United States)

    Roy, Surajit; Ladpli, Purim; Chang, Fu-Kuo

    2015-09-01

    Accurate interpretation of in-situ piezoelectric sensor signals is a challenging task. This paper presents the development of a numerical compensation model based on physical insight to address the influence of structural loads on piezo-sensor signals. The model requires knowledge of in-situ strain and temperature distribution in a structure while acquiring piezoelectric sensor signals. The parameters of the numerical model are obtained using experiments on flat aluminum plate under uniaxial tensile loading. It is shown that the model parameters obtained experimentally can be used for different structures, and sensor layout. Furthermore, the combined effects of load and temperature on the piezo-sensor response are also investigated and it is observed that both of these factors have a coupled effect on the sensor signals. It is proposed to obtain compensation model parameters under a range of operating temperatures to address this coupling effect. An important outcome of this study is a new load monitoring concept using in-situ piezoelectric sensor signals to track changes in the load paths in a structure.

  18. Load monitoring and compensation strategies for guided-waves based structural health monitoring using piezoelectric transducers

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Surajit; Ladpli, Purim; Chang, Fu-Kuo

    2015-09-01

    Accurate interpretation of in-situ piezoelectric sensor signals is a challenging task. This article presents the development of a numerical compensation model based on physical insight to address the influence of structural loads on piezo-sensor signals. The model requires knowledge of in-situ strain and temperature distribution in a structure while acquiring sensor signals. The parameters of the numerical model are obtained using experiments on flat aluminum plate under uniaxial tensile loading. It is shown that the model parameters obtained experimentally can be used for different structures, and sensor layout. Furthermore, the combined effects of load and temperature on the piezo-sensor response are also investigated and it is observed that both of these factors have a coupled effect on the sensor signals. It is proposed to obtain compensation model parameters under a range of operating temperatures to address this coupling effect. An important outcome of this study is a new load monitoring concept using in-situ piezoelectric sensor signals to track changes in the load paths in a structure.

  19. Bioelectrical Impedance Methods for Noninvasive Health Monitoring: A Review

    Directory of Open Access Journals (Sweden)

    Tushar Kanti Bera

    2014-01-01

    Full Text Available Under the alternating electrical excitation, biological tissues produce a complex electrical impedance which depends on tissue composition, structures, health status, and applied signal frequency, and hence the bioelectrical impedance methods can be utilized for noninvasive tissue characterization. As the impedance responses of these tissue parameters vary with frequencies of the applied signal, the impedance analysis conducted over a wide frequency band provides more information about the tissue interiors which help us to better understand the biological tissues anatomy, physiology, and pathology. Over past few decades, a number of impedance based noninvasive tissue characterization techniques such as bioelectrical impedance analysis (BIA, electrical impedance spectroscopy (EIS, electrical impedance plethysmography (IPG, impedance cardiography (ICG, and electrical impedance tomography (EIT have been proposed and a lot of research works have been conducted on these methods for noninvasive tissue characterization and disease diagnosis. In this paper BIA, EIS, IPG, ICG, and EIT techniques and their applications in different fields have been reviewed and technical perspective of these impedance methods has been presented. The working principles, applications, merits, and demerits of these methods has been discussed in detail along with their other technical issues followed by present status and future trends.

  20. A Review on Architectures and Communications Technologies for Wearable Health-Monitoring Systems

    Directory of Open Access Journals (Sweden)

    José Ignacio Moreno

    2012-10-01

    Full Text Available Nowadays society is demanding more and more smart healthcare services that allow monitoring patient status in a non-invasive way, anywhere and anytime. Thus, healthcare applications are currently facing important challenges guided by the u-health (ubiquitous health and p-health (pervasive health paradigms. New emerging technologies can be combined with other widely deployed ones to develop such next-generation healthcare systems. The main objective of this paper is to review and provide more details on the work presented in “LOBIN: E-Textile and Wireless-Sensor-Network-Based Platform for Healthcare Monitoring in Future Hospital Environments”, published in the IEEE Transactions on Information Technology in Biomedicine, as well as to extend and update the comparison with other similar systems. As a result, the paper discusses the main advantages and disadvantages of using different architectures and communications technologies to develop wearable systems for pervasive healthcare applications.