WorldWideScience

Sample records for monitor slope failure

  1. Automatic prediction of time to failure of open pit mine slopes based on radar monitoring and inverse velocity method

    Institute of Scientific and Technical Information of China (English)

    Osasan K.S.; Stacey T.R

    2014-01-01

    Radar slope monitoring is now widely used across the world, for example, the slope stability radar (SSR) and the movement and surveying radar (MSR) are currently in use in many mines around the world. However, to fully realize the effectiveness of this radar in notifying mine personnel of an impending slope failure, a method that can confidently predict the time of failure is necessary. The model developed in this study is based on the inverse velocity method pioneered by Fukuzono in 1985. The model named the slope failure prediction model (SFPM) was validated with the displacement data from two slope failures monitored with the MSR. The model was found to be very effective in predicting the time to failure while providing adequate evacuation time once the progressive displacement stage is reached.

  2. Strategies for rock slope failure early warning using acoustic emission monitoring

    Science.gov (United States)

    Codeglia, D.; Dixon, N.; Fowmes, G. J.; Marcato, G.

    2015-09-01

    Research over the last two decades has led to development of a system for soil slopes monitoring based on the concept of measuring Acoustic Emission (AE). A feature of the system is the use of waveguides installed within unstable soil slopes. It has been demonstrated that the AE measured through this technique are proportional to soil displacement rate. Attention has now been focused on the prospect of using the system within rock materials. The different nature of the slope material to be monitored and its setting means that different acoustic trends are measured, and development of new approaches for their interpretation are required. A total of six sensors have been installed in two pilot sites, firstly in Italy, for monitoring of a stratified limestone slope which can threaten a nationally important road, and secondly in Austria, for monitoring of a conglomerate slope that can endanger a section of the local railway. In this paper an outline of the two trial sites is given and AE data collected are compared with other physical measurements (i.e. rainfall and temperature) and traditional geotechnical instrumentation, to give an overview of recurring AE trends. These include clear AE signatures generated by stress changes linked to increased ground water levels and high energy events generated by freeze-thaw of the rock mass.

  3. Pore pressure regime leading to shallow failures in a mountain slope: monitoring and interpretation by soil-atmosphere coupled model.

    Science.gov (United States)

    Vaunat, Jean; Hürlimann, Marcel; Luna, Boris

    2016-04-01

    The study deals with the onset of debris flows in the "El Rebaixader" basin, located in South Central Pyrenees. The initiation area of debris flows is located on a lateral moraine with a thickness of tens of meters, in which torrential processes and other shallow mass movements have generated a large scarp with steep slopes. To follow slope evolution towards shallow failure, different sensors have been installed to monitor meteorological data and hydraulic variables at shallow depths (positive and negative pore pressure, water content). Measurements are interpreted by means of a thermo-hydro-mechanical coupled Finite Element code provided with a specific boundary condition to model water mass and heat flux exchanged between the ground and the atmosphere, including infiltration, evaporation, sensible heat and solar radiation. Results evidence the different modes of pore regime variation imposed, on the one hand, by surface infiltration and evaporation and, on the other hand, by the settlement of a slope parallel flow in a loose layer at some decimetres depth. As a conclusion, the analysis highlights the strong dependency of slope stability to the water regime taking place in slightly more permeable horizons connected to the top of the catchment area rather than to surficial climatic input. On this basis, some keys about debris flow mitigation are finally put forward.

  4. Geotechnical assessment of road failure and slope monitoring along Nsukka-Adoru-Idah highway, Southeastern Nigeria.

    Science.gov (United States)

    Maduka, Raphael Iweanya; Igwe, Ogbonnaya; Ayogu, Nnadozie Onyekachi; Ayogu, Chinero Nneka; Nwachukwu, Martin

    2017-01-01

    The quality of highway pavement is greatly influenced by the subgrade materials, the general geology of the area, and the materials used for construction. Investigation into the 75-km Nsukka-Adoru-Idah highway revealed that the pavement was underlain by three lithological units-Imo, Nsukka, and Ajali formations. The geotechnical evaluation carried out in the study includes the particle size distribution, Atterberg limit, specific gravity, compaction tests, and California bearing ratio (CBR). The base course has clay/silt (7-14%), fine sand (1-4%), medium sand (6-13%), and coarse sand (65-86%), while the subgrade presented clay/silt (74-82%), fine sand (6-9%), medium sand (10-17%), and coarse sand (1-3%). The average specific gravity results for the studied base course and subgrades are 2.58 and 2.52. Liquid limit (LL) result ranges from 27 to 60%, while plastic limit (PL) ranges between 17 and 24%, and plasticity index (PI) ranges from 5 to 39%. The maximum dry density (MDD) result ranges from 1.70 to 2.10 mg/m(3), while the optimum moisture content (OMC) for the samples ranges between 14.1 and 18.0%. The CBR result for soaked and unsoaked samples ranges from 37 to 74 and 48 to 83%, respectively. The low unsoaked CBR ( 30% and PI > 12%) failed the stipulated Nigerian standard, signifying the need for stabilization. A geotechnical model of a highway road cut generated a factor of safety of 1.45, indicating possibility of slope failure.

  5. Analysis of a Large Rock Slope Failure on the East Wall of the LAB Chrysotile Mine in Canada: LiDAR Monitoring and Displacement Analyses

    Science.gov (United States)

    Caudal, Philippe; Grenon, Martin; Turmel, Dominique; Locat, Jacques

    2017-04-01

    A major mining slope failure occurred in July 2012 on the East wall of the LAB Chrysotile mine in Canada. The major consequence of this failure was the loss of the local highway (Road 112), the main economic link between the region and the Northeast USA. This paper is part of a proposed integrated remote sensing-numerical modelling methodology to analyze mining rock slope stability. This paper presents the Light Detection and Ranging (LiDAR) monitoring of this slope failure. The main focus is the investigation of that rock slide using both terrestrial (TLS) and airborne (ALS) LiDAR scanning. Since 2010, four ALS and 14 TLS were performed to characterize and monitor the slide. First, laser scanning was used to investigate the geometry of the slide. The failure zone was 1100 m by 250 m in size with a mobilized volume of 25 hm3. Laser scanning was then used to investigate the rock slide's 3D displacement, thereby enabling a better understanding of the sliding kinematics. The results clearly demonstrate the ability of the proposed approach to monitor and quantify large-scale rock mass failure. The slope was monitored for a period of 5 years, and the total displacement was measured at every survey. The maximum cumulative total displacement reached was 145 m. This paper clearly shows the ability of LiDAR scanning to provide valuable quantitative information on large rock mass failures involving very large displacements.

  6. 3D geodetic monitoring slope deformations

    Directory of Open Access Journals (Sweden)

    Weiss Gabriel

    1996-06-01

    Full Text Available For plenty of slope failures that can be found in Slovakia is necessary and very important their geodetic monitoring (because of their activity, reactivisations, checks. The paper gives new methodologies for these works, using 3D terrestrial survey technologies for measurements in convenient deformation networks. The design of an optimal type of deformation model for various kinds of landslides and their exact processing with an efficient testing procedure to determine the kinematics of the slope deformations are presented too.

  7. Peat slope failure in Ireland

    OpenAIRE

    Boylan, Noel; Jennings, Paul; Long, Michael

    2008-01-01

    Recent peat failures in Ireland in the autumn of 2003 at Pollatomish, County Mayo and Derrybrien, County Galway have focused attention on such events. However, peat failures are not a recent phenomenon with possible evidence of peat failures in Ireland having been identified as far back as the Early Bronze Age. This paper summarises the issues surrounding peat failures in Ireland that would be of interest to an engineer\\engineering geologist assessing this geohazard. The distri...

  8. Prediction of slope failure due to earthquake

    Institute of Scientific and Technical Information of China (English)

    CHEN XiaoLi; KATO Nobuaki; TSUNAKI Ryosuke; MUKAI Keiji

    2009-01-01

    The earthquake-triggered landslides and slope failures are common phenomena during strong earthquakes and have drawn more attention from the world because of severe hazards they induced.These hazards usually cannot be prevented by current mitigating measures,thus,it becomes more and more important to develop a precise technique for the risk assessment of earthquake-induced failures in the mountainous area.The application of discrimination analysis method is proved to be successful and effective in the prediction of earthquake-triggered landslides and slope failures in the region of Imokawa Basin in Japan.Diacriminant score can be used to assess the relative risk of slope failures,as the score increases,the possibility of slope failures occurrence increases accordingly.At the same time,the variables in the judgement formula,such as slope gradient,slope curvature and seismic peak ground acceleration,are easy to obtain.This advantage makes this method more practical and manipulable than others at present.In order to apply this method more effectively,there are still several problems to resolve.

  9. Preconditioning and triggering of offshore slope failures and turbidity currents revealed by most detailed monitoring yet at a fjord-head delta

    Science.gov (United States)

    Clare, M. A.; Hughes Clarke, J. E.; Talling, P. J.; Cartigny, M. J. B.; Pratomo, D. G.

    2016-09-01

    Rivers and turbidity currents are the two most important sediment transport processes by volume on Earth. Various hypotheses have been proposed for triggering of turbidity currents offshore from river mouths, including direct plunging of river discharge, delta mouth bar flushing or slope failure caused by low tides and gas expansion, earthquakes and rapid sedimentation. During 2011, 106 turbidity currents were monitored at Squamish Delta, British Columbia. This enables statistical analysis of timing, frequency and triggers. The largest peaks in river discharge did not create hyperpycnal flows. Instead, delayed delta-lip failures occurred 8-11 h after flood peaks, due to cumulative delta top sedimentation and tidally-induced pore pressure changes. Elevated river discharge is thus a significant control on the timing and rate of turbidity currents but not directly due to plunging river water. Elevated river discharge and focusing of river discharge at low tides cause increased sediment transport across the delta-lip, which is the most significant of all controls on flow timing in this setting.

  10. AN EXAMPLE OF THREE-DIMENSIONAL PROGRESSIVE SLOPE FAILURE

    Institute of Scientific and Technical Information of China (English)

    王家臣; 骆中洲

    1995-01-01

    In fact, the failure of any slope takes place progressively, but the progressive failure mechanism has not been emphasized sufficently in the present stability analysis of slopes. This paper provides an example of the progressive slope failure which took place at Pingzhuang west surface coal mine and was numbered the 26th slide. The three-dimensional reliability model for progressive slope failure is used to study the failure process of the 26th slide. The outcomes indicate that the progressive failure is indeed the failure mechanism of the slide.

  11. Assessment of highway slope failure using neural networks

    Institute of Scientific and Technical Information of China (English)

    Tsung-lin LEE; Hung-ming LIN; Yuh-pin LU

    2009-01-01

    An artificial intelligence technique of back-propagation neural networks is used to assess the slope failure. On-site slope failure data from the South Cross-Island Highway in southern Taiwan are used to test the performance of the neural network model. The numerical results demonstrate the effectiveness of artificial neural networks in the evaluation of slope failure potential based on five major factors, such as the slope gradient angle, the slope height, the cumulative precipitation, daily rainfall and strength of materials.

  12. Research on monitoring system for slope deformation

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-sheng; ZHANG Xue-zhuang; WANG Ai-gong

    2007-01-01

    The monitoring system for slope deformation which bases on Leica (TCA series)was researched and developed. This system consists of electronic total stations, high precision thermometer, digital barometer, photoelectric frequency adjustor and other related instruments and data collection and processing software. The system can monitor a series of targets automatically to obtain accurate data of distance at predetermined time, besides,it can timely display targets' coordinates and deformation value, velocity, etc. in graph as well. To compare of the results of different monitoring time, we can find the problems of mine slope deformation rapidly and accurately.

  13. Deformation and failure mechanism of slope in three dimensions

    Directory of Open Access Journals (Sweden)

    Yingfa Lu

    2015-04-01

    Full Text Available Understanding three-dimensional (3D slope deformation and failure mechanism and corresponding stability analyses are crucially important issues in geotechnical engineering. In this paper, the mechanisms of progressive failure with thrust-type and pull-type landslides are described in detail. It is considered that the post-failure stress state and the pre-peak stress state may occur at different regions of a landslide body with deformation development, and a critical stress state element (or the soil slice block exists between the post-failure stress state and the pre-peak stress state regions. In this regard, two sorts of failure modes are suggested for the thrust-type and three sorts for pull-type landslides, based on the characteristics of shear stress and strain (or tensile stress and strain. Accordingly, a new joint constitutive model (JCM is proposed based on the current stability analytical theories, and it can be used to describe the mechanical behaviors of geo-materials with softening properties. Five methods, i.e. CSRM (comprehensive sliding resistance method, MTM (main thrust method, CDM (comprehensive displacement method, SDM (surplus displacement method, and MPM (main pull method, for slope stability calculation are proposed. The S-shaped curve of monitored displacement vs. time is presented for different points on the sliding surface during progressive failure process of landslide, and the relationship between the displacement of different points on the sliding surface and height of landslide body is regarded as the parabolic curve. The comparisons between the predicted and observed load–displacement and displacement–time relations of the points on the sliding surface are conducted. The classification of stable/unstable displacement–time curves is proposed. The definition of the main sliding direction of a landslide is also suggested in such a way that the failure body of landslide (simplified as “collapse body” is only

  14. Some new pre-warning criteria for creep slope failure

    Institute of Scientific and Technical Information of China (English)

    HACK; Robert

    2011-01-01

    The forecasting of the failure time of a slope remains a worldwide problem because of many different possibilities of geological conditions in combination with many varying external factors such as climate and vegetation,and not well-defined or unknown time effects in deformation and failure models.The aim of this paper is to suggest a new method to carry out the phase division and to explore tangential angular features of the displacement-time curve of creep slopes as well as the acceleration characteristics in the process of slope deformation and the pre-warning criteria for critical failure.An imminent failure is pro-ceeded with usually three basic deformation phases,namely primary creep("decelerated") ,secondary creep("steadystate") and tertiary creep("accelerated") .Mostly,only during the accelerated phase the imminence of a possible slope failure is rec-ognized.The analysis of displacement data from a series of landslides allowed to recognize different evolutionary patterns of displacement.A quantitative approach was proposed to describe the tangential angle of the displacement-time curve and a new criterion based on the angle was put forward to divide the accelerated phase into three sub-phases:initial acceleration,medium acceleration,and the critical failure.A pre-warning criterion for critical failure is also proposed consequently. Changes of acceleration showed completely different characteristics from those of cumulative displacement and displacement in the process of slope deformation.The values of acceleration usually oscillate around 0 prior to the critical failure phase,whereas the acceleration increases abruptly when the deformation moves into the critical failure phase.This allows,therefore,for a method to forecast the time of the failure.So it is possible to define different alert acceleration threshold values to be used for emergency management.

  15. Heart failure - home monitoring

    Science.gov (United States)

    ... failure - discharge Heart failure - fluids and diuretics Heart failure - what to ask ... Medical Center, University of Washington Medical School, Seattle, WA. Also reviewed by David Zieve, MD, ...

  16. Effects of rainfall infiltration on deep slope failure

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    With the finite element method and the limit equilibrium method, a numerical model has been established for examining the effects of rainfall infiltration on the stability of slopes. This model is able to availably reflect the variations in pore pressure field in slopes, dead weight of soil, and the softening of soil strength caused by rainfall infiltration. As a case study, an actual landslide located at the Nongji Jixiao in Chongqing is studied to analyze the effects of rainfall infiltration on the seepage field and the slope stability. The simulated results show that a deep slope failure is prone to occur when rainfall infiltration will lead to a remarkable variation in the seepage field, in particular, for large range pore water pressure increase in slopes.

  17. Effects of rainfall infiltration on deep slope failure

    Institute of Scientific and Technical Information of China (English)

    SUN JianPing; LIU QingQuan; LI JiaChun; AN Yi

    2009-01-01

    With the finite element method and the limit equilibrium method, a numerical model has been estab-lished for examining the effects of rainfall infiltration on the stability of slopes. This model is able to availably reflect the variations in pore pressure field in slopes, dead weight of soil, and the softening of soil strength caused by rainfall infiltration. As a case study, an actual landslide located at the Nongji Jixiao in Chongqing is studied to analyze the effects of rainfall infiltration on the seepage field and the slope stability. The simulated results show that a deep slope failure is prone to occur when rainfall infiltration will lead to a remarkable variation in the seepage field, in particular, for large range pore water pressure increase in slopes.

  18. Determination of slope failure using 2-D resistivity method

    Science.gov (United States)

    Muztaza, Nordiana Mohd; Saad, Rosli; Ismail, Nur Azwin; Bery, Andy Anderson

    2017-07-01

    Landslides and slope failure may give negative economic effects including the cost to repair structures, loss of property value and medical costs in the event of injury. To avoid landslide, slope failure and disturbance of the ecosystem, good and detailed planning must be done when developing hilly area. Slope failure classification and various factors contributing to the instability using 2-D resistivity survey conducted in Selangor, Malaysia are described. The study on landslide and slope failure was conducted at Site A and Site B, Selangor using 2-D resistivity method. The implications of the anticipated ground conditions as well as the field observation of the actual conditions are discussed. Nine 2-D resistivity survey lines were conducted in Site A and six 2-D resistivity survey lines with 5 m minimum electrode spacing using Pole-dipole array were performed in Site B. The data were processed using Res2Dinv and Surfer10 software to evaluate the subsurface characteristics. 2-D resistivity results from both locations show that the study areas consist of two main zones. The first zone is alluvium or highly weathered with the resistivity of 100-1000 Ωm at 20-70 m depth. This zone consists of saturated area (1-100 Ωm) and boulders with resistivity value of 1200-3000 Ωm. The second zone with resistivity values of > 3000 Ωm was interpreted as granitic bedrock. The study area was characterized by saturated zones, highly weathered zone, highly contain of sand and boulders that will trigger slope failure in the survey area. Based on the results obtained from the study findings, it can be concluded that 2-D resistivity method is useful method in determination of slope failure.

  19. Consequence assessment of large rock slope failures in Norway

    Science.gov (United States)

    Oppikofer, Thierry; Hermanns, Reginald L.; Horton, Pascal; Sandøy, Gro; Roberts, Nicholas J.; Jaboyedoff, Michel; Böhme, Martina; Yugsi Molina, Freddy X.

    2014-05-01

    Steep glacially carved valleys and fjords in Norway are prone to many landslide types, including large rockslides, rockfalls, and debris flows. Large rockslides and their secondary effects (rockslide-triggered displacement waves, inundation behind landslide dams and outburst floods from failure of landslide dams) pose a significant hazard to the population living in the valleys and along the fjords shoreline. The Geological Survey of Norway performs systematic mapping of unstable rock slopes in Norway and has detected more than 230 unstable slopes with significant postglacial deformation. This large number necessitates prioritisation of follow-up activities, such as more detailed investigations, periodic displacement measurements, continuous monitoring and early-warning systems. Prioritisation is achieved through a hazard and risk classification system, which has been developed by a panel of international and Norwegian experts (www.ngu.no/en-gb/hm/Publications/Reports/2012/2012-029). The risk classification system combines a qualitative hazard assessment with a consequences assessment focusing on potential life losses. The hazard assessment is based on a series of nine geomorphological, engineering geological and structural criteria, as well as displacement rates, past events and other signs of activity. We present a method for consequence assessment comprising four main steps: 1. computation of the volume of the unstable rock slope; 2. run-out assessment based on the volume-dependent angle of reach (Fahrböschung) or detailed numerical run-out modelling; 3. assessment of possible displacement wave propagation and run-up based on empirical relations or modelling in 2D or 3D; and 4. estimation of the number of persons exposed to rock avalanches or displacement waves. Volume computation of an unstable rock slope is based on the sloping local base level technique, which uses a digital elevation model to create a second-order curved surface between the mapped extent of

  20. Seepage and slope stability modelling of rainfall-induced slope failures in topographic hollows

    Directory of Open Access Journals (Sweden)

    Kiran Prasad Acharya

    2016-03-01

    Full Text Available This study focuses on topographic hollows, their flow direction and flow accumulation characteristics, and highlights discharge of hillslope seepage so as to understand porewater pressure development phenomena in relation with slope failure in topographic hollows. For this purpose, a small catchment in Niihama city of Shikoku Island in western Japan, with a record of seven slope failures triggered by typhoon-caused heavy rainfall on 19–20 October 2004, was selected. After extensive fieldwork and computation of hydro-mechanical parameters in unsaturated and saturated conditions through a series of laboratory experiments, seepage and slope stability modellings of these slope failures were done in GeoStudio environment using the precipitation data of 19–20 October 2004. The results of seepage modelling showed that the porewater pressure was rapid transient in silty sand, and the maximum porewater pressure measured in an area close to the base of topographic hollows was found to be higher with bigger topographic hollows. Furthermore, a threshold relationship between the topographic hollow area and maximum porewater pressure in this study indicates that a topographic hollow of 1000 sq. m area can develop maximum porewater pressure of 1.253 kPa. However, the porewater pressures required to initiate slope instability in the upper part of the topographic hollows is relatively smaller than those in the lower part of the topographic hollows.

  1. From incipient slope instability through slope deformation to catastrophic failure - Different stages of failure development on the Ivasnasen and Vollan rock slopes (western Norway)

    Science.gov (United States)

    Oppikofer, T.; Saintot, A.; Hermanns, R. L.; Böhme, M.; Scheiber, T.; Gosse, J.; Dreiås, G. M.

    2017-07-01

    The long-term evolution of rock slope failures involves different stages, from incipience of slope instability to catastrophic failure, through a more or less long-lasting slope deformation phase that also involves creeping or sliding. Topography, lithology, and structural inheritance are the main intrinsic factors that influence this evolution. Here, we investigate the role of these intrinsic factors on the rock slope failure development of the Ivasnasen and Vollan rock slopes (Sunndal Valley, western Norway) using a multitechnique approach that includes geomorphologic and structural field mapping, kinematic analysis, terrestrial cosmogenic nuclide exposure dating, topographic reconstruction, and deformation quantification. Ivasnasen is a rock slope failure complex with several past rock slope failures and a present unstable rock slope, located on a cataclinal NW-facing slope and developed in augen gneiss. Vollan on the opposite valley side is a deep-seated gravitational slope deformation (DSGSD) affecting the whole mountainside, developed in quartzite in the upper part and micaschist in the lower part. These different lithologies belong to different nappe complexes that were emplaced and folded into a series of syn- and anticlines during the Caledonian orogeny. These folds lead to different lithologies being exposed in different structural orientations on the opposite valley flanks, which in turn leads to different types and evolution of rock slope failures. At Ivasnasen the 45°-55° NW-dipping ductile foliation allowed for a fairly simple planar sliding mechanism for the 1.2 million m3 post-glacial rock slope failure. Failure occurred ca. 3.3 ka ago after a short period of prefailure deformation. For the present 2.2 million m3 unstable rock slope at Ivasnasen, a steepening of the foliation at the toe impedes such a mechanism and up to 10 m of displacement has not lead to a catastrophic failure yet. The Vollan DSGSD is characterized by a steep major back scarp

  2. Development of a GIS-based failure investigation system for highway soil slopes

    Science.gov (United States)

    Ramanathan, Raghav; Aydilek, Ahmet H.; Tanyu, Burak F.

    2015-06-01

    A framework for preparation of an early warning system was developed for Maryland, using a GIS database and a collective overlay of maps that highlight highway slopes susceptible to soil slides or slope failures in advance through spatial and statistical analysis. Data for existing soil slope failures was collected from geotechnical reports and field visits. A total of 48 slope failures were recorded and analyzed. Six factors, including event precipitation, geological formation, land cover, slope history, slope angle, and elevation were considered to affect highway soil slope stability. The observed trends indicate that precipitation and poor surface or subsurface drainage conditions are principal factors causing slope failures. 96% of the failed slopes have an open drainage section. A majority of the failed slopes lie in regions with relatively high event precipitation ( P>200 mm). 90% of the existing failures are surficial erosion type failures, and only 1 out of the 42 slope failures is deep rotational type failure. More than half of the analyzed slope failures have occurred in regions having low density land cover. 46% of failures are on slopes with slope angles between 20° and 30°. Influx of more data relating to failed slopes should give rise to more trends, and thus the developed slope management system will aid the state highway engineers in prudential budget allocation and prioritizing different remediation projects based on the literature reviewed on the principles, concepts, techniques, and methodology for slope instability evaluation (Leshchinsky et al., 2015).

  3. Predicting Modes and Displacements of Seismic Rock Slope Failures

    Science.gov (United States)

    Gibson, M. D.; Wartman, J.; Keefer, D. K.; Maclaughlin, M.; Arnold, L.; Applegate, K. N.; Smith, S.; Adams, S.

    2013-12-01

    Seismically induced rock slope failures have resulted in billions of dollars of economic damage and enormous loss of life throughout the world. Accurate prediction of the triggering and run out of these failures is elusive for a variety of reasons, including knowledge of the physical modes of failure. Our research explores the potential failure modes of an idealized rigid rock block and expands the modes typically considered to include not only sliding but also toppling (pure forward rotation) and slumping (combined backward rotation and translation). The yield acceleration (or minimum inertial acceleration to cause block movement) for slumping, similar to toppling, is found to be lower than for pure translational sliding. These yield accelerations indicate the initial modes of rock block failure; however, they do not always predict the ultimate failure mode. To predict the final failure modes, the results of discrete element numerical analyses were compared to pseudo static yield acceleration to develop a seismic failure mode decision-making chart based on block geometry and interface friction. With regard to seismic displacement predictions, current simplified models predicting ultimate displacement of a mass under seismic conditions are limited to purely translating, sliding blocks (i.e. Newmark's sliding block method). Our modeling introduces additional simplified analyses to predict ultimate displacement in toppling and slumping modes as well. Important findings from these new methods are that the magnitude of seismically-induced displacement is dependent on the size of the block (or failure mass) and that as the yield acceleration decreases the seismically induced displacements increase. We plan to map these tools into analyses that evaluate rock slope systems with complex geology and geotechnical characteristics. It is envisioned that the decision chart, which predicts the initial and ultimate modes of failure based on block geometry and interface friction

  4. Large slope failures in the La Paz basin, Bolivian Andes

    Science.gov (United States)

    Roberts, N. J.; Hermanns, R. L.; Rabus, B.; Guzmán, M. A.; Minaya, E.; Clague, J. J.

    2014-12-01

    The La Paz basin in the eastern Bolivian Andes has been a hotspot for large-scale, deep-seated gravitational slope deformation during the Holocene. In less than 2 Ma, a network of steep-sided valleys up to 800 m deep formed in sediments of the Altiplano Plateau and underlying basement rocks. We characterize the distribution, extent, mechanisms, and modern activity of large-scale failures within this landscape using optical image interpretation, existing geologic maps, synthetic RADAR interferometry (InSAR), and field investigation. Deposits of nearly 20 landslides larger than 100 Mm3 occur within the basin. Most failures have occurred in weakly lithified Late Miocene to Pliocene sedimentary rocks and include earth flows, translational and rotational landslides, and plug flows. Failures in underlying tectonized Paleozoic sedimentary rocks include bedding-parallel rockslides. The largest failure is the 3 km3 Achcocalla earth flow (ca. 11 ka BP), which ran out ~20 km. Other dated events span the period from the early Holocene to nearly the Colonial historic period. InSAR results show that many large slope failures, including the Achocalla earth flow, are currently moving at rates of a few centimeters to a few decimeters per year. Rapid deposition, shallow burial, and rapid incision of the basin fills produced steep slopes in weak geologic materials that, coupled with groundwater discharge from the valley walls, are the primary controls on instability. In contrast, the Altiplano surface has changed little in 2 Ma and the adjacent slopes of the Cordilleran Real, although steep, are relatively stable. Of the over 100 landslides that have occurred in the city of La Paz since the early twentieth century, most are at the margins of large, deep-seated prehistoric failures, and two of the most damaging historic landslides (Hanko-Hanko, 1582; Pampahasi, 2011) were large-scale reactivations of previously failed slopes. Improved understanding of large, deep-seated landslides in

  5. Slope stability monitoring from microseismic field using polarization methodology

    Directory of Open Access Journals (Sweden)

    Yu. I. Kolesnikov

    2003-01-01

    Full Text Available Numerical simulation of seismoacoustic emission (SAE associated with fracturing in zones of shear stress concentration shows that SAE signals are polarized along the stress direction. The proposed polarization methodology for monitoring of slope stability makes use of three-component recording of the microseismic field on a slope in order to pick the signals of slope processes by filtering and polarization analysis. Slope activity is indicated by rather strong roughly horizontal polarization of the respective portion of the field in the direction of slope dip. The methodology was tested in microseismic observations on a landslide slope in the Northern Tien-Shan (Kyrgyzstan.

  6. Quasi-stable Slope-Failure Dams in High Asia

    Science.gov (United States)

    Shroder, J. F.

    2010-12-01

    Collapses of steep mountain slopes in the Himalaya, Karakoram, Pamir, Hindu Kush, and Tibetan Plateau are well known as a result of:(1) generally high seismicity in active tectonic areas; (2) prior deglaciation leaving undercut, unstable cliffs; (3) present-day debuttressing of rock cliffs by glacial down-wasting in conditions of global warming; and (4) degradation of permafrost cohesion and water-ice cementation in high mountain slopes. Landslide dams across mountain rivers are also well known worldwide and generally do not endure for long because of the common landslide-lake outburst floods (LLOF) whose discharge is commonly sufficiently large to remove much of the dam in a short time. A number of massive slope-failure dams in south High Asia, however, have endured for centuries and require explanations for the length of duration, whereas recent examples require robust assessment for better predictive hazard analysis. Three main factors contribute to longevity of slope-failure dams: (1) mega-rocks >15-30 m that inhibit dam failure in overflow breaches; (2) mega-porosity wherein incoming discharge to the landslide lake is balanced by subterranean water through-flow within the landslide dam; (3) impermeable clay fills caused by remobilization of prior lacustrine-dammed sediment that impart dam strength to allow lasting integrity for a time, and (4) climate-change induced lake-level lowering. Several examples of long-lived or unusually stable, slope-failure dams associated with pronounced structural/tectonic associations include: (1) Pangong Tso, Ladakh and Tibet; (2) Lake Shewa, Afghanistan; (3) Sarez Lake, Tajikistan; and (4) Lake Hunza, Pakistan. Pangong Tso and Lake Shewa were emplaced thousands of years ago and only Lake Shewa shows some instability of the dam front where percolating water maintains lake level but may be causing new slumping. Sarez Lake behind the Usoi landslide dam was emplaced by an earthquake in 1911 and maintains its level by seepage. Lake

  7. Dynamic Response and Dynamic Failure Mode of a Weak Intercalated Rock Slope Using a Shaking Table

    Science.gov (United States)

    Fan, Gang; Zhang, Jianjing; Wu, Jinbiao; Yan, Kongming

    2016-08-01

    A large-scale shaking table test was performed to study the dynamic response of slopes parallel to geological bedding (bedding slopes) and slopes that cross-cut geological bedding (counter-bedding slopes). The test results show that the acceleration amplification coefficients increase with increasing elevation and, when the input earthquake amplitude is greater than 0.3 g, both bedding and counter-bedding slopes begin to show nonlinear dynamic response characteristics. With increasing elevation, the displacement of the bedding slope surface increases greatly. Conversely, the displacement of the counter-bedding slope surface increases first and then decreases; the slope develops a bulge at the relative elevation of 0.85. The displacement of the bedding slope surface is greater than that of the counter-bedding slope. The counter-bedding slope is more seismically stable compared with the bedding slope. Based on the Hilbert-Huang transform and marginal spectrum theories, the processes that develop dynamic damage of the bedding and counter-bedding slopes are identified. It is shown that the dynamic failure mode of the bedding slope is mainly represented by vertical tensile cracks at the rear of the slope, bedding slide of the strata along the weak intercalation, and rock collapse from the slope crest. However, the dynamic failure mode of the counter-bedding slope is mainly represented by staggered horizontal and vertical fissures, extrusion of the weak intercalation, and breakage at the slope crest.

  8. A hazard and risk classification system for catastrophic rock slope failures in Norway

    Science.gov (United States)

    Hermanns, R.; Oppikofer, T.; Anda, E.; Blikra, L. H.; Böhme, M.; Bunkholt, H.; Dahle, H.; Devoli, G.; Eikenæs, O.; Fischer, L.; Harbitz, C. B.; Jaboyedoff, M.; Loew, S.; Yugsi Molina, F. X.

    2012-04-01

    The Geological Survey of Norway carries out systematic geologic mapping of potentially unstable rock slopes in Norway that can cause a catastrophic failure. As catastrophic failure we describe failures that involve substantial fragmentation of the rock mass during run-out and that impact an area larger than that of a rock fall (shadow angle of ca. 28-32° for rock falls). This includes therefore rock slope failures that lead to secondary effects, such as a displacement wave when impacting a water body or damming of a narrow valley. Our systematic mapping revealed more than 280 rock slopes with significant postglacial deformation, which might represent localities of large future rock slope failures. This large number necessitates prioritization of follow-up activities, such as more detailed investigations, periodic monitoring and permanent monitoring and early-warning. In the past hazard and risk were assessed qualitatively for some sites, however, in order to compare sites so that political and financial decisions can be taken, it was necessary to develop a quantitative hazard and risk classification system. A preliminary classification system was presented and discussed with an expert group of Norwegian and international experts and afterwards adapted following their recommendations. This contribution presents the concept of this final hazard and risk classification that should be used in Norway in the upcoming years. Historical experience and possible future rockslide scenarios in Norway indicate that hazard assessment of large rock slope failures must be scenario-based, because intensity of deformation and present displacement rates, as well as the geological structures activated by the sliding rock mass can vary significantly on a given slope. In addition, for each scenario the run-out of the rock mass has to be evaluated. This includes the secondary effects such as generation of displacement waves or landslide damming of valleys with the potential of later

  9. Deterministic slope failure hazard assessment in a model catchment and its replication in neighbourhood terrain

    Directory of Open Access Journals (Sweden)

    Kiran Prasad Acharya

    2016-01-01

    Full Text Available In this work, we prepare and replicate a deterministic slope failure hazard model in small-scale catchments of tertiary sedimentary terrain of Niihama city in western Japan. It is generally difficult to replicate a deterministic model from one catchment to another due to lack of exactly similar geo-mechanical and hydrological parameters. To overcome this problem, discriminant function modelling was done with the deterministic slope failure hazard model and the DEM-based causal factors of slope failure, which yielded an empirical parametric relationship or a discriminant function equation. This parametric relationship was used to predict the slope failure hazard index in a total of 40 target catchments in the study area. From ROC plots, the prediction rate between 0.719–0.814 and 0.704–0.805 was obtained with inventories of September and October slope failures, respectively. This means September slope failures were better predicted than October slope failures by approximately 1%. The results show that the prediction of the slope failure hazard index is possible, even in a small catchment scale, in similar geophysical settings. Moreover, the replication of the deterministic model through discriminant function modelling was found to be successful in predicting typhoon rainfall-induced slope failures with moderate to good accuracy without any use of geo-mechanical and hydrological parameters.

  10. Laboratory and 3-D-distinct element analysis of failure mechanism of slope under external surcharge

    Directory of Open Access Journals (Sweden)

    N. Li

    2014-09-01

    Full Text Available Landslide is a major disaster resulting in considerable loss of human lives and property damages in hilly terrain in Hong Kong, China and many other countries. The factor of safety and the critical slip surface for slope stabilization are the main considerations for slope stability analysis in the past, while the detailed post-failure conditions of the slopes have not been considered in sufficient details. There are however increasing interest on the consequences after the initiation of failure which includes the development and propagation of the failure surfaces, the amount of failed mass and runoff and the affected region. To assess the development of slope failure in more details and to consider the potential danger of slopes after failure has initiated, the slope stability problem under external surcharge is analyzed by the distinct element method (DEM and laboratory model test in the present research. A more refined study about the development of failure, microcosmic failure mechanism and the post-failure mechanism of slope will be carried out. The numerical modeling method and the various findings from the present work can provide an alternate method of analysis of slope failure which can give additional information not available from the classical methods of analysis.

  11. Photogrammetric analysis of slope failures feeding the head of the Illgraben debris flow channel

    Science.gov (United States)

    Bennett, G. L.; Molnar, P.; Eisenbeiss, H.; McArdell, B. W.

    2012-04-01

    Our understanding of slope failure is restricted by a lack of inventories of sufficient size and directly measured volumes. We used digital photogrammetry to produce a multi-temporal record of erosion of a rock slope in the Illgraben. From this we extracted an inventory of ~2500 slope failures for 3 epochs of 6/7 years between 1986 and 2005 ranging over 6 orders of magnitude in volume. Through analysis of their magnitude-frequency, volume-area and depth-slope gradient relations we aimed to understand the characteristics of slope failure at the head of this active alpine debris-flow catchment. The slope failure volumes follow a characteristic magnitude-frequency distribution with a roll-over at 50m3 and a power-law tail between ~200m3 and 1.6x106m3 with an exponent of 1.65. We compared different methods to estimate the power law scaling exponent and found the maximum likelihood estimator to be the most accurate. Conversely, least squares regression on the probability density function consistently underestimated the exponent. Slope failure volume scales with failure area as a power law with an exponent of 1.1. This exponent is low for the bedrock nature of the slope in comparison with worldwide studies of bedrock and soil landslides and likely results from the highly fractured and incohesive nature of the quartzitic bedrock of the study slope. Comparing the results for different epochs we find that the magnitude-frequency and volume-area relationships are reasonably time-invariant demonstrating their general nature for the setting. We interpret the magnitude-frequency distribution of slope failure volumes as the result of two separate slope failure processes. Type (1) failures are frequent, small slides and slumps within the weathered layer of highly fractured rock and loose sediment. These make up the roll-over of the distribution. Type (2) failures are less frequent rockslides and rockfalls within the internal bedded and fractured slope along pre

  12. Modeling slope failure by the 3D discrete element method: A case study of the dip slope at the Huafan University campus in northern Taiwan

    Science.gov (United States)

    Tseng, C. H.; Chan, Y. C.; Jeng, C. J.; Hsieh, Y. C.

    2015-12-01

    Slope failure is a widely observed phenomenon in hill and mountainous areas in Taiwan, which is characterized by high erosion rates (up to 60 mm/yr) due to its climatic and geographical conditions. Slope failure events easily occur after intense rainfall, especially resulting from typhoons and accordingly cause a great loss of human lives and property. At the northern end of the Western Foothill belt in northern Taiwan, Huafan University campus (121.692448˚ E, 24.980724˚ N ) is founded on a dip slope, ~20˚ toward southwest, being composed of early Miocene alternations of sandstone and shale. Data from continuous monitoring over the years by means of inclinometers and groundwater gauges reveal that creep of 6-10 mm of the slope occurred when precipitation exceeded 300 mm during typhoons' striking. In addition, extension cracks on the ground are also found within and on the edge of the campus. Furthermore, potential slip surfaces are detected shown by rock cores to exist 10 and 30 m in depth as well. To understand the kinematic behaviors of the rock slope failure beneath the university campus, a 3D discrete element mothed is applied in this study. Results of the modeling indicate that creeping is the primary behavior pattern when the friction coefficient reduces owing to rise of groundwater during rainstorms. However, rapid slip may take place under influences of earthquake with large magnitude. Suggestions for preventing the slope creep are to construct catchpits to drainage runoff and lower the groundwater table and ground anchors through the slip surfaces to stabilize the slide blocks.

  13. A multi-sensor approach to monitor slope displacement

    Science.gov (United States)

    Bouali, E. H. Y.; Oommen, T.; Escobar-Wolf, R. P.

    2015-12-01

    The use of remote sensing toward slope monitoring and landslide detection has been widespread. Common techniques include interferometric synthetic aperture radar (InSAR), light detection and ranging (LiDAR) and optical photogrammetric methods. Each technique can measure ground motion when data over the same region are acquired through multiple acquisitions, with typical data outputs displayed in spatial form (e.g., displacement/velocity maps or two- and three-dimensional change detection models) or in temporal form (e.g., displacement time series). The authors apply a multi-sensor approach - combining satellite-based InSAR, terrestrial LiDAR, and aerial optical photogrammetry - in order to optimize these remote sensing techniques based on their advantages and limitations. This application is conducted over a railroad corridor in southeastern Nevada. InSAR results include the calculation of displacement rates across many slopes over a long period of time. Two slopes, identified as potentially hazardous, are further analyzed in greater detail using LiDAR and optical photogrammetry. Slope displacements are measured using a point-cloud change detection analysis; the potential for stacking acquisitions to create displacement time-series is also explored. Overall, the goal is to illustrate the benefits of using a multi-sensor, remote sensing approach towards the monitoring of slope instability.

  14. Physical and theoretical modeling of rock slopes against block-flexure toppling failure

    Directory of Open Access Journals (Sweden)

    Mehdi Amini

    2015-12-01

    Full Text Available Block-flexure is the most common mode of toppling failure in natural and excavated rock slopes. In such failure, some rock blocks break due to tensile stresses and some overturn under their own weights and then all of them topple together. In this paper, first, a brief review of previous studies on toppling failures is presented. Then, the physical and mechanical properties of experimental modeling materials are summarized. Next, the physical modeling results of rock slopes with the potential of block-flexural toppling failures are explained and a new analytical solution is proposed for the stability analysis of such slopes. The results of this method are compared with the outcomes of the experiments. The comparative studies show that the proposed analytical approach is appropriate for the stability analysis of rock slopes against block-flexure toppling failure. Finally, a real case study is used for the practical verification of the suggested method.

  15. Overpressure and fluid flow in the new jersey continental slope: implications for slope failure and cold seeps

    Science.gov (United States)

    Dugan; Flemings

    2000-07-14

    Miocene through Pleistocene sediments on the New Jersey continental slope (Ocean Drilling Program Site 1073) are undercompacted (porosity between 40 and 65%) to 640 meters below the sea floor, and this is interpreted to record fluid pressures that reach 95% of the lithostatic stress. A two-dimensional model, where rapid Pleistocene sedimentation loads permeable sandy silt of Miocene age, successfully predicts the observed pressures. The model describes how lateral pressure equilibration in permeable beds produces fluid pressures that approach the lithostatic stress where overburden is thin. This transfer of pressure may cause slope failure and drive cold seeps on passive margins around the world.

  16. Effect of Different Groundwater Levels on Seismic Dynamic Response and Failure Mode of Sandy Slope.

    Directory of Open Access Journals (Sweden)

    Shuai Huang

    Full Text Available Heavy seismic damage tends to occur in slopes when groundwater is present. The main objectives of this paper are to determine the dynamic response and failure mode of sandy slope subjected simultaneously to seismic forces and variable groundwater conditions. This paper applies the finite element method, which is a fast and efficient design tool in modern engineering analysis, to evaluate dynamic response of the slope subjected simultaneously to seismic forces and variable groundwater conditions. Shaking table test is conducted to analyze the failure mode and verify the accuracy of the finite element method results. The research results show that dynamic response values of the slope have different variation rules under near and far field earthquakes. And the damage location and pattern of the slope are different in varying groundwater conditions. The destruction starts at the top of the slope when the slope is in no groundwater, which shows that the slope appears obvious whipping effect under the earthquake. The destruction starts at the toe of the slope when the slope is in the high groundwater levels. Meanwhile, the top of the slope shows obvious seismic subsidence phenomenon after earthquake. Furthermore, the existence of the groundwater has a certain effect of damping.

  17. Effect of Different Groundwater Levels on Seismic Dynamic Response and Failure Mode of Sandy Slope

    Science.gov (United States)

    Huang, Shuai; Lv, Yuejun; Peng, Yanju; Zhang, Lifang; Xiu, Liwei

    2015-01-01

    Heavy seismic damage tends to occur in slopes when groundwater is present. The main objectives of this paper are to determine the dynamic response and failure mode of sandy slope subjected simultaneously to seismic forces and variable groundwater conditions. This paper applies the finite element method, which is a fast and efficient design tool in modern engineering analysis, to evaluate dynamic response of the slope subjected simultaneously to seismic forces and variable groundwater conditions. Shaking table test is conducted to analyze the failure mode and verify the accuracy of the finite element method results. The research results show that dynamic response values of the slope have different variation rules under near and far field earthquakes. And the damage location and pattern of the slope are different in varying groundwater conditions. The destruction starts at the top of the slope when the slope is in no groundwater, which shows that the slope appears obvious whipping effect under the earthquake. The destruction starts at the toe of the slope when the slope is in the high groundwater levels. Meanwhile, the top of the slope shows obvious seismic subsidence phenomenon after earthquake. Furthermore, the existence of the groundwater has a certain effect of damping. PMID:26560103

  18. Effect of Different Groundwater Levels on Seismic Dynamic Response and Failure Mode of Sandy Slope.

    Science.gov (United States)

    Huang, Shuai; Lv, Yuejun; Peng, Yanju; Zhang, Lifang; Xiu, Liwei

    2015-01-01

    Heavy seismic damage tends to occur in slopes when groundwater is present. The main objectives of this paper are to determine the dynamic response and failure mode of sandy slope subjected simultaneously to seismic forces and variable groundwater conditions. This paper applies the finite element method, which is a fast and efficient design tool in modern engineering analysis, to evaluate dynamic response of the slope subjected simultaneously to seismic forces and variable groundwater conditions. Shaking table test is conducted to analyze the failure mode and verify the accuracy of the finite element method results. The research results show that dynamic response values of the slope have different variation rules under near and far field earthquakes. And the damage location and pattern of the slope are different in varying groundwater conditions. The destruction starts at the top of the slope when the slope is in no groundwater, which shows that the slope appears obvious whipping effect under the earthquake. The destruction starts at the toe of the slope when the slope is in the high groundwater levels. Meanwhile, the top of the slope shows obvious seismic subsidence phenomenon after earthquake. Furthermore, the existence of the groundwater has a certain effect of damping.

  19. Progressive failure analysis of slope with strain-softening behaviour based on strength reduction method

    Institute of Scientific and Technical Information of China (English)

    Ke ZHANG; Ping CAO; Rui BAO

    2013-01-01

    Based on the strength reduction method and strain-softening model,a method for progressive failure analysis of strain-softening slopes was presented in this paper.The mutation is more pronounced in strain-softening analysis,and the mutation of displacement at slope crest was taken as critical failure criterion.An engineering example was provided to demonstrate the validity of the present method.This method was applied to a cut slope in an industry site.The results are as follows: (1) The factor of safety and the critical slip surface obtained by the present method are between those by peak and residual strength.The analysis with peak strength would lead to non-conservative results,but that with residual strength tends to be overly conservative.(2) The thickness of the shear zone considering strain-softening behaviour is narrower than that with non-softening analysis.(3) The failure of slope is the process of the initiation,propagation and connection of potential failure surface.The strength parameters are mobilized to a non-uniform degree while progressive failure occurs in the slope.(4) The factor of safety increases with the increase of residual shear strain threshold and elastic modulus.The failure mode of slope changes from shallow slip to deep slip.Poisson's ratio and dilation angle have little effect on the results.

  20. A novel risk assessment method for landfill slope failure: Case study application for Bhalswa Dumpsite, India.

    Science.gov (United States)

    Jahanfar, Ali; Amirmojahedi, Mohsen; Gharabaghi, Bahram; Dubey, Brajesh; McBean, Edward; Kumar, Dinesh

    2017-03-01

    Rapid population growth of major urban centres in many developing countries has created massive landfills with extraordinary heights and steep side-slopes, which are frequently surrounded by illegal low-income residential settlements developed too close to landfills. These extraordinary landfills are facing high risks of catastrophic failure with potentially large numbers of fatalities. This study presents a novel method for risk assessment of landfill slope failure, using probabilistic analysis of potential failure scenarios and associated fatalities. The conceptual framework of the method includes selecting appropriate statistical distributions for the municipal solid waste (MSW) material shear strength and rheological properties for potential failure scenario analysis. The MSW material properties for a given scenario is then used to analyse the probability of slope failure and the resulting run-out length to calculate the potential risk of fatalities. In comparison with existing methods, which are solely based on the probability of slope failure, this method provides a more accurate estimate of the risk of fatalities associated with a given landfill slope failure. The application of the new risk assessment method is demonstrated with a case study for a landfill located within a heavily populated area of New Delhi, India.

  1. Vulnerability and adaptation of urban dwellers in slope failure threats--a preliminary observation for the Klang Valley Region.

    Science.gov (United States)

    Thanapackiam, P; Salleh, Khairulmaini Osman; Ghaffar, Fauza Ab

    2012-04-01

    This paper discusses the outcome of a research that examines the relationships between vulnerability and adaptation of urban dwellers to the slope failure threat in the Klang Valley Region. Intense urban landuse expansions in the Klang Valley Region have increased urban dwellers vulnerability to slope failures in recent years. The Klang Valley Region was chosen as the study area due to the increasing intensities and frequencies of slope failures threat. This paper examines urban dwellers vulnerability based on their (1) population and demographics characteristics, (2) the state of physical structures of dwellings and (3) the situation of the immediate environment threatened by slope failures. The locations of slope failure incidents were identified, mapped and examined followed with a detailed field study to identified areas. The results identified significant relationships between vulnerability indicators and slope failures in the Klang Valley Region. The findings of the study are envisaged to give valuable insights on addressing the threat of slope failures in the Klang Valley Region.

  2. NEESROCK: A Physical and Numerical Modeling Investigation of Seismically Induced Rock-Slope Failure

    Science.gov (United States)

    Applegate, K. N.; Wartman, J.; Keefer, D. K.; Maclaughlin, M.; Adams, S.; Arnold, L.; Gibson, M.; Smith, S.

    2013-12-01

    Worldwide, seismically induced rock-slope failures have been responsible for approximately 30% of the most significant landslide catastrophes of the past century. They are among the most common, dangerous, and still today, least understood of all seismic hazards. Seismically Induced Rock-Slope Failure: Mechanisms and Prediction (NEESROCK) is a major research initiative that fully integrates physical modeling (geotechnical centrifuge) and advanced numerical simulations (discrete element modeling) to investigate the fundamental mechanisms governing the stability of rock slopes during earthquakes. The research is part of the National Science Foundation-supported Network for Earthquake Engineering Simulation Research (NEES) program. With its focus on fractures and rock materials, the project represents a significant departure from the traditional use of the geotechnical centrifuge for studying soil, and pushes the boundaries of physical modeling in new directions. In addition to advancing the fundamental understanding of the rock-slope failure process under seismic conditions, the project is developing improved rock-slope failure assessment guidelines, analysis procedures, and predictive tools. Here, we provide an overview of the project, present experimental and numerical modeling results, discuss special considerations for the use of synthetic rock materials in physical modeling, and address the suitability of discrete element modeling for simulating the dynamic rock-slope failure process.

  3. Slope monitoring by using 2-D resistivity method at Sungai Batu, Pulau Pinang, Malaysia

    Science.gov (United States)

    Azman, Muhamad Iqbal Mubarak Faharul; Yusof, Azim Hilmy Mohd; Ismail, Nur Azwin; Ismail, Noer El Hidayah

    2017-07-01

    Slope is a dynamic system of geo-environmental phenomena that related to the movement of the soil and rock masses. In Pulau Pinang, the occurrence of slope related phenomena such as landslide and rock fall has become a huge issue especially during rainy season as the government would have to invest more for the people safety. 2-D resistivity method is one of the geophysical methods that can be applied to overcome this issue thus prepare countermeasure actions. Monitoring is one of the common acquisition technique that has been used in solving such issue. This technique was applied to identify and monitor changes at the suspected area and thus, countermeasure steps can be taken accordingly and not blindfolded. Starting from August until November 2016, a 200 m survey line of 2-D resistivity survey had been conducted monthly at Sungai Batu, Pulau Pinang slope for monitoring purpose. Three resistivity ranges were able to detect within the subsurface. Resistivity value of 250 - 400 Ωm indicated the low resistivity value and interpreted as the weak zone located at distance of 90 - 120 m with depth of 10 m. Intermediate resistivity value was interpreted as weathered granite zone with resistivity value of 400 - 1500 Ωm was found at almost along survey line. High resistivity value was > 5000 Ωm and interpreted as granitic bedrock located at depth of > 20 m. Aside from weathered granite zone and weak zone, a fracture was found develop over time at distance of 130 - 140 m. The features found have the potential to be the cause for slope failure phenomena to occur. As a conclusion, monitoring slope using 2-D resistivity method is a success and indeed helpful in overcome landslide and rock fall issue as a pre-countermeasure action.

  4. Challenges in monitoring and managing engineered slopes in a changing climate

    Directory of Open Access Journals (Sweden)

    Hughes Paul N

    2016-01-01

    Full Text Available Geotechnical asset owners need to know which parts of their asset network are vulnerable to climate change induced failure in order to optimise future investment. Protecting these vulnerable slopes requires monitoring systems capable of identifying and alerting to asset operators changes in the internal conditions that precede failure. Current monitoring systems are heavily reliant on point sensors which can be difficult to interpret across slope scale. This paper presents challenges to producing such a system and research being carried out to address some of these using electrical resistance tomography (ERT. Experimental results show that whilst it is possible to measure soil water content indirectly via resistivity the relationship between resistivity and water content will change over time for a given slope. If geotechnical parameters such as pore water pressure are to be estimated using this method then ERT systems will require integrating with more conventional geotechnical instrumentation to ensure correct representative information is provided. The paper also presents examples of how such data can be processed and communicated to asset owners for the purposes of asset management.

  5. Hydrological modelling of a slope covered with shallow pyroclastic deposits from field monitoring data

    Directory of Open Access Journals (Sweden)

    R. Greco

    2013-10-01

    Full Text Available A one-dimensional hydrological model of a slope covered with pyroclastic materials is proposed. The soil cover is constituted by layers of loose volcanic ashes and pumices, with a total thickness between 1.8 m and 2.5 m, lying upon a fractured limestone bedrock. The mean inclination of the slope is around 40°, slightly larger than the friction angle of the ashes. Thus, the equilibrium of the slope, significantly affected by the cohesive contribution exerted by soil suction in unsaturated conditions, may be altered by rainfall infiltration. The model assumes a single homogeneous soil layer occupying the entire depth of the cover, and takes into account seasonally variable canopy interception of precipitation and root water uptake by vegetation, mainly constituted by deciduous chestnut woods with a dense underbrush growing during late spring and summer. The bottom boundary condition links water potential at the soil–bedrock interface with the fluctuations of the water table of the aquifer located in the fractured limestone, which is conceptually modelled as a linear reservoir. Most of the model parameters have been assigned according to literature indications or from experimental data. Soil suction and water content data measured between 1 January 2011 and 20 July 2011 at a monitoring station installed along the slope allowed the remaining parameters to be identified. The calibrated model, which reproduced very closely the data of the calibration set, has been applied to the simulation of the hydrological response of the slope to the hourly precipitation record of 1999, when a large flow-like landslide was triggered close to the monitored location. The simulation results show that the lowest soil suction ever attained occurred just at the time the landslide was triggered, indicating that the model is capable of predicting slope failure conditions.

  6. Fully-coupled hydrologic/geomechanical simulations of slope failure in a prototypical steep mountain catchment

    Science.gov (United States)

    White, J. A.; Borja, R. I.; Ebel, B. A.; Loague, K.

    2009-12-01

    This work presents a physics-based framework for continuum modeling of hydrologically-driven slope failure. The analyses employ a mixed finite element formulation for variably-saturated geomaterials undergoing elastoplastic deformations. The deforming soil mass is treated as a multiphase continuum, and the governing mass and momentum balance equations are solved in a fully-coupled manner. This tight coupling is necessary to capture key features of slope behavior. To test the coupled formulation, we present a three-dimensional slope analysis motivated by a 1996 landslide that occurred at a steep experimental catchment (CB1) near Coos Bay, Oregon. Simulations are used to quantify the rainfall-induced slope deformation and assess the failure potential. Results of parametric studies suggest that for a steep hillslope underlain by bedrock, similar to the CB1 site, failure would occur by a multiple slide block mechanism, with progressive failure surfaces forming at the bedrock interface and propagating to the surface. Extensive field observations and experimental measurements made at the CB1 site provide a rich data set to calibrate and evaluate the proposed numerical model. We take the opportunity, however, to point out those features of the model that are not well-constrained by available field data, but which may play an important role in determing the timing and location of failure. These observations are used to assess the current state of predictive capability of the slope simulations, and to inform the design of future field experiments.

  7. Reconstruction of multistage massive rock slope failure: Polymethodical approach in Lake Oeschinen (CH)

    Science.gov (United States)

    Knapp, Sibylle; Gilli, Adrian; Anselmetti, Flavio S.; Hajdas, Irka

    2016-04-01

    Lateglacial and Holocene rock-slope failures occur often as multistage failures where paraglacial adjustment and stress adaptation are hypothesised to control stages of detachment. However, we have only limited datasets to reconstruct detailed stages of large multistage rock-slope failures, and still aim at improving our models in terms of geohazard assessment. Here we use lake sediments, well-established for paleoclimate and paleoseismological reconstruction, with a focus on the reconstruction of rock-slope failures. We present a unique inventory from Lake Oeschinen (Bernese Alps, Switzerland) covering about 2.4 kyrs of rock-slope failure history. The lake sediments have been analysed using sediment-core analysis, radiocarbon dating and seismic-to-core and core-to-core correlations, and these were linked to historical and meteorological records. The results imply that the lake is significantly younger than the ~9 kyrs old Kandersteg rock avalanche (Tinner et al., 2005) and shows multiple rock-slope failures, two of which could be C14-dated. Several events detached from the same area potentially initiated by prehistoric earthquakes (Monecke et al., 2006) and later from stress relaxation processes. The data imply unexpected short recurrence rates that can be related to certain detachment scarps and also help to understand the generation of a historical lake-outburst flood. Here we show how polymethodical analysis of lake sediments can help to decipher massive multistage rock-slope failure. References Monecke, K., Anselmetti, F.S., Becker, A., Schnellmann, M., Sturm, M., Giardini, D., 2006. Earthquake-induced deformation structures in lake deposits: A Late Pleistocene to Holocene paleoseismic record for Central Switzerland. Eclogae Geologicae Helvetiae, 99(3), 343-362. Tinner, W., Kaltenrieder, P., Soom, M., Zwahlen, P., Schmidhalter, M., Boschetti, A., Schlüchter, C., 2005. Der nacheiszeitliche Bergsturz im Kandertal (Schweiz): Alter und Auswirkungen auf die

  8. Seismic failure mechanisms for loaded slopes with associated and nonassociated flow rules

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-li; SUI Zhi-rong

    2008-01-01

    Seismic failure mechanisms were investigated for soil slopes subjected to strip load with upper bound method of limit analysis and finite difference method of numerical simulation, considering the influence of associated and nonassociated flow rules. Quasi-static representation of soil inertia effects using a seismic coefficient concept was adopted for seismic failure analysis. Numerical study was conducted to investigate the influences of dilative angle and earthquake on the seismic failure mechanisms for the loaded slope, and the failure mechanisms for different dilation angles were compared. The results show that dilation angle has influences on the seismic failure surfaces, that seismic maximum displacement vector decreases as the dilation angle increases, and that seismic maximum shear strain rate decreases as the dilation angle increases.

  9. Validation of Hoek-Brown failure criterion charts for rock slopes

    Institute of Scientific and Technical Information of China (English)

    A.M. Nekouei; K. Ahangari

    2013-01-01

    Although stability charts suggested by Hoek and Bray on the basis of Mohr-Coulomb criterion are used for rock slopes, but complete and precise recognition is required for distinguishing cohesive strength and Mohr-Coulomb equivalent internal friction angle for rock mass. The paper by Lia et al. [6] is the only one that introduced rock slope charts according to Hoek-Brown failure criterion. In this paper, at first, this type of charts is introduced. Then, Mohr-Coulomb failure criterion charts [2] are compared and validated with Hoek-Brown failure criterion ones [6]. Next, Bishop method utilizing Slide software is compared with Hoek-Brown failure criterion stability charts. Average standard deviation (ASD), root mean square error (RMSE) and variance account for (VAF) were used for the comparison. According to the results, because of high distribution and very low correlation among the comparisons, Hoek-Brown failure crite-rion charts are not efficient.

  10. The Effect of Rainfall Patterns on the Mechanisms of Shallow Slope Failure

    Directory of Open Access Journals (Sweden)

    Muhammad Suradi

    2014-04-01

    Full Text Available This paper examines how rainfall patterns affect the mechanisms of shallow slope failure. Numerical modelling, utilising the commercial software SVFlux and SVSlope, was carried out for a coupled analysis of rainfall-induced slope seepage and instability, with reference to a shallow landslide took place in Jabiru, Northern Territory (NT Australia in 2007. Rainfall events were varied in terms of pattern in this analysis. The results revealed that slopes are sensitive to rainfall pattern when the rainfall intensity has a high degree of fluctuation at around the same value as that of saturated hydraulic conductivity. Average rainfall intensity at the beginning of a rainfall period plays a primary role in determining the rate of decrease in initial factor of safety (Fi towards minimum factor of safety (Fmin. The effect of rainfall events on the slope instability is attributed to the amount of rainwater infiltration into slope associated with rainfall pattern.

  11. Numerical modeling of failure mechanisms in phyllite mine slopes in Brazil

    Institute of Scientific and Technical Information of China (English)

    Lana Milene Sabino

    2014-01-01

    This paper presents three case studies comprising failure mechanisms in phyllite mine slopes at Quadrilá-tero Ferrífero, State of Minas Gerais, Brazil. Numerical modeling techniques were used in this study. Fail-ure mechanisms involving discontinuities sub parallel to the main foliation are very common in these mines. Besides, failure through the rock material has also been observed due to the low strength of phyl-lites in this site. Results of this work permitted to establish unknown geotechnical parameters which have significant influence in failure processes, like the in situ stress field and the discontinuity stiffness.

  12. A Tilt, Soil Moisture, and Pore Water Pressure Sensor System for Slope Monitoring Applications

    Directory of Open Access Journals (Sweden)

    Rosanno de Dios

    2009-06-01

    Full Text Available This paper describes the design, implementation and characterization of a sensor network intended for monitoring of slope deformation and potential failures. The sensor network system consists of a tilt and moisture sensor column, a pore water pressure sensor column and a personal computer for data storage and processing. The tilt sensor column consists of several pipe segments containing tri-axial accelerometers and signal processing electronics. Each segment is joined together by flexible joints to allow for the column to deform and subsequently track underground movement. Capacitive-type sensors for soil moisture measurement are also included in the sensor column, which are used to measure the soil moisture at different depths. The measurements at each segment are transferred via a Controller Area Network (CAN bus, where the CAN master node is located at the top of the column above ground. The CAN master node transmits the collected data from the slave nodes via a wireless connection to a personal computer that performs data storage, processing and display via a Python-based graphical user interface (GUI. The entire system was deployed and characterized on a small-scale slope model. Slope failure was induced via water seepage and the system was demonstrated to ably measure the inclination and soil moisture content throughout the landslide event.

  13. Copula-Based Slope Reliability Analysis Using the Failure Domain Defined by the g-Line

    Directory of Open Access Journals (Sweden)

    Xiaoliang Xu

    2016-01-01

    Full Text Available The estimation of the cross-correlation of shear strength parameters (i.e., cohesion and internal friction angle and the subsequent determination of the probability of failure have long been challenges in slope reliability analysis. Here, a copula-based approach is proposed to calculate the probability of failure by integrating the copula-based joint probability density function (PDF on the slope failure domain delimited with the g-line. Here, copulas are used to construct the joint PDF of shear strength parameters with specific marginal distributions and correlation structure. In the paper a failure (limit state function approach is applied to investigate a system characterized by a homogeneous slope. The results show that the values obtained by using the failure function approach are similar to those calculated by means of conventional methods, such as the first-order reliability method (FORM and Monte Carlo simulations (MC. In addition, an entropy weight (EW copula is proposed to address the discrepancies of the results calculated by different copulas to avoid over- or underestimating the slope reliability.

  14. GEO- AND HYDRO-MECHANICAL EVALUATION OF SLOPE FAILURE INDUCED BY TORRENTIAL RAINS IN NORTHERN-KYUSHU AREA, JULY 2009

    OpenAIRE

    Kasama, Kiyonobu; Jiang, Yujing; Hiro-oka, Akihiko; Yasufuku, Noriyuki; SATO, HIDEFUMI

    2011-01-01

    Torrential rainfall in mid-July 2009 triggered numerous geodisasters such as slope failure and debris flow in Chugoku and Northern Kyushu areas of Japan. A number of slope failures and debris flows occurred in Yamaguchi and Fukuoka prefectures resulting in extensive damage to human life and infrastructure. One of the most serious geodisasters included a slope failure followed by debris flow at Sasaguri-machi and Fukuchi-machi, Fukuoka prefecture, Japan. This paper summarizes the results of ge...

  15. Long term monitoring of landslide: observation gravitational slope cycles

    Science.gov (United States)

    Palis, Edouard; Lebourg, Thomas; Vidal, Maurin

    2016-04-01

    Since several years of studies on landslides, we realized the role and subtle interactions that existed between the structural complexity, masses dynamics and complex internal circulation of fluids. Thus, to gain a better understanding of the processes taking place during the evolution of an unstable slope, an observational study is necessary. In this perspective, our team currently monitors slow moving landslide zones. The aim of such a monitoring is to gain a better knowledge of the links between external forcing (meteorological, seismological) and signals going out of the slope (kinematic, vibrations, electrical resistivity). In December 2000, a dramatic event affected the sandy/clayey landslide in the Southern Alpes Maritimes (France). A 10 meters high scarp appeared at the foot of the landslide and affected private yards nearby. This area then became a major concern for local authorities and understand the processes taking place, a scientific challenge. In order to understand the land-sliding reactivations and to quantify the natural cycles of deformations, we analyse the main factors of this complex system. After 10 years of observation we are now able to highlight some of the complex behaviours by the measurement of physical parameters (geophysical monitoring). A permanent 115 m ERT line (5 meters electrode spacing) has been installed and provides an acquisition daily since 2006. The daily acquisitions are now accompanied by continuous measurements from boreholes (thermometers, piezometers, tiltmeters) and pluviometry. We are able to control the whole monitoring from the lab, and all these data are transmitted in real time. The analysis of these large amounts of data over large time series allows the detection of seasonal cycles of surface activity. The deformation taking place can be assimilated to a near-elastic deformation and show a lateral decoupling on both sides of the fault cutting the landslide. These deformation cycles can be associated with the

  16. Porosity determination from 2-D resistivity method in studying the slope failures

    Science.gov (United States)

    Maslinda, Umi; Nordiana, M. M.; Bery, A. A.

    2017-07-01

    Slope failures have become the main focus for infrastructures development on hilly areas in Malaysia especially the development of tourism and residential. Lack of understanding and information of the subsoil conditions and geotechnical issues are the main cause of the slope failures. The failures happened are due to a combination of few factors such as topography, climate, geology and land use. 2-D resistivity method was conducted at the collapsed area in Selangor. The 2-D resistivity was done to study the instability of the area. The collapsed occurred because of the subsurface materials was unstable. Pole-dipole array was used with 5 m minimum electrode spacing for the 2-D resistivity method. The data was processed using Res2Dinv software and the porosity was calculated using Archie's law equation. The results show that the saturated zone (1-100 Ωm), alluvium or highly weathered rock (100-1000 Ωm), boulders (1600-7000 Ωm) and granitic bedrock (>7000 Ωm). Generally, the slope failures or landslides occur during the wet season or after rainfall. It is because of the water infiltrate to the slope and cause the saturation of the slope which can lead to landslides. Then, the porosity of saturated zone is usually high because of the water content. The area of alluvium or highly weathered rock and saturated zone have high porosity (>20%) and the high porosity also dominated at almost all the collapsed area which means that the materials with porosity >20% is potential to be saturated, unstable and might trigger slope failures.

  17. Submarine Slope Failure Primed and Triggered by Bottom Water Warming in Oceanic Hydrate-Bearing Deposits

    Directory of Open Access Journals (Sweden)

    Tae-Hyuk Kwon

    2012-08-01

    Full Text Available Many submarine slope failures in hydrate-bearing sedimentary deposits might be directly triggered, or at least primed, by gas hydrate dissociation. It has been reported that during the past 55 years (1955–2010 the 0–2000 m layer of oceans worldwide has been warmed by 0.09 °C because of global warming. This raises the following scientific concern: if warming of the bottom water of deep oceans continues, it would dissociate natural gas hydrates and could eventually trigger massive slope failures. The present study explored the submarine slope instability of oceanic gas hydrate-bearing deposits subjected to bottom water warming. One-dimensional coupled thermal-hydraulic-mechanical (T-H-M finite difference analyses were performed to capture the underlying physical processes initiated by bottom water warming, which includes thermal conduction through sediments, thermal dissociation of gas hydrates, excess pore pressure generation, pressure diffusion, and hydrate dissociation against depressurization. The temperature rise at the seafloor due to bottom water warming is found to create an excess pore pressure that is sufficiently large to reduce the stability of a slope in some cases. Parametric study results suggest that a slope becomes more susceptible to failure with increases in thermal diffusivity and hydrate saturation and decreases in pressure diffusivity, gas saturation, and water depth. Bottom water warming can be further explored to gain a better understanding of the past methane hydrate destabilization events on Earth, assuming that more reliable geological data is available.

  18. Slope failure of continental frontal ridges offshore Vancouver Island, British Columbia

    Science.gov (United States)

    Scholz, N.; Riedel, M.; Spence, G.; Dugan, B.; Daigle, H.; Hyndman, R. D.; James, T. S.; Naegeli, K.

    2010-12-01

    Bathymetric data from the Northern Cascadia margin offshore Vancouver Island reveal several submarine landslide features on the seaward slopes of frontal ridges. The slides occur just landward of the deformation front of the subducting Juan de Fuca and Explorer plates. Possible trigger mechanisms for the slope failures include earthquakes, pore pressure changes induced by sea-level changes, and the dissociation of gas hydrates. Evidence of gas hydrate has been found beneath the frontal ridges. A bottom simulating reflection (BSR) has been identified in regional seismic data and logging data showed gas hydrate indicators including sonic velocity and high electrical resistivity. The influence of gas hydrate formation and dissociation on slope stability is of special interest since previous studies showed coincident depths of BSRs and failure planes. We investigate two slope failure events in detail using numerical modeling techniques such as finite and discrete element modeling. Hybrid techniques provide a means to model processes ranging from grain-scale interactions up to movements of the sliding body by addressing both the continuous and discontinuous aspects of the problem. These include the internal forces, the evaluation of material failure criterion, deformation, and interaction forces. Furthermore, tensile failure and crack propagation, for example caused by gas hydrate or by the gradual breakdown of the slope material, can be characterized. Particle flow using different shapes and properties can be simulated. By examining the effect of local sea-level changes, glacial rebound, and gas hydrate formation or dissociation on stresses and fluid pressures, the work involves modeling the failure conditions associated with a decrease in shear strength, an increase in pore pressure, and the possible development or re-opening of cracks. Beyond describing the trigger mechanism, we also have interest in reconstructing the dynamics of the slide events to explain their

  19. Significance of the actual nonlinear slope geometry for catastrophic failure in submarine landslides.

    Science.gov (United States)

    Puzrin, Alexander M; Gray, Thomas E; Hill, Andrew J

    2015-03-08

    A simple approach to slope stability analysis of naturally occurring, mild nonlinear slopes is proposed through extension of shear band propagation (SBP) theory. An initial weak zone appears in the steepest part of the slope where the combined action of gravity and seismic loads overcomes the degraded peak shear resistance of the soil. If the length of this steepest part is larger than the critical length, the shear band will propagate into the quasi-stable parts of the slope, where the gravitational and seismically induced shear stresses are smaller than the peak but larger than the residual shear strength of the soil. Growth of a shear band is strongly dependent on the shape of the slope, seismic parameters and the strength of soil and less dependent on the slope inclination and the sensitivity of clay. For the slope surface with faster changing inclination, the criterion is more sensitive to the changes of the parameters. Accounting for the actual nonlinear slope geometry eliminates the main challenge of the SBP approach-determination of the length of the initial weak zone, because the slope geometry can be readily obtained from submarine site investigations. It also helps to identify conditions for the early arrest of the shear band, before failure in the sliding layer or a change in loading or excess pore water pressures occurs. The difference in the size of a landslide predicted by limiting equilibrium and SBP approaches can reach orders of magnitude, potentially providing an explanation for the immense dimensions of many observed submarine landslides that may be caused by local factors acting over a limited portion of the slope.

  20. Geological Aspect of Slope Failure and Mitigation Approach in Bireun - Takengon Main Road, Aceh Province, Indonesia

    Directory of Open Access Journals (Sweden)

    Ibnu Rusydy

    2016-04-01

    Full Text Available A soil and rock slope assessment survey was conducted along Bireun – Takengon main road in Aceh Province, Indonesia. The slope assessment survey was carried out to determine the geological condition, verify and identify the potential areas of slope failure and to study what type of slope stability and protection method could be applied to the road. Several research methodologies were conducted in the field such as rock and soil identification, and slope assessment. The survey was conducted in four selected areas along Bireun – Takengon main road. In study area I, soil creep occurred because of a presence of montmorillonite clay. The mitigation methods to reduce soil creeping in this area are building a retaining wall and pile. The shotcrete, wire mesh, net rock bolting, and rock removal method is suitable to apply in study area II. The shotcrete and soil nails were used because the type of rocks in those areas is sedimentary rock such as shale, sandstone, siltstone, and a boulder of a volcanic rock. The same approach shall be applied in study area IV. study area III was the best spot to learn about the mitigation approach for slope stability and provides many lessons learned. Aceh Province experience active tectonic movement, high intensity of rain, geological structures, a high degree of weathering, and high intensity of earthquake,as primary factors which trigger landslides. The techonology of slope stabilizing and protection methods can be applied to mitigate landslides.

  1. Multimodal brain monitoring in fulminant hepatic failure

    Institute of Scientific and Technical Information of China (English)

    Fernando; Mendes; Paschoal; Jr; Ricardo; Carvalho; Nogueira; Karla; De; Almeida; Lins; Ronconi; Marcelo; de; Lima; Oliveira; Manoel; Jacobsen; Teixeira; Edson; Bor-Seng-Shu

    2016-01-01

    Acute liver failure, also known as fulminant hepatic failure(FHF), embraces a spectrum of clinical entities characterized by acute liver injury, severe hepatocellular dysfunction, and hepatic encephalopathy. Cerebral edema and intracranial hypertension are common causes of mortality in patients with FHF. The management of patients who present acute liver failure starts with determining the cause and an initial evaluation of prognosis. Regardless of whether or not patients are listed for liver transplantation, they should still be monitored for recovery, death, or transplantation. In the past, neuromonitoring was restricted to serial clinical neurologic examination and, in some cases, intracranial pressure monitoring. Over the years, this monitoring has proven insufficient, as brain abnormalities were detected at late and irreversible stages. The need for real-time monitoring of brain functions to favor prompt treatment and avert irreversible brain injuries led to the concepts of multimodal monitoring and neurophysiological decision support. New monitoring techniques, such as brain tissue oxygen tension, continuous electroencephalogram, transcranial Doppler, and cerebral microdialysis, have been developed. These techniques enable early diagnosis of brain hemodynamic, electrical, and biochemical changes, allow brain anatomical and physiological monitoring-guided therapy, and have improved patient survival rates. The purpose of this review is to discuss the multimodality methods available for monitoring patients with FHF in the neurocritical care setting.

  2. Multimodal brain monitoring in fulminant hepatic failure.

    Science.gov (United States)

    Paschoal, Fernando Mendes; Nogueira, Ricardo Carvalho; Ronconi, Karla De Almeida Lins; de Lima Oliveira, Marcelo; Teixeira, Manoel Jacobsen; Bor-Seng-Shu, Edson

    2016-08-01

    Acute liver failure, also known as fulminant hepatic failure (FHF), embraces a spectrum of clinical entities characterized by acute liver injury, severe hepatocellular dysfunction, and hepatic encephalopathy. Cerebral edema and intracranial hypertension are common causes of mortality in patients with FHF. The management of patients who present acute liver failure starts with determining the cause and an initial evaluation of prognosis. Regardless of whether or not patients are listed for liver transplantation, they should still be monitored for recovery, death, or transplantation. In the past, neuromonitoring was restricted to serial clinical neurologic examination and, in some cases, intracranial pressure monitoring. Over the years, this monitoring has proven insufficient, as brain abnormalities were detected at late and irreversible stages. The need for real-time monitoring of brain functions to favor prompt treatment and avert irreversible brain injuries led to the concepts of multimodal monitoring and neurophysiological decision support. New monitoring techniques, such as brain tissue oxygen tension, continuous electroencephalogram, transcranial Doppler, and cerebral microdialysis, have been developed. These techniques enable early diagnosis of brain hemodynamic, electrical, and biochemical changes, allow brain anatomical and physiological monitoring-guided therapy, and have improved patient survival rates. The purpose of this review is to discuss the multimodality methods available for monitoring patients with FHF in the neurocritical care setting.

  3. Rock-slope failure activity and geological crises in western Norway

    Science.gov (United States)

    Hilger, Paula; Hermanns, Reginald L.; Myhra, Kristin S.; Gosse, John C.; Ivy-Ochs, Susan; Etzelmüller, Bernd

    2017-04-01

    In Norway a compilation of terrestrial cosmogenic nuclide (TCN) ages of rock-avalanche deposits suggests a close link of rock-slope failures related to deglaciation. Although ages spread over several thousand years at the end of the Late Pleistocene, 50% of all documented events occurred within 1000 years after deglaciation. It is therefore likely that debuttressing triggered most of the events. The same data set suggests that 25% of the events occurred during a period stretching until the Holocene thermal maximum (HTM). These events might be interpreted as possible reactions to additional factors such as the thawing of high-altitude permafrost. An example of a geological crisis following deglaciation and before the HTM are seven lobate rock-avalanche deposits mapped under the slope of the Vora mountain (1450 m asl.) in the Nordfjord area of western Norway. Three events of this rock-slope failure cluster date within a short time period of 2000 years, where modelling studies indicate that high-altitude permafrost was present. After the HTM rock-slope failures are distributed temporally and spatially rather evenly throughout the Holocene and western Norway. But there are two independent local clusters with frequent rock slides during a short time span. (1) At the active Mannen rock-slope instability several rock-avalanche and rockslide deposits were mapped on the valley bottom. Stratigraphic relations combined with TCN dating suggest that at least one event occurred when the valley bottom was below the marine limit. TCN ages of further four lobes cluster around 5.2 ka BP, which does not coincide with any other rock-avalanche occurrence in the region. The top of the north facing 1295 m high unstable slope concurs with the currently estimated permafrost boundary. Preliminary TCN ages of the sliding surface indicate that larger parts of the mountain did not become active until the climate maximum. It is likely that due to structural complexity not allowing for any easy

  4. Automating slope monitoring in mines with terrestrial lidar scanners

    Science.gov (United States)

    Conforti, Dario

    2014-05-01

    Static terrestrial laser scanners (TLS) have been an important component of slope monitoring for some time, and many solutions for monitoring the progress of a slide have been devised over the years. However, all of these solutions have required users to operate the lidar equipment in the field, creating a high cost in time and resources, especially if the surveys must be performed very frequently. This paper presents a new solution for monitoring slides, developed using a TLS and an automated data acquisition, processing and analysis system. In this solution, a TLS is permanently mounted within sight of the target surface and connected to a control computer. The control software on the computer automatically triggers surveys according to a user-defined schedule, parses data into point clouds, and compares data against a baseline. The software can base the comparison against either the original survey of the site or the most recent survey, depending on whether the operator needs to measure the total or recent movement of the slide. If the displacement exceeds a user-defined safety threshold, the control computer transmits alerts via SMS text messaging and/or email, including graphs and tables describing the nature and size of the displacement. The solution can also be configured to trigger the external visual/audio alarm systems. If the survey areas contain high-traffic areas such as roads, the operator can mark them for exclusion in the comparison to prevent false alarms. To improve usability and safety, the control computer can connect to a local intranet and allow remote access through the software's web portal. This enables operators to perform most tasks with the TLS from their office, including reviewing displacement reports, downloading survey data, and adjusting the scan schedule. This solution has proved invaluable in automatically detecting and alerting users to potential danger within the monitored areas while lowering the cost and work required for

  5. Topographic position of large slope failures revealed by excess topography in the Himalaya-Karakoram Ranges

    Science.gov (United States)

    Blöthe, Jan; Korup, Oliver; Schwanghart, Wolfgang

    2015-04-01

    Large slope failures (defined here as affecting >0.1 km² in planform area) substantially contribute to denuding hillslopes, thereby limiting the growth of topographic relief in active mountain belts produced by tectonic uplift and fluvial or glacial incision. The region around Nanga Parbat, situated in the Himalaya-Karakoram ranges (HKR), has been shown to exhibit one of the largest clusters of large scale slope failure known. However, a thorough analysis of the pattern of landslides in the wider region, let alone an inventory of large slope failure is lacking. We take this as a motivation to create a landslide inventory covering the upper Indus catchment located in the HKR of NW India and N Pakistan. Our data set contains 492 large landslides that we compiled from published studies and mapping from remote sensing imagery. Using an empirical volume-area scaling approach we estimate the total landslide volume at >250 km³. This is more than thousand times the contemporary annual sediment load in the Indus River. We analyse the distribution of these landslides with respect to the regional hypsometry, contemporary glacier cover, and the distribution of rock glaciers. We further introduce excess topography ZE, which quantifies the vertical column of rock material above a hypothetical failure plane, as a first-order metric of potentially unstable rock slopes. We find that large bedrock landslides in the HKR preferentially detach near or from below the study area's median elevation, while glaciers and rock glaciers occupy higher elevations almost exclusively. This picture is supported by the distribution of excess topography ZE that peaks along major fluvial and glacial inner gorges, which is where the majority of large rock-slope failures occur. Our analysis suggests a hitherto unrecognised vertical layering of denudation processes, with landslides chiefly operating below the median elevation, whereas mass transport in higher elevations seems to be dominated by

  6. Recent slope failures in the Dolomites (Northeastern Italian Alps) in a context of climate change

    Science.gov (United States)

    Chiarle, Marta; Paranunzio, Roberta; Laio, Francesco; Nigrelli, Guido; Guzzetti, Fausto

    2014-05-01

    Climate change in the Greater Alpine Region is seriously affecting permafrost distribution, with relevant consequences on slope stability. In the Italian Alps, the number of failures from rockwalls at high elevation markedly increased in the last 20-30 years: the consistent temperature increase, which warmed twice than the global average, may have seriously influenced slope stability, in terms of glaciers retreat and permafrost degradation. Moreover, the growing number of tourists and activities in alpine regions (in particular in the Dolomites) made these areas particularly critical in relation to natural hazards. In this light, an integrated short-term geomorphological and climatic analysis was performed, in order to better comprehend the impact of main climate elements (especially temperature and precipitation) on slope failures in high mountain areas. In this contribution, we focus on three recent slope failures occurred at high elevation sites in the Dolomites (Northeastern Italian Alps), declared a UNESCO World Heritage Site in August 2009. We describe here three important rock falls occurred in the autumn 2013: 1) the Sorapiss rock fall, on 30 September 2013; 2) the Monte Civetta rock fall, on 16 November 2013; 3) the Monte Antelao rock fall, on 22 November 2013. The Monte Civetta rock fall damaged some climbing routes, while the other two landslides did not cause any damage or injury. Despite the limited volume involved, these three events represent an important warning sign in the context of ongoing climate change. Geomorphological information about the rock fall sites were combined with the climatic data acquired from the meteorological stations surrounding the slope failure areas. A short-term climatic analysis was performed, with the aim of understanding the role of the main climatic elements in the triggering of natural instability events in this area and in the Alps in general.

  7. Slope stability analysis for Valles Marineris, Mars: a numerical analysis of controlling conditions and failure types

    Science.gov (United States)

    Crosta, G.; Castellanza, R.; De Blasio, F.; Utili, S.

    2012-04-01

    Valles Marineris (VM hereafter) in the equatorial area of Mars exhibits several gravitative failures often involving the whole 6-8 km thickness of the valley walls. The failures have resulted in a series of long-runout landslides up to several hundred cubic kilometres in volume (Quantin et al., 2004), and the formation of sub-circular alcoves perched on the top. Several questions arise as to forces at play in the stability of the walls of VM, the geometrical shape of the alcoves and the shape and long-runout of the landslides (see for example Lucas et al., 2011). In this work, we concentrate on the stability analysis of the walls of VM with two precise questions in mind starting from past studies (Bigot-Cormier and Montgomery, 2006; Neuffer and Schultz, 2006, Schultz, 2002). The first concerns the properties of the materials that give origin to instability. We performed several finite element and discrete element calculations tailored to slope stability analysis based on the genuine shape of the walls of VM taken from the MOLA topographic data. We considered stratified and differently altered/degraded materials to define the range of physical mechanical properties required for failure to occur and to explain the discrete distribution of failures along the VM valley flanks. A second question addressed in this work is the geometrical shape of the sub-circular alcoves. Normally, these shapes are commonplace for slopes made of uniform and isotropic properties, and are also observed in subaqueous environment. We performed calculations taking into consideration the progressive failure in the slope showing the final results in terms of surface failure geometry. Bigot-Cormier, F., Montgomery, D.R. (2007) Valles Marineris landslides: Evidence for a strength limit to Martian relief? Earth and Planetary Science Letters, 260, 1-2, 15, 179-186 Lucas, A., Mangeney, A., Mège, D., and Bouchut, F., 2011. Influence of the scar geometry on landslide dynamics and deposits

  8. Slope failures and timing of turbidity flows north of Puerto Rico

    Science.gov (United States)

    ten Brink, Uri S.; Chaytor, Jason D.

    2014-01-01

    The submerged carbonate platform north of Puerto Rico terminates in a high (3,000–4,000 m) and in places steep (>45°) slope characterized by numerous landslide scarps including two 30–50 km-wide amphitheater-shaped features. The origin of the steep platform edge and the amphitheaters has been attributed to: (1) catastrophic failure, or (2) localized failures and progressive erosion. Determining which of the two mechanisms has shaped the platform edge is critically important in understanding landslide-generated tsunami hazards in the region. Multibeam bathymetry, seismic reflection profiles, and a suite sediment cores from the Puerto Rico Trench and the slope between the trench and the platform edge were used to test these two hypotheses. Deposits within trench axis and at the base of the slope are predominantly composed of sandy carbonate turbidites and pelagic sediment with inter-fingering of chaotic debris units. Regionally-correlated turbidites within the upper 10 m of the trench sediments were dated between ∼25 and 22 kyrs and ∼18–19 kyrs for the penultimate and most recent events, respectively. Deposits on the slope are laterally discontinuous and vary from thin layers of fragmented carbonate platform material to thick pelagic layers. Large debris blocks or lobes are absent within the near-surface deposits at the trench axis and the base of slope basins. Progressive small-scale scalloping and self-erosion of the carbonate platform and underlying stratigraphy appears to be the most likely mechanism for recent development of the amphitheaters. These smaller scale failures may lead to the generation of tsunamis with local, rather than regional, impact.

  9. Slope Failure Prediction and Early Warning Awareness Education for Reducing Landslides Casualty in Malaysia

    Science.gov (United States)

    Koay, S. P.; Tay, L. T.; Fukuoka, H.; Koyama, T.; Sakai, N.; Jamaludin, S. B.; Lateh, H.

    2015-12-01

    Northeast monsoon causes heavy rain in east coast of Peninsular Malaysia from November to March, every year. During this monsoon period, besides the happening of flood along east coast, landslides also causes millions of Malaysian Ringgit economical losses. Hence, it is essential to study the prediction of slope failure to prevent the casualty of landslides happening. In our study, we introduce prediction method of the accumulated rainfall affecting the stability of the slope. If the curve, in the graph, which is presented by rainfall intensity versus accumulated rainfall, crosses over the critical line, the condition of the slope is considered in high risk where the data are calculated and sent from rain gauge in the site via internet. If the possibility of slope failure is going high, the alert message will be sent out to the authorities for decision making on road block or setting the warning light at the road side. Besides road block and warning light, we propose to disseminate short message, to pre-registered mobile phone user, to notify the public for easing the traffic jam and avoiding unnecessary public panic. Prediction is not enough to prevent the casualty. Early warning awareness of the public is very important to reduce the casualty of landslides happening. IT technology does not only play a main role in disseminating information, early warning awareness education, by using IT technology, should be conducted, in schools, to give early warning awareness on natural hazard since childhood. Knowing the pass history on landslides occurrence will gain experience on the landslides happening. Landslides historical events with coordinate information are stored in database. The public can browse these historical events via internet. By referring to such historical landslides events, the public may know where did landslides happen before and the possibility of slope failure occurrence again is considered high. Simulation of rainfall induced slope failure mechanism

  10. Remote monitoring of heart failure patients.

    Science.gov (United States)

    Bhimaraj, Arvind

    2013-01-01

    "The Teledactyl (Tele, far; Dactyl, finger--from the Greek) is a future instrument by which it will be possible for us to 'feel at a distance.' This idea is not at all impossible, for the instrument can be built today with means available right now. It is simply the well known telautograph, translated into radio terms, with additional refinements. The doctor of the future, by means of this instrument, will be able to feel his patient, as it were, at a distance...The doctor manipulates his controls, which are then manipulated at the patient's room in exactly the same manner. The doctor sees what is going on in the patient's room by means of a television screen." -Hugo Gernsback, Science and Invention Magazine, February 1925 Heart failure continues to be a major burden on our health care system. As the number of patients with heart failure increases, the cost of hospitalization alone is contributing significantly to the overall cost of this disease. Readmission rate and hospital length of stay are emerging as quality markers of heart failure care along with reimbursement policies that force hospitals to optimize these outcomes. Apart from maintaining quality assurance, the disease process of heart failure per-se requires demanding and close attention to vitals, diet, and medication compliance to prevent acute decompensation episodes. Remote patient monitoring is morphing into a key disease management strategy to optimize care for heart failure. Innovative implantable technologies to monitor intracardiac hemodynamics also are evolving, which potentially could offer better and substantial parameters to monitor.

  11. Remote Monitoring of Heart Failure Patients

    Science.gov (United States)

    Bhimaraj, Arvind

    2013-01-01

    “The Teledactyl (Tele, far; Dactyl, finger — from the Greek) is a future instrument by which it will be possible for us to ‘feel at a distance.’ This idea is not at all impossible, for the instrument can be built today with means available right now. It is simply the well known telautograph, translated into radio terms, with additional refinements. The doctor of the future, by means of this instrument, will be able to feel his patient, as it were, at a distance…The doctor manipulates his controls, which are then manipulated at the patient’s room in exactly the same manner. The doctor sees what is going on in the patient’s room by means of a television screen.” —Hugo Gernsback, Science and Invention Magazine, February 1925 Heart failure continues to be a major burden on our health care system. As the number of patients with heart failure increases, the cost of hospitalization alone is contributing significantly to the overall cost of this disease. Readmission rate and hospital length of stay are emerging as quality markers of heart failure care along with reimbursement policies that force hospitals to optimize these outcomes. Apart from maintaining quality assurance, the disease process of heart failure per-se requires demanding and close attention to vitals, diet, and medication compliance to prevent acute decompensation episodes. Remote patient monitoring is morphing into a key disease management strategy to optimize care for heart failure. Innovative implantable technologies to monitor intracardiac hemodynamics also are evolving, which potentially could offer better and substantial parameters to monitor. PMID:23519115

  12. Can we use ice calving on glacier fronts as a proxy for rock slope failures?

    Science.gov (United States)

    Abellan, Antonio; Penna, Ivanna; Daicz, Sergio; Carrea, Dario; Derron, Marc-Henri; Jaboyedoff, Michel; Riquelme, Adrian; Tomas, Roberto

    2015-04-01

    Ice failures on glacier terminus show very similar fingerprints to rock-slope failure (RSF) processes, nevertheless, the investigation of gravity-driven instabilities that shape rock cliffs and glacier's fronts are currently dissociated research topics. Since both materials (ice and rocks) have very different rheological properties, the development of a progressive failure on mountain cliffs occurs at a much slower rate than that observed on glacier fronts, which leads the latter a good proxy for investigating RSF. We utilized a terrestrial Laser Scanner (Ilris-LR system from Optech) for acquiring successive 3D point clouds of one of the most impressive calving glacier fronts, the Perito Moreno glacier located in the Southern Patagonian Ice Fields (Argentina). We scanned the glacier terminus during five days (from 10th to 14th of March 2014) with very high accuracy (0.7cm standard deviation of the error at 100m) and a high density of information (200 points per square meter). Each data series was acquired at a mean interval of 20 minutes. The maximum attainable range for the utilized wavelength of the Ilris-LR system (1064 nm) was around 500 meters over massive ice (showing no-significant loss of information), being this distance considerably reduced on crystalline or wet ice short after the occurrence of calving events. As for the data treatment, we have adapted our innovative algorithms originally developed for the investigation of both precursory deformation and rockfalls to study calving events. By comparing successive three-dimensional datasets, we have investigated not only the magnitude and frequency of several ice failures at the glacier's terminus (ranging from one to thousands of cubic meters), but also the characteristic geometrical features of each failure. In addition, we were able to quantify a growing strain rate on several areas of the glacier's terminus shortly after their final collapse. For instance, we investigated the spatial extent of the

  13. Evidence of slope failure in the Sines Contourite Drift area (SW Portuguese Continental Margin) - preliminary results

    Science.gov (United States)

    Teixeira, Manuel; Roque, Cristina; Terrinha, Pedro; Rodrigues, Sara; Ercilla, Gemma; Casas, David

    2017-04-01

    Slope instability, expressed by landslide activity, is an important natural hazard both onshore as well as offshore. Offshore processes create great concern on coastal areas constituting one of the major and most prominent hazards, directly by the damages they generate and indirectly by the possibility of generating tsunamis, which may affect the coast line. The Southwest Portuguese Continental Margin has been identified as an area where several mass movements occurred from Late Pleistocene to Present. Recently, an area of 52 km long by 34 km wide, affected by slope failure has been recognized in the Sines contourite drift located off the Alentejo. SWIM and CONDRIBER multibeam swath bathymetry has been used for the geomorphologic analysis and for recognition of mass movement scars on the seabed. Scars' areas and volumes were calculated by reconstructing paleo-bathymetry. The net gain and net loss were calculated using both paleo and present day bathymetry. Geomorphologically, the study area presents 4 morphologic domains with landslide scars: I) Shelf and upper slope display an irregular boundary with domain II with a sharp step ( 150m - 600m); II) Smooth area with gentle slope angles making the transition from smoother area to the continental slope (scarp), with large scars, suggesting slow rate and distributed mass wasting processes over this area ( 600 - 1200m); III) Scarp with high rates of retrograding instability, where faster processes are verified and a great number of gullies is feeding downslope area (1200m - 3200m); IV) Lebre Basin where mass movements deposits accumulate (> 3200m). A total of 51 landslide scars were identified with a total affected area of 137.67 km2, with 80.9 km2 being located in the continental slope with about 59% of the disrupted area, between 1200 and 3200m, and 41% (56.6 km2) lies in the continental shelf and upper slope, on a range of depths between 150 and 800m. The mean scar area is 2.7 km2 and the maximum area recorded on a

  14. Rock Slope Monitoring from 4D Time-Lapse Structure from Motion Analysis

    Science.gov (United States)

    Kromer, Ryan; Abellan, Antonio; Chyz, Alex; Hutchinson, Jean

    2017-04-01

    Structure from Motion (SfM) photogrammetry has become an important tool for studying earth surface processes because of its flexibility, ease of use, low cost and its capability of producing high quality 3-D surface models. A major benefit of SfM is that model accuracy is fit for purpose and surveys can be designed to meet a large range of spatial and temporal scales. In the Earth sciences, research in time-lapse SfM photogrammetry or videogrammetry is an area that is difficult to undertake due to complexities in acquiring, processing and managing large 4D datasets and represents an area with significant advancement potential (Eltner et al. 2016). In this study, we investigate the potential of 4D time-lapse SfM to monitor unstable rock slopes. We tested an array of statically mounted cameras collecting time-lapse photos of a limestone rock slope located along a highway in Canada. Our setup consisted of 8 DSLR cameras with 50 mm prime lenses spaced 2-3 m apart at a distance of 10 m from the slope. The portion of the rock slope monitored was 20 m wide and 6 m high. We collected data in four phases, each having 50 photographs taken simultaneously by each camera. The first phase of photographs was taken of the stable slope. In each successive phase, we gradually moved small, discrete blocks within the rock slope by 5-15 mm, simulating pre-failure deformation of rockfall. During the last phase we also removed discrete rock blocks, simulating rockfall. We used Agisoft Photoscan's 4D processing functionality and timeline tools to create 3D point clouds from the time-lapse photographs. These tools have the benefit of attaining better accuracy photo alignments as a greater number of photos are used. For change detection, we used the 4D filtering and calibration technique proposed by Kromer et al. (2015), which takes advantage of high degrees of spatial and temporal point redundancy to decrease measurement uncertainty. Preliminary results show that it is possible to attain

  15. Integrated analysis of past, and potential future rock slope failures of various size from Rombakstøtta, Nordland

    OpenAIRE

    Morken, Odd André

    2017-01-01

    Catastrophic failure of large rock slopes has led to fatalities in Norwegian settlements several times per century. The Geological Survey of Norway (NGU) currently carry out systematic geological mapping of potentially unstable rock slopes in Norway, on assignment from the Norwegian Water Resources and Energy Directorate (NVE). In this context, a hazard analysis and preliminary consequence assessment of the unstable rock slope at Rombakstøtta in Narvik kommune, Nordland fylke has been carried...

  16. How dangerous are slope failures offshore western Thailand (Andaman Sea, Indian Ocean)?

    Science.gov (United States)

    Schwab, J.; Krastel, S.; Grün, M.; Gross, F.; Pananont, P.; Jintasaeranee, P.; Bunsomboonsakul, S.; Weinrebe, W.; Winkelmann, D.

    2012-12-01

    The Thai west coast is well known for being hit by tsunami waves triggered by earthquakes arising from the nearby Sunda Trench. However, so far little has been known about additional factors that may trigger tsunamis in the area, such as submarine landslides at the shelf slope area. In order to assess the stability of the slope and evaluate the tsunamigenic potential of submarine landslides off western Thailand, 2D seismic data from the top and the western slope of a bathymetric high (Mergui Ridge about 200 km off the Thai west coast) have been investigated. These data were the basis for mapping locations and approximate volumes of mass transport deposits (MTDs). In total, 17 mass transport deposits were found. The estimated minimum volumes of individual MTDs range between 0.3 cbkm and 14 cbkm. MTDs have been identified in three different settings: i) stacked MTDs within disturbed and faulted basin sediments at the transition of the Mergui Ridge to the adjacent East Andaman Basin, ii) MTDs within a pile of drift sediments at the basin-ridge transition, and iii) MTDs near the edge of/on top of Mergui Ridge in relatively shallow water depths ( 1000 m) and/or comprise small volumes; hence it is very unlikely that they triggered significant tsunamis in the past. Moreover, the recurrence rates of failure events seem to be low. Some MTDs with tsunami potential, however, have been identified on top of Mergui Ridge in water depths below 1000 m. Mass-wasting events that may occur in the future at similar locations do have a tsunami potential if they comprise sufficient volumes. Landslide tsunamis, emerging from slope failures in the working area and affecting western Thailand coastal areas therefore cannot be excluded, although their probability is small compared to the probability of earthquake-triggered tsunamis arising from the Sunda Trench.

  17. Home monitoring of chronic heart failure

    Directory of Open Access Journals (Sweden)

    Bockeria O. L.

    2012-06-01

    Full Text Available Being a common syndrome chronic heart failure (CHF results in high mortality among cardiosurgical patients and requires very high expenditures for the treatment. All over the world the number of patients with CHF syndrome is about 22 millions. Heart failure is difficult to treat because of high level of hospitalization due to decompensation. Care aimed at constant home observation of patients could have been more efficient and not only symptomatic and as a response to complications induced. There are methods controlling CHF patients at home. These methods vary from increase of self-care and telephone support to telemonitoring and remote monitoring of implantable devices. Self-care includes such components as maintenance of drug intake, keeping to a diet, physical exercises and active control over edemas. Telephone calls are also a source of monitoring and treatment of heart failure at home. Meta-analysis of programs for structured phone support showed that telephone support could reduce the level of readmission of HF patients approximately by 25%. Telemonitoring implies transmission of such physiological data as blood pressure, body weight, electrocardiographic signals or oxygen saturation using phone lines, broadband and satellite or wireless networks. Having cardiac pacemakers, implantable cardioverter defibrillators and cardiac resynchronization therapy devices that are placed in HF patients, it is possible to use their opportunities for the further evaluation of the patient. Some regularly controlled parameters can show the clinical state of the patient and predict the following heart failure. For example, atrial fibrillation, decrease of cardiac rhythm variability and decrease of the level of the patient`s activity (according to integrated accelerometer can predict clinical decompensation. Also, implantable hemodynamic monitors for immediate pressure measuring in the left atrium, sensor system of pressure measuring in the right atrium are

  18. Estimating the failure potential of a partially saturated slope from combined continuum and limit equilibrium modeling (Invited)

    Science.gov (United States)

    Borja, R. I.; White, J. A.; Liu, X.; Wu, W.

    2010-12-01

    Rainfall weakens an earth slope and triggers mass movement. Relevant triggering mechanisms are complex and include reduction of capillary pressure due to increased saturation and frictional drag on the sediment induced by fluid flow. Physics-based continuum models utilizing modern computational tools are useful for understanding the mechanisms of deformation in partially saturated slopes; however, they do not provide a scalar indicator called "factor of safety" that measures the potential of a given slope for mass movement. In the present work we employ sequential calculations consisting of a physics-based finite element modeling that couples solid deformation with fluid flow to quantify the stress and deformation fields in a steep hillside slope subjected to rainfall infiltration. This is followed by a limit equilibrium calculation based on the method of slices that evaluates the desired factor of safety. The field condition investigated is similar to the steep experimental catchment CB1 near Coos Bay, Oregon, which failed as a large debris flow from heavy rainfall. We find the pore pressure variation to be a strong link between the continuum and limit-equilibrium solutions: for the same pore pressure variation within the slope, the continuum and limit-equilibrium solutions consistently predicted the same scarp zone for a given slope. Material parameters such as the effective cohesion and friction angle of the sediment tend to influence the timing of failure, but not the failure mechanism itself. Slope topography and rainfall history impact the slope failure mechanism to a great extent.

  19. Tsunamis caused by submarine slope failures along western Great Bahama Bank.

    Science.gov (United States)

    Schnyder, Jara S D; Eberli, Gregor P; Kirby, James T; Shi, Fengyan; Tehranirad, Babak; Mulder, Thierry; Ducassou, Emmanuelle; Hebbeln, Dierk; Wintersteller, Paul

    2016-11-04

    Submarine slope failures are a likely cause for tsunami generation along the East Coast of the United States. Among potential source areas for such tsunamis are submarine landslides and margin collapses of Bahamian platforms. Numerical models of past events, which have been identified using high-resolution multibeam bathymetric data, reveal possible tsunami impact on Bimini, the Florida Keys, and northern Cuba. Tsunamis caused by slope failures with terminal landslide velocity of 20 ms(-1) will either dissipate while traveling through the Straits of Florida, or generate a maximum wave of 1.5 m at the Florida coast. Modeling a worst-case scenario with a calculated terminal landslide velocity generates a wave of 4.5 m height. The modeled margin collapse in southwestern Great Bahama Bank potentially has a high impact on northern Cuba, with wave heights between 3.3 to 9.5 m depending on the collapse velocity. The short distance and travel time from the source areas to densely populated coastal areas would make the Florida Keys and Miami vulnerable to such low-probability but high-impact events.

  20. Tsunamis caused by submarine slope failures along western Great Bahama Bank

    Science.gov (United States)

    Schnyder, Jara S. D.; Eberli, Gregor P.; Kirby, James T.; Shi, Fengyan; Tehranirad, Babak; Mulder, Thierry; Ducassou, Emmanuelle; Hebbeln, Dierk; Wintersteller, Paul

    2016-11-01

    Submarine slope failures are a likely cause for tsunami generation along the East Coast of the United States. Among potential source areas for such tsunamis are submarine landslides and margin collapses of Bahamian platforms. Numerical models of past events, which have been identified using high-resolution multibeam bathymetric data, reveal possible tsunami impact on Bimini, the Florida Keys, and northern Cuba. Tsunamis caused by slope failures with terminal landslide velocity of 20 ms‑1 will either dissipate while traveling through the Straits of Florida, or generate a maximum wave of 1.5 m at the Florida coast. Modeling a worst-case scenario with a calculated terminal landslide velocity generates a wave of 4.5 m height. The modeled margin collapse in southwestern Great Bahama Bank potentially has a high impact on northern Cuba, with wave heights between 3.3 to 9.5 m depending on the collapse velocity. The short distance and travel time from the source areas to densely populated coastal areas would make the Florida Keys and Miami vulnerable to such low-probability but high-impact events.

  1. Tsunamis caused by submarine slope failures along western Great Bahama Bank

    Science.gov (United States)

    Schnyder, Jara S.D.; Eberli, Gregor P.; Kirby, James T.; Shi, Fengyan; Tehranirad, Babak; Mulder, Thierry; Ducassou, Emmanuelle; Hebbeln, Dierk; Wintersteller, Paul

    2016-01-01

    Submarine slope failures are a likely cause for tsunami generation along the East Coast of the United States. Among potential source areas for such tsunamis are submarine landslides and margin collapses of Bahamian platforms. Numerical models of past events, which have been identified using high-resolution multibeam bathymetric data, reveal possible tsunami impact on Bimini, the Florida Keys, and northern Cuba. Tsunamis caused by slope failures with terminal landslide velocity of 20 ms−1 will either dissipate while traveling through the Straits of Florida, or generate a maximum wave of 1.5 m at the Florida coast. Modeling a worst-case scenario with a calculated terminal landslide velocity generates a wave of 4.5 m height. The modeled margin collapse in southwestern Great Bahama Bank potentially has a high impact on northern Cuba, with wave heights between 3.3 to 9.5 m depending on the collapse velocity. The short distance and travel time from the source areas to densely populated coastal areas would make the Florida Keys and Miami vulnerable to such low-probability but high-impact events. PMID:27811961

  2. Analysis of Tsunamigenic Coastal Rock Slope Failures Triggered by the 2007 Earthquake in the Chilean Fjordland

    Science.gov (United States)

    Sepulveda, S. A.; Serey, A.; Hermanns, R. L.; Redfield, T. F.; Oppikofer, T.; Duhart, P.

    2011-12-01

    The fjordland of the Chilean Patagonia is subject to active tectonics, with large magnitude subduction earthquakes, such as the M 9.5 1960 earthquake, and shallow crustal earthquakes along the regional Liquiñe-Ofqui Fault Zone (LOFZ). One of the latter (M 6.2) struck the Aysen Fjord region (45.5 S) on the 21st of April 2007, triggering dozens of landslides in the epicentral area along the fjord coast and surroundings. The largest rock slides and rock avalanches induced a local tsunami that together with debris flows caused ten fatalities and severely damaged several salmon farms, the most important economic activity of the area. Multi-scale studies of the landslides triggered during the Aysen earthquake have been carried out, including landslide mapping and classification, slope stability back-analyses and structural and geomorphological mapping of the largest failures from field surveys and high-resolution digital surface models created from terrestrial laser scanning. The failures included rock slides, rock avalanches, rock-soil slides, soil slides and debris flows. The largest rock avalanche had a volume of over 20 million cubic metres. The landslides affected steep slopes of intrusive rocks of the North Patagonian batholith covered by a thin layer of volcanic soils, which supports a high forest. The results of geotechnical analyses suggest a site effect due to topographic amplification on the generation of the landslides, with peak ground accelerations that may have reached between about 1.0 and 2.0 g for rock avalanches and between 0.6 and 1.0 g for shallow rock-soil slides, depending on the amount of assumed vertical acceleration and the applied method (limit equilibrium and Newmark). Attenuation relationships for shallow crustal seismicity indicate accelerations below 0.5 g for earthquakes of a similar magnitude and epicentral distances. Detailed field structural analyses of the largest rock avalanche in Punta Cola indicate a key role in the failure

  3. Abduction of Toe-excavation Induced Failure Process from LEM and FDM for a Dip Slope with Rock Anchorage in Taiwan

    Science.gov (United States)

    Huang, W.-S.; Lin, M.-L.; Liu, H.-C.; Lin, H.-H.

    2012-04-01

    similar tendency comparing to the monitoring records in toe-excavation stages. This result showed that the strength of the sliding layer was significantly influenced by toe-excavation. The numerical model which calibrated with monitoring records in excavation stage was then used to discuss the failure process after backfilling. The results showed the interaction of different factors into the failure process. Keyword: Dip slope failure, rock anchor, LEM, FDM, GSI, back analysis

  4. Berm design to reduce risks of catastrophic slope failures at solid waste disposal sites.

    Science.gov (United States)

    De Stefano, Matteo; Gharabaghi, Bahram; Clemmer, Ryan; Jahanfar, M Ali

    2016-11-01

    Existing waste disposal sites are being strained by exceeding their volumetric capacities because of exponentially increasing rates of municipal solid waste generation worldwide, especially in densely populated metropolises. Over the past 40 years, six well-documented and analyzed disposal sites experienced catastrophic failure. This research presents a novel analysis and design method for implementation of a series of in-situ earth berms to slow down the movement of waste material flow following a catastrophic failure. This is the first study of its kind that employs a dynamic landslide analysis model, DAN-W, and the Voellmy rheological model to approximate solid waste avalanche flow. A variety of single and multiple berm configuration scenarios were developed and tested to find an optimum configuration of the various earth berm geometries and number of berms to achieve desired energy dissipation and reduction in total waste material runout length. The case study application of the novel mitigation measure shows that by constructing a series of six relatively inexpensive 3 m high earth berms at an optimum distance of 250 m from the slope toe, the total runout length of 1000 m and associated fatalities of the Leuwigajah dumpsite catastrophic failure in Bandung, Indonesia, could have been reduced by half. © The Author(s) 2016.

  5. Time shift in slope failure prediction between unimodal and bimodal modeling approaches

    Science.gov (United States)

    Ciervo, Fabio; Casini, Francesca; Nicolina Papa, Maria; Medina, Vicente

    2016-04-01

    within the Bishop stress theory framework (Ciervo et al., 2015). The proposed work tends to emphasize how a more accurate slope stability analysis that accounts dual-structure could be useful to reach a more accurate definition of the stability conditions. The effects in practical analysis may be significant. The highlighted discrepancies between the different approaches in describing the timing processes and strength contribution due to capillary forces may entail no negligible differences in slope stability predictions, especially in those cases where the possibility of a failure in unsaturated terrains is contemplated.

  6. Potential of airborne LiDAR data analysis to detect subtle landforms of slope failure: Portainé, Central Pyrenees

    Science.gov (United States)

    Ortuño, María; Guinau, Marta; Calvet, Jaume; Furdada, Glòria; Bordonau, Jaume; Ruiz, Antonio; Camafort, Miquel

    2017-10-01

    Slope failures have been traditionally detected by field inspection and aerial-photo interpretation. These approaches are generally insufficient to identify subtle landforms, especially those generated during the early stages of failures, and particularly where the site is located in forested and remote terrains. We present the identification and characterization of several large and medium size slope failures previously undetected within the Orri massif, Central Pyrenees. Around 130 scarps were interpreted as being part of Rock Slope Failures (RSFs), while other smaller and more superficial failures were interpreted as complex movements combining colluvium slow flow/slope creep and RSFs. Except for one of them, these slope failures had not been previously detected, albeit they extend across a 15% of the studied region. The failures were identified through the analysis of a high-resolution (1 m) LIDAR-derived bare earth Digital Elevation Model (DEM). Most of the scarps are undetectable either by fieldwork, photo interpretation or 5 m resolution topography analysis owing to their small heights (0.5 to 2 m) and their location within forest areas. In many cases, these landforms are not evident in the field due to the presence of other minor irregularities in the slope and the lack of open views due to the forest. 2D and 3D visualization of hillshade maps with different sun azimuths provided an overall picture of the scarp assemblage and permitted a more complete analysis of the geometry of the scarps with respect to the slope and the structural fabric. The sharpness of some of the landforms suggests ongoing activity, which should be explored in future detailed studies in order to assess potential hazards affecting the Portainé ski resort. Our results reveal that close analysis of the 1 m LIDAR-derived DEM can significantly help to detect early-stage slope deformations in high mountain regions, and that expert judgment of the DEM is essential when dealing with subtle

  7. Impact of double porosity flow on hydrologically driven failure of a hillside slope

    Science.gov (United States)

    Choo, J.; White, J. A.; Borja, R. I.

    2015-12-01

    Soil deposits in hillside slopes often exhibit two dominant porosity scales, often referred to as the macropore and micropore scales. Fluid flow through this type of soils involves preferential flow through the macropore region and fluid storage in the micropore region. An explicit treatment of the two porosity scales, known as double porosity formulation, is necessary for a more realistic description of the hydromechanical behavior of this type of soils. In this work, we investigate how double porosity modeling of fluid flow and deformation could impact the ensuing hydromechanical responses of a hillslope under rainfall infiltration. For this purpose we use a hydromechanical continuum modeling approach developed in previous work by the authors and extend it to accommodate double porosity modeling by employing a recently developed hydromechanical framework along with a stabilized finite elements technique that allows the use of lower-order mixed finite elements for improved computationally efficiency. The numerical results demonstrate that preferential flow can be captured by the double porosity formulation, leading to a different slope failure mechanism than what is predicted by an equivalent single porosity formulation.

  8. Vulnerabilities to Rock-Slope Failure Impacts from Christchurch, NZ Case History Analysis

    Science.gov (United States)

    Grant, A.; Wartman, J.; Massey, C. I.; Olsen, M. J.; Motley, M. R.; Hanson, D.; Henderson, J.

    2015-12-01

    Rock-slope failures during the 2010/11 Canterbury (Christchurch), New Zealand Earthquake Sequence resulted in 5 fatalities and caused an estimated US$400 million of damage to buildings and infrastructure. Reducing losses from rock-slope failures requires consideration of both hazard (i.e. likelihood of occurrence) and risk (i.e. likelihood of losses given an occurrence). Risk assessment thus requires information on the vulnerability of structures to rock or boulder impacts. Here we present 32 case histories of structures impacted by boulders triggered during the 2010/11 Canterbury earthquake sequence, in the Port Hills region of Christchurch, New Zealand. The consequences of rock fall impacts on structures, taken as penetration distance into structures, are shown to follow a power-law distribution with impact energy. Detailed mapping of rock fall sources and paths from field mapping, aerial lidar digital elevation model (DEM) data, and high-resolution aerial imagery produced 32 well-constrained runout paths of boulders that impacted structures. Impact velocities used for structural analysis were developed using lumped mass 2-D rock fall runout models using 1-m resolution lidar elevation data. Model inputs were based on calibrated surface parameters from mapped runout paths of 198 additional boulder runouts. Terrestrial lidar scans and structure from motion (SfM) imagery generated 3-D point cloud data used to measure structural damage and impacting boulders. Combining velocity distributions from 2-D analysis and high-precision boulder dimensions, kinetic energy distributions were calculated for all impacts. Calculated impact energy versus penetration distance for all cases suggests a power-law relationship between damage and impact energy. These case histories and resulting fragility curve should serve as a foundation for future risk analysis of rock fall hazards by linking vulnerability data to the predicted energy distributions from the hazard analysis.

  9. Algorithm and Software for Landslide Slopes Stability Estimation with Online Very Low Frequency Monitoring

    Science.gov (United States)

    Gordeev, V. F.; Kabanov, M. M.; Kapustin, S. N.

    2017-04-01

    In addition to preliminary surveying, landslide slopes stability estimation problems require online real-time monitoring alerting about potential emergencies. Very low frequency monitoring data provided by geodynamic processes automated control system provides a solution to that problem. Authors describe the software and algorithms implemented for that system, make conclusions on the efficiency of applied solutions and propose options for the further development of online very low frequency monitoring system.

  10. Kinematic Analyses of Rock Slope Failures Triggered by the Aysén 2007 Earthquake (Patagonia, Chile)

    Science.gov (United States)

    Glüer, F.; Loew, S.

    2012-04-01

    Most studies related to earthquake triggering of rock slope failures are statistical investigations of the relationships between earthquake source properties to the spatial distribution of various landslide types, or strongly simplified dynamic stability analyses. Only very few investigators studied the detailed structural and kinematic properties of earthquake triggered rock slope failures. In this paper we present a detailed structural and kinematic analysis of ten rockslides with volumes ranging from 9,000 to 1,000,000 m3 triggered by the Aysén Fjord Mw 6.2 earthquake of April 2007 (Southern Chile). Detailed structural data from the release areas in the steep and only rarely accessible terrain were generated from ground-based photogrammetry, combined with geodetic surveying using a rangefinder binocular connected to a GPS through a GIS-interface. The orientations of discontinuities and release planes were measured in metric 3D images using the software ShapeMetriX3D. Kinematic analyses were applied using Markland methods with Hocking refinement to study possible failure mechanisms. Strength properties of fractures, rock and rock mass were assessed both from field work and laboratory tests on granodioritic and granitic samples. A detailed stability analysis of one selected rockslide was performed with simplified limit equilibrium methods and a two-dimensional numerical FE simulation using the code Phase2. Based on the structural inventory from all release areas a regional structural analysis was performed, showing four evident systematic discontinuity sets (215/75, 275/55, 110/60, 155/65) occurring in the entire study area, and exerting a major control on the location of slope failures. A generic kinematic analysis leads to the conclusion that the distribution of earthquake-triggered rock slope failures of April 2007 is mainly controlled by the slope aspect and slope angle in relationship to these fracture set orientations, with preferential planar failure on

  11. 3D Detection, Quantification and Correlation of Slope Failures with Geologic Structure in the Mont Blanc massif

    Science.gov (United States)

    Allan, Mark; Dunning, Stuart; Lim, Michael; Woodward, John

    2016-04-01

    A thorough understanding of supply from landslides and knowledge of their spatial distribution is of fundamental importance to high-mountain sediment budgets. Advances in 3D data acquisition techniques are heralding new opportunities to create high-resolution topographic models to aid our understanding of landscape change through time. In this study, we use a Structure-from-Motion Multi-View Stereo (SfM-MVS) approach to detect and quantify slope failures at selected sites in the Mont Blanc massif. Past and present glaciations along with its topographical characteristics have resulted in a high rate of geomorphological activity within the range. Data for SfM-MVS processing were captured across variable temporal scales to examine short-term (daily), seasonal and annual change from terrestrial, Unmanned Aerial Vehicle (UAV) and helicopter perspectives. Variable spatial scales were also examined ranging from small focussed slopes (~0.01 km2) to large valley-scale surveys (~3 km2). Alignment and registration were conducted using a series of Ground Control Points (GCPs) across the surveyed slope at various heights and slope aspects. GCPs were also used to optimise data and reduce non-linear distortions. 3D differencing was performed using a multiscale model-to-model comparison algorithm (M3C2) which uses variable thresholding across each slope based on local surface roughness and model alignment quality. Detected change was correlated with local slope structure and 3D discontinuity analysis was undertaken using a plane-detection and clustering approach (DSE). Computation of joint spacing was performed using the classified data and normal distances. Structural analysis allowed us to assign a Slope Mass Rating (SMR) and assess the stability of each slope relative to the detected change and determine likely failure modes. We demonstrate an entirely 3D workflow which preserves the complexity of alpine slope topography to compute volumetric loss using a variable threshold. A

  12. Time prediction of an onset of shallow landslides based on the monitoring of the groundwater level and the surface displacement at different locations on a sandy model slope

    Science.gov (United States)

    Sasahara, Katsuo

    2016-04-01

    Location of monitoring of the deformation and the groundwater level in a slope is important for time-prediction of an onset of shallow landslides based on the monitoring. The analysis of the monitored data of the surface displacement and the groundwater level at different locations in sandy model slope under artificial rainfall was conducted in this study. The monitored data showed that the surface displacement increased with the increase of the groundwater level significantly. Then the analysis of the monitored data revealed that the relation between the surface displacement and the groundwater level can be modified as hyperbolic curve. The surface displacement grew larger and maximum groundwater level was smaller at farther location from the toe of the slope. Time-prediction of an onset of a landslide based on the monitored data at different location on the slope was proposed as following procedures. (1) To make a regression equation for the relation between the surface displacement and the groundwater level based on the monitored data at any time before the failure, (2) To make a regression equation for the relation between the time and the groundwater level based on the same data with (1), and (3) To incorporate the equation for the relation between the time and the groundwater level into that between the surface displacement and the groundwater level to derive the time - the surface displacement relation. (4) To derive the time - the inverse of the surface displacement velocity from the equation for the time - the surface displacement relation. The equation for the time - the surface displacement and the equation for the time - the inverse of the surface displacement velocity could simulate the actual phenomena of the slope well based on the monitored data at any location on the model slope.

  13. Measurements of soil temperature for monitoring of the soil water behavior in an embankment slope during periodic rainfall

    Science.gov (United States)

    Yoshioka, M.; Takakura, S.; Ishizawa, T.; Sakai, N.

    2013-12-01

    One of the most common causes of slope disaster (e.g. landslide, slope failure and debris flow) is heavy rainfall. Distributions of soil moisture and soil suction stress are changed by rain water infiltration. Monitoring of soil water behavior is crucial for prediction of the slope disaster. This study focuses on soil temperatures of a slope as a detector for monitoring soil water behavior. Soil temperature is varied by soil water condition, this is, infiltrating water transports thermal energy downward and thermal property of soil is shifted by containing of soil water. The purpose of this study is to detect the changes in soil water behavior caused by infiltration of rainfalls using measurement of soil temperature. For this purpose, we had carried out the measurements of soil temperature during various rainfalls (Yoshioka et al., 2013). In addition, we measured soil temperature and soil water content at several depths in a slope of an experimental embankment during various intensities of periodic and/or continuous rainfalls. In this presentation, we represent the details of the experiments and the results. Experiments were performed using the experimental embankment at NIED in Japan, which is about 7.3 meters tall and 27 meters wide. The embankment is located in a large-scale rainfall simulator. This facility is about 73 meters long, 48 meters wide and 20 meters tall. We measured soil temperature and volumetric water contents in the slope of the embankment, meteorological condition and rain water temperature. The rainfall intensities were 30, 60, 90 and 120 mm/h. The artificial rainfalls were carried out 10th, 17th, 24th, 31st, May and 10th, 11th, 12th June, 2013. As the results, soil temperature at many points in all experimental days rose caused by rainfalls, but the temperature at some points didn't change. We had two forms of soil temperature changes; one was a steep rise and the other was a gradual rise. In the case of periodic rainfall, soil temperature at

  14. Turbidity anomaly and probability of slope failure following the 2011 Great Tohoku Earthquake

    Science.gov (United States)

    Noguchi, T.; Tanikawa, W.; Hirose, T.; Lin, W.; Kawagucci, S.; Yoshida, Y.; Honda, M. C.; Takai, K.; Kitazato, H.; Okamura, K.

    2011-12-01

    . Reference Mikada, H. K. Mitsuzawa, H. Matsumoto, T. Watanabe, S. Morita, R. Otsuka, H. Sugioka, T. Baba, E. Araki, K. Suyehiro, (2006), New discoveries in dynamics of an M8 earthquake-phenomena and their implications from the 2003 Tokachi-oki earthquake using a long term monitoring cabled observatory, Tectonophysics, 426, 95-105. Prior, D. B. (1984), Methods of stability analysis, in Slope Instability, Edited by Brunsden, D. and D. B. Prior, pp. 419-455, Wiley, New York. Thunnell, R., E. Tappa, R. Varela, M. Llano, Y. Astor, F. Muller-Karger, and R. Bohrer (1999), Increased marine sediment suspension and fluxes following an earthquake. Nature, 398, 233-236.

  15. Internet optical infrastructure issues on monitoring and failure restoration

    CERN Document Server

    Tapolcai, János; Babarczi, Péter; Rónyai, Lajos

    2015-01-01

    This book covers the issues of monitoring, failure localization, and restoration in the Internet optical backbone, and focuses on the progress of state-of-the-art in both industry standard and academic research. The authors summarize, categorize, and analyze the developed technology in the context of Internet fault management and failure recovery under the Generalized Multi-Protocol Label Switching (GMPLS), via both aspects of network operations and theories. Examines monitoring, failure localization, and failure restoration in the Internet backbone Includes problem formulations based on combinatorial group testing and topology coding Covers state-of-the-art development for the Internet backbone fault management and failure recovery

  16. Stability Evaluation of Volcanic Slope Subjected to Rainfall and Freeze-Thaw Action Based on Field Monitoring

    Directory of Open Access Journals (Sweden)

    Shima Kawamura

    2011-01-01

    Full Text Available Rainfall-induced failures of natural and artificial slopes such as cut slopes, which are subjected to freezing and thawing, have been frequently reported in Hokkaido, Japan. In particular, many failures occur intensively from spring to summer seasons. Despite numerous field studies, explanation of their mechanical behavior based on in situ data has not yet been completely achieved due to the difficulty in grasping failure conditions. This study aims at clarifying the aspects of in-situ volcanic slopes subjected to rainfall and freeze-thaw action. The changes in soil moisture, pore pressure, deformations, and temperatures in the slope were investigated using soil moisture meters, tensiometers, thermocouple sensors, clinometers, settlement gauges, an anemovane, a snow gauge, and a rainfall gauge. The data generated from these measures indicated deformation in the slope examined mainly proceeded during the drainage process according to changes in soil moisture. Based on this data, a prediction method for failures is discussed in detail.

  17. Robust Regression for Slope Estimation in Curriculum-Based Measurement Progress Monitoring

    Science.gov (United States)

    Mercer, Sterett H.; Lyons, Alina F.; Johnston, Lauren E.; Millhoff, Courtney L.

    2015-01-01

    Although ordinary least-squares (OLS) regression has been identified as a preferred method to calculate rates of improvement for individual students during curriculum-based measurement (CBM) progress monitoring, OLS slope estimates are sensitive to the presence of extreme values. Robust estimators have been developed that are less biased by…

  18. Distribution of slope failures following the 1983 San'in Heavy Rainfall Disaster in Misumi-Kitsuka area, western Shimane, Southwest Japan

    OpenAIRE

    Pimiento, Edgar; 横田, 修一郎

    2006-01-01

    Small and shallow slope failures frequently occur in mountainous areas worldwide, due to intense rainfall. Regional hazard assessment on the occurrences of failures is thus an important subject, especially for developing countries. One method of assessing such hazard is based on statistical analysis of spatial distribution of past failures. As a case study for hazard assessment, we constructed detailed maps expressing the distribution of slope failures which occurred during the 1983 San'in he...

  19. Applications of state estimation in multi-sensor information fusion for the monitoring of open pit mine slope deformation

    Institute of Scientific and Technical Information of China (English)

    FU Hua; LIU Yin-ping; XIAO Jian

    2008-01-01

    The traditional open pit mine slope deformation monitoring system can not use the monitoring information coming from many monitoring points at the same time,can only using the monitoring data coming from a key monitoring point, and that is to say it can only handle one-dimensional time series. Given this shortage in the monitoring,the multi-sensor information fusion in the state estimation techniques would be introduced to the slope deformation monitoring system, and by the dynamic characteristics of deformation slope, the open pit slope would be regarded as a dynamic goal, the condition monitoring of which would be regarded as a dynamic target tracking. Distributed Information fusion technology with feedback was used to process the monitoring data and on this basis Klman filtering algorithms was introduced, and the simulation examples was used to prove its effectivenes.

  20. A multi-sensor approach to landslide monitoring of rainfall-induced failures in Scotland.

    Science.gov (United States)

    Gilles, Charlie; Hoey, Trevor; Williams, Richard

    2017-04-01

    Landslides are of significant interest in upland areas of the United Kingdom due to their: complex mechanics, potential to channelize into hazardous debris flows and their costly potential impacts on infrastructure. The British Geological Survey National Landslide Database contains an average of 367 landslides per year (from 1970). Slope failures in the UK are typically triggered by extended periods of intense rainfall, and can occur at any time of year. In any given rainfall event that triggers landslides, most potentially vulnerable slopes remain stable. Accurate warning systems would be facilitated by identifying landslide precursors prior to failure events. This project tests whether such precursors can be identified in the valley of Glen Ogle, Scotland (87 km north-west of Edinburgh), where in summer 2004 two debris flows blocked the main road (A85), trapping fifty-seven people. Two adjacent sites have been selected on a west facing slope in Glen Ogle, one of which (the control) has been stable since at least 2004 and the other failed in 2004 and remains unstable. Understanding the immediate causes and antecedent conditions responsible for landslides requires a multi-scale approach. This project uses multiple sensors to assess failure mechanisms of landslides in Glen Ogle: (1) 3-monthly, high (1.8 arcsec) resolution terrestrial laser scanning of topography to detect changes and identify patterns of movement prior to major failure, using the Riegl VZ-1000 (NERC Geophysical Equipment Fund); (2) rainfall and soil moisture data to monitor pore pressure of landslide failure prior to and after hydrologically triggered events; (3) monitoring ground motion using grain-scale sensors which are becoming lower cost, more efficient in terms of power, and can be wirelessly networked these will be used to detect small scale movement of the landslide. Comparative data from the control and test sites will be presented, from which patterns of surface deformation between failure

  1. Towards a mechanical failure model for degrading permafrost rock slopes representing changes in rock toughness and infill

    Science.gov (United States)

    Mamot, Philipp; Krautblatter, Michael; Scandroglio, Riccardo

    2016-04-01

    The climate-induced degradation of permafrost in mountain areas can reduce the stability of rock slopes. An increasing number of rockfalls and rockslides originate from permafrost-affected rock faces. Discontinuity patterns and their geometrical and mechanical properties play a decisive role in controlling rock slope stability. Under thawing conditions the shear resistance of rock reduces due to lower friction along rock-rock contacts, decreasing fracture toughness of rock-ice contacts, diminishing fracture toughness of cohesive rock bridges and altered creep or fracture of the ice itself. Compressive strength is reduced by 20 to 50 % and tensile strength decreases by 15 to 70 % when intact saturated rock thaws (KRAUTBLATTER ET AL. 2013). Elevated water pressures in fractures can lead to reduced effective normal stresses and thus to lower shear strengths of fractures. However, the impact of degrading permafrost on the mechanical properties of intact or fractured rock still remains poorly understood. In this study, we develop a new approach for modeling the influence of degrading permafrost on the stability of high mountain rock slopes. Hereby, we focus on the effect of rock- and ice-mechanical changes along striking discontinuities onto the whole rock slope. We aim at contributing to a better rock-ice mechanical process understanding of degrading permafrost rocks. For parametrisation and subsequent calibration of our model, we chose a test site (2885 m a.s.l.) close by the Zugspitze summit in Germany. It reveals i) a potential rockslide at the south face involving 10E4m³ of rock and ii) permafrost occurrence due to ice-filled caves and fractures. Here we combine kinematic, geotechnical and thermal monitoring in the field with rock-mechanical laboratory tests and a 2D numerical failure modeling. Up to date, the following results underline the potential effects of thawing rock and fracture infill on the stability of steep rock slopes in theory and praxis: i. ERT and

  2. Case studies of high-sensitivity monitoring of natural and engineered slopes

    Directory of Open Access Journals (Sweden)

    Werner Lienhart

    2015-08-01

    Full Text Available High-sensitivity monitoring solutions are crucial for early warning systems of earth structures. In this paper, we discuss the design and implementation of such systems for natural and engineered slopes using two case studies. At the Gradenbach Observatory, one key element of the monitoring system is a large fiber optic strain rosette embedded in the slope. We demonstrate that the strain rosette can depict landslide deformations much earlier than geodetic sensors like GPS or total stations and is therefore well suitable for an early warning system. In a second application we report the construction of a reinforced earth structure using geogrids. A distributed fiber optic measurement system was installed to measure the current operating grade of the geogrids within the earth structure. About 2 km of Brillouin sensing cables were installed in the project area. It is demonstrated that the developed monitoring system is well suited for assessing the current state of health of reinforced earth structures.

  3. Case studies of high-sensitivity monitoring of natural and engineered slopes

    Institute of Scientific and Technical Information of China (English)

    Werner Lienhart

    2015-01-01

    High-sensitivity monitoring solutions are crucial for early warning systems of earth structures. In this paper, we discuss the design and implementation of such systems for natural and engineered slopes using two case studies. At the Gradenbach Observatory, one key element of the monitoring system is a large fiber optic strain rosette embedded in the slope. We demonstrate that the strain rosette can depict landslide deformations much earlier than geodetic sensors like GPS or total stations and is therefore well suitable for an early warning system. In a second application we report the construction of a reinforced earth structure using geogrids. A distributed fiber optic measurement system was installed to measure the current operating grade of the geogrids within the earth structure. About 2 km of Brillouin sensing cables were installed in the project area. It is demonstrated that the developed monitoring system is well suited for assessing the current state of health of reinforced earth structures.

  4. Terrestrial LiDAR monitoring of rock slope-channel coupling

    Science.gov (United States)

    Bell, R.; Blöthe, J. H.; Meyer, N. K.; Hoffmann, T.; Hoffert, H.; Kreiner, D.; Elverfeldt, K. V.

    2009-04-01

    In steep terrain, various types of landslides (e.g. rock falls, debris flows and slides) are important erosional processes which often have a major impact on fluvial systems. On the one hand, they may divert river channels to opposite slopes or even block entire river channels, leading to the formation of landslide-dammed lakes. On the other hand, rivers prepare or even trigger landslides by undercutting slopes, which again will have an impact on the river channel. Our focus is on two study areas. One of them, the Schlichem Valley, is located in the Swabian Alb (SW-Germany), a lower mountain range consisting of Jurassic sedimentary rocks forming a cuesta landscape. There, the focus is on a larger landslide complex which blocked the river Schlichem three times during the 18th century and which is still active. Recent activity, especially at the location where the landslide enters the fluvial system, is investigated using Terrestrial LiDAR monitoring. The second study area is located in the Gesaeuse National Park in the Austrian Alps. There, various geomorphic environments are investigated by Terrestrial LiDAR including a vertical rock face in Dachstein limestone, which talus slope is directly coupled to the river Enns. The talus slope is built up by rock fall deposits, eroded mainly through smaller debris flow events. Furthermore, the talus slope is undercut by flood events of the river Enns. In this study a concept and first results are presented. They suggest how rock slope processes and their interactions with river channels can be monitored.

  5. Hydrological monitoring of a natural slope covered with loose granular pyroclastic deposits

    Science.gov (United States)

    Damiano, Emilia; Greco, Roberto; Guida, Andrea; Olivares, Lucio; Picarelli, Luciano

    2010-05-01

    Mountainous areas of Northern Campania, Southern Italy, are characterised by steep slopes covered with loose volcanic ashes, with very high porosity (ranging between 0.70 and 0.75), laying above a calcareous bedrock. Slope inclination is often larger than internal friction angle of such ashes (around 38°), thus equilibrium is assured by the contribution of apparent cohesion due to soil suction in unsaturated conditions. That is why, during intense and persistent rainfall events, when soil approaches saturation and consequently suction decreases, shallow landslides are frequently triggered. The physical characteristics of involved soils are such that landslides often evolve in form of debris flows, which cause huge damages to buildings and infrastructures and, in some cases, even casualties. Field hydrological monitoring is essential to develop reliable models of slope response to rainfall infiltration, allowing to define triggering conditions of landslides. An automatic monitoring station has been recently installed at the slope of Cervinara, 30 km East of Naples, where a catastrophic landslide occurred in December 1999. The station consists of a tipping bucket rain gauge, with a sensitivity to rainfall height of 0.2mm; four jet fill tensiometers, for the measurement of soil suction at the depths of 10cm, 40cm, 120cm and 160cm below ground surface; four time domain reflectometry probes of various lengths, connected through a multiplexer to a reflectometer, for the measurement of water content profile from ground surface up to a depth of 160cm. All the sensors are connected to a datalogger for the automatic acquisition at hourly frequency of experimental data. Acquired data are then stored into a magnetic memory which is periodically downloaded into a PC. The entire station is operated by a lithium battery connected to a solar panel. The first collected experimental data confirm the usefulness of simultaneous monitoring, at high temporal resolution, of rainfall

  6. Microseismic monitoring and numerical simulation on the stability of high-steep rock slopes in hydropower engineering

    Institute of Scientific and Technical Information of China (English)

    Chun’an Tang; Lianchong Li; Nuwen Xu; Ke Ma

    2015-01-01

    abstract For high-steep slopes in hydropower engineering, damage can be induced or accumulated due to a series of human or natural activities, including excavation, dam construction, earthquake, rainstorm, rapid rise or drop of water level in the service lifetime of slopes. According to the concept that the progressive damage (microseismicity) of rock slope is the essence of the precursor of slope instability, a microseismic monitoring system for high-steep rock slopes is established. Positioning accuracy of the monitoring system is tested by fixed-position blasting method. Based on waveform and cluster analyses of micro-seismic events recorded during test, the tempo-spatial distribution of microseismic events is analyzed. The deformation zone in the deep rock masses induced by the microseismic events is preliminarily delimited. Based on the physical information measured by in situ microseismic monitoring, an evaluation method for the dynamic stability of rock slopes is proposed and preliminarily implemented by combining microseismic monitoring and numerical modeling. Based on the rock mass damage model obtained by back analysis of microseismic information, the rock mass elements within the microseismic damage zone are automatically searched by finite element program. Then the stiffness and strength reductions are performed on these damaged elements accordingly. Attempts are made to establish the correlation between microseismic event, strength deterioration and slope dynamic instability, so as to quantitatively evaluate the dynamic stability of slope. The case studies about two practical slopes indi-cate that the proposed method can reflect the factor of safety of rock slope more objectively. Numerical analysis can help to understand the characteristics and modes of the monitored microseismic events in rock slopes. Microseismic monitoring data and simulation results can be used to mutually modify the sensitive rock parameters and calibrate the model. Combination

  7. Microseismic monitoring and numerical simulation on the stability of high-steep rock slopes in hydropower engineering

    Directory of Open Access Journals (Sweden)

    Chun'an Tang

    2015-10-01

    Full Text Available For high-steep slopes in hydropower engineering, damage can be induced or accumulated due to a series of human or natural activities, including excavation, dam construction, earthquake, rainstorm, rapid rise or drop of water level in the service lifetime of slopes. According to the concept that the progressive damage (microseismicity of rock slope is the essence of the precursor of slope instability, a microseismic monitoring system for high-steep rock slopes is established. Positioning accuracy of the monitoring system is tested by fixed-position blasting method. Based on waveform and cluster analyses of microseismic events recorded during test, the tempo-spatial distribution of microseismic events is analyzed. The deformation zone in the deep rock masses induced by the microseismic events is preliminarily delimited. Based on the physical information measured by in situ microseismic monitoring, an evaluation method for the dynamic stability of rock slopes is proposed and preliminarily implemented by combining microseismic monitoring and numerical modeling. Based on the rock mass damage model obtained by back analysis of microseismic information, the rock mass elements within the microseismic damage zone are automatically searched by finite element program. Then the stiffness and strength reductions are performed on these damaged elements accordingly. Attempts are made to establish the correlation between microseismic event, strength deterioration and slope dynamic instability, so as to quantitatively evaluate the dynamic stability of slope. The case studies about two practical slopes indicate that the proposed method can reflect the factor of safety of rock slope more objectively. Numerical analysis can help to understand the characteristics and modes of the monitored microseismic events in rock slopes. Microseismic monitoring data and simulation results can be used to mutually modify the sensitive rock parameters and calibrate the model

  8. SLOPE FAILURE MECHANISMS IN COHESIVE SOILS: INSIGHTS FROM THEORETICAL AND NUMERICAL ANALYSES OF FIELD AND LABORATORY-TRIGGERED EVENTS

    Science.gov (United States)

    Malet, J.; Spickermann, A.; van Asch, T.

    2009-12-01

    A landslide can show a variety of failure modes which depends on the given conditions of the slope such as geometry, material characteristics and presence of discontinuities. Besides the gravity as main loading factor, it is assumed that slope failures are often caused by hydrological processes. The identification and modelling of failure modes and triggering mechanisms are essential requirements in landslide forecasting and in the design of reliable early warning systems. This work is an attempt to get a better understanding of the mode of failure and possible failure mechanisms taking place in cohesive slopes. Theoretical analysis has been carried out on the basis of (1) field observations of two failure events of the clay-rich Super-Sauze mudslide (Southeast France) and (2) small-scale landslides triggered in a flume using clay from Zoelen (Netherlands) and reworked black marls from Super-Sauze. To investigate the failure behaviour numerically a simple analytical model, named 2LM (Landslide Liquefaction Model) (van Asch et al. 2006; van Asch & Malet, in press) is used. The model assumes that liquefaction is related to previous development of slip surfaces, i.e. deformation of the landslide body (sliding blocks, slumps) during motion leading to the generation of excess pore water pressure and thus to fluidization. The model is based on the theory of limiting equilibrium dividing the area above an estimated slip surface into slices of constant width. Immediately after failure, the difference in movement for each slice is calculated assuming a viscous shear band and using the Coulomb-viscous model. The differential movements conduct to differential strains which are transferred to excess pore water pressures. The potential fluidization is then evaluated for each slice in relation to the displacements. Results from an application of this model on the two slump-type failures that occurred in the Super-Sauze mudslide are presented. Then the model is applied to the

  9. Key indicator tools for shallow slope failure assessment using soil chemical property signatures and soil colour variables.

    Science.gov (United States)

    Othman, Rashidi; Hasni, Shah Irani; Baharuddin, Zainul Mukrim; Hashim, Khairusy Syakirin Has-Yun; Mahamod, Lukman Hakim

    2017-07-18

    Slope failure has become a major concern in Malaysia due to the rapid development and urbanisation in the country. It poses severe threats to any highway construction industry, residential areas, natural resources and tourism activities. The extent of damages that resulted from this catastrophe can be lessened if a long-term early warning system to predict landslide prone areas is implemented. Thus, this study aims to characterise the relationship between Oxisols properties and soil colour variables to be manipulated as key indicators to forecast shallow slope failure. The concentration of each soil property in slope soil was evaluated from two different localities that consist of 120 soil samples from stable and unstable slopes located along the North-South Highway (PLUS) and East-West Highway (LPT). Analysis of variance established highly significant difference (P < 0.0001) between the locations, the total organic carbon (TOC), soil pH, cation exchange capacity (CEC), soil texture, soil chromaticity and all combinations of interactions. The overall CIELAB analysis leads to the conclusion that the CIELAB variables lightness L*, c* (Chroma) and h* (Hue) provide the most information about soil colour and other related soil properties. With regard to the relationship between colour variables and soil properties, the analysis detected that soil texture, organic carbon, iron oxide and aluminium concentration were the key factors that strongly correlate with soil colour variables at the studied area. Indicators that could be used to predict shallow slope failure were high value of L*(62), low values of c* (20) and h* (66), low concentration of iron (53 mg kg(-1)) and aluminium oxide (37 mg kg(-1)), low soil TOC (0.5%), low CEC (3.6 cmol/kg), slightly acidic soil pH (4.9), high amount of sand fraction (68%) and low amount of clay fraction (20%).

  10. Triplexer Monitor Design for Failure Detection in FTTH System

    Science.gov (United States)

    Fu, Minglei; Le, Zichun; Hu, Jinhua; Fei, Xia

    2012-09-01

    Triplexer was one of the key components in FTTH systems, which employed an analog overlay channel for video broadcasting in addition to bidirectional digital transmission. To enhance the survivability of triplexer as well as the robustness of FTTH system, a multi-ports device named triplexer monitor was designed and realized, by which failures at triplexer ports can be detected and localized. Triplexer monitor was composed of integrated circuits and its four input ports were connected with the beam splitter whose power division ratio was 95∶5. By means of detecting the sampled optical signal from the beam splitters, triplexer monitor tracked the status of the four ports in triplexer (e.g. 1310 nm, 1490 nm, 1550 nm and com ports). In this paper, the operation scenario of the triplexer monitor with external optical devices was addressed. And the integrated circuit structure of the triplexer monitor was also given. Furthermore, a failure localization algorithm was proposed, which based on the state transition diagram. In order to measure the failure detection and localization time under the circumstance of different failed ports, an experimental test-bed was built. Experiment results showed that the detection time for the failure at 1310 nm port by the triplexer monitor was less than 8.20 ms. For the failure at 1490 nm or 1550 nm port it was less than 8.20 ms and for the failure at com port it was less than 7.20 ms.

  11. Mapping basin-wide subaquatic slope failure susceptibility as a tool to assess regional seismic and tsunami hazards

    Science.gov (United States)

    Strasser, Michael; Hilbe, Michael; Anselmetti, Flavio S.

    2010-05-01

    occurred. Comparison of reconstructed critical stability conditions with the known distribution of landslide deposits reveals minimum and maximum threshold conditions for slopes that failed or remained stable, respectively. The resulting correlations reveal good agreements and suggest that the slope stability model generally succeeds in reproducing past events. The basin-wide mapping of subaquatic slope failure susceptibility through time thus can also be considered as a promising paleoseismologic tool that allows quantification of past earthquake ground shaking intensities. Furthermore, it can be used to assess the present-day slope failure susceptibility allowing for identification of location and estimation of size of future, potentially tsunamigenic subaquatic landslides. The new approach presented in our comprehensive lake study and resulting conceptual ideas can be vital to improve our understanding of larger marine slope instabilities and related seismic and oceanic geohazards along formerly glaciated ocean margins and closed basins worldwide.

  12. A comparative study of slope failure prediction using logistic regression, support vector machine and least square support vector machine models

    Science.gov (United States)

    Zhou, Lim Yi; Shan, Fam Pei; Shimizu, Kunio; Imoto, Tomoaki; Lateh, Habibah; Peng, Koay Swee

    2017-08-01

    A comparative study of logistic regression, support vector machine (SVM) and least square support vector machine (LSSVM) models has been done to predict the slope failure (landslide) along East-West Highway (Gerik-Jeli). The effects of two monsoon seasons (southwest and northeast) that occur in Malaysia are considered in this study. Two related factors of occurrence of slope failure are included in this study: rainfall and underground water. For each method, two predictive models are constructed, namely SOUTHWEST and NORTHEAST models. Based on the results obtained from logistic regression models, two factors (rainfall and underground water level) contribute to the occurrence of slope failure. The accuracies of the three statistical models for two monsoon seasons are verified by using Relative Operating Characteristics curves. The validation results showed that all models produced prediction of high accuracy. For the results of SVM and LSSVM, the models using RBF kernel showed better prediction compared to the models using linear kernel. The comparative results showed that, for SOUTHWEST models, three statistical models have relatively similar performance. For NORTHEAST models, logistic regression has the best predictive efficiency whereas the SVM model has the second best predictive efficiency.

  13. Structure and history of submarine slope failures at the Cape Fear submarine landslide, U.S. Atlantic margin

    Science.gov (United States)

    Miller, N. C.; Chaytor, J. D.; Hutchinson, D. R.; Ten Brink, U. S.; Flores, C. H.

    2015-12-01

    New multi-channel seismic (MCS), chirp sub-bottom, and multibeam bathymetry and backscatter data image the Late Pleistocene-Holocene age Cape Fear submarine landslide (CFS) along its complete ~375 km length, from the multiple headwalls at ~2500 m water depth on the slope to the lobate, low-relief toe at ~5400 m water depth. A surficial chaotic mass transport deposit (MTD) filling the failure scar exceeds 100 m in thickness over large sections of the deposit, thinning towards the margins of the slide. Below 5000 m, the CFS truncates the surficial MTD of the Cape Lookout Landslide in several places, indicating that it post-dates the Cape Lookout Landslide. At depth, the MCS data image the edge of the Cape Fear salt diapir and a seismically transparent region that may be associated with fluid flow focused along the edge of the diapir. This potential fluid pathway sits directly beneath the headwalls of the CFS, supporting the hypothesis that the salt diapir is responsible for the failure, either through deformation of sediments during salt emplacement or by focusing of fluids, or both. The MCS data also image several earlier MTDs. These deposits are confined to sediments younger than the early Cenozoic, consistent with interpretations of major canyon cutting in the Eocene and initiation of intense deep and erosive currents in the Late Paleogene. These processes can over-steepen and redistribute slope sediments, enhancing conditions for slope failures and salt diapirism.

  14. Distributed specific sediment yield estimations in Japan attributed to extreme-rainfall-induced slope failures under a changing climate

    Directory of Open Access Journals (Sweden)

    K. Ono

    2011-01-01

    Full Text Available The objective of this study was to estimate the potential sediment yield distribution in Japan attributed to extreme-rainfall-induced slope failures in the future. For this purpose, a regression relationship between the slope failure probability and the subsequent sediment yield was developed by using sediment yield observations from 59 dams throughout Japan. The slope failure probability accounts for the effects of topography (as relief energy, geology and hydro-climate variations (hydraulic gradient changes due to extreme rainfall variations and determines the potential slope failure occurrence with a 1-km resolution. The applicability of the developed relationship was then validated by comparing the simulated and observed sediment yields in another 43 dams. To incorporate the effects of a changing climate, extreme rainfall variations were estimated by using two climate change scenarios (the MRI-RCM20 Ver.2 model A2 scenario and the MIROC A1B scenario for the future and by accounting for the slope failure probability through the effect of extreme rainfall on the hydraulic gradient. Finally, the developed slope failure hazard-sediment yield relationship was employed to estimate the potential sediment yield distribution under a changing climate in Japan.

    Time series analyses of annual sediment yields covering 15–20 years in 59 dams reveal that extreme sedimentation events have a high probability of occurring on average every 5–7 years. Therefore, the extreme-rainfall-induced slope failure probability with a five-year return period has a statistically robust relationship with specific sediment yield observations (with r2 = 0.65. The verification demonstrated that the model is effective for use in simulating specific sediment yields with r2 = 0.74. The results of the GCM scenarios suggest that the sediment yield issue will be critical in Japan in the future. When the spatially averaged sediment

  15. Distributed specific sediment yield estimations in Japan attributed to extreme-rainfall-induced slope failures under a changing climate

    Directory of Open Access Journals (Sweden)

    K. Ono

    2010-09-01

    Full Text Available The objective of this study was to estimate the potential sediment yield distribution in Japan attributed to extreme-rainfall-induced slope failures in the future. For this purpose, a regression relationship between the slope failure hazard probability and the subsequent sediment yield was developed by using sediment yield observations from 59 dams throughout Japan. The slope failure hazard probability accounts for the effects of topography (as relief energy, geology and hydro-climate variations (hydraulic gradient changes due to extreme rainfall variations and determines the potential slope failure occurrence with a 1-km resolution. The applicability of the developed relationship was then validated by comparing the simulated and observed sediment yields in another 43 dams. To incorporate the effects of a changing climate, extreme rainfall variations were estimated by using two climate change scenarios (the MRI-RCM20 Ver.2 model A2 scenario and the MIROC A1B scenario for the future and by accounting for the slope failure hazard probability through the effect of extreme rainfall on the hydraulic gradient. Finally, the developed slope failure hazard-sediment yield relationship was employed to estimate the potential sediment yield distribution under a changing climate in Japan.

    Time series analyses of annual sediment yields covering 15–20 years in 59 dams reveal that extreme sedimentation events have a high probability of occurring on average every 5–7 years. Therefore, the extreme-rainfall-induced slope failure probability with a five-year return period has a statistically robust relationship with specific sediment yield observations (with r2 = 0.65. The verification demonstrated that the model is effective for use in simulating specific sediment yields with r2 = 0.74. The results of the GCM scenarios suggest that the sediment yield issue will be critical in Japan in the future. When the spatially

  16. Distributed specific sediment yield estimations in Japan attributed to extreme-rainfall-induced slope failures under a changing climate

    Science.gov (United States)

    Ono, K.; Akimoto, T.; Gunawardhana, L. N.; Kazama, S.; Kawagoe, S.

    2011-01-01

    The objective of this study was to estimate the potential sediment yield distribution in Japan attributed to extreme-rainfall-induced slope failures in the future. For this purpose, a regression relationship between the slope failure probability and the subsequent sediment yield was developed by using sediment yield observations from 59 dams throughout Japan. The slope failure probability accounts for the effects of topography (as relief energy), geology and hydro-climate variations (hydraulic gradient changes due to extreme rainfall variations) and determines the potential slope failure occurrence with a 1-km resolution. The applicability of the developed relationship was then validated by comparing the simulated and observed sediment yields in another 43 dams. To incorporate the effects of a changing climate, extreme rainfall variations were estimated by using two climate change scenarios (the MRI-RCM20 Ver.2 model A2 scenario and the MIROC A1B scenario) for the future and by accounting for the slope failure probability through the effect of extreme rainfall on the hydraulic gradient. Finally, the developed slope failure hazard-sediment yield relationship was employed to estimate the potential sediment yield distribution under a changing climate in Japan. Time series analyses of annual sediment yields covering 15-20 years in 59 dams reveal that extreme sedimentation events have a high probability of occurring on average every 5-7 years. Therefore, the extreme-rainfall-induced slope failure probability with a five-year return period has a statistically robust relationship with specific sediment yield observations (with r2 = 0.65). The verification demonstrated that the model is effective for use in simulating specific sediment yields with r2 = 0.74. The results of the GCM scenarios suggest that the sediment yield issue will be critical in Japan in the future. When the spatially averaged sediment yield for all of Japan is considered, both scenarios produced an

  17. Implantable sensors for heart failure monitoring

    Directory of Open Access Journals (Sweden)

    P. Shasha Liu

    2013-12-01

    Implantable sensors in the CRT device offer a unique opportunity for continuous monitoring of a patient's clinical HF status by measuring cardiac rhythm, intracardiac pressures, cardiac events, and physical activity, as well as detecting any device malfunction. Detecting early signs of a deteriorating clinical condition allows prompt preemptive medical intervention to optimize HF management. As a result, not only healthcare professionals will benefit from a reduction in hospitalizations and routine in-office follow-ups, but also patients will benefit from efficient management of their HF. This review highlights the latest available device-based remote monitoring systems and the most up-to-date evidence for the use of remote monitoring in CRT.

  18. Microseismic Monitoring and 3D Finite Element Analysis of the Right Bank Slope, Dagangshan Hydropower Station, during Reservoir Impounding

    Science.gov (United States)

    Liu, Xingzong; Tang, Chun'an; Li, Lianchong; Lv, Pengfei; Liu, Hongyuan

    2017-07-01

    The right bank slope of Dagangshan hydropower station in China has complex geological conditions and is subjected to high in situ stress. Notably, microseismic activities in the right bank slope occurred during reservoir impounding. This paper describes the microseismic monitoring technology, and three-dimensional (3D) finite element analysis is used to explore the microseismic activities and damage mechanisms in the right bank slope during reservoir impounding. Based on data obtained from microseismic monitoring, a progressive microseismic damage model is proposed and implemented for 3D finite element analysis. The safety factor for the right bank slope after reservoir impoundment obtained from the 3D finite element analysis, which included the effects of progressive microseismic damage, was 1.10, indicating that the slope is stable. The microseismic monitoring system is able to capture the slope disturbance during reservoir impounding in real time and is a powerful tool for qualitatively assessing changes in slope stability over time. The proposed progressive microseismic damage model adequately simulates the changes in the slope during the impoundment process and provides a valuable tool for evaluating slope stability.

  19. Characterization and monitoring of the Séchilienne rock slope using 3D imaging methods (Isère, France)

    Science.gov (United States)

    Vulliez, Cindy; Guerin, Antoine; Abellán, Antonio; Derron, Marc-Henri; Jaboyedoff, Michel; Chanut, Marie-Aurélie; Dubois, Laurent; Duranthon, Jean-Paul

    2016-04-01

    The Séchilienne landslide located in the Romanche Valley (Isère, France) is a well instrumented mass movements of about 650 m high and 250 m wide, with a potential volume of about 3 million m3 in the most active part (Duranthon and Effendiantz, 2004 ; Kasperski et al., 2010). The slope, which is mainly composed of micaschist, is characterized by the presence of a NE-SW sub-vertical fracturing system involved in the destabilization of the area. The rock slope has been continuously moving since the eighties decade, with a growing acceleration during the period 2009-2013 followed by a progressive stabilization during the last years. The monitoring of the active part of the rock slide is currently carried out by an instrumentation system in order to prevent a large failure. In this work, we used different 3D techniques in order to monitor the whole rock slide displacements in three dimensions, as follows: (a) First of all, we used a Terrestrial Laser Scanning to obtain high resolution point clouds (8 cm point spacing) of the rock slope geometry. Nine different fieldwork campaigns were performed during the last six years, as follows: Aug. 2009, Jul. 2010, Nov. 2011, Nov. 2012, Jun. and Nov. 2013, Jul. and Oct. 2014, May 2015, which provided a set of 3D representations of the rock slope topography over time; (b) In addition, we used three Helicopter-based Laser Scanning campaigns carried out in Jan. 2011, Feb. 2012 and Mar. 2014 acquired by the Cerema (Chanut et al., 2014); (c) Finally, more than 600 photos were taken in Apr. 2015 in order to build a photogrammetric model of the area using Structure-from-Motion (SfM) workflow in Agisoft PhotoScan software. All types of data were complementary for the study of the movement and allowed us having a good spatial vision of the evolution of the most active part of the slope. A detailed structural analysis was performed from both LiDAR and SfM point clouds using Coltop3D (Jaboyedoff et al., 2007). Eight joint sets were

  20. Shaking table model test and numerical analysis on dynamic failure characteristics of slope%边坡动力破坏特征的振动台模型试验与数值分析

    Institute of Scientific and Technical Information of China (English)

    叶海林; 郑颖人; 杜修力; 李安洪

    2012-01-01

    采用大型振动台模型试验,输入幅值逐级增大的地震波,直到边坡破坏,得到边坡动力破坏特征:上部拉裂缝和下部剪切滑移面形成贯通的破裂面,滑体上监测点位移和加速度响应突变,表明边坡已经发生破坏,且坡顶局部块体在地震作用下发生抛射现象。采用FLAC动力差分软件通过逐渐加大输入地震波幅值,模拟模型边坡振动台试验过程,证实拉裂缝与剪切滑移面贯通是边坡动力破坏的必要条件,位移和加速度响应突变可以作为边坡动力破坏的判据。振动台试验和数值计算在边坡动力破坏三个特征上吻合较好,证明振动台模型试验结果的合理性,也证明数值分析方法的可靠性。%By inputting the seismic wave with step-by-step increased amplitude until the slope fails, large-scale shaking table model tests were carried out to study the dynamic failure characteristics of slope. It is found the upper tension crack connected with the lower shear sliding surface runs through the slope, while the displacement and acceleration response at monitoring points mutate, indicating that the slope failure may occur. In addition, block masses at some parts of slope crest may be thrown due to the earthquake shock. By gradually increasing the input amplitude of seismic wave using the dynamic differential software FLAC, the slope model was simulated on the shaking table. It was approved that the tension crack connected with the shear sliding surface running through the entire slope is a necessary condition of slope dynamic failure and the mutation of displacement and acceleration response may be regarded as the criterion of estimating slope dynamic failure. As to the three characteristics of the slope dynamic failure, the shaking table model test conforms well to the numerical simulations, validating that the results of shaking table model test are reasonable and the numerical simulation method is

  1. 4D understanding of failures in soft sedimentary rocks using repetitive terrestrial stereo-photogrammetry: the case of the Rosselin deep-seated slope instability, Valais, Switzerland.

    Science.gov (United States)

    Travelletti, Julien; Monnet, Régis

    2014-05-01

    The objective of this study is (i) to highlight the potential of low-cost stereo-photogrammetry to monitor the 4D deformation of rock instabilities and (ii) to add to the 4D understanding of failure development in soft sedimentary rocks. The Rosselin instability is located in a landslides prone area in the municipality of Riddes, canton of Valais, Switzerland. This deep-seated slope instability has developed in Triassic dolomitic carbonates overlaid by highly fractured Cretaceous conglomerates and schists. Its estimated volume is of 300'000 m3. A catastrophic scenario can cause the obstruction of a river located 400 m beneath. The sudden failure of the landslide dam would then threaten the municipality of Riddes of major floods and debris flows. On May 14, 2013, precursor signs of activity (minor rockfalls, developments of tension cracks) in a part of the Rosselin instability were observed after a relatively wet period. Therefore, in complement to risk mitigation planning a monitoring strategy was set up. In addition to the installation of extensometers, repetitive terrestrial stereo-photogrammetry surveys were acquired at a distance of 100 m of the instability in order to build a four-dimensional understanding of the failure. Seventeen high-resolution photogrammetric acquisitions were realized between the 15th and the 17th of May the day the main failure occurred. The comparison of the states before and after the event of May 17 allowed to compute a mobilized volume of 30'000 m3 (1/10 of the total volume of the Rosselin instability). 3D displacements are derived from the photogrammetric acquisition and obtained with a cross-correlation technique. The kinematics analysis allowed the highlighting of (i) strong deformations during the pre-failure stage within the mass probably induced by progressive brittle fracture damages and of (ii) a control of pre-existing regional discontinuities in the failure stage leading to a general wedge sliding. It also shows that in the

  2. Walking on inclines: how do desert ants monitor slope and step length

    Directory of Open Access Journals (Sweden)

    Seidl Tobias

    2008-06-01

    Full Text Available Abstract Background During long-distance foraging in almost featureless habitats desert ants of the genus Cataglyphis employ path-integrating mechanisms (vector navigation. This navigational strategy requires an egocentric monitoring of the foraging path by incrementally integrating direction, distance, and inclination of the path. Monitoring the latter two parameters involves idiothetic cues and hence is tightly coupled to the ant's locomotor behavior. Results In a kinematic study of desert ant locomotion performed on differently inclined surfaces we aimed at pinpointing the relevant mechanisms of estimating step length and inclination. In a behavioral experiment with ants foraging on slippery surfaces we broke the otherwise tightly coupled relationship between stepping frequency and step length and examined the animals' ability to monitor distances covered even under those adverse conditions. We show that the ants' locomotor system is not influenced by inclined paths. After removing the effect of speed, slope had only marginal influence on kinematic parameters. Conclusion From the obtained data we infer that the previously proposed monitoring of angles of the thorax-coxa joint is not involved in inclinometry. Due to the tiny variations in cycle period, we also argue that an efference copy of the central pattern generator coding the step length in its output frequency will most likely not suffice for estimating step length and complementing the pedometer. Finally we propose that sensing forces acting on the ant's legs could provide the desired neuronal correlate employed in monitoring inclination and step length.

  3. A reliable methodology for monitoring unstable slopes: the multi-platform and multi-sensor approach

    Science.gov (United States)

    Castagnetti, Cristina; Bertacchini, Eleonora; Corsini, Alessandro; Rivola, Riccardo

    2014-10-01

    High resolution topography, by involving Digital Terrain Models (DTMs) and further accurate techniques for a proper displacement identification, is a valuable tool for a good and reliable description of unstable slopes. By comparing multitemporal surveys, the geomorphology of a landslide may be analyzed as well as the changes over time, the volumes transportation and the boundaries evolution. Being aware that a single technique is not sufficient to perform a reliable and accurate survey, this paper discusses the use of multi-platform, multi-source and multi-scale observations (both in terms of spatial scale and time scale) for the study and monitoring of unstable slopes. The final purpose is to highlight and validate a methodology based on multiple sensors and data integration, useful to obtain a comprehensive GIS (Geographic Information System) which can successfully be used to manage natural disasters or to improve the knowledge of a specific phenomenon in order to prevent and mitigate the hydro-geological risk. The novelty of the present research lies in the spatial integration of multiple remote sensing techniques such as: integration of Airborne Laser Scanning (ALS) and Terrestrial Laser Scanning (TLS) to provide a comprehensive and accurate surface description (DTM) at a fixed epoch (spatial continuity); continuous monitoring by means of spatial integration of Automated Total Station (ATS) and GNSS (Global Navigation Satellite System) to provide accurate surface displacement identification (time continuity). Discussion makes reference to a rockslide located in the northern Apennines of Italy from 2010 to 2013.

  4. Centrifugal Modelling of Soil Structures. Part I. Centrifugal Modelling of Slope Failures.

    Science.gov (United States)

    1979-03-01

    section of the clay itself, which was visible to the camera. This latter set of stripes was applied using a variety of trial materials: kaolin powder...investigated slope instability of open cast sulphur and manganese mine waste embankments in the Ukraine, over six years, using the centrifugal modelling...model MW21, and altering the model soil interface with f the centrifuge strongbox by introducing an underlayer of preconsolidated kaolin in two models

  5. Submarine landslides offshore Vancouver Island along the northern Cascadia margin, British Columbia: why preconditioning is likely required to trigger slope failure

    Science.gov (United States)

    Scholz, Nastasja A.; Riedel, Michael; Urlaub, Morelia; Spence, George D.; Hyndman, Roy D.

    2016-10-01

    Bathymetric data reveal abundant submarine landslides along the deformation front of the northern Cascadia margin that might have significant tsunami potential. Radiocarbon age dating showed that slope failures are early to mid-Holocene. The aim of this study is the analysis of slope stability to investigate possible trigger mechanisms using the factor of safety analysis technique on two prominent frontal ridges. First-order values for the earthquake shaking required to generate instability are derived. These are compared to estimated ground accelerations for large ( M=5 to 8) crustal earthquakes to giant ( M=8 to 9) megathrust events. The results suggest that estimated earthquake accelerations are insufficient to destabilize the slopes, unless the normal sediment frictional resistance is significantly reduced by, for example, excess pore pressure. Elevated pore pressure (overpressure ratio of 0.4) should significantly lower the threshold for earthquake shaking, so that a medium-sized M=5 earthquake at 10 km distance may trigger submarine landslides. Preconditioning of the slopes must be limited primarily to the mid- to early Holocene as slope failures are constrained to this period. The most likely causes for excess pore pressures include rapid sedimentation at the time of glacial retreat, sediment tectonic deformation, and gas hydrate dissociation as result of ocean warming and sea level rise. No slope failures comparable in size and volume have occurred since that time. Megathrust earthquakes have occurred frequently since the most recent failures in the mid-Holocene, which emphasizes the importance of preconditioning for submarine slope stability.

  6. Are failures of anterior cruciate ligament reconstruction associated with steep posterior tibial slopes? A case control study

    Institute of Scientific and Technical Information of China (English)

    Li Yue; Hong Lei; Feng Hua; Wang Qianqian; Zhang Hui; Song Guanyang

    2014-01-01

    Background Recently,increasing number of literature has identified the posterior tibial slope (PTS) as one of the risk factors of primary anterior cruciate ligament (ACL) injury.However,few studies conceming the association between failure of ACL reconstruction (ACLR) and PTS have been published.The objective of this study was to explore the association between the failure of ACLR and PTS at a minimum of two years follow-up.Methods Two hundred and thirty eight eligible patients from June 2009 to October 2010 were identified from our database.A total of 20 failure cases of ACLR and 20 randomly selected controls were included in this retrospective study.The demographic data and the results of manual maximum side-to-side difference with KT-1000 arthrometer at 30° of knee flexion and pivot-shift test before the ACLR and at the final follow-up were collected.The medial and lateral PTSs were measured using the magnetic resonance imaging (MRI) scan,based on Hudek's measurement.A comparison of PTS between the two groups was performed.Results The overall failure rate of the present study was 8.4%.Of the 40 participants,the mean medial PTS was 4.1°±3.2° and the mean lateral PTS was 4.6°±2.6°.The medial PTS of the ACLR failure group was significantly steeper than the control group (3.5°±2.5° vs.6.1°±2.1°,P=0.000).Similarly,the lateral PTS of the ACLR failure group was significantly steeper than the control group (2.9°±2.1 ° vs.5.5°±3.0°,P=0.006).For medial PTS ≥5°,the odds ratio of ACLR failure was 6.8 (P=0.007); for lateral PTS ≥5°,the odds ratio of ACLR failure was 10.8 (P=0.000).Conclusion Both medial and lateral PTS were significantly steeper in failures of ACLR than the control group.Medial or lateral PTS ≥5° was a new risk factor of ACLR failure.

  7. Analysis of a Large Rock Slope Failure on the East Wall of the LAB Chrysotile Mine in Canada: Back Analysis, Impact of Water Infilling and Mining Activity

    Science.gov (United States)

    Grenon, Martin; Caudal, Philippe; Amoushahi, Sina; Turmel, Dominique; Locat, Jacques

    2017-02-01

    A major mining slope failure occurred in July 2012 on the East wall of the LAB Chrysotile mine in Canada. The major consequence of this failure was the loss of the local highway (Road 112), the main commercial link between the region and the Northeast USA. LiDAR scanning and subsequent analyses were performed and enabled quantifying the geometry and kinematics of the failure area. Using this information, this paper presents the back analysis of the July 2012 failure. The analyses are performed using deterministic and probabilistic limit equilibrium analysis and finite-element shear strength reduction analysis modelling. The impact of pit water infilling on the slope stability is investigated. The impact of the mining activity in 2011 in the lower part of the slope is also investigated through a parametric analysis.

  8. Asymptotic failure rate of a continuously monitored system

    Energy Technology Data Exchange (ETDEWEB)

    Grall, A. [Institut des Sciences et Technologies de l' Information de Troyes (CNRS-FRE 2732), Equipe de Modelisation et de Surete des Systemes, Universite de Technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex (France)]. E-mail: antoine.grall@utt.fr; Dieulle, L. [Institut des Sciences et Technologies de l' Information de Troyes (CNRS-FRE 2732), Equipe de Modelisation et de Surete des Systemes, Universite de Technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex (France)]. E-mail: laurence.dieulle@utt.fr; Berenguer, C. [Institut des Sciences et Technologies de l' Information de Troyes (CNRS-FRE 2732), Equipe de Modelisation et de Surete des Systemes, Universite de Technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex (France)]. E-mail: christophe.berenguer@utt.fr; Roussignol, M. [Laboratoire d' Analyse et de Mathematiques Appliquees, Universite de Marne la Vallee, 5 bd Descartes, Champs sur Marne, 77454 Marne la Vallee, Cedex 2 (France)]. E-mail: michel.roussignol@univ-mlv.fr

    2006-02-01

    This paper deals with a perfectly continuously monitored system which gradually and stochastically deteriorates. The system is renewed by a delayed maintenance operation, which is triggered when the measured deterioration level exceeds an alarm threshold. A mathematical model is developed to study the asymptotic behavior of the reliability function. A procedure is proposed which allows us to identify the asymptotic failure rate of the maintained system. Numerical experiments illustrate the efficiency of the proposed procedure and emphasize the relevance of the asymptotic failure rate as an interesting indicator for the evaluation of the control-limit preventive replacement policy.

  9. A new improved multicopter chassis structure tested on slope stability monitoring

    Science.gov (United States)

    Rossi, Guglielmo; Tanteri, Luca; Salvatici, Teresa; Scaduto, Gabriele; Tacconi Stefanelli, Carlo; Casagli, Nicola; Moretti, Sandro

    2017-04-01

    The multicopter has an increasing role in remote sensing and aerial photography. The piloting ease and the mechanical simplicity are the main reasons for drone diffusion as a hobby and for professional use. Usually multicopters have a "spider" structure with a central body and many radial arms that support the propulsion device. To improve the structure of the existing multicopter, the Department of Earth Sciences of Florence (DST) has developed and patented a new type of chassis structure that allows us to overcome some critical issues for scientific and heavy payload or long flight applications. The drone has an innovative perimetric chassis that fully supports flight dynamics. The new structure allows us to obtain high flight performance combined with low vibration transmission to the carried instruments. The new patented structure is implemented in two new prototypes of high performance drones completely developed by the Department of Earth Sciences of Florence: Saturn 2 and Saturn mini X-21. Saturn 2 is a high performance multi-role drone capable of carrying up to 14 kg of scientific instruments. Saturn Mini X-21 is a high performance drone, entirely 3D printed and specialized for digital and 3D rapid mapping. The Saturn mini X-21 was especially developed to obtain for the first time, by a drone, a 3D high resolution digital model for slope monitoring purposes of the Stromboli Sciara del Fuoco, a large inaccessible area that presents harsh flight conditions such as high persistent wind, rotors, volcanic ash and saltiness. The Saturn drones are mainly developed and tested, all around software and hardware, on slope stability monitoring. Four test cases are proposed, which were performed during the development and testing phase: a large area 3D survey (Scillato - Sicily), a harsh condition 3D survey (Stromboli -Sicily), a multitemporal 3D survey (Ricasoli - Tuscany) and the testing phase of measurement performed by onboard radar equipment.

  10. 索矿露天边坡最终边坡角优化与破坏特征分析%The Analysis of the Final Sloping Angle Optimization and Failure Characteristics on the Slope in Suo Open Pit Mine

    Institute of Scientific and Technical Information of China (English)

    刘武团; 高忠; 雷明礼; 赵文奇; 严文炳; 程三建

    2015-01-01

    露天边坡角优化的前提是保证边坡的稳定,以新疆索矿极坚硬岩石边坡为例,利用Hoek-Brown准则将室内岩石力学参数折减成岩体参数,借助FLAC3D软件,采用强度折减理论对极坚硬岩质最终边坡角进行优化研究.研究结果表明:最终边坡角由原设计的60°提高至65°,极坚硬岩质边坡破坏类型属于平面滑动破坏,坡体以剪切破坏为主,坡脚的剪应变增量最大,剪应变增量区域从坡脚贯通到坡顶;坡脚的位移量最大,其位移方向水平向左、向上,坡顶位移向下.%Ensuring the stability of the slope is the premise of the slope angle for optimization.Taking an extremely hard rocks slope in Xinjiang as an example, indoor rock mechanics parameters are reduced to the rock mass parameters by Hoek-Brown strength criterion firstly.Then the sloping angle is analyzed and optimized using the strength reduction theory by FLAC3D.The results show that the final sloping angle is increased from 60 to 65.Failure type of extremely hard rock be-longs to the plane sliding failure.Shear failure is the main failure type of the slope.The shear strain increment is taken from the bottom of the slope to the top and maximum shear strain increment appears at the bottom of the slope.The maximum dis-placement of the slope occurred in the slope foot and the displacement direction is horizontal to the left and up.The dis-placement direction of the top is down.

  11. Large rock-slope failures impacting on lakes - Reconstruction of events and deciphering mobility processes at Lake Oeschinen (CH) and Lake Eibsee (D)

    Science.gov (United States)

    Knapp, Sibylle; Anselmetti, Flavio; Gilli, Adrian; Krautblatter, Michael; Hajdas, Irka

    2017-04-01

    Among single event landslide disasters large rock-slope failures account for 75% of disasters with more than 1000 casualties. The precise determination of recurrence rates and failure volumes combined with an improved understanding of mobility processes are essential to better constrain runout models and establish early warning systems. Here we present the data sets from the two alpine regions Lake Oeschinen (CH) and Lake Eibsee (D) to show how lake studies can help to decipher the multistage character of rock-slope failures and to improve the understanding of the processes related to rock avalanche runout dynamics. We focus on such that impacted on a (paleo-) lake for two main reasons. First, the lake background sedimentation acts as a natural chronometer, which enables the stratigraphic positioning of events and helps to reconstruct the event history. This way it becomes possible to (i) decipher the multistage character of the failure of a certain rock slope and maybe detect progressive failure, (ii) determine the recurrence rates of failures at that certain rock slope, and (iii) consider energies based on estimated failure volumes, fall heights and deposition patterns. Hence, the interactions between a rock-slope failure, the water reservoir and the altered rock-slope are better understood. Second, picturing a rock avalanche running through and beyond a lake, we assume the entrainment of water and slurry to be crucial for the subsequent flow dynamics. The entrainment consumes a large share of the total energy, and orchestrates the mobility leading to fluidization, a much higher flow velocity and a longer runout-path length than expected. At Lake Oeschinen (CH) we used lake sediment cores and reflection seismic profiles in order to reconstruct the 2.5 kyrs spanning rock-slope failure history including 10 events, six of which detached from the same mountain flank, and correlated them with (pre-) historical data. The Lake Eibsee records provide insights into the

  12. [Urinary tract infections. Therapeutic failures and course monitoring (author's transl)].

    Science.gov (United States)

    Abdou, M A

    1979-10-19

    The proportion of reinfections and relapses in urinary tract infections amounts to about 35-70%. Hydrokinetic conditions (e.g. size of bladder, frequency of micturition, rate of multiplication of the pathogens, adhesiveness of bacteria) not seldom lead to a discrepancy between the in vivo response of the pathogen to the chemotherapeutic agent and the corresponding MIC determined in vitro. Ten causes for the therapeutic failure are discussed in greater detail. Monitoring the course in good time with due regard to the risks is essential. A scheme for microbiological monitoring investigations before beginning therapy, during treatment and after discontinuing the medicament, as well as for long term therapy is suggested.

  13. Caldera resurgence as a possible cause of slope failure in volcanic areas: the Ischia island case history

    Science.gov (United States)

    de Vita, Sandro; Seta Marta, Della; Paola, Fredi; Enrica, Marotta; Giovanni, Orsi; Fabio, Sansivero

    2010-05-01

    Slope instability in active volcanic areas is a factor of major hazard to be considered. Due to their rapid growth and deformation, active volcanoes experience gravitational disequilibrium and periodical structural failures. Depending on the geodynamic framework of a volcano, nature, style of activity and climatic conditions, slope instability occurs at different scales, from relatively small-volume mass movements to huge lahars and debris avalanches. Moreover, volcanoes located in coastal areas or islands, may experience lateral collapses with the potential to generate large tsunamis. Although there is very little literature on the relationships among caldera resurgence, volcanism and slope instability, recently also the caldera resurgence has been suggested as a possible cause of slope failure, as for the southern flank of the island of Ischia in the Southern Tyrrhenian sea (Italy). Ischia island gives a good opportunity to investigate such phenomena and related effects, as it is the only documented example of resurgent caldera in which, during uplift, volcanism and generation of mass movements have been very active and linked to each other in a sort of cyclical behaviour. The island of Ischia is one of the most impressive examples of resurgent calderas in the world. This caldera formed in response to a complex explosive eruption that, about 55 ka B.P., produced the Mt. Epomeo Green Tuff ignimbritic deposit. Starting from at least 30 ka B.P. the caldera floor has been uplifted of about 900 m, due to a resurgent phenomenon, which occurred through intermittent uplifting, likely triggered by the intrusion of new magma into the system, and tectonic quietness phases. During uplift, volcanism and generation of mass movements were very active. The resurgent area is composed of differentially displaced blocks and has a poligonal shape, resulting from reactivation of regional faults and activation of faults directly related to volcano-tectonism. The western sector is

  14. Massive submarine slope failures during the 1964 earthquake in Port Valdez, Alaska

    Science.gov (United States)

    Lee, H. J.; Ryan, H. F.; Suleimani, E.; Haeussler, P. A.; Kayen, R. E.; Hampton, M. A.

    2006-12-01

    The M9.2 Alaska earthquake of 1964 caused major damage to the port facilities and town of Valdez, resulting in a total of 32 deaths. Most of the damage and deaths in Valdez were caused by submarine-landslide generated tsunamis that occurred immediately after the earthquake. Some post-earthquake investigations were conducted in the 1960's. Dramatic changes in bathymetry were observed, including several hundred meters of deepening below the head of Port Valdez fjord, and these were attributed to submarine landsliding. Recent multibeam surveys of Port Valdez provide much more information about the morphology of landslide deposits. Also, we collected high-resolution (chirp) surveys over apparent landslide debris to evaluate the chronology and three-dimensional character of the deposits, and we performed quantitative evaluations of pre- and post-earthquake bathymetric data. Landslide morphologies include several forms. In the western part of the fjord, there is a field of large blocks (up to 40-m high) on the fjord floor near the location of the greatest tsunami-wave runup estimated for the 1964 earthquake (~50 m). The runup direction for the waves (northeast) is consistent with the failure of these blocks being the trigger. Surrounding the fields of blocks are lobes from two debris flows that likely occurred at the same time as the block slides. Both debris flows and block slides appear to have resulted from the failure of a large moraine front, formed by Shoup Glacier on the northwest side of Port Valdez. At the fjord head, near the location of the badly damaged old town of Valdez, is an intricate series of gullies, channels, and talus, although these features display little evidence for the large-scale mass movement that occurred. However, near the center of the fjord is the front of a large debris lobe that flowed from the east end of the fjord half-way down the fjord and stopped. This huge deposit represents material that failed at the fjord head, mobilized into a

  15. Massive submarine slope failures during the 1964 earthquake in Port Valdez, Alaska

    Science.gov (United States)

    Lee, H.; Ryan, H.F.; Suleimani, E.; Kayen, R.E.; Hampton, M.A.

    2006-01-01

    The M9.2 Alaska earthquake of 1964caused major damage to the port facilities and town of Valdez, resulting in a total of 32 deaths. Most of the damage and deaths in Valdez were caused by submarine-landslide generated tsunamis that occurred immediately after the earthquake. Some post-earthquake investigations were conducted in the 1960's. Dramatic changes in bathymetry were observed, including several hundred meters of deepening below the head of Port Valdezfjord, and these were attributed to submarine landsliding. Recent multibeam surveys of Port Valdez provide much more information about the morphology of landslide deposits. Also, we collected high-resolution (chirp) surveys over apparent landslide debris to evaluate the chronology and three-dimensional character of the deposits, and we performed quantitative evaluations of pre- and post-earthquake bathymetric data. Landslide morphologies include several forms. In the western part of the fjord, there is a field of large blocks (up to 40-m high) on the fjord floor near the location of the greatest tsunami-wave runup estimated for the 1964 earthquake (~50 m). The runup direction for the waves (northeast) is consistent with the failure of these blocks being the trigger. Surrounding the fields of blocks are lobes from two debris flows that likely occurred at the same time as the block slides. Both debris flows and block slides appear to have resulted from the failure of a large moraine front, formed by Shoup Glacier on the northwest side of Port Valdez. At the fjord head, near the location of the badly damaged old town of Valdez, is an intricate series of gullies, channels, and talus, although these features display little evidence for the large-scale mass movement that occurred. However, near the center of the fjord is the front of a large debris lobe that flowed from the east end of the fjord half-way down the fjord and stopped. This huge deposit represents material that failed at the fjord head

  16. Inclinometer monitoring system for stability analysis: the western slope of the Bełchatów field case study

    Directory of Open Access Journals (Sweden)

    Cała Marek

    2016-06-01

    Full Text Available The geological structure of the Bełchatów area is very complicated as a result of tectonic and sedimentation processes. The long-term exploitation of the Bełchatów field influenced the development of horizontal displacements. The variety of factors that have impact on the Bełchatów western slope stability conditions, forced the necessity of complex geotechnical monitoring. The geotechnical monitoring of the western slope was carried out with the use of slope inclinometers. From 2005 to 2013 fourteen slope inclinometers were installed, however, currently seven of them are in operation. The present analysis depicts inclinometers situated in the north part of the western slope, for which the largest deformations were registered. The results revealed that the horizontal displacements and formation of slip surfaces are related to complicated geological structure and intensive tectonic deformations in the area. Therefore, the influence of exploitation marked by changes in slope geometry was also noticeable.

  17. ICESat Observations of Inland Surface Water Stage, Slope, and Extent: a New Method for Hydrologic Monitoring

    Science.gov (United States)

    Harding, David J.; Jasinski, Michael F.

    2004-01-01

    River discharge and changes in lake, reservoir and wetland water storage are critical terms in the global surface water balance, yet they are poorly observed globally and the prospects for adequate observations from in-situ networks are poor (Alsdorf et al., 2003). The NASA-sponsored Surface Water Working Group has established a framework for advancing satellite observations of river discharge and water storage changes which focuses on obtaining measurements of water surface height (stage), slope, and extent. Satellite laser altimetry, which can achieve centimeter-level elevation precision for single, small laser footprints, provides a method to obtain these inland water parameters and contribute to global water balance monitoring. Since its launch in January, 2003 the Ice, Cloud, and land Elevation Satellite (ICESat), a NASA Earth Observing System mission, has achieved over 540 million laser pulse observations of ice sheet, ocean surface, land topography, and inland water elevations and cloud and aerosol height distributions. By recording the laser backscatter from 80 m diameter footprints spaced 175 m along track, ICESat acquires globally-distributed elevation profiles, using a 1064 nm laser altimeter channel, and cloud and aerosol profiles, using a 532 nm atmospheric lidar channel. The ICESat mission has demonstrated the following laser altimeter capabilities relevant to observations of inland water: (1) elevation measurements with a precision of 2 to 3 cm for flat surfaces, suitable for detecting river surface slopes along long river reaches or between multiple crossings of a meandering river channel, (2) from the laser backscatter waveform, detection of water surface elevations beneath vegetation canopies, suitable for measuring water stage in flooded forests, (3) single pulse absolute elevation accuracy of about 50 cm (1 sigma) for 1 degree sloped surfaces, with calibration work in progress indicating that a final accuracy of about 12 cm (1 sigma) will be

  18. Large-scale slope failure and active erosion occurring in the southwest Ryukyu fore-arc area

    Directory of Open Access Journals (Sweden)

    T. Matsumoto

    2001-01-01

    Full Text Available The southwestern Ryukyu area east of Taiwan Island is an arcuate boundary between Philippine Sea Plate and Eurasian Plate. The topographic features in the area are characterised by (1 a large-scale amphitheatre off Ishigaki Island, just on the estimated epicentre of the tsunamigenic earthquake in 1771, (2 lots of deep sea canyons located north of the amphitheatre, (3 15–20 km wide fore-arc basin, (4 15–20 km wide flat plane in the axial area of the trench, (5 E-W trending half grabens located on the fore-arc area, etc., which were revealed by several recent topographic survey expeditions. The diving survey by SHINKAI6500 in the fore-arc area on a spur located 120 km south of Ishigaki Island was carried out in 1992. The site is characterised dominantly by rough topography consisting of a series of steep slopes and escarpments. A part of the surface is eroded due to the weight of the sediment itself and consequently the basement layer is exposed. The site was covered with suspended particles during the diving, due to the present surface sliding and erosion. The same site was resurveyed in 1997 by ROV KAIKO, which confirmed the continuous slope failure taking place in the site. Another example that was observed by KAIKO expedition in 1997 is a largescale mud block on the southward dipping slope 80 km south of Ishigaki Island. This is apparently derived from the shallower part of the steep slope on the southern edge of the fan deposit south of Ishigaki Island. The topographic features suggest N-S or NE-SW tensional stress over the whole study area. In this sense, the relative motion between the two plates in this area is oblique to the plate boundary. So, the seaward migration of the plate boundary may occur due to the gravitational instability at the boundary of the two different lithospheric structures. This is evidenced by a lack of accretionary sediment on the fore-arc and the mechanism of a recent earthquake which occurred on 3 May 1998 in

  19. Rumblings and Rainfall, Rebels, Remittances and Roads- The complex landscape of slope failure in Nepal

    Science.gov (United States)

    McAdoo, Brian G.; Sudmeier, Karen; Devkota, Sanjaya

    2017-04-01

    During the first monsoon season following the deadly 2015 Gorkha earthquake, 27 people were killed during two events in Nepal's Western Region due to debris flows triggered by a 24-hour, 315 mm cloudburst (Devkota et al. 2015). Both events were linked with roads: the first was caused by an accumulation of water on a newly constructed road above a steep, deforested slope, the second wiped out a major road and destroyed 10 houses. These deadly landslides were not triggered solely by extreme rainfall, but rather a complex combination of earthquakes, intensified rainfall associated with climate change and an explosion of unplanned rural road construction fueled by an increase in foreign investment, remittances and decentralisation of budgets and power from the central government to local villages. This complexity is explored through a trend data analysis on the number of landslides, landslide fatalities, rainfall intensity, and the road network in Nepal between 1980-2014 (McAdoo et al, submitted). Of most concern are the poorly constructed roads in Nepal's Middle Hill districts ( 1000-3000 m above sea level, humid, subtropical) as they are proliferating at an unprecedented pace without proper alignment, drainage, grading or maintenance. They are occurring in areas which frequently receive up to 4,000-5,000 mm of precipitation per year, causing considerable loss in lives, livelihoods and investment. Landslide fatalities increased from 88 on average for the period 1982-1995 to 130 deaths per year for the period 2007-2014 (Desinventar, 2016). Contrary to numerous studies which show a strong link between rainfall and landslides, our trend analysis demonstrates a decoupling of climate and the geomorphic drivers, pointing to other factors, namely the exponential road construction trend to explain the increase in landslide fatalities. Nepal has some of the oldest manuals and well-trained cadres in low-cost green engineering practices, yet these are rarely applied. To reverse

  20. Exploiting COSMO-Skymed Data and Multi-Temporal Interferometry for Early Detection of Landslide Hazard: A Case of Slope Failure and Train Derailment Near Marina Di Andora, Italy.

    Science.gov (United States)

    Wasowski, J.; Chiaradia, M.; Bovenga, F.; Nutricato, R.; Nitti, D. O.; Milillo, G.; Guerriero, L.

    2014-12-01

    The improving temporal and spatial resolutions of new generation space-borne X-Band SAR sensors such as COSMO-SkyMed (CSK) constellation, and therefore their better monitoring capabilities, will guarantee increasing and more efficient use of multi-temporal interferometry (MTI) in landslide investigations. Thanks to their finer spatial resolution with respect to C-band data, X-band InSAR applications are very promising also for monitoring smaller landslides and single engineering structures sited on potentially unstable slopes. This work is focused on the detection of precursory signals of an impending slope failure from MTI time series of ground deformations obtained by exploiting 3 m resolution CSK data. We show the case of retrospectively captured pre-failure strains related to the landslide which occurred on January 2014 close to the town of Marina di Andora. The landslide caused the derailment of a train and the interruption of the railway line connecting north-western Italy to France. A dataset of 56 images acquired in STRIPMAP HIMAGE mode by CSK constellation from October 2008 to May 2014 was processed through SPINUA algorithm to derive the ground surface deformation map and the time series of displacement rates for each coherent radar target. We show that a cluster of moving targets coincides with the structures (buildings and terraces) affected by the 2014 landslide. The analysis of the MTI time series further shows that the targets had been moving since 2009, and thus could have provided a forewarning signal about ongoing slope or engineering structure instability. Although temporal landslide prediction remains difficult even via in situ monitoring, the presented case study indicates that MTI relying on high resolution radars such as CSK can provide very useful information for slope hazard mapping and possibly for early warning. Acknowledgments DIF provided contribution to data analysis within the framework of CAR-SLIDE project funded by MIUR (PON01_00536).

  1. Adhesive bond failure monitoring with triboluminescent optical fiber sensor

    Science.gov (United States)

    Shohag, Md Abu S.; Hammel, Emily C.; Olawale, David O.; Okoli, Okenwa O.

    2016-04-01

    One of the most severe damage modes in modern wind turbines is the failure of the adhesive joints in the trailing edge of the large composite blades. The geometrical shape of the blade and current manufacturing techniques make the trailing edge of the wind turbine blade more sensitive to damage. Failure to timely detect this damage type may result in catastrophic failures, expensive system downtime, and high repair costs. A novel sensing system called the In-situ Triboluminescent Optical Fiber (ITOF) sensor has been proposed for monitoring the initiation and propagation of disbonds in composite adhesive joints. The ITOF sensor combines the triboluminescent property of ZnS:Mn with the many desirable features of optical fiber to provide in-situ and distributed damage sensing in large composite structures like the wind blades. Unlike other sensor systems, the ITOF sensor does not require a power source at the sensing location or for transmitting damage-induced signals to the hub of the wind turbine. Composite parts will be fabricated and the ITOF integrated within the bondline to provide in-situ and real time damage sensing. Samples of the fabricated composite parts with integrated ITOF will be subjected to tensile and flexural loads, and the response from the integrated sensors will be monitored and analyzed to characterize the performance of the ITOF sensor as a debonding damage monitoring system. In addition, C-scan and optical microscopy will be employed to gain greater insights into the damage propagation behavior and the signals received from the ITOF sensors.

  2. Analysis and assessment of Shortwave Angle and Slope Index for monitoring rice phenology and hydroperiod.

    Science.gov (United States)

    Tornos, Lucía; Moyano, María Carmen; Huesca, Margarita; Cicuendez, Victor; Recuero, Laura; Domínguez, Jose Antonio; Palacios-Orueta, Alicia

    2014-05-01

    According to the United Nations, more than 50 percent of the world population depends on rice for about 80 percent of its food requirements. Besides, rice fields are important aquatic ecosystems, hosting a great variety of aquatic species. However, environmental issues such as water consumption and the emission of greenhouse gases, as well as the effects of climate change in crops, may endanger their sustainability. In this context, the determination of rice hydroperiod and phenology is necessary for rice monitoring and impact management, and is expected to become more relevant in the near future. The present study has explored the potential of Shortwave Angle Slope Index (SASI), based on the spectral data contained in Moderate Resolution Imaging Spectroradiometer, to monitoring rice paddy fields under different water management practices. SASI is a spectral shape index (SSI), based on the angle formed in SWIR1 vertex with NIR and SWIR2 in the spectrum, and the slope of the line linking NIR and SWIR2 vertices. This index was developed to distinguish between dry soil, wet soil, dry vegetation and green vegetation. It takes large, positive values for dry soil and large, negative values for green vegetation. Two case studies in Spain, the Ebro Delta and Orellana are presented. The behaviour of the index in each zone for the period 2001-2012 has been evaluated to characterize the response of SASI index to phenological and flooding events in rice. The average values and standard deviation of the index for the period 2001-2012 were calculated to identify the significant points of SASI in coincidence with phenological and flooding field data. An algorithm for the detection of significant points was also applied to determine phenological metrics, based on the information obtained. SASI presented similar values for both zones during the rice growing period. Differences arose during the non-growing period when the Delta was flooded for environmental reasons (i

  3. Large Rock-Slope Failures Impacting on Lakes - Event Reconstruction and Interaction Analysis in Two Alpine Regions Using Sedimentology and Geophysics

    Science.gov (United States)

    Knapp, S.; Anselmetti, F.; Gilli, A.; Krautblatter, M.; Hajdas, I.

    2016-12-01

    Massive rock-slope failures are responsible for more than 60% of all catastrophic landslides disasters. Lateglacial and Holocene rock-slope failures often occur as multistage failures, but we have only limited datasets to reconstruct detailed stages and still aim at improving our knowledge of mobility processes. In this context, studying lakes will become more and more important for two main reasons. On the one hand, the lake background sedimentation acts as a natural chronometer, which enables the stratigraphic positioning of events and helps to reconstruct the event history. This way we will be able to improve our knowledge on multistage massive rock-slope failures. On the other hand, climate warming forces us to face an increase of lakes forming due to glacial melting, leading to new hazardous landscape settings. We will be confronted with complex reaction chains and feedback loops related to rock-slope instability, stress adaptation, multistage rock-slope failures, lake tsunamis, entrainment of water and fines, and finally lubrication. As a result, in future we will have to deal more and more with failed rock material impacting on lakes with much longer runout-paths than expected, and which we have not been able to reconstruct in our models so far. Here we want to present the key findings of two of our studies on lake sediments related to large rock-slope failures: We used reflection seismic profiles and sediment cores for the reconstruction of the rockfall history in the landslide-dammed Lake Oeschinen in the Bernese Oberland, Switzerland, where we detected and dated ten events and correlated them to (pre)historical data. As a second project, we have been working on the mobility processes of the uppermost sediments deposited during the late event stadium of the Eibsee rock avalanche at Mount Zugspitze in the Bavarian Alps, Germany. In the reflection seismic profiles we detected sedimentary structures that show high levels of fluidization and thus would hint at

  4. Comparison of SUV and Patlak slope for monitoring of cancer therapy using serial PET scans

    Energy Technology Data Exchange (ETDEWEB)

    Freedman, Nanette M.T. [Hadassah University Hospital, Jerusalem (Israel); Sundaram, Senthil K.; Kurdziel, Karen; Carrasquillo, Jorge A.; Whatley, Millie; Carson, Joann M.; Sellers, David; Libutti, Steven K.; Yang, James C.; Bacharach, Stephen L. [National Institutes of Health, Bethesda, MD (United States)

    2003-01-01

    The standardized uptake value (SUV) and the slope of the Patlak plot (K) have both been proposed as indices to monitor the progress of disease during cancer therapy. Although a good correlation has been reported between SUV and K, they are not equivalent, and may not be equally affected by metabolic changes occurring during disease progression or therapy. We wished to compare changes in tumor SUV with changes in K during serial positron emission tomography (PET) scans for monitoring therapy. Thirteen patients enrolled in a protocol to treat renal cell carcinoma metastases were studied. Serial dynamic fluorodeoxyglucose (FDG) PET scans and computed tomography (CT) and magnetic resonance (MR) scans were performed once prior to treatment, once at 36{+-}2 days after the start of treatment, and (in 7/13 subjects, 16/27 lesions) a third time at 92{+-}9 days after the start of treatment. This resulted in a total of 33 scans, and 70 tumor Patlak and SUV values (one value for each lesion at each time point). SUV and K were measured over one to four predefined tumors/patient at each time point. The input function was obtained from regions of interest over the heart, combined, if necessary, with late blood samples. Over all tumors and scans, SUV and K correlated well (r=0.97, P<0.0001). However, change in SUV with treatment over all tumor scan pairs was much less well correlated with the corresponding change in K (r=0.73, P<0.0001). The absolute difference in % change was outside the 95% confidence limits expected from previous variability studies in 6 of 43 pairs of tumor scans, and greater than 50% in 2 of 43 tumor scan pairs. In four of the six cases, the two indices predicted opposing therapeutic outcomes. Similar results were obtained for SUV normalized by body weight or body surface area and for SUVs using mean or maximum count. Changes in CT and MR tumor cross-product dimensions correlated poorly with each other (r=0.47, P=NS), and so could not be used to determine the

  5. A Remote Patient Monitoring System for Congestive Heart Failure

    Science.gov (United States)

    Suh, Myung-kyung; Chen, Chien-An; Woodbridge, Jonathan; Tu, Michael Kai; Kim, Jung In; Nahapetian, Ani; Evangelista, Lorraine S.; Sarrafzadeh, Majid

    2011-01-01

    Congestive heart failure (CHF) is a leading cause of death in the United States affecting approximately 670,000 individuals. Due to the prevalence of CHF related issues, it is prudent to seek out methodologies that would facilitate the prevention, monitoring, and treatment of heart disease on a daily basis. This paper describes WANDA (Weight and Activity with Blood Pressure Monitoring System); a study that leverages sensor technologies and wireless communications to monitor the health related measurements of patients with CHF. The WANDA system is a three-tier architecture consisting of sensors, web servers, and back-end databases. The system was developed in conjunction with the UCLA School of Nursing and the UCLA Wireless Health Institute to enable early detection of key clinical symptoms indicative of CHF-related decompensation. This study shows that CHF patients monitored by WANDA are less likely to have readings fall outside a healthy range. In addition, WANDA provides a useful feedback system for regulating readings of CHF patients. PMID:21611788

  6. The Role of Antecedent Geology in Submarine Slope Failure: Insights from the Currituck Slide Complex along the Central U.S. Atlantic Margin

    Science.gov (United States)

    Hill, J. C.; Brothers, D. S.; Ten Brink, U. S.; Craig, B.; Chaytor, J. D.; Flores, C. H.

    2015-12-01

    To investigate the influence of antecedent geology on the distribution of submarine landslides along the central U.S. Atlantic margin, we examined a suite of multichannel seismic data, including vintage airgun data from Norfolk Canyon to Cape Hatteras and new high-resolution sparker data across the Currituck Slide, as well as regional multibeam bathymetry. Areas north and south of the Currituck Slide are characterized by oblique margin morphology, defined by angular, convex deltaic clinoforms deposited during the Mid-Miocene, which generated an abrupt shelf-break with relatively steep downslope gradients (>8°). As a result, upper slope sediment bypass, closely spaced submarine canyons, and small landslides confined to canyon headwalls and sidewalls characterize these areas. In contrast, the Currituck region is defined by a sigmoidal geometry, with a smooth shelf-edge rollover and more gentle slope gradient (800m of Plio-Pleistocene sediment accumulation across the continental slope prior to failure. Regionally continuous seismic reflectors show little or no evidence of canyonization beneath the Currituck Slide. A significant volume of intact strata on the lower slope suggests the Currituck region was a primary depocenter for fluvial inputs during multiple sea level lowstands. Failure along bedding planes is evident in outcropping strata along the upper and lower headwalls. Buried scarps beneath these headwalls imply repeated cycles of failure. Folds and faults suggest differential compaction across these scarps may have contributed to the most recent failure. These results suggest high sedimentation and subsequent compaction along a sigmoidal margin were critical components in preconditioning the Currituck Slide for failure. Examination of the regional geological framework illustrates the importance of sediment supply and antecedent slope morphology in the development of large, potentially unstable depocenters along passive margins.

  7. Influence of filling-drawdown cycles of the Three Gorges reservoir on deformation and failure behaviors of anaclinal rock slopes in the Wu Gorge

    Science.gov (United States)

    Huang, Da; Gu, Dong Ming

    2017-10-01

    The upper Wu Gorge on the Yangtze River has been the site of tens of reservoir-induced landslides since the filling of the Three Gorges reservoir in 2003. These landslides have been occurring in heavily fractured carbonate rock materials along the rim of the reservoir in the Wu Gorge. A detailed investigation was carried out to examine the influence of reservoir operations (filling and drawdown) on slope stabilities in the upper Wu Gorge. Field investigations reveal many collapses of various types occurred at the toe of the anaclinal rock slopes, owing to the long-term intensive river erosion caused by periodic fluctuation of the reservoir level. Analysis of data from deformation monitoring suggests that the temporal movement of the slopes shows seasonal fluctuations that correlate with reservoir levels and drawdown conditions, with induced slope acceleration peaking when reservoir levels are lowest. This may illustrate that the main mechanism is the reservoir drawdown, which induces an episodic seepage force in the highly permeable materials at the slope toes, and thus leads to the episodic rockslides. The coupled hydraulic-mechanical (HM) modeling of the G2 landslide, which occurred in 2008, shows that collapse initiated at the submerged slope toe, which then caused the upper slope to collapse in a rock topple-rock slide pattern. The results imply that preventing water erosion at the slope toe might be an effective way for landslide prevention in the study area.

  8. Spacecraft dynamics characterization and control system failure detection. Volume 3: Control system failure monitoring

    Science.gov (United States)

    Vanschalkwyk, Christiaan M.

    1992-01-01

    We discuss the application of Generalized Parity Relations to two experimental flexible space structures, the NASA Langley Mini-Mast and Marshall Space Flight Center ACES mast. We concentrate on the generation of residuals and make no attempt to implement the Decision Function. It should be clear from the examples that are presented whether it would be possible to detect the failure of a specific component. We derive the equations from Generalized Parity Relations. Two special cases are treated: namely, Single Sensor Parity Relations (SSPR) and Double Sensor Parity Relations (DSPR). Generalized Parity Relations for actuators are also derived. The NASA Langley Mini-Mast and the application of SSPR and DSPR to a set of displacement sensors located at the tip of the Mini-Mast are discussed. The performance of a reduced order model that includes the first five models of the mast is compared to a set of parity relations that was identified on a set of input-output data. Both time domain and frequency domain comparisons are made. The effect of the sampling period and model order on the performance of the Residual Generators are also discussed. Failure detection experiments where the sensor set consisted of two gyros and an accelerometer are presented. The effects of model order and sampling frequency are again illustrated. The detection of actuator failures is discussed. We use Generalized Parity Relations to monitor control system component failures on the ACES mast. An overview is given of the Failure Detection Filter and experimental results are discussed. Conclusions and directions for future research are given.

  9. Fracture and slope stability monitoring at Puigcercós landslide (Catalonia, Spain)

    Science.gov (United States)

    Khazaradze, Giorgi; Vasquez, Sebastian; López, Robert; Guinau, Guinau; Calvet, Jaume; Vilaplana, Joan Manuel; Blanch, Xabier; Tapia, Mar; Roig, Pere; Suriñach, Emma

    2017-04-01

    The village of Puigcercós ( 50 inhabitants) is located in the region of Pallars Jussà (Lleida) in Catalonia, several km south of the town of Tremp. In 1881 the entire village had to be moved from its historical location on top of the hill to its current location. This was caused by a series of landslides caused by continuing rainfall. The most important landslide occurred on January 13th 1881, which displaced more than 5 million cubic meters of sediments and rocks and created an impressive rock scar of approximately 25 m height and 150 m width. The area where the sediments were accumulated is extensive, reaching 8 hectares. During the last years, our group has chosen the site of Puigcercós to conduct pilot studies of landslides and rockfalls using multidisciplinary approach, involving Terrestrial Laser Scanner, Total Station, DGPS, seismic monitoring and geophysical techniques. The geophysical surveys of the zone of the sediment accumulation, can help determine the internal structure of the displaced sediments. The work presented here mainly concerns the deformation monitoring at the site using geodetic techniques. In July 2015, a network of 11 new geodetic points has been established and measured with GPS. The location of these points was chosen with the purpose of answering two important questions in the studies of the stability and geomorphological activity of the Puigcercós landslide: 1) As a result of combined analysis of the tape-meter, total station and GPS measurements, we hope to obtain absolute values of deformation in the upper part of the escarpment, controlling the stability of the escarpment front and the associated fractures near the coronation. For this purpose, two geodetic control points have been established at the hilltop, some 5 meters away from the escarpment itself. 2) Determine the slope stability of the depositional area, where we established nine geodetic points. As of today, these points have been measured twice, in 2015 and 2016

  10. Real Time Fire Reconnaissance Satellite Monitoring System Failure Model

    Science.gov (United States)

    Nino Prieto, Omar Ariosto; Colmenares Guillen, Luis Enrique

    2013-09-01

    In this paper the Real Time Fire Reconnaissance Satellite Monitoring System is presented. This architecture is a legacy of the Detection System for Real-Time Physical Variables which is undergoing a patent process in Mexico. The methodologies for this design are the Structured Analysis for Real Time (SA- RT) [8], and the software is carried out by LACATRE (Langage d'aide à la Conception d'Application multitâche Temps Réel) [9,10] Real Time formal language. The system failures model is analyzed and the proposal is based on the formal language for the design of critical systems and Risk Assessment; AltaRica. This formal architecture uses satellites as input sensors and it was adapted from the original model which is a design pattern for physical variation detection in Real Time. The original design, whose task is to monitor events such as natural disasters and health related applications, or actual sickness monitoring and prevention, as the Real Time Diabetes Monitoring System, among others. Some related work has been presented on the Mexican Space Agency (AEM) Creation and Consultation Forums (2010-2011), and throughout the International Mexican Aerospace Science and Technology Society (SOMECYTA) international congress held in San Luis Potosí, México (2012). This Architecture will allow a Real Time Fire Satellite Monitoring, which will reduce the damage and danger caused by fires which consumes the forests and tropical forests of Mexico. This new proposal, permits having a new system that impacts on disaster prevention, by combining national and international technologies and cooperation for the benefit of humankind.

  11. The stability of gas hydrate field in the northeastern continental slope of Sakhalin Island, Sea of Okhotsk, as inferred from analysis of heat flow data and its implications for slope failures

    Science.gov (United States)

    Kim, Y.; Lee, S.; Jin, Y.; Baranov, B.; Obzhirov, A.; Salomatin, A.; Shoji, H.

    2012-12-01

    The sudden release of methane in shallow water due to ocean warming and/or sea level drop, leading to extensive mass wasting at continental margins, has been suggested as a possible cause of global climate change. In the northeastern continental slope of the Sakhalin Island (Sea of Okhotsk), numerous gas hydrate-related manifestations occur, including hydroacoustic anomaly (gas flare) in the water column, pockmarks and mounds on the seafloor, seepage structures and bottom-simulating reflectors (BSRs). The gas hydrate found at 385 mbsl represents the shallowest occurrence ever recorded in the Okhotsk Sea. In this study, we modeled the gas hydrate stability zone (GHSZ) using methane gas composition, water temperature and geothermal gradient to see if it is consistent with the observed depth of BSR. An important distinction can be made between the seafloor containing seepage features and normal seafloor in terms of their thermal structure. The depth of BSR matches well with the base of GHSZ estimated from the background heat flow (geothermal gradient). A large slope failure feature is found in the northern Sakhalin continental slope. We explore the possibility that this failure was caused by gas hydrate dissociation, based on the past climate change history and inference from the GHSZ modeling. Prediction of the natural landslide is difficult; however, new stratigraphic evidence from subbottom profiles suggests that the landslide occurred at 20 ka which is roughly consistent with the period of sea level drop during the Last Glacial Maximum. Furthermore, this region has witnessed a rapid sea water temperature increase (~0.6°C) in the last 50 years. If such a trend continues, additional slope failure can be expected in the near future in this region.

  12. Fundamentals of intrathoracic impedance monitoring in heart failure.

    Science.gov (United States)

    Wang, Li

    2007-05-21

    The primary objective of the first-generation implantable cardiac pacemakers was to provide critical heart rate support, but these devices did not have any diagnostic capabilities. In the intervening decades, the number, type, and complexity of implantable devices has greatly expanded. Today, implantable devices not only provide heart rate support but they also provide protection from sudden cardiac death with implantable cardioverter defibrillators (ICDs) and reduce symptoms and increase survival with cardiac resynchronization therapy (CRT). Furthermore, information on physiologic variables has been collected in patients with implanted devices for the purpose of providing sophisticated closed-loop optimization of their pacing and defibrillation algorithms. Thoracic fluid status monitoring via intrathoracic impedance is the newest device-based diagnostic capability. For those patients with heart failure who are already targeted to receive an ICD or CRT with defibrillator implant, the ability to monitor fluid status can provide additional insight into the difficult problem of evaluating and managing these patients. This article reviews the basics of measuring intrathoracic impedance via OptiVol fluid status monitoring (Medtronic, Inc., Minneapolis, MN), as well as clinical results regarding the utility of evaluating OptiVol intrathoracic impedance data trends.

  13. Design and operation of a comprehensive and permanent rock slope deformation monitoring system at the Great Aletsch Glacier (Switzerland)

    Science.gov (United States)

    Glueer, Franziska; Loew, Simon; Seifert, Reto; Frukacz, Mariusz; Wieser, Andreas

    2015-04-01

    Most geodetic monitoring systems of rock slope instabilities include a series of stable reference points. However, detailed studies of Alpine rock slopes with long term Global Navigation Satellite Systems (GNSS), high-resolution tilt meters and Total Stations (TPS) have shown unequivocally, that truly stable points are very rare. The underlying causes of such natural movements are long- and short-periodic reversible deformations of stable slopes caused by annual and daily changes of pore pressure and temperature in fractured rock masses. These movements impact TPS measurements and cause inconsistencies in the reference frame which, if not accounted for, will introduce systematic errors in the calculated deformation pattern and time series. This complex situation can be found in many mountain slopes. However, detailed measurements and analyses of the superposition of reversible slope deformations and gravitational mass movements of active instabilities are not existing. At the terminus of the Great Aletsch Glacier a comprehensive permanent deformation and displacement monitoring system has been installed, which allows to investigate large scale reversible deformations as well as active rock slope instabilities (Moosfluh and Driest) in response to rapid glacier retreat. The system includes 2 high-precision TPS stations with automated reflector recognition, 58 reflectors, 4 GNSS stations, climate sensors, and 2 high-resolution tilt meters and provides a fully automated survey with high accuracies over distances up to 2 km. The self-sustaining monitoring systems at Aletsch are installed at two high-alpine locations, remotely operated and automatically collect data on a set time schedule mainly at night. Deformation artefacts from thermal and wind disturbances of total stations' pillars and climatic refraction are studied with separate monitoring programs. We describe various aspects of the design, construction, testing and practical operation of this unique monitoring

  14. Geotechnical monitoring of a pipeline buried in slope; Monitoramento geotecnico de um duto enterrado em encosta

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Marcio de Souza Soares de; Lacerda, Willy Alvarenga; Marques, Maria Esther Soares; Freitas, Nicolle Cruz de [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE); Costa, Alvaro Maia da [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2003-07-01

    When a pipeline is installed inside a slope, it is subjected to stress variation due to slope movements, which could compromise its operation. On this paper it is presented a preliminary study of the behavior of a slope in which it was installed a pipeline, denominated ORBIG (Km 48 + 300 and Km 48 + 500), at Coroa Grande, Rio de Janeiro. The analysis of displacements and velocity of displacement and the comparison with rainfall data will provide a better understanding of the mechanics of the slope movements. The main objective is to analyze the risk of pipeline rupture and the environmental consequences, and to provide means to define actions for risk reduction on those areas. (author)

  15. Fine-grained sediment gravity flow deposits induced by flood and lake slope failure events: examples of lacustrine varved sediments in Japan

    Science.gov (United States)

    Ishihara, Yoshiro; Sasaki, Yasunori; Sasaki, Hana; Onishi, Yuri

    2016-04-01

    Fine-grained sediment gravity flow deposits induced by flood and lake slope failure events are frequently intercalated in lacustrine successions. When sediment gravity flow deposits are present in varved sediments, it is suggested that they provide valuable information about sediment gravity flows, because they can easily trace laterally and can give the magnitude of erosion and recurrence interval of events. In addition, because large sedimentary bodies of stacked sediment gravity flow deposits in varved sediments of a calm lake are not suggested, a relatively simple depositional environment is expected. In the present study, we analysed sedimentary facies of sediment gravity flow deposits in varved lacustrine diatomites in the Middle Pleistocene Hiruzenbara and Miyajima formations in Japan, and concluded a depositional model of the lacustrine sediment gravity flow deposits. Varved diatomites: The Hiruzenbara Fm., a dammed lake fill as foots of Hiruzen Volcanos, is deposited during an interglacial period during MIS12 to 15. Varves of ca. 8000 yr were measured in a 20 m intercalating flood and lake slope failure-induced sediment gravity flow deposits. The Miyajima Fm., distributed in a paleo-caldera lake in NE Japan, includes many sediment gravity flow deposits possibly originated from fandeltas around the lake. These formations have differences in their depositional setting; the Hiruzebara Fm. was deposited in a large lake basin, whereas the Miyajima Fm. was deposited in a relatively small basin. Because of the depositional setting, intercalation of volcaniclastics is dominant in the Miyajima Fm. Lacustrine sediment gravity flow deposits: Sediment gravity flow deposits in both formations can be classified into flood- and lake slope failure-induced types based on the sedimentary facies. Composites of the both types are also found. Flood-induced types comprise fine-grained silts dominated by carbonaceous fragments, whereas lake slope failure-induced types are

  16. Catastrophic rock slope failures and late Quaternary developments in the Nanga Parbat-Haramosh Massif, Upper Indus basin, northern Pakistan

    Science.gov (United States)

    Hewitt, Kenneth

    2009-06-01

    The Nanga Parbat-Haramosh Massif has some of the greatest relief on Earth and highest measured rates of uplift, denudation, and river incision in bedrock. Many studies have sought to understand how its morphology relates to geotectonic evolution and glaciations. However, few catastrophic rock slope failures had been recognised and many of their impacts had been attributed to other processes. Recently more than 150 of these landslides have been found within a 100-km radius of Nanga Parbat (8125 m). New discoveries are reported east, north and west of Nanga Parbat along the Indus streams. Most generated long-run-out rock avalanches that dammed the Indus or its tributaries, some impounding large lakes. They initiated episodes of intermontane sedimentation followed by trenching and removal of sediment. Valley-floor features record a complex interplay of impoundment and sedimentation episodes, superimposition of streams in pre-landslide valley floors, and exhumation of buried features. These findings depart from existing reconstructions of Quaternary events. A number of the rock-avalanche deposits were previously misinterpreted as tills or moraine and their associated lacustrine deposits attributed to glacial lakes. Features up to 1000 m above the Indus, formerly seen as tectonically raised terraces, are depositional features emplaced by landslides, or erosion terraces recording the trenching of valley fill in landslide-interrupted river reaches. Unquestionably, tectonics and glaciation have been important but decisive and misread formative events of the Holocene involve a post-glacial, landslide-fragmented fluvial system. The latter has kept valley developments in a chronic state of disequilibrium with respect to climatic and geotectonic controls. Accepted glacial chronologies are put in doubt, particularly the extent and timing of the last major glaciation. The pace and role processes in the Holocene have been seriously underestimated.

  17. Preferential flows and soil moistures on a Benggang slope: Determined by the water and temperature co-monitoring

    Science.gov (United States)

    Tao, Yu; He, Yangbo; Duan, Xiaoqian; Zou, Ziqiang; Lin, Lirong; Chen, Jiazhou

    2017-10-01

    Soil preferential flow (PF) has important effects on rainfall infiltration, moisture distribution, and hydrological and ecological process; but it is very difficult to monitor and characterize on a slope. In this paper, soil water and soil temperature at 20, 40, 60, 80 cm depths in six positions were simultaneously monitored at high frequency to confirm the occurrence of PF at a typical Benggang slope underlain granite residual deposits, and to determine the interaction of soil moisture distribution and Benggang erosion. In the presence of PF, the soil temperature was first (half to one hour) governed by the rainwater temperature, then (more than one hour) governed by the upper soil temperature; in the absence of PF (only matrix flow, MF), the soil temperature was initially governed by the upper soil temperature, then by the rainwater temperature. The results confirmed the water replacement phenomenon in MF, thus it can be distinguished from PF by additional temperature monitoring. It indicates that high frequency moisture and temperature monitoring can determine the occurrence of PF and reveal the soil water movement. The distribution of soil water content and PF on the different positions of the slope showed that a higher frequency of PF resulted in a higher variation of average of water content. The frequency of PF at the lower position can be three times as that of the upper position, therefore, the variation coefficient of soil water content increased from 4.67% to 12.68% at the upper position to 8.18%-33.12% at the lower position, where the Benggang erosion (soil collapse) was more possible. The results suggest strong relationships between PF, soil water variation, and collapse activation near the Benggang wall.

  18. Tectonic control of complex slope failures in the Ameka River Valley (Lower Gibe Area, central Ethiopia): Implications for landslide formation

    Science.gov (United States)

    Kycl, Petr; Rapprich, Vladislav; Verner, Kryštof; Novotný, Jan; Hroch, Tomáš; Mišurec, Jan; Eshetu, Habtamu; Tadesse Haile, Ezra; Alemayehu, Leta; Goslar, Tomasz

    2017-07-01

    Even though major faults represent important landslide controlling factors, the role the tectonic setting in actively spreading rifts plays in the development of large complex landslides is seldom discussed. The Ameka complex landslide area is located on the eastern scarp of the Gibe Gorge, approximately 45 km to the west of the Main Ethiopian Rift and 175 km to the southwest of Addis Ababa. Investigation of the complex landslide failures required a combination of satellite and airborne data-based geomorphology, geological field survey complemented with structural analysis, radiocarbon geochronology and vertical electric sounding. The obtained observations confirmed the multiphase evolution of the landslide area. We have documented that, apart from climatic and lithological conditions, the main triggering factor of the Ameka complex landslide is the tectonic development of this area. The E-W extension along the NNE-SSW trending Main Ethiopian Rift is associated with the formation of numerous parallel normal faults, such as the Gibe Gorge fault and the almost perpendicular scissor faults. The geometry of the slid blocks of coherent lithology have inherited the original tectonic framework, which suggests the crucial role tectonics play in the fragmentation of the compact rock-masses, and the origin and development of the Ameka complex landslide area. Similarly, the main scarps were also parallel to the principal tectonic features. The local tectonic framework is dominated by faults of the same orientation as the regional structures of the Main Ethiopian Rift. Such parallel tectonic frameworks display clear links between the extension of the Main Ethiopian Rift and the tectonic development of the landslide area. The Ameka complex landslide developed in several episodes over thousands of years. According to the radiocarbon data, the last of the larger displaced blocks (representing only 2% of the total area) most likely slid down in the seventh century AD. The main

  19. Automatic slope monitoring systems at As Pontes mine. Sistema de control automatizado de taludes de la mina de As Pontes

    Energy Technology Data Exchange (ETDEWEB)

    Arias, G.; de Pozo, D. (ENDESA, Madrid (Spain))

    1992-04-01

    As Pontes mine belonging to ENDESA is situated in the north-west of the province of La Coruna. The deposit is brown lignite with an average annual production of 12 mt of mineral and 40 million cubic metres of dirt. The surface area is approximately 9 square kilometres and its depth 200 m at level 1. The structure and geology of the deposit means that the layout of the workings (selected according to geotechnical considerations, methods of working and profitability) calls for accurately-designed slopes which require stringent geotechnical monitoring in order to prevent deformation. 8 figs.

  20. Cardiopulmonary Exercise Testing in Patients with Chronic Heart Failure: Prognostic Comparison from Peak VO2 and VE/VCO2 Slope.

    Science.gov (United States)

    Sarullo, Filippo Maria; Fazio, Giovanni; Brusca, Ignazio; Fasullo, Sergio; Paterna, Salvatore; Licata, Pamela; Novo, Giuseppina; Novo, Salvatore; Di Pasquale, Pietro

    2010-05-26

    Cardiopulmonary exercise testing with ventilatory expired gas analysis (CPET) has proven to be a valuable tool for assessing patients with chronic heart failure (CHF). The maximal oxygen uptake (peak V02) is used in risk stratification of patients with CHF. The minute ventilation-carbon dioxide production relationship (VE/VCO2 slope) has recently demonstrated prognostic significance in patients with CHF. Between January 2006 and December 2007 we performed CPET in 184 pts (146 M, 38 F, mean age 59.8 +/- 12.9 years), with stable CHF (96 coronary artery disease, 88 dilated cardiomyopathy), in NYHA functional class II (n.107) - III (n.77), with left ventricular ejection fraction (LVEF) /= 35.6 and 25% in those with VE/VCO2 slope 12.2 ml/kg/min (log rank chi2: 50.98, p /= 32.5 and 23% in those with VE/VCO2 slope 12.3 ml/kg/min (log rank chi2: 72.86, p < 0.0001). The VE/VCO2 slope was demonstrated with receiver operating characteristic curve analysis to be equivalent to peak VO2 in predicting cardiac-related mortality (0.89 vs. 0.89). Although area under the receiver operating characteristic curve for the VE/VCO2 slope was greater than peak VO2 in predicting cardiac-related hospitalization (0.88 vs 0.82), the difference was no statistically significant (p = 0.13). These results add to the present body of knowledge supporting the use of CPET in CHF patients. The VE/VCO2 slope, as an index of ventilatory response to exercise, is an excellent prognostic parameter and improves the risk stratification of CHF patients. It is easier to obtain than parameters of maximal exercise capacity and is of equivalent prognostic importance than peak VO2.

  1. Numerical study of tsunami generated by multiple submarine slope failures in Resurrection Bay, Alaska, during the MW 9.2 1964 earthquake

    Science.gov (United States)

    Suleimani, E.; Hansen, R.; Haeussler, P.J.

    2009-01-01

    We use a viscous slide model of Jiang and LeBlond (1994) coupled with nonlinear shallow water equations to study tsunami waves in Resurrection Bay, in south-central Alaska. The town of Seward, located at the head of Resurrection Bay, was hit hard by both tectonic and local landslide-generated tsunami waves during the MW 9.2 1964 earthquake with an epicenter located about 150 km northeast of Seward. Recent studies have estimated the total volume of underwater slide material that moved in Resurrection Bay during the earthquake to be about 211 million m3. Resurrection Bay is a glacial fjord with large tidal ranges and sediments accumulating on steep underwater slopes at a high rate. Also, it is located in a seismically active region above the Aleutian megathrust. All these factors make the town vulnerable to locally generated waves produced by underwater slope failures. Therefore it is crucial to assess the tsunami hazard related to local landslide-generated tsunamis in Resurrection Bay in order to conduct comprehensive tsunami inundation mapping at Seward. We use numerical modeling to recreate the landslides and tsunami waves of the 1964 earthquake to test the hypothesis that the local tsunami in Resurrection Bay has been produced by a number of different slope failures. We find that numerical results are in good agreement with the observational data, and the model could be employed to evaluate landslide tsunami hazard in Alaska fjords for the purposes of tsunami hazard mitigation. ?? Birkh??user Verlag, Basel 2009.

  2. Numerical Study of Tsunami Generated by Multiple Submarine Slope Failures in Resurrection Bay, Alaska, during the M W 9.2 1964 Earthquake

    Science.gov (United States)

    Suleimani, Elena; Hansen, Roger; Haeussler, Peter J.

    2009-02-01

    We use a viscous slide model of J iang and L eB lond (1994) coupled with nonlinear shallow water equations to study tsunami waves in Resurrection Bay, in south-central Alaska. The town of Seward, located at the head of Resurrection Bay, was hit hard by both tectonic and local landslide-generated tsunami waves during the M W 9.2 1964 earthquake with an epicenter located about 150 km northeast of Seward. Recent studies have estimated the total volume of underwater slide material that moved in Resurrection Bay during the earthquake to be about 211 million m3. Resurrection Bay is a glacial fjord with large tidal ranges and sediments accumulating on steep underwater slopes at a high rate. Also, it is located in a seismically active region above the Aleutian megathrust. All these factors make the town vulnerable to locally generated waves produced by underwater slope failures. Therefore it is crucial to assess the tsunami hazard related to local landslide-generated tsunamis in Resurrection Bay in order to conduct comprehensive tsunami inundation mapping at Seward. We use numerical modeling to recreate the landslides and tsunami waves of the 1964 earthquake to test the hypothesis that the local tsunami in Resurrection Bay has been produced by a number of different slope failures. We find that numerical results are in good agreement with the observational data, and the model could be employed to evaluate landslide tsunami hazard in Alaska fjords for the purposes of tsunami hazard mitigation.

  3. Damage to Buildings in Large Slope Rock Instabilities Monitored with the PSInSAR™ Technique

    Directory of Open Access Journals (Sweden)

    Paolo Frattini

    2013-09-01

    Full Text Available The slow movement of active deep-seated slope gravitational deformations (DSGSDs and deep-seated rockslides can cause damage to structures and infrastructures. We use Permanent Scatterers Synthetic Aperture Radar Interferometry (PSInSAR™ displacement rate data for the analysis of DSGSD/rockslide activity and kinematics and for the analysis of damage to buildings. We surveyed the degree of damage to buildings directly in the field, and we tried to correlate it with the superficial displacement rate obtained by the PSInSAR™ technique at seven sites. Overall, we observe that the degree of damage increases with increasing displacement rate, but this trend shows a large dispersion that can be due to different causes, including: the uncertainty in the attribution of the degree of damage for buildings presenting wall coatings; the complexity of the deformation for large phenomena with different materials and subjected to differential behavior within the displaced mass; the absence of differential superficial movements in buildings, due to the large size of the investigated phenomena; and the different types of buildings and their position along the slope or relative to landslide portions.

  4. Laboratory Experiments on Steady State Seepage-Induced Landslides Using Slope Models and Sensors

    Directory of Open Access Journals (Sweden)

    Sandra G. Catane

    2011-06-01

    Full Text Available A thorough understanding of the failure initiation process is crucial in the development of physicallybased early warning system for landslides and slope failures. Laboratory-scale slope models were constructed and subjected to instability through simulated groundwater infiltration. This is done by progressively increasing the water level in the upslope tank and allowing water to infiltrate laterally towards the toe of the slope. Physical changes in the slope models were recorded by tilt sensors and video cameras. When the model slope was destabilized, the chronology of events occurred in the following sequence: (1 bulging at the toe, (2 seepage at the toe, (3 initial failure of soil mass, (4 piping, (5 retrogressive failure, (6 formation of tension cracks and (7 major failure of soil mass. Tension cracks, piping and eventual failure are manifestations of differential settlements due to variations in void ratio. Finite element analysis indicates that instability and subsequent failures in the model slope were induced primarily by high hydraulic gradients in the toe area. Seepage, initial deformation and subsequent failures were manifested in the toe area prior to failure, providing a maximum of 36 min lead time. Similar lead times are expected in slopes of the same material as shown in many case studies of dam failure. The potential of having a longer lead time is high for natural slopes made of materials with higher shear strength thus evacuation is possible. The tilt sensors were able to detect the initial changes before visual changes manifested, indicating the importance of instrumental monitoring.

  5. Clinical and Hemodynamic Correlates and Prognostic Value of VE/VCO2 Slope in Patients With Heart Failure With Preserved Ejection Fraction and Pulmonary Hypertension.

    Science.gov (United States)

    Klaassen, Sebastiaan H C; Liu, Licette C Y; Hummel, Yoran M; Damman, Kevin; van der Meer, Peter; Voors, Adriaan A; Hoendermis, Elke S; van Veldhuisen, Dirk J

    2017-07-20

    Impaired exercise capacity is one of the hallmarks of heart failure with preserved ejection fraction (HFpEF), but the clinical and hemodynamic correlates and prognostic value of exercise testing in patients with HFpEF is unknown. Patients with HFpEF (left ventricular ejection fraction [LVEF] ≥45%) and pulmonary hypertension underwent cardiopulmonary exercise test (CPX) to measure maximal (peak VO2) and submaximal (ventilatory equivalent for carbon dioxide [VE/VCO2] slope) exercise capacity. In addition, right heart catheterization was performed. Patients were grouped in tertiles based on the VE/VCO2 slope. Univariate and multivariate regression analyses were performed. A Cox regression analysis was performed to determine the mortality during follow-up. We studied 88 patients: mean age 73 ± 9 years, 67% female, mean LVEF 58%, median N-terminal pro-B-type natriuretic peptide (NT-proBNP) 840 (interquartile range 411-1938) ng/L. Patients in the highest VE/VCO2 tertile had the most severe HF, as reflected in higher New York Heart Association functional class and higher NT-proBNP plasma levels (all P < .05 for trend), whereas LVEF was similar between the groups. Multivariable regression analysis with backward elimination on invasive hemodynamic measurements showed that VE/VCO2 slope was independently associated with pulmonary vascular resistance (PVR). Cox regression analysis showed that increased VE/VCO2 slope (but not peak VO2) was independently associated with increased mortality. Increased VE/VCO2 slope was associated with more severe disease and higher PVR and was independently associated with increased mortality in patients with HFpEF. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Engineering geologic assessment of the slope movements and liquefaction failures of the 23 October 2011 Van earthquake (Mw= 7.2)

    Science.gov (United States)

    Karakaş, A.; Coruk, Ö.; Doğan, B.

    2013-04-01

    On 23 October 2011, a Mw = 7.2 earthquake occurred in the Van Province in eastern Turkey, killing 604 people. The earthquake was triggered by a thrust fault due to a compression stress in the region, and caused extensive damage over a large area. Many structures in the earthquake region collapsed, and the damage spread from the city of Van to the town of Erciş, in a distance of 60 km. The earthquake generated several slope movements and liquefaction failures in the region, and this study evaluates these processes from the perspective of engineering geology, and presents field and laboratory results related to these processes. Attenuation relationships were used for estimation of peak ground accelerations (PGAs), and an empirical liquefaction evaluation method employing ground accelerations was used to define threshold accelerations initiating the liquefaction. The results demonstrate that landslides were widespread and more frequently observed in the field in comparison with earthflows and rockfalls. Flow-type liquefaction and lateral spreading was found to be widespread and more common than the liquefaction-related settlement. The minimum threshold acceleration value for the initiation of soil liquefaction was calculated to be 188.87 cm s-2 (~0.19 g) in the earthquake region. Laboratory results indicated that the soil liquefaction was closely associated with grain size. The slope instabilities, liquefaction and associated ground failures occurred mainly in rural areas, and their impact on structures was quite low as compared to the human loss and structural damage by the earthquake.

  7. FDD-1 System On-line Monitoring Fuel Rod Failure of Nuclear Power Plant

    Institute of Scientific and Technical Information of China (English)

    CHENPeng; ZHANGYing-chao; JISong-tao; GAOYong-guang; YINZhen-guo; HANChuan-bin

    2003-01-01

    The FDD-1 system developed by CIAE for on-line monitoring fuel rod failure of nuclear power plant consists of γ-ray detector, γ-ray spectrum analyzer, computer, and an analysis code for evaluating the status of fuel rod failure. It would be determined that the fuel rod failure occurs when a large amount of γ activity increases in the primary system measured by γ-ray detector near the CVCS.

  8. Monitoring and remote failure detection of grid-connected PV systems based on satellite observations

    NARCIS (Netherlands)

    Drews, A.; de Keizer, A.C.; Beyer, H.G.; Lorenz, E.; Betcke, J.W.H.; van Sark, W.G.J.H.M.; Heydenreich, W.; Wiemken, E.; Stettler, S.; Toggweiler, P.; Bofinger, S.; Schneider, M.; Heilscher, G.; Heinemann, D.

    2007-01-01

    Small grid-connected photovoltaic systems up to 5 kWp are often not monitored because advanced surveillance systems are not economical. Hence, some system failures which lead to partial energy losses stay unnoticed for a long time. Even a failure that results in a larger energy deficit can be diffic

  9. Influence of weathering and pre-existing large scale fractures on gravitational slope failure: insights from 3-D physical modelling

    Directory of Open Access Journals (Sweden)

    D. Bachmann

    2004-01-01

    Full Text Available Using a new 3-D physical modelling technique we investigated the initiation and evolution of large scale landslides in presence of pre-existing large scale fractures and taking into account the slope material weakening due to the alteration/weathering. The modelling technique is based on the specially developed properly scaled analogue materials, as well as on the original vertical accelerator device enabling increases in the 'gravity acceleration' up to a factor 50. The weathering primarily affects the uppermost layers through the water circulation. We simulated the effect of this process by making models of two parts. The shallower one represents the zone subject to homogeneous weathering and is made of low strength material of compressive strength σl. The deeper (core part of the model is stronger and simulates intact rocks. Deformation of such a model subjected to the gravity force occurred only in its upper (low strength layer. In another set of experiments, low strength (σw narrow planar zones sub-parallel to the slope surface (σwl were introduced into the model's superficial low strength layer to simulate localized highly weathered zones. In this configuration landslides were initiated much easier (at lower 'gravity force', were shallower and had smaller horizontal size largely defined by the weak zone size. Pre-existing fractures were introduced into the model by cutting it along a given plan. They have proved to be of small influence on the slope stability, except when they were associated to highly weathered zones. In this latter case the fractures laterally limited the slides. Deep seated rockslides initiation is thus directly defined by the mechanical structure of the hillslope's uppermost levels and especially by the presence of the weak zones due to the weathering. The large scale fractures play a more passive role and can only influence the shape and the volume of the sliding units.

  10. Exploring topographic methods for monitoring morphological changes in mountain channels of different size and slope

    Science.gov (United States)

    Theule, Joshua; Bertoldi, Gabriele; Comiti, Francesco; Macconi, Pierpaolo; Mazzorana, Bruno

    2015-04-01

    High resolution digital elevation models (DEM) can easily be obtained using either laser scanning technology or photogrammetry with structure from motion (SFM). The scale, resolution, and accuracy can vary according to how the data is acquired, such as by helicopter, drone, or extendable pole. In the Autonomous Province of Bozen-Bolzano (Northern Italy), we had the opportunity to compare several of these techniques at different scales in mountain streams ranging from low-gradient braided rivers to steep debris flow channels. The main objective is to develop protocols for efficient monitoring of morphologic changes in different parts of the river systems. For SFM methods, we used the software "Photoscan Professional" (Agisoft) to generate densified point clouds. Both artificial and natural targets were used to georeference them. In some cases, targets were not even necessary and point clouds could be aligned with older point clouds by using the iterative closest point algorithm in the freeware "CloudCompare". At the Mareit/Mareta River, a restored braided river, an airborne laser scan survey (2011) was compared to a SFM DEM derived from a helicopter photo survey (2014) carried out (by the Autonomous Province of Bolzano) at approximately 100 m above ground. Photogrammetry point clouds had an alignment error of 1.5 cm and had three times more data coverage than laser scanning. Indeed, the large spacing and clustering of 2011 ALS swaths led to areas of no data when a 10-cm grid is developed. In the Gadria basin, a debris flow monitoring catchment, we used a sediment retention basin to compare debris flow volumes resulting from i) a drone (by the "Mavtech" company) survey at 10 m above ground (with GoPro camera), ii) a 5-m pole-mounted camera (with Canon EOS 700D) and iii) a 3-m pole-mounted camera (with GoPro Hero Silver3+) to a iv) TLS survey. As the drone had limited load capacity (especially at high elevations) we used the lightweight GoPro Hero 3+, but due to the

  11. Comparison between monitored and modeled pore water pressure and safety factor in a slope susceptible to shallow landslides

    Science.gov (United States)

    Bordoni, Massimiliano; Meisina, Claudia; Zizioli, Davide; Valentino, Roberto; Bittelli, Marco; Chersich, Silvia

    2014-05-01

    Shallow landslides can be defined as slope movements affecting superficial deposits of small thicknesses which are usually triggered due to extreme rainfall events, also very concentrated in time. Shallow landslides are hazardous phenomena: in particular, if they happen close to urbanized areas they could cause significant damages to cultivations, structures, infrastructures and, sometimes, human losses. The triggering mechanism of rainfall-induced shallow landslides is strictly linked with the hydrological and mechanical responses of usually unsaturated soils to rainfall events. For this reason, it is fundamental knowing the intrinsic hydro-mechanical properties of the soils in order to assess both susceptibility and hazard of shallow landslide and to develop early-warning systems at large scale. The hydrological data collected by a 20 months monitoring on a slope susceptible to shallow landslides in an area of the North -Eastern Oltrepo Pavese (Northern Apennines, Italy) were used to identify the hydrological behaviors of the investigated soils towards rainfall events. Field conditions under different rainfall trends have also been modeled by using both hydrological and physically-based stability models for the evaluation of the slope safety factor . The main objectives of this research are: (a) to compare the field measured pore water pressures at different depths with results of hydrological models, in order to evaluate the efficiency of the tested models and to determine how precipitations affect pore pressure development; (b) to compare the time trends of the safety factor that have been obtained by applying different stability models; (c) to evaluate, through a sensitivity analysis, the effects of soil hydrological properties on modeling pore water pressure and safety factor. The test site slope where field measurements were acquired is representative of other sites in Northern Apennines affected by shallow landslides and is characterized by medium

  12. Optical strain for monitoring of concrete failure mechanism with discontinuity.

    Science.gov (United States)

    Deb, Debasis; Bhattacharjee, Sudipta

    2015-12-10

    Finite-element-based digital image correlation (FEM-DIC) is one of the most widely used noncontact techniques in the field of experimental mechanics for measurement of deformation/strain. In this paper, the FEM-DIC method is refined by introducing the concept of multilevel extended digital image correlation (X-DIC), which also can capture deformation across discontinuity planes if they exist in images. Using regular and enhanced displacements at each node, strain tensors are estimated by applying the concept of smooth particle hydrodynamics (SPH). Numerical works are carried out to check the accuracy level of the developed algorithm by considering discrete discontinuity on the surface of a sample. Work is further extended to determine displacements and strains developed at the surface of several cubical concrete samples under uniaxial loading conditions. The tests are conducted until fractures are developed in the post-failure region. Using the concept of cumulative effective strain, a parameter is identified, which can be used as a precursor in the object failure process.

  13. Slope Failure Hazards at Basalt Geomorphosites: A Comparative Analysis of the Giant's Causeway World Heritage Site, UK and Penghu Marine Geopark, Taiwan.

    Science.gov (United States)

    Gruendemann, Ciaran; Chung Lin, Jiun; Smith, Bernard

    2010-05-01

    Columnar basalt landscapes hold a fascination that transcends geographical and cultural boundaries. It is because of this that they feature so prominently on the global register of significant geomorphosites. Arguably the most iconic of these basalt landscapes is the Giant's Causeway in Northern Ireland, a status recognized by its inscription as a World Heritage Site. Recognition at this level invariably brings visitor pressure, and with it concern as to the impact they exert on site integrity. Rarely, however, is the same overt concern expressed for the risks that such sites pose to the visitors - or not at least until disaster strikes. Yet, the very features that make these sites attractive - tall, exposed, largely unconstrained columns - render many of them intrinsically unstable, prone to catastrophic collapse and potentially hazardous to visitors. In this presentation we highlight the nature of these slope instability issues through a comparative analysis of two geographically contrasting basalt geomorphosites. Investigations of slope hazard at the Giant's Causeway have shown that many are linked to the distinctive structural characteristics and weathering patterns of flood basalts. Typically, individual flows comprise a columnar ‘colonnade', topped by a blocky ‘entablature' and separated from the flows above and below it by a structurally weaker, but often less-permeable, palaeosol that formed during periods of volcanic quiescence. The collapse of columns is often facilitated by a combination of weathering along ever-widening joints and wedging outwards by debris that falls into them. This gradual distortion of the colonnade makes columns increasingly susceptible to collapse. Often this is triggered by intense rainfall (perhaps following a dry spell) that rapidly infiltrates joints and is ponded on the underlying palaeosol. The precise nature of the failure (toppling or outwards rotation of the column base) is largely dictated by the nature of the

  14. Continuous ECG Monitoring in Patients With Acute Coronary Syndrome or Heart Failure: EASI Versus Gold Standard.

    Science.gov (United States)

    Lancia, Loreto; Toccaceli, Andrea; Petrucci, Cristina; Romano, Silvio; Penco, Maria

    2017-04-01

    The purpose of the study was to compare the EASI system with the standard 12-lead surface electrocardiogram (ECG) for the accuracy in detecting the main electrocardiographic parameters (J point, PR, QT, and QRS) commonly monitored in patients with acute coronary syndromes or heart failure. In this observational comparative study, 253 patients who were consecutively admitted to the coronary care unit with acute coronary syndrome or heart failure were evaluated. In all patients, two complete 12-lead ECGs were acquired simultaneously. A total of 6,072 electrocardiographic leads were compared (3,036 standard and 3,036 EASI). No significant differences were found between the investigate parameters of the two measurement methods, either in patients with acute coronary syndrome or in those with heart failure. This study confirmed the accuracy of the EASI system in monitoring the main ECG parameters in patients admitted to the coronary care unit with acute coronary syndrome or heart failure.

  15. 40 CFR 141.211 - Special notice for repeated failure to conduct monitoring of the source water for Cryptosporidium...

    Science.gov (United States)

    2010-07-01

    ... conduct monitoring of the source water for Cryptosporidium and for failure to determine bin classification... Notification of Drinking Water Violations § 141.211 Special notice for repeated failure to conduct monitoring....701 must notify persons served by the water system that monitoring has not been completed as specified...

  16. Early-season agricultural drought: detection, assessment and monitoring using Shortwave Angle and Slope Index (SASI) data.

    Science.gov (United States)

    Das, Prabir Kumar; Murthy, Srirama C; Seshasai, M V R

    2013-12-01

    Early season or crop-planting-period (ES/CPP) drought conditions have become a recurrent phenomenon in tropical countries like India, due to fluctuations in the time of onset and progression of monsoon rains. ES/CPP agricultural drought assessment is a major challenge because of the difficulties in the generation of operational products on soil moisture at larger scales. The present study analyzed the Shortwave Angle Slope Index (SASI) derived from Near Infrared and Shortwave Infrared data of Moderate Resolution Imaging Spectroradiometer, for tracking surface moisture changes and assessing the agricultural drought conditions during ES/CPP, over Andhra Pradesh state, India. It was found that in-season progression of SASI was well correlated with rainfall and crop planting patterns in different districts of the study area state in both drought and normal years. Rainfall occurrence, increase in crop planted area, and decrease in SASI were in chronological synchronization in the season. Change in SASI from positive to negative values is a unique indication of dryness to wetness shift in the season. Duration of positive SASI values indicated the persistence of agricultural drought in the crop planting period. Mean SASI values were able to discriminate an area which was planted in normal year and unplanted in drought year. SASI thresholds provide an approximate and rapid estimate of the crop planting favorable area in a region which is useful to assess the impact of drought. Thus, SASI is a potential index to strengthen the existing operational drought monitoring systems. Further work needs to be on the integration of multiple parameters-SASI, soil texture, soil depth, rainfall and cropping pattern, to evolve a geospatial product on crop planting favorable areas. Such products pave the way for quantification of drought impact on agriculture in the early part of the season, which is a major inadequacy in the current drought monitoring system.

  17. Pulmonary fluid overload monitoring in heart failure patients with single and dual chamber defibrillators.

    Science.gov (United States)

    Molon, Giulio; Zanotto, Gabriele; Rahue, Werner; Facchin, Domenico; Leoni, Loira; Morani, Giovanni; Calvi, Valeria; Catanzariti, Domenico; Costa, Alessandro; Zago, Lara; Comisso, Jennifer; Varbaro, Annamaria; Santini, Massimo

    2014-04-01

    Heart failure has a relevant healthcare impact. Monitoring of pulmonary fluid overload (PFO), measured by intrathoracic impedance, has been proposed to alert to heart failure worsening before symptoms become patent. The aim of our research was to evaluate whether PFO diagnostics reduce heart failure hospitalizations in heart failure patients receiving single-chamber or dual-chamber implantable cardioverter-defibrillator (ICD) for primary prevention of sudden death. Twenty-five Italian cardiological centers prospectively followed 221 ICD patients (86% men, 66 ± 11 years, 79% New York Heart Association II and left ventricular ejection fraction 28 ± 5%), of whom 123 received an ICD with PFO monitoring (diagnostics group) and 98 an ICD without such a diagnostics (control group). The association of each patient to a group was assigned a priori, independently of patients' characteristics but based on regional device allocation policies. Patient clinical characteristics and observation period were similar between groups. In a mean follow-up of 17 ± 11 months, heart failure hospitalizations or emergency-room admissions occurred in eight (7%) patients of the diagnostics group and in 16 of the control group (16%; P = 0.02), with an incidence, measured by Kaplan-Meier analysis, of 23% at 2 years and 34% at 3 years in patients of the control group compared with 8% at 2 and 3 years in patients of the diagnostics group (Log rank test P = 0.044). Our data show that in heart failure patients receiving single-chamber or dual-chamber ICD, the use of intrathoracic impedance monitoring is associated with a significant reduction of heart failure hospitalizations. Our results support the hypothesis that PFO diagnostics improve the likelihood of timely detection of heart failure worsening.

  18. Congestive heart failure patient monitoring using wearable Bio-impedance sensor technology.

    Science.gov (United States)

    Seulki Lee; Squillace, Gabriel; Smeets, Christophe; Vandecasteele, Marianne; Grieten, Lars; de Francisco, Ruben; Van Hoof, Chris

    2015-08-01

    A new technique to monitor the fluid status of congestive heart failure (CHF) patients in the hospital is proposed and verified in a clinical trial with 8 patients. A wearable Bio-impedance (BioZ) sensor allows a continuous localized measurement which can be complement clinical tools in the hospital. Thanks to the multi-parametric approach and correlation analysis with clinical reference, BioZ is successfully shown as a promising parameter for continuous and wearable CHF patient monitoring application.

  19. Single center experience with intrathoracic impedance monitoring in chronic heart failure patients

    Institute of Scientific and Technical Information of China (English)

    QIAO Qing; HUA Wei; DING Li-gang; CHEN Ke-ping; WANG Jing; WANG Fang-zheng; ZHANG Shu

    2011-01-01

    Background The Medtronic InSync Sentry is the first available cardiac resynchronization therapy defibrillator (CRT-D)which can monitor fluid status by measuring intrathoracic impedance. This study was designed to observe the effectiveness of intrathoracic impedance monitoring on detecting aggravation of heart failure.Methods We retrospectively analyzed the clinical data of 14 consecutive patients. Patients were regularly followed up every 3-6 months after the implantation. At each visit, interrogation of the device was done. Patients were instructed to inform the researcher on hearing the device alert, and to take extra 40 milligrams of furosemidum if they had aggravated symptoms later. If the symptoms could not be relieved, they were asked to see a doctor. Data about heart failure hospitalization were collected from the medical record.Results During 18-48 months follow-up, a total of 7 patients encountered 28 alert events. On one hand, alert events appeared before all deteriorated symptoms and heart failure hospitalizations. On the other hand, there were 23 alerts followed by deterioration of heart failure symptoms, and 2 alerts related to 2 hospitalizations caused by pulmonary infection in one patient. Only 5 patients were hospitalized 10 times for deterioration of cardiac function.Conclusion The function of intrathoracic impedance monitoring is reliable in predicting deterioration of heart failure.

  20. 考虑吸力变化的膨胀土边坡破坏规律分析%Failure law of the expansive soil slope considering the suction changes

    Institute of Scientific and Technical Information of China (English)

    石北啸; 陈生水; 韩华强; 王庭博

    2014-01-01

    By monitoring the surface and bottom matric suction of the expansive soil slope model under wet⁃ting-drying cycle with the thermal conductivity sensor, the laboratory tests were carried out on matric suc⁃tion of the expansive soil slope to study the variation with the different depth and time, and the damage process of the model were analyzed. The test results show that the expansive soil slope generated cracks which provide channels for the infiltration of rainwater as the repeated swelling-shrinkage cycle, so the crack area quickly absorb water and the matric suction drop;because the rainwater is not easy to infiltrate in non-cracking area, the decrease of matric suction show obviously hysteresis. After a period of raining, the strength of soil in crack area and non-cracking area has significant differences, which reach the maxi⁃mum in the second wetting. For the project of the filling expansive soil slope, we recommend that by dry⁃ing the soil soon after filling a part which may promote the growth of matric suction and to improve the strength of soil mass;it should avoid the rainwater infiltrating into the soil in the process of construction, and monitor the water content and the deformation of slope. It also should adopt promptly the effective mea⁃sures to prevent the occurrence of landslide failures.%膨胀土边坡中吸力降低会引起强度衰减,进而引起边坡变形破坏。采用热传导传感器监测干湿循环作用下膨胀土边坡模型坡顶和坡底的基质吸力,开展膨胀土边坡基质吸力随深度和时间变化规律的室内试验,并对模型破坏过程进行了分析。试验结果表明:膨胀土边坡因膨胀干缩的反复作用产生裂缝,为雨水入渗提供通道,裂缝区土体迅速吸水,吸力骤降;非裂缝区土体雨水难以入渗,吸力降低存在明显的滞后现象。降雨后一段时间内,裂缝区土体与非裂缝区土体强度差异明显。对于填方膨胀土边

  1. Heart Failure Patients Monitored With Telemedicine : Patient Satisfaction, a Review of the Literature

    NARCIS (Netherlands)

    Kraai, Imke H.; Luttik, Marie Louise; de Jong, Richard M.; de Vries, Arjen E.; van Dijk, Rene B.; Jaarsma, Tiny; Hillige, Hand L.

    2011-01-01

    Background: Remote monitoring of the clinical status of heart failure patients has developed rapidly and is the subject of several trials. Patient satisfaction is an important outcome, as recommended by the U.S. Food and Drug Administration to use in clinical research, and should be included in stud

  2. Estimating changes in cardiac output using an implanted hemodynamic monitor in heart failure patients

    DEFF Research Database (Denmark)

    Ståhlberg, Marcus; Damgaard, Morten; Ersgård, David;

    2010-01-01

    OBJECTIVES: The aim of this study was to evaluate an algorithm that estimates changes in cardiac output (CO) from right ventricular (RV) pressure waveforms derived from an implantable hemodynamic monitor (IHM) in heart failure patients. DESIGN: Twelve heart failure patients (NYHA II-III, EF 32......%) with an implantable hemodynamic monitor (Chronicle) were included in this study. Changes in cardiac output were provoked by body position change at rest (left lateral supine, horizontal supine, sitting, and standing) and a steady state bicycle exercise at 20 watts. Estimated CO derived from the IHM (CO...... was -0.39 L/min (11%). Limits of agreement were +/-1.56 L/min and relative error was 21%. CONCLUSIONS: A simple algorithm based on RV pressure wave form characteristics derived from an IHM can be used to estimate changes in CO in heart failure patients. These findings encourage further research aiming...

  3. Feature of resistivity response of slope from steady to unsteady

    Institute of Scientific and Technical Information of China (English)

    谢忠球; 张玉池; 温佩琳; 段靓靓

    2008-01-01

    Using resistivity as index and referring to the law about effect of slope to resistivity,the apparent resistivities of geophysical model concerned with unsteady rock type slope failure were calculated systematically by using the boundary integral equation method.After studying the feature of resistivity response of slope failure,the variety of resistivity during evolution of slope from steady to unsteady was found and the characteristics of resistivity response about slope failure was concluded.These make electrical exploring method for detecting the slip plane or structural plane of slope failure,evaluating the stability of the slope,and forecasting slope failure become true.

  4. Role of telephone monitoring in patients with chronic heart failure: theory and practical implications

    Directory of Open Access Journals (Sweden)

    Host JF

    2014-02-01

    Full Text Available Jennifer Farroni Host, Ayesha Hasan Division of Cardiovascular Medicine, Wexner Medical Center at the Ohio State University, Columbus, OH, USA Abstract: With the aging of the world's population and the rise of chronic illness such as heart failure (HF, the economic burden, number of hospitalizations, and penalties imposed for failure to meet hospital readmission expectations will continue to rise, thus increasing pressure on clinicians to utilize successful HF monitoring interventions to improve these measures. Telephone monitoring in patients with chronic HF utilizes a proactive approach in the care of such patients, and for this review is grouped into three categories, ie, structured telephone support, telemonitoring, and remote implantable device monitoring. Earlier studies on structured telephone support and telemonitoring suggested a clear benefit on mortality and HF admissions, although several recent large, randomized controlled studies have been neutral. Optimizing medical therapy requires an accurate assessment of volume status by the clinician; therefore, symptom report and weight monitoring alone are often challenging in the identification of true HF decompensation because they are not very sensitive markers. The use of remote monitoring technology for follow-up of patients with implantable devices, including implantable cardiac defibrillators and cardiac resynchronization therapy devices, can aid in identifying HF decompensation. Self-care or self-management is an essential component of a chronic illness such as HF, and it is important for such patients to be engaged in their health care to best utilize the telephone monitoring intervention. System design, adequate staffing, patient satisfaction, and treatment adherence are important for success of the telemonitoring system. Telephone monitoring seems to be an effective approach in the chronic HF population. In the future, large-scale telemonitoring programs may come into place as

  5. Effect of hydraulic hysteresis on the stability of infinite slopes under steady infiltration

    Science.gov (United States)

    Chen, Pan; Mirus, Benjamin B.; Lu, Ning; Godt, Jonathan W.

    2017-01-01

    Hydraulic hysteresis, including capillary soil water retention (SWR), air entrapment SWR, and hydraulic conductivity, is a common phenomenon in unsaturated soils. However, the influence of hydraulic hysteresis on suction stress, and subsequently slope stability, is generally ignored. This paper examines the influence of each of these three types of hysteresis on slope stability using an infinite slope stability analysis under steady infiltration conditions. First, hypothetical slopes for representative silty and sandy soils are examined. Then a monitored hillslope in the San Francisco Bay Area, California is assessed, using observed rainfall conditions and measured hydraulic and geotechnical properties of the colluvial soil. Results show that profiles of suction stress and the corresponding factor of safety are generally strongly affected by hydraulic hysteresis. Results suggest that each of the three types of hydraulic hysteresis may play a major role in the occurrence of slope failure, indicating that ignoring hydraulic hysteresis will likely lead to underestimates of failure potential and hence to inaccurate slope stability analysis.

  6. 某公路高边坡施工监测分析%A Highway High Slope Monitoring Analysis of Construction

    Institute of Scientific and Technical Information of China (English)

    赵欢; 李东升

    2014-01-01

    某公路在建设施工中,由于地质不良和高山峡谷的地形等原因,高边坡稳定性问题非常显著。通过对 K4+700~K4+985段高边坡实地调查,进行了边坡深部位移、锚索应力、表观位移3项内容的施工监测,监测分析结果为边坡动态设计和施工提供依据,保证了边坡的稳定性,具有重要的实际工程意义。%A road in the construction,because of unfavorable geology and alpine and canyon topog-raphy and other reasons,the stability of the high slope is very significant.Based on the K4 +700 ~K4 +985 section of high slope field survey,the construction monitoring of deep displacement,anchor stress,ap-parent displacement of 3 items,analysis results provide the basis for the slope dynamic design and con-struction,to ensure the stability of the slope,it has important practical engineering significance.

  7. Reinforcement mechanism of slope stability method with no cutting trees

    OpenAIRE

    Yuki, Chikata; Harushige, KUSUMI; 楠見, 晴重; Katsumi, TERAOKA

    2008-01-01

    The study in this paper is the slope stability. Although many slopes are prone to collapse, countermeasures against slop failures have not been progressed yet in Japan. Most slope protection methods were to cover shotcrete on the slope in 1960’s. However, the slope covered shotcrete have been deteriorating. Therefore, the slope failures frequently occur due to the natural disaster such as heavy rainfall and earthquake. It is important to develop an effective slope stability method. Moreover, ...

  8. Personnel reliability impact on petrochemical facilities monitoring system's failure skipping probability

    Science.gov (United States)

    Kostyukov, V. N.; Naumenko, A. P.

    2017-08-01

    The paper dwells upon urgent issues of evaluating impact of actions conducted by complex technological systems operators on their safe operation considering application of condition monitoring systems for elements and sub-systems of petrochemical production facilities. The main task for the research is to distinguish factors and criteria of monitoring system properties description, which would allow to evaluate impact of errors made by personnel on operation of real-time condition monitoring and diagnostic systems for machinery of petrochemical facilities, and find and objective criteria for monitoring system class, considering a human factor. On the basis of real-time condition monitoring concepts of sudden failure skipping risk, static and dynamic error, monitoring systems, one may solve a task of evaluation of impact that personnel's qualification has on monitoring system operation in terms of error in personnel or operators' actions while receiving information from monitoring systems and operating a technological system. Operator is considered as a part of the technological system. Although, personnel's behavior is usually a combination of the following parameters: input signal - information perceiving, reaction - decision making, response - decision implementing. Based on several researches on behavior of nuclear powers station operators in USA, Italy and other countries, as well as on researches conducted by Russian scientists, required data on operator's reliability were selected for analysis of operator's behavior at technological facilities diagnostics and monitoring systems. The calculations revealed that for the monitoring system selected as an example, the failure skipping risk for the set values of static (less than 0.01) and dynamic (less than 0.001) errors considering all related factors of data on reliability of information perception, decision-making, and reaction fulfilled is 0.037, in case when all the facilities and error probability are under

  9. Brain Oxygen Monitoring via Jugular Venous Oxygen Saturation in a Patient with Fulminant Hepatic Failure

    Directory of Open Access Journals (Sweden)

    Yerim Kim

    2016-08-01

    Full Text Available Fulminant hepatic failure (FHF is often accompanied by a myriad of neurologic complications, which are associated with high morbidity and mortality. Although appropriate neuromonitoring is recommended for early diagnosis and to minimize secondary brain injury, individuals with FHF usually have a high chance of coagulopathy, which limits the ability to use invasive neuromonitoring. Jugular bulb venous oxygen saturation (JvO2 monitoring is well known as a surrogate direct measures of global brain oxygen use. We report the case of a patient with increased intracranial pressure due to FHF, in which JvO2 was used for appropriate brain oxygen monitoring.

  10. Remote Monitoring of Near-Surface Soil Moisture Dynamics In Unstable Slopes Using a Low-Power Autonomous Resistivity Imaging System

    Science.gov (United States)

    Chambers, J. E.; Meldrum, P.; Gunn, D.; Wilkinson, P. B.; Uhlemann, S.; Swift, R. T.; Kuras, O.; Inauen, C.; Hutchinson, D.; Butler, S.

    2016-12-01

    ERT monitoring has been demonstrated in numerous studies as an effective means of imaging near surface processes for applications as diverse as permafrost studies and contaminated land assessment. A limiting factor in applying time-lapse ERT for long-term studies in remote locations has been the availability of cost-effective ERT measurement systems designed specifically for monitoring applications. Typically, monitoring is undertaken using repeated manual data collection, or by building conventional survey instruments into a monitoring setup. The latter often requires high power and is therefore difficult to operate remotely without access to mains electricity. We describe the development of a low-power resistivity imaging system designed specifically for remote monitoring, taking advantage of, e.g., solar power and data telemetry. Here, we present the results of two field deployments. The system has been installed on an active railway cutting to provide insights into the effect of vegetation on the moisture dynamics in unstable infrastructure slopes and to gather subsurface information for pro-active remediation measures. The system, comprising 255 electrodes, acquires 4596 reciprocal measurement pairs twice daily during standard operation. In case of severe weather events, the measurement schedule is reactively changed, to gather high temporal resolution data to image rainfall infiltration processes. The system has also been installed along a leaking and marginally stable canal embankment; a less favourable location for remote monitoring, with limited solar power and poor mobile reception. Nevertheless, the acquired data indicated the effectiveness of remedial actions on the canal. The ERT results showed that one leak was caused by the canal and fixed during remediation, while two other "leaks" were shown to be effects of groundwater dynamics. The availability of cost-effective, low-power ERT monitoring instrumentation, combined with an automated workflow of

  11. Distributed Monitoring for Prevention of Cascading Failures in Operational Power Grids

    CERN Document Server

    Warnier, Martijn; Koç, Yakup; Pauwels, Eric

    2015-01-01

    Electrical power grids are vulnerable to cascading failures that can lead to large blackouts. Detection and prevention of cascading failures in power grids is impor- tant. Currently, grid operators mainly monitor the state (loading level) of individual components in power grids. The complex architecture of power grids, with many interdependencies, makes it difficult to aggregate data provided by local compo- nents in a timely manner and meaningful way: monitoring the resilience with re- spect to cascading failures of an operational power grid is a challenge. This paper addresses this challenge. The main ideas behind the paper are that (i) a robustness metric based on both the topology and the operative state of the power grid can be used to quantify power grid robustness and (ii) a new proposed a distributed computation method with self-stabilizing properties can be used to achieving near real-time monitoring of the robustness of the power grid. Our con- tributions thus provide insight into the resilience wit...

  12. Ambulatory blood pressure monitoring of patients with heart failure: a new prognosis marker

    Directory of Open Access Journals (Sweden)

    Manoel F. Canesin

    2002-01-01

    Full Text Available OBJECTIVE: To evaluate the relationship between 24-hour ambulatory arterial blood pressure monitoring and the prognosis of patients with advanced congestive heart failure. METHODS: We studied 38 patients with NYHA functional class IV congestive heart failure, and analyzed left ventricular ejection fraction, diastolic diameter, and ambulatory blood pressure monitoring data. RESULTS: Twelve deaths occurred. Left ventricular ejection fraction (35.2±7.3% and diastolic diameter (72.2±7.8mm were not correlated with the survival. The mean 24-hour (SBP24, waking (SBPw, and sleeping (SBPs systolic pressures of the living patients were higher than those of the deceased patients and were significant for predicting survival. Patients with mean SBP24, SBPv, and SBPs > or = 105mmHg had longer survival (p=0.002, p=0.01 and p=0.0007, respectively. Patients with diastolic blood pressure sleep decrements (dip and patients with mean blood pressure dip or = 105 mmHg CONCLUSION: Ambulatory blood pressure monitoring appears to be a useful method for evaluating patients with congestive heart failure.

  13. Monitoring and remote failure detection of grid-connected PV systems based on satellite observations

    Energy Technology Data Exchange (ETDEWEB)

    Drews, A.; Lorenz, E.; Betcke, J.; Heinemann, D. [Oldenburg University, Institute of Physics, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg (Germany); de Keizer, A.C.; van Sark, W.G.J.H.M. [University of Utrecht, Copernicus Institute, Department of Science, Technology, and Society, Heidelberglaan 2, 3584 CH Utrecht (Netherlands); Beyer, H.G. [University of Applied Sciences Magdeburg-Stendal (FH), Institute of Electrical Engineering, Breitscheidstr. 2, 39114 Magdeburg (Germany); Heydenreich, W.; Wiemken, E. [Fraunhofer Institute for Solar Energy Systems, Heidenhofstr. 2, 79110 Freiburg (Germany); Stettler, S.; Toggweiler, P. [Enecolo AG, Lindhofstr. 52, 8617 Moenchaltorf (Switzerland); Bofinger, S.; Schneider, M.; Heilscher, G. [Meteocontrol GmbH, Spicherer Strasse 48, 86157 Augsburg (Germany)

    2007-04-15

    Small grid-connected photovoltaic systems up to 5 kW{sub p} are often not monitored because advanced surveillance systems are not economical. Hence, some system failures which lead to partial energy losses stay unnoticed for a long time. Even a failure that results in a larger energy deficit can be difficult to detect by PV laymen due to the fluctuating energy yields. Within the EU project PVSAT-2, a fully automated performance check has been developed to assure maximum energy yields and to optimize system maintenance for small grid-connected PV systems. The aim is the early detection of system malfunctions and changing operating conditions to prevent energy and subsequent financial losses for the operator. The developed procedure is based on satellite-derived solar irradiance information that replaces on-site measurements. In conjunction with a simulation model the expected energy yield of a PV system is calculated. In case of the occurrence of a defined difference between the simulated and actual energy yield, an automated failure detection routine searches for the most probable failure sources and notifies the operator. This paper describes the individual components of the developed procedure - the satellite-derived irradiance, the used PV simulation model, and the principles of the automated failure detection routine. Moreover, it presents results of an 8-months test phase with 100 PV systems in three European countries. (author)

  14. Can individualized weight monitoring using the HeartPhone algorithm improve sensitivity for clinical deterioration of heart failure?

    LENUS (Irish Health Repository)

    Ledwidge, Mark T

    2013-04-01

    Previous studies have demonstrated poor sensitivity of guideline weight monitoring in predicting clinical deterioration of heart failure (HF). This study aimed to evaluate patterns of remotely transmitted daily weights in a high-risk HF population and also to compare guideline weight monitoring and an individualized weight monitoring algorithm.

  15. Remote Monitoring of Patients With Heart Failure: An Overview of Systematic Reviews

    Science.gov (United States)

    Karunanithi, Mohanraj; Fatehi, Farhad; Ding, Hang; Walters, Darren

    2017-01-01

    Background Many systematic reviews exist on the use of remote patient monitoring (RPM) interventions to improve clinical outcomes and psychological well-being of patients with heart failure. However, research is broadly distributed from simple telephone-based to complex technology-based interventions. The scope and focus of such evidence also vary widely, creating challenges for clinicians who seek information on the effect of RPM interventions. Objective The aim of this study was to investigate the effects of RPM interventions on the health outcomes of patients with heart failure by synthesizing review-level evidence. Methods We searched PubMed, EMBASE, CINAHL (Cumulative Index to Nursing and Allied Health Literature), and the Cochrane Library from 2005 to 2015. We screened reviews based on relevance to RPM interventions using criteria developed for this overview. Independent authors screened, selected, and extracted information from systematic reviews. AMSTAR (Assessment of Multiple Systematic Reviews) was used to assess the methodological quality of individual reviews. We used standardized language to summarize results across reviews and to provide final statements about intervention effectiveness. Results A total of 19 systematic reviews met our inclusion criteria. Reviews consisted of RPM with diverse interventions such as telemonitoring, home telehealth, mobile phone–based monitoring, and videoconferencing. All-cause mortality and heart failure mortality were the most frequently reported outcomes, but others such as quality of life, rehospitalization, emergency department visits, and length of stay were also reported. Self-care and knowledge were less commonly identified. Conclusions Telemonitoring and home telehealth appear generally effective in reducing heart failure rehospitalization and mortality. Other interventions, including the use of mobile phone–based monitoring and videoconferencing, require further investigation. PMID:28108430

  16. Implant experience with an implantable hemodynamic monitor for the management of symptomatic heart failure.

    Science.gov (United States)

    Steinhaus, David; Reynolds, Dwight W; Gadler, Fredrik; Kay, G Neal; Hess, Mike F; Bennett, Tom

    2005-08-01

    Management of congestive heart failure is a serious public health problem. The use of implantable hemodynamic monitors (IHMs) may assist in this management by providing continuous ambulatory filling pressure status for optimal volume management. The Chronicle system includes an implanted monitor, a pressure sensor lead with passive fixation, an external pressure reference (EPR), and data retrieval and viewing components. The tip of the lead is placed near the right ventricular outflow tract to minimize risk of sensor tissue encapsulation. Implant technique and lead placement is similar to that of a permanent pacemaker. After the system had been successfully implanted in 148 patients, the type and frequency of implant-related adverse events were similar to a single-chamber pacemaker implant. R-wave amplitude was 15.2 +/- 6.7 mV and the pressure waveform signal was acceptable in all but two patients in whom presence of artifacts required lead repositioning. Implant procedure time was not influenced by experience, remaining constant throughout the study. Based on this evaluation, permanent placement of an IHM in symptomatic heart failure patients is technically feasible. Further investigation is warranted to evaluate the use of the continuous hemodynamic data in management of heart failure patients.

  17. Tools for in service monitoring and testing of riser to prevent failure and extend service life

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Haakon; Bondevik, Jon Olav; Skjerve, Haavard; Tveit, Oeyvind [SeaFlex AS, Asker (Norway)

    2005-07-01

    Exploration and development of new oil and gas fields is heavily dependant on use of flexible pipes and many field developments would not have been possible without them. The number of flexible risers in service is constantly increasing since relatively few offshore projects have reached the estimated operational life and the operational lifetime of several fields in-service has been extended due to new and improved technology. Many risers have been in service over a large number of years. Some risers have been operated under demanding conditions such as severe dynamic loads, high pressure and temperatures. One may in some cases find that risers actually have shorter service life than estimated in the design phase due to the severe operational conditions. In order to extend the use of the riser, some risers may have to be modified and re-terminated and prepared for a new and less demanding application. In order to operate risers safely, it is important to re-assess the fatigue life in order to prevent potential riser failure. The operator should implement methods and tools for in-service monitoring and testing. This paper addresses efficient and reliable methods and tools for monitoring of critical operational parameters as well as in-service riser testing. A brief description of structural failure modes will also be given in order to understand how to interpret test results in view of potential failure modes. (author)

  18. Rock slope instabilities in Norway: First systematic hazard and risk classification of 22 unstable rock slopes

    Science.gov (United States)

    Böhme, Martina; Hermanns, Reginald L.; Oppikofer, Thierry; Penna, Ivanna

    2016-04-01

    Unstable rock slopes that can cause large failures of the rock-avalanche type have been mapped in Norway for almost two decades. Four sites have earlier been characterized as high-risk objects based on expertise of few researchers. This resulted in installing continuous monitoring systems and set-up of an early-warning system for those four sites. Other unstable rock slopes have not been ranked related to their hazard or risk. There are ca. 300 other sites known of which 70 sites were installed for periodic deformation measurements using multiple techniques (Global Navigation Satellite Systems, extensometers, measurement bolts, and others). In 2012 a systematic hazard and risk classification system for unstable rock slopes was established in Norway and the mapping approach adapted to that in 2013. Now, the first 22 sites were classified for hazard, consequences and risk using this classification system. The selection of the first group of sites to be classified was based on an assumed high hazard or risk and importance given to the sites by Norwegian media and the public. Nine of the classified 22 unstable rock slopes are large sites that deform inhomogeneously or are strongly broken up in individual blocks. This suggests that different failure scenarios are possible that need to be analyzed individually. A total of 35 failure scenarios for those nine unstable rock slopes were considered. The hazard analyses were based on 9 geological parameters defined in the classification system. The classification system will be presented based on the Gamanjunni unstable rock slope. This slope has a well developed back scarp that exposes 150 m preceding displacement. The lateral limits of the unstable slope are clearly visible in the morphology and InSAR displacement data. There have been no single structures observed that allow sliding kinematically. The lower extend of the displacing rock mass is clearly defined in InSAR data and by a zone of higher rock fall activity. Yearly

  19. Real-time monitoring of progression towards renal failure in primary care patients.

    Science.gov (United States)

    Diggle, Peter J; Sousa, Inês; Asar, Özgür

    2015-07-01

    Chronic renal failure is a progressive condition that, typically, is asymptomatic for many years. Early detection of incipient kidney failure enables ameliorative treatment that can slow the rate of progression to end-stage renal failure, at which point expensive and invasive renal replacement therapy (dialysis or transplantation) is required. We use routinely collected clinical data from a large sample of primary care patients to develop a system for real-time monitoring of the progression of undiagnosed incipient renal failure. Progression is characterized as the rate of change in a person's kidney function as measured by the estimated glomerular filtration rate, an adjusted version of serum creatinine level in a blood sample. Clinical guidelines in the UK suggest that a person who is losing kidney function at a relative rate of at least 5% per year should be referred to specialist secondary care. We model the time-course of a person's underlying kidney function through a combination of explanatory variables, a random intercept and a continuous-time, non-stationary stochastic process. We then use the model to calculate for each person the predictive probability that they meet the clinical guideline for referral to secondary care. We suggest that probabilistic predictive inference linked to clinical criteria can be a useful component of a real-time surveillance system to guide, but not dictate, clinical decision-making.

  20. Step-path failure mode and stability calculation of jointed rock slopes%岩质边坡断续裂隙阶梯状滑移模式及稳定性计算

    Institute of Scientific and Technical Information of China (English)

    岑夺丰; 黄达; 黄润秋

    2014-01-01

    Step-path failure is a kind of typical instability mode in rock slopes. Based on the summary of geological structural features of jointed rock slopes, the step-path failure mode and evolution process are studied by using the discrete element method, particle flow code in two dimensions (PFC2D). Three rock bridge failure modes in slopes can be summarized:tensile coalescence, shear coalescence and mixed tensile-shear coalescence. Through the evolution analysis of the rock mesoscopic particle bond force vector field, stress state of rock bridges and rock bridge failure, the progressive step-path failure process that rock bridge fractures one by one from the bottom up under the action of gravity is revealed, and the tensile crack development in the trailing edge of slope is due to the traction of lower part of slope. Take the slope with shallow dipping step-path parallel fissures for example (dip angle of rock bridge is 90°, and that of fissure is 30°), the step-path failure process can be distributed into four stages: elastic steady deformation of slope, failure of the lower rock bridges, failure of the upper rock bridges and development of tensile crack in the trailing edge of the slope, and the overall slipping of the slope along the failure surface. It is the critical state of instability at stage No. three that slip band sufficiently extends with micro-cracks expanding dramatically. Based on the understanding of failure modes and evolution process, three slope stability models for the step-path failure by shear coalescence, tensile coalescence and mixed tensile-shear coalescence of rock bridges are established, and the limit equilibrium formulae for the safety factor of slopes considering strength and coalescence coefficient of rock bridges are deduced.%阶梯状滑移破坏是一类典型岩质边坡破坏失稳模式。在总结断续裂隙阶梯状滑移的岩质边坡地质结构特征的基础上,利用离散元二维颗粒流程序(PFC2D)模拟研

  1. Evaluation of the Use of Sub-Pixel Offset Tracking Techniques to Monitor Landslides in Densely Vegetated Steeply Sloped Areas

    Directory of Open Access Journals (Sweden)

    Luyi Sun

    2016-08-01

    Full Text Available Sub-Pixel Offset Tracking (sPOT is applied to derive high-resolution centimetre-level landslide rates in the Three Gorges Region of China using TerraSAR-X Hi-resolution Spotlight (TSX HS space-borne SAR images. These results contrast sharply with previous use of conventional differential Interferometric Synthetic Aperture Radar (DInSAR techniques in areas with steep slopes, dense vegetation and large variability in water vapour which indicated around 12% phase coherent coverage. By contrast, sPOT is capable of measuring two dimensional deformation of large gradient over steeply sloped areas covered in dense vegetation. Previous applications of sPOT in this region relies on corner reflectors (CRs, (high coherence features to obtain reliable measurements. However, CRs are expensive and difficult to install, especially in remote areas; and other potential high coherence features comparable with CRs are very few and outside the landslide boundary. The resultant sub-pixel level deformation field can be statistically analysed to yield multi-modal maps of deformation regions. This approach is shown to have a significant impact when compared with previous offset tracking measurements of landslide deformation, as it is demonstrated that sPOT can be applied even in densely vegetated terrain without relying on high-contrast surface features or requiring any de-noising process.

  2. Energy identification method for dynamic failure mode of bedding rock slope with soft strata%含软弱夹层顺层岩质边坡动力破坏模式的能量判识方法研究

    Institute of Scientific and Technical Information of China (English)

    范刚; 张建经; 付晓; 王志佳; 田华

    2016-01-01

    基于希尔伯特–黄变换和边际谱理论,进行了含软弱夹层顺层岩质边坡的大型振动台试验,并利用试验结果对含软弱夹层顺层岩质边坡动力破坏模式的能量判识方法进行了研究,结果表明:边际谱峰值和特征频率的变化能清晰地表征边坡内部的震害损伤发展过程;地震作用下含软弱夹层顺层岩质边坡的损伤首先出现在坡肩位置,随着地震动强度的增大,震害损伤逐渐向低高程发展,最终边坡在坡体中上部相对高度0.56处沿软弱夹层顺层剪出,试验中坡面的位移监测结果表明坡体中上部位移出现陡增时刻晚于坡肩,边际谱分析结果与位移监测结果吻合较好;坡面附近的震害程度强于坡体内部;边坡中下部特征频率发生突变,表明坡体中下部为边坡动力响应的不连续带;含软弱夹层顺层岩质边坡的破坏形式主要表现为边坡后缘垂直的拉裂破坏和沿边坡中上部相对高度0.56处软弱夹层的剪切滑出破坏,边坡的破坏模式为拉裂-滑移-崩落式。本文提出的能量判识方法对识别边坡的破坏模式具有一定的指导意义。%Based on the Hilbert-Huang transformation and marginal spectrum theory, large scale shaking table tests on rock slope with soft strata are performed. The energy method for dynamic failure mode identification of bedding rock slope with soft strata is studied according to the test results. The research results in this work show that the peak value and characteristic frequency of marginal spectrum can represent the dynamic damage development process in the rock slope clearly. In the bedding rock slope with soft strata, the dynamic damage first occurs on the slope shoulder, and then the damage location moves to the lower elevation with the increase of input seismic wave amplitude, and finally, the slope is sheared out at the location of upper soft strata. In the displacement monitoring

  3. NASA Prototype All Composite Tank Cryogenic Pressure Tests to Failure with Structural Health Monitoring

    Science.gov (United States)

    Werlink, Rudolph J.; Pena, Francisco

    2015-01-01

    This Paper will describe the results of pressurization to failure of 100 gallon composite tanks using liquid nitrogen. Advanced methods of health monitoring will be compared as will the experimental data to a finite element model. The testing is wholly under NASA including unique PZT (Lead Zirconate Titanate) based active vibration technology. Other technologies include fiber optics strain based systems including NASA AFRC technology, Acoustic Emission, Acellent smart sensor, this work is expected to lead to a practical in-Sutu system for composite tanks.

  4. 某码头软黏土岸坡破坏机制分析及重建%Study of failure mechanism of a soft clay slope and pier reconstruction

    Institute of Scientific and Technical Information of China (English)

    刘润; 闫玥; 闫澍旺; 乔春生

    2009-01-01

    在某吹填软黏土岸坡上修建码头时发生了较大规模的滑坡,待滑体稳定后采取了一系列的工程措施,实现了码头的重建.详细阐述了岸坡发生滑动的全过程,通过现场勘察和有限元模拟分析了岸坡发生滑动破坏的原因.分别考虑了打桩与交通荷载作用,导致地基土中产生超静孔压,从而对岸坡的稳定性造成影响.分析结果表明,岸坡发生失稳破坏是多种不利工况叠加的结果,其主要原因是在低潮位时的超挖引起的,打桩及交通荷载作用也是造成滑坡的不利因素.在破坏的岸坡上重建码头,采用了振动砂桩加固地基,同时在地表铺碎石垫层作为预压荷载,加速地基土的固结.有限元分析和码头的成功重建表明,使用砂桩加固地基可以同时达到提高地基承载力和加速土体排水固结的目的,对于码头的重建是有效的技术措施.%A large scale landslide took place when constructing a port on soft clay foundation. A series of engineering measures were taken for reconstructing the port. Detailed investigation and finite element analysis of slope stability were performed to determine the possible causes of slope failure. In the analysis, the excess pore water pressure in the subsoil caused by piling and the traffic load has been considered especially. The analyzing results show that the failure of the slope was caused by the superposition of several unfavorable operation conditions. It is concluded that the primary cause for the slope failure is under-cutting combined with the low tide level. Furthermore, the pile driving and the traffic load on the slope topside also play a negative role in slope failure. The pile driving construction has a notable impact on slope stability and the safety factor considering the piling effect is much less than that without considering it. However, the influence of the traffic load is not so large relatively. The ground at failed slope was rehabilitated

  5. A web application for self-monitoring improves symptoms in chronic systolic heart failure.

    Science.gov (United States)

    Dorsch, Michael P; Farris, Karen B; Bleske, Barry E; Koelling, Todd M

    2015-04-01

    The objective of this study was to determine if a Web application that promoted mindfulness of the progress of the chronic disease through self-monitoring improved quality of life in heart failure. This was a prospective single-center single-group study. Participants were instructed how to use the Web application and to perform self-monitoring daily for 12 weeks. A comprehensive physical exam, assessment of New York Heart Association (NYHA) class, the Minnesota Living with Heart Failure Questionnaire (MLHFQ), and an evaluation of self-management were performed in person at baseline and at 12 weeks. Participants consisted of older (mean, 59 years), predominantly female (63%) adults with NYHA class II or III symptoms. NYHA classification (preintervention versus postintervention, 2.5±0.13 versus 2.0±0.13; p=0.0032) and MLHFQ score (55.7±4.6 versus 42.6±5.1, respectively; p=0.0078) improved over 12 weeks of self-monitoring. A trend toward improvement was also demonstrated in weight (preintervention versus postintervention, 209±9.6 pounds versus 207±9.4 pounds; by paired t test, p=0.389), number of times exercised per week (1.29±0.5 versus 2.5±0.6, respectively; p=0.3), and walk distance (572±147 yards versus 845±187 yards, respectively; p=0.119). Jugular venous distention (preintervention versus postintervention, 8.1±0.6 cm versus 6.7±0.3 cm; p=0.083) and peripheral edema (29.2% versus 16.7%, respectively; p=0.375) decreased after 12 weeks of self-monitoring via the Web application. A Web application for self-monitoring heart failure over 12 weeks improved both NYHA classification and MLHFQ score. The trend in improved physical activity and physical exam support these outcomes. The number of patients reporting a sodium-restricted diet increased over the 12 weeks, which may have led to the positive findings.

  6. The Alaska North Slope spill analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, Leslie [Pearson Consulting LLC (United States)], email: pearson.consulting@mac.com; Robertson, Tim L.; DeCola, Elise [Nuka Research and Planning Group, LLC (United States)], email: timrobertson@nukaresearch.com, email: elise@nukaresearch.com; Rosen, Ira [Alaska Department of Environmental Conservation (United States)], email: ira.rosen@alaska.gov

    2011-07-01

    This paper reports Alaska North Slope crude oil spills, provides information to help operators identify risks and presents recommendations for future risk reduction and mitigation measures that may reduce the frequency and severity of future spills from piping infrastructure integrity loss. The North Slope spills analysis project was conducted during 2010 by compiling available spill data, and analyzing the cause of past spills in wells and associated piping, flowlines, process centers with their associated piping and above ground storage tanks, and crude oil transmission pipelines. An expert panel, established to provide independent review of this analysis and the presented data, identified seven recommendations on measures, programs, and practices to monitor and address common causes of failures while considering information provided from regulators and operators. These recommendations must be evaluated by the State of Alaska which will consider implementation options to move forward. Based on the study observations, future analyses may show changes to some of the observed trends.

  7. ON-LINE THERMAL BARRIER COATING MONITORING FOR REAL-TIME FAILURE PROTECTION AND LIFE MAXIMIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Dennis H. LeMieux

    2003-10-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization,'' to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability, availability, and maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can, therefore, accelerate the degradation of substrate component materials and eventually lead to a premature failure of critical components and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.

  8. On-Line Thermal Barrier Coating Monitoring for Real-Time Failure Protection and Life Maximization

    Energy Technology Data Exchange (ETDEWEB)

    Dennis H. LeMieux

    2005-04-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization'', to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability availability maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can therefore accelerate the degradation of substrate components materials and eventually lead to a premature failure of critical component and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.

  9. On-Line Thermal Barrier Coating Monitoring for Real-Time Failure Protection and Life Maximization

    Energy Technology Data Exchange (ETDEWEB)

    Dennis H. LeMieux

    2004-10-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization'', to develop, build and install the first generation of an on-line TBC monitoring system for use on land -based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability availability maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can therefore accelerate the degradation of substrate components materials and eventually lead to a premature failure of critical component and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems; a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization.

  10. ON-LINE THERMAL BARRIER COATING MONITORING FOR REAL-TIME FAILURE PROTECTION AND LIFE MAXIMIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Dennis H. LeMieux

    2003-07-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization,'' to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability, availability, and maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can, therefore, accelerate the degradation of substrate component materials and eventually lead to a premature failure of critical components and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.

  11. On-Line Thermal Barrier Coating Monitoring for Real-Time Failure Protection and Life Maximization

    Energy Technology Data Exchange (ETDEWEB)

    Dennis H. LeMieux

    2005-10-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Power Generation, Inc proposed a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization'', to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability availability maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can therefore accelerate the degradation of substrate components materials and eventually lead to a premature failure of critical component and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Power Generation, Inc. has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.

  12. On0Line Fuel Failure Monitor for Fuel Testing and Monitoring of Gas Cooled Very High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ayman I. Hawari; Mohamed A. Bourham

    2010-04-22

    IVery High Temperature Reactors (VHTR) utilize the TRISO microsphere as the fundamental fuel unit in the core. The TRISO microsphere (~ 1- mm diameter) is composed of a UO2 kernel surrounded by a porous pyrolytic graphite buffer, an inner pyrolytic graphite layer, a silicon carbide (SiC) coating, and an outer pyrolytic graphite layer. The U-235 enrichment of the fuel is expected to range from 4% – 10% (higher enrichments are also being considered). The layer/coating system that surrounds the UO2 kernel acts as the containment and main barrier against the environmental release of radioactivity. To understand better the behavior of this fuel under in-core conditions (e.g., high temperature, intense fast neutron flux, etc.), the US Department of Energy (DOE) is launching a fuel testing program that will take place at the Advanced Test Reactor (ATR) located at Idaho National Laboratory (INL). During this project North Carolina State University (NCSU) researchers will collaborate with INL staff for establishing an optimized system for fuel monitoring for the ATR tests. In addition, it is expected that the developed system and methods will be of general use for fuel failure monitoring in gas cooled VHTRs.

  13. Monitoring the onset, propagation, associated bedform migration, and wake of active turbidity currents on the Squamish prodelta slope

    Science.gov (United States)

    Hughes Clarke, J. E.; Pratomo, D. G.; Videira Marques, C. R.

    2012-12-01

    . Multibeam water column imagery is used to view the onset, development and decay of turbidity currents in channels on the Squamish prodelta slope. The 2011 program consisted of daily resurveys for a period of 120 days during the freshet period. The initial focus was on resolving bathymetric surface change. Typical morphologic change indicated intermittent upslope migration of in-channel bedforms, sometimes, but not always, associated with an upper slope discrete slide scar. As a serendipitous byproduct, it was found that the deep scattering layer in the fjord was occasionally perturbed by what appeared to be bottom-following intrusive flows. A distally-located, seabed-mounted ADCP confirmed 20 discrete turbidity current events. Surface lowered, optical backscatter profiles indicated that these intrusions were correlated with near-seabed turbidity peaks. In 2012, a week-long program was implemented using hourly resurveys of the channels around the low water spring tide periods. Repetitive underway optical backscatter and CTD profiles were collected extending along the active channels from the delta lip to 1000m offshore. These established the sediment load and relative buoyancy of the surface plume and the fact that the enhanced acoustic volume scattering below represented a descending rain of suspended sediments into the higher density saline lower layers. For several of the events, that descending plume was seen to markedly increase in turbidity close to the seabed, indicating a transition to hyperpycnal conditions. A drop of salinity was also associated with those near seabed high turbidity layers. Those events were followed by the onset of a turbidity current as interpreted from the acoustic volume scattering. The period of upslope bedform migration was restricted to the onset of basal turbidity and first appearance of the flow in the acoustic volume scattering. In the wake of the active flow, an anomalously low acoustic scattering cloud would appear above the

  14. Comprehensive monitoring of gamma-ray bright blazars. I. Statistical study of optical, X-ray, and gamma-ray spectral slopes

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, Karen E.; Jorstad, Svetlana G.; Marscher, Alan P.; Agudo, Iván; Joshi, Manasvita; Malmrose, Michael P. [Institute for Astrophysical Research, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Larionov, Valeri M.; Blinov, Dmitry A.; Efimova, Natalia V.; Hagen-Thorn, Vladimir A.; Konstantinova, Tatiana S.; Kopatskaya, Evgenia N.; Larionova, Elena G.; Larionova, Liudmilla V. [Astronomical Institute, St. Petersburg State University, Universitetskij Pr. 28, Petrodvorets, 198504 St. Petersburg (Russian Federation); Smith, Paul S. [Steward Observatory, University of Arizona, Tucson, AZ 85721-0065 (United States); Arkharov, Arkady A. [Main (Pulkovo) Astronomical Observatory of RAS, Pulkovskoye shosse 60, 196140 St. Petersburg (Russian Federation); Casadio, Carolina; Gómez, José L.; Molina, Sol N. [Instituto de Astrofísica de Andalucía, CSIC, Apartado 3004, E-18080 Granada (Spain); McHardy, Ian M., E-mail: kwilliam@bu.edu [Department of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); and others

    2014-07-10

    We present γ-ray, X-ray, ultraviolet, optical, and near-infrared light curves of 33 γ-ray bright blazars over 4 years that we have been monitoring since 2008 August with multiple optical, ground-based telescopes and the Swift satellite, and augmented by data from the Fermi Gamma-ray Space Telescope and other publicly available data from Swift. The sample consists of 21 flat-spectrum radio quasars (FSRQs) and 12 BL Lac objects (BL Lacs). We identify quiescent and active states of the sources based on their γ-ray behavior. We derive γ-ray, X-ray, and optical spectral indices, α{sub γ}, α{sub X}, and α{sub o}, respectively (F{sub ν}∝ν{sup α}), and construct spectral energy distributions during quiescent and active states. We analyze the relationships between different spectral indices, blazar classes, and activity states. We find (1) significantly steeper γ-ray spectra of FSRQs than for BL Lacs during quiescent states, but a flattening of the spectra for FSRQs during active states while the BL Lacs show no significant change; (2) a small difference of α{sub X} within each class between states, with BL Lac X-ray spectra significantly steeper than in FSRQs; (3) a highly peaked distribution of X-ray spectral slopes of FSRQs at ∼ –0.60, but a very broad distribution of α{sub X} of BL Lacs during active states; (4) flattening of the optical spectra of FSRQs during quiescent states, but no statistically significant change of α{sub o} of BL Lacs between states; and (5) a positive correlation between optical and γ-ray spectral slopes of BL Lacs, with similar values of the slopes. We discuss the findings with respect to the relative prominence of different components of high-energy and optical emission as the flux state changes.

  15. Measuring acoustic emissions in an avalanche slope

    Science.gov (United States)

    Reiweger, Ingrid; Schweizer, Jürg

    2014-05-01

    Measurements of acoustic emissions are a common technique for monitoring damage and predicting imminent failure of a material. Within natural hazards it has already been used to successfully predict the break-off of a hanging glacier. To explore the applicability of the acoustic emission (AE) technique for avalanche prediction, we installed two acoustic sensors (with 30 kHz and 60 kHz resonance frequency) in an avalanche prone slope at the Mittelgrat in the Parsenn ski area above Davos, Switzerland. The slope is north-east facing, frequently wind loaded, and approximately 35° steep. The AE signals - in particular the event energy and waiting time distributions - were compared with slope stability. The latter was determined by observing avalanche activity. The results of two winter's measurements yielded that the exponent β of the inverse cumulative distribution of event energy showed a significant drop (from a value of 3.5 to roughly 2.5) at very unstable conditions, i.e. on the three days during our measurement periods when spontaneous avalanches released on our study slope.

  16. Transcutaneous Carbon Dioxide Monitoring in Subjects With Acute Respiratory Failure and Severe Hypercapnia.

    Science.gov (United States)

    Ruiz, Yolanda; Farrero, Eva; Córdoba, Ana; González, Nuria; Dorca, Jordi; Prats, Enric

    2016-04-01

    Transcutaneous carbon dioxide (P(tcCO2)) monitoring is being used increasingly to assess acute respiratory failure. However, there are conflicting findings concerning its reliability when evaluating patients with high levels of P(aCO2). Our study evaluates the accuracy of this method in subjects with respiratory failure according to the severity of hypercapnia. We included subjects with respiratory failure, admitted to a respiratory intermediate care unit, who required arterial blood gas analysis. Simultaneously, P(tcCO2) was measured using a digital monitor. Relations between P(aCO2) and P(tcCO2) were assessed by the Pearson correlation coefficient. Bland-Altman analysis was used to test data dispersion, and an analysis of variance test was used to compare the differences between P(aCO2) and the corresponding P(tcCO2) at different levels (level 1, 60 mm Hg). Eighty-one subjects were analyzed. The main diagnosis was COPD exacerbation (45%). P(tcCO2) correlated well with P(aCO2) (r2 = 0.93, P < .001). Bland-Altman analysis showed a mean P(aCO2) - P(tcCO2) difference of 4.9 ± 4.4 with 95% limits of agreement ranging from -3.6 to 13.4. The difference between variables increased in line with P(aCO2) severity: level 1, 1.7 ± 3.2 mm Hg; level 2, 3.7 ± 2.8; level 3, 6.8 ± 4.7 (analysis of variance, P < .001). Our study showed an acceptable agreement of P(tcCO2) monitoring with arterial blood gas analysis. However, we should consider that P(tcCO2) underestimates P(aCO2) levels, and its accuracy depends on the level of hypercapnia, so this method would not be suitable for acute patients with severe hypercapnia. Copyright © 2016 by Daedalus Enterprises.

  17. Monitoring burst (M-burst) — A novel framework of failure localization in all-optical mesh networks

    KAUST Repository

    Ali, Mohammed L.

    2011-10-10

    Achieving instantaneous and precise failure localization in all-optical wavelength division multiplexing (WDM) networks has been an attractive feature of network fault management systems, and is particularly important when failure-dependent protection is employed. The paper introduces a novel framework of real-time failure localization in all-optical WDM mesh networks, called monitoring-burst (m-burst), which aims to initiate a graceful compromise between consumed monitoring resources and monitoring delay. Different from any previously reported solution, the proposed m-burst framework has a single monitoring node (MN) which launches optical bursts along a set of pre-defined close-loop routes, called monitoring cycles (m-cycles), to probe the links along the m-cycles. Bursts along different m-cycles are kept non-overlapping through any link of the network. By identifying the lost bursts due to single link failure events only, the MN can unambiguously localize the failed link in at least 3-connected networks. We will justify the feasibility and applicability of the proposed m-burst framework in the scenario of interest. To avoid possible collision among optical bursts launched by the MN, we define the problem of collision-free scheduling and formulate it into an integer linear program (ILP) in order to minimize the monitoring delay. Numerical results demonstrate the effectiveness of the proposed framework and the proposed solution.

  18. The large-scale shaking table test study of dynamic response and failure mode of bedding rock slope under earthquake%地震作用下顺层岩质边坡动力响应和破坏模式大型振动台试验研究

    Institute of Scientific and Technical Information of China (English)

    董金玉; 杨国香; 伍法权; 祁生文

    2011-01-01

    It is necessary to study bedding rock landslides induced by "5-12" Wenchuan earthquake. According to the similar relationship of dynamic model test, a bedding model slope is built with a height of 1.6 m, length of 1.75 m, width of 0.8 m and a slope angle larger than the dip angle of the rock stratum. A large-scale shaking table test of the model slope is performed. The results show that amplification coefficients of the acceleration along slope surface and in vertical direction increase with the elevation increasing. And its increment speeds also increase with the elevation increasing. At the same elevation, the amplification coefficients of the acceleration on slope surface are larger than that in slope body. The input frequency of seismic waves has obvious effects on dynamic responses of slope. The amplification effect of acceleration enhances evidently with the frequency increasing and approach to the natural frequency of the model slope. The amplification coefficients of the acceleration decrease with the earthquake amplitudes increasing. Comparing with the acceleration monitoring data obtained by the shaking table test of the homogeneous slope, it is found that structural surface of the slope also has effects on the amplification coefficients of the acceleration. Because of reflection and refraction of structural surface, the amplification effect of acceleration enhances evidently. Based on analysis of failure features of the slope, the failure process is described as earthquake induction-loosening of rock mass and tensile failure of the crest of the slope-propagation and coalescence of cracks in the middle part of slope surface-occurrence of high locality landslide-formation of debris flow-accumulation at the slope toe. The study results are helpful to reveal the formation mechanism of landslide under earthquake and provide valuable references for disaster prevention and reduction.%5·12汶川大地震触发了大量的顺层岩质滑坡,对其进行研究

  19. Evaluation of a transcutaneous carbon dioxide monitor in patients with acute respiratory failure

    Directory of Open Access Journals (Sweden)

    Antonello Nicolini

    2011-01-01

    Full Text Available Background: Non-invasive measurement of oxygenation is a routine procedure in clinical practice, but transcutaneous monitoring of PCO 2 (PtCO 2 is used much less than expected. Methods : The aim of our study was to analyze the value of a commercially available combined SpO 2 /PtCO 2 monitor (TOSCA-Linde Medical System, Basel, Switzerland in adult non-invasive ventilated patients with acute respiratory failure. Eighty critically ill adult patients, requiring arterial blood sample gas analyses, underwent SpO 2 and PtCO 2 measurements (10 min after the probe was attached to an earlobe simultaneously with arterial blood sampling. The level of agreement between PaCO2 - PtCO 2 and SaO 2 - SpO 2 was assessed by Bland-Altman analyses. Results : Both, SaO 2 from blood gas analysis and SpO 2 from the transcutaneous monitor, and PaCO 2 and PtCO 2 were equally useful. No measurements were outside of the acceptable clinical range of agreement of ± 7.5 mmHg. Conclusions : The accuracy of estimation of the TOSCA transcutaneous electrode (compared with the "gold standard" blood sample gas analysis was generally good. Moreover, TOSCA presents the advantage of the possibility of continuous non-invasive measurement. The level of agreement of the two methods of measurement allows us to state that the TOSCA sensor is useful in routine monitoring of adults admitted to an intermediate respiratory unit and undergoing non-invasive ventilation.

  20. Design and Evaluation of a Web-Based Symptom Monitoring Tool for Heart Failure.

    Science.gov (United States)

    Wakefield, Bonnie J; Alexander, Gregory; Dohrmann, Mary; Richardson, James

    2016-12-29

    Heart failure is a chronic condition where symptom recognition and between-visit communication with providers are critical. Patients are encouraged to track disease-specific data, such as weight and shortness of breath. Use of a Web-based tool that facilitates data display in graph form may help patients recognize exacerbations and more easily communicate out-of-range data to clinicians. The purposes of this study were to (1) design a Web-based tool to facilitate symptom monitoring and symptom recognition in patients with chronic heart failure and (2) conduct a usability evaluation of the Web site. Patient participants generally had a positive view of the Web site and indicated it would support recording their health status and communicating with their doctors. Clinician participants generally had a positive view of the Web site and indicated it would be a potentially useful adjunct to electronic health delivery systems. Participants expressed a need to incorporate decision support within the site and wanted to add other data, for example, blood pressure, and have the ability to adjust font size. A few expressed concerns about data privacy and security. Technologies require careful design and testing to ensure they are useful, usable, and safe for patients and do not add to the burden of busy providers.

  1. Detection of bond failure in the anchorage zone of reinforced concrete beams via acoustic emission monitoring

    Science.gov (United States)

    Abouhussien, Ahmed A.; Hassan, Assem A. A.

    2016-07-01

    In this study, acoustic emission (AE) monitoring was utilised to identify the onset of bond failure in reinforced concrete beams. Beam anchorage specimens were designed and tested to fail in bond in the anchorage zone. The specimens included four 250 × 250 × 1500 mm beams with four variable bonded lengths (100, 200, 300, and 400 mm). Meanwhile, an additional 250 × 250 × 2440 mm beam, with 200 mm bonded length, was tested to investigate the influence of sensor location on the identification of bond damage. All beams were tested under four-point loading setup and continuously monitored using three distributed AE sensors. These attached sensors were exploited to record AE signals resulting from both cracking and bond deterioration until failure. The variations in the number of AE hits and cumulative signal strength (CSS) versus test time were evaluated to achieve early detection of crack growth and bar slippage. In addition, AE intensity analysis was performed on signal strength of collected AE signals to develop two additional parameters: historic index (H (t)) and severity (S r). The analysis of these AE parameters enabled an early detection of both first cracks (at almost the mid-span of the beam) and bar slip in either of the anchorage zones at the beams’ end before their visual observation, regardless of sensor location. The results also demonstrated a clear correlation between the damage level in terms of crack development/measured free end bar slip and AE parameters (number of hits, CSS, H(t), and S r).

  2. Failure Mechanism Study for Fairy-River Shore Slope in the Three Gorges Reservoir Caused by Water-Impoundment%三峡水库蓄水诱发神女溪岸坡破坏机制研究

    Institute of Scientific and Technical Information of China (English)

    向杰; 唐红梅

    2011-01-01

    Based on the pre-study of the related research, the failure mechanism for Fariy-River shore slope which is located in Fairy-River scenic area of sorcery mountain is analyzed, because of the water level' s change between the Three Gorges Reservoir retains water front and back. It is key part to prevent and cure a database shore slippery ascent by analyzing the formation mechanism's break. All the same,simple statement the calculation method about the slop's stability analysis under the water level change situation . What' s more, it is required to discuss the shore slope cause of second-class slope, and some prevention and cure counterplots are put forward.%在相关文献研究的基础上,列举出诱发巫山神女溪滑坡的因素,从而分析巫山神女溪由于三峡水库蓄水前后,水位变动诱发库岸滑坡的机理,研究其破坏形成机制是防治库岸滑坡的核心.简述在库水位变化情况下,岸坡库水间相互作用及其岸坡稳定性分析的计算方法.

  3. 基于非线性破坏准则的边坡稳定性极限分析%Limit analysis of slope stability based on nonlinear failure criterion

    Institute of Scientific and Technical Information of China (English)

    张迎宾; 李亮; 赵炼恒; 姚辉; 任东亚

    2011-01-01

    Upper bound limit analysis method is an effective tool in solving geotechnical engineering problems. Conventional calculations in stability of slopes are formulated assuming the soils obeying a linear Mohr-Coulomb yield criterion. However, experimental evidences show that the failure criteria of almost all geomaterials are nonlinear over a wide range of normal stresses. In this paper, the soil masses of slopes are assumed to follow a nonlinear Mohr-Coulomb failure criterion. Based on the nonlinear failure criterion, the paper studies the problem of slope stability by combining the slice method and limit analysis upper bound method. The nonlinear strength parameters cohesionc, and internal friction angle ψ, are introduced through the tangent method. Joined influence of nonlinearity is established. The equations of equivalent in rates of external work and internal energy dissipation are established based on the joined influence. The equations of factors of safety for slope with different slide surface (straight line, broken-line, and circle) are deduced and the plastic analysis upper limit solutions are calculated well by these equations. A classical slope calculation case shows that the method is of correctness and high precision which consists with previous achievements. The new method can be used to guide the slope stability analysis based on the nonlinear failure criterion on the plastic upper limit theorem.%上限定理是求解岩土工程问题的有效工具.以上限定理为理论基础,分析边坡的稳定性问题,并考虑了岩土材料破坏准则的非线性特性.在非线性Mohr-Coulomb破坏准则下,采用条分法与极限分析上限法相结合的方法,对边坡稳定性进行分析.通过切线法引入非线性强度参数ct、(4)t,推导了岩土材料在非线性破坏准则下的相关联流动法则,建立功能方程,推导了边坡直线滑裂面、折线滑裂面和光滑曲线滑裂面安全系数F的计算方程.采用数学规

  4. A proposal for monitoring patients with heart failure via "smart phone technology"-based electrocardiograms.

    Science.gov (United States)

    Madias, John E

    2016-01-01

    The ubiquitous smart phone/device technology (SPT) has enabled the safe acquisition/transmission (A/T) of clinical and laboratory patient data, including the electrocardiogram (ECG). SPT-based A/T of the ECG has been found useful in the detection of atrial fibrillation, in monitoring of the QTc interval, in patients undergoing antiarrhythmic drug loading, and in management of patients with acute ST-elevation myocardial infarction. Previous work has shown a relationship between changes in the voltage of the ECG QRS complexes, with perturbations in the edematous state of various etiologies, including heart failure (HF). It is proposed herein to employ serially SPT-based 3-lead ECG A/T for the monitoring and management of patients with HF in their ambient environment. The proposed method will enable patients with HF to acquire/transmit their 3-lead ECG to the caring HF team, using only their smart phone and it takes into consideration the advanced degrees of physical incapacitation and age-related infirmities inherent to the HF population. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Monitoring the slope movement of the Shuping landslide in the Three Gorges Reservoir of China, using X-band time series SAR interferometry

    Science.gov (United States)

    Liu, Guang; Guo, Huadong; Perski, Zbigniew; Fan, Jinghui; Bai, Shibiao; Yan, Shiyong; Song, Rui

    2016-06-01

    As the largest water conservation project in China, the Three Gorges Reservoir has attracted a lot of attention. However, the rise in water level due to the dam operation has caused many ecological problems. Since the impoundment of the Three Gorges Reservoir in the year 2003, many landslides have taken place. The Shuping landslide is a reactivated landslide and has been continuously moving since the impoundment. It has resulted in serious dangers to local residence and the role of the Yangtze River as an inland waterway. Spaceborne Synthetic Aperture Radar (SAR) sensors obtain images periodically and regionally, from which the characteristics of the slope movement could be obtained timely and cost effectively. In this study, an adapted time series InSAR technique considering SRTM bias is proposed and used to process TerraSAR-X strip map images with 3 meters resolution which collected in the first quarter of 2012. Compared with previous studies with low resolution SAR data, our results obtain much more stable points and reveal the movement pattern of the active slope of Shuping landslide in detail, and they show that there are two main landslide bodies obviously; one is located in the eastern part of the landslide, while the other is located in the western part of the landslide, the movement velocity is up to 40 mm month-1, and the results are well-consistent with the in situ results. Furthermore the active movement boundaries was identified through analysing the time series InSAR results, the shape of the landslide is chair-like, and the boundaries lie mostly along ditches. The results show that more details about the landslide could be revealed using the proposed time series InSAR method and high resolution TerraSAR-X SAR data, and this provide a more comprehensive way for landslide movement monitoring, which will be useful for landslide management.

  6. Slope earthquake stability

    CERN Document Server

    Changwei, Yang; Jing, Lian; Wenying, Yu; Jianjing, Zhang

    2017-01-01

    This book begins with the dynamic characteristics of the covering layerbedrock type slope, containing monitoring data of the seismic array, shaking table tests, numerical analysis and theoretical derivation. Then it focuses on the landslide mechanism and assessment method. It also proposes a model that assessing the hazard area based on the field investigations. Many questions, exercises and solutions are given. Researchers and engineers in the field of Geotechnical Engineering and Anti-seismic Engineering can benefit from it.

  7. Heart failure - tests

    Science.gov (United States)

    CHF - tests; Congestive heart failure - tests; Cardiomyopathy - tests; HF - tests ... the best test to: Identify which type of heart failure (systolic versus diastolic, valvular) Monitor your heart failure ...

  8. Myocardial strain and strain rate in monitoring subclinical heart failure in asymptomatic long-term survivors of childhood cancer.

    NARCIS (Netherlands)

    Mavinkurve-Groothuis, A.M.C.; Groot-Loonen, J.J.; Marcus, K.A.; Bellersen, L.; Feuth, T.; Bokkerink, J.P.M.; Hoogerbrugge, P.M.; Korte, C.L. de; Kapusta, L.

    2010-01-01

    We studied the role of global myocardial strain and strain rate in monitoring subclinical heart failure in a large group of asymptomatic long-term survivors of childhood cancer. Global strain (rate) parameters of survivors were compared with those in healthy controls and were related to conventional

  9. The use of web based monitoring and analysis-based platforms for the monitoring of slopes in opencast mines and quarries; Die Anwendung Web-basierter Monitoring- und Analyse-Plattformen fuer die Ueberwachung von Boeschungen in Steinbruechen und Tagebauen

    Energy Technology Data Exchange (ETDEWEB)

    Graf, Thomas; Fyfe, Timothy D. [Fugro Consult GmbH, Berlin (Germany)

    2010-07-15

    These days, ensuring the technical and operational safety requirements, is one of the core activities in the operation of quarries and open pit mines. Especially, the geotechnical stability of slopes during open pit operations contains a considerable risk potential. (orig.)

  10. Monitoring and Follow-up of Chronic Heart Failure: a Literature Review of eHealth Applications and Systems.

    Science.gov (United States)

    de la Torre Díez, Isabel; Garcia-Zapirain, Begoña; Méndez-Zorrilla, Amaia; López-Coronado, Miguel

    2016-07-01

    In developed countries heart failure is one of the most important causes of death, followed closely by strokes and other cerebrovascular diseases. It is one of the major healthcare issues in terms of increasing number of patients, rate of hospitalizations and costs. The main aim of this paper is to present telemedicine applications for monitoring and follow-up of heart failure and to show how these systems can help reduce costs of administering heart failure. The search for e-health applications and systems in the field of telemonitoring of heart failure was pursued in IEEE Xplore, Science Direct, PubMed and Scopus systems between 2005 and the present time. This search was conducted between May and June 2015, and the articles deemed to be of most interest about treatment, prevention, self-empowerment and stabilization of patients were selected. Over 100 articles about telemonitoring of heart failure have been found in the literature reviewed since 2005, although the most interesting ones have been selected from the scientific standpoint. Many of them show that telemonitoring of patients with a high risk of heart failure is a measure that might help to reduce the risk of suffering from the disease. Following the review conducted, in can be stated that via the research articles analysed that telemonitoring systems can help to reduce the costs of administering heart failure and result in less re-hospitalization of patients.

  11. 线性波浪加载下海底斜坡失稳机制的数值分析%Numerical Analysis of the Failure Mechanism of Submarine Slopes under Linear Wave Loading

    Institute of Scientific and Technical Information of China (English)

    刘敏; 刘博; 年廷凯; 印萍; 宋雷

    2015-01-01

    基于大型有限元软件 ABAQUS 中的荷载模块,添加一阶波浪力载荷模式,并结合强度折减技术,实现波浪力作用下海底斜坡稳定性与失稳机制的弹塑性有限元数值分析。引入典型算例,利用先前提出的波浪荷载下海底斜坡稳定性的极限分析上限方法开展数值解的对比验证;在此基础上,通过深入地变动参数比较分析,探讨不同波长、波高和水深等波浪参数对计算结果的影响以及波浪力影响下海底斜坡潜在滑动面的变化规律,获得波浪荷载下海底斜坡失稳滑动机制的初步认识。%Submarine landslides,a natural hazard,not only destroy subsea infrastructure but also trigger life-threatening tsunamis.Because of its destructive potential,many scholars are studying the failure mechanism of seabed slopes.There are many factors that induce submarine landslides, e.g.,earthquakes,volcanic eruptions,gas hydrate dissociation,and so on.However,the instability of the seafloor in shallow waters may be induced by waves.This study treats the stability of a sub-marine slope as a plane strain problem and adopts an elasto-plastic constitutive model obeying the Mohr-Coulomb yield criterion.To analyze seafloor stability under wave loading,a large-scale elas-to-plastic finite element program called ABAQUS combined with a strength reduction method is adopted.Based on linear wave theory,wave-induced pressure is implemented by developing a load-ing module in this program.Pressures are applied on the slope surface as pseudo-static loads at a particular time during the wave period.In addition,a typical example is presented,and a factor of safety (FS)and corresponding critical sliding surface (CSS)for the submarine slope under wave loading are obtained using the improved finite element program.A previously programmed analyt-ical code based on an upper-bound approach of limit analysis is also employed to validate the nu-merical solutions.Based on this

  12. Monitoring and Failure Analysis of Corroded Bridge Cables under Fatigue Loading Using Acoustic Emission Sensors

    Directory of Open Access Journals (Sweden)

    Hui Li

    2012-03-01

    Full Text Available Cables play an important role in cable-stayed systems, but are vulnerable to corrosion and fatigue damage. There is a dearth of studies on the fatigue damage evolution of corroded cable. In the present study, the acoustic emission (AE technology is adopted to monitor the fatigue damage evolution process. First, the relationship between stress and strain is determined through a tensile test for corroded and non-corroded steel wires. Results show that the mechanical performance of corroded cables is changed considerably. The AE characteristic parameters for fatigue damage are then established. AE energy cumulative parameters can accurately describe the fatigue damage evolution of corroded cables. The failure modes in each phase as well as the type of acoustic emission source are determined based on the results of scanning electron microscopy. The waveform characteristics, damage types, and frequency distribution of the corroded cable at different damage phases are collected. Finally, the number of broken wires and breakage time of the cables are determined according to the variation in the margin index.

  13. Ambient seismic noise monitoring of a clay landslide: Toward failure prediction

    Science.gov (United States)

    Mainsant, Guénolé; Larose, Eric; Brönnimann, Cornelia; Jongmans, Denis; Michoud, Clément; Jaboyedoff, Michel

    2012-03-01

    Given that clay-rich landslides may become mobilized, leading to rapid mass movements (earthflows and debris flows), they pose critical problems in risk management worldwide. The most widely proposed mechanism leading to such flow-like movements is the increase in water pore pressure in the sliding mass, generating partial or complete liquefaction. This solid-to-liquid transition results in a dramatic reduction of mechanical rigidity in the liquefied zones, which could be detected by monitoring shear wave velocity variations. With this purpose in mind, the ambient seismic noise correlation technique has been applied to measure the variation in the seismic surface wave velocity in the Pont Bourquin landslide (Swiss Alps). This small but active composite earthslide-earthflow was equipped with continuously recording seismic sensors during spring and summer 2010. An earthslide of a few thousand cubic meters was triggered in mid-August 2010, after a rainy period. This article shows that the seismic velocity of the sliding material, measured from daily noise correlograms, decreased continuously and rapidly for several days prior to the catastrophic event. From a spectral analysis of the velocity decrease, it was possible to determine the location of the change at the base of the sliding layer. These results demonstrate that ambient seismic noise can be used to detect rigidity variations before failure and could potentially be used to predict landslides.

  14. Monitoring and failure analysis of corroded bridge cables under fatigue loading using acoustic emission sensors.

    Science.gov (United States)

    Li, Dongsheng; Ou, Jinping; Lan, Chengming; Li, Hui

    2012-01-01

    Cables play an important role in cable-stayed systems, but are vulnerable to corrosion and fatigue damage. There is a dearth of studies on the fatigue damage evolution of corroded cable. In the present study, the acoustic emission (AE) technology is adopted to monitor the fatigue damage evolution process. First, the relationship between stress and strain is determined through a tensile test for corroded and non-corroded steel wires. Results show that the mechanical performance of corroded cables is changed considerably. The AE characteristic parameters for fatigue damage are then established. AE energy cumulative parameters can accurately describe the fatigue damage evolution of corroded cables. The failure modes in each phase as well as the type of acoustic emission source are determined based on the results of scanning electron microscopy. The waveform characteristics, damage types, and frequency distribution of the corroded cable at different damage phases are collected. Finally, the number of broken wires and breakage time of the cables are determined according to the variation in the margin index.

  15. Development of an invasively monitored porcine model of acetaminophen-induced acute liver failure

    Directory of Open Access Journals (Sweden)

    Howie Forbes

    2010-03-01

    Full Text Available Abstract Background The development of effective therapies for acute liver failure (ALF is limited by our knowledge of the pathophysiology of this condition, and the lack of suitable large animal models of acetaminophen toxicity. Our aim was to develop a reproducible invasively-monitored porcine model of acetaminophen-induced ALF. Method 35kg pigs were maintained under general anaesthesia and invasively monitored. Control pigs received a saline infusion, whereas ALF pigs received acetaminophen intravenously for 12 hours to maintain blood concentrations between 200-300 mg/l. Animals surviving 28 hours were euthanased. Results Cytochrome p450 levels in phenobarbital pre-treated animals were significantly higher than non pre-treated animals (300 vs 100 pmol/mg protein. Control pigs (n = 4 survived 28-hour anaesthesia without incident. Of nine pigs that received acetaminophen, four survived 20 hours and two survived 28 hours. Injured animals developed hypotension (mean arterial pressure; 40.8 +/- 5.9 vs 59 +/- 2.0 mmHg, increased cardiac output (7.26 +/- 1.86 vs 3.30 +/- 0.40 l/min and decreased systemic vascular resistance (8.48 +/- 2.75 vs 16.2 +/- 1.76 mPa/s/m3. Dyspnoea developed as liver injury progressed and the increased pulmonary vascular resistance (636 +/- 95 vs 301 +/- 26.9 mPa/s/m3 observed may reflect the development of respiratory distress syndrome. Liver damage was confirmed by deterioration in pH (7.23 +/- 0.05 vs 7.45 +/- 0.02 and prothrombin time (36 +/- 2 vs 8.9 +/- 0.3 seconds compared with controls. Factor V and VII levels were reduced to 9.3 and 15.5% of starting values in injured animals. A marked increase in serum AST (471.5 +/- 210 vs 42 +/- 8.14 coincided with a marked reduction in serum albumin (11.5 +/- 1.71 vs 25 +/- 1 g/dL in injured animals. Animals displayed evidence of renal impairment; mean creatinine levels 280.2 +/- 36.5 vs 131.6 +/- 9.33 μmol/l. Liver histology revealed evidence of severe centrilobular necrosis

  16. Experimental research on seismic failure mode and supporting for slope of bedrock and overburden layer%地震力作用下基覆边坡模型试验研究

    Institute of Scientific and Technical Information of China (English)

    赵安平; 冯春; 李世海; 艾畅; 刘洋

    2012-01-01

    以汶川灾区实地考察资料为背景,选择宇宫庙滑坡为参照,制作了模型试验台,在量纲分析的基础上,对主要参数做了相似理论研究,并采用水下爆炸的方式来模拟地震波(近场)进行了大量模型试验.结果表明:基覆边坡在地震力作用下的破坏模式是浅表层张拉而导致表层松散体流坍,且地震加速度随着药量(地震烈度)的增加而呈递增趋势,重力墙、桩板墙等支挡结构对于基覆边坡的作用明显.其结论将为铁路、公路沿线的高陡边坡分析和研究提供一定的依据.%According to the site investigation of Wenchuan disaster area's statistics data as the background, the experiment model is made selecting Yugongmiao slope as the reference. The similarities of main parameters are analyzed based on dimensional analysis. The underwater blasting is used to simulate seismic wave (near-field), and a large number of model tests are conducted. The results show that the failure model of bedrock and overburden layer slope under seismic loading is surface loose media flowing caused by the tension of superficial layer, and with the increase of explosives (seismic intensity), seismic accelerations increase. It is very useful to design of gravity retaining wall and pile-wall structures. These conclusions can provide some bases for analysis and research of high-steep slopes along railways and highways.

  17. Geospatial Data Integration for Assessing Landslide Hazard on Engineered Slopes

    Science.gov (United States)

    Miller, P. E.; Mills, J. P.; Barr, S. L.; Birkinshaw, S. J.

    2012-07-01

    Road and rail networks are essential components of national infrastructures, underpinning the economy, and facilitating the mobility of goods and the human workforce. Earthwork slopes such as cuttings and embankments are primary components, and their reliability is of fundamental importance. However, instability and failure can occur, through processes such as landslides. Monitoring the condition of earthworks is a costly and continuous process for network operators, and currently, geospatial data is largely underutilised. The research presented here addresses this by combining airborne laser scanning and multispectral aerial imagery to develop a methodology for assessing landslide hazard. This is based on the extraction of key slope stability variables from the remotely sensed data. The methodology is implemented through numerical modelling, which is parameterised with the slope stability information, simulated climate conditions, and geotechnical properties. This allows determination of slope stability (expressed through the factor of safety) for a range of simulated scenarios. Regression analysis is then performed in order to develop a functional model relating slope stability to the input variables. The remotely sensed raster datasets are robustly re-sampled to two-dimensional cross-sections to facilitate meaningful interpretation of slope behaviour and mapping of landslide hazard. Results are stored in a geodatabase for spatial analysis within a GIS environment. For a test site located in England, UK, results have shown the utility of the approach in deriving practical hazard assessment information. Outcomes were compared to the network operator's hazard grading data, and show general agreement. The utility of the slope information was also assessed with respect to auto-population of slope geometry, and found to deliver significant improvements over the network operator's existing field-based approaches.

  18. Application of Close Range Photogrammetry Technology of Slope Deformation Monitoring in Open Pit Mine%近景摄影技术在露天矿山边坡变形监测中的应用

    Institute of Scientific and Technical Information of China (English)

    谢冬冬; 杨德宏

    2016-01-01

    In the open pit mine, the slope stability is a serious threat to the safety of mine production, so it is very important to strengthen the deformation monitoring and stability analysis of high and steep slope. This paper taking the northern slope of an open pit mine in Yunnan as an example, applied close range photogrammetry technology to the open pit mine slope deformation monitoring, compared and analyzed photogrammetry solution calculated data with the total station monitoring data, and obtained that it is feasible to apply the method of close range photogrammetry application to open pit slope deformation monitoring. Then it analyzed the factors that affect the measurement accuracy, and put forward the corresponding measures to improve the accuracy.%在露天矿山,边坡稳定性严重威胁着矿山的安全生产,加强对高陡边坡的变形监测和稳定性分析就显得非常重要。文章以云南某露天矿北部边坡为例,将近景摄影测量技术应用到露天矿山边坡变形监测中,将摄影测量解算出的数据与全站仪监测数据进行了对比分析,得出近景摄影测量方法应用于露天矿边坡变形监测是可行的,然后对影响量测精度的因素做出分析,并提出提高精度的相应措施。

  19. A study of the slope failure along the Dujiangyan to Wenchuan Highway after the Wenchuan earthquake%都江堰-汶川公路边坡地震破坏模式研究

    Institute of Scientific and Technical Information of China (English)

    甘建军; 黄润秋; 范崇荣; 李前银; 叶晓华

    2011-01-01

    汶川特大地震发生后,都江堰至汶川公路两侧地质灾害尤为发育,先后多次完全中断震中生命线的交通,严重影响了公路的安全运行和灾后重建的顺利进行.通过汶川地震前后都江堰-汶川公路边坡现场调查资料对比分析,研究了该地段边坡的主要地质灾害类型及其破坏模式、易发性分区和防治建议.研究表明破坏类型主要为碎屑流式、碎裂滑移崩塌,剪断-溃滑型、拉裂-溃滑型、顺层溃滑型滑坡和沟谷型泥石流.都汶公路两侧的边坡灾害以崩塌为主,滑坡、泥石流次之.地震使区内泥石流暴发的频率和规模增大,特大型泥石流主要发生在映秀-北川断裂带的地震烈度较高区域.防治此类地质灾害,应以治理为主,预防和避让相结合.%Geological hazards induced by the Wenchuan Ms.8.0 earthquake along the Dujiangyan to Wenchuan Highway are especially severe and have serious effect on the safe riding along the highway and reconstructions.In order to prevent and reduce disasters effectively, main failure modes of slope, geohazard susceptibility distribution section and prevention suggestions in the area have been studied on the basis of the field investigations and statistic analysis of available data.The results show that main damage types are of debris flow to collapse and cataclastic rocks to collapses, tension-sliding type and plane sliding and shearing sliding to slides, V-shaped debris flows along the slope area.The characteristics of seismic geological disasters are avalanches, landslide and debris flow.Earthquake zone of debris, large scale increasing frequency and mudslides occurs mainly in Yingxiu-Beichuan fault of earthquake intensity is relatively high.Prevention of those kinds of failure slope should follow the principles of taking prevention measures first and then leaving enough buffer space.

  20. Detecting failures of the glucose sensor-insulin pump system: improved overnight safety monitoring for Type-1 diabetes.

    Science.gov (United States)

    Facchinetti, Andrea; Del Favero, Simone; Sparacino, Giovanni; Cobelli, Claudio

    2011-01-01

    New sensors for real-time continuous glucose monitoring (CGM) and pumps for continuous subcutaneous insulin infusion (CSII), possibly mounted on the same device, opened new scenarios for Type-1 diabetes treatment. However, possible failures of either CGM or CSII can expose diabetic patients to risks that can be dangerous especially overnight. In this contribution we present a proof-of-concept method, developed in a state-space context and implemented through a Kalman estimator, to detect in real time possible overnight failures of the sensor-pump system by simultaneously using CGM and CSII data. The method is tested on two simulated and one real subject. Results show that the method is able to correctly generate alerts for sensor-pump failures and stimulates further investigation on its development.

  1. The Influence of Shales on Slope Instability

    Science.gov (United States)

    Stead, Doug

    2016-02-01

    Shales play a major role in the stability of slopes, both natural and engineered. This paper attempts to provide a review of the state-of-the-art in shale slope stability. The complexities of shale terminology and classification are first reviewed followed by a brief discussion of the important physical and mechanical properties of relevance to shale slope stability. The varied mechanisms of shale slope stability are outlined and their importance highlighted by reference to international shale slope failures. Stability analysis and modelling of anisotropic rock slope masses are briefly discussed and the potential role of brittle rock fracture and damage highlighted. A short review of shale slopes in open pits is presented.

  2. Investigation of the cross-ship comparison monitoring method of failure detection in the HIMAT RPRV. [digital control techniques using airborne microprocessors

    Science.gov (United States)

    Wolf, J. A.

    1978-01-01

    The Highly maneuverable aircraft technology (HIMAT) remotely piloted research vehicle (RPRV) uses cross-ship comparison monitoring of the actuator RAM positions to detect a failure in the aileron, canard, and elevator control surface servosystems. Some possible sources of nuisance trips for this failure detection technique are analyzed. A FORTRAN model of the simplex servosystems and the failure detection technique were utilized to provide a convenient means of changing parameters and introducing system noise. The sensitivity of the technique to differences between servosystems and operating conditions was determined. The cross-ship comparison monitoring method presently appears to be marginal in its capability to detect an actual failure and to withstand nuisance trips.

  3. ElevationSlope_SLOPE2M

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Bennington County 2012 2.0m and related SLOPE datasets. Created using ArcGIS "SLOPE" command to produce...

  4. ElevationSlope_SLOPE1M2005

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Essex County 2005 1m and related SLOPE datasets. Created using ArcGIS "SLOPE" command to produce change in...

  5. ElevationSlope_SLOPE1M2010

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Bennington Floodplain 2010 1m and related SLOPE datasets. Created using ArcGIS "SLOPE" command to produce...

  6. ElevationSlope_SLOPE1M2007

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Bennington Floodplain 2007 1m and related SLOPE datasets. Created using ArcGIS "SLOPE" command to produce...

  7. ElevationSlope_SLOPE1M2009

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Barre Montpelier 2009 1m and related SLOPE datasets. Created using ArcGIS "SLOPE" command to produce...

  8. Time-dependent evolution of rock slopes by a multi-modelling approach

    Science.gov (United States)

    Bozzano, F.; Della Seta, M.; Martino, S.

    2016-06-01

    This paper presents a multi-modelling approach that incorporates contributions from morpho-evolutionary modelling, detailed engineering-geological modelling and time-dependent stress-strain numerical modelling to analyse the rheological evolution of a river valley slope over approximately 102 kyr. The slope is located in a transient, tectonically active landscape in southwestern Tyrrhenian Calabria (Italy), where gravitational processes drive failures in rock slopes. Constraints on the valley profile development were provided by a morpho-evolutionary model based on the correlation of marine and river strath terraces. Rock mass classes were identified through geomechanical parameters that were derived from engineering-geological surveys and outputs of a multi-sensor slope monitoring system. The rock mass classes were associated to lithotechnical units to obtain a high-resolution engineering-geological model along a cross section of the valley. Time-dependent stress-strain numerical modelling reproduced the main morpho-evolutionary stages of the valley slopes. The findings demonstrate that a complex combination of eustatism, uplift and Mass Rock Creep (MRC) deformations can lead to first-time failures of rock slopes when unstable conditions are encountered up to the generation of stress-controlled shear zones. The multi-modelling approach enabled us to determine that such complex combinations may have been sufficient for the first-time failure of the S. Giovanni slope at approximately 140 ka (MIS 7), even without invoking any trigger. Conversely, further reactivations of the landslide must be related to triggers such as earthquakes, rainfall and anthropogenic activities. This failure involved a portion of the slope where a plasticity zone resulted from mass rock creep that evolved with a maximum strain rate of 40% per thousand years, after the formation of a river strath terrace. This study demonstrates that the multi-modelling approach presented herein is a useful

  9. 同时考虑张拉及剪切破坏的边坡上限原理有限元法%LINEARIZED UPPER BOUND LIMIT ANALYSIS CONSIDERING TENSION AND SHEAR FAILURES FOR SLOPE STABILITY PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    孙聪; 李春光; 郑宏; 孙冠华; 刘治军

    2015-01-01

    The upper bound finite element method is one of the commonly used methods for slope stability analysis. Since the Mohr-Coulomb shear yield criterion which is widely used overrates the tension strength,the tensile cracks cannot be get at the rear of the slope when using it for slope stability analysis. In order to solve this problem,the yield surface approximation method of the upper bound finite element method was remolded. From the viewpoint of discrete spatial orientation the plastic flow constraint equation on the discrete directions can be built easily,and by introducing the tension damage to the upper limit method,each azimuth plane was satisfied the tensile failure criteria,and then the linearized upper bound finite element method considering both tension and shear failures can be established. This method can be used to calculate the safety factor of slope and get the critical velocity field with tensile crack. A few of examples prove the effectiveness of this method.%上限有限元法是一种常用的边坡稳定性分析方法,目前被广泛采用的仅考虑剪切破坏的 Mohr-Coulomb 屈服准则过高地估计了边坡的抗拉强度,因此在用其进行边坡稳定性分析时,无法得到实际工程中常遇到的位于坡体后缘的拉裂缝。针对这一问题,从空间方位离散的角度出发,对上限法中的 Mohr-Coulomb 屈服面逼近方式进行改造,建立基于方位离散的线性化剪切屈服准则;同时引入张拉破坏准则,保证在每一个离散方位平面上不违背张拉破坏准则,从而形成既考虑张拉破坏,又考虑剪切破坏的线性化上限原理有限元法。该方法可以准确地求出边坡的安全系数和带有拉裂缝的临界失稳速度场。算例证明方法的有效性,同时还表明不考虑拉伸破坏会过高地估计边坡的安全性。

  10. CD4 count-based failure criteria combined with viral load monitoring may trigger worse switch decisions than viral load monitoring alone.

    Science.gov (United States)

    Hoffmann, Christopher J; Maritz, Jean; van Zyl, Gert U

    2016-02-01

    CD4 count decline often triggers antiretroviral regimen switches in resource-limited settings, even when viral load testing is available. We therefore compared CD4 failure and CD4 trends in patients with viraemia with or without antiretroviral resistance. Retrospective cohort study investigating the association of HIV drug resistance with CD4 failure or CD4 trends in patients on first-line antiretroviral regimens during viraemia. Patients with viraemia (HIV RNA >1000 copies/ml) from two HIV treatment programmes in South Africa (n = 350) were included. We investigated the association of M184V and NNRTI resistance with WHO immunological failure criteria and CD4 count trends, using chi-square tests and linear mixed models. Fewer patients with the M184V mutation reached immunologic failure criteria than those without: 51 of 151(34%) vs. 90 of 199 (45%) (P = 0.03). Similarly, 79 of 220 (36%) patients, who had major NNRTI resistance, had immunological failure, whereas 62 of 130 (48%) without (chi-square P = 0.03) did. The CD4 count decline among patients with the M184V mutation was 2.5 cells/mm(3) /year, whereas in those without M184V it was 14 cells/mm(3) /year (P = 0.1), but the difference in CD4 count decline with and without NNRTI resistance was marginal. Our data suggest that CD4 count monitoring may lead to inappropriate delayed therapy switches for patients with HIV drug resistance. Conversely, patients with viraemia but no drug resistance are more likely to have a CD4 count decline and thus may be more likely to be switched to a second-line regimen. © 2015 John Wiley & Sons Ltd.

  11. Damage-based long-term modelling of a large alpine rock slope

    Science.gov (United States)

    Riva, Federico; Agliardi, Federico; Amitrano, David; Crosta, Giovanni B.

    2016-04-01

    The morphology and stability of large alpine rock slopes result from the long-term interplay of different factors, following a complex history spanning several glacial cycles over thousands of years in changing morpho-climatic settings. Large rock slopes often experience slow long-term, creep-like movements interpreted as the macroscopic evidence of progressive failure in subcritically stressed rock masses. Slope damage and rock mass weakening associated to deglaciation are considered major triggers of these processes in alpine environments. Depending on rock mass properties, slope topography and removed ice thickness, valley flanks can progressively evolve over time into rockslides showing seasonal displacement trends, interpreted as evidence of hydro-mechanically coupled responses to hydrologic perturbations. The processes linking the long-term evolution of deglaciated rock slopes and their changing sensitivity to hydrologic triggers until rockslide failure, with significant implications in risk management and Early Warning, are not fully understood. We suggest that modelling long-term rock mass damage under changing conditions may provide such a link. We simulated the evolution of the Spriana rock slope (Italian Central Alps). This is affected by a 50 Mm3 rockslide, significantly active since the late 19th century and characterized by massive geological and geotechnical investigations and monitoring during the last decades. Using an improved version of the 2D Finite-Element, damage-based brittle creep model proposed by Amitrano and Helmstetter (2006) and Lacroix and Amitrano (2013), we combined damage and time-to-failure laws to reproduce diffused damage, strain localization and the long-term creep deformation of the slope. The model was implemented for application to real slopes, by accounting for: 1) fractured rock mass properties upscaling based on site characterization data; 2) fluid pressures in a progressive failure context, relating fluid occurrence to

  12. Life cycle strain monitoring in glass fibre reinforced polymer laminates using embedded fibre Bragg grating sensors from manufacturing to failure

    DEFF Research Database (Denmark)

    Nielsen, Michael Wenani; Schmidt, Jacob Wittrup; Høgh, Jacob Herold

    2013-01-01

    failure. The internal process-induced strain development is investigated through use of different cure schedules and tool/part interactions. The fibre Bragg grating sensors successfully monitor resin flow front progression during infusion, and strain development during curing, representative...... of the different cure temperatures and tool/part interfaces used. Substantial internal process-induced strains develop in the transverse fibre direction, which should be taken into consideration when designing fibre-reinforced polymer laminates. Flexure tests indicate no significant difference in the mechanical...

  13. The Thai Anesthesia Incident Monitoring Study (Thai AIMS) of anesthetic equipment failure/malfunction: an analysis of 1996 incident reports.

    Science.gov (United States)

    Kusumaphanyo, Chaiyapruk; Charuluxananan, Somrat; Sriramatr, Dujduen; Pulnitiporn, Aksorn; Sriraj, Wimonrat

    2009-11-01

    The present study is a part of the multi-centered study of model of anesthesia relating adverse events in Thailand by incident report (The Thai Anesthesia Incident Monitoring Study or Thai AIMS). The objective was to identify the frequency distribution, contributing factors, and factors minimizing incident of equipment failure/malfunction. As a prospective descriptive research design, anesthesia providers reported the data as soon as the incidents of equipment failure/malfunction occurred. Standardized forms of incident report were then mailed to the center at Chulalongkorn University and three anesthesiologists reviewed the data. Ninety-two cases of equipment failure/malfunction were reported from 51 hospitals across Thailand Between January and June 2007, 92 incidents of equipment failure/malfunction were reported out of 1996 anesthesia-related incidents (4.6%). Failed/malfunctioned equipment included anesthetic circuit (17.4%), anesthesia machine (15.2%), capnography (15.2%), laryngoscope (15.2%), ventilator (12%), pulse oximeter (8.7%), vaporizer (4.3%), endotracheal tube (3.3%), sodalime (3.3%), and electrocardiogram (2.2%). All 16 anesthetic circuit incidents (100%) were detected by clinical signs whereas five incidents (31.3%) were detected firstly by monitors. All 14 laryngoscope malfunction (100%) were detected solely by clinical signs. Only one out of eight (12.5%) of pulse oximeter incidents was detected by clinical signs before the pulse oximeter itself. Three out of four (75%) incidents of vaporizer were detected by clinical signs before monitors. The majority of equipment malfunction was considered as related to anesthetic (69.6%) and system factors (69.6%) and 71.7% of incidents were preventable. Seventy-four incidents (80.4%) were caused by human error and, specifically, rule-based error in three fourths. Contributing factors were ineffective equipment, haste, lack of experience, ineffective monitors, and inadequate equipment. Factors minimizing

  14. Geochemical Monitoring Of The Gas Hydrate Production By CO2/CH4 Exchange In The Ignik Sikumi Gas Hydrate Production Test Well, Alaska North Slope

    Science.gov (United States)

    Lorenson, T. D.; Collett, T. S.; Ignik Sikumi, S.

    2012-12-01

    Hydrocarbon gases, nitrogen, carbon dioxide and water were collected from production streams at the Ignik Sikumi gas hydrate production test well (TD, 791.6 m), drilled on the Alaska North Slope. The well was drilled to test the feasibility of producing methane by carbon dioxide injection that replaces methane in the solid gas hydrate. The Ignik Sikumi well penetrated a stratigraphically-bounded prospect within the Eileen gas hydrate accumulation. Regionally, the Eileen gas hydrate accumulation overlies the more deeply buried Prudhoe Bay, Milne Point, and Kuparuk River oil fields and is restricted to the up-dip portion of a series of nearshore deltaic sandstone reservoirs in the Sagavanirktok Formation. Hydrate-bearing sandstones penetrated by Ignik Sikumi well occur in three primary horizons; an upper zone, ("E" sand, 579.7 - 597.4 m) containing 17.7 meters of gas hydrate-bearing sands, a middle zone ("D" sand, 628.2 - 648.6 m) with 20.4 m of gas hydrate-bearing sands and a lower zone ("C" sand, 678.8 - 710.8 m), containing 32 m of gas hydrate-bearing sands with neutron porosity log-interpreted average gas hydrate saturations of 58, 76 and 81% respectively. A known volume mixture of 77% nitrogen and 23% carbon dioxide was injected into an isolated section of the upper part of the "C" sand to start the test. Production flow-back part of the test occurred in three stages each followed by a period of shut-in: (1) unassisted flowback; (2) pumping above native methane gas hydrate stability conditions; and (3) pumping below the native methane gas hydrate stability conditions. Methane production occurred immediately after commencing unassisted flowback. Methane concentration increased from 0 to 40% while nitrogen and carbon dioxide concentrations decreased to 48 and 12% respectively. Pumping above the hydrate stability phase boundary produced gas with a methane concentration climbing above 80% while the carbon dioxide and nitrogen concentrations fell to 2 and 18

  15. Application of Web & SMS technology in highway slope geologic hazard monitoring and warning system%Web+SMS技术在公路边坡地质灾害监测中的应用研究

    Institute of Scientific and Technical Information of China (English)

    杨德龙; 王洪辉; 张兆义; 范磊磊; 钟佳迅; 黄凡

    2011-01-01

    One highway slope geologic hazard monitoring and forecast system,which is based on advanced communications and computer technologies,was established to reduce or eliminate the impact of geological hazards.This system can transmit the monitoring data to the monitoring center by SMS through GSM network.Then the monitoring center will accomplish the data processing,storage,display,alarm and so on.Finally,the system builds a remote web data service delivery platform through the Browser / Server(B/S) mode to achieve the function that can monitor the state of slope remotely from anywhere there is an Internet connection.Thus it can enhance the rapidity,efficiency and intuitiveness of highway slope geologic hazard forecast system.The Monitoring examples show that landslide monitoring system has some characters of stable system,accurate data,high speed transmission and high precision monitoring,which was used in some sections from Bijie to Weining highway in Guizhou province.%为了减少或消除公路边坡地质灾害的影响,利用先进的通信和计算机技术建立公路边坡地质灾害监测预警系统,该系统将监测数据通过GSM网络以短信的方式传输至监测中心,然后由监测中心完成监测数据的处理、存储、显示、报警等工作,最后通过浏览器/服务器(B/S)模式构建远程Web数据服务发布平台,实现在任何有互联网的地方都可远程监测边坡物理特征的功能,从而提高了公路边坡灾害预警的快速性、高效性和直观性。经贵州省毕节至威宁高速公路部分标段开挖边坡的监测实例验证表明:系统稳定、数据准确、传输速度快、监测精度高。

  16. Slope failure of chalk channel margins

    DEFF Research Database (Denmark)

    Gale, A.; Anderskouv, Kresten; Surlyk, Finn

    2015-01-01

    The importance of mass transport and bottom currents is now widely recognized in the Upper Cretaceous Chalk Group of Northern Europe. The detailed dynamics and interaction of the two phenomena are difficult to study as most evidence is based on seismic data and drill core. Here, field observation...

  17. Usability Evaluation of a Web-Based Symptom Monitoring Application for Heart Failure.

    Science.gov (United States)

    Wakefield, Bonnie; Pham, Kassie; Scherubel, Melody

    2015-07-01

    Symptom recognition and reporting by patients with heart failure are critical to avoid hospitalization. This project evaluated a patient symptom tracking application. Fourteen end users (nine patients, five clinicians) from a Midwestern Veterans Affairs Medical Center evaluated the website using a think aloud protocol. A structured observation protocol was used to assess success or failure for each task. Measures included task time, success, and satisfaction. Patients had a mean age of 70 years; clinicians averaged 42 years in age. Patients took 9.3 min and clinicians took less than 3 min per scenario. Most patients needed some assistance, but few patients were completely unable to complete some tasks. Clinicians demonstrated few problems navigating the site. Patient System Usability Scale item scores ranged from 2.0 to 3.6; clinician item scores ranged from 1.8 to 4.0. Further work is needed to determine whether using the web-based tool improves symptom recognition and reporting.

  18. Gas hydrate dissociation structures in submarine slopes

    Energy Technology Data Exchange (ETDEWEB)

    Gidley, I.; Grozic, J.L.H. [Calgary Univ., AB (Canada). Dept. of Civil Engineering

    2008-07-01

    Studies have suggested that gas hydrates may play a role in submarine slope failures. However, the mechanics surrounding such failures are poorly understood. This paper discussed experimental tests conducted on a small-scale physical model of submarine soils with hydrate inclusions. The laboratory tests investigated the effects of slope angle and depth of burial of the hydrate on gas escape structures and slope stability. Laponite was used to model the soils due to its ability to swell and produce a clear, colorless thixotropic gel when dispersed in water. An R-11 refrigerant was used to form hydrate layers and nodules. The aim of the experiment was to investigate the path of the fluid escape structures and the development of a subsequent slip plane caused by the dissociation of the R-11 hydrates. Slope angles of 5, 10, and 15 degrees were examined. Slopes were examined using high-resolution, high-speed imaging techniques. Hydrate placement and slope inclinations were varied in order to obtain stability data. Results of the study showed that slope angle influenced the direction of travel of the escaping gas, and that the depth of burial affected sensitivity to slope angle. Theoretical models developed from the experimental data have accurately mapped deformations and stress states during testing. Further research is being conducted to investigate the influence of the size, shape, and placement of the hydrates. 30 refs., 15 figs.

  19. Model slope infiltration experiments for shallow landslides early warning

    Science.gov (United States)

    Damiano, E.; Greco, R.; Guida, A.; Olivares, L.; Picarelli, L.

    2009-04-01

    simple empirical models [Versace et al., 2003] based on correlation between some features of rainfall records (cumulated height, duration, season etc.) and the correspondent observed landslides. Laboratory experiments on instrumented small scale slope models represent an effective way to provide data sets [Eckersley, 1990; Wang and Sassa, 2001] useful for building up more complex models of landslide triggering prediction. At the Geotechnical Laboratory of C.I.R.I.AM. an instrumented flume to investigate on the mechanics of landslides in unsaturated deposits of granular soils is available [Olivares et al. 2003; Damiano, 2004; Olivares et al., 2007]. In the flume a model slope is reconstituted by a moist-tamping technique and subjected to an artificial uniform rainfall since failure happens. The state of stress and strain of the slope is monitored during the entire test starting from the infiltration process since the early post-failure stage: the monitoring system is constituted by several mini-tensiometers placed at different locations and depths, to measure suction, mini-transducers to measure positive pore pressures, laser sensors, to measure settlements of the ground surface, and high definition video-cameras to obtain, through a software (PIV) appositely dedicated, the overall horizontal displacement field. Besides, TDR sensors, used with an innovative technique [Greco, 2006], allow to reconstruct the water content profile of soil along the entire thickness of the investigated deposit and to monitor its continuous changes during infiltration. In this paper a series of laboratory tests carried out on model slopes in granular pyroclastic soils taken in the mountainous area north-eastern of Napoli, are presented. The experimental results demonstrate the completeness of information provided by the various sensors installed. In particular, very useful information is given by the coupled measurements of soil water content by TDR and suction by tensiometers. Knowledge of

  20. Thermomechanical forcing of deep rock slope deformation: 2. The Randa rock slope instability

    Science.gov (United States)

    Gischig, Valentin S.; Moore, Jeffrey R.; Evans, Keith F.; Amann, Florian; Loew, Simon

    2011-12-01

    Deformation monitoring between 2004 and 2011 at the rock slope instability above Randa (Switzerland) has revealed an intriguing seasonal trend. Relative dislocation rates across active fractures increase when near-surface rock temperatures drop in the fall and decrease after snowmelt as temperatures rise. This temporal pattern was observed with different monitoring systems at the ground surface and at depths up to 68 m, and represents the behavior of the entire instability. In this paper, the second of two companion pieces, we interpret this seasonal deformation trend as being controlled by thermomechanical (TM) effects driven by near-surface temperature cycles. While Part 1 of this work demonstrated in a conceptual manner how TM effects can drive deep rock slope deformation and progressive failure, we present here in Part 2 a case study where temperature-controlled deformation trends were observed in a natural setting. A 2D discrete-element numerical model is employed, which allows failure along discontinuities and successfully reproduces the observed kinematics of the Randa instability. By implementing simplified ground surface temperature forcing, model results were able to reproduce the observed deformation pattern, and TM-induced displacement rates and seasonal amplitudes in the model are of the same order of magnitude as measured values. Model results, however, exhibit spatial variation in displacement onset times while field measurements show more synchronous change. Additional heat transfer mechanisms, such as fracture ventilation, likely create deviations from the purely transient-conductive temperature field modeled. We suggest that TM effects are especially important at Randa due to the absence of significant groundwater within the unstable rock mass.

  1. ANALYSIS METHODS ON STABILITY OF TALL AND BEDDIIG CREEP SLOPE

    Institute of Scientific and Technical Information of China (English)

    RUIYongqin; JIANGZhiming; LIUJinghui

    1995-01-01

    Based on the model of slope engineering geology,the creep and its failure mechanism of tall and bedding slope are deeply analyzed in this paper .The creep laws of weak intercalations are also discussed.The analysis om the stability of creep slope and the age forecasting of sliding slope have been conducted through mumerical simulations using Finite Element Method (FEM)and Dintimct Element Method(DEM).

  2. Monitoring the Damage State of Fiber Reinforced Composites Using an FBG Network for Failure Prediction

    Directory of Open Access Journals (Sweden)

    Esat Selim Kocaman

    2017-01-01

    Full Text Available A structural health monitoring (SHM study of biaxial glass fibre-reinforced epoxy matrix composites under a constant, high strain uniaxial fatigue loading is performed using fibre Bragg grating (FBG optical sensors embedded in composites at various locations to monitor the evolution of local strains, thereby understanding the damage mechanisms. Concurrently, the temperature changes of the samples during the fatigue test have also been monitored at the same locations. Close to fracture, significant variations in local temperatures and strains are observed, and it is shown that the variations in temperature and strain can be used to predict imminent fracture. It is noted that the latter information cannot be obtained using external strain gages, which underlines the importance of the tracking of local strains internally.

  3. Slope Superficial Displacement Monitoring by Small Baseline SAR Interferometry Using Data from L-band ALOS PALSAR and X-band TerraSAR: A Case Study of Hong Kong, China

    Directory of Open Access Journals (Sweden)

    Fulong Chen

    2014-02-01

    Full Text Available Owing to the development of spaceborne synthetic aperture radar (SAR platforms, and in particular the increase in the availability of multi-source (multi-band and multi-resolution data, it is now feasible to design a surface displacement monitoring application using multi-temporal SAR interferometry (MT-InSAR. Landslides have high socio-economic impacts in many countries because of potential geo-hazards and heavy casualties. In this study, taking into account the merits of ALOS PALSAR (L-band, good coherence preservation and TerraSAR (X-band, high resolution and short revisit times data, we applied an improved small baseline InSAR (SB-InSAR with 3-D phase unwrapping approach, to monitor slope superficial displacement in Hong Kong, China, a mountainous subtropical zone city influenced by over-urbanization and heavy monsoonal rains. Results revealed that the synergistic use of PALSAR and TerraSAR data produces different outcomes in relation to data reliability and spatial-temporal resolution, and hence could be of significant value for a comprehensive understanding and monitoring of unstable slopes.

  4. 点云检测技术在高速公路边坡监测中的应用%Slope Monitoring for Highway Based on Point Cloud Technology

    Institute of Scientific and Technical Information of China (English)

    李滨; 王汉顺; 段奇三; 廖子敬

    2014-01-01

    三维激光扫描技术获取的点云数据是目前世界上先进的测绘新技术成果之一,它不仅可以实现三维场景复制,而且与其他测绘技术手段相比,数据量更丰富,可以详细刻画目标对象的细节特征,因此可以将点云进行监测并能取得常规方法无法获得的一些分析优势。本文以三维激光扫描技术获取的高速公路边坡点云数据为例,探讨了点云检测技术在边坡监测工作中的应用原理、作业流程及其技术优势。%This article introduces the development of point cloud technology and it ’ s applications in slope monitoring for Highway.The method,precision,processing and result of point cloud based monitoring are respectively discussed .At last ,according to past applications and experience ,some issues on application of point cloud in slope monitoring are given and discussed for future research .

  5. Predictors of sudden death and death from pump failure in congestive heart failure are different. Analysis of 24 h Holter monitoring, clinical variables, blood chemistry, exercise test and radionuclide angiography

    DEFF Research Database (Denmark)

    Madsen, B K; Rasmussen, Verner; Hansen, J F

    1997-01-01

    One hundred and ninety consecutive patients discharged with congestive heart failure were examined with clinical evaluation, blood chemistry, 24 h Holter monitoring, exercise test and radionuclide angiography. Median left ventricular ejection fraction was 0.30, 46% were in New York Heart Associat......One hundred and ninety consecutive patients discharged with congestive heart failure were examined with clinical evaluation, blood chemistry, 24 h Holter monitoring, exercise test and radionuclide angiography. Median left ventricular ejection fraction was 0.30, 46% were in New York Heart...

  6. Validation of a Transcutaneous CO2 Monitor in Adult Patients with Chronic Respiratory Failure

    NARCIS (Netherlands)

    Hazenberg, A.; Zijlstra, J. G.; Kerstjens, H. A. M.; Wijkstra, P. J.

    2011-01-01

    Background: Home mechanical ventilation is usually started in hospital as arterial blood gas sampling is deemed necessary to monitor CO2 and O-2 adequately during institution of ventilatory support. A non-invasive device to reliably measure CO2 transcutaneously would alleviate the need for high care

  7. Field experiments on application of a GPS displacement measurement system for monitoring large slope stabikity. 7th Report. Predictions and monitorings for rock development design; Chodai zanheki no anzen kanshi eno GPS hen`i keisoku system no oyo ni kansuru genba jikken. 7. Ganban kaihatsu sekkei no tameno yosoku to monitaringu

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, N.; Mizuta, Y. [Yamaguchi Univ., Yamaguchi (Japan). Faculty of Engineering; Kondo, H. [Furuno Electric Co. Ltd., Hyogo (Japan); Ono, H.

    1996-05-25

    In a mine in which large-scale excavation is put forward, large slopes are made due to long-term development drilling. A method of controlling an average angle of such slopes within a set range has been employed as a method of controlling the safety of the slopes. This study has been conducted with a final object of developing a displacement monitoring system, which is used to monitor the safety of large slopes. As a first step of this study, basic experiments for examining the adaptability of a ground displacement monitoring system based on GPS (Global Positioning System) were conducted. The main finding obtained is as follows. The results of a displacement measurement simulation experiment show that the accuracy of displacement measurement using six receiving satellites is substantially equal to that of the measurement using a total station of 1{double_prime} reading. The accuracy of the displacement measurement relates to the number and arrangement of the receiving satellites. When, especially, vertical displacement measurement is conducted with a small number of receiving satellites, care must be taken so as to prevent a decrease in the measurement accuracy. 19 refs., 11 figs., 1 tab.

  8. Modeling of reliability and performance assessment of a dissimilar redundancy actuation system with failure monitoring

    Institute of Scientific and Technical Information of China (English)

    Wang Shaoping; Cui Xiaoyu; Shi Jian; Mileta M. Tomovic; Jiao Zongxia

    2016-01-01

    Actuation system is a vital system in an aircraft, providing the force necessary to move flight control surfaces. The system has a significant influence on the overall aircraft performance and its safety. In order to further increase already high reliability and safety, Airbus has imple-mented a dissimilar redundancy actuation system (DRAS) in its aircraft. The DRAS consists of a hydraulic actuation system (HAS) and an electro-hydrostatic actuation system (EHAS), in which the HAS utilizes a hydraulic source (HS) to move the control surface and the EHAS utilizes an elec-trical supply (ES) to provide the motion force. This paper focuses on the performance degradation processes and fault monitoring strategies of the DRAS, establishes its reliability model based on the generalized stochastic Petri nets (GSPN), and carries out a reliability assessment considering the fault monitoring coverage rate and the false alarm rate. The results indicate that the proposed reli-ability model of the DRAS, considering the fault monitoring, can express its fault logical relation and redundancy degradation process and identify potential safety hazards.

  9. Early warning indicators for monitoring the process failure of anaerobic digestion system of food waste.

    Science.gov (United States)

    Li, Lei; He, Qingming; Wei, Yunmei; He, Qin; Peng, Xuya

    2014-11-01

    To determine reliable state parameters which could be used as early warning indicators of process failure due to the acidification of anaerobic digestion of food waste, three mesophilic anaerobic digesters of food waste with different operation conditions were investigated. Such parameters as gas production, methane content, pH, concentrations of volatile fatty acid (VFA), alkalinity and their combined indicators were evaluated. Results revealed that operation conditions significantly affect the responses of parameters and thus the optimal early warning indicators of each reactor differ from each other. None of the single indicators was universally valid for all the systems. The universally valid indicators should combine several parameters to supply complementary information. A combination of total VFA, the ratio of VFA to total alkalinity (VFA/TA) and the ratio of bicarbonate alkalinity to total alkalinity (BA/TA) can reflect the metabolism of the digesting system and realize rapid and effective early warning.

  10. Application of multi-parameter remote monitoring and forecasting system for cut slope during construction period%路堑边坡施工期多参数远程监测预警系统应用

    Institute of Scientific and Technical Information of China (English)

    钟佳迅; 庹先国; 张兆义; 王洪辉; 张贵宇

    2012-01-01

    山区高速公路路堑边坡在开挖过程中极可能发生坡体滑动、坍塌,甚至小规模崩塌现象,开发一种路堑边坡施工期多参数远程监测预警系统,保障工程施工期间施工方和当地群众的人身、财产安全显得极为重要.运用多种传感器技术实时地获取施工期间边坡倾斜度、位移和降雨量的变化情况,结合通用分组无线业务(GPRS)和手机短信服务(SMS)技术通过无线方式与上位机进行通信,建立被监测对象各类信息变化的数据库和网络发布平台,同时利用客户端管理软件对危险信息进行预警.通过在毕威高速公路的安装运行,系统成功地在施工期进行了监测预警,避免了不必要的人员伤亡和财产损失.%It is likely to occur slope sliding,caving in,and even small-scale collapse when the mountain highway cut slope in the excavation process. So it is extremely important to develop the multi-parameter remote monitoring and forecasting system for cut slope during the construction period to protect personal and property safety. A variety of sensor technology is used to access the tilt, displacement and rainfall of the slope in construction period, combined with GPRS and SMS technology to communicate with the host computer, and establishs platform of the monitored database and the web publishing. At the same time release the warning dangerous information. The monitoring and forecasting system has been successfully applied to Ri-Wei highway during the construction period, and avoided unnecessary personal and property losses.

  11. Monitoring of metformin-induced lactic acidosis in a diabetic patient with acute kidney failure and effect of hemodialysis.

    Science.gov (United States)

    Laforest, Claire; Saint-Marcoux, Franck; Amiel, Jean-Bernard; Pichon, Nicolas; Merle, Louis

    2013-02-01

    Metformin associated lactic acidosis (MALA) is a serious complication occurring especially in elderly patients given high doses of the drug. We report a non-fatal case of MALA with pronounced acidosis (pH 6.76, lactate 30.81 mmol/l) and high metformin concentrations (127 mg/l) in a patient who had developed acute renal failure after undergoing an operation. Multiple measurements of biological parameters and metformin blood concentrations showed the effectiveness of repeated hemodialysis sessions on metformin elimination. Cases previously reported with such a severe MALA were associated with a high mortality rate. We show that close monitoring in an intensive care unit together with prompt and repeated dialysis sessions can lead to a favorable outcome.

  12. 环境监测校准曲线斜率的质量控制探讨%A Study on Quality Control for Calibration Curve Slope in Environmental Monitoring

    Institute of Scientific and Technical Information of China (English)

    朱惠敏; 王燕平; 石碧清

    2015-01-01

    在环境监测中使用分光光度法进行样品测定时,都要利用校准曲线的回归方程计算其待测样品的含量。为使监测结果更为准确,必须对校准曲线的准确性进行检验,即对校准曲线的斜率进行统计检验。在实际工作中,常采用 Dixon 检验法和斜率相对偏差(RbD)法检验校准曲线斜率,也可以利用校准曲线斜率均值控制图进行质量控制,使分析测试工作处于受控状态中,使监测结果更加真实可靠。%When the sample was measured by spectrophotometer in environmental monitoring, the regression equation of calibration curve was used to calculate content of the sample. To obtain more accurate results, the accuracy of the calibration curve must be tested, i.e. statistical tests for the slope of the calibration curve. Dixon test and the test for relative standard deviation of slope were often used in the practice. In addition to these two tests, control chart for slope mean value was also used to control quality, which made analytical testing in a controlled state and monitoring results more reliable.

  13. Long-term monitoring of sleep apnea at home in heart failure patients: preliminary results from the HHH study.

    Science.gov (United States)

    Pinna, G D; Maestri, R; Gobbi, E; Capomolla, S; Campana, C; Emdin, M; Di Lenarda, A; La Rovere, M T; Andrews, D; Johnson, P; Mortara, A; Sleight, P

    2004-01-01

    Sleep apnea is very common in patients with chronic heart failure (CHF) and has important implications in terms of morbidity, mortality and clinical management. Home respiratory telemonitoring might constitute a potential low-cost, widely-applicable alternative to traditional polysomnography in the evaluation and long-term monitoring of breathing disorders in these patients. In this paper we briefly describe the technological infrastructure and present preliminary results of the European Community multicountry trial HHH (Home or Hospital in Heart Failure), which is currently testing a novel system for home telemonitoring of cardiorespiratory signals in CHF patients. The recording and transmitting devices are suitable to be self-managed by the patient. We give a detailed report on the prevalence of nocturnal respiratory disorders at the beginning of the one-year follow-up and on their persistency over the following recordings (one per month). These preliminary findings clearly indicate that intermittent home telemonitoring of respiratory signals based on patient's self-management is feasible in CHF patients and the compliance is high. Reported statistics unambiguously confirm the high prevalence of nocturnal breathing disorders in these patients and clearly show that this phenomenon tends to persist over time.

  14. Dynamic and Static Combination Analysis Method of Slope Stability Analysis during Earthquake

    Directory of Open Access Journals (Sweden)

    Liang Lu

    2014-01-01

    Full Text Available The results of laboratory model tests for simulating the slope failure due to vibration, including unreinforced slope and the slope reinforced by using geotextile, show that the slope failure occurs when a cumulative plastic displacement exceeds a certain critical value. To overcome the defects of conventional stability analysis, which evaluates the slope characteristics only by its strength parameters, a numerical procedure considering the stiffness and deformation of materials and geosynthetics is proposed to evaluate the seismic slope stability. In the proposed procedure, the failure of slope is defined when the cumulative plastic displacement calculated by a dynamic response analysis using actual seismic wave exceeds the critical value of displacement estimated by a static stability analysis considering seismic coefficient. The proposed procedure is applied to the laboratory model tests and an actual failure of slope in earthquake. The case study shows the possibility that the proposed procedure gives the realistic evaluation of seismic slope stability.

  15. HIRESSS: a physically based slope stability simulator for HPC applications

    Directory of Open Access Journals (Sweden)

    G. Rossi

    2013-01-01

    Full Text Available HIRESSS (HIgh REsolution Slope Stability Simulator is a physically based distributed slope stability simulator for analyzing shallow landslide triggering conditions in real time and on large areas using parallel computational techniques. The physical model proposed is composed of two parts: hydrological and geotechnical. The hydrological model receives the rainfall data as dynamical input and provides the pressure head as perturbation to the geotechnical stability model that computes the factor of safety (FS in probabilistic terms. The hydrological model is based on an analytical solution of an approximated form of the Richards equation under the wet condition hypothesis and it is introduced as a modeled form of hydraulic diffusivity to improve the hydrological response. The geotechnical stability model is based on an infinite slope model that takes into account the unsaturated soil condition. During the slope stability analysis the proposed model takes into account the increase in strength and cohesion due to matric suction in unsaturated soil, where the pressure head is negative. Moreover, the soil mass variation on partially saturated soil caused by water infiltration is modeled.

    The model is then inserted into a Monte Carlo simulation, to manage the typical uncertainty in the values of the input geotechnical and hydrological parameters, which is a common weak point of deterministic models. The Monte Carlo simulation manages a probability distribution of input parameters providing results in terms of slope failure probability. The developed software uses the computational power offered by multicore and multiprocessor hardware, from modern workstations to supercomputing facilities (HPC, to achieve the simulation in reasonable runtimes, compatible with civil protection real time monitoring.

    A first test of HIRESSS in three different areas is presented to evaluate the reliability of the results and the runtime performance on

  16. Insulin Micropump with Embedded Pressure Sensors for Failure Detection and Delivery of Accurate Monitoring

    Directory of Open Access Journals (Sweden)

    Dimitry Dumont-Fillon

    2014-11-01

    Full Text Available Improved glycemic control with insulin pump therapy in patients with type 1 diabetes mellitus has shown gradual reductions in nephropathy and retinopathy. More recently, the emerging concept of the artificial pancreas, comprising an insulin pump coupled to a continuous glucose meter and a control algorithm, would become the next major breakthrough in diabetes care. The patient safety and the efficiency of the therapy are directly derived from the delivery accuracy of rapid-acting insulin. For this purpose, a specific precision-oriented design of micropump has been built. The device, made of a stack of three silicon wafers, comprises two check valves and a pumping membrane that is actuated against stop limiters by a piezo actuator. Two membranes comprising piezoresistive strain gauges have been implemented to measure the pressure in the pumping chamber and at the outlet of the pump. Their high sensitivity makes possible the monitoring of the pumping accuracy with a tolerance of ±5% for each individual stroke of 200 nL. The capability of these sensors to monitor priming, reservoir overpressure, reservoir emptying, outlet occlusion and valve leakage has also been studied.

  17. Numerical simulation of failure of armour blocks on slope under wave action%波浪作用下斜坡上护面块体断裂破坏的数值模拟

    Institute of Scientific and Technical Information of China (English)

    崔焱; 姜峰

    2015-01-01

    Based on FEM/DEM method, a prototype numerical model was presented to simulate internal stress distribution, crack formation and fracture process of armor blocks on the slopes under wave action. The wave⁃in⁃duced hydrodynamic loads of the structures were calculated using the theoretical solution of the small amplitude wave. The armor blocks movement and contact between the armor blocks and the deformation of the blocks were simulated using the FEM/DEM method. The contact force between blocks was calculated by the penalty function method based on potential function. The combined single and smeared crack model was used to simulate the crack of concrete block. Numerical solution was calculated using the central difference explicit integration algorithm. By the application of numerical model and ANSYS model, the internal stress of concrete blocks under gravity were com⁃pared and analyzed. Two forms of collision failure of blocks were given. The calculation accuracy of stress and defor⁃mation of the numerical model was verified. The relative movement between armor blocks, the stress distribution within the blocks, crack formation and fracture process on the slopes under different wave loads were obtained from numerical calculation. The stress duration curves of different points were put forward. The properties of stress, crack formation and fracture process were discussed.%基于FEM/DEM方法建立原型尺度数值模型,模拟波浪荷载作用下斜坡上护面块体内部的应力分布和断裂破坏过程。其中结构物所受的波浪力采用微幅波的理论解计算,块体之间的运动、接触以及块体变形采用FEM/DEM方法模拟。采用基于势函数的罚函数法计算块体之间的接触力,采用Single/Smeared破坏模型模拟混凝土块体开裂,采用中心差分法的显式积分算法进行数值求解计算。分别采用文中数值模型与ANSYS模型对自重作用下块体的应力进行比较分析,给出了

  18. Mechanism of rock deformation and failure and monitoring analysis in water-rich soft rock roadway of western China

    Institute of Scientific and Technical Information of China (English)

    MENG Qing-bin; HAN Li-jun; QIAO Wei-guo; LIN Deng-ge; YANG Ling

    2012-01-01

    Aiming to get the strata behavior and stability rules of surrounding rock of the main return airway of Yushujing Coal Mine,convergence deformation of two sides and force of U-shaped steel yieldable support and bolt were monitored,and deformation of surrounding rock and mechanical characteristics of support structure were timely obtained to guide the information construction and optimize supporting parameters in water-rich soft rock roadway.The field monitoring results indicate the following.(1) Convergence displacement of rock surface increases with time continuity and shows surrounding rock's intense rheological behavior.The original support scheme cannot control the large deformation and strongly rheological behavior;(2) Without backfilling,the U-shaped steel support begins to bear load after erecting for 4-7 days and increases rapidly in the first 30 days.The U-shaped steel support at the right shoulder and top of roadway bears a larger force and the left side and shoulder bears a smaller force; (3) The stress of bolt increasing over time and at the right shoulder of roadway has larger growth and value.The mechanism of rock deformation and the failure and strata behavior in water-rich soft rock roadway are revealed based on the results of the measured relaxation zone of surrounding rock,measured stresses,and the rock mechanics tests.

  19. Characteristics of ground motion and threshold values for colluvium slope displacement induced by heavy rainfall: a case study in northern Taiwan

    Science.gov (United States)

    Jeng, Ching-Jiang; Sue, Dar-Zen

    2016-06-01

    The Huafan University campus is located in the Ta-lun Shan area in northern Taiwan, which is characterized by a dip slope covered by colluvium soil of various depths. For slope disaster prevention, a monitoring system was constructed that consisted of inclinometers, tiltmeters, crack gages, groundwater level observation wells, settlement and displacement observation marks, rebar strain gages, concrete strain gages, and rain gages. The monitoring data derived from hundreds of settlement and displacement observation marks were analyzed and compared with the displacement recorded by inclinometers. The analysis results revealed that the maximum settlement and displacement were concentrated on the areas around the Hui-Tsui, Zhi-An, and Wu-Ming buildings and coincided with periods of heavy rainfall. The computer program STABL was applied for slope stability analysis and modeling of slope failure. For prevention of slope instability, a drainage system and tieback anchors with additional stability measures were proposed to discharge excess groundwater following rainfall. Finally, threshold value curves of rainfall based on slope displacement were proposed. The curves can be applied for predicting slope stability when typhoons are expected to bring heavy rainfall and should be significant in slope disaster prevention.

  20. Multibeam Mapping of Active Slope Instability Features: Examples from the Fraser River and Squamish River Deltas, British Columbia, Canada

    Science.gov (United States)

    Hill, P. R.

    2004-12-01

    and a potentially high risk of subsequent slope failure and tsunami generation. Repetitive mapping of this feature suggests relative movement of ridges and trenches as well as general subsidence of the lobe flank. This feature has been selected as a site for pore fluid pressure monitoring within the VENUS cabled observatory program. Recent multibeam mapping of the Squamish River delta followed a major flood in October 2003. The survey of the delta was completed in less than 12 hours on an opportunity basis. Preliminary results and comparison with maps created from more labor-intensive traditional techniques will be presented.

  1. Reliable groundwater levels: failures and lessons learned from modeling and monitoring studies

    Science.gov (United States)

    Van Lanen, Henny A. J.

    2017-04-01

    Adequate management of groundwater resources requires an a priori assessment of impacts of intended groundwater abstractions. Usually, groundwater flow modeling is used to simulate the influence of the planned abstraction on groundwater levels. Model performance is tested by using observed groundwater levels. Where a multi-aquifer system occurs, groundwater levels in the different aquifers have to be monitored through observation wells with filters at different depths, i.e. above the impermeable clay layer (phreatic water level) and beneath (artesian aquifer level). A reliable artesian level can only be measured if the space between the outer wall of the borehole (vertical narrow shaft) and the observation well is refilled with impermeable material at the correct depth (post-drilling phase) to prevent a vertical hydraulic connection between the artesian and phreatic aquifer. We were involved in improper refilling, which led to impossibility to monitor reliable artesian aquifer levels. At the location of the artesian observation well, a freely overflowing spring was seen, which implied water leakage from the artesian aquifer affected the artesian groundwater level. Careful checking of the monitoring sites in a study area is a prerequisite to use observations for model performance assessment. After model testing the groundwater model is forced with proposed groundwater abstractions (sites, extraction rates). The abstracted groundwater volume is compensated by a reduction of groundwater flow to the drainage network and the model simulates associated groundwater tables. The drawdown of groundwater level is calculated by comparing the simulated groundwater level with and without groundwater abstraction. In lowland areas, such as vast areas of the Netherlands, the groundwater model has to consider a variable drainage network, which means that small streams only carry water during the wet winter season, and run dry during the summer. The main streams drain groundwater

  2. Cross-correlation and time-lag analysis of high frequency monitoring data of the Vallcebre landslide (Eastern Pyrenees, Spain) to reveal cause-effect relationships between variables governing slope instability

    Science.gov (United States)

    Mulas, Marco; Moya, Jose; Corsini, Alessandro; Corominas, Jordi

    2015-04-01

    The Vallcebre landslide is a slow moving large landslide located 140 km north of Barcelona in the Eastern Pyrenees. Monitoring data of the Vallcebre landslide represent a singular case of multi parameter high-frequency monitoring system set up in 1996 and still ongoing. Data of movements and groundwater levels are measured and recorded with a frequency of 20 minutes in 6 boreholes distributed in the landslide, each one equipped with a wire extensometer and a piezometer, while rainfall is recorded by a specific gauge at the site. Data from 3 boreholes recorded during three full years of measurements (from 1999 to 2001) have been analyzed by means of a cross-correlation function in order to determine the reciprocal interdependency and the relative time lag between rainfall, groundwater and movement rate maxima and, ultimately, to evidence cause-effect processes occurring along the slope. It should be pinpointed that, in this specific case, rainfall is also a proxy for the discharge level of the stream eroding the toe of the landslide, that is believed to be one of the main instability factors. The cross-correlation function is a quite simple signal processing tool for measuring similarities of waveforms as function of an applied time-lag. Specifically, it was applied to study: i) the relations between rainfall and movement rate, so to highlight the relative time lag for rainfall to produce an effect in different points of the landslide; ii) the inter-dependencies between different movement rates in the three boreholes in order to determine the pattern of mobilization of the landslide (from up to down slope and vice-versa); iii) the response of groundwater with respect to rainfall, which reflects the local permeability; iv) the evolution of groundwater levels in the three monitoring points. Altogether, results confirm and constrain in time the retrogressive trend of movements in the landslide (in agreement with a 2D numerical model previously developed by Ferrari et

  3. Slope stability and erosion control: Ecotechnological solutions

    NARCIS (Netherlands)

    Norris, J.E.; Stokes, A.; Mickovski, S.B.; Cammeraat, E.; van Beek, R.; Nicoll, B.C.; Achim, A.

    2008-01-01

    This book is designed to assist the civil and geotechnical engineer, geomorphologist, forester, landscape architect or ecologist in choosing ecotechnological solutions for slopes that are prone to a variety of mass movements e.g. shallow failure or erosion. Within this book, the 'engineer' is used i

  4. Slope stability and erosion control: Ecotechnological solutions

    NARCIS (Netherlands)

    Norris, J.E.; Stokes, A.; Mickovski, S.B.; Cammeraat, E.; van Beek, R.; Nicoll, B.C.; Achim, A.

    2008-01-01

    This book is designed to assist the civil and geotechnical engineer, geomorphologist, forester, landscape architect or ecologist in choosing ecotechnological solutions for slopes that are prone to a variety of mass movements e.g. shallow failure or erosion. Within this book, the 'engineer' is used

  5. Slope stability and erosion control: Ecotechnological solutions

    NARCIS (Netherlands)

    Norris, J.E.; Stokes, A.; Mickovski, S.B.; Cammeraat, E.; van Beek, R.; Nicoll, B.C.; Achim, A.

    2008-01-01

    This book is designed to assist the civil and geotechnical engineer, geomorphologist, forester, landscape architect or ecologist in choosing ecotechnological solutions for slopes that are prone to a variety of mass movements e.g. shallow failure or erosion. Within this book, the 'engineer' is used i

  6. Intracranial pressure monitoring in pediatric and adult patients with hydrocephalus and tentative shunt failure: a single-center experience over 10 years in 146 patients.

    Science.gov (United States)

    Sæhle, Terje; Eide, Per Kristian

    2015-05-01

    OBJECT In patients with hydrocephalus and shunts, lasting symptoms such as headache and dizziness may be indicative of shunt failure, which may necessitate shunt revision. In cases of doubt, the authors monitor intracranial pressure (ICP) to determine the presence of over- or underdrainage of CSF to tailor management. In this study, the authors reviewed their experience of ICP monitoring in shunt failure. The aims of the study were to identify the complications and impact of ICP monitoring, as well as to determine the mean ICP and characteristics of the cardiac-induced ICP waves in pediatric versus adult over- and underdrainage. METHODS The study population included all pediatric and adult patients with hydrocephalus and shunts undergoing diagnostic ICP monitoring for tentative shunt failure during the 10-year period from 2002 to 2011. The patients were allocated into 3 groups depending on how they were managed following ICP monitoring: no drainage failure, overdrainage, or underdrainage. While patients with no drainage failure were managed conservatively without further actions, over- or underdrainage cases were managed with shunt revision or shunt valve adjustment. The ICP and ICP wave scores were determined from the continuous ICP waveforms. RESULTS The study population included 71 pediatric and 75 adult patients. There were no major complications related to ICP monitoring, but 1 patient was treated for a postoperative superficial wound infection and another experienced a minor bleed at the tip of the ICP sensor. Following ICP monitoring, shunt revision was performed in 74 (51%) of 146 patients, while valve adjustment was conducted in 17 (12%) and conservative measures without any actions in 55 (38%). Overdrainage was characterized by a higher percentage of episodes with negative mean ICP less than -5 to -10 mm Hg. The ICP wave scores, in particular the mean ICP wave amplitude (MWA), best differentiated underdrainage. Neither mean ICP nor MWA levels showed any

  7. Stability Analysing of Unsaturated Soil Slope

    Institute of Scientific and Technical Information of China (English)

    张士林; 邵龙潭

    2003-01-01

    The stability of unsaturated soil slope has been the hot point recently. Especially, the seeping rainfall makes losing stability of unsaturated soil slope, and causes enormous loss to the producation and safety of other people. The seeping rainfall makes volumetric water content of unsaturated soil slope changing, and the volumetric water content has directly relationship with matric suction. And matric suction also has directly relationship with the stability of unsaturated soil slope. So the change of matric suction influence the stability changing, that is, safety coefficient has decided relationship with volumetric water content. The profile of dangerous volumetric water content curves of unsaturated soil slope has been obtained. If a volumetric water content curve of some unsaturated soil slope belongs to one of these dongerous curves, the unsaturated soil slope could be in danger. So this is called DVWCCP(dangerous volumetric water content curves profile). By monitoring the volumetric water content curves can obtain the stability information of some soil slope to serve producing and safety.

  8. Protocol-driven remote monitoring of cardiac resynchronization therapy as part of a heart failure disease management strategy.

    Science.gov (United States)

    Smeets, Christophe J P; Verbrugge, Frederik H; Vranken, Julie; Van der Auwera, Jo; Mullens, Wilfried; Dupont, Matthias; Grieten, Lars; De Cannière, Hélène; Lanssens, Dorien; Vandenberk, Thijs; Storms, Valerie; Thijs, Inge M; Vandervoort, Pieter

    2017-08-14

    Cardiac resynchronisation therapy (CRT) is an established treatment for heart failure (HF) with reduced ejection fraction. CRT devices are equipped with remote monitoring functions, which are pivotal in the detection of device problems, but may also facilitate disease management. The aim of this study was to provide a comprehensive overview of the clinical interventions taken based on remote monitoring. This is a single centre observational study of consecutive CRT patients (n = 192) participating in protocol-driven remote follow-up. Incoming technical- and disease-related alerts were analysed together with subsequently triggered interventions. During 34 ± 13 months of follow-up, 1372 alert-containing notifications were received (2.53 per patient-year of follow-up), comprising 1696 unique alerts (3.12 per patient-year of follow-up). In 60%, notifications resulted in a phone contact. Technical alerts constituted 8% of incoming alerts (0.23 per patient-year of follow-up). Rhythm (1.43 per patient-year of follow-up) and bioimpedance alerts (0.98 per patient-year of follow-up) were the most frequent disease-related alerts. Notifications included a rhythm alert in 39%, which triggered referral to the emergency room (4%), outpatient cardiology clinic (36%) or general practitioner (7%), or resulted in medication changes (13%). Sole bioimpedance notifications resulted in a telephone contact in 91%, which triggered outpatient evaluation in 8% versus medication changes in 10%. Clinical outcome was excellent with 97% 1-year survival. Remote CRT follow-up resulted in 0.23 technical- versus 2.64 disease-related alerts annually. Rhythm and bioimpedance notifications constituted the majority of incoming notifications which triggered an actual intervention in 22% and 15% of cases, respectively.

  9. 稀土矿边坡监测方案构建与滑坡灰色预测%Establishing slope monitoring program for rare earth ore and grey prediction of landslide

    Institute of Scientific and Technical Information of China (English)

    王丹; 袁博云; 饶运章; 饶睿; 张永胜

    2015-01-01

    原地浸矿法开采稀土矿山有很多优点,也有一个明显的缺点:注入的溶浸液容易导致山体滑坡。利用FLAC3D和强度折减理论对边坡稳定性进行数值模拟,确定了采场边坡失稳区域,作为重点监测区域。通过现场观测,现场失稳的山体部分与模拟结果相吻合;结合现场连续7d监测数据,利用灰色理论建立灰色预测模型,预测结果精度等级为好,可以应用于工程实际,同时也为后续的滑坡预警提供支持。%Despite of its advantages, in-situ leaching mining method has an obvious disadvantage, that is, landslide caused by injected leaching solution. Numerical simulation is performed on the slope stability by using FLAC3D and strength subtraction. The stope slope instability region is regarded as key monitoring area. The field observation shows the instability of the mountain part is in conformity with the simulation results. Combing with field monitoring data in the 7 consecutive days, the grey prediction model is established based on grey theory, predicting precision grade being favorable. It can be applied to the engineering practice, which provides reference for the subsequent landslides warning.

  10. Laboratory Experiments on Steady State Seepage-Induced Landslides Using Slope Models and Sensors

    OpenAIRE

    Sandra G. Catane; Mark Albert H. Zarco; Cathleen Joyce N. Cordero; Roy Albert N. Kaimo; Ricarido M. Saturay, Jr.

    2011-01-01

    A thorough understanding of the failure initiation process is crucial in the development of physicallybased early warning system for landslides and slope failures. Laboratory-scale slope models were constructed and subjected to instability through simulated groundwater infiltration. This is done by progressively increasing the water level in the upslope tank and allowing water to infiltrate laterally towards the toe of the slope. Physical changes in the slope models were recorded by tilt sens...

  11. THREE-DIMENSIONAL SLOPE STABILITY ANALYSIS BASED ON NONLINEAR FAILURE ENVELOPE%基于非线性破坏包络线的三维边坡稳定性分析

    Institute of Scientific and Technical Information of China (English)

    蒋景彩; 山上拓男; Baker R

    2003-01-01

    The effects of nonlinearity of strength envelopes on 3D slope stability analysis are investigated. A power relation for the nonlinear envelope is employed to derive the 3D factor of safety equations of an extended Spencer method which satisfies both force equilibrium and moment equilibrium. Then,a search procedure is presented based on dynamic programming to determine the 3D critical slip surface for a general slope. Linear and nonlinear strength envelopes used for slope stability computations are obtained by fitting curves to the 103 strength data of consolidated-undrained (CU) triaxial compression tests for compacted Israeli clay. Results of a typical 3D problem show that a linear approximation of the nonlinear strength envelope may lead to a significant overestimation of calculated safety factors.

  12. assessment of slope stability around gilgel gibe-ii hydroelectric

    African Journals Online (AJOL)

    preferred customer

    (1995) technique, whereas the slope having wedge mode of failure was analyzed by. 'SASW' computer .... Engineering properties of rocks ... were determined by using Schmidt hammer in ...... Engineering, 3rd ed., Institute of Mining and.

  13. Minimization of the energy loss of nuclear power plants in case of partial in-core monitoring system failure

    Science.gov (United States)

    Zagrebaev, A. M.; Ramazanov, R. N.; Lunegova, E. A.

    2017-01-01

    In this paper we consider the optimization problem minimize of the energy loss of nuclear power plants in case of partial in-core monitoring system failure. It is possible to continuation of reactor operation at reduced power or total replacement of the channel neutron measurements, requiring shutdown of the reactor and the stock of detectors. This article examines the reconstruction of the energy release in the core of a nuclear reactor on the basis of the indications of height sensors. The missing measurement information can be reconstructed by mathematical methods, and replacement of the failed sensors can be avoided. It is suggested that a set of ‘natural’ functions determined by means of statistical estimates obtained from archival data be constructed. The procedure proposed makes it possible to reconstruct the field even with a significant loss of measurement information. Improving the accuracy of the restoration of the neutron flux density in partial loss of measurement information to minimize the stock of necessary components and the associated losses.

  14. Analysis of hydrological processes in unstable clayey slopes

    NARCIS (Netherlands)

    Bogaard, T.A.

    2002-01-01

    In slope stability research a ground water level increase is often the critical factor for failure. High ground water levels (or more properly stated: high pore water pressures) reduce the internal strength of the slope. It is recognised for quite some time that fast infiltration of precipitation to

  15. Characterizing hydrological processes on loess slopes using electrical resistivity tomography - A case study of the Heifangtai Terrace, Northwest China

    Science.gov (United States)

    Zeng, R. Q.; Meng, X. M.; Zhang, F. Y.; Wang, S. Y.; Cui, Z. J.; Zhang, M. S.; Zhang, Y.; Chen, G.

    2016-10-01

    From the perspective of engineering geology, loess has long been considered as a homogeneous and porous material. It is commonly believed that water penetrates loess via pores and in some cases causing mass movements. However, several researchers have expressed doubts about this mechanism as a cause of slope failures in loess, and moreover the actual hydrological processes operating in loess deposits and their effect on slope failures have not been fully investigated. Here we present the results of an electrical resistivity survey of the Heifangtai loess terrace in northwestern China, designed to characterize the hydrological processes in loess slopes and their relationship with slope failures. The Heifangtai loess terrace is located on the fourth terrace of the Yellow River and consists of 57-m-thickness of aeolian loess. 2D and 3D electrical resistivity tomography (ERT) was used to monitor the movement of ground water before and after irrigation and rainfall events and the evolution of a sink hole in the toe of the landslide deposits. Our main findings are as follows: (1) Based on the 2D ERT results, the depth of infiltration into the thick unsaturated loess is not more than 5 m in the profile at the top of the landslide. (2) Electrical resistivity decreased as a result of water infiltration through sinkholes, and this process can increase the soil water content and induce soil liquefaction which can eventually result in land sliding. (3) Landslide deposits block the groundwater drainage channels through the loess, which results in the concentration of water in the toe of the landslide. Consequently, groundwater together with rainfall, triggers the failure of sinkholes or cracks, which may induce a continuing process of new slope failures at the sites of past landslide.

  16. Comprehensive Monitoring of Gamma-ray Bright Blazars. I. Statistical Study of Optical, X-ray, and Gamma-ray Spectral Slopes

    CERN Document Server

    Williamson, Karen E; Marscher, Alan P; Larionov, Valeri M; Smith, Paul S; Agudo, Iván; Arkharov, Arkady A; Blinov, Dmitry A; Casadio, Carolina; Efimova, Natalia V; Gómez, José L; Hagen-Thorn, Vladimir A; Joshi, Manasvita; Konstantinova, Tatiana S; Kopatskaya, Evgenia N; Larionova, Elena G; Larionova, Liudmilla V; Malmrose, Michael P; McHardy, Ian M; Molina, Sol N; Morozova, Daria A; Schmidt, Gary D; Taylor, Brian W; Troitsky, Ivan S

    2014-01-01

    We present $\\gamma$-ray, X-ray, ultraviolet, optical, and near-infrared light curves of 33 $\\gamma$-ray bright blazars over four years that we have been monitoring since 2008 August with multiple optical, ground-based telescopes and the Swift satellite, and augmented by data from the Fermi Gamma-ray Space Telescope and other publicly available data from Swift. The sample consists of 21 flat-spectrum radio quasars (FSRQs) and 12 BL Lac objects (BL Lacs). We identify quiescent and active states of the sources based on their $\\gamma$-ray behavior. We derive $\\gamma$-ray, X-ray, and optical spectral indices, $\\alpha_\\gamma$, $\\alpha_X$, and $\\alpha_o$, respectively ($F_\

  17. Three-dimensional analysis of slopes reinforced with piles

    Institute of Scientific and Technical Information of China (English)

    高玉峰; 叶茂; 张飞

    2015-01-01

    Based on the upper bound of limit analysis, the plane-strain analysis of the slopes reinforced with a row of piles to the 3D case was extended. A 3D rotational failure mechanism was adopted to yield the upper bound of the factor of safety. Parametric studies were carried out to explore the end effects of the slope failures and the effects of the pile location and diameter on the safety of the reinforced slopes. The results demonstrate that the end effects nearly have no effects on the most suitable location of the installed piles but have significant influence on the safety of the slopes. For a slope constrained to a narrow width, the slope becomes more stable owing to the contribution of the end effects. When the slope is reinforced with a row of piles in small space between piles, the effects of group piles are significant for evaluating the safety of slopes. The presented method is more appropriate for assessing the stability of slopes reinforced with piles and can be also utilized in the design of plies stabilizing the unstable slopes.

  18. Monitoring of slope-instabilities and deformations with Micro-Electro-Mechanical-Systems (MEMS) in wireless ad-hoc Sensor Networks

    Science.gov (United States)

    Arnhardt, C.; Fernández-Steeger, T. M.; Azzam, R.

    2009-04-01

    In most mountainous regions, landslides represent a major threat to human life, properties and infrastructures. Nowadays existing landslide monitoring systems are often characterized by high efforts in terms of purchase, installation, maintenance, manpower and material. In addition (or because of this) only small areas or selective points of the endangered zone can be observed by the system. Therefore the improvement of existing and the development of new monitoring and warning systems are of high relevance. The joint project "Sensor based Landslide Early Warning Systems" (SLEWS) deals with the development of a prototypic Alarm- and Early Warning system (EWS) for different types of landslides using low-cost micro-sensors (MEMS) integrated in a wireless sensor network (WSN). Modern so called Ad-Hoc, Multi-Hop wireless sensor networks (WSN) are characterized by a self organizing and self-healing capacity of the system (autonomous systems). The network consists of numerous individual and own energy-supply operating sensor nodes, that can send data packages from their measuring devices (here: MEMS) over other nodes (Multi-Hop) to a collection point (gateway). The gateway provides the interface to central processing and data retrieval units (PC, Laptop or server) outside the network. In order to detect and monitor the different landslide processes (like fall, topple, spreading or sliding) 3D MEMS capacitive sensors made from single silicon crystals and glass were chosen to measure acceleration, tilting and altitude changes. Based on the so called MEMS (Micro-Electro-Mechanical Systems) technology, the sensors combine very small mechanical and electronic units, sensing elements and transducers on a small microchip. The mass production of such type of sensors allows low cost applications in different areas (like automobile industries, medicine, and automation technology). Apart from the small and so space saving size and the low costs another advantage is the energy

  19. Impact cratering on slopes

    Science.gov (United States)

    Aschauer, Johannes; Kenkmann, Thomas

    2017-07-01

    The majority of impact craters have circular outlines and axially symmetric morphologies. Deviation from crater circularity is caused by either target heterogeneity, a very oblique impact incidence, post-impact deformation, or by topography. Here, we investigate the effect of topography on crater formation and systematically study impact cratering processes on inclined hillsides up to 25° slope utilizing analogue experiments. A spring-driven air gun mounted in a vertical position shoots into three different types of granular bulk solids (two sorts of glass beads, quartz sand) to emulate impact cratering on slopes. In all, 170 experiments were conducted. The transient crater develops roughly symmetrically perpendicular to the slope plane, resulting in higher ejection angles uphill than downhill when measured with respect to a horizontal plane. Craters become increasingly elliptical with increasing slope angle. At slope angles close to angle of repose of the respective bulk solids, aspect ratios of the craters reach ∼1.7. Uphill-downhill cross sections become increasingly asymmetric, the depth-diameter ratio of the craters decreases, and the deepest point shifts downhill with increasing slope angle. Mass wasting is initiated both in the uphill and downhill sectors of the crater rim. For steep slopes the landslides that emanate from the uphill rim can overshoot the crater cavity and superpose the downhill crater rim in a narrow tongue. Mass wasting initiated at the downhill sector forms broader and shallower tongues and is triggered by the deposition of ejecta on the inclined slope. Our experiments help to explain asymmetric crater morphologies observed on asteroids such as Ceres, Vesta, Lutetia, and also on Mars.

  20. Numerical modelling of hydrological slope response: GIS application to rainfall induced landslides forecasting

    Science.gov (United States)

    Olivares, Lucio; Picarelli, Luciano; Savastano, Vincenzo; Damiano, Emilia; Greco, Roberto; Guida, Andrea

    2010-05-01

    A significant part of Italian mountainous areas are covered by pyroclastic deposits resting at slope angles higher than 40-50°. The stability of these steep slopes in loose or poorly cemented pyroclastic materials is essentially guaranteed by the positive effects of matrix suction on shear strength until an increase in saturation (and hence a decrease in suction) is induced by seepage initiated by different processes. The Cervinara flowslide (Campania, Italy) is a typical case where rainfall infiltration increased saturation and hence led to failure of shallow layered pyroclastic deposits. This case study is examined by means of a numerical model calibrated through back-analysis of flume tests, which link instability to rainwater infiltration. The complexity of infiltration process on unsaturated layered slope requires the set up of a numerical model. The model includes a 3D volume finite algorithm (I-MOD3D) developed in VBA application for ARCOBJECTTM/ARCGIS 9.2TM to automate the mesh-generation starting from a Digital Terrain Model allowing the analysis of slope response at catchment scale. Model calibration was carried out using either data from laboratory tests on natural soil samples or from infiltration tests on layered slope model. Model validation was carried out through back-analysis of in situ suction measurements using initial and boundary conditions derived from field monitoring. Comparison between the results of slope model infiltration tests, numerical simulations and in situ measurements showed that the developed numerical model represents reliable tool for predicting slope response to rainfall infiltration for shallow layered pyroclastic deposits.

  1. Novel monitoring method for the management of heart failure: combined measurement of body weight and bioimpedance index of body fat percentage.

    Science.gov (United States)

    Kataoka, Hajime

    2009-11-01

    Although body weight scales are most commonly used to evaluate body fluid status during follow-up of definite heart failure (HF) patients, bioimpedance measurement methods have become increasingly available in the clinical setting. These monitoring methods, however, are typically used separately to evaluate body fluid status in HF patients. Kataoka developed a novel method for monitoring HF patients using a digital weight scale that incorporated a bioelectrical impedance analyzer. This method combines the well-known advantages of body weighing with a refined bioimpedance technique to monitor HF status and provides valid information regarding a change in a patient's body fluid status during follow-up for HF, such as predominant fluid versus fat weight gain or loss. This special report describes examples of the practical use of this method for monitoring and treating definite HF patients.

  2. Intraparenchymal intracranial pressure monitoring in patients with acute liver failure Monitoreo intraparenquimatoso de presión intracraneana en pacientes con falla hepática aguda

    OpenAIRE

    Rabadán, Alejandra T.; Natalia Spaho; Diego Hernández; Adrián Gadano; Eduardo de Santibañes

    2008-01-01

    BACKGROUND: Elevated intracranial pressure (ICP) is a common cause of death in acute liver failure (ALF) and is determinant for decision-making regarding the timing of liver transplantation. The recommended type ICP monitoring device is controversial in ALF patients. Epidural devices had less risk of hemorrhagic complications, but they are less reliable than intraparenchymal ones. METHOD: Twenty-three patients with ALF were treated, and 19 of them received a liver transplant. Seventeen patien...

  3. Preliminary Analysis of Slope Stability in Kuok and Surrounding Areas

    Directory of Open Access Journals (Sweden)

    Dewandra Bagus Eka Putra

    2016-12-01

    Full Text Available The level of slope influenced by the condition of the rocks beneath the surface. On high level of slopes, amount of surface runoff and water transport energy is also enlarged. This caused by greater gravity, in line with the surface tilt from the horizontal plane. In other words, topsoil eroded more and more. When the slope becomes twice as steep, then the amount of erosion per unit area be 2.0 - 2.5 times more. Kuok and surrounding area is the road access between the West Sumatra and Riau which plays an important role economies of both provinces. The purpose of this study is to map the locations that have fairly steep slopes and potential mode of landslides. Based on SRTM data obtained,  the roads in Kuok area has a minimum elevation of + 33 m and a maximum  + 217.329 m. Rugged road conditions with slope ranging from 24.08 ° to 44.68 ° causing this area having frequent landslides. The result of slope stability analysis in a slope near the Water Power Plant Koto Panjang, indicated that mode of active failure is toppling failure or rock fall and the potential zone of failure is in the center part of the slope.

  4. Review of Instrumentation and Monitoring for USACE Levees

    Science.gov (United States)

    2014-08-01

    MONITORING APPROACH: Geotechnical instrumentation can be divided into two categories: in situ determination of soil or rock properties and monitoring of...deformation, seismic loading, groundwater pressure, total stress in soil , stress changes in rock, and temperature. This information is vital to the...piping) from through seepage or underseepage, rotational slope failure, and liquefaction from earthquakes. During an extreme flood event, the level of

  5. 爆破震动及结构面渐进破坏对边坡稳定性影响%Influence of blasting vibration and structural plane progressive failure on slope stability

    Institute of Scientific and Technical Information of China (English)

    任月龙; 才庆祥; 舒继森; 周伟; 韩流

    2014-01-01

    为了研究爆破震动及结构面渐进破坏对于边坡稳定性的影响,掌握爆破震动过程中的致损机理及稳定系数变化规律,根据结构面抗剪强度退化机理,明确了渐进破坏过程中抗剪强度变化规律;结合爆破动载荷的作用机理,修正了震动条件下抗滑力、下滑力的计算公式;基于此,推导出了平面和折面滑坡模式的时效稳定系数计算方法,并对哈尔乌素露天矿北端帮边坡稳定性进行研究。结果表明:结构面完好和贯通时的稳定系数分别为1.348和1.173。结构面渐进破坏过程中,边坡稳定系数呈线性递减,且递减的速度与岩体的黏聚力C呈正比;爆破震动作用下,边坡时效稳定系数以初始稳定系数为中心,响应震动加速度上下波动;爆破震动和结构面渐进损伤耦合作用下,边坡时效稳定系数在波动变化的同时呈现整体下滑趋势。%In order to investigate the impact of blasting vibration and structural surface damage on slope stability and the stability coefficient variation and undermining mechanism during blasting pro-cess, the research gets the law of the shear strength variation during under mining process with the deg-radation mechanism for shear strength in structural surface as the basis. In combination with the mecha-nism of blasting dynamic loading, calculation formula of both sliding and sliding resistance forces under the condition of fixed vibration were corrected. The calculation methods of timeliness stability coeffi-cient for planar and folding landslide models are deduced and applied to the study of the north slope stability at Haerwusu Surface Coal Mine. The results show that stability factors are 1.348 and 1.173 for intact structural surface and damaged structural surface respectively. In addition, the slope stability co-efficient decreases linearly during the slope undermining progress while the decreasing speed is propor-tional to the

  6. Proposal of novel method of continuous monitoring of possible fuel failure of a pool-type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, K. [Rikkyo University, Nishi-Ikebukuro, Toshima-ku, Tokyo (Japan). College of Science; Hayashi, S.A.; Matsura, T. [Rikkyo University, Nagasaka, Yokosuka (Japan). Institute for Atomic Energy

    1997-10-01

    During the course of studies on fuel failure detection, we have found that the bubbling of a gas such as nitrogen into a reactor coolant water effectively purges the dissolved fission rare gases ({sup 89}Kr, T{sub 1/2}=3.15 min, and {sup 138}Xe, T{sub 1/2}=14.08 min) and that the respective daughter nuclides ({sup 89}Rb, T{sub 1/2}=15.15 min and {sup 138}Cs, T{sub 1/2}=33.41 min) are detected in the washing water of the collected gas mixture. The detected activity depends on the time of standing between sampling and washing of the gas, and the dependence agreed well with the theoretical prediction from the consecutive radioactive decay for both pairs ({sup 89}Kr-{sup 89}Rb, and {sup 138}Xe-{sup 138}Cs). Based on these findings, we have recently constructed a semi-continuous fuel monitoring system, which consists of an automatic and intermittent gas sampler (1 litre bottles) and a bottle conveying unit. After standing for a definite time, bottled gas is shaken with a small amount of water, and the activity of the water is measured. This system operates satisfactorily, but the whole system involves several sophisticated steps so that is rather costly. Quite recently we have got an idea of a simpler, more economical, fully automated continuous system. The system consists in principle only of a large cylinder with packing materials just as in a fractional distiller. On the top of the cylinder there are an inlet of washing water and an outlet of the gas, and at the bottom there are an inlet of the collected gas from the coolant and an outlet of the washing water. The whole system can be operated fully automatically and continuously, with continuous feeding of bubbling gas into the reactor coolant. This has not yet been experimentally tested at present, and in this presentation, information about the setup parameters such as the flow rate of the bubbling gas, the volume of the cylinder and vacant space, the flow rate of the washing water, etc. are reported

  7. Simultaneous monitoring of a collapsing landslide with video cameras

    Directory of Open Access Journals (Sweden)

    K. Fujisawa

    2008-01-01

    Full Text Available Effective countermeasures and risk management to reduce landslide hazards require a full understanding of the processes of collapsing landslides. While the processes are generally estimated from the features of debris deposits after collapse, simultaneous monitoring during collapse provides more insights into the processes. Such monitoring, however, is usually very difficult, because it is rarely possible to predict when a collapse will occur. This study introduces a rare case in which a collapsing landslide (150 m in width and 135 m in height was filmed with three video cameras in Higashi-Yokoyama, Gifu Prefecture, Japan. The cameras were set up in the front and on the right and left sides of the slide in May 2006, one month after a series of small slope failures in the toe and the formation of cracks on the head indicated that a collapse was imminent.

    The filmed images showed that the landslide collapse started from rock falls and slope failures occurring mainly around the margin, that is, the head, sides and toe. These rock falls and slope failures, which were individually counted on the screen, increased with time. Analyzing the images, five of the failures were estimated to have each produced more than 1000 m3 of debris, and the landslide collapsed with several surface failures accompanied by a toppling movement. The manner of the collapse suggested that the slip surface initially remained on the upper slope, and then extended down the slope as the excessive internal stress shifted downwards. Image analysis, together with field measurements using a ground-based laser scanner after the collapse, indicated that the landslide produced a total of 50 000 m3 of debris.

    As described above, simultaneous monitoring provides valuable information about landslide processes. Further development of monitoring techniques will help clarify landslide processes qualitatively as well as quantitatively.

  8. Mild Slope Ligningen

    DEFF Research Database (Denmark)

    Brorsen, Michael

    Der gives en beskrivelse af forudsætningerne for Mild Slope ligningen, som kort fortalt kan benyttes til at beregne harmoniske, lineære bølger i områder med "små" gradienter på dybderne.......Der gives en beskrivelse af forudsætningerne for Mild Slope ligningen, som kort fortalt kan benyttes til at beregne harmoniske, lineære bølger i områder med "små" gradienter på dybderne....

  9. Hazard assessment of vegetated slopes

    NARCIS (Netherlands)

    Norris, J.E.; Greenwood, J.R.; Achim, A.; Gardiner, B.A.; Nicoll, B.C.; Cammeraat, E.; Mickovski, S.B.; Norris, J.E.; Stokes, A.; Mickovski, S.B.; Cammeraat, E.; van Beek, R.; Nicoll, B.C.; Achim, A.

    2008-01-01

    The hazard assessment of vegetated slopes are reviewed and discussed in terms of the stability of the slope both with and without vegetation, soil erosion and the stability of the vegetated slope from windthrow and snow loading. Slope stability can be determined by using either limit equilibrium or

  10. Hazard assessment of vegetated slopes

    NARCIS (Netherlands)

    J.E. Norris; J.R. Greenwood; A. Achim; B.A. Gardiner; B.C. Nicoll; E. Cammeraat; S.B. Mickovski

    2008-01-01

    The hazard assessment of vegetated slopes are reviewed and discussed in terms of the stability of the slope both with and without vegetation, soil erosion and the stability of the vegetated slope from windthrow and snow loading. Slope stability can be determined by using either limit equilibrium or

  11. A multidisciplinary methodological approach for slope stability assessment of an area prone to shallow landslides

    Science.gov (United States)

    Bordoni, Massimiliano; Meisina, Claudia; Valentino, Roberto; Bittelli, Marco; Battista Bischetti, Gian; Vercesi, Alberto; Chersich, Silvia; Giuseppina Persichillo, Maria

    2016-04-01

    Rainfall-induced shallow landslides are widespread slope instabilities phenomena in several hilly and mountainous contexts all over the world. Due to their high density of diffusion also in small areas, they can provoke important damages to terrains, infrastructures, buildings, and, sometimes, loss of human lives. Shallow landslides affect superficial soils of limited thickness (generally lower than 2 m), located above weathered or not bedrock levels. Their triggering mechanism is strictly linked to the hydrological response of the soils to rainfall events. Thus, it becomes fundamental a comprehensive analysis of the soil properties which can influence the susceptibility of a slope to shallow landslides. In this study, a multidisciplinary approach was followed for the characterization of the soils and the individuation of the triggering conditions in an area particularly prone to shallow failures, for slope stability assessment. This area corresponded to the hilly sector of North-Eastern Oltrepò Pavese (Lombardy Region, Northern Italy), where the density of shallow landslides is really high, reaching more than 36 landslides per km2. The soils of the study area were analyzed through a multidisciplinary characterization, which took into account for the main geotechnical, mechanical and mineralogical parameters and also for the main pedological features of the materials. This approach allowed for identifying the main features and the horizons which could influence the soil behavior in relation to the conditions that are preparatory to shallow landslides development. In a test-site slope, representative of the main geomorphological, geological and landslides distribution characteristics typical of the study area, a continuous in time monitoring of meteorological (rainfall amount, air temperature, air humidity, atmospheric pressure, net solar radiation, wind speed and direction) and hydrological (soil water content, pore water pressure) parameters was implemented. In

  12. The Chukchi slope current

    Science.gov (United States)

    Corlett, W. Bryce; Pickart, Robert S.

    2017-04-01

    Using a collection of 46 shipboard hydrographic/velocity transects occupied across the shelfbreak and slope of the Chukchi Sea between 2002 and 2014, we have quantified the existence of a current transporting Pacific-origin water westward over the upper continental slope. It has been named the Chukchi slope current, which is believed to emanate from Barrow Canyon. The current is surface-intensified, order 50 km wide, and advects both summer and winter waters. It is not trapped to a particular isobath, but instead is reminiscent of a free jet. There is no significant variation in Pacific water transport with distance from Barrow Canyon. A potential vorticity analysis suggests that the flow is baroclinically unstable, consistent with the notion that it meanders. The current is present during all synoptic wind conditions, but increases in strength from summer to fall presumably due to the seasonal enhancement of the easterly winds in the region. Its transport increased over the 12-year period of data coverage, also likely in response to wind forcing. In the mean, the slope current transports 0.50 ± 0.07 Sv of Pacific water. This estimate allows us to construct a balanced mass budget of the Chukchi shelf inflows and outflows. Our study also confirms the existence of an eastward-flowing Chukchi shelfbreak jet transporting 0.10 ± 0.03 Sv of Pacific water towards Barrow Canyon.

  13. Slope constrained Topology Optimization

    DEFF Research Database (Denmark)

    Petersson, J.; Sigmund, Ole

    1998-01-01

    pointwise bounds on the density slopes. A finite element discretization procedure is described, and a proof of convergence of finite element solutions to exact solutions is given, as well as numerical examples obtained by a continuation/SLP (sequential linear programming) method. The convergence proof...

  14. The internal model: A study of the relative contribution of proprioception and visual information to failure detection in dynamic systems. [sensitivity of operators versus monitors to failures

    Science.gov (United States)

    Kessel, C.; Wickens, C. D.

    1978-01-01

    The development of the internal model as it pertains to the detection of step changes in the order of control dynamics is investigated for two modes of participation: whether the subjects are actively controlling those dynamics or are monitoring an autopilot controlling them. A transfer of training design was used to evaluate the relative contribution of proprioception and visual information to the overall accuracy of the internal model. Sixteen subjects either tracked or monitored the system dynamics as a 2-dimensional pursuit display under single task conditions and concurrently with a sub-critical tracking task at two difficulty levels. Detection performance was faster and more accurate in the manual as opposed to the autopilot mode. The concurrent tracking task produced a decrement in detection performance for all conditions though this was more marked for the manual mode. The development of an internal model in the manual mode transferred positively to the automatic mode producing enhanced detection performance. There was no transfer from the internal model developed in the automatic mode to the manual mode.

  15. Comparing Potential Unstable Sites and Stable Sites on Revegetated Cut-Slopes of Mountainous Terrain in Korea

    Directory of Open Access Journals (Sweden)

    Sung-Ho Kil

    2015-11-01

    Full Text Available This study employs a diverse set of variables to explain slope stabilization on stable versus failure-prone revegetated cut-slopes in Korea. A field survey was conducted at potential unstable sites and stable sites using 23 variables. Through a non-parametric test of the field survey results, 15 variables were identified as primary determinants of slope failure. Of these variables, one described physical characteristics (elapsed year; four variables described vegetation properties (plant community, vegetation coverage rate, number of trees, and number of herbs; and 10 variables represented soil properties (porosity, soil hardness, water content, sand ratio and silt ratio of soil texture, tensile strength, permeability coefficient, soil depth, soil acidity, salt concentration, and organic matter. Slope angle, which was mainly considered in previous studies, of variables in physical characteristics was not statistically selected as one of the 15 variables because most of sites were located on steep slopes. The vegetation community, vegetation coverage, and number of trees influence slope stabilization. Vegetation coverage is highly correlated with other soil and vegetation variables, making it a major indicator of slope stabilization. All soil variables were related to slope failure such that subsequent slope failure was related to the method of slope revegetation rather than the environmental condition of the slope. Slope failure did not occur in revegetated slopes that matched the characteristics of the surrounding landscape and contained a large number of native trees. Most soil and vegetation variables showed differing values for whether a revegetated slope is potentially unstable or stable.

  16. Primary Investigations on Yangtze River Bank Slope Stability in Wanzhou for the Three Gorges Reservoir Project

    Institute of Scientific and Technical Information of China (English)

    Jian Wenxing; Yin Kunlong; Xu Yixian

    2005-01-01

    This paper investigates the main factors contributing to bank slope failures, such as the structure of rock and soil, water level change, bank slope gradient, vegetation, weathering and human activities. Based on these investigations, the bank slope failure models are analyzed. The stability of bank slopes in Wanzhou is investigated using geological surveying, 2D resistivity imaging surveying, excavated trenches and other methods. Finally, the disasters of bank slope failures in Wanzhou were investigated in detail. The results show that instability problems might occur in 60.38 km of bank slopes when the water level rises to 175 m. It is suggested that 37.8 km of unstable bank slopes should be stabilized, and 14.2 km of unstable banks should be moved or avoided after further geological surveying and reconnaissance. These results provide scientific basis and reliable data for the government to develop the third geodisaster prevention plan for the Three Gorges reservoir.

  17. Development of GIS-based spatial three-dimensional slope stability analysis system: 3DSlopeGIS

    National Research Council Canada - National Science Library

    ESAKI, Tetsuro; XIE, Mowen; MITANI, Yasuhiro; ZHOU, Guoyun

    2004-01-01

    Based on a new IT technology-Geographic Information System (GIS), this paper presents a new slope analysis approach which can be used to identify the possible slope failure bodies from complicated topography...

  18. Superiority of transcutaneous CO2 over end-tidal CO2 measurement for monitoring respiratory failure in nonintubated patients: A pilot study.

    Science.gov (United States)

    Lermuzeaux, Mathilde; Meric, Henri; Sauneuf, Bertrand; Girard, Salomé; Normand, Hervé; Lofaso, Frédéric; Terzi, Nicolas

    2016-02-01

    Arterial blood gas measurement is frequently performed in critically ill patients to diagnose and monitor acute respiratory failure. At a given metabolic rate, carbon dioxide partial pressure (PaCO2) is entirely determined by CO2 elimination through ventilation. Transcutaneous partial pressure of carbon dioxide (PtcCO2) monitoring permits a noninvasive and continuous estimation of arterial CO2 tension (PaCO2). The accuracy of PtcCO2, however, has not been well studied. To assess the accuracy of different CO2 monitoring methods, we compared PtcCO2 and end-tidal CO2 concentration (EtCO2) to PaCO2 measurements in nonintubated intensive care unit (ICU) patients with acute respiratory failure. During a 2-month period, we conducted a prospective observational cohort study in 25 consecutive nonintubated and spontaneously breathing patients admitted to our ICU. Arterial blood gases were measured at study inclusion, 30, 60, and 120 minutes later. At each sampling time, EtCO2 was continuously monitored using a Philips Smart Capnoline Plus, and PtcCO2 was measured using was measured using SenTec device. The aim of the study was to assess agreement between PtcCO2 and PaCO2 and between EtCO2 and PaCO2 in nonintubated ICU patients with acute respiratory failure. Bland-Altman techniques and Pearson correlation coefficients were used. The differences over time (at 30, 60, and 120 minutes) between PaCO2 and EtCO2 and between PtcCO2 and PaCO2 were evaluated using 1-way analysis of variance. Transcutaneous partial pressure of carbon dioxide and PaCO2 were well correlated (R = 0.97), whereas the correlation between EtCO2 and PaCO2 was poor (R = 0.62) probably due to the presence of an alveolar dead space in a few patients, most notably in the group with chronic obstructive pulmonary disease. The difference over time remained stable for both PaCO2 vs EtCO2 (analysis of variance; P = .88) and PaCO2 vs PtcCO2 (P = .93). We found large differences between EtCO2 and Paco2 in spontaneously

  19. Effects of slope gradient on hydro-erosional processes on an aeolian sand-covered loess slope under simulated rainfall

    Science.gov (United States)

    Zhang, F. B.; Yang, M. Y.; Li, B. B.; Li, Z. B.; Shi, W. Y.

    2017-10-01

    The aeolian sand-covered loess slope of the Wind-Water Erosion Crisscross Region of the Loess Plateau in China may play a key role in contributing excessive sediment to the Yellow River. Understanding its hydro-erosional processes is crucial to assessing, controlling and predicting soil and water losses in this region and maintaining the ecological sustainability of the Yellow River. Simulated rainfall (intensity 90 mm h-1) was used to investigate the runoff and soil loss from loess slopes with different slope gradients (18%, 27%, 36%, 47%, and 58%) and overlying sand layer thicknesses (0, 5 and 10 cm). As compared with uncovered loess slopes, an overlying sand layer delayed runoff production, reduced cumulative runoff and increased cumulative soil loss, as well as enhancing variations among slope gradients. Cumulative runoff and soil loss from the sand-covered loess slopes increased with increasing slope gradients and then slightly decreased, with a peak at about 47% gradient; they both were greater from the 10-cm sand-covered loess slope than from the 5-cm except for with 18% slope gradient. In general, differences in cumulative runoff between sand layer thicknesses became smaller, while those in cumulative soil loss became larger, with increasing slope gradient. Runoff and soil loss rates on the sand-covered loess slopes exhibited unimodal distributions during the rainstorms. Maximum values tended to occur at the same rain duration, and increased considerably with increasing slope gradient and sand layer thickness on slopes that were less than 47%. Liquefaction process might occur on the lower loess slopes covered with thinner sand layers but failures similar to shallow landslides might occur when the sand layer was thicker on steeper slopes. The presence of an overlying sand layer changed the relationship between runoff and soil loss rates during intense rainstorms and this change varied with different slope gradients. Our results demonstrated that the effects

  20. Noninvasive monitoring of cardiac function in a chronic ischemic heart failure model in the rat: Assessment with tissue Doppler and non-Doppler 2D strain echocardiography

    Directory of Open Access Journals (Sweden)

    Baumann Gert

    2011-05-01

    Full Text Available Abstract Objectives Feasibility of noninvasive monitoring of cardiac function after surgically induced ischemic cardiomyopathy with tissue Doppler and non-Doppler 2D strain echocardiography in rats. Background The optimal method for quantitative assessment of global and regional ventricular function in rats with chronic heart failure for research purposes remains unclear. Methods 20 rats underwent suture ligation of the left anterior descending coronary artery via a left thoracotomy to induce ischemic cardiomyopathy. Echocardiographic examination with estimation of left ventricular wall thickness, diameters, fractional shortening, ejection fraction, wall velocities as well as radial strain were performed before and 4 weeks after surgery. Results Mean LVEF decreased from 70 ± 6% to 40 ± 8% (p Conclusion It is feasible to assess dimensions, global function, and regional contractility with echocardiography in rats suffering from chronic heart failure after myocardial infarction. Particularly regional function can be exactly evaluated if tissue Doppler and 2D strain is used.

  1. Mycorrhizal aspects in slope stabilisation

    Science.gov (United States)

    Graf, Frank

    2016-04-01

    In order to re-colonise and stabilise slopes affected by superficial soil failure with plants essential requirements have to be met: the plants must grow the plants must survive sustainably plant succession must start and continuously develop These requirements, however, are anything but easy given, particularly under the often hostile environmental conditions dominating on bare and steep slopes. Mycorrhizal fungi, the symbiotic partners of almost all plants used in eco-engineering, are said to improve the plants' ability to overcome periods governed by strongly (growth) limiting factors. Subsequently, results of investigations are presented of mycorrhizal effects on different plant and soil functions related to eco-engineering in general and soil and slope stabilisation in particular. Generally, inoculation yielded higher biomass of the host plants above as well as below ground. Furthermore, the survival rate was higher for mycorrhized compared to non-mycorrhized plants, particularly under extreme environmental conditions. However, the scale of the mycorrhizal impact may be species specific of both the plant host as well as the fungal partner(s) and often becomes evident only after a certain time lag. Depending on the plant-fungus combination the root length per soil volume was found to be between 0 and 2.5 times higher for inoculated compared to non-inoculated specimens. On an alpine graded ski slope the survival of inoculated compared to non-treated Salix herbacea cuttings was significant after one vegetation period only for one of the three added mycorrhizal fungus species. However, after three years all of the inoculated plantlets performed significantly better than the non-inoculated controls. The analysis of the potential for producing and stabilising soil aggregates of five different ectomycorrhizal fungi showed high variation and, for the species Inocybe lacera, no significant difference compared to untreated soil. Furthermore, inoculation of Salix

  2. ElevationSlope_SLOPE0p7M2013

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Rutland/GI Counties 2013 0.7m and related SLOPE datasets. Created using ArcGIS "SLOPE" command to produce...

  3. ElevationSlope_SLOPE0p7M2015

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Windham County 2015 0.7m and related SLOPE datasets. Created using ArcGIS "SLOPE" command to produce...

  4. ElevationSlope_SLOPE1p6M2010

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Missisquoi Upper 2010 1.6m and related SLOPE datasets. Created using ArcGIS "SLOPE" command to produce...

  5. ElevationSlope_SLOPE1p6M2012

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Addison County 2012 1.6m and related SLOPE datasets. Created using ArcGIS "SLOPE" command to produce...

  6. ElevationSlope_SLOPE0p7M2014

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Eastern VT 2014 0.7m and related SLOPE datasets. Created using ArcGIS "SLOPE" command to produce change in...

  7. ElevationSlope_SLOPE1p6M2008

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Missisquoi Lower 2008 1.6m and related SLOPE datasets. Created using ArcGIS "SLOPE" command to produce...

  8. ElevationSlope_SLOPE3p2M

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): ( and related SLOPE datasets. Created using ArcGIS "SLOPE" command to produce change in elevation over the...

  9. ElevationSlope_SLOPE3p2M2004

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): ( and related SLOPE datasets. Created using ArcGIS "SLOPE" command to produce change in elevation over the...

  10. Stability Analysis for Loosened Rock Slope of Jinyang Grand Buddha in Taiyuan, China

    Science.gov (United States)

    SUN, Jinzhong; TIAN, Xiaofu; GUAN, Xudong; YU, Yonggui; YANG, Xiusheng

    On the basis of the status quo of Jinyang Grand Buddha in Taiyuan, some factors such as topography, geological structures, climate, hydrology, and engineering geology that influence the stability of the Buddha slope are considered, and several working situations of the slope that possibly suffered are presented in this article. The Buddha slope stands upright and the rock masses are composed of thick Permian sandstone, which dips slightly inward to the slope. Affected by both the incision of regional joints and the load relief to the free surface, the rock mass of the Buddha slope has turned into loosened blocks. Numerical stability analysis by FLAC-2D on the basis of the strength reduction method reveals that the localized deformation of the rock masses near the vertical surface of the slope may trigger reversing of rock beddings making the back dip slope convert into a dip slope with the possibility of plane sliding failure. Furthermore, the pseudostatic method for the dynamic process and limit equilibrium method for the static process are applied to different working situations of the Buddha slope. The analytical results illustrate that plane sliding failure will not occur when the slope is affected only by seism. However, water filling in the cracks of the loosened rock mass may greatly contribute to the potential plane sliding failure. When horizontal seism-force and hydrostatic pressure are coupled, the Buddha slope can hardly keep stable. Additionally, the loosened rock masses are prone to block toppling failure when influenced by the seism force.

  11. Effects of grapevine root density and reinforcement on slopes prone to shallow slope instability

    Science.gov (United States)

    Meisina, Claudia; Bordoni, Massimiliano; Bischetti, Gianbattista; Vercesi, Alberto; Chiaradia, Enrico; Cislaghi, Alessio; Valentino, Roberto; Bittelli, Marco; Vergani, Chiara; Chersich, Silvia; Giuseppina Persichillo, Maria; Comolli, Roberto

    2016-04-01

    Slope erosion and shallow slope instabilities are the major factors of soil losses in cultivated steep terrains. These phenomena also cause loss of organic matter and plants nutrients, together with the partial or total destruction of the structures, such as the row tillage pattern of the vineyards, which allow for the plants cultivation. Vegetation has long been used as an effective tool to decrease the susceptibility of a slope to erosion and to shallow landslides. In particular, the scientific research focused on the role played by the plant roots, because the belowground biomass has the major control on the potential development of soil erosion and of shallow failures. Instead, a comprehensive study that analyzes the effects of the roots of agricultural plants on both soil erosion and slope instability has not been carried out yet. This aspect should be fundamental where sloped terrains are cultivated with plants of great economical relevance, as grapevine. To contribute to fill this gap, in this study the features of root density in the soil profile have been analyzed in slopes cultivated with vineyards, located on a sample hilly area of Oltrepò Pavese (northern Italy). In this area, the viticulture is the most important branch of the local economy. Moreover, several events of rainfall-induced slope erosion and shallow landslides have occurred in this area in the last 6 years, causing several economical damages linked to the destruction of the vineyards and the loss of high productivity soils. Grapevine root distribution have been measured in different test-site slopes, representative of the main geological, geomorphological, pedological, landslides distribution, agricultural features, in order to identify particular patterns on root density that can influence the development of slope instabilities. Roots have been sampled in each test-site for characterizing their strength, in terms of the relation between root diameter and root force at rupture. Root

  12. VO2 pico e inclinação VE/VCO2 na era dos betabloqueadores na insuficiência cardíaca: uma experiência brasileira Peak VO2 and VE/VCO2 slope in betablockers era in patients with heart failure: a brazilian experience

    Directory of Open Access Journals (Sweden)

    Guilherme Veiga Guimarães

    2008-07-01

    Full Text Available FUNDAMENTO: Estudos têm demonstrado que o consumo de oxigênio de pico (VO2 pico e a inclinação VE/VCO2 são preditores de sobrevida em pacientes com insuficiência cardíaca (IC. Entretanto, com a adição do betabloqueador no tratamento da IC, os valores de prognóstico do VO2 pico e da Inclinação VE/VCO2 não estão totalmente estabelecidos. OBJETIVO: Avaliar o efeito dos betabloqueadores no valor de prognóstico do VO2 pico e da inclinação VE/VCO2 em pacientes com IC. MÉTODOS: Estudamos 391 pacientes com insuficiência cardíaca, com idade de 49 ± 14 anos e fração de ejeção do ventrículo esquerdo de 38 ± 10%. Total de pacientes que usavam (grupo I - GI e não usavam (grupo II - GII betabloqueadores: 229 e 162, respectivamente. Todos os pacientes foram submetidos a teste de esforço cardiopulmonar, em esteira, usando o protocolo de Naughton. RESULTADOS: O VO2 pico 16 ml.kg-1.min-1 categorizaram pacientes com melhor prognóstico em médio prazo. A faixa do VO2 pico entre > 10 e BACKGROUND: Studies have demonstrated that peak oxygen consumption (peak VO2 and the VE/VCO2 slope are predictors of survival in patients with heart failure (HF. However, with the advent of betablockers in the treatment of HF, the prognostic values of peak VO2 and VE/VCO2 slope have not been fully established. OBJECTIVE: To evaluate the effect of betablocker use on the prognostic value of peak VO2 and VE/VCO2 slope in patients with HF. METHODS: We studied 391 patients with heart failure, aged 49 ± 14 years and presenting a left ventricular ejection fraction of 38 ± 10%. The total number of patients that used (Group I - GI or did not use (Group II - GII betablockers was 229 and 162, respectively. All patients were submitted to a cardiopulmonary stress test on a treadmill, using the Naughton protocol. RESULTS: A peak VO2 16 ml.kg-1.min-1 categorizes patients with a better mid-term prognosis. Peak VO2 values between > 10 and < 16 ml.kg-1.min-1 indicated

  13. 激光扫描技术在坡耕地土壤侵蚀监测中的应用%Application of laser scanner in soil erosion monitoring of cultivated slope land

    Institute of Scientific and Technical Information of China (English)

    岳鹏; 史明昌; 杜哲; 王珊

    2012-01-01

    为了研究激光扫描技术应用于土壤侵蚀监测的可靠性,利用3D激光地貌分析仪对黑龙江省水土保持科技示范园内坡耕地径流小区土壤侵蚀进行监测.采用恒定降雨强度(20、40、60、80、100和120 mm/h)对径流小区进行连续6次等历时(30 min)人工降雨,每场降雨前后使用3D激光地貌分析仪对小区内不同位置的坡面形态进行扫描,并与集流桶收集土壤侵蚀量进行对比分析.结果表明:3D激光扫描分析法与集流桶测量法得到的土壤侵蚀量之间具有良好的线性相关关系,3D激光地貌分析仪用于径流小区内土壤侵蚀测定具有较高的精度与可靠性.%In order to study the reliability of the laser scanning technology for soil erosion monitoring, the soil erosion of the runoff plot in Soil and Water Conservation Demonstration Park, Heilongjiang Province, was measured with 3D laser scanner system. To calculate the amount of soil erosion, the surface morphology at different slope positions was scanned by using this system before and after artificial rainfall with stable intensities (20, 40, 60, 80, 100, 120 mm/h, and 30 minutes). In addition, to make a calibration on the system, simultaneously, the calculated soil erosion was compared with the soil erosion amount in collecting tanks. The results indicate as follow: there is an excellent linear relationship between the soil erosion amount measured with 3D laser scanner and collecting tanks. Hence, the application of 3 D laser scanner in soil erosion monitoring has a bright future due to its higher accuracy and reliability.

  14. A Hybrid FEM-ANN Approach for Slope Instability Prediction

    Science.gov (United States)

    Verma, A. K.; Singh, T. N.; Chauhan, Nikhil Kumar; Sarkar, K.

    2016-08-01

    Assessment of slope stability is one of the most critical aspects for the life of a slope. In any slope vulnerability appraisal, Factor Of Safety (FOS) is the widely accepted index to understand, how close or far a slope from the failure. In this work, an attempt has been made to simulate a road cut slope in a landslide prone area in Rudrapryag, Uttarakhand, India which lies near Himalayan geodynamic mountain belt. A combination of Finite Element Method (FEM) and Artificial Neural Network (ANN) has been adopted to predict FOS of the slope. In ANN, a three layer, feed- forward back-propagation neural network with one input layer and one hidden layer with three neurons and one output layer has been considered and trained using datasets generated from numerical analysis of the slope and validated with new set of field slope data. Mean absolute percentage error estimated as 1.04 with coefficient of correlation between the FOS of FEM and ANN as 0.973, which indicates that the system is very vigorous and fast to predict FOS for any slope.

  15. A Hybrid FEM-ANN Approach for Slope Instability Prediction

    Science.gov (United States)

    Verma, A. K.; Singh, T. N.; Chauhan, Nikhil Kumar; Sarkar, K.

    2016-09-01

    Assessment of slope stability is one of the most critical aspects for the life of a slope. In any slope vulnerability appraisal, Factor Of Safety (FOS) is the widely accepted index to understand, how close or far a slope from the failure. In this work, an attempt has been made to simulate a road cut slope in a landslide prone area in Rudrapryag, Uttarakhand, India which lies near Himalayan geodynamic mountain belt. A combination of Finite Element Method (FEM) and Artificial Neural Network (ANN) has been adopted to predict FOS of the slope. In ANN, a three layer, feed- forward back-propagation neural network with one input layer and one hidden layer with three neurons and one output layer has been considered and trained using datasets generated from numerical analysis of the slope and validated with new set of field slope data. Mean absolute percentage error estimated as 1.04 with coefficient of correlation between the FOS of FEM and ANN as 0.973, which indicates that the system is very vigorous and fast to predict FOS for any slope.

  16. Failure and Redemption of Multifilter Rotating Shadowband Radiometer (MFRSR)/Normal Incidence Multifilter Radiometer (NIMFR) Cloud Screening: Contrasting Algorithm Performance at Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) and Southern Great Plains (SGP) Sites

    Energy Technology Data Exchange (ETDEWEB)

    Kassianov, Evgueni I.; Flynn, Connor J.; Koontz, Annette S.; Sivaraman, Chitra; Barnard, James C.

    2013-09-11

    Well-known cloud-screening algorithms, which are designed to remove cloud-contaminated aerosol optical depths (AOD) from AOD measurements, have shown great performance at many middle-to-low latitude sites around the world. However, they may occasionally fail under challenging observational conditions, such as when the sun is low (near the horizon) or when optically thin clouds with small spatial inhomogeneity occur. Such conditions have been observed quite frequently at the high-latitude Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) sites. A slightly modified cloud-screening version of the standard algorithm is proposed here with a focus on the ARM-supported Multifilter Rotating Shadowband Radiometer (MFRSR) and Normal Incidence Multifilter Radiometer (NIMFR) data. The modified version uses approximately the same techniques as the standard algorithm, but it additionally examines the magnitude of the slant-path line of sight transmittance and eliminates points when the observed magnitude is below a specified threshold. Substantial improvement of the multi-year (1999-2012) aerosol product (AOD and its Angstrom exponent) is shown for the NSA sites when the modified version is applied. Moreover, this version reproduces the AOD product at the ARM Southern Great Plains (SGP) site, which was originally generated by the standard cloud-screening algorithms. The proposed minor modification is easy to implement and its application to existing and future cloud-screening algorithms can be particularly beneficial for challenging observational conditions.

  17. A System for Simple Real-Time Anastomotic Failure Detection and Wireless Blood Flow Monitoring in the Lower Limbs

    Science.gov (United States)

    Rothfuss, Michael A.; Franconi, Nicholas G.; Unadkat, Jignesh V.; Gimbel, Michael L.; STAR, Alexander; Mickle, Marlin H.

    2016-01-01

    Current totally implantable wireless blood flow monitors are large and cannot operate alongside nearby monitors. To alleviate the problems with the current monitors, we developed a system to monitor blood flow wirelessly, with a simple and easily interpretable real-time output. To the best of our knowledge, the implanted electronics are the smallest in reported literature, which reduces bio-burden. Calibration was performed across realistic physiological flow ranges using a syringe pump. The device’s sensors connected directly to the bilateral femoral veins of swine. For each 1 min, blood flow was monitored, then, an occlusion was introduced, and then, the occlusion was removed to resume flow. Each vein of four pigs was monitored four times, totaling 32 data collections. The implant measured 1.70 cm3 without battery/encapsulation. Across its calibrated range, including equipment tolerances, the relative error is less than ±5% above 8 mL/min and between −0.8% and +1.2% at its largest calibrated flow rate, which to the best of our knowledge is the lowest reported in the literature across the measured calibration range. The average standard deviation of the flow waveform amplitude was three times greater than that of no-flow. Establishing the relative amplitude for the flow and no-flow waveforms was found necessary, particularly for noise modulated Doppler signals. Its size and accuracy, compared with other microcontroller-equipped totally implantable monitors, make it a good candidate for future tether-free free flap monitoring studies. PMID:27730016

  18. Does less frequent routine monitoring of patients on a stable, fully suppressed cART regimen lead to an increased risk of treatment failure?

    DEFF Research Database (Denmark)

    Reekie, Joanne; Mocroft, Amanda; Sambatakou, Helen;

    2008-01-01

    OBJECTIVE: To investigate whether HIV-infected patients on a stable and fully suppressive combination antiretroviral therapy (cART) regimen could safely be monitored less often than the current recommendations of every 3 months. DESIGN: Two thousand two hundred and forty patients from the Euro......SIDA study who maintained a stable and fully suppressed cART regimen for 1 year were included in the analysis. METHODS: Risk of treatment failure, defined by viral rebound, fall in CD4 cell count, development of new AIDS-defining illness, serious opportunistic infection or death, in the 12 months following...... interval (CI) 0.1-0.5], 2.2% (95% CI 1.6-2.8) and 6.0% (95% CI 5.0-7.0) risk of treatment failure, respectively. Patients who spent more than 80% of their time on cART with fully suppressed viraemia prior to baseline had a 38% reduced risk of treatment failure, hazard ratio 0.62 (95% CI 0.42-0.90, P = 0...

  19. A Different Pitch to Slope

    Science.gov (United States)

    Wolbert, William

    2017-01-01

    The query "When are we ever going to use this?" is easily answered when discussing the slope of a line. The pitch of a roof, the grade of a road, and stair stringers are three applications of slope that are used extensively. The concept of slope, which is introduced fairly early in the mathematics curriculum has hands-on applications…

  20. Comments on the slope function

    CERN Document Server

    Kim, Minkyoo

    2016-01-01

    The exact slope function was first proposed in $SL(2)$ sector and generalized to $SU(2)$ sector later. In this note, we consider the slope function in $SU(1|1)$ sector of ${\\cal N}=4$ SYM. We derive the quantity through the method invented by N. Gromov and discuss about its validity. Further, we give comments on the slope function in deformed SYM.

  1. Stability analysis of slopes of expansive soils considering rainfall effect

    Institute of Scientific and Technical Information of China (English)

    ZHU Fang-cai

    2007-01-01

    Typical failure types of slopes of expansive soils are divided to two kinds: slip in surface layer and slip in shallow layer. Based on total strength law of expansive soils, the relationship between its water content and shear strength inculding cohesion and friction angle, was studied in detail. Acoording to change of water content and depth effect during rainfall, distribution of shear strength in slopes of expansive soils was analyzed. Finally,with a slope of expansive soils in Nanning city of Guangxi Autonomous Region of China as a case, safety factor and slip surface was studied.

  2. Assessment and mapping of slope stability based on slope units: A case study in Yan’an, China

    Indian Academy of Sciences (India)

    Jianqi Zhuang; Jianbing Peng; Yonglong Xu; Qiang Xu; Xinghua Zhu; Wei Li

    2016-10-01

    Precipitation frequently triggers shallow landslides in the Loess Plateau of Shaanxi, China, resulting in loss of life, damage to gas and oil routes, and destruction of transport infrastructure and farmland. To assess the possibility of shallow landslides at different precipitation levels, a method to draw slope units and steepest slope profiles based on ARCtools and a new method for calculating slope stability areproposed. The methods were implemented in a case study conducted in Yan’an, north-west China. High resolution DEM (Digital Elevation Model) images, soil parameters from in-situ laboratory measurements and maximum depths of precipitation infiltration were used as input parameters in the method. Next,DEM and reverse DEM were employed to map 2146 slope units in the study area, based on which the steepest profiles of the slope units were constructed. Combining analysis of the water content of loess, strength of the sliding surface, its response to precipitation and the infinite slope stability equation, a newequation to calculate infinite slope stability is proposed to assess shallow landslide stability. The slope unit stability was calculated using the equation at 10-, 20-, 50- and 100-year return periods of antecedent effective precipitation. The number of slope units experiencing failure increased in response to increasing effective antecedent rainfall. These results were validated based on the occurrence of landslides in recent decades. Finally, the applicability and limitations of the model are discussed.

  3. New Electric Online Oil Condition Monitoring Sensor – an Innovation in Early Failure Detection of Industrial Gears

    Directory of Open Access Journals (Sweden)

    Manfred Mauntz

    2013-02-01

    Full Text Available A new online diagnostics system for the continuous condition monitoring of lubricating oils in industrial gearboxes is presented. Characteristic features of emerging component damage, such as wear, contamination or chemical aging, are identified in an early stage. The OilQSens® sensor effectively controls the proper operation conditions of bearings and cogwheels in gears. Also, the condition of insulating oils in transformers can be monitored. The online diagnostics system measures components of the specific complex impedance of oils. For instance, metal abrasion due to wear debris, broken oil molecules, forming acids or oil soaps result in an increase of the electrical conductivity, which directly correlates with the degree of contamination in the oil. The dielectrical properties of the oils are particularly determined by the water content that becomes accessible via an additional accurate measurement of the dielectric constant. For additivated oils, statements on the degradation of additives can also be derived from changes in the dielectric constant. For an efficient machine utilization and targeted damage prevention, the new OilQSens® online condition monitoring sensor system allows for timely preventative maintenance on demand rather than in rigid inspection intervals. The determination of impurities or reduction in the quality of the oil and the quasi continuous evaluation of wear and chemical aging follow the holistic approach of a real-time monitoring of a change in the condition of the oil-machine system. Once the oil condition monitoring sensors are installed on the plants, the measuring data can be displayed and evaluated elsewhere. The measuring signals are transmitted to a web-based condition monitoring system via LAN, WLAN or serial interfaces of the sensor system. Monitoring of the damage mechanisms during proper operation below the tolerance limits of the components enables specific preventive maintenance independent of rigid

  4. Effects of nonlinear strength parameters on stability of 3D soil slopes

    Institute of Scientific and Technical Information of China (English)

    高玉峰; 吴迪; 张飞; 秦红玉; 朱德胜

    2016-01-01

    Actual slope stability problems have three-dimensional (3D) characteristics and the soils of slopes have curved failure envelopes. This incorporates a power-law nonlinear failure criterion into the kinematic approach of limit analysis to conduct the evaluation of the stability of 3D slopes. A tangential technique is adopted to simplify the nonlinear failure criterion in the form of equivalent Mohr-Coulomb strength parameters. A class of 3D admissible rotational failure mechanisms is selected for soil slopes including three types of failure mechanisms: face failure, base failure, and toe failure. The upper-bound solutions and corresponding critical slip surfaces can be obtained by an efficient optimization method. The results indicate that the nonlinear parameters have significant influences on the assessment of slope stability, especially on the type of failure mechanism. The effects of nonlinear parameters appear to be pronounced for gentle slopes constrained to a narrow width. Compared with the solutions derived from plane-strain analysis, the 3D solutions are more sensitive to the values of nonlinear parameters.

  5. Large gravitational rock slope deformation in Romsdalen Valley (Western Norway

    Directory of Open Access Journals (Sweden)

    Aline Saintot

    2012-09-01

    Full Text Available Large gravitational rock slope deformation affects Precambrian gneisses at four localities of the Romsdalen valley of Western Norway. At each locality, detailed studies have allowed to determine the mechanism of deformation and to assess the degree of susceptibility for failure. 1 Svarttinden is a 4.3 Mm³ translational rockslide. Its single basal detachment developed along a foliation-parallel cataclastic fault. Although a rockslide occurred along the same detachment and the deposits reached the edge of the plateau, no displacement of the current instability is detected. 2 At Flatmark distinct 2-25 Mm³ blocks detached from the edge of the plateau by an opening along the steep foliation. The collapse of the blocks is explained by a complex mechanism of sliding and toppling. No displacement is actually detected on the instabilities. 3 At Børa blocks located at the edge of the plateau deformed by the same mechanism as at Flatmark. They have a maximum volume of 0.5 Mm3 and displacement rates of 0.2-2 cm/year. The deformation at Børa has affected a large part of the plateau and the entire deformed volume would be of 50-200 Mm³ but it is currently inactive. 4 A wedge failure at the edge of Mannen plateau is inferred to allow the 4-5 cm/year downward displacement of a 2-3.5 Mm³ instability. The high susceptibility of failure led to a permanent monitoring of the site since 2009.

  6. Terrestrial Radar Interferometry: The current state-of-the-art demonstrated by real-world slope stability case studies

    Science.gov (United States)

    Wooster, Michael; Thomas, Adam; Holley, Rachel

    2013-04-01

    Risk associated with natural terrain is typically mapped and monitored using established geodetic, geotechnical and remote sensing (satellite and airborne) techniques; however such techniques can pose challenges related to health and safety, cost and the density and frequency of measurements. Terrestrial Radar Interferometry (TRI) systems offer users new capabilities in the mapping and monitoring of ground displacements, and more specifically, slope stability. Use of portable radar systems that facilitate quick deployment and data acquisition, rapid and long distance scanning, and the ability to function and operate in most weather conditions, are revolutionising the terrestrial survey industry. This work presents a summary of the capabilities, limitations and applications of a state-of-the-art TRI system. The system is quick to deploy, allowing data acquisition within tens of minutes of arrival on site and requiring little or no permanent site infrastructure. Imaging scans are typically completed in less than 1 minute for a field of view of up to 360°, with repeat scans possible at up to 1-2 minute intervals. The system gives an azimuth resolution of around 8 m at distances of 1 km, with the capability to image slopes at distances of between 50 m and 10 km from the sensor with a deformation accuracy of less than 1 mm. These capabilities represent a significant advance over more traditional stability monitoring methods. The benefits of the TRI technology will be demonstrated through various natural and artificial slope stability case studies. Measurements on artificial slopes in environments such as quarries and open-cast mines allow benchmarking of capabilities across a variety of surface characteristics and failure mechanisms. These results allow an informed consideration of the applicability in various natural slope stability applications, and enable discussion on how TRI can meet the additional challenges encountered in natural environments.

  7. EXTENDED MILD-SLOPE EQUATION

    Institute of Scientific and Technical Information of China (English)

    黄虎; 丁平兴; 吕秀红

    2001-01-01

    The Hamiltonian formalism for surface waves and the mild-slope approximation were empolyed in handling the case of slowly varying three-dimensional currents and an uneven bottom, thus leading to an extended mild-slope equation. The bottom topography consists of two components: the slowly varying component whose horizontal length scale is longer than the surface wave length, and the fast varying component with the amplitude being smaller than that of the surface wave. The frequency of the fast varying depth component is, however, comparable to that of the surface waves. The extended mild- slope equation is more widely applicable and contains as special cases famous mild-slope equations below: the classical mild-slope equation of Berkhoff , Kirby' s mild-slope equation with current, and Dingemans' s mild-slope equation for rippled bed. The extended shallow water equations for ambient currents and rapidly varying topography are also obtained.

  8. Methods to Analyze Flexural Buckling of the Consequent Slabbed Rock Slope under Top Loading

    Directory of Open Access Journals (Sweden)

    Hongyan Liu

    2016-01-01

    Full Text Available The consequent slabbed rock slope is prone to flexural buckling failure under its self-weight and top loading. However, nearly none of the existing studies consider the effect of the top loading on the slope flexural critical buckling height (CBH. Therefore, on the basis of Euler’s Method and the flexural buckling failure mode of the consequent slabbed rock slope, the calculation method of the CBH of the vertical slabbed rock slope under the self-weight is firstly proposed, and then it is extended to that of the consequent slabbed rock slope. The effect of slope dip angle, friction angle, and cohesion between the neighboring rock slabs and rock elastic modulus on the slope CBH is discussed. Secondly, the calculation method of the CBH of the consequent slabbed rock slope under its self-weight and top loading is proposed according to the superposition principle. Finally, on the basis of the hypothesis that the rock mechanical behavior obeys the statistical damage model, the effect of the rock mechanical parameters n and ε0 on the slope CBH is studied. The results show that the rock strength has much effect on the slope CBH. If the rock is supposed to be a linear elastic body without failure in Euler’s Method, the result from it is the maximum of the slope CBH.

  9. Constraints on mechanisms for the growth of gully alcoves in Gasa crater, Mars, from two-dimensional stability assessments of rock slopes

    Science.gov (United States)

    Okubo, C.H.; Tornabene, L.L.; Lanza, N.L.

    2011-01-01

    The value of slope stability analyses for gaining insight into the geologic conditions that would facilitate the growth of gully alcoves on Mars is demonstrated in Gasa crater. Two-dimensional limit equilibrium methods are used in conjunction with high-resolution topography derived from stereo High Resolution Imaging Science Experiment (HiRISE) imagery. These analyses reveal three conditions that may produce observed alcove morphologies through slope failure: (1) a ca >10m thick surface layer that is either saturated with H2O ground ice or contains no groundwater/ice at all, above a zone of melting H2O ice or groundwater and under dynamic loading (i.e., seismicity), (2) a 1-10m thick surface layer that is saturated with either melting H2O ice or groundwater and under dynamic loading, or (3) a >100m thick surface layer that is saturated with either melting H2O ice or groundwater and under static loading. This finding of three plausible scenarios for slope failure demonstrates how the triggering mechanisms and characteristics of future alcove growth would be affected by prevailing environmental conditions. HiRISE images also reveal normal faults and other fractures tangential to the crowns of some gully alcoves that are interpreted to be the result of slope instability, which may facilitate future slope movement. Stability analyses show that the most failure-prone slopes in this area are found in alcoves that are adjacent to crown fractures. Accordingly, crown fractures appear to be a useful indicator of those alcoves that should be monitored for future landslide activity. ?? 2010.

  10. Rock mass characterisation and stability analyses of excavated slopes

    Science.gov (United States)

    Zangerl, Christian; Lechner, Heidrun

    2016-04-01

    Excavated slopes in fractured rock masses are frequently designed for open pit mining, quarries, buildings, highways, railway lines, and canals. These slopes can reach heights of several hundreds of metres and in cases concerning open pit mines slopes larger than 1000 m are not uncommon. Given that deep-seated slope failures can cause large damage or even loss of life, the slope design needs to incorporate sufficient stability. Thus, slope design methods based on comprehensive approaches need to be applied. Excavation changes slope angle, groundwater flow, and blasting increases the degree of rock mass fracturing as well as rock mass disturbance. As such, excavation leads to considerable stress changes in the slopes. Generally, slope design rely on the concept of factor of safety (FOS), often a requirement by international or national standards. A limitation of the factor of safety is that time dependent failure processes, stress-strain relationships, and the impact of rock mass strain and displacement are not considered. Usually, there is a difficulty to estimate the strength of the rock mass, which in turn is controlled by an interaction of intact rock and discontinuity strength. In addition, knowledge about in-situ stresses for the failure criterion is essential. Thus, the estimation of the state of stress of the slope and the strength parameters of the rock mass is still challenging. Given that, large-scale in-situ testing is difficult and costly, back-calculations of case studies in similar rock types or rock mass classification systems are usually the methods of choice. Concerning back-calculations, often a detailed and standardised documentation is missing, and a direct applicability to new projects is not always given. Concerning rock mass classification systems, it is difficult to consider rock mass anisotropy and thus the empirical estimation of the strength properties possesses high uncertainty. In the framework of this study an approach based on

  11. Monitoring the efficacy of antimalarial medicines in India via sentinel sites: Outcomes and risk factors for treatment failure

    Directory of Open Access Journals (Sweden)

    Neelima Mishra

    2016-01-01

    Interpretation & conclusion: Till 2012, India′s national antimalarial drug resistance monitoring system proved highly efficacious and safe towards first-line antimalarials used in the country, except in Northeastern region where a decline in efficacy of AS+SP has been observed. This led to change in first-line treatment for P. falciparum to artemether-lumefantrine in Northeastern region.

  12. Deformation Mechanism and Stability of a Rocky Slope

    Institute of Scientific and Technical Information of China (English)

    Huang Runqiu; Xiao Huabo; Ju Nengpan; Zhao Jianjun

    2007-01-01

    A high slope is located on the side of the spillway at a hydropower station in Southwest China, which has some weak inter-layers inclining outwards. Parts of the slope show heavy weathering and unloading. There appeared deformation and tensile crack either on the surface or on the afteredge of the slope during excavation, and under a platform (elev. 488 m), two levels of slopes collapsed on the downriver side. Based on the investigation in situ and the analysis of the geological structure, the conceptual model of deformation and failure mechanism was erected for this slope. Furthermore, the deformation characteristics were studied with FLAC3D numerical simulation. Comprehensive analysis shows that the whole deformation of the slope is unloading rebound in certain depth scope and the whole body does not slide along any weak interlayer. In addition, two parts with prominent local deformation in the shallow layer of the slope show the models of "creep sliding-tensile cracking" and "sliding-tensile cracking", respectively. Based on the above analysis, the corresponding project of support and reinforcement is proposed to make the slope more stable.

  13. INFLUENCE OF LEAF AREA INDEX (LAI ON SLOPE STABILITY

    Directory of Open Access Journals (Sweden)

    Tymoteusz Adam Zydroń

    2016-09-01

    Full Text Available Determination of effect of the leaf area ratio on the results of slope stability calculation of one of the landslide's prone slope of in the Pogórze Wiśnickie was presented in the paper. The calculations were carried out in modules Vadose/W and SLOPE/W of package GeoStudio 2012. The calculations involved the integration of rainfall infiltration process and slope stability calculations. As a result, the calculations allow to determinate precipitation conditions (time and accumulated precipitation height causing slope failure (i.e. rainfall threshold. The calculation results showed significant impact of LAI on the results of modeling. It was revealed, that LAI values in range 1-3, corresponding to the grass vegetation, contribute in long-term to accumulation of precipitation within slope, which limits its retention ability when intense rainfalls occur. In turn, the leaf are index LAI = 5, corresponding to the coverage of trees, increase the retentive capacity of the soil, which resulting in delayed response of slope on rainfall with in comparison to an area covered with grass plants. It was also found significant impact of moisture content conditions on rainfall threshold. It was revealed that in case of analyzed slope threshold rainfall can be comprised from 90 mm to over 700 mm.

  14. Effect of rock mass structure and block size on the slope stability--Physical modeling and discrete element simulation

    Institute of Scientific and Technical Information of China (English)

    LI; Shihai; LIAN; Zhenzhong; J.; G.; Wang

    2005-01-01

    This paper studies the stability of jointed rock slopes by using our improved three-dimensional discrete element methods (DEM) and physical modeling. Results show that the DEM can simulate all failure modes of rock slopes with different joint configurations. The stress in each rock block is not homogeneous and blocks rotate in failure development. Failure modes depend on the configuration of joints. Toppling failure is observed for the slope with straight joints and sliding failure is observed for the slope with staged joints. The DEM results are also compared with those of limit equilibrium method (LEM). Without considering the joints in rock masses, the LEM predicts much higher factor of safety than physical modeling and DEM. The failure mode and factor of safety predicted by the DEM are in good agreement with laboratory tests for any jointed rock slope.

  15. [Analysis of related factors of slope plant hyperspectral remote sensing].

    Science.gov (United States)

    Sun, Wei-Qi; Zhao, Yun-Sheng; Tu, Lin-Ling

    2014-09-01

    In the present paper, the slope gradient, aspect, detection zenith angle and plant types were analyzed. In order to strengthen the theoretical discussion, the research was under laboratory condition, and modeled uniform slope for slope plant. Through experiments we found that these factors indeed have influence on plant hyperspectral remote sensing. When choosing slope gradient as the variate, the blade reflection first increases and then decreases as the slope gradient changes from 0° to 36°; When keeping other factors constant, and only detection zenith angle increasing from 0° to 60°, the spectral characteristic of slope plants do not change significantly in visible light band, but decreases gradually in near infrared band; With only slope aspect changing, when the dome meets the light direction, the blade reflectance gets maximum, and when the dome meets the backlit direction, the blade reflectance gets minimum, furthermore, setting the line of vertical intersection of incidence plane and the dome as an axis, the reflectance on the axis's both sides shows symmetric distribution; In addition, spectral curves of different plant types have a lot differences between each other, which means that the plant types also affect hyperspectral remote sensing results of slope plants. This research breaks through the limitations of the traditional vertical remote sensing data collection and uses the multi-angle and hyperspectral information to analyze spectral characteristics of slope plants. So this research has theoretical significance to the development of quantitative remote sensing, and has application value to the plant remote sensing monitoring.

  16. Analysis of different device-based intrathoracic impedance vectors for detection of heart failure events (from the Detect Fluid Early from Intrathoracic Impedance Monitoring study).

    Science.gov (United States)

    Heist, E Kevin; Herre, John M; Binkley, Philip F; Van Bakel, Adrian B; Porterfield, James G; Porterfield, Linda M; Qu, Fujian; Turkel, Melanie; Pavri, Behzad B

    2014-10-15

    Detect Fluid Early from Intrathoracic Impedance Monitoring (DEFEAT-PE) is a prospective, multicenter study of multiple intrathoracic impedance vectors to detect pulmonary congestion (PC) events. Changes in intrathoracic impedance between the right ventricular (RV) coil and device can (RVcoil→Can) of implantable cardioverter-defibrillators (ICDs) and cardiac resynchronization therapy ICDs (CRT-Ds) are used clinically for the detection of PC events, but other impedance vectors and algorithms have not been studied prospectively. An initial 75-patient study was used to derive optimal impedance vectors to detect PC events, with 2 vector combinations selected for prospective analysis in DEFEAT-PE (ICD vectors: RVring→Can + RVcoil→Can, detection threshold 13 days; CRT-D vectors: left ventricular ring→Can + RVcoil→Can, detection threshold 14 days). Impedance changes were considered true positive if detected heart failure events. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Spatial and temporal analyses for multiscale monitoring of landslides: Examples from Northern Ireland

    Science.gov (United States)

    Bell, Andrew; McKinley, Jennifer; Hughes, David

    2013-04-01

    Landslides in the form of debris flows, large scale rotational features and composite mudflows impact transport corridors cutting off local communities and in some instances result in loss of life. This study presents landslide monitoring methods used for predicting and characterising landslide activity along transport corridors. A variety of approaches are discussed: desk based risk assessment of slopes using Geographical Information Systems (GIS); Aerial LiDAR surveys and Terrestrial LiDAR monitoring and field instrumentation of selected sites. A GIS based case study is discussed which provides risk assessment for the potential of slope stability issues. Layers incorporated within the system include Digital Elevation Model (DEM), slope, aspect, solid and drift geology and groundwater conditions. Additional datasets include consequence of failure. These are combined within a risk model, presented as likelihoods of failure. This integrated spatial approach for slope risk assessment provides the user with a preliminary risk assessment of sites. An innovative "Flexviewer" web-based server interface allows users to view data without needing advanced GIS techniques to gather information about selected areas. On a macro landscape scale, Aerial LiDAR (ALS) surveys are used for the characterisation of landslides from the surrounding terrain. DEMs are generated along with terrain derivatives: slope, curvature and various measures of terrain roughness. Spatial analysis of terrain morphological parameters allow characterisation of slope stability issues and are used to predict areas of potential failure or recently failure terrain. On a local scale ground monitoring approaches are employed for the monitoring of changes in selected slopes using ALS and risk assessment approaches. Results are shown from on-going bimonthly Terrestrial LiDAR (TLS) monitoring of the slope within a site specific geodectically referenced network. This has allowed a classification of changes in the

  18. Tsunamigenic, earthquake-triggered rock slope failures during the April 21, 2007 Aisén earthquake, southern Chile (45.5°S Inestabilidades de laderas de roca generadoras de tsunami durante el terremoto de Aisén del 21 de abril de 2007, sur de Chile (45.5° S

    Directory of Open Access Journals (Sweden)

    Sergio A Sepúlveda

    2009-01-01

    Full Text Available The April 21, 2007 shallow crustal earthquake (Mw 6.2 in the Aisén Fjord area triggered hundreds of landslides around the epicentral zone. Among those, several rock slope failures such as rock slides, rock falls and rock avalanches were induced on the steep fjord slopes. The violent impact of the disrupted rock masses into the fjord generated local tsunamis that caused ten fatalities and extensive damage to salmón farms located along the fjord shores. Field observations suggested that geotechnical and geomorphological factors controlled the landslide locations and failure modes, associated with the presence of faults and topographic relief, respectively. This event is an example of a geological hazard that has not been previously addressed in the Chilean Patagonian fjordland, revealing the need for identifying and understanding these geological phenomena in future hazard assessments in the región.El 21 de abril de 2007 un terremoto superficial cortical (Mw 6,2 en el área del Fiordo Aisén desencadenó cientos de remociones en masa en la zona epicentral. Entre éstas, se generaron varias inestabilidades en laderas rocosas escarpadas, tales como deslizamientos, caídas y avalanchas de rocas. El violento impacto de las masas disgregadas de roca en las aguas del fiordo generó tsunamis locales, que causaron diez víctimas fatales y un importante daño en granjas salmoneras ubicadas a lo largo de las costas del fiordo. Observaciones de terreno sugieren controles geotécnicos y geomorfológicos en la ubicación y modos de falla de las remociones en masa, asociados a la presencia de fallas y relieve abrupto, respectivamente. Este evento es un ejemplo de un tipo de peligro geológico que no ha sido previamente detectado ni abordado en los fiordos de la Patagonia Chilena, revelando la necesidad de identificar y comprender estos fenómenos geológicos en futuras evaluaciones de peligro en la región.

  19. Morphological Changes Along a Dike Landside Slope Sampled by 4d High Resolution Terrestrial Laser Scanning

    Science.gov (United States)

    Herrero-Huertaa, Mónica; Lindenbergh, Roderik; Ponsioen, Luc; van Damme, Myron

    2016-06-01

    Emergence of light detection and ranging (LiDAR) technology provides new tools for geomorphologic studies improving spatial and temporal resolution of data sampling hydrogeological instability phenomena. Specifically, terrestrial laser scanning (TLS) collects high resolution 3D point clouds allowing more accurate monitoring of erosion rates and processes, and thus, quantify the geomorphologic change on vertical landforms like dike landside slopes. Even so, TLS captures observations rapidly and automatically but unselectively. In this research, we demonstrate the potential of TLS for morphological change detection, profile creation and time series analysis in an emergency simulation for characterizing and monitoring slope movements in a dike. The experiment was performed near Schellebelle (Belgium) in November 2015, using a Leica Scan Station C10. Wave overtopping and overflow over a dike were simulated whereby the loading conditions were incrementally increased and 14 successful scans were performed. The aim of the present study is to analyse short-term morphological dynamic processes and the spatial distribution of erosion and deposition areas along a dike landside slope. As a result, we are able to quantify the eroded material coming from the impact on the terrain induced by wave overtopping which caused the dike failure in a few minutes in normal storm scenarios (Q = 25 l/s/m) as 1.24 m3. As this shows that the amount of erosion is measurable using close range techniques; the amount and rate of erosion could be monitored to predict dike collapse in emergency situation. The results confirm the feasibility of the proposed methodology, providing scalability to a comprehensive analysis over a large extension of a dike (tens of meters).

  20. Post-exercise contractility, diastolic function, and pressure: Operator-independent sensor-based intelligent monitoring for heart failure telemedicine

    Directory of Open Access Journals (Sweden)

    Giannoni Massimo

    2009-05-01

    Full Text Available Abstract Background New sensors for intelligent remote monitoring of the heart should be developed. Recently, a cutaneous force-frequency relation recording system has been validated based on heart sound amplitude and timing variations at increasing heart rates. Aim To assess sensor-based post-exercise contractility, diastolic function and pressure in normal and diseased hearts as a model of a wireless telemedicine system. Methods We enrolled 150 patients and 22 controls referred for exercise-stress echocardiography, age 55 ± 18 years. The sensor was attached in the precordial region by an ECG electrode. Stress and recovery contractility were derived by first heart sound amplitude vibration changes; diastolic times were acquired continuously. Systemic pressure changes were quantitatively documented by second heart sound recording. Results Interpretable sensor recordings were obtained in all patients (feasibility = 100%. Post-exercise contractility overshoot (defined as increase > 10% of recovery contractility vs exercise value was more frequent in patients than controls (27% vs 8%, p 1 in 20 patients and in none of the controls (p 1 in only 3 patients (p Conclusion Post-exercise contractility, diastolic time and pressure changes can be continuously measured by a cutaneous sensor. Heart disease affects not only exercise systolic performance, but also post-exercise recovery, diastolic time intervals and blood pressure changes – in our study, all of these were monitored by a non-invasive wearable sensor.

  1. Development of Localized Plasma Etching System for Failure Analyses in Semiconductor Devices: (3)Etching-Monitoring Using Quadrupole Mass Spectrometry

    Science.gov (United States)

    Takahashi, Satoshi; Horie, Tomoyuki; Shirayama, Yuya; Yokosuka, Shuntaro; Kashimura, Kenta; Hayashi, Akihiro; Iwase, Chikatsu; Shimbori, Shun'ichiro; Tokumoto, Hiroshi; Naitoh, Yasuhisa; Shimizu, Tetsuo

    Quadrupole mass spectrometry (QMS) has been applied to monitor the etching processes in a localized plasma etching system. An inward plasma was employed for etching in which the etching gas was discharged in the narrow gap between the etched sample and the entrance of an evacuating capillary tube. As the etching products are immediately evacuated through the capillary, a QMS system equipped at the capillary exit is able to analyze the products without any loss in concentration via diffusion into the chamber. Two kinds of samples, thermally grown SiO2 on Si and spin-coated polyimide film on Si, were etched, and the chemical species in the evacuated etching gas were analyzed with QMS, which enables monitoring of the composition of the surface being etched. Samples of thermal SiO2 were etched with CF4 plasma. The peak height of the SiF3+ signal during the SiO2 etching was lower than that observed during etching of the silicon substrate, leading to endpoint detection. The endpoint detection of the polyimide film etching was conducted using two etching gases: pure O2 and pure CF4. When O2 was used, the endpoint was detected by the decrease of the mass peak attributed to CO. When CF4 was employed, the plasma was able to etch both the polyimide film and Si substrate. Then the endpoint was detected by the increase of the mass peak of SiF3+ produced by the etching of the Si substrate.

  2. Monitoring Recent Surging of the Yulinchuan Glacier on North Slopes of Muztag Range by Remote Sensing%木孜塔格西北坡鱼鳞川冰川跃动遥感监测

    Institute of Scientific and Technical Information of China (English)

    郭万钦; 刘时银; 许君利; 魏俊锋; 丁良福

    2012-01-01

    Landsat monitoring discovered that the middle branch of Yulinchuan Glacier,located on the north slopes of Muztag Range,was surging during 2007-2011.As a result,its north terminus advanced(548±34) m.Further study revealed that the surging was substantially from October,2008 to March,2009.During the surging,the glacier surface changed a great deal;include rapid development of surface crevasses,fast surface movement and large horizontal displacement.Part of the glacier surface,about 4.8 km in length,had drastically cracked,with the first crevasse in the lower part of the accumulation area,and then gradually spread upwards and downwards.It was found that in most parts of the glacier between the terminus and central section there were evident horizontal displacements,more than 1 km.At the meantime,surface velocity calculation also demonstrated that most parts of the glacier have experienced drastic changing in moving velocity,with the maximum velocity of about(13.3±1.5) m·d-1 on the middle part of the glacier.The velocity change also expresses an impressive feature of the surging in middle Yulinchuan Glacier.That is the fast movement during the surging starting from the northern terminus and then extending upwards.%基于Landsat卫星数据的遥感监测发现,木孜塔格峰西北坡鱼鳞川冰川的中支在2007-2011年间发生了跃动,冰川北侧末端在几年内前进距离达到了(548±34)m.进一步的监测发现,该冰川的大幅跃动主要发生于2008年10月至2009年3月.跃动期间冰川表面约4.8km长的范围经历了急剧的破碎化过程,并呈现出最早由冰川中部积蓄区下段开始,然后向上下游逐渐扩展的特征.对冰面裂隙及其他特征点的追踪发现,冰川除积累区以外的部位都产生明显的位移,其中冰川中部以下至冰舌部各点的位移都在1km以上.同时,冰面运动速度的计算结果也显示,冰川各个部分都经历了急剧的运动速度变化过程,其中冰

  3. Stress and Displacement Distribution of Soft Clay Slope with 2D and 3D Elastoplastic Finite Element Method

    Institute of Scientific and Technical Information of China (English)

    YAN Zuwe; YAN Shuwang; LI Sa

    2006-01-01

    Based on elastoplastic model, 2D and 3D finite element method (FEM) are used to calculate the stress and displacement distribution in the soft clay slope under gravity and uniform load at the slope top. Stability analyses indicate that 3D boundary effect varies with the stress level of the slope. When the slope is stable, end effect of 3D space is not remarkable. When the stability decreases, end effect occurs; when the slope is at limit state, end effect reaches maximum. The energy causing slope failure spreads preferentially along y-z section, and when the failure resistance capability reaches the limit state, the energy can extend along x-axis direction. The 3D effect of the slope under uniform load on the top is related to the ratio of load influence width to slope height, and the effect is remarkable with the decrease of the ratio.

  4. Slope stability FEM analysis and retaining wall design: a case study of clinker in Benxi of Liaoning

    Institute of Scientific and Technical Information of China (English)

    Aref M. O. AL-JABALI; Lei NIE; Jianlei LIU; Huangping DING; Nengjuan ZHOU; Mohammed HAZAEA

    2008-01-01

    Stability is always the most important problem after high slope was excavated. The study analyzed the stress and strain inside the slope by Finite Element Method (FEM) and carried through stress distribution and failure zone, then analyzed the stability of the slope using three different methods and came to the conclusion that it is in unstable condition, so the designed retaining wall was put forward which makes the slope stable.

  5. Slope Safety Calculation With A Non-Linear Mohr Criterion Using Finite Element Method

    DEFF Research Database (Denmark)

    Clausen, Johan; Damkilde, Lars

    2005-01-01

    Safety factors for soil slopes are calculated using a non-linear Mohr envelope. The often used linear Mohr-Coulomb envelope tends to overestimate the safety as the material parameters are usually determined at much higher stress levels, than those present at slope failure. Experimental data...

  6. Slope Instability of the Earthen Levee in Boston, UK: Numerical Simulation and Sensor Data Analysis

    NARCIS (Netherlands)

    Melnikova, N.B.; Jordan, D.; Krzhizhanovskaya, V.V.; Sloot, P.M.A.

    2014-01-01

    The paper presents a slope stability analysis for a heterogeneous earthen levee in Boston, UK, which is prone to occasional slope failures under tidal loads. Dynamic behavior of the levee under tidal fluctuations was simulated using a finite element model of variably saturated linear elastic perfect

  7. Slope Safety Calculation With A Non-Linear Mohr Criterion Using Finite Element Method

    DEFF Research Database (Denmark)

    Clausen, Johan; Damkilde, Lars

    2005-01-01

    Safety factors for soil slopes are calculated using a non-linear Mohr envelope. The often used linear Mohr-Coulomb envelope tends to overestimate the safety as the material parameters are usually determined at much higher stress levels, than those present at slope failure. Experimental data...

  8. Effects of Weak Layer Angle and Thickness on the Stability of Rock Slopes

    Directory of Open Access Journals (Sweden)

    Garmondyu Crusoe Jr

    2016-06-01

    Full Text Available This paper researches two key factors (angle and thickness of a weak layer in relation to their influencing mechanism on slope stability. It puts forward the sliding surface angle and morphological model criteria for the control of rock slopes and realization of its failure mechanism. By comparing the Failure Modes and Safety Factors (Fs obtained from numerical analysis, the influence pattern for the weak layer angle and thickness on the stability of rock slopes is established. The result shows that the weak layer angle influences the slope by validating the existence of the “interlocking” situation. It also illustrates that as the angle of the weak layer increases, the Fs unceasingly decreases with an Fs transformation angle. The transformation interval of the Fs demonstrates the law of diminishing of a quadratic function. Analysis of the weak layer thickness on the influence pattern of slope stability reveals three decrease stages in the Fs values. The result also shows that the increase in the thickness of the weak layer increases the failure zone and influences the mode of failure. Given the theoretical and numerical analysis of a weak layer effects on the stability of rock slopes, this work provides a guiding role in understanding the influence of a weak layer on the failure modes and safety factors of rock slopes.

  9. Eastern slopes grizzly bear project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-01-01

    The cumulative effects of human activities on the grizzly bears in the central Canadian Rockies are not well known. As a result, a project was initiated in 1994 to address the urgent requirement for accurate scientific information on the habitat and populations of grizzly bears in the area of the Banff National Park and Kananaskis Country. This area is probably the most heavily used and developed area where the grizzly still survives. The information gathered throughout the course of this study will be used to better protect and manage the bears and other sensitive carnivores in the region. Using telemetry, researchers are monitoring 25 grizzly bears which were radio-collared in a 22,000 square-kilometer area in the upper Bow Valley drainage of the eastern Alberta slopes. The researchers involved in the project are working with representatives from Husky Oil and Talisman Energy on the sound development of the Moose Mountain oil and gas field without adversely affecting the grizzly bear population. Information collected over seven years indicated that the grizzly bears have few and infrequent offspring. Using the information gathered so far, the location of the Moose Mountain to Jumping Pound pipeline was carefully selected, since the bears recover very slowly from high mortality, and also considering that the food and cover had already been compromised by the high number of roads, trails and other human activities in the area. The status of the population and habitat of the grizzly bear will be assessed upon the conclusion of the field research phase in 2001. Models will be updated using the data obtained during eight years and will assist in the understanding of complex variables that affect grizzly bears.

  10. ElevationSlope_SLOPE1p6M

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Addison County 2012 1.6m; Missisquoi Upper 2010 1.6m; Missisquoi Lower 2008 1.6m and related SLOPE...

  11. Stability of numerical simulation and security monitoring of filling method to mining the hanging wall ore on high-steep slope%高陡边坡下充填法开采挂帮矿稳定性数值模拟与安全监测

    Institute of Scientific and Technical Information of China (English)

    吴姗; 宋卫东; 杜建华; 张兴才; 周家祥

    2013-01-01

    Exploitation of hanging wall ore with filling method can not only recycle ore, but also avoid decline of the slope and control deformation of surrounding rock effectively. Based on the hanging wall ore mining by filling method of Daye Iron Mine, Cavity Monitoring System (CMS) is used in this paper to detect the original goaf of hanging wall ore. Then stress, displacement and plastic deformation of surrounding rock and open-pit slope in the processing of mining the hanging wall ore are analyzed by CMS and 3D mine-FLAC3D coupled method. The calculation results show that the surrounding rock and open-pit slope deformation can be controlled by filling the goaf effectively, so that the hanging wall ore can be mined safely. In the process of mining the hanging wall ore, monitoring network containing stress, fractures convergence and total station is established to monitor real-timely the displacement and stress changes of the surrounding rock, the pillar and the slope. The monitoring results aregenerally in agreement with the numerical simulation.%充填法开采挂帮矿不但可以充分回采矿石,而且可以有效地防止边坡下滑和控制采场围岩变形。以武钢大冶铁矿尖山挂帮矿体采用充填法开采为工程背景,运用 CMS 三维空区探测系统对原有空区进行探测,通过CMS及3D mine-FLAC3D耦合的方法对开采充填过程中采场围岩及露天边坡的应力、位移和塑性变形进行了数值模拟计算分析,提高了数值模拟的可靠程度。计算结果表明,采空区的充填可有效地控制围岩及露天边坡的变形,实现安全开采。在挂帮矿体开采过程中,建立应力、断面收敛及全站仪联合监测网,对采场围岩、矿柱及边坡的位移、应力变化进行实时监测,监测结果与数值模拟计算结果基本一致。

  12. Infinite slope stability under steady unsaturated seepage conditions

    Science.gov (United States)

    Lu, N.; Godt, J.

    2008-01-01

    [1] We present a generalized framework for the stability of infinite slopes under steady unsaturated seepage conditions. The analytical framework allows the water table to be located at any depth below the ground surface and variation of soil suction and moisture content above the water table under steady infiltration conditions. The framework also explicitly considers the effect of weathering and porosity increase near the ground surface on changes in the friction angle of the soil. The factor of safety is conceptualized as a function of the depth within the vadose zone and can be reduced to the classical analytical solution for subaerial infinite slopes in the saturated zone. Slope stability analyses with hypothetical sandy and silty soils are conducted to illustrate the effectiveness of the framework. These analyses indicate that for hillslopes of both sandy and silty soils, failure can occur above the water table under steady infiltration conditions, which is consistent with some field observations that cannot be predicted by the classical infinite slope theory. A case study of shallow slope failures of sandy colluvium on steep coastal hillslopes near Seattle, Washington, is presented to examine the predictive utility of the proposed framework. Copyright 2008 by the American Geophysical Union.

  13. Submarine landslides along the eastern Mediterranean Israeli continental slope

    Science.gov (United States)

    Reuven, Einav; Katz, Oded; Aharonov, Einat

    2013-04-01

    Numerous shallow submarine slope failures (scars and deposits) are observed in recent high resolution bathymetric grids of the continental slope off the Israeli eastern Mediterranean coast. The nature of these slope failures is currently not comprehensively understood as well as the question of whether the eastern Mediterranean continental slope is continuously or episodically unstable. We report here first steps towards understanding the present state of this submarine landslide system, which include mapping and analyzing the geology of the landslides and the hosting slopes. The continental slope extends from water depths of about 150 to more than 1000 meters with a slope of less than 5 degrees in general. Bathymetric grids with pixel resolution of 15 m till water depth of 700 m and 50 m till water depth of 1700 m were used. Analyzing the bathymetry revealed three main submarine surface features: (a) numerous shallow landslides, within the upper sequence of the post-Messenian sediments. Landslide widths range between hundreds to thousand of meters at the scar, with scar heights up to hundred meters. The toes of the landslides are not always mapable and lay up to a few kilometers down slope from the scar. Slope angles within the scars are 5 to more than15 degrees. At least two types of landslides were detected: presumably young slides with sharp scars, and presumably old slides with secondary slides and secondary drainage systems developed within the scar area; (b) a few kilometers long, north striking step-like lineaments. Step heights are up to 100 meters and the slopes are up to 20 degrees. The offset between parallel steps is less than a kilometer to a few kilometers. The steps are interpreted as surface expressions of growth faults rooted at the Messinian evaporates up to 1.5 kilometers below surface; (c) a few north striking channels were also detected with steep walls of more than 15 degrees, up to two kilometers width and a few kilometers length. The nature

  14. Slope Stability Analysis Using GIS

    Science.gov (United States)

    Bouajaj, Ahmed; Bahi, Lahcen; Ouadif, Latifa; Awa, Mohamed

    2016-10-01

    An analysis of slope stability using Geographic Information System (GIS) is presented in this paper. The methodology is based on the calculation of the safety factor in 2D and 3D using ArcGis. Hovland's Method in 3D and 2D were used in the stability analysis of the slope located at the 34 kilometer point (K.P.34) on the highway in the North of Morocco connecting Tangier to Ksar Sghir. Results shows that the safety factors obtained in 3D are always higher than those obtained in 2D and the slope becomes unstable when the water table level is less than 1 m.

  15. SLOPE STABILITY ANALYSIS USING GIS

    Directory of Open Access Journals (Sweden)

    A. Bouajaj

    2016-10-01

    Full Text Available An analysis of slope stability using Geographic Information System (GIS is presented in this paper. The methodology is based on the calculation of the safety factor in 2D and 3D using ArcGis. Hovland's Method in 3D and 2D were used in the stability analysis of the slope located at the 34 kilometer point (K.P.34 on the highway in the North of Morocco connecting Tangier to Ksar Sghir. Results shows that the safety factors obtained in 3D are always higher than those obtained in 2D and the slope becomes unstable when the water table level is less than 1 m.

  16. [Evaluation of sleep apnea, detected by 24-hour ECG Holter monitoring analysis in patients with stable coronary artery disease and ischemic heart failure - correlations with clinical data].

    Science.gov (United States)

    Frączek-Jucha, Magdalena; Rostoff, Paweł; Łach, Jacek; Nessler, Jadwiga; Gackowski, Andrzej

    2017-06-23

    Obstructive sleep apnoea (OSA) is frequently undiagnosed in patients with heart failure (HF) and coronary artery disease (CAD). Simple and widely available screening tests are needed to diagnose patients with SA. Measurements of thoracic impedance and heart rate variability during 24-hour ECG Holter (H-EKG) monitoring allows to calculate estimated apnoea-hypopnoea index (eAHI). The aim of the research was to assess prevalence of OSA evaluated with the use of H-EKG and determination of its clinical relevance in patients with CAD and ischeamic HF. The study groups comprised of: 30 consecutive patients with ischeamic HF with reduced LVEF (HFrEF) (group A) and 30 patients with CAD (group B). Control group (C) comprised of 30 patients with arterial hypertension but no CAD nor HF. H-ECG monitoring was performed and eAHI was calculated. On the basis of AHI result group A was subdivided to subgroups A1 (eAHI <15) and A2 (eAHI ≥15). Study groups differed with eAHI values (27,9±19,9 vs. 21,8±17,3 vs. 15,7±12,2; p=0,022). Post hoc analysis revealed that eAHI in group A was higher in comparison to group C (27,9±19,9 vs. 15,7±12,2; p=0,006). SA prevalence was higher in group A compared to group C (70,0% vs. 40,0%; p=0,019). Significant but weak correlation between eAHI and LVEDD was found (r=0,282; p<0,05). Subgroups A1 and A2 did not differ in terms of clinical and demographical parameters, HF symptoms, LVEF and NT-proBNP levels. OSA coexists more frequently with HF than with arterial hypertension Significant but weak correlation between eAHI and LVEDD was demonstrated. However, in patients with symptomatic ischeamic heart failure eAHI ≥15 was not related to NYHA class, lower LVEF and higher NT-proBNP levels.

  17. Terrane mapping on the dip-slope based on high-resolution DTM and its geological implications at the Huafan University campus in northern Taiwan

    Science.gov (United States)

    Tseng, C. H.; Chan, Y. C.; Jeng, C. J.; Hsieh, Y. C.

    2016-12-01

    Analyses of slope stability is a critical issue in mountainous areas in Taiwan, for slope failure often causes great damage to local and even regional communities. A dip-slope about 20° toward southwest has been confirmed, on which the Huafan University campus is founded in the northern end of the Western Foothill belt in northern Taiwan. Continuous monitoring systems for the dip-slope by means of inclinometers and groundwater gauges have been set up within the campus for 15 years. Furthermore, a numerical three dimensional modeling for the landslide runout of the dip-slope has also been achieved and proposes potential failure mechanisms. Nevertheless, geomorphic and geological conditions which may be related to the slop failure in the study area were unclear owing to dense vegetation and artificial objects. A 3-D GIS mapping method on the basis of a high-resolution digital terrane model (DTM) derived from LiDAR technology is applied to this area. The high-resolution DTM can be used to distinguish small-scale natural morphology of geomorphic and geological features and structures. Results of the analyses reveal several bulges existing at lower part of the dip-slope, implying potential creeping behavior. In addition, narrow and small gullies are also found on one of the flanks of the dip-slope, and may raise instability if erosional processes continue within the gullies on both lateral sides of the slope mass. On the other hand, traces of a potential fault striking NNE-SSW through the campus is also proposed. The existence of the potential fault can explain the phenomena of groundwater exudation in some places within and outside the campus. Furthermore, bedding plane traces of the bedrock formations by the 3-D mapping method perform inconsistent attitudes within the campus and adjacent regions, resulting in a concave morphology of the landform. It is thus assumed that the potential fault and fold-like structures probably resulted from tectonic stress coming from

  18. Morphometric interpretation of the northwest and southeast slopes of Tenerife, Canary Islands

    Science.gov (United States)

    1997-01-01

    Both the northwest and southeast slopes of Tenerife, Canary Islands, owe their morphology to catastrophic sediment failures. An area of 4100 km2 and a volume of about 2362 km3 were involved in the failure. A 100- to 600-m-high scarp on the upper slope separates the sediment failures in the Orotova and Icod de los Vinos Valleys on the northwest coast from those on the slope. A similar (700 m high) scarp also separates the failures on the southeast slope from the failure in Güimar Valley on land. The sediment failure off Las Bandas Del Sur volcanic fan does not have any land counterparts and was the result of the failure of the front (1700 m high) of this depocenter; two generations of debris flows are mappable off this depocenter. We infer that the slopes off Orotova, Icod, and Güimar represent the front of the debris avalanche and/or creep deposits that were created during the formation of the valleys. Downslope from the debris avalanche fronts are irregular surfaced masses extending to the base of the slope. The front may define the contact between the more dense deposits onshore and upper slope and the more fluid deposits on the lower slope. Incised on the debris avalanche on the northwest lower slope are three channeled debris flows grading seaward into turbidites. Only one of these channels occurs on the southeast slope. The breakaway surface of these sediment failures was the front of the debris avalanches and/or creep. We ascribe the failure of this front mainly to its rapid buildup, although groundwater sapping also may have contributed to its failure. On the southeast slope, movement along the northeast trending fault between Gran Canaria and Tenerife also may have been a contributing factor to the failure of the front. The debris flow deposits triggered by the failure of the sediment front on the northwest slope are characterized by ridges formed either by pressure between flows moving at different velocities or by scouring; at least one volcanic edifice

  19. Slope failure as an upslope source of stream wood

    Science.gov (United States)

    Daniel. Miller

    2013-01-01

    Large woody debris is recognized as an important component of stream geomorphology and stream ecosystem function, and forest-land management is recognized as an important control on the quantity (and size and species distributions) of wood available for recruitment to streams. Much of the wood present in streams comes from adjacent forests, and riparian management...

  20. Numerical method of slope failure probability based on Bishop model

    Institute of Scientific and Technical Information of China (English)

    SU Yong-hua; ZHAO Ming-hua; ZHANG Yue-ying

    2008-01-01

    Based on Bishop's model and by applying the first and second order mean deviations method, an approximative solution method for the first and second order partial derivatives of functional function was deduced according to numerical analysis theory. After complicated multi-independent variables implicit functional function was simplified to be a single independent variable implicit function and rule of calculating derivative for composite function was combined with principle of the mean deviations method, an approximative solution format of implicit functional function was established through Taylor expansion series and iterative solution approach of reliability degree index was given synchronously. An engineering example was analyzed by the method. The result shows its absolute error is only 0.78% as compared with accurate solution.

  1. A gravity similitude model for studying steep rock slopes

    Institute of Scientific and Technical Information of China (English)

    张永兴; FAN; Zebao

    2002-01-01

    A method of a large experimental model coupled with a smaller one and an equivalent replacement method are adopted to study the deformation and the failure mechanism of a steep rock slope,in order to solve the difficult problems in space gravity similitude of the experimental model on steep rock slope with weak layers.The experimental results on the Lianziya Precipice of the Yangtze Three Gorges are in general agreement with the field observations.The experimental method adopted is proved to be successful in molding the complex geological condition especially with the weak layers.

  2. Mechanism analysis of landslide of a layered slope induced by drawdown of water level

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Junfeng; LI; Zhengguo; QI; Tao

    2005-01-01

    The frequent drawdown of water level of Yangtze River will greatly influence the stability of the widely existing slopes in the Three Gorges reservoir zone, especially those layered ones. Apart from the fluctuating speed of water level, the different geological materials will also play important roles in the failure of slopes. Thus, it must be first to study the mechanism of such a landslide caused by drawdown of water level.A new experimental setup is designed to study the performance of a layered slope under the drawdown of water level. The pattern of landslide of a layered slope induced by drawdown of water level has been explored by means of simulating experiments. The influence of fluctuating speed of water level on the stability of the layered slope is probed,especially the whole process of deformation and development of landslide of the slope versus time. The experimental results show that the slope is stable during the water level rising, and the sliding body occurs in the upper layer of the slope under a certain drawdown speed of water level. In the process of slope failure, some new small sliding body will develop on the main sliding body, and the result is that they speed up the disassembly of the whole slope.Based on the simulating experiment on landslide of a layered slope induced by drawdown of water level, the stress and displacement field of the slope are calculated.The seepage velocity, the pore water pressure, and the gradient of pore water head are also calculated for the whole process of drawdown of water level. The computing results are in good agreement with the experimental results. Accordingly, the mechanism of deformation and landslide of the layered slope induced by drawdown of water level is analyzed. It may provide basis for treating this kind of layered slopes in practical engineering.

  3. Optional real-time display of intraoperative neurophysiological monitoring in the microscopic field of view: avoiding communication failures in the operating room.

    Science.gov (United States)

    Stoecklein, Veit M; Faber, Florian; Koch, Mandy; Mattmüller, Rudi; Schaper, Anika; Rudolph, Frank; Tonn, Joerg C; Schichor, Christian

    2015-11-01

    The use of intraoperative neurophysiological monitoring (IONM) in neurosurgery has improved patient safety and outcomes. However, a pitfall in the use of IONM remains unsolved. Currently, there is no feasible way for surgeons to interpret IONM waves themselves during operations. Instead, they have to rely on verbal feedback from a neurophysiologist. This method is prone to communication failures, which can lead to delayed or false interpretation of the data. Direct visualization of IONM waves is a way to alleviate this problem and make IONM more effective. Microscope-integrated IONM (MI-IONM) was used in 163 cranial and spinal cases. We evaluated the feasibility, system stability and how well the system integrated into the surgical workflow. We used an IONM system that was connected to a surgical microscope. All IONM modalities used at our institution could be visualized as required, superimposed on the surgical field in the eyepiece of the microscope without obstructing the surgeon's field of vision. Use of MI-IONM was safe and reliable. It furthermore provided valuable intraoperative information. The system merely required a short learning curve. Only minor system problems without impact on surgical workflow occurred. MI-IONM proved to be especially useful in surgical cases where careful monitoring of nerve function is required, e.g., cerebellopontine angle surgery. Here, direct assessment of surgical action and IONM wave change was provided to the surgeon, if necessary (on-off control). MI-IONM is a useful extension of conventional IONM that provides optional real-time functional information to the surgeon on demand.

  4. North Slope (Wahluke Slope) expedited response action cleanup plan

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    The purpose of this action is to mitigate any threat to public health and the environment from hazards on the North Slope and meet the expedited response action (ERA) objective of cleanup to a degree requiring no further action. The ERA may be the final remediation of the 100-I-3 Operable Unit. A No Action record of decision (ROD) may be issued after remediation completion. The US Department of Energy (DOE) currently owns or administers approximately 140 mi{sup 2} (about 90,000 acres) of land north and east of the Columbia River (referred to as the North Slope) that is part of the Hanford Site. The North Slope, also commonly known as the Wahluke Slope, was not used for plutonium production or support facilities; it was used for military air defense of the Hanford Site and vicinity. The North Slope contained seven antiaircraft gun emplacements and three Nike-Ajax missile positions. These military positions were vacated in 1960--1961 as the defense requirements at Hanford changed. They were demolished in 1974. Prior to government control in 1943, the North Slope was homesteaded. Since the initiation of this ERA in the summer of 1992, DOE signed the modified Hanford Federal Agreement and Consent Order (Tri-Party Agreement) with the Washington Department of Ecology (Ecology) and the US Environmental Protection Agency (EPA), in which a milestone was set to complete remediation activities and a draft closeout report by October 1994. Remediation activities will make the North Slope area available for future non-DOE uses. Thirty-nine sites have undergone limited characterization to determine if significant environmental hazards exist. This plan documents the results of that characterization and evaluates the potential remediation alternatives.

  5. Monitoring of Landslide Activity in Slovakia Territory Using Multi-Temporal InSAR Techniques

    Science.gov (United States)

    Bakon, M.; Papco, J.; Perissin, D.; Lazecky, M.; Sousa, J. J.; Hlavacova, I.; Batorova, K.; Ondrejka, P.; Liscak, P.; Paudits, P.; Real, N.

    2015-05-01

    Slope deformations are the most important geohazards in Slovakia which annually cause an extensive economic damage of significant influence. About 22000 slope deformations have been registered so far, covering an area of almost 2600 km2 . Since 2010, 639 new slope failures have been witnessed and their activation was driven mainly by the climatic anomalies such as extraordinary rainfalls. Many of these landslides currently represent a direct threat to the lives, health and property of the residents in the affected areas. The landslide Nizna Mysla is considered to be the second most catastrophic landslide in the history of Slovakia. Damages to buildings and engineering networks had not been identified in the ‘90s of the last century when the first problems with the slope stability appeared. Up-to-now monitoring techniques has currently been reassessed to account for the results from satellite Synthetic Aperture Radar (SAR) techniques.

  6. Particle-filtering-based failure prognosis via sigma-points: Application to Lithium-Ion battery State-of-Charge monitoring

    Science.gov (United States)

    Acuña, David E.; Orchard, Marcos E.

    2017-02-01

    This paper presents a novel prognostic method that allows a proper characterization of the uncertainty associated with the evolution in time of nonlinear dynamical systems. The method assumes a state-space representation of the system, as well as the availability of particle-filtering-based estimates of the state posterior density at the moment in which the prognostic algorithm is executed. Our proposal significantly improves all particle-filtering-based prognosis frameworks currently available in two main aspects. First, it provides a correction for the expression that is used for the computation of the Time-of-Failure (ToF) probability mass function in the context of online monitoring schemes. Secondly, it presents a method for improved characterization of the tails of the ToF probability mass function via sequential propagation of sigma-points and the computation of Gaussian Mixture Models (GMMs). The proposed algorithm is tested and validated using experimental data related to the problem of Lithium-Ion battery State-of-Charge prognosis.

  7. Comprehensive evaluation of high-steep slope stability and optimal high-steep slope design by 3D physical modeling

    Science.gov (United States)

    Lai, Xing-ping; Shan, Peng-fei; Cai, Mei-feng; Ren, Fen-hua; Tan, Wen-hui

    2015-01-01

    High-steep slope stability and its optimal excavation design in Shuichang open pit iron mine were analyzed based on a large 3D physical simulation technique. An optimal excavation scheme with a relatively steeper slope angle was successfully implemented at the northwest wall between Nos. 4 and 5 exploration lines of Shuichang Iron Mine, taking into account the 3D scale effect. The physico-mechanical properties of rock materials were obtained by laboratory tests conducted on sample cores from exploration drilling directly from the iron mine. A porous rock-like composite material was formed for the model, and the mechanical parameters of the material were assessed experimentally; specifically, the effect of water on the sample was quantitatively determined. We adopted an experimental setup using stiff modular applied static loading to carry out a visual excavation of the slope at a random depth. The setup was equipped with acoustic emission (AE) sensors, and the experiments were monitored by crack optical acquirement, ground penetrating radar, and close-field photogrammetry to investigate the mechanisms of rock-mass destabilization in the high-steep slope. For the complex study area, the model results indicated a clear correlation between the model's destabilization resulting from slope excavation and the collected monitoring information. During the model simulation, the overall angle of the slope increased by 1-6 degrees in different sections. Dramatically, the modeled excavation scheme saved over 80 million tons of rock from extraction, generating enormous economic and ecological benefits.

  8. Mass movement slope streaks imaged by the Mars Orbiter Camera

    Science.gov (United States)

    Sullivan, Robert; Thomas, Peter; Veverka, Joseph; Malin, Michael; Edgett, Kenneth S.

    2001-10-01

    Narrow, fan-shaped dark streaks on steep Martian slopes were originally observed in Viking Orbiter images, but a definitive explanation was not possible because of resolution limitations. Pictures acquired by the Mars Orbiter Camera (MOC) aboard the Mars Global Surveyor (MGS) spacecraft show innumerable examples of dark slope streaks distributed widely, but not uniformly, across the brighter equatorial regions, as well as individual details of these features that were not visible in Viking Orbiter data. Dark slope streaks (as well as much rarer bright slope streaks) represent one of the most widespread and easily recognized styles of mass movement currently affecting the Martian surface. New dark streaks have formed since Viking and even during the MGS mission, confirming earlier suppositions that higher contrast dark streaks are younger, and fade (brighten) with time. The darkest slope streaks represent ~10% contrast with surrounding slope materials. No small outcrops supplying dark material (or bright material, for bright streaks) have been found at streak apexes. Digitate downslope ends indicate slope streak formation involves a ground-hugging flow subject to deflection by minor topographic obstacles. The model we favor explains most dark slope streaks as scars from dust avalanches following oversteepening of air fall deposits. This process is analogous to terrestrial avalanches of oversteepened dry, loose snow which produce shallow avalanche scars with similar morphologies. Low angles of internal friction typically 10-30¡ for terrestrial loess and clay materials suggest that mass movement of (low-cohesion) Martian dusty air fall is possible on a wide range of gradients. Martian gravity, presumed low density of the air fall deposits, and thin (unresolved by MOC) failed layer depths imply extremely low cohesive strength at time of failure, consistent with expectations for an air fall deposit of dust particles. As speed increases during a dust avalanche, a

  9. Design and stabilization works of the km 767 slope of Bolivia-Brazil gas pipeline; Projeto e obra de estabilizacao do talude do km 767 do gasoduto Bolivia-Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Hudson R.; Vasconcellos, Carlos Renato Aragonez de [TBG - Transportadora Brasileira Gasoduto Bolivia Brasil S.A., Rio de Janeiro, RJ (Brazil)

    2005-07-01

    The Bolivia-Brazil Natural Gas Pipeline starts at Santa Cruz de La Sierra city, in Bolivia, and goes until Canoas City (RS) in Brazil, with a total extent of 3,150 km. The pipeline crosses in the 2,593 km established in Brazilian soil, the most diverse types of geology and geomorphology. Along the line, the right-of-way (ROW) also crosses a lot of roads, railways, rivers and lakes. During a routine inspection (foot patrol), signs of instability were detected at an embankment slope of a highway of the Santa Catarina state, at the pipeline crossing. An eventual failure of this slope could put the pipeline at risk. The aim of this paper is to present the aspects of the stabilizations phases, since field investigation, design, works, instrumentation, until monitoring. Emphasis is given to the design criteria to pipeline safety. The solution adopted is composite by soil nailing, a changing of slope inclination and superficial drainage system. (author)

  10. Recurring Slope Lineae in Mid-Latitude and Equatorial Mars

    Science.gov (United States)

    McEwen, A. S.; Dundas, C. M.; Mattson, S.; Toigo, A. D.; Ojha, L.; Wray, J. J.; Chojnacki, M.; Byrne, S.; Murchie, S. L.; Thomas, N.

    2013-12-01

    A key to potential present-day habitability of Mars is the presence of liquid H2O (water). Recurring slope lineae (RSL) could be evidence for the seasonal flow of water on relatively warm slopes. RSL are narrow (250 K to >300 K. In the past year we have monitored active RSL in equatorial (0°-15°S) regions of Mars, especially in the deep canyons of Valles Marineris. They are especially active on north-facing slopes in northern summer and spring and on south-facing slopes in southern spring and summer, following the most normal solar incidence angles on these steep slopes. However, predicted peak temperatures for north-facing slopes are nearly constant throughout the Martian year because orbital periapse occurs near the southern summer solstice. Although warm temperatures and steep low-albedo slopes are required, some additional effect besides temperature may serve to trigger and stop RSL activity. Seasonal variation in the atmospheric column abundance of water does not match the RSL activity. Although seasonal melting of shallow ice could explain the mid-latitude RSL, the equatorial activity requires a different explanation, perhaps migration of briny groundwater. To explain RSL flow lengths, exceeding 1 km in Valles Marineris, the water is likely to be salty. Several RSL attributes are not yet understood: (1) the relation between apparent RSL activity and dustiness of the atmosphere; (2) salt composition and concentration; (3) variability in RSL activity from year to year; (4) seasonal activity on north-facing equatorial slopes in spite of little change in temperature; and (5) temporal changes in the color properties of fans where RSL terminate. Continued orbital monitoring, laboratory experiments, and future orbital and landed exploration with new measurement types are needed. Equatorial water activity, if confirmed, creates new exploration opportunities and challenges. RSL >1 km long near boundary between Eos and Capri Chasmata of Valles Marineris, Mars.

  11. Continuum modeling and limit equilibrium analysis of slope movement due to rainfall infiltration

    Science.gov (United States)

    Borja, Ronaldo; White, Joshua; Wu, Wei

    2010-05-01

    Hydrologically-driven landslides and debris flows are highly destructive events that threaten lives and critical infrastructure worldwide. Despite decades of extensive slope stability model development, the fundamental controls connecting the hydrologic and geotechnical processes that trigger slope failure are not well quantified. We use a fully coupled, physics-based finite element model to address this shortcoming. We develop and test a 3D continuum slope-deformation model that couples solid-deformation with fluid-flow processes in variably saturated soils, and assess the capability of the coupled model to predict stresses and deformation necessary to trigger slope failure. We then compare the continuum model with traditional limit equilibrium solutions based on the modified Bishop method of slices to assess the stability of the slope as a function of rainfall infiltration using a scalar stability indicator called factor of safety. For this assessment, we use extensive measurements from a densely instrumented mountain slope (The Coos Bay Experimental Catchment) where a large, rainfall-triggered slope failure occurred. The use of sophisticated, fully coupled numerical simulations combined with comprehensive field-measurements provides an unprecedented opportunity to advance the state of understanding of landslide failure processes and effective mitigation measures.

  12. Slope stability hazard management systems

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Weather-related geo-hazards are a major concern for both natural slopes and man-made slopes and embankments.Government agencies and private companies are increasingly required to ensure that there is adequate protection of sloping surfaces in order that interaction with the climate does not produce instability. Superior theoretical formulations and computer tools are now available to address engineering design issues related to the near ground surface soil-atmospheric interactions. An example is given in this paper that illustrates the consequences of not paying adequate attention to the hazards of slope stability prior to the construction of a highway in South America. On the other hand, examples are given from Hong Kong and Mainland China where significant benefits are derived from putting in place a hazard slope stability management system. Some results from a hazard management slope stability study related to the railway system in Canada are also reported. The study took advantage of recent research on unsaturated soil behaviour and applied this information to real-time modelling of climatic conditions. The quantification of the water balance at the ground surface, and subsequent infiltration, is used as the primary tool for hazard level assessment. The suggested hazard model can be applied at either specific high risk locations or in a more general, broad-based manner over large areas. A more thorough understanding of unsaturated soil behaviour as it applies to near ground surface soils,along with the numerical computational power of the computer has made it possible for new approaches to be used in slope hazard management engineering.

  13. Displacement of Pile-Reinforced Slopes with a Weak Layer Subjected to Seismic Loads

    Directory of Open Access Journals (Sweden)

    Haizuo Zhou

    2016-01-01

    Full Text Available The presence of a weak layer in a slope requires special attention because it has a negative impact on slope stability. However, limited insight into the seismic stability of slopes with a weak layer exists. In this study, the seismic stability of a pile-reinforced slope with a weak thin layer is investigated. Based on the limit analysis theory, a translational failure mechanism for an earth slope is developed. The rotational rigid blocks in the previous rotational-translational failure mechanism are replaced by continuous deformation regions, which consist of a sequence of n rigid triangles. The predicted static factor of safety and collapse mechanism in two typical examples of slopes with a weak layer compare well with the results obtained from the available literature and by using the Discontinuity Layout Optimization (DLO technique. The lateral forces provided by the stabilizing piles are evaluated using the theory of plastic deformation. An analytical solution for estimating the critical yield acceleration coefficient for the pile-reinforced slopes is derived. Based on the proposed translational failure mechanism and the corresponding critical yield acceleration coefficient, Newmark’s analytical procedure is employed to evaluate the cumulative displacement. Considering different real earthquake acceleration records as input motion, the effect of stabilizing piles and varying the spacing of piles on the cumulative displacement of slopes with a weak layer is investigated.

  14. Biomechanics and Physiology for Propelling Wheelchair Uphill Slope.

    Science.gov (United States)

    Hashizume, Tsutomu; Kitagawa, Hiroshi; Lee, Hokyoo; Ueda, Hisatoshi; Yoneda, Ikuo; Booka, Masayuki

    2015-01-01

    A vertical slope of sidewalks significantly inhibits to the mobility of manual wheelchair users in their daily life. International guidelines of the vertical slope are specified approximately 4% or 5% (1:20) gradient or less as preferred, and allow 8.3% (1:12) as its maximum when it is impossible. Relevant research of the physical strain for wheelchair users with pushing on slopes, and the validity assessment of slope guidelines have been investigated. However, the analysis for the effect of a slope distance and their transient performance are still remained. The purpose of this study is to clarify the physiological and biomechanical characteristics of manual wheelchair users that propelling a wheelchair on an uphill slope. We measured these data by a metabolic analysis system, a heart rate monitor system and an instrumented wheelchair wheel. Sixteen unimpaired subjects (non-wheelchair users) were examined to investigate the effect of a long slope with 120m distance and 8% gradient. And five wheelchair users with cervical cord injury were examined to evaluate the influence of different gradients (5%, 6.7%, 8.3%, 10% and 12.5%) with 3m length in laboratory. Our experimental results of the long slope showed that wheelchair propulsion velocity and power increased considerably at the beginning of the slope where the peak mean value of them were 0.96 m/s and 70.8W and they decreased linearly to 0.55m/s and 33.6W at final interval. A mean oxygen uptake and heart rate were increased as the distance increased and their results indicated the extremely high exercise intensity at a final interval that were 1.2liter /min and 152bpm. While wheelchair pushing cadence reduced after an initial interval, mean of strokes per10m increased to compensate the decrease of upper limb's power. The results of different gradients indicated that the normalized power of subjects with cervical cord injury was significant difference between each subject in the ability to climb a slope. Mean

  15. Comparison of slope stability in two Brazilian municipal landfills.

    Science.gov (United States)

    Gharabaghi, B; Singh, M K; Inkratas, C; Fleming, I R; McBean, E

    2008-01-01

    The implementation of landfill gas to energy (LFGTE) projects has greatly assisted in reducing the greenhouse gases and air pollutants, leading to an improved local air quality and reduced health risks. The majority of cities in developing countries still dispose of their municipal waste in uncontrolled 'open dumps.' Municipal solid waste landfill construction practices and operating procedures in these countries pose a challenge to implementation of LFGTE projects because of concern about damage to the gas collection infrastructure (horizontal headers and vertical wells) caused by minor, relatively shallow slumps and slides within the waste mass. While major slope failures can and have occurred, such failures in most cases have been shown to involve contributory factors or triggers such as high pore pressures, weak foundation soil or failure along weak geosynthetic interfaces. Many researchers who have studied waste mechanics propose that the shear strength of municipal waste is sufficient such that major deep-seated catastrophic failures under most circumstances require such contributory factors. Obviously, evaluation of such potential major failures requires expert analysis by geotechnical specialists with detailed site-specific information regarding foundation soils, interface shearing resistances and pore pressures both within the waste and in clayey barrier layers or foundation soils. The objective of this paper is to evaluate the potential use of very simple stability analyses which can be used to study the potential for slumps and slides within the waste mass and which may represent a significant constraint on construction and development of the landfill, on reclamation and closure and on the feasibility of a LFGTE project. The stability analyses rely on site-specific but simple estimates of the unit weight of waste and the pore pressure conditions and use "generic" published shear strength envelopes for municipal waste. Application of the slope stability

  16. Examination of slope design parameters and slope performance in some gneisses in Ghana

    Science.gov (United States)

    Ayetey, J. K.

    Relict joint properties are studied. Their influence on the weathered rock mass is examined in the different parts of the profile. A slope in a typical profile is monitored for 13 years and evidence is led to show that different parts of the profile have their engineering properties relevant to slope design, modified over the years. It is suggested that in the tropics where weathering is intensive and fast the engineering properties obtained at the time of site investigation would lead to over design or under design if not modified depending on whether the material concerned is self-stabilising as in some parts of the laterite horizon or decreases in strength as in the saprolite.

  17. Lungs in Heart Failure

    Directory of Open Access Journals (Sweden)

    Anna Apostolo

    2012-01-01

    Full Text Available Lung function abnormalities both at rest and during exercise are frequently observed in patients with chronic heart failure, also in the absence of respiratory disease. Alterations of respiratory mechanics and of gas exchange capacity are strictly related to heart failure. Severe heart failure patients often show a restrictive respiratory pattern, secondary to heart enlargement and increased lung fluids, and impairment of alveolar-capillary gas diffusion, mainly due to an increased resistance to molecular diffusion across the alveolar capillary membrane. Reduced gas diffusion contributes to exercise intolerance and to a worse prognosis. Cardiopulmonary exercise test is considered the “gold standard” when studying the cardiovascular, pulmonary, and metabolic adaptations to exercise in cardiac patients. During exercise, hyperventilation and consequent reduction of ventilation efficiency are often observed in heart failure patients, resulting in an increased slope of ventilation/carbon dioxide (VE/VCO2 relationship. Ventilatory efficiency is as strong prognostic and an important stratification marker. This paper describes the pulmonary abnormalities at rest and during exercise in the patients with heart failure, highlighting the principal diagnostic tools for evaluation of lungs function, the possible pharmacological interventions, and the parameters that could be useful in prognostic assessment of heart failure patients.

  18. ElevationSlope_SLOPE0p7M

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Windham County 2015 0.7m; Eastern VT 2014 0.7m; Rutland/GI Counties 2013 0.7m and related SLOPE datasets....

  19. Intraparenchymal intracranial pressure monitoring in patients with acute liver failure Monitoreo intraparenquimatoso de presión intracraneana en pacientes con falla hepática aguda

    Directory of Open Access Journals (Sweden)

    Alejandra T. Rabadán

    2008-06-01

    Full Text Available BACKGROUND: Elevated intracranial pressure (ICP is a common cause of death in acute liver failure (ALF and is determinant for decision-making regarding the timing of liver transplantation. The recommended type ICP monitoring device is controversial in ALF patients. Epidural devices had less risk of hemorrhagic complications, but they are less reliable than intraparenchymal ones. METHOD: Twenty-three patients with ALF were treated, and 19 of them received a liver transplant. Seventeen patients had ICP monitoring because of grade III-IV encephalopathy. All patients received fresh plasma (2-3 units before and during placing the intraparenchymal device. RESULTS: Eleven cases (64.7% had elevated ICP, and 6 patients (35.2% had normal values. One patient (5.9% had an asymptomatic small intraparenchymal haemorrhage ANTECEDENTES: La presión intracraneana elevada (PIC es una causa frecuente de muerte en la falla hepática aguda (FHA y es determinante para la toma de decisiones respecto del momento del transplante hepático. El tipo de dispositivo para el monitoreo de OIC es controversial em los pacientes em FHA. Los dispositivos epidurales tienen menos riesgo de complicaciones hemorrágicas, pero son menos confiables que los intraparenquimatosos. MÉTODO: Veintitrés pacientes con FHA fueron tratados, y 19 de ellos recibieron un transplante hepático. diecisiete pacientes tuvieron monitoreo de PIC debido a encefalopatía grado III-IV. Todos los pacientes recibieron plasma fresco (2-3 unidades antes y durante la colocación de la fibra intraparenquimatosa. RESULTADOS: Once casos (64.7% tuvieron PIC elevada, y 6 pacientes (35.2% tuvieron valores normales. Un paciente (5.9% tuvo una pequeña hemorragia intraparenquimatosa asintomática <1cm³ en TAC, la cual no impidió el transplante hepático. CONCLUSIÓN: En nuestra experiencia, el monitoreo intraparenquimatoso de presión intracraneana en pacientes con FHA parece ser un método preciso y con bajo riesgo

  20. Regional variability of slope stability: Application to the Eel margin, California

    Science.gov (United States)

    Lee, H.; Locat, J.; Dartnell, P.; Israel, K.; Florence, Wong

    1999-01-01

    Relative values of downslope driving forces and sediment resisting forces determine the locations of submarine slope failures. Both of these vary regionally, and their impact can be addressed when the data are organized in a Geographic Information System (GIS). The study area on the continental margin near the Eel River provides an excellent opportunity to apply GIS spatial analysis techniques for evaluation of slope stability. In this area, swath bathymetric mapping shows seafloor morphology and distribution of slope steepness in fine detail, and sediment analysis of over 70 box cores delineates the variability of sediment density near the seafloor surface. Based on the results of ten geotechnical studies of submarine study areas, we developed an algorithm that relates surface sediment density to the shear strength appropriate to the type of cyclic loading produced by an earthquake. Strength and stress normalization procedures provide results that are conceptually independent of subbottom depth. Results at depth are rigorously applicable if sediment lithology does not vary significantly and consolidation state can be estimated. Otherwise, the method applies only to shallow-seated slope failure. Regional density, slope, and level of anticipated seismic shaking information were combined in a GIS framework to yield a map that illustrates the relative stability of slopes in the face of seismically induced failure. When a measure of predicted relative slope stability is draped on an oblique view of swath bathymetry, a variation in this slope stability is observed on an otherwise smooth slope along the mid-slope region north of a plunging anticline. The section of slope containing diffuse, pockmarked gullies has a lower measure of stability than a separate section containing gullies that have sharper boundaries and somewhat steeper sides. Such an association suggests that our slope-stability analysis relates to the stability of the gully sides. The remainder of the

  1. Links among Slope Morphology, Canyon Types and Tectonics on Passive and Active Margins in the Northernmost South China Sea

    Institute of Scientific and Technical Information of China (English)

    Ho-Shing Yu; Emmy T Y Chang

    2009-01-01

    We examine slope profile types and variations in slope gradient and slope relief with depth for both passive and active margins in the northern most South China Sea.The passive South China margin is characterized by an exponential slope profile,mainly assodated with clustered slope-confined canyons.The active Taiwan margin shows a linear-like shape with great variations along the lower slope.Fewer eanyom occur on the Taiwau margin,and hence the influence of canyon incision on slope morphology is relatively less significant.Quantitative analyses of slope curvature,slope gradleut and square root of relief variance are useful statistical parameters to explain characteristics and variability of morphology of the slope of the South China margin,but not for the Kaoping slope on the Talwan side.On the active Taiwan margin,tectonic activities are dominant over sediment deposition and surface erosion,producing a slope profile quite different from those of passive margins of the Middle Atlantic,KwaZulu-Natal,South Africa where failure on slope and accompanying canyon incision are the dominant processes shaping the slope morphology.

  2. Western Slope of Andes, Peru

    Science.gov (United States)

    2008-01-01

    Along the western flank of the Andes, 400 km SE of Lima Peru, erosion has carved the mountain slopes into long, narrow serpentine ridges. The gently-sloping sediments have been turned into a plate of worms wiggling their way downhill to the ocean. The image was acquired September 28, 2004, covers an area of 38 x 31.6 km, and is located near 14.7 degrees south latitude, 74.5 degrees west longitude. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  3. Impact of Rain Water Infiltration on the Stability of Earth Slopes

    Directory of Open Access Journals (Sweden)

    Muhammad Farooq Ahmed

    2016-12-01

    Full Text Available Slope failure occurs very often in natural and man-made slopes which are subjected to frequent changes in ground water level, rapid drawdown, rainfall and earthquakes. The current study discusses the significance of water infiltration, pore water pressure and degree of saturation that affect the stability of earth slopes. Rainwater infiltration not only mechanically reduces the shear strength of a slope material, but also chemically alters the mineral composition of the soil matrix. It results in the alteration of macro structures which in turn decreases the factor of safety. A few case studies are discussed in this paper to quantitatively observe the variation in factor of safety (FOS of various earth slopes by changing the degree of saturation. The results showed that most of the earth slopes get failed or become critical when the degree of saturation approaches to 50 % or more.

  4. Experimental test of theory for the stability of partially saturated vertical cut slopes

    Science.gov (United States)

    Morse, Michael M.; Lu, N.; Wayllace, Alexandra; Godt, Jonathan W.; Take, W.A.

    2014-01-01

    This paper extends Culmann's vertical-cut analysis to unsaturated soils. To test the extended theory, unsaturated sand was compacted to a uniform porosity and moisture content in a laboratory apparatus. A sliding door that extended the height of the free face of the slope was lowered until the vertical cut failed. Digital images of the slope cross section and upper surface were acquired concurrently. A recently developed particle image velocimetry (PIV) tool was used to quantify soil displacement. The PIV analysis showed strain localization at varying distances from the sliding door prior to failure. The areas of localized strain were coincident with the location of the slope crest after failure. Shear-strength and soil-water-characteristic parameters of the sand were independently tested for use in extended analyses of the vertical-cut stability and of the failure plane angle. Experimental failure heights were within 22.3% of the heights predicted using the extended theory.

  5. Instrumented failure of hillslope models with soil-pipes

    Science.gov (United States)

    Sharma, Raj H.; Konietzky, Heinz

    2011-07-01

    Soil-pipes (porous pipes inside a hillslope) are often detected in collapsed slopes indicating their influence on slope failure processes. Only limited studies can be found regarding the impacts of soil-pipes on landslide mechanisms. Hillslope models prepared in a flume are experimented with different soil-pipe configurations: a) no pipe, b) closed pipe and c) open pipe. Pore-water pressures were measured at six different locations along a slope. Discharges at the outlet of soil-pipe and groundwater seepage were also recorded. For the above mentioned pipe configurations two types of experiments were conducted: a) rainfall-induced failure and b) seepage-induced failure. Experimental results show that a closed pipe accumulates water around its lower end and continuously increases pore-water pressure till a failure. An open pipe works as a means of hillslope drainage and reduces the pore-water pressure of an entire slope. However, if open pipe is blocked, pore-water pressure close to its lower end rises rapidly, leading to immediate soil mass movement. For both seepage and rainfall-induced failure experiments, the maximum pressure before the failure was larger at a slope with an open pipe (once it is closed) than a slope with a pipe closed from the beginning or that without a soil-pipe. This indicates that the blockage of soil-pipes makes a slope more susceptible to failure. Displacement vectors show that soil movement velocity close to the surface was highest at slopes with open pipes after closure and lowest at slopes without pipes because of a higher degree of saturation and pore-water pressure at the time of failure of the former. Before a large failure, small fluctuations in pore-water pressure were also observed which can be an indicator of impending failure.

  6. Detecting Slow Deformation Signals Preceding Dynamic Failure: A New Strategy For The Mitigation Of Natural Hazards (SAFER)

    Science.gov (United States)

    Vinciguerra, Sergio; Colombero, Chiara; Comina, Cesare; Ferrero, Anna Maria; Mandrone, Giuseppe; Umili, Gessica; Fiaschi, Andrea; Saccorotti, Gilberto

    2014-05-01

    Rock slope monitoring is a major aim in territorial risk assessment and mitigation. The high velocity that usually characterizes the failure phase of rock instabilities makes the traditional instruments based on slope deformation measurements not applicable for early warning systems. On the other hand the use of acoustic emission records has been often a good tool in underground mining for slope monitoring. Here we aim to identify the characteristic signs of impending failure, by deploying a "site specific" microseismic monitoring system on an unstable patch of the Madonna del Sasso landslide on the Italian Western Alps designed to monitor subtle changes of the mechanical properties of the medium and installed as close as possible to the source region. The initial characterization based on geomechanical and geophysical tests allowed to understand the instability mechanism and to design the monitoring systems to be placed. Stability analysis showed that the stability of the slope is due to rock bridges. Their failure progress can results in a global slope failure. Consequently the rock bridges potentially generating dynamic ruptures need to be monitored. A first array consisting of instruments provided by University of Turin, has been deployed on October 2013, consisting of 4 triaxial 4.5 Hz seismometers connected to a 12 channel data logger arranged in a 'large aperture' configuration which encompasses the entire unstable rock mass. Preliminary data indicate the occurrence of microseismic swarms with different spectral contents. Two additional geophones and 4 triaxial piezoelectric accelerometers able to operate at frequencies up to 23 KHz will be installed during summer 2014. This will allow us to develop a network capable of recording events with Mw < 0.5 and frequencies between 700 Hz and 20 kHz. Rock physical and mechanical characterization along with rock deformation laboratory experiments during which the evolution of related physical parameters under

  7. Landform Degradation and Slope Processes on Io: The Galileo View

    Science.gov (United States)

    Moore, Jeffrey M.; Sullivan, Robert J.; Chuang, Frank C.; Head, James W., III; McEwen, Alfred S.; Milazzo, Moses P.; Nixon, Brian E.; Pappalardo, Robert T.; Schenk, Paul M.; Turtle, Elizabeth P.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    The Galileo mission has revealed remarkable evidence of mass movement and landform degradation on Io. We recognize four major slope types observed on a number of intermediate resolution (250 m/pixel) images and several additional textures on very high resolution (10 m/pixel) images. Slopes and scarps on Io often show evidence of erosion, seen in the simplest form as alcove-carving slumps and slides at all scales. Many of the mass movement deposits on Io are probably mostly the consequence of block release and brittle slope failure. Sputtering plays no significant role. Sapping as envisioned by McCauley et al. remains viable. We speculate that alcove-lined canyons seen in one observation and lobed deposits seen along the bases of scarps in several locations may reflect the plastic deformation and 'glacial' flow of interstitial volatiles (e.g., SO2) heated by locally high geothermal energy to mobilize the volatile. The appearance of some slopes and near-slope surface textures seen in very high resolution images is consistent with erosion from sublimation-degradation. However, a suitable volatile (e.g., H2S) that can sublimate fast enough to alter Io's youthful surface has not been identified. Disaggregation from chemical decomposition of solid S2O and other polysulfur oxides may conceivably operate on Io. This mechanism could degrade landforms in a manner that resembles degradation from sublimation, and at a rate that can compete with resurfacing.

  8. Seismic response of rock slopes: Numerical investigations on the role of internal structure

    Science.gov (United States)

    Arnold, L.; Applegate, K.; Gibson, M.; Wartman, J.; Adams, S.; Maclaughlin, M.; Smith, S.; Keefer, D. K.

    2013-12-01

    The stability of rock slopes is significantly influenced and often controlled by the internal structure of the slope created by such discontinuities as joints, shear zones, and faults. Under seismic conditions, these discontinuities influence both the resistance of a slope to failure and its response to dynamic loading. The dynamic response, which can be characterized by the slope's natural frequency and amplification of ground motion, governs the loading experienced by the slope in a seismic event and, therefore, influences the slope's stability. In support of the Network for Earthquake Engineering Simulation (NEES) project Seismically-Induced Rock Slope Failure: Mechanisms and Prediction (NEESROCK), we conducted a 2D numerical investigation using the discrete element method (DEM) coupled with simple discrete fracture networks (DFNs). The intact rock mass is simulated with a bonded assembly of discrete particles, commonly referred to as the bonded-particle model (BPM) for rock. Discontinuities in the BPM are formed by the insertion of smooth, unbonded contacts along specified planes. The influence of discontinuity spacing, orientation, and stiffness on slope natural frequency and amplification was investigated with the commercially available Particle Flow Code (PFC2D). Numerical results indicate that increased discontinuity spacing has a non-linear effect in decreasing the amplification and increasing the natural frequency of the slope. As discontinuity dip changes from sub-horizontal to sub-vertical, the slope's level of amplification increases while the natural frequency of the slope decreases. Increased joint stiffness decreases amplification and increases natural frequency. The results reveal that internal structure has a strong influence on rock slope dynamics that can significantly change the system's dynamic response and stability during seismic loading. Financial support for this research was provided by the United States National Science Foundation (NSF

  9. Exploring Slope with Stairs & Steps

    Science.gov (United States)

    Smith, Toni M.; Seshaiyer, Padmanabhan; Peixoto, Nathalia; Suh, Jennifer M.; Bagshaw, Graham; Collins, Laurena K.

    2013-01-01

    As much as ever before, mathematics teachers are searching for ways to connect mathematics to real-life scenarios within STEM contexts. As students develop skill in proportional reasoning, they examine graphical representations of linear functions, learn to associate "slope" with "steepness" and rate of change, and develop…

  10. Application of dynamic analysis of strength reduction in the slope engineering under earthquake

    Institute of Scientific and Technical Information of China (English)

    Ye Hailin; Zheng Yingren; Huang Runqiu; Li Anhong; Du Xiuli

    2010-01-01

    At present,the methods of analyzing the stability of slope under earthquake are not accurate and reasonable because of some limitations.Based on the real dynamic tensile-shear failure mechanism of slope,the paper proposes dynamic analysis of strength reduction FEM(finite element method)and takes the reduction of shear strength parameters and tensile strength parameters into consideration.And it comprehensively takes the transfixion of the failure surface,the non-convergence of calculation and mutation of displacement as the criterion of dynamic instability and failure of the slope.The strength reduction factor under limit state is regarded as the dynamic safety factor of the slope under earthquake effect and its advantages are introduced.Finally,the method is applied in the seismic design of anchors supporting and anti-slide pile supporting of the slope.Calculation examples show that the application of dynamic analysis of strength reduction is feasible in the seismic design of slope engineering,which can consider dynamic interaction of supporting structure and rock-soil mass.Owing to its preciseness and great advantages,it is a new method in the seismic design of slope supporting.

  11. Beyond debuttressing: Mechanics of paraglacial rock slope damage during repeat glacial cycles

    Science.gov (United States)

    Grämiger, Lorenz M.; Moore, Jeffrey R.; Gischig, Valentin S.; Ivy-Ochs, Susan; Loew, Simon

    2017-04-01

    Cycles of glaciation impose mechanical stresses on underlying bedrock as glaciers advance, erode, and retreat. Fracture initiation and propagation constitute rock mass damage and act as preparatory factors for slope failures; however, the mechanics of paraglacial rock slope damage remain poorly characterized. Using conceptual numerical models closely based on the Aletsch Glacier region of Switzerland, we explore how in situ stress changes associated with fluctuating ice thickness can drive progressive rock mass failure preparing future slope instabilities. Our simulations reveal that glacial cycles as purely mechanical loading and unloading phenomena produce relatively limited new damage. However, ice fluctuations can increase the criticality of fractures in adjacent slopes, which may in turn increase the efficacy of fatigue processes. Bedrock erosion during glaciation promotes significant new damage during first deglaciation. An already weakened rock slope is more susceptible to damage from glacier loading and unloading and may fail completely. We find that damage kinematics are controlled by discontinuity geometry and the relative position of the glacier; ice advance and retreat both generate damage. We correlate model results with mapped landslides around the Great Aletsch Glacier. Our result that most damage occurs during first deglaciation agrees with the relative age of the majority of identified landslides. The kinematics and dimensions of a slope failure produced in our models are also in good agreement with characteristics of instabilities observed in the field. Our results extend simplified assumptions of glacial debuttressing, demonstrating in detail how cycles of ice loading, erosion, and unloading drive paraglacial rock slope damage.

  12. Experimental study on slope sliding and debris flow evolution with and without barrier

    Directory of Open Access Journals (Sweden)

    Ji-kun ZHAO

    2015-01-01

    Full Text Available A constitutive model on the evolution of debris flow with and without a barrier was established based on the theory of the Bingham model. A certain area of the Laoshan Mountain in Nanjing, Jiangsu Province, in China was chosen for experimental study, and the slope sliding and debris flow detection system was utilized. The change curve of the soil moisture content was attained, demonstrating that the moisture content of the shallow soil layer increases faster than that of the deep soil layer, and that the growth rate of the soil moisture content of the steep slope is large under the first weak rainfall, and that of the gentle slope is significantly affected by the second heavy rainfall. For the steep slope, slope sliding first occurs on the upper slope surface under heavy rainfall and further develops along the top platform and lower slope surface, while under weak rainfall the soil moisture content at the lower part of the slope first increases because of the high runoff velocity, meaning that failure occurring there is more serious. When a barrier was placed at a high position on a slope, debris flow was separated and distributed early and had less ability to carry solids, and the variation of the greatest depth of erosion pits on soil slopes was not significant.

  13. Experimental study on slope sliding and debris flow evolution with and without barrier

    Institute of Scientific and Technical Information of China (English)

    Ji-kun Zhao; Dan Wang; Jia-hong Chen

    2015-01-01

    A constitutive model on the evolution of debris flow with and without a barrier was established based on the theory of the Bingham model. A certain area of the Laoshan Mountain in Nanjing, Jiangsu Province, in China was chosen for experimental study, and the slope sliding and debris flow detection system was utilized. The change curve of the soil moisture content was attained, demonstrating that the moisture content of the shallow soil layer increases faster than that of the deep soil layer, and that the growth rate of the soil moisture content of the steep slope is large under the first weak rainfall, and that of the gentle slope is significantly affected by the second heavy rainfall. For the steep slope, slope sliding first occurs on the upper slope surface under heavy rainfall and further develops along the top platform and lower slope surface, while under weak rainfall the soil moisture content at the lower part of the slope first increases because of the high runoff velocity, meaning that failure occurring there is more serious. When a barrier was placed at a high position on a slope, debris flow was separated and distributed early and had less ability to carry solids, and the variation of the greatest depth of erosion pits on soil slopes was not significant.

  14. The Stability Analysis Method of the Cohesive Granular Slope on the Basis of Graph Theory.

    Science.gov (United States)

    Guan, Yanpeng; Liu, Xiaoli; Wang, Enzhi; Wang, Sijing

    2017-02-27

    This paper attempted to provide a method to calculate progressive failure of the cohesivefrictional granular geomaterial and the spatial distribution of the stability of the cohesive granular slope. The methodology can be divided into two parts: the characterization method of macro-contact and the analysis of the slope stability. Based on the graph theory, the vertexes, the edges and the edge sequences are abstracted out to characterize the voids, the particle contact and the macro-contact, respectively, bridging the gap between the mesoscopic and macro scales of granular materials. This paper adopts this characterization method to extract a graph from a granular slope and characterize the macro sliding surface, then the weighted graph is analyzed to calculate the slope safety factor. Each edge has three weights representing the sliding moment, the anti-sliding moment and the braking index of contact-bond, respectively, . The safety factor of the slope is calculated by presupposing a certain number of sliding routes and reducing Weight repeatedly and counting the mesoscopic failure of the edge. It is a kind of slope analysis method from mesoscopic perspective so it can present more detail of the mesoscopic property of the granular slope. In the respect of macro scale, the spatial distribution of the stability of the granular slope is in agreement with the theoretical solution.

  15. The Stability Analysis Method of the Cohesive Granular Slope on the Basis of Graph Theory

    Directory of Open Access Journals (Sweden)

    Yanpeng Guan

    2017-02-01

    Full Text Available This paper attempted to provide a method to calculate progressive failure of the cohesivefrictional granular geomaterial and the spatial distribution of the stability of the cohesive granular slope. The methodology can be divided into two parts: the characterization method of macro-contact and the analysis of the slope stability. Based on the graph theory, the vertexes, the edges and the edge sequences are abstracted out to characterize the voids, the particle contact and the macro-contact, respectively, bridging the gap between the mesoscopic and macro scales of granular materials. This paper adopts this characterization method to extract a graph from a granular slope and characterize the macro sliding surface, then the weighted graph is analyzed to calculate the slope safety factor. Each edge has three weights representing the sliding moment, the anti-sliding moment and the braking index of contact-bond, respectively, . The safety factor of the slope is calculated by presupposing a certain number of sliding routes and reducing Weight repeatedly and counting the mesoscopic failure of the edge. It is a kind of slope analysis method from mesoscopic perspective so it can present more detail of the mesoscopic property of the granular slope. In the respect of macro scale, the spatial distribution of the stability of the granular slope is in agreement with the theoretical solution.

  16. A more general model for the analysis of the rock slope stability

    Indian Academy of Sciences (India)

    Mehdi Zamani

    2008-08-01

    The slope stability analysis has many applications in the engineering projects such as the dams, the roads and open pits structures. The method of analysis is usually based on the equilibrium conditions of the potential plane and wedge failures. The zone of the potential failure is stable whenever the stability forces dominate instability characteristics of the slope. In most of the classic methods of slope stability analysis, the joint surfaces are assumed to be continuous along the potential failure zone. These can cause an underestimated solution to the analysis. In this research the joint trace length is considered to be discontinuous across thepotential surface of failure as it happens in nature. Therefore, there exists a rock bridge between the local joint traces. Because of the numerous problems related to the rock slope stability the above assumption is satisfied and the shear strength characteristics of intact rock have taken part in the analysis. The analysis presented here gives a better concept, view, and idea of understanding the physical nature of rock slopes and includes more parameters governing the stability of the potential failure zone.

  17. Stability investigation of road cut slope in basaltic rockmass, Mahabaleshwar, India

    Institute of Scientific and Technical Information of China (English)

    Ashutosh Kainthola; P.K. Singh; T.N. Singh

    2015-01-01

    Slope failures along hill cut road slopes are the major nuisance for commuters and highway planners as they put the human lives at huge risk, coupled with immense monetary losses. Analysis of these vulnerable cut slopes entails the assessment and estimation of the suitable material strength input parameters to be used in the numerical models to accomplish a holistic stability examination. For the present study a 60 m high, basaltic and lateritic road cut hill slope in Mahabaleshwar, India, has been considered. A number of samples of both basalt and laterite, in their natural state were tested in the laboratory and the evaluated maximum, minimum and mean strength parameters were employed for the three cases in a distinct element numerical model. The Mohr-Coulomb failure criterion has been incorporated in the numerical model for the material as well as the joints. The numerical investigation offered the factor of safety and insights into the probable deformational mechanism for the three cases. Beside, several critical parameters have also been judged from the study viz., mode of failure, factor of safety, shear strain rate, displacement magnitudes etc. The result of this analysis shows that the studied section is prone to recurrent failures due to the capping of a substantially thick layer of weaker lateritic material above the high strength basaltic rock mass. External triggering mechanisms like heavy pre-cipitation and earthquake may also accelerate the slope failure in this area. The study also suggests employing instant preventive measures to avert the further risk of damage.

  18. Heart Failure

    Science.gov (United States)

    ... heart failure due to systolic dysfunction. http://www.uptodate.com/home. Accessed Sept. 26, 2014. Colucci WS. ... patient with heart failure or cardiomyopathy. http://www.uptodate.com/home. Accessed Sept. 26, 2014. Colucci WS. ...

  19. Slope Stability Analysis for Shallow Landslides using TRIGRS: A Case Study for Sta. Cruz, Zambales, Philippines

    Science.gov (United States)

    Mendoza, J. P. A.

    2016-12-01

    The Philippines, being located in the circum-Pacific, bounded by multiple subduction zones, open seas and ocean, is one of the most hazard-prone countries in the world (Benson, 1997). This widespread recurrence of natural hazards in the country requires much attention for disaster management (Aurelio, 2006). On the average, 21 typhoons enter the Philippine area of responsibility annually with 6-9 making a landfall. Several rainfall-induced landslide events are reported annually particularly during and after the inundation of major typhoons which imposes hazards to communities and causes destruction of properties due to the moving mass and possible flash floods it may induce. Shallow landslides are the most commonly observed failure involving soil-mantled slopes and are considered major geohazards, often causing property damage and other economic loss. Hence numerous studies on landslide susceptibility including numerical models based on infinite slope equation are used in order to identify slopes prone to occurrences of shallow landslides. The study aims to determine the relationships between the slope and elevation to the factor of safety for laterite-mantled topography by incorporating precipitation values in the determination of landslide susceptibility. Using a DEM, flow direction map and slope map of the Sta Cruz (Zambales, Philippines), the FORTRAN based program TRIGRS, was used to generate the values for the factors of safety in the study area. Overlays with a generated slope map and elevation map were used to determine relationships of the mentioned factors and the factors of safety. A slope in a topography mantled with lateritic soil will fail at a slope angle higher than 20 degrees. Generally, the factor of safety decreases as the slope angle increases; this increases the probability and risk of slope failure. Elevation has no bearing on the computation for the factor of safety. The factor of safety is heavily dependent on the slope angle. The value of

  20. Using Discrete Element Method to Simulate Influence of Vertical Joints and Upward Groundwater on The Stability of Dip Slope: A Case Study on Formosa Freeway

    Science.gov (United States)

    Lu, An; Hsieh, Pei-Chen; Wu, Liang-Chun; Lin, Ming-Lang

    2017-04-01

    Earthquake and rainfall weakening potential sliding surface are common causes of dip slope failure. But in recent years, certain dip slopes failure, for example dip slope sliding without rain on the roadside of Formosa Freeway in northern Taiwan, are caused by uplift groundwater in vertical joints eventually weakening the potential sliding surface. The mechanism of sliding failure should be analyzed in more detail. Furthermore, prestress dissipating in anchors causing dip slope failure is also considered in this study. In this study, conceptual model is simplified from the case of Formosa Freeway in northern Taiwan and the main control factors including angle of slope, stratum, attitude of joints. In addition, drilling data, such as hydraulic conductivity, strength, friction angle and cohesion, are utilized to discuss mechanism and dominant factors of dip slope failure caused by uplift groundwater in vertical joints. UDEC(Universal Distinct Element Code) which is particularly well suited to problems involving jointed media and has been used extensively in stability analysis of jointed rock slopes is utilized in this study. The influence of external factors such as groundwater pressure on block sliding and deformation can also be simulated in UDEC. When the results from numerical simulation fit the condition of slope failure on the roadside of Formosa Freeway, the influence of prestress dissipating in anchors on slope stability is considered subsequently. Finally, simulation results by UDEC are compared with previous research results by FLAC, and discuss the difference between each other.

  1. THE EQUIVALENT SLOPE - A NEW METHOD FOR CALCULATING SOIL LOSS FROM IRREGULAR SLOPES

    Institute of Scientific and Technical Information of China (English)

    Xiaoguang ZHAO; Hui SHI; Ming'an SHAO

    2004-01-01

    The slopes in field conditions are always irregular, but the supposed uniform slopes are used in most erosion models. Some studies used several uniform slopes to approximate an irregular slope for estimating soil erosion. This approximation is both time-consuming and weak in physical insights. In this paper, the concept of equivalent slope is presented based on that runoff potential on uniform slope is equal to that of irregular slope, and the equivalent uniform slope is used to estimate soil erosion instead of the irregular slopes. The estimated results of slope-length factors for convex and concave slopes are consistent with those from the method of Foster and Wischmeier.The experiments in the southern part of the Loess Plateau in China confirmed the applicability of the present method. The method is simple and has, to some extent, clear physical meanings, and is applicable for estimating soil erosion from irregular slopes.

  2. Controls on shallow landslide initiation: Diverse hydrologic pathways, 3D failure geometries, and unsaturated soil suctions

    Science.gov (United States)

    Reid, Mark; Iverson, Richard; Brien, Dianne; Iverson, Neal; LaHusen, Richard; Logan, Matthew

    2017-04-01

    Shallow landslides and ensuing debris flows are a common hazard worldwide, yet forecasting their initiation at a specific site is challenging. These challenges arise, in part, from diverse near-surface hydrologic pathways under different wetting conditions, 3D failure geometries, and the effects of suction in partially saturated soils. Simplistic hydrologic models typically used for regional hazard assessment disregard these complexities. As an alterative to field studies where the effects of these governing factors can be difficult to isolate, we used the USGS debris-flow flume to conduct controlled, field-scale landslide initiation experiments. Using overhead sprinklers or groundwater injectors on the flume bed, we triggered failures using three different wetting conditions: groundwater inflow from below, prolonged moderate-intensity precipitation, and bursts of high-intensity precipitation. Failures occurred in 6 m3 (0.65-m thick and 2-m wide) prisms of loamy sand on a 31° slope; these field-scale failures enabled realistic incorporation of nonlinear scale-dependent effects such as soil suction. During the experiments, we monitored soil deformation, variably saturated pore pressures, and moisture changes using ˜50 sensors sampling at 20 Hz. From ancillary laboratory tests, we determined shear strength, saturated hydraulic conductivities, and unsaturated moisture retention characteristics. The three different wetting conditions noted above led to different hydrologic pathways and influenced instrumental responses and failure timing. During groundwater injection, pore-water pressures increased from the bed of the flume upwards into the sediment, whereas prolonged moderate infiltration wet the sediment from the ground surface downward. In both cases, pore pressures acting on the impending failure surface slowly rose until abrupt failure. In contrast, a burst of intense sprinkling caused rapid failure without precursory development of widespread positive pore

  3. Landslide Hazard and Risk Assessment on the Northern Slope of Mt. Changbai, China

    Institute of Scientific and Technical Information of China (English)

    LIU Zhenghua; ZHANG Yanbin; Yoshiharu ISHIKAWA; Hiroyuki NAKAMURA

    2008-01-01

    Landslide hazard and risk assessment on the northern slope of Mt. Changbai,a well-known tourist attraction near the North Korean-Chinese border, are assessed. This study is divided into two parts, namely, landslide hazard zonation and risk assessment. The 1992 Anbalagan and Singh method of landslide hazard zonation (LHZ) was modified and used in this area. In this way, an Associative Analysis Method was used in representative areas to get a measure for controlling factors (slope gradient, relative relief, vegetation, geology, discontinuity development, weak layer thickness and ground water). For the membership degree of factor to slope failure, the middle range of limited values was used to calculate LHZ. Based on an estimation of the potential damage from slope failure,a reasonable risk assessment map was obtained using the relationship of potential damage and probable hazard to aid future planning and prediction and to avert loss of life.

  4. Slope Streaks in Terra Sabaea

    Science.gov (United States)

    2007-01-01

    [figure removed for brevity, see original site] Figure 1 Click on image for larger version This HiRISE image shows the rim of a crater in the region of Terra Sabaea in the northern hemisphere of Mars. The subimage (figure 1) is a close-up view of the crater rim revealing dark and light-toned slope streaks. Slope streak formation is among the few known processes currently active on Mars. While their mechanism of formation and triggering is debated, they are most commonly believed to form by downslope movement of extremely dry sand or very fine-grained dust in an almost fluidlike manner (analogous to a terrestrial snow avalanche) exposing darker underlying material. Other ideas include the triggering of slope streak formation by possible concentrations of near-surface ice or scouring of the surface by running water from aquifers intercepting slope faces, spring discharge (perhaps brines), and/or hydrothermal activity. Several of the slope streaks in the subimage, particularly the three longest darker streaks, show evidence that downslope movement is being diverted around obstacles such as large boulders. Several streaks also appear to originate at boulders or clumps of rocky material. In general, the slope streaks do not have large deposits of displaced material at their downslope ends and do not run out onto the crater floor suggesting that they have little reserve kinetic energy. The darkest slope streaks are youngest and can be seen to cross cut and superpose older and lighter-toned streaks. The lighter-toned streaks are believed to be dark streaks that have lightened with time as new dust is deposited on their surface. Observation Geometry Image PSP_001808_1875 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on 15-Dec-2006. The complete image is centered at 7.4 degrees latitude, 47.0 degrees East longitude. The range to the target site was 272.1 km (170.1 miles). At this distance the

  5. The Dynamic Evaluation of Rock Slope Stability Considering the Effects of Microseismic Damage

    Science.gov (United States)

    Xu, N. W.; Dai, F.; Liang, Z. Z.; Zhou, Z.; Sha, C.; Tang, C. A.

    2014-03-01

    A state-of-the-art microseismic monitoring system has been implemented at the left bank slope of the Jinping first stage hydropower station since June 2009. The main objectives are to ensure slope safety under continuous excavation at the left slope, and, very recently, the safety of the concrete arch dam. The safety of the excavated slope is investigated through the development of fast and accurate real-time event location techniques aimed at assessing the evolution and migration of the seismic activity, as well as through the development of prediction capabilities for rock slope instability. Myriads of seismic events at the slope have been recorded by the microseismic monitoring system. Regions of damaged rock mass have been identified and delineated on the basis of the tempo-spatial distribution analysis of microseismic activity during the periods of excavation and consolidation grouting. However, how to effectively utilize the abundant microseismic data in order to quantify the stability of the slope remains a challenge. In this paper, a rock mass damage evolutional model based on microseismic data is proposed, combined with a 3D finite element method (FEM) model for feedback analysis of the left bank slope stability. The model elements with microseismic damage are interrogated and the deteriorated mechanical parameters determined accordingly. The relationship between microseismic activities induced by rock mass damage during slope instability, strength degradation, and dynamic instability of the slope are explored, and the slope stability is quantitatively evaluated. The results indicate that a constitutive relation considering microseismic damage is concordant with the simulation results and the influence of rock mass damage can be allowed for its feedback analysis of 3D slope stability. In addition, the safety coefficient of the rock slope considering microseismic damage is reduced by a value of 0.11, in comparison to the virgin rock slope model. Our results

  6. Vegetation as a driver of temporal variations in slope stability: The impact of hydrological processes

    Science.gov (United States)

    Kim, John H.; Fourcaud, Thierry; Jourdan, Christophe; Maeght, Jean-Luc; Mao, Zhun; Metayer, James; Meylan, Louise; Pierret, Alain; Rapidel, Bruno; Roupsard, Olivier; de Rouw, Anneke; Sanchez, Mario Villatoro; Wang, Yan; Stokes, Alexia

    2017-05-01

    Although vegetation is increasingly used to mitigate landslide risks, how vegetation affects the temporal variability of slope stability is poorly understood, especially in earthquake-prone regions. We combined 3-year long soil moisture monitoring, measurements of soil physical properties and plant functional traits, and numerical modeling to compare slope stability under paired land uses with and without trees in tropical, subtropical, and temperate landslide- and earthquake-prone regions. Trees improved stability for 5-12 months per year from drawdown of soil moisture and resulted in less interannual variability in the duration of high-stability periods compared to slopes without trees. Our meta-analysis of published data also showed that slopes with woody vegetation were more stable and less sensitive to climate and soil factors than slopes with herbaceous vegetation. However, estimates of earthquake magnitude necessary to destabilize slopes at our sites suggest that large additional stabilization from trees is necessary for meaningful protection against external triggers.

  7. Soil-water interaction in unsaturated expansive soil slopes

    Institute of Scientific and Technical Information of China (English)

    ZHAN Liangtong

    2007-01-01

    The intensive soil-water interaction in unsatura- ted expansive soil is one of the major reasons for slope fail- ures. In this paper, the soil-water interaction is investigated with the full-scale field inspection of rainwater infiltration and comprehensive experiments, including wetting-induced softening tests, swelling, and shrinkage tests. It is demonstrat- ed that the soil-water interaction induced by seasonal wetting- drying cycles is very complex, and it involves coupled effects among the changes in water content, suction, stress, deforma- tion and shear strength. In addition, the abundant cracks in the expansive soil play an important role in the soil-water interaction. The cracks disintegrate the soil mass, and more importantly, provide easy pathways for rainfall infiltration. Infiltration of rainwater not only results in wetting-induced softening of the shallow unsaturated soil layers, but also leads to the increase of horizontal stress. The increase of horizontal stress may lead to a local passive failure. The seasonal wetting-drying cycles tend to result in a down-slope creeping of the shallow soil layer, which leads to progressive slope failure.

  8. Gravity-induced stresses in finite slopes

    Science.gov (United States)

    Savage, W.Z.

    1994-01-01

    An exact solution for gravity-induced stresses in finite elastic slopes is presented. This solution, which is applied for gravity-induced stresses in 15, 30, 45 and 90?? finite slopes, has application in pit-slope design, compares favorably with published finite element results for this problem and satisfies the conditions that shear and normal stresses vanish on the ground surface. The solution predicts that horizontal stresses are compressive along the top of the slopes (zero in the case of the 90?? slope) and tensile away from the bottom of the slopes, effects which are caused by downward movement and near-surface horizontal extension in front of the slope in response to gravity loading caused by the additional material associated with the finite slope. ?? 1994.

  9. VT Lidar Slope (1 meter) - 2005 - Essex

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Essex County 2005 1m and related SLOPE datasets. Created using ArcGIS "SLOPE" command...

  10. The effect of shearing rate and slope angle on the simple shear response of marine clays

    Science.gov (United States)

    Biscontin, G.; Rutherford, C.

    2010-12-01

    The response of submarine slopes to seismic or storm loading has become an important element in the risk assessment for offshore structures and local tsunami hazard. Evaluation of submarine slope stability requires characterization of soil behavior and relies on the selection of appropriate parameter values. Although the traditional simple shear device has been used to investigate cyclic loading effects on marine clay, it does not allow for complex loading conditions which often contribute to the failure on submarine slopes. Understanding the interaction between the initial shear stress, the slope angle, and the multi-directional shaking due to earthquakes or storm loading is an important aspect to understanding the failure mechanisms of submarine slope failures. The initial static driving force on the slope is combined with the dynamic loading by storms and earthquakes to create complex loading paths. Therefore, the ability to apply complex stress or strain paths is important to fully study the shear response of marine clays on submarine slopes. A new multi-directional simple shear device developed at Texas A&M University allows loading along three independent axes, two perpendicular horizontal directions to allow any stress or strain paths in the horizontal plane, and a third in the vertical direction. This device is used to investigate the response of Gulf of Mexico marine deposits to different loading conditions. To study the effect of slope angle on the shear response of the soil, samples are subjected to a shear stress during consolidation, Kα consolidation. One-dimensional monotonic and cyclic shearing of Ko consolidated specimens is used to simulate level ground conditions, whereas sloping surfaces were simulated using Kα consolidation for both monotonic and cyclic tests. The effects of shearing rate on the soil response are investigated using strain controlled tests at varying frequencies.

  11. Comprehensive evaluation of high-steep slope stability and optimal high-steep slope design by 3D physical modeling

    Institute of Scientific and Technical Information of China (English)

    Xing-ping Lai; Peng-fei Shan; Mei-feng Cai; Fen-hua Ren; Wen-hui Tan

    2015-01-01

    High-steep slope stability and its optimal excavation design in Shuichang open pit iron mine were analyzed based on a large 3D physical simulation technique. An optimal excavation scheme with a relatively steeper slope angle was successfully implemented at the northwest wall between Nos. 4 and 5 exploration lines of Shuichang Iron Mine, taking into account the 3D scale effect. The phys-ico-mechanical properties of rock materials were obtained by laboratory tests conducted on sample cores from exploration drilling directly from the iron mine. A porous rock-like composite material was formed for the model, and the mechanical parameters of the material were assessed experimentally;specifically, the effect of water on the sample was quantitatively determined. We adopted an experimental setup using stiff modular applied static loading to carry out a visual excavation of the slope at a random depth. The setup was equipped with acous-tic emission (AE) sensors, and the experiments were monitored by crack optical acquirement, ground penetrating radar, and close-field pho-togrammetry to investigate the mechanisms of rock-mass destabilization in the high-steep slope. For the complex study area, the model re-sults indicated a clear correlation between the model’s destabilization resulting from slope excavation and the collected monitoring informa-tion. During the model simulation, the overall angle of the slope increased by 1–6 degrees in different sections. Dramatically, the modeled excavation scheme saved over 80 million tons of rock from extraction, generating enormous economic and ecological benefits.

  12. Instability investigations of basaltic soil slopes along SH-72, Maharashtra, India

    Directory of Open Access Journals (Sweden)

    M. Ahmad

    2015-02-01

    Full Text Available Mahabaleshwar is one of the most attractive and important destinations for tourists in Maharashtra, India, which experiences frequent slope failure due to high-intensity rain and complex geological conditions. The litho unit of the area is the Deccan Trap Basalt, the most famous consecutive basaltic flows during the late Cretaceous to Tertiary periods. The area is very susceptible to weathering, different degrees of alteration, formation of soils and occurrences of bole beds in between two consecutive basaltic flows. Soil formation process in this area is one of the most influencing factors for slope failure; in addition to this, joints, sub-vertical-to-vertical slopes, heavy rainfalls, etc. also play a pivotal role in instability. These transformed soils create instability on the slopes and ultimately converge to slope failures. Five types of soils have been identified during field investigations, petrographic study and X-ray diffraction that indicate change in composition and colour variations. Geomechanical properties viz. bulk density, grain size analysis, Atterberg limit, uniaxial compressive strength, cohesion and angle of internal friction were calculated for five types of soil samples. Effects of these soils on slope stability have been depicted with the help of numerical program Slide 6.0 based on limit equilibrium method.

  13. Geomorphological control on variably saturated hillslope hydrology and slope instability

    Science.gov (United States)

    Giuseppe, Formetta; Simoni, Silvia; Godt, Jonathan W.; Lu, Ning; Rigon, Riccardo

    2016-01-01

    In steep topography, the processes governing variably saturated subsurface hydrologic response and the interparticle stresses leading to shallow landslide initiation are physically linked. However, these processes are usually analyzed separately. Here, we take a combined approach, simultaneously analyzing the influence of topography on both hillslope hydrology and the effective stress fields within the hillslope itself. Clearly, runoff and saturated groundwater flow are dominated by gravity and, ultimately, by topography. Less clear is how landscape morphology influences flows in the vadose zone, where transient fluxes are usually taken to be vertical. We aim to assess and quantify the impact of topography on both saturated and unsaturated hillslope hydrology and its effects on shallow slope stability. Three real hillslope morphologies (concave, convex, and planar) are analyzed using a 3-D, physically based, distributed model coupled with a module for computation of the probability of failure, based on the infinite slope assumption. The results of the analyses, which included parameter uncertainty analysis of the results themselves, show that convex and planar slopes are more stable than concave slopes. Specifically, under the same initial, boundary, and infiltration conditions, the percentage of unstable areas ranges from 1.3% for the planar hillslope, 21% for convex, to a maximum value of 33% for the concave morphology. The results are supported by a sensitivity analysis carried out to examine the effect of initial conditions and rainfall intensity.

  14. Geomorphological control on variably saturated hillslope hydrology and slope instability

    Science.gov (United States)

    Giuseppe, Formetta; Simoni, Silvia; Godt, Jonathan W.; Lu, Ning; Rigon, Riccardo

    2016-06-01

    In steep topography, the processes governing variably saturated subsurface hydrologic response and the interparticle stresses leading to shallow landslide initiation are physically linked. However, these processes are usually analyzed separately. Here, we take a combined approach, simultaneously analyzing the influence of topography on both hillslope hydrology and the effective stress fields within the hillslope itself. Clearly, runoff and saturated groundwater flow are dominated by gravity and, ultimately, by topography. Less clear is how landscape morphology influences flows in the vadose zone, where transient fluxes are usually taken to be vertical. We aim to assess and quantify the impact of topography on both saturated and unsaturated hillslope hydrology and its effects on shallow slope stability. Three real hillslope morphologies (concave, convex, and planar) are analyzed using a 3-D, physically based, distributed model coupled with a module for computation of the probability of failure, based on the infinite slope assumption. The results of the analyses, which included parameter uncertainty analysis of the results themselves, show that convex and planar slopes are more stable than concave slopes. Specifically, under the same initial, boundary, and infiltration conditions, the percentage of unstable areas ranges from 1.3% for the planar hillslope, 21% for convex, to a maximum value of 33% for the concave morphology. The results are supported by a sensitivity analysis carried out to examine the effect of initial conditions and rainfall intensity.

  15. In-Place Randomized Slope Selection

    DEFF Research Database (Denmark)

    Blunck, Henrik; Vahrenhold, Jan

    2006-01-01

    Slope selection, i.e. selecting the slope with rank k among all 􀀀n 2lines induced by a collection P of points, results in a widely used robust estimator for linefitting. In this paper, we demonstrate that it is possible to perform slope selection in expected O(n·log2 n) time using only...

  16. In-Place Randomized Slope Selection

    DEFF Research Database (Denmark)

    Blunck, Henrik; Vahrenhold, Jan

    2006-01-01

    Slope selection, i.e. selecting the slope with rank k among all 􀀀n 2lines induced by a collection P of points, results in a widely used robust estimator for linefitting. In this paper, we demonstrate that it is possible to perform slope selection in expected O(n·log2 n) time using only...

  17. Slope Safety Factor Calculations With Non-Linear Yield Criterion Using Finite Elements

    DEFF Research Database (Denmark)

    Clausen, Johan; Damkilde, Lars

    2006-01-01

    The factor of safety for a slope is calculated with the finite element method using a non-linear yield criterion of the Hoek-Brown type. The parameters of the Hoek-Brown criterion are found from triaxial test data. Parameters of the linear Mohr-Coulomb criterion are calibrated to the same triaxial...... are carried out at much higher stress levels than present in a slope failure, this leads to the conclusion that the use of the non-linear criterion leads to a safer slope design...

  18. Slope Safety Factor Calculations With Non-Linear Yield Criterion Using Finite Elements

    DEFF Research Database (Denmark)

    Clausen, Johan Christian; Damkilde, Lars

    2006-01-01

    The factor of safety for a slope is calculated with the finite element method using a non-linear yield criterion of the Hoek-Brown type. The parameters of the Hoek-Brown criterion are found from triaxial test data. Parameters of the linear Mohr-Coulomb criterion are calibrated to the same triaxial...... are carried out at much higher stress levels than present in a slope failure, this leads to the conclusion that the use of the non-linear criterion leads to a safer slope design....

  19. Slope Safety Factor Calculations With Non-Linear Yield Criterion Using Finite Elements

    DEFF Research Database (Denmark)

    Clausen, Johan Christian; Damkilde, Lars

    2006-01-01

    The factor of safety for a slope is calculated with the finite element method using a non-linear yield criterion of the Hoek-Brown type. The parameters of the Hoek-Brown criterion are found from triaxial test data. Parameters of the linear Mohr-Coulomb criterion are calibrated to the same triaxial...... are carried out at much higher stress levels than present in a slope failure, this leads to the conclusion that the use of the non-linear criterion leads to a safer slope design....

  20. Slope Safety Factor Calculations With Non-Linear Yield Criterion Using Finite Elements

    DEFF Research Database (Denmark)

    Clausen, Johan; Damkilde, Lars

    2006-01-01

    The factor of safety for a slope is calculated with the finite element method using a non-linear yield criterion of the Hoek-Brown type. The parameters of the Hoek-Brown criterion are found from triaxial test data. Parameters of the linear Mohr-Coulomb criterion are calibrated to the same triaxial...... are carried out at much higher stress levels than present in a slope failure, this leads to the conclusion that the use of the non-linear criterion leads to a safer slope design...

  1. [Heart failure and comorbidities].

    Science.gov (United States)

    Boully, Clémence; Hanon, Olivier

    2015-03-01

    Heart failure is a frequent disease in the elderly. Its clinical presentation is less typical and the prognosis more severe than in younger subjects because heart failure occurs in patients with multiple comorbidities. A comprehensive geriatric assessment should therefore be performed to detect the vulnerabilities and manage the comorbidities. The main diseases associated with heart failure are dementia, depression, malnutrition, atrial fibrillation, coronary artery disease, orthostatic hypotension, renal failure, anemia and iron deficiency. Comorbidities worsen heart failure and makes its treatment more difficult. The identification and treatment of comorbidities improve the prognosis in terms of mortality but especially in terms of quality of life. Caution with drugs is necessary because of pharmacokinetic or pharmacodynamic changes related to aging and the comorbidities. In this context, clinical and laboratory monitoring should be increased, mostly during an acute event (acute heart failure, infection, dehydration, fall, new therapy…). Therefore, the follow-up of elderly patients with heart failure requires a multidisciplinary approach that involves close cooperation between cardiologists, geriatricians, general practitioners, nurses, and pharmacists.

  2. ACOUSTIC EMISSION MONITORING FOR WIND TURBINE BLADE COMPOSITE MATERIAL UNDER COMPRESSIVE DAMAGE FAILURE CONDITION%风电叶片复合材料压缩损伤破坏声发射监测

    Institute of Scientific and Technical Information of China (English)

    周伟; 张晓霞; 韦子辉; 钟旸

    2011-01-01

    研究了风电叶片单向复合材料的压缩力学特性及其声发射响应特征.结果表明,复合材料的横向和纵向压缩力学性能及其声发射响应特性明显不同,纵向压缩强度、模量高,失效应变小,对应的声发射相对能量、幅度高,但撞击累积总数少.复合材料具有脆性破坏的特点,横向压缩以45°剪切失效为主,纵向压缩以层间劈裂为主.风电叶片复合材料压缩损伤破坏与声发射的相对能量、幅度、撞击等参量特征有关.%The compressive tests and acoustic emission (AE) response characteristics of wind turbine blade composite material were conducted.The results showed that transverse compressive properties and corresponding AE characteristics of composite material were different to longitudinal direction.High compressive strength, high modulus, low failure strain, high AE relative energy, high amplitude and less cumulative hits were obtained in longitudinal direction.Furthermore, composite specimens exhibited brittle characteristics.The main failure modes of transverse and longitudinal compression were 45° shear failure and layer splitting, respectively.The AE monitoring results such as energy, amplitude, hits and other parameters in compressive tests were useful for monitoring the damage development and failure of the specimen.

  3. Heart Failure in an Infant With Pierre Robin Sequence: Is There a Diagnostic Test to Aid in Treatment Planning and Monitoring?

    Science.gov (United States)

    Biskup, Nataliya; Francis, Stacey H

    2015-11-01

    This case report describes an infant with Pierre Robin sequence who was managed conservatively until he presented at 4 months of age with right-sided heart failure. This rare clinical presentation displays the physiologic response to chronic respiratory obstruction and the acid-base disturbances, which become evident on metabolic panel and blood gas. We suggest that these tests can be added to the workup, especially in conservatively managed infants, to help predict which infants may fail conservative treatment and to avoid the rare complication of heart failure in infants with Pierre Robin sequence.

  4. Relationship of left heart size and left ventricular mass with exercise capacity in chronic heart failure

    Institute of Scientific and Technical Information of China (English)

    SHEN Yu-qin; WANG Le-min; CHE Lin; SONG Hao-ming; ZHANG Qi-ping

    2011-01-01

    Background Impaired exercise capacity is one of the most common clinical manifestations in patients with chronic heart failure (CHF). The severity of reduced exercise capacity is an indicator of disease prognosis. The aim of the current study was to investigate the association between left heart size and mass with exercise capacity.Methods A total of 74 patients were enrolled in the study, with 37 having congestive heart failure (left ventricular ejection fraction (LVEF) <0.45) and the other 37 with coronary heart disease (by coronary angiography) serving as the control group (LVEF >0.55). Echocardiography and cardiopulmonary exercise test were performed. The multiply linear regression model was used to evaluate the association between echocardiogrphic indices and exercise capacities.Results The study showed that left ventricular end diastolic / systolic diameter (LVEDD/LVESD), left atrial diameter (LAD) and left ventricular mass index (LVMI) were significantly enlarged in patients with chronic heart failure compared with controls (P <0.01). The VO2AT, Peak VO2, Load AT, and Load Peak in chronic heart failure patients were also significantly reduced compared with controls (P <0.05), VE/VCO2 slope was increased in patients with chronic heart failure (P <0.01). Multivariate linear regression analysis indicated that the patients' exercise capacity was significantly associated with the left heart size and mass, however, the direction and/or strength of the associations sometimes varied in chronic heart failure patients and controls. Load AT correlated negatively with LVEDD in chronic heart failure patients (P=0.012), while Load AT correlated positively with LVEDD in control patients (P=0.006). VE/VCO2 slope correlated positively with LAD (B=0.477, P <0.0001) in chronic heart failure patients, while the VE/VCO2 slope correlated negatively with LAD in control patients (P=0.009).Conclusion The study indicates that the size of LVEDD and LAD are important

  5. Systems failure.

    OpenAIRE

    Macleod, Anna

    1998-01-01

    Systems Failure A solo exhibition of new work by Anna Macleod developed in conversation with curator Liz Burns. The Dock, Carrick on Shannon, Co Leitrim. Ireland. 12th February – 17th April 2010. The works for the exhibition Systems Failure include drawings, prints and small constructions that examine the delicate balance that exists between need and aspects of failure rooted in the relationship between humanity and land use. The work seeks to question the relationship between scient...

  6. Reliability Evaluation of Slopes Using Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Mohammad Khajehzadeh

    2011-01-01

    Full Text Available The objective of this research is to develop a numerical procedure to reliability evaluation of earth slope and locating the critical probabilistic slip surface. The performance function is  formulated using simplified Bishop’s limit equilibrium method  to calculate the reliability index. The reliability index defined by Hasofer and Lind is used as an index of safety measure. Searching the critical probabilistic surface that is associated with the lowest reliability index will be formulated as an optimization problem. In this paper, particle swarm optimization is applied to calculate the minimum Hasofer and Lind reliability index and critical probabilistic failure surface. To demonstrate the applicability and to investigate the effectiveness of the algorithm, two numerical examples from literature are illustrated. Results show that the proposed method is capable to achieve better solutions for reliability analysis of slope if compared with those reported in the literature.

  7. Linking hydrological, infinite slope stability and land-use change models through GIS for assessing the impact of deforestation on slope stability in high Andean watersheds

    Science.gov (United States)

    Vanacker, Veerle; Vanderschaeghe, Michiel; Govers, Gerard; Willems, Edith; Poesen, Jean; Deckers, Jozef; De Bievre, Bert

    2003-06-01

    In the Ecuadorian Andes, episodic slope movements comprising shallow rotational and translational slides and rapid flows of debris and soil material are common. Consequently, not only considerable financial costs are experienced, but also major ecological and environmental problems arise in a larger geographical area. Sediment production by slope movement on hillslopes directly affects sediment transport and deposition in downstream rivers and dams and morphological changes in the stream channels. In developing countries world-wide, slope movement hazards are growing: increasing population pressure and economic development force more people to move to potentially hazardous areas, which are less suitable for agriculture and rangelands. This paper describes the methods used to determine the controlling factors of slope failure and to build upon the results of the statistical analysis a process-based slope stability model, which includes a dynamic soil wetness index using a simple subsurface flow model. The model provides a time-varying estimate of slope movement susceptibility, by linking land-use data with spatially varying hydrologic (soil conductivity, evapotranspiration, soil wetness) and soil strength properties. The slope stability model was applied to a high Andean watershed (Gordeleg Catchment, 250 ha, southern Ecuadorian Andes) and was validated by calculating the association coefficients between the slope movement susceptibility map of 2000 and the spatial pattern of active slope movements, as measured in the field with GPS. The proposed methodology allows assessment of the effects of past and future land-use change on slope stability. A realistic deforestation scenario was presented: past land-use change includes a gradual fragmentation and clear cut of the secondary forests, as observed over the last four decades (1963-2000), future land-use change is simulated based on a binary logistic deforestation model, whereby it was assumed that future land

  8. A risk-adjusted O-E CUSUM with monitoring bands for monitoring medical outcomes.

    Science.gov (United States)

    Sun, Rena Jie; Kalbfleisch, John D

    2013-03-01

    In order to monitor a medical center's survival outcomes using simple plots, we introduce a risk-adjusted Observed-Expected (O-E) Cumulative SUM (CUSUM) along with monitoring bands as decision criterion.The proposed monitoring bands can be used in place of a more traditional but complicated V-shaped mask or the simultaneous use of two one-sided CUSUMs. The resulting plot is designed to simultaneously monitor for failure time outcomes that are "worse than expected" or "better than expected." The slopes of the O-E CUSUM provide direct estimates of the relative risk (as compared to a standard or expected failure rate) for the data being monitored. Appropriate rejection regions are obtained by controlling the false alarm rate (type I error) over a period of given length. Simulation studies are conducted to illustrate the performance of the proposed method. A case study is carried out for 58 liver transplant centers. The use of CUSUM methods for quality improvement is stressed.

  9. Analysis of rainfall-induced slope instability using a field of local factor of safety

    Science.gov (United States)

    Lu, Ning; Şener-Kaya, Başak; Wayllace, Alexandra; Godt, Jonathan W.

    2012-01-01

    Slope-stability analyses are mostly conducted by identifying or assuming a potential failure surface and assessing the factor of safety (FS) of that surface. This approach of assigning a single FS to a potentially unstable slope provides little insight on where the failure initiates or the ultimate geometry and location of a landslide rupture surface. We describe a method to quantify a scalar field of FS based on the concept of the Coulomb stress and the shift in the state of stress toward failure that results from rainfall infiltration. The FS at each point within a hillslope is called the local factor of safety (LFS) and is defined as the ratio of the Coulomb stress at the current state of stress to the Coulomb stress of the potential failure state under the Mohr-Coulomb criterion. Comparative assessment with limit-equilibrium and hybrid finite element limit-equilibrium methods show that the proposed LFS is consistent with these approaches and yields additional insight into the geometry and location of the potential failure surface and how instability may initiate and evolve with changes in pore water conditions. Quantitative assessments applying the new LFS field method to slopes under infiltration conditions demonstrate that the LFS has the potential to overcome several major limitations in the classical FS methodologies such as the shape of the failure surface and the inherent underestimation of slope instability. Comparison with infinite-slope methods, including a recent extension to variably saturated conditions, shows further enhancement in assessing shallow landslide occurrence using the LFS methodology. Although we use only a linear elastic solution for the state of stress with no post-failure analysis that require more sophisticated elastoplastic or other theories, the LFS provides a new means to quantify the potential instability zones in hillslopes under variably saturated conditions using stress-field based methods.

  10. Comprehensive analysis of slope stability and determination of stable slopes in the Chador-Malu iron ore mine using numerical and limit equilibrium methods

    Institute of Scientific and Technical Information of China (English)

    ATAEIM; BODAGHABADIS

    2008-01-01

    One of the critical aspects in mine design is slope stability analysis and the determination of stable slopes. In the Chador Malu iron ore mine, one of the most important iron ore mines in central Iran, it was considered vital to perform a comprehensive slope stability analysis. At first, we divided the existing rock hosting pit into six zones and a geotechnical map was prepared. Then,the value of MRMR (Mining Rock Mass Rating) was determined for each zone. Owing to the fact that the Chador-Malu iron ore mine is located in a highly tectonic area and the rock mass completely crushed, the Hock-Brown failure criterion was found suitable to estimate geo-mechanical parameters. After that, the value of cohesion (c) and friction angle (e) were calculated for different geotechnical zones and relative graphs and equations were derived as a function of slope height. The stability analyses using numerical and limit equilibrium methods showed that some instability problems might occur by increasing the slope height.Therefore, stable slopes for each geotechnical zone and prepared sections were calculated and presented as a function of slope height.

  11. Morpho-structural evolution of the valley-slope systems and related implications on slope-scale gravitational processes: New results from the Mt. Genzana case history (Central Apennines, Italy)

    Science.gov (United States)

    Della Seta, M.; Esposito, C.; Marmoni, G. M.; Martino, S.; Scarascia Mugnozza, G.; Troiani, F.

    2017-07-01

    This work is aimed at constraining a slope-scale, deep-seated gravitational slope deformation (DSGSD) and an associated rockslide-avalanche in the frame of the Quaternary morpho-structural evolution of Central Apennines (Italy). The study area is the western slope of the Mt. Genzana calcareous ridge, for which a conceptual slope evolutionary model had been already proposed. The existing model has highlighted the role