WorldWideScience

Sample records for monitor signals produced

  1. Plant monitoring and signal validation at HFIR

    International Nuclear Information System (INIS)

    Mullens, J.A.

    1991-01-01

    This paper describes a monitoring system for the Oak Ridge National Laboratory's (ORNL'S) High Flux Isotope Reactor (HFIR). HFIR is an 85 MW pressurized water reactor designed to produce isotopes and intense neutron beams. The monitoring system is described with respect to plant signals and computer system; monitoring overview; data acquisition, logging and network distribution; signal validation; status displays; reactor condition monitoring; reactor operator aids. Future work will include the addition of more plant signals, more signal validation and diagnostic capabilities, improved status display, integration of the system with the RELAP plant simulation and graphical interface, improved operator aids, and an alarm filtering system. 8 refs., 7 figs. (MB)

  2. Bayesian Inference for Signal-Based Seismic Monitoring

    Science.gov (United States)

    Moore, D.

    2015-12-01

    Traditional seismic monitoring systems rely on discrete detections produced by station processing software, discarding significant information present in the original recorded signal. SIG-VISA (Signal-based Vertically Integrated Seismic Analysis) is a system for global seismic monitoring through Bayesian inference on seismic signals. By modeling signals directly, our forward model is able to incorporate a rich representation of the physics underlying the signal generation process, including source mechanisms, wave propagation, and station response. This allows inference in the model to recover the qualitative behavior of recent geophysical methods including waveform matching and double-differencing, all as part of a unified Bayesian monitoring system that simultaneously detects and locates events from a global network of stations. We demonstrate recent progress in scaling up SIG-VISA to efficiently process the data stream of global signals recorded by the International Monitoring System (IMS), including comparisons against existing processing methods that show increased sensitivity from our signal-based model and in particular the ability to locate events (including aftershock sequences that can tax analyst processing) precisely from waveform correlation effects. We also provide a Bayesian analysis of an alleged low-magnitude event near the DPRK test site in May 2010 [1] [2], investigating whether such an event could plausibly be detected through automated processing in a signal-based monitoring system. [1] Zhang, Miao and Wen, Lianxing. "Seismological Evidence for a Low-Yield Nuclear Test on 12 May 2010 in North Korea". Seismological Research Letters, January/February 2015. [2] Richards, Paul. "A Seismic Event in North Korea on 12 May 2010". CTBTO SnT 2015 oral presentation, video at https://video-archive.ctbto.org/index.php/kmc/preview/partner_id/103/uiconf_id/4421629/entry_id/0_ymmtpps0/delivery/http

  3. SIG-VISA: Signal-based Vertically Integrated Seismic Monitoring

    Science.gov (United States)

    Moore, D.; Mayeda, K. M.; Myers, S. C.; Russell, S.

    2013-12-01

    Traditional seismic monitoring systems rely on discrete detections produced by station processing software; however, while such detections may constitute a useful summary of station activity, they discard large amounts of information present in the original recorded signal. We present SIG-VISA (Signal-based Vertically Integrated Seismic Analysis), a system for seismic monitoring through Bayesian inference on seismic signals. By directly modeling the recorded signal, our approach incorporates additional information unavailable to detection-based methods, enabling higher sensitivity and more accurate localization using techniques such as waveform matching. SIG-VISA's Bayesian forward model of seismic signal envelopes includes physically-derived models of travel times and source characteristics as well as Gaussian process (kriging) statistical models of signal properties that combine interpolation of historical data with extrapolation of learned physical trends. Applying Bayesian inference, we evaluate the model on earthquakes as well as the 2009 DPRK test event, demonstrating a waveform matching effect as part of the probabilistic inference, along with results on event localization and sensitivity. In particular, we demonstrate increased sensitivity from signal-based modeling, in which the SIGVISA signal model finds statistical evidence for arrivals even at stations for which the IMS station processing failed to register any detection.

  4. Atmospheric signals produced by cavity rebound

    International Nuclear Information System (INIS)

    Jones, E.M.; App, F.N.; Whitaker, R.W.

    1993-01-01

    An analysis of the atmospheric acoustic signals produced by a class of low-yield tests conducted just below the base of the alluvial cover in Yucca Flat of the Nevada Test Site (NTS), has revealed a clear manifestation of an elastic, cavity rebound signal. We use modeling as the basis for understanding the observed phenomena

  5. Detection and Processing Techniques of FECG Signal for Fetal Monitoring

    Directory of Open Access Journals (Sweden)

    Hasan MA

    2009-03-01

    Full Text Available Abstract Fetal electrocardiogram (FECG signal contains potentially precise information that could assist clinicians in making more appropriate and timely decisions during labor. The ultimate reason for the interest in FECG signal analysis is in clinical diagnosis and biomedical applications. The extraction and detection of the FECG signal from composite abdominal signals with powerful and advance methodologies are becoming very important requirements in fetal monitoring. The purpose of this review paper is to illustrate the various methodologies and developed algorithms on FECG signal detection and analysis to provide efficient and effective ways of understanding the FECG signal and its nature for fetal monitoring. A comparative study has been carried out to show the performance and accuracy of various methods of FECG signal analysis for fetal monitoring. Finally, this paper further focused some of the hardware implementations using electrical signals for monitoring the fetal heart rate. This paper opens up a passage for researchers, physicians, and end users to advocate an excellent understanding of FECG signal and its analysis procedures for fetal heart rate monitoring system.

  6. Web monitoring of industrial signals using embedded systems

    Directory of Open Access Journals (Sweden)

    Cesar Augusto Romero-Molano

    2016-01-01

    Full Text Available The paper presents the design of software and hardware for a system of web monitoring of industrial signals. This prototype provides a web interface which can observe in real time the status of four industrial-type signal on-off. MSP432 microcontroller is used for sampling and transmitting monitored signals to a Raspberry PI which receives by a UART link the MSP432 monitored data and presents them immediately in the front-end web application. The prototype design was verified with a pneumatic application that consists of four single-acting cylinders and it was observed an efficient synchronization between the occurrence of the triggering event or change in status of any of the monitored cylinder and web publishing.

  7. Gear wear monitoring by modulation signal bispectrum based on motor current signal analysis

    Science.gov (United States)

    Zhang, Ruiliang; Gu, Fengshou; Mansaf, Haram; Wang, Tie; Ball, Andrew D.

    2017-09-01

    Gears are important mechanical components for power transmissions. Tooth wear is one of the most common failure modes, which can present throughout a gear's lifetime. It is significant to accurately monitor gear wear progression in order to take timely predictive maintenances. Motor current signature analysis (MCSA) is an effective and non-intrusive approach which is able to monitor faults from both electrical and mechanical systems. However, little research has been reported in monitoring the gear wear and estimating its severity based on MCSA. This paper presents a novel gear wear monitoring method through a modulation signal bispectrum based motor current signal analysis (MSB-MCSA). For a steady gear transmission, it is inevitable to exist load and speed oscillations due to various errors including wears. These oscillations can induce small modulations in the current signals of the driving motor. MSB is particularly effective in characterising such small modulation signals. Based on these understandings, the monitoring process was implemented based on the current signals from a run-to-failure test of an industrial two stages helical gearbox under a moderate accelerated fatigue process. At the initial operation of the test, MSB analysis results showed that the peak values at the bifrequencies of gear rotations and the power supply can be effective monitoring features for identifying faulty gears and wear severity as they exhibit agreeable changes with gear loads. A monotonically increasing trend established by these features allows a clear indication of the gear wear progression. The dismantle inspection at 477 h of operation, made when one of the monitored features is about 123% higher than its baseline, has found that there are severe scuffing wear marks on a number of tooth surfaces on the driving gear, showing that the gear endures a gradual wear process during its long test operation. Therefore, it is affirmed that the MSB-MSCA approach proposed is reliable

  8. Helmet-based physiological signal monitoring system.

    Science.gov (United States)

    Kim, Youn Sung; Baek, Hyun Jae; Kim, Jung Soo; Lee, Haet Bit; Choi, Jong Min; Park, Kwang Suk

    2009-02-01

    A helmet-based system that was able to monitor the drowsiness of a soldier was developed. The helmet system monitored the electrocardiogram, electrooculogram and electroencephalogram (alpha waves) without constraints. Six dry electrodes were mounted at five locations on the helmet: both temporal sides, forehead region and upper and lower jaw strips. The electrodes were connected to an amplifier that transferred signals to a laptop computer via Bluetooth wireless communication. The system was validated by comparing the signal quality with conventional recording methods. Data were acquired from three healthy male volunteers for 12 min twice a day whilst they were sitting in a chair wearing the sensor-installed helmet. Experimental results showed that physiological signals for the helmet user were measured with acceptable quality without any intrusions on physical activities. The helmet system discriminated between the alert and drowsiness states by detecting blinking and heart rate variability (HRV) parameters extracted from ECG. Blinking duration and eye reopening time were increased during the sleepiness state compared to the alert state. Also, positive peak values of the sleepiness state were much higher, and the negative peaks were much lower than that of the alert state. The LF/HF ratio also decreased during drowsiness. This study shows the feasibility for using this helmet system: the subjects' health status and mental states could be monitored without constraints whilst they were working.

  9. Robust GPS autonomous signal quality monitoring

    Science.gov (United States)

    Ndili, Awele Nnaemeka

    The Global Positioning System (GPS), introduced by the U.S. Department of Defense in 1973, provides unprecedented world-wide navigation capabilities through a constellation of 24 satellites in global orbit, each emitting a low-power radio-frequency signal for ranging. GPS receivers track these transmitted signals, computing position to within 30 meters from range measurements made to four satellites. GPS has a wide range of applications, including aircraft, marine and land vehicle navigation. Each application places demands on GPS for various levels of accuracy, integrity, system availability and continuity of service. Radio frequency interference (RFI), which results from natural sources such as TV/FM harmonics, radar or Mobile Satellite Systems (MSS), presents a challenge in the use of GPS, by posing a threat to the accuracy, integrity and availability of the GPS navigation solution. In order to use GPS for integrity-sensitive applications, it is therefore necessary to monitor the quality of the received signal, with the objective of promptly detecting the presence of RFI, and thus provide a timely warning of degradation of system accuracy. This presents a challenge, since the myriad kinds of RFI affect the GPS receiver in different ways. What is required then, is a robust method of detecting GPS accuracy degradation, which is effective regardless of the origin of the threat. This dissertation presents a new method of robust signal quality monitoring for GPS. Algorithms for receiver autonomous interference detection and integrity monitoring are demonstrated. Candidate test statistics are derived from fundamental receiver measurements of in-phase and quadrature correlation outputs, and the gain of the Active Gain Controller (AGC). Performance of selected test statistics are evaluated in the presence of RFI: broadband interference, pulsed and non-pulsed interference, coherent CW at different frequencies; and non-RFI: GPS signal fading due to physical blockage and

  10. Structural health monitoring an advanced signal processing perspective

    CERN Document Server

    Chen, Xuefeng; Mukhopadhyay, Subhas

    2017-01-01

    This book highlights the latest advances and trends in advanced signal processing (such as wavelet theory, time-frequency analysis, empirical mode decomposition, compressive sensing and sparse representation, and stochastic resonance) for structural health monitoring (SHM). Its primary focus is on the utilization of advanced signal processing techniques to help monitor the health status of critical structures and machines encountered in our daily lives: wind turbines, gas turbines, machine tools, etc. As such, it offers a key reference guide for researchers, graduate students, and industry professionals who work in the field of SHM.

  11. Adenylate Kinase and AMP Signaling Networks: Metabolic Monitoring, Signal Communication and Body Energy Sensing

    Directory of Open Access Journals (Sweden)

    Andre Terzic

    2009-04-01

    Full Text Available Adenylate kinase and downstream AMP signaling is an integrated metabolic monitoring system which reads the cellular energy state in order to tune and report signals to metabolic sensors. A network of adenylate kinase isoforms (AK1-AK7 are distributed throughout intracellular compartments, interstitial space and body fluids to regulate energetic and metabolic signaling circuits, securing efficient cell energy economy, signal communication and stress response. The dynamics of adenylate kinase-catalyzed phosphotransfer regulates multiple intracellular and extracellular energy-dependent and nucleotide signaling processes, including excitation-contraction coupling, hormone secretion, cell and ciliary motility, nuclear transport, energetics of cell cycle, DNA synthesis and repair, and developmental programming. Metabolomic analyses indicate that cellular, interstitial and blood AMP levels are potential metabolic signals associated with vital functions including body energy sensing, sleep, hibernation and food intake. Either low or excess AMP signaling has been linked to human disease such as diabetes, obesity and hypertrophic cardiomyopathy. Recent studies indicate that derangements in adenylate kinase-mediated energetic signaling due to mutations in AK1, AK2 or AK7 isoforms are associated with hemolytic anemia, reticular dysgenesis and ciliary dyskinesia. Moreover, hormonal, food and antidiabetic drug actions are frequently coupled to alterations of cellular AMP levels and associated signaling. Thus, by monitoring energy state and generating and distributing AMP metabolic signals adenylate kinase represents a unique hub within the cellular homeostatic network.

  12. Ultrasensitive, passive and wearable sensors for monitoring human muscle motion and physiological signals.

    Science.gov (United States)

    Cai, Feng; Yi, Changrui; Liu, Shichang; Wang, Yan; Liu, Lacheng; Liu, Xiaoqing; Xu, Xuming; Wang, Li

    2016-03-15

    Flexible sensors have attracted more and more attention as a fundamental part of anthropomorphic robot research, medical diagnosis and physical health monitoring. Here, we constructed an ultrasensitive and passive flexible sensor with the advantages of low cost, lightness and wearability, electric safety and reliability. The fundamental mechanism of the sensor is based on triboelectric effect inducing electrostatic charges on the surfaces between two different materials. Just like a plate capacitor, current will be generated while the distance or size of the parallel capacitors changes caused by the small mechanical disturbance upon it and therefore the output current/voltage will be produced. Typically, the passive sensor unambiguously monitors muscle motions including hand motion from stretch-clench-stretch, mouth motion from open-bite-open, blink and respiration. Moreover, this sensor records the details of the consecutive phases in a cardiac cycle of the apex cardiogram, and identify the peaks including percussion wave, tidal wave and diastolic wave of the radial pulse wave. To record subtle human physiological signals including radial pulsilogram and apex cardiogram with excellent signal/noise ratio, stability and reproducibility, the sensor shows great potential in the applications of medical diagnosis and daily health monitoring. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Novel textile systems for the continuous monitoring of vital signals: design and characterization.

    Science.gov (United States)

    Trindade, Isabel G; Martins, Frederico; Dias, Rúben; Oliveira, Cristina; Machado da Silva, José

    2015-08-01

    In this article we present a smart textile system for the continuous monitoring of cardiorespiratory signals, produced and integrated with an industrial embroidery unit. The design of a T-shirt system, having embedded textile sensors and interconnects and custom designed circuit for data collection and Bluetooth transmission is presented. The performance of skin-contact textile electrodes, having distinctive electrical characteristics and surface morphologies, was characterized by measurements of signal to noise ratio, under dry and moisture conditions. The influence of the electrodes size and the wear resistance were addressed. Results of an electrocardiogram acquisition with a subject wearing the T-shirt and display on a smartphone are also shown. The presented smart textile systems exhibit good performance and versatility for custom demand production.

  14. Optical Performance Monitoring and Signal Optimization in Optical Networks

    DEFF Research Database (Denmark)

    Petersen, Martin Nordal

    2006-01-01

    The thesis studies performance monitoring for the next generation optical networks. The focus is on all-optical networks with bit-rates of 10 Gb/s or above. Next generation all-optical networks offer large challenges as the optical transmitted distance increases and the occurrence of electrical-optical......-electrical regeneration points decreases. This thesis evaluates the impact of signal degrading effects that are becoming of increasing concern in all-optical high-speed networks due to all-optical switching and higher bit-rates. Especially group-velocity-dispersion (GVD) and a number of nonlinear effects will require...... enhanced attention to avoid signal degradations. The requirements for optical performance monitoring features are discussed, and the thesis evaluates the advantages and necessity of increasing the level of performance monitoring parameters in the physical layer. In particular, methods for optical...

  15. Experimental study on engine gas-path component fault monitoring using exhaust gas electrostatic signal

    International Nuclear Information System (INIS)

    Sun, Jianzhong; Zuo, Hongfu; Liu, Pengpeng; Wen, Zhenhua

    2013-01-01

    This paper presents the recent development in engine gas-path components health monitoring using electrostatic sensors in combination with signal-processing techniques. Two ground-based engine electrostatic monitoring experiments are reported and the exhaust gas electrostatic monitoring signal-based fault-detection method is proposed. It is found that the water washing, oil leakage and combustor linear cracking result in an increase in the activity level of the electrostatic monitoring signal, which can be detected by the electrostatic monitoring system. For on-line health monitoring of the gas-path components, a baseline model-based fault-detection method is proposed and the multivariate state estimation technique is used to establish the baseline model for the electrostatic monitoring signal. The method is applied to a data set from a turbo-shaft engine electrostatic monitoring experiment. The results of the case study show that the system with the developed method is capable of detecting the gas-path component fault in an on-line fashion. (paper)

  16. Monitoring of electric-cardio signals based on DSP

    Science.gov (United States)

    Yan, Yi-xin; Sun, Hui-nan; Lv, Shuang

    2008-10-01

    Monitoring of electric-cardio signals is the most direct method of discovering heart diseases. This article presents an electric-cardio signal acquisition and processing system based on DSP. According to the features of electric-cardio signals, the proposed system uses the AgCl electrode as electric-cardio signals sensor, and acquires analog signals with AD620 as the prepositional amplifier, and the digital system equipped is with TMS320LF2407A DSP. The design of digital filter and the analysis of heart rate variation are realized by programming in the DSP. Finally the ECG is obtained with P and T waves along with obvious QRS multi-wave characteristics. The system has low power dissipation, low cost and high precision, which meets the requirements for medical instruments.

  17. Ionization and scintillation signals produced by relativistic La ions in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, H J; Doke, T; Hitachi, H; Kikuchi, J; Lindstrom, P J; Masuda, K; Shibamura, E; Nagamiya, S

    1987-04-15

    We have observed simultaneously the ionization and scintillation signals produced by relativistic La ions in liquid argon. The two signals are highly correlated and the sums of these signals are constant with the standard deviation of 1.2% over the range of the electric field from 0 to 7.5 kV/cm. The ratio of the sum signals expressed in unit of the number of species to the value N/sub i/ + N/sub ex/ is close to unity where N/sub i/ and N/sub ex/ are the numbers of ion pairs and excitons, respectively, produced by La ions in liquid argon. The pulse height resolution of the sum of the signals is better than that of ionization or scintillation alone. Almost no quenching is found in the scintillation signal from relativistic La ions when compared to signals from lighter ions.

  18. Development of a central PC-based system for reactor signal monitoring and analysis

    International Nuclear Information System (INIS)

    Karim, A.; Ansari, S.A.; Baig, A.R.

    1996-05-01

    A personal computer based system was developed for on-line monitoring, signal processing and display of important parameters of the Pakistan Reactor-1. The system was designed for assistance to both reactor operator and users. It performs three main functions. The first is the centralized radiation monitoring in and around the reactor building. The computer acquires signals from radiation monitoring channels and continuously displays them on distributed monitors. Trend monitoring and alarm generation is also done. In case of any abnormal condition the radiation level data is automatically stored in computer memory for detailed off-line analysis. In the second part the computer does the performance testing of nuclear instrumentation channels by signal statistical analysis and generates alarm in case the channel standard deviation error exceeds the permissible error. Mean values of important nuclear signals are also displayed on distributed monitors as a part of reactor safety parameters display system. The third function is on-line computation of reactor physics parameters of the core which are important from operational and safety point-of-view. The signals from radiation protection system and nuclear instrumentation channels in the reactor were interfaced with the computer for this purpose. The development work was done under an IAEA research contract as a part of coordinated research programme. (author) 12 figs

  19. Development of a central PC-based system for reactor signal monitoring and analysis

    International Nuclear Information System (INIS)

    Karim, A.; Ansari, S.A.; Rauf Baig, A.

    1998-01-01

    A personal computer based system was developed for on-line monitoring, signal processing and display of important reactor parameters of the Pakistan Research Reactor-1. The system was designed for assistance to both reactor operator and users. It performs three main functions. The first is the centralized radiation monitoring in and around the reactor building. The computer acquires signals from radiation monitoring channels and continuously displays them on distributed monitors. Trend monitoring and alarm generation is also done. In case of any abnormal condition the radiation level data is automatically stored in computer memory for detailed off-line analysis. In the second part the computer does the performance testing of nuclear instrumentation channels by signal statistical analysis, and generates alarm in case the channel standard deviation error exceeds the permissible error. Mean values of important nuclear signals are also displayed on distributed monitors as a part of reactor safety parameters display system. The third function is on-line computation of reactor physics parameters of the core which are important from operational and safety points-of-view. The signals from radiation protection system and nuclear instrumentation channels in the reactor were interfaced with the computer for this purpose. The development work was done under an IAEA research contract as a part of coordinated research programme. (author)

  20. Radioactivity monitoring of Irish dairy produce

    International Nuclear Information System (INIS)

    Kelleher, K.

    2010-01-01

    Full text: The RPII has been carrying out monitoring of milk and dairy produce since 1986. Milk samples are routinely analysed for radiocaesium and strontium-90 as part of the RPII's environmental monitoring programme to determine the doses received to the Irish population from milk consumption. The method the RPII utilises for determining the Sr-90 activity in milk is by measuring the Cerenkov radiation produced by its daughter 90 Y isolated from interfering nuclides such as uranium, thorium, radium and their decay products as well as isotopes of caesium, potassium and strontium by extraction with 10% di-(2-ethylhexyl)phosphate (HDEHP) in toluene. The chemical yield of 90 Y is determined by the acidmetric titration of yttrium nitrate carrier with titriplex III. The levels of Sr-90 and dose to the Irish population from milk consumption have been negligible when compared to other radioactive sources in the Irish environment. Other dairy products are analysed for radiocaesium on a routine basis for commercial customers to ensure the levels of radioactivity in the dairy products fall within EC regulations governing the export/import of dairy produce. The export of milk and milk produce from Ireland is a very important industry, 80% of dairy products produced in Ireland are exported and these exports are worth Euro 2.2 billion annually to the Irish economy. The dairy products are analysed by gamma spectroscopy and include full and skim milk powders, butter, casein, cheese, cream, whey and lactose. The levels of radiocaesium in these products are typically below 5 Bk/kg and fall well within the limit of 370 Bq/kg laid down by the European Community in Council Regulation 737/90. Although the levels of these radionuclides are relatively low the RPII recognises the importance of analysing these samples for radioactivity to inform the public, ensure consumer confidence and, more importantly, to maintain a level of expertise in the RPII in these analytical techniques so that

  1. Radioactivity monitoring of Irish dairy produce

    Energy Technology Data Exchange (ETDEWEB)

    Kelleher, K. (Radiological Protection Institute of Ireland. Radiation Monitoring, Dublin (Ireland))

    2010-03-15

    Full text: The RPII has been carrying out monitoring of milk and dairy produce since 1986. Milk samples are routinely analysed for radiocaesium and strontium-90 as part of the RPII's environmental monitoring programme to determine the doses received to the Irish population from milk consumption. The method the RPII utilises for determining the Sr-90 activity in milk is by measuring the Cerenkov radiation produced by its daughter 90Y isolated from interfering nuclides such as uranium, thorium, radium and their decay products as well as isotopes of caesium, potassium and strontium by extraction with 10% di-(2-ethylhexyl)phosphate (HDEHP) in toluene. The chemical yield of 90Y is determined by the acidmetric titration of yttrium nitrate carrier with titriplex III. The levels of Sr-90 and dose to the Irish population from milk consumption have been negligible when compared to other radioactive sources in the Irish environment. Other dairy products are analysed for radiocaesium on a routine basis for commercial customers to ensure the levels of radioactivity in the dairy products fall within EC regulations governing the export/import of dairy produce. The export of milk and milk produce from Ireland is a very important industry, 80% of dairy products produced in Ireland are exported and these exports are worth Euro 2.2 billion annually to the Irish economy. The dairy products are analysed by gamma spectroscopy and include full and skim milk powders, butter, casein, cheese, cream, whey and lactose. The levels of radiocaesium in these products are typically below 5 Bk/kg and fall well within the limit of 370 Bq/kg laid down by the European Community in Council Regulation 737/90. Although the levels of these radionuclides are relatively low the RPII recognises the importance of analysing these samples for radioactivity to inform the public, ensure consumer confidence and, more importantly, to maintain a level of expertise in the RPII in these analytical techniques so

  2. Monitoring Streambed Scour/Deposition Under Nonideal Temperature Signal and Flood Conditions

    Science.gov (United States)

    DeWeese, Timothy; Tonina, Daniele; Luce, Charles

    2017-12-01

    Streambed erosion and deposition are fundamental geomorphic processes in riverbeds, and monitoring their evolution is important for ecological system management and in-stream infrastructure stability. Previous research showed proof of concept that analysis of paired temperature signals of stream and pore waters can simultaneously provide monitoring scour and deposition, stream sediment thermal regime, and seepage velocity information. However, it did not address challenges often associated with natural systems, including nonideal temperature variations (low-amplitude, nonsinusoidal signal, and vertical thermal gradients) and natural flooding conditions on monitoring scour and deposition processes over time. Here we addressed this knowledge gap by testing the proposed thermal scour-deposition chain (TSDC) methodology, with laboratory experiments to test the impact of nonideal temperature signals under a range of seepage velocities and with a field application during a pulse flood. Both analyses showed excellent match between surveyed and temperature-derived bed elevation changes even under very low temperature signal amplitudes (less than 1°C), nonideal signal shape (sawtooth shape), and strong and changing vertical thermal gradients (4°C/m). Root-mean-square errors on predicting the change in streambed elevations were comparable with the median grain size of the streambed sediment. Future research should focus on improved techniques for temperature signal phase and amplitude extractions, as well as TSDC applications over long periods spanning entire hydrographs.

  3. Property-Based Monitoring of Analog and Mixed-Signal Systems

    Science.gov (United States)

    Havlicek, John; Little, Scott; Maler, Oded; Nickovic, Dejan

    In the recent past, there has been a steady growth of the market for consumer embedded devices such as cell phones, GPS and portable multimedia systems. In embedded systems, digital, analog and software components are combined on a single chip, resulting in increasingly complex designs that introduce richer functionality on smaller devices. As a consequence, the potential insertion of errors into a design becomes higher, yielding an increasing need for automated analog and mixed-signal validation tools. In the purely digital setting, formal verification based on properties expressed in industrial specification languages such as PSL and SVA is nowadays successfully integrated in the design flow. On the other hand, the validation of analog and mixed-signal systems still largely depends on simulation-based, ad-hoc methods. In this tutorial, we consider some ingredients of the standard verification methodology that can be successfully exported from digital to analog and mixed-signal setting, in particular property-based monitoring techniques. Property-based monitoring is a lighter approach to the formal verification, where the system is seen as a "black-box" that generates sets of traces, whose correctness is checked against a property, that is its high-level specification. Although incomplete, monitoring is effectively used to catch faults in systems, without guaranteeing their full correctness.

  4. TLP Structural Health Monitoring Based on Vibration Signal of Energy Harvesting System

    Directory of Open Access Journals (Sweden)

    Vahid Jahangiri

    Full Text Available Abstract Structural Health Monitoring (SHM of Tension Leg Platform (TLP is very crucial for preventing catastrophic and sudden collapse of the structures. One of the methods of monitoring these structures is implementing SHM sensors. Supplying energy for these sensors for a long period is a challenging problem. So, one of the new methods of supplying energy for SHM, is usage of mechanical energy. In this method, the piezoelectric material is employed to convert the mechanical energy which is resulted from vibration of structure, to electrical energy. The advantage of this method is based on not implementing the battery charging system. Therefore, in this paper, after modeling TLP structure, energy supplying of these sensors with piezoelectric converters is studied. Furthermore, fault diagnosis of these structures in the presence of different uncertainties is proposed by the features of voltage signal, produced from piezoelectric patches and fuzzy classification method. Results show that this method can diagnose faults of the structure with an acceptable success rate.

  5. Research on on-line monitoring technology for steel ball's forming process based on load signal analysis method

    Science.gov (United States)

    Li, Ying-jun; Ai, Chang-sheng; Men, Xiu-hua; Zhang, Cheng-liang; Zhang, Qi

    2013-04-01

    This paper presents a novel on-line monitoring technology to obtain forming quality in steel ball's forming process based on load signal analysis method, in order to reveal the bottom die's load characteristic in initial cold heading forging process of steel balls. A mechanical model of the cold header producing process is established and analyzed by using finite element method. The maximum cold heading force is calculated. The results prove that the monitoring on the cold heading process with upsetting force is reasonable and feasible. The forming defects are inflected on the three feature points of the bottom die signals, which are the initial point, infection point, and peak point. A novel PVDF piezoelectric force sensor which is simple on construction and convenient on installation is designed. The sensitivity of the PVDF force sensor is calculated. The characteristics of PVDF force sensor are analyzed by FEM. The PVDF piezoelectric force sensor is fabricated to acquire the actual load signals in the cold heading process, and calibrated by a special device. The measuring system of on-line monitoring is built. The characteristics of the actual signals recognized by learning and identification algorithm are in consistence with simulation results. Identification of actual signals shows that the timing difference values of all feature points for qualified products are not exceed ±6 ms, and amplitude difference values are less than ±3%. The calibration and application experiments show that PVDF force sensor has good static and dynamic performances, and is competent at dynamic measuring on upsetting force. It greatly improves automatic level and machining precision. Equipment capacity factor with damages identification method depends on grade of steel has been improved to 90%.

  6. Acoustic monitoring of rotating machine by advanced signal processing technology

    International Nuclear Information System (INIS)

    Kanemoto, Shigeru

    2010-01-01

    The acoustic data remotely measured by hand held type microphones are investigated for monitoring and diagnosing the rotational machine integrity in nuclear power plants. The plant operator's patrol monitoring is one of the important activities for condition monitoring. However, remotely measured sound has some difficulties to be considered for precise diagnosis or quantitative judgment of rotating machine anomaly, since the measurement sensitivity is different in each measurement, and also, the sensitivity deteriorates in comparison with an attached type sensor. Hence, in the present study, several advanced signal processing methods are examined and compared in order to find optimum anomaly monitoring technology from the viewpoints of both sensitivity and robustness of performance. The dimension of pre-processed signal feature patterns are reduced into two-dimensional space for the visualization by using the standard principal component analysis (PCA) or the kernel based PCA. Then, the normal state is classified by using probabilistic neural network (PNN) or support vector data description (SVDD). By using the mockup test facility of rotating machine, it is shown that the appropriate combination of the above algorithms gives sensitive and robust anomaly monitoring performance. (author)

  7. Signal processing methods for in-situ creep specimen monitoring

    Science.gov (United States)

    Guers, Manton J.; Tittmann, Bernhard R.

    2018-04-01

    Previous work investigated using guided waves for monitoring creep deformation during accelerated life testing. The basic objective was to relate observed changes in the time-of-flight to changes in the environmental temperature and specimen gage length. The work presented in this paper investigated several signal processing strategies for possible application in the in-situ monitoring system. Signal processing methods for both group velocity (wave-packet envelope) and phase velocity (peak tracking) time-of-flight were considered. Although the Analytic Envelope found via the Hilbert transform is commonly applied for group velocity measurements, erratic behavior in the indicated time-of-flight was observed when this technique was applied to the in-situ data. The peak tracking strategies tested had generally linear trends, and tracking local minima in the raw waveform ultimately showed the most consistent results.

  8. Fabrication of Composite Microneedle Array Electrode for Temperature and Bio-Signal Monitoring.

    Science.gov (United States)

    Sun, Yiwei; Ren, Lei; Jiang, Lelun; Tang, Yong; Liu, Bin

    2018-04-13

    Body temperature and bio-signals are important health indicators that reflect the human health condition. However, monitoring these indexes is inconvenient and time-consuming, requires various instruments, and needs professional skill. In this study, a composite microneedle array electrode (CMAE) was designed and fabricated. It simultaneously detects body temperature and bio-signals. The CMAE consists of a 6 × 6 microneedles array with a height of 500 μm and a base diameter of 200 μm. Multiple insertion experiments indicate that the CMAE possesses excellent mechanical properties. The CMAE can pierce porcine skin 100 times without breaking or bending. A linear calibration relationship between temperature and voltage are experimentally obtained. Armpit temperature (35.8 °C) and forearm temperature (35.3 °C) are detected with the CMAE, and the measurements agree well with the data acquired with a clinical thermometer. Bio-signals including EII, ECG, and EMG are recorded and compared with those obtained by a commercial Ag/AgCl electrode. The CMAE continuously monitors bio-signals and is more convenient to apply because it does not require skin preparation and gel usage. The CMAE exhibits good potential for continuous and repetitive monitoring of body temperature and bio-signals.

  9. Fabrication of Composite Microneedle Array Electrode for Temperature and Bio-Signal Monitoring

    Directory of Open Access Journals (Sweden)

    Yiwei Sun

    2018-04-01

    Full Text Available Body temperature and bio-signals are important health indicators that reflect the human health condition. However, monitoring these indexes is inconvenient and time-consuming, requires various instruments, and needs professional skill. In this study, a composite microneedle array electrode (CMAE was designed and fabricated. It simultaneously detects body temperature and bio-signals. The CMAE consists of a 6 × 6 microneedles array with a height of 500 μm and a base diameter of 200 μm. Multiple insertion experiments indicate that the CMAE possesses excellent mechanical properties. The CMAE can pierce porcine skin 100 times without breaking or bending. A linear calibration relationship between temperature and voltage are experimentally obtained. Armpit temperature (35.8 °C and forearm temperature (35.3 °C are detected with the CMAE, and the measurements agree well with the data acquired with a clinical thermometer. Bio-signals including EII, ECG, and EMG are recorded and compared with those obtained by a commercial Ag/AgCl electrode. The CMAE continuously monitors bio-signals and is more convenient to apply because it does not require skin preparation and gel usage. The CMAE exhibits good potential for continuous and repetitive monitoring of body temperature and bio-signals.

  10. Signal and image processing for monitoring and testing at EDF

    International Nuclear Information System (INIS)

    Georgel, B.; Garreau, D.

    1992-04-01

    The quality of monitoring and non destructive testing devices in plants and utilities today greatly depends on the efficient processing of signal and image data. In this context, signal or image processing techniques, such as adaptive filtering or detection or 3D reconstruction, are required whenever manufacturing nonconformances or faulty operation have to be recognized and identified. This paper reviews the issues of industrial image and signal processing, by briefly considering the relevant studies and projects under way at EDF. (authors). 1 fig., 11 refs

  11. An Internet of Things based physiological signal monitoring and receiving system for virtual enhanced health care network.

    Science.gov (United States)

    Rajan, J Pandia; Rajan, S Edward

    2018-01-01

    Wireless physiological signal monitoring system designing with secured data communication in the health care system is an important and dynamic process. We propose a signal monitoring system using NI myRIO connected with the wireless body sensor network through multi-channel signal acquisition method. Based on the server side validation of the signal, the data connected to the local server is updated in the cloud. The Internet of Things (IoT) architecture is used to get the mobility and fast access of patient data to healthcare service providers. This research work proposes a novel architecture for wireless physiological signal monitoring system using ubiquitous healthcare services by virtual Internet of Things. We showed an improvement in method of access and real time dynamic monitoring of physiological signal of this remote monitoring system using virtual Internet of thing approach. This remote monitoring and access system is evaluated in conventional value. This proposed system is envisioned to modern smart health care system by high utility and user friendly in clinical applications. We claim that the proposed scheme significantly improves the accuracy of the remote monitoring system compared to the other wireless communication methods in clinical system.

  12. Development of signal processing electronics for self powered neutron detector signal with built-in on-line insulation monitoring [Paper No.:E3

    International Nuclear Information System (INIS)

    Das, Amitabha; Chaganty, S.P.

    1993-01-01

    Self powered neutron detectors (SPNDs) are employed to monitor in-core neutron flux in nuclear reactors for control, safety and mapping of in-core neutron flux. The d.c. current produced by SPND is converted into a proportional d.c. voltage, which in turn is used for various purposes stated above. This paper describes various features of the SPND amplifier developed in the Electronics Division of Bhabha Atomic Research Centre (BARC). It also outlines the principle of working of on-line monitoring of insulation resistance (IR) of the detector and associated mineral insulated (MI) and soft cables. The amplifier generates an alarm in case of the IR of the detector and the cable assembly falls below an accepted value or the cable is not connected to the amplifier and relieves the operator from periodic and manual checking of each of the individual detectors and ensures the validity of the signal for further processing. (author). 3 figs

  13. RFID Technology for Continuous Monitoring of Physiological Signals in Small Animals.

    Science.gov (United States)

    Volk, Tobias; Gorbey, Stefan; Bhattacharyya, Mayukh; Gruenwald, Waldemar; Lemmer, Björn; Reindl, Leonhard M; Stieglitz, Thomas; Jansen, Dirk

    2015-02-01

    Telemetry systems enable researchers to continuously monitor physiological signals in unrestrained, freely moving small rodents. Drawbacks of common systems are limited operation time, the need to house the animals separately, and the necessity of a stable communication link. Furthermore, the costs of the typically proprietary telemetry systems reduce the acceptance. The aim of this paper is to introduce a low-cost telemetry system based on common radio frequency identification technology optimized for battery-independent operational time, good reusability, and flexibility. The presented implant is equipped with sensors to measure electrocardiogram, arterial blood pressure, and body temperature. The biological signals are transmitted as digital data streams. The device is able of monitoring several freely moving animals housed in groups with a single reader station. The modular concept of the system significantly reduces the costs to monitor multiple physiological functions and refining procedures in preclinical research.

  14. Monitoring of Defects in a Pipe Weld by a Comparison of Magnetostrictive Guided Wave Signals

    International Nuclear Information System (INIS)

    Cheong, Yong-Moo; Oh, Se-Beom; Lee, Duck-Hyun

    2016-01-01

    In this study a computer program for an accurate comparison and subtraction of guided wave signals were developed. The program contains an algorithm for calibration with the flight time and phases of ultrasonic signals in the time domain. Once the reference signals were acquired at the beginning of the monitoring, the signals can be compared to the reference. The signals due to the geometry can be eliminated clearly and an evolution of defect in a pipe can be monitored accurately. In order to improve the detectability and solve the problems of the guided wave methods, a magnetostrictive guided wave sensor technique was proposed. Because the waveforms by the magnetostrictive sensors are quite clear and repeatable, it is possible to detect the defects at the weld regions or even monitor the small variations of the defects after a permanent installation of the magnetostrictive strip sensors. In order to eliminate the signals from the geometry, such as weld, pipe support, branch connection, a computer algorithm and program were developed. A notch with 1.5% of CSA of the pipe can be detected with increased accuracy. The guided wave monitoring technique developed in this study can be a promising tool for inspection of the pipe with limited accessibility, such as insulated or buried pipe

  15. Monitoring of Defects in a Pipe Weld by a Comparison of Magnetostrictive Guided Wave Signals

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Yong-Moo; Oh, Se-Beom; Lee, Duck-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this study a computer program for an accurate comparison and subtraction of guided wave signals were developed. The program contains an algorithm for calibration with the flight time and phases of ultrasonic signals in the time domain. Once the reference signals were acquired at the beginning of the monitoring, the signals can be compared to the reference. The signals due to the geometry can be eliminated clearly and an evolution of defect in a pipe can be monitored accurately. In order to improve the detectability and solve the problems of the guided wave methods, a magnetostrictive guided wave sensor technique was proposed. Because the waveforms by the magnetostrictive sensors are quite clear and repeatable, it is possible to detect the defects at the weld regions or even monitor the small variations of the defects after a permanent installation of the magnetostrictive strip sensors. In order to eliminate the signals from the geometry, such as weld, pipe support, branch connection, a computer algorithm and program were developed. A notch with 1.5% of CSA of the pipe can be detected with increased accuracy. The guided wave monitoring technique developed in this study can be a promising tool for inspection of the pipe with limited accessibility, such as insulated or buried pipe.

  16. Error monitoring issues for common channel signaling

    Science.gov (United States)

    Hou, Victor T.; Kant, Krishna; Ramaswami, V.; Wang, Jonathan L.

    1994-04-01

    Motivated by field data which showed a large number of link changeovers and incidences of link oscillations between in-service and out-of-service states in common channel signaling (CCS) networks, a number of analyses of the link error monitoring procedures in the SS7 protocol were performed by the authors. This paper summarizes the results obtained thus far and include the following: (1) results of an exact analysis of the performance of the error monitoring procedures under both random and bursty errors; (2) a demonstration that there exists a range of error rates within which the error monitoring procedures of SS7 may induce frequent changeovers and changebacks; (3) an analysis of the performance ofthe SS7 level-2 transmission protocol to determine the tolerable error rates within which the delay requirements can be met; (4) a demonstration that the tolerable error rate depends strongly on various link and traffic characteristics, thereby implying that a single set of error monitor parameters will not work well in all situations; (5) some recommendations on a customizable/adaptable scheme of error monitoring with a discussion on their implementability. These issues may be particularly relevant in the presence of anticipated increases in SS7 traffic due to widespread deployment of Advanced Intelligent Network (AIN) and Personal Communications Service (PCS) as well as for developing procedures for high-speed SS7 links currently under consideration by standards bodies.

  17. False alarm reduction in BSN-based cardiac monitoring using signal quality and activity type information.

    Science.gov (United States)

    Tanantong, Tanatorn; Nantajeewarawat, Ekawit; Thiemjarus, Surapa

    2015-02-09

    False alarms in cardiac monitoring affect the quality of medical care, impacting on both patients and healthcare providers. In continuous cardiac monitoring using wireless Body Sensor Networks (BSNs), the quality of ECG signals can be deteriorated owing to several factors, e.g., noises, low battery power, and network transmission problems, often resulting in high false alarm rates. In addition, body movements occurring from activities of daily living (ADLs) can also create false alarms. This paper presents a two-phase framework for false arrhythmia alarm reduction in continuous cardiac monitoring, using signals from an ECG sensor and a 3D accelerometer. In the first phase, classification models constructed using machine learning algorithms are used for labeling input signals. ECG signals are labeled with heartbeat types and signal quality levels, while 3D acceleration signals are labeled with ADL types. In the second phase, a rule-based expert system is used for combining classification results in order to determine whether arrhythmia alarms should be accepted or suppressed. The proposed framework was validated on datasets acquired using BSNs and the MIT-BIH arrhythmia database. For the BSN dataset, acceleration and ECG signals were collected from 10 young and 10 elderly subjects while they were performing ADLs. The framework reduced the false alarm rate from 9.58% to 1.43% in our experimental study, showing that it can potentially assist physicians in diagnosing a vast amount of data acquired from wireless sensors and enhance the performance of continuous cardiac monitoring.

  18. Ultra low power signal oriented approach for wireless health monitoring.

    Science.gov (United States)

    Marinkovic, Stevan; Popovici, Emanuel

    2012-01-01

    In recent years there is growing pressure on the medical sector to reduce costs while maintaining or even improving the quality of care. A potential solution to this problem is real time and/or remote patient monitoring by using mobile devices. To achieve this, medical sensors with wireless communication, computational and energy harvesting capabilities are networked on, or in, the human body forming what is commonly called a Wireless Body Area Network (WBAN). We present the implementation of a novel Wake Up Receiver (WUR) in the context of standardised wireless protocols, in a signal-oriented WBAN environment and present a novel protocol intended for wireless health monitoring (WhMAC). WhMAC is a TDMA-based protocol with very low power consumption. It utilises WBAN-specific features and a novel ultra low power wake up receiver technology, to achieve flexible and at the same time very low power wireless data transfer of physiological signals. As the main application is in the medical domain, or personal health monitoring, the protocol caters for different types of medical sensors. We define four sensor modes, in which the sensors can transmit data, depending on the sensor type and emergency level. A full power dissipation model is provided for the protocol, with individual hardware and application parameters. Finally, an example application shows the reduction in the power consumption for different data monitoring scenarios.

  19. Non-Intrusive Load Monitoring of HVAC Components using Signal Unmixing

    Energy Technology Data Exchange (ETDEWEB)

    Rahimpour, Alireza [University of Tennessee, Knoxville (UTK); Qi, Hairong [ORNL; Fugate, David L [ORNL; Kuruganti, Teja [ORNL

    2015-01-01

    Heating, Ventilating and Air Conditioning units (HVAC) are a major electrical energy consumer in buildings. Monitoring of the operation and energy consumption of HVAC would increase the awareness of building owners and maintenance service providers of the condition and quality of performance of these units, enabling conditioned-based maintenance which would help achieving higher energy efficiency. In this paper, a novel non-intrusive load monitoring method based on group constrained non-negative matrix factorization is proposed for monitoring the different components of HVAC unit by only measuring the whole building aggregated power signal. At the first level of this hierarchical approach, power consumption of the building is decomposed to energy consumption of the HVAC unit and all the other electrical devices operating in the building such as lighting and plug loads. Then, the estimated power signal of the HVAC is used for estimating the power consumption profile of the HVAC major electrical loads such as compressors, condenser fans and indoor blower. Experiments conducted on real data collected from a building testbed maintained at the Oak Ridge National Laboratory (ORNL) demonstrate high accuracy on the disaggregation task.

  20. Monitoring of drilling process with the application of acoustic signal

    Directory of Open Access Journals (Sweden)

    Labaš Milan

    2000-09-01

    Full Text Available Monitoring of rock disintegration process at drilling, scanning of input quantities: thrust F, revolution n and the course of some output quantities: the drilling rate v and the power input P are needed for the control of this process. We can calculate the specific volume work of rock disintegration w and ϕ - quotient of drilling rate v and the specific volume work of disintegration w from the presented quantities.Works on an expertimental stand showed that the correlation relationships between the input and output quantities can be found by scanning the accompanying sound of the drilling proces.Research of the rock disintegration with small-diameter diamond drill tools and different rock types is done at the Institute of Geotechnics. The aim of this research is the possibility of monitoring and controlling the rock disintegration process with the application of acoustic signal. The acoustic vibrations accompanying the drilling process are recorded by a microphone placed in a defined position in the acoustic space. The drilling device (drilling stand, the drilling tool and the rock are the source of sound. Two basic sound states exist in the drilling stand research : the noise at no-load running and the noise at the rotary drilling of rock. Suitable quantities for optimizing the rock disintegration process are searched by the study of the acoustic signal. The dominant frequencies that characterize the disintegration process for the given rock and tool are searched by the analysis of the acoustic signal. The analysis of dominant frequencies indicates the possibility of determining an optimal regime for the maximal drilling rate. Extreme of the specific disintegration energy is determinated by the dispersion of the dominant frequency.The scanned acoustic signal is processed by the Fourier transformation. The Fourier transformation facilitates the distribution of the general non-harmonic periodic process into harmonic components. The harmonic

  1. False Alarm Reduction in BSN-Based Cardiac Monitoring Using Signal Quality and Activity Type Information

    Directory of Open Access Journals (Sweden)

    Tanatorn Tanantong

    2015-02-01

    Full Text Available False alarms in cardiac monitoring affect the quality of medical care, impacting on both patients and healthcare providers. In continuous cardiac monitoring using wireless Body Sensor Networks (BSNs, the quality of ECG signals can be deteriorated owing to several factors, e.g., noises, low battery power, and network transmission problems, often resulting in high false alarm rates. In addition, body movements occurring from activities of daily living (ADLs can also create false alarms. This paper presents a two-phase framework for false arrhythmia alarm reduction in continuous cardiac monitoring, using signals from an ECG sensor and a 3D accelerometer. In the first phase, classification models constructed using machine learning algorithms are used for labeling input signals. ECG signals are labeled with heartbeat types and signal quality levels, while 3D acceleration signals are labeled with ADL types. In the second phase, a rule-based expert system is used for combining classification results in order to determine whether arrhythmia alarms should be accepted or suppressed. The proposed framework was validated on datasets acquired using BSNs and the MIT-BIH arrhythmia database. For the BSN dataset, acceleration and ECG signals were collected from 10 young and 10 elderly subjects while they were performing ADLs. The framework reduced the false alarm rate from 9.58% to 1.43% in our experimental study, showing that it can potentially assist physicians in diagnosing a vast amount of data acquired from wireless sensors and enhance the performance of continuous cardiac monitoring.

  2. Signal Processing Device (SPD) for networked radiation monitoring system

    International Nuclear Information System (INIS)

    Dharmapurikar, A.; Bhattacharya, S.; Mukhopadhyay, P.K.; Sawhney, A.; Patil, R.K.

    2010-01-01

    A networked radiation and parameter monitoring system with three tier architecture is being developed. Signal Processing Device (SPD) is a second level sub-system node in the network. SPD is an embedded system which has multiple input channels and output communication interfaces. It acquires and processes data from first level parametric sensor devices, and sends to third level devices in response to request commands received from host. It also performs scheduled diagnostic operations and passes on the information to host. It supports inputs in the form of differential digital signals and analog voltage signals. SPD communicates with higher level devices over RS232/RS422/USB channels. The system has been designed with main requirements of minimal power consumption and harsh environment in radioactive plants. This paper discusses the hardware and software design details of SPD. (author)

  3. Sensor/signal monitoring and plant maintenance

    International Nuclear Information System (INIS)

    Ciftcioglu, Oe.; Tuerkcan, E.

    1994-02-01

    Nuclear Power Plant (NPO) availability is determined by the intended functionality of safety related system and components. Therefore, maintenance is an important issue in a power plant connected to the plant's reliability and safety. The traditional maintenance policies proved to be rather costly and even not effectively addressing NPP requirements. Referring to these drawbacks, in the last decade, in the nuclear reliability centered maintenance (RCM) gained substantial interest due to its merits. In the formal implementation of RCM, apparently, predictive maintenance is not considered. However, with the impact of modern real-time and on-line surveillance and monitoring methodologies, the predictive maintenance procedures like sensor/signal verification and validation are to be included into RCM. (orig.)

  4. Low-complexity R-peak detection in ECG signals : a preliminary step towards ambulatory fetal monitoring

    NARCIS (Netherlands)

    Rooijakkers, M.J.; Rabotti, C.; Bennebroek, M.; Meerbergen, van J.; Mischi, M.

    2011-01-01

    Non-invasive fetal health monitoring during pregnancy has become increasingly important. Recent advances in signal processing technology have enabled fetal monitoring during pregnancy, using abdominal ECG recordings. Ubiquitous ambulatory monitoring for continuous fetal health measurement is however

  5. Toward Wireless Health Monitoring via an Analog Signal Compression-Based Biosensing Platform.

    Science.gov (United States)

    Zhao, Xueyuan; Sadhu, Vidyasagar; Le, Tuan; Pompili, Dario; Javanmard, Mehdi

    2018-06-01

    Wireless all-analog biosensor design for the concurrent microfluidic and physiological signal monitoring is presented in this paper. The key component is an all-analog circuit capable of compressing two analog sources into one analog signal by the analog joint source-channel coding (AJSCC). Two circuit designs are discussed, including the stacked-voltage-controlled voltage source (VCVS) design with the fixed number of levels, and an improved design, which supports a flexible number of AJSCC levels. Experimental results are presented on the wireless biosensor prototype, composed of printed circuit board realizations of the stacked-VCVS design. Furthermore, circuit simulation and wireless link simulation results are presented on the improved design. Results indicate that the proposed wireless biosensor is well suited for sensing two biological signals simultaneously with high accuracy, and can be applied to a wide variety of low-power and low-cost wireless continuous health monitoring applications.

  6. An innovative non-intrusive driver assistance system for vital signal monitoring.

    NARCIS (Netherlands)

    Sun, Y. & Yu, X.

    2016-01-01

    This paper describes an in-vehicle nonintrusive biopotential measurement system for driver health monitoring and fatigue detection. Previous research has found that the physiological signals including eye features, electrocardiography (ECG), electroencephalography (EEG) and their secondary

  7. Design and array signal suggestion of array type pulsed eddy current probe for health monitoring of metal tubes

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Young Kil [Dept. of Electrical Engineering, Kunsan National University, Kunsan (Korea, Republic of)

    2015-10-15

    An array type probe for monitoring metal tubes is proposed in this paper which utilizes peak value and peak time of a pulsed eddy current(PEC) signal. The probe consists of an array of encircling coils along a tube and the outside of coils is shielded by ferrite to prevent source magnetic fields from directly affecting sensor signals since it is the magnetic fields produced by eddy currents that reflect the condition of metal tubes. The positions of both exciter and sensor coils are consecutively moved automatically so that manual scanning is not necessary. At one position of send-receive coils, peak value and peak time are extracted from a sensor PEC signal and these data are accumulated for all positions to form an array type peak value signal and an array type peak time signal. Numerical simulation was performed using the backward difference method in time and the finite element method for spatial analysis. Simulation results showed that peak value increases and the peak appears earlier as the defect depth or length increases. The proposed array signals are shown to be excellent in reflecting the defect location as well as variations of defect depth and length within the array probe.

  8. Wnt signaling requires retromer-dependent recycling of MIG-14/Wntless in Wnt-producing cells.

    NARCIS (Netherlands)

    Yang, P.T.; Lorenowicz, M.J.; Silhankova, M.; Coudreuse, D.Y.M.; Betist, M.C.; Korswagen, H.C.

    2008-01-01

    Wnt proteins are secreted signaling molecules that play a central role in development and adult tissue homeostasis. We have previously shown that Wnt signaling requires retromer function in Wnt-producing cells. The retromer is a multiprotein complex that mediates endosome-to-Golgi transport of

  9. Systematic survey for monitor signals to reduce fake burst events in a gravitational-wave detector

    International Nuclear Information System (INIS)

    Ishidoshiro, Koji; Ando, Masaki; Tsubono, Kimio

    2006-01-01

    We present methods and results to reduce fake burst events induced by nonstationary noises. To reduce these fake events, we systematically surveyed monitor signals recorded with a main (or gravitational-wave) signal of a gravitational-wave detector so as to watch the detector. Our survey was to check whether or not there was a coincidence between the main and monitor signals when we found a burst event from the main signal. If there was a coincidence, we rejected this event as a fake event induced by nonstationary noises, regarding the main signal as being dominated by nonstationary noises. As a result, we succeeded to reject about 90% of the burst events of which the SNR values were larger than 10 as fake events, with an accidental probability of about 5% to reject burst-gravitational-wave candidates

  10. A Method for Vibration-Based Structural Interrogation and Health Monitoring Based on Signal Cross-Correlation

    International Nuclear Information System (INIS)

    Trendafilova, I

    2011-01-01

    Vibration-based structural interrogation and health monitoring is a field which is concerned with the estimation of the current state of a structure or a component from its vibration response with regards to its ability to perform its intended function appropriately. One way to approach this problem is through damage features extracted from the measured structural vibration response. This paper suggests to use a new concept for the purposes of vibration-based health monitoring. The correlation between two signals, an input and an output, measured on the structure is used to develop a damage indicator. The paper investigates the applicability of the signal cross-correlation and a nonlinear alternative, the average mutual information between the two signals, for the purposes of structural health monitoring and damage assessment. The suggested methodology is applied and demonstrated for delamination detection in a composite beam.

  11. An experimental and theoretical approach to the study of the photoacoustic signal produced by cancer cells

    Directory of Open Access Journals (Sweden)

    Rafael Pérez Solano

    2012-03-01

    Full Text Available The distinctive spectral absorption characteristics of cancer cells make photoacoustic techniques useful for detection in vitro and in vivo. Here we report on our evaluation of the photoacoustic signal produced by a series of monolayers of different cell lines in vitro. Only the melanoma cell line HS936 produced a detectable photoacoustic signal in which amplitude was dependent on the number of cells. This finding appears to be related to the amount of melanin available in these cells. Other cell lines (i.e. HL60, SK-Mel-1, T47D, Hela, HT29 and PC12 exhibited values similar to a precursor of melanin (tyrosinase, but failed to produce sufficient melanin to generate a photoacoustic signal that could be distinguished from background noise. To better understand this phenomenon, we determined a formula for the time-domain photoacoustic wave equation for a monolayer of cells in a non-viscous fluid on the thermoelastic regime. The theoretical results showed that the amplitude and profile of the photoacoustic signal generated by a cell monolayer depended upon the number and distribution of the cells and the location of the point of detection. These findings help to provide a better understanding of the factors involved in the generation of a photoacoustic signal produced by different cells in vitro and in vivo.

  12. Monitoring fetal heart rate during pregnancy: contributions from advanced signal processing and wearable technology.

    Science.gov (United States)

    Signorini, Maria G; Fanelli, Andrea; Magenes, Giovanni

    2014-01-01

    Monitoring procedures are the basis to evaluate the clinical state of patients and to assess changes in their conditions, thus providing necessary interventions in time. Both these two objectives can be achieved by integrating technological development with methodological tools, thus allowing accurate classification and extraction of useful diagnostic information. The paper is focused on monitoring procedures applied to fetal heart rate variability (FHRV) signals, collected during pregnancy, in order to assess fetal well-being. The use of linear time and frequency techniques as well as the computation of non linear indices can contribute to enhancing the diagnostic power and reliability of fetal monitoring. The paper shows how advanced signal processing approaches can contribute to developing new diagnostic and classification indices. Their usefulness is evaluated by comparing two selected populations: normal fetuses and intra uterine growth restricted (IUGR) fetuses. Results show that the computation of different indices on FHRV signals, either linear and nonlinear, gives helpful indications to describe pathophysiological mechanisms involved in the cardiovascular and neural system controlling the fetal heart. As a further contribution, the paper briefly describes how the introduction of wearable systems for fetal ECG recording could provide new technological solutions improving the quality and usability of prenatal monitoring.

  13. Prescription-event monitoring: developments in signal detection.

    Science.gov (United States)

    Ferreira, Germano

    2007-01-01

    Prescription-event monitoring (PEM) is a non-interventional intensive method for post-marketing drug safety monitoring of newly licensed medicines. PEM studies are cohort studies where exposure is obtained from a centralised service and outcomes from simple questionnaires completed by general practitioners. Follow-up forms are sent for selected events. Because PEM captures all events and not only the suspected adverse drug reactions, PEM cohorts potentially differ in respect to the distribution of number of events per person depending on the nature of the drug under study. This variance can be related either with the condition for which the drug is prescribed (e.g. a condition causing high morbidity will have, in average, a higher number of events per person compared with a condition with lower morbidity) or with the drug effect itself. This paper describes an exploratory investigation of the distortion caused by product-related variations of the number of events to the interpretation of the proportional reporting ratio (PRR) values ("the higher the PRR, the greater the strength of the signal") computed using drug-cohort data. We studied this effect by assessing the agreement between the PRR based on events (event of interest vs all other events) and PRR based on cases (cases with the event of interest vs cases with any other events). PRR were calculated for all combinations reported to ten selected drugs against a comparator of 81 other drugs. Three of the ten drugs had a cohort with an apparent higher proportion of patients with lower number of events. The PRRs based on events were systematically higher than the PRR based on cases for the combinations reported to these three drugs. Additionally, when applying the threshold criteria for signal screening (n > or =3, PRR > or =1.5 and Chi-squared > or =4), the binary agreement was generally high but apparently lower for these three drugs. In conclusion, the distribution of events per patient in drug cohorts shall be

  14. Application of a Magnetostrictive Guided wave Technique to Monitor the Evolution of Defect Signals

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Yong-Moo; Oh, Se-Beom; Lee, Duck-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    An advantage of a magnetostrictive strip transducer for a long-range guided wave inspection is that wave patterns are clear and simple when compared to a conventional piezoelectric ultrasonic transducer. Therefore, if we can characterize the evolution of defect signals, it could be a promising tool for a structural health monitoring of pipes for a long period of time as well as an identification of flaw. Of course, when evaluating a signal during a realistic field examination, it should be careful because of some spurious signals or false indications, such as signals due to a directionality, multiple reflections, mode conversion, geometrical reflections etc. Therefore, the different frequency components of the guided waves will travel at different speeds and the shape of the received signal will changed as it propagates along the pipe. Once the magnetostrictive sensors are attached in the pipe permanently and the signal shape and phase can be compared to the signals before and after, we can monitor the evolution of the flow for the given period. We developed a program to subtract the guided wave signal. The program has a capability of adjusting the time scale and can minimize the noise level after subtraction. By applying the newly developed program, a notch with 2% of CSA can be detected with increased accuracy with noise reduction.

  15. Analysis of acoustic emission signals of fatigue crack growth and corrosion processes. Investigation of the possibilities for continuous condition monitoring of transport containers by acoustic emission testing

    International Nuclear Information System (INIS)

    Wachsmuth, Janne

    2016-01-01

    Fatigue crack growth and active corrosion processes are the main causes of structural failures of transport products like road tankers, railway tank cars and ships. To prevent those failures, preventive, time-based maintenance is performed. However, preventive inspections are costly and include the risk of not detecting a defect, which could lead to a failure within the next service period. An alternative is the idea of continuous monitoring of the whole structure by means of acoustic emission testing (AT). With AT, defects within the material shall be detected and repaired directly after their appearance. Acoustic emission testing is an online non-destructive testing method. Acoustic emission (AE) arises from changes within the material and is transported by elastic waves through the material. If the AE event generates enough energy, the elastic wave propagates to the boundaries of the component, produces a displacement in the picometre scale and can be detected by a piezoelectric sensor. The sensor produces an electrical signal. From this AE signal, AE features such as the maximum amplitude or the frequency can be extracted. Methods of signal analysis are used to investigate the time and frequency dependency of signal groups. The purpose of the signal analysis is to connect the AE signal with the originating AE source. If predefined damage mechanisms are identified, referencing the damage condition of the structure is possible. Acoustic emission from events of the actual crack propagation process can for example lead to the crack growth rate or the stress intensity factor, both specific values from fracture mechanics. A new development in the domain of acoustic emission testing is the pattern recognition of AE signals. Specific features are extracted from the AE signals to assign them to their damage mechanisms. In this thesis the AE signals from the damage mechanisms corrosion and fatigue crack growth are compared and analysed. The damage mechanisms were

  16. Analysis of cutting force signals by wavelet packet transform for surface roughness monitoring in CNC turning

    Science.gov (United States)

    García Plaza, E.; Núñez López, P. J.

    2018-01-01

    On-line monitoring of surface finish in machining processes has proven to be a substantial advancement over traditional post-process quality control techniques by reducing inspection times and costs and by avoiding the manufacture of defective products. This study applied techniques for processing cutting force signals based on the wavelet packet transform (WPT) method for the monitoring of surface finish in computer numerical control (CNC) turning operations. The behaviour of 40 mother wavelets was analysed using three techniques: global packet analysis (G-WPT), and the application of two packet reduction criteria: maximum energy (E-WPT) and maximum entropy (SE-WPT). The optimum signal decomposition level (Lj) was determined to eliminate noise and to obtain information correlated to surface finish. The results obtained with the G-WPT method provided an in-depth analysis of cutting force signals, and frequency ranges and signal characteristics were correlated to surface finish with excellent results in the accuracy and reliability of the predictive models. The radial and tangential cutting force components at low frequency provided most of the information for the monitoring of surface finish. The E-WPT and SE-WPT packet reduction criteria substantially reduced signal processing time, but at the expense of discarding packets with relevant information, which impoverished the results. The G-WPT method was observed to be an ideal procedure for processing cutting force signals applied to the real-time monitoring of surface finish, and was estimated to be highly accurate and reliable at a low analytical-computational cost.

  17. Application of the wavelet packet transform to vibration signals for surface roughness monitoring in CNC turning operations

    Science.gov (United States)

    García Plaza, E.; Núñez López, P. J.

    2018-01-01

    The wavelet packet transform method decomposes a time signal into several independent time-frequency signals called packets. This enables the temporary location of transient events occurring during the monitoring of the cutting processes, which is advantageous in monitoring condition and fault diagnosis. This paper proposes the monitoring of surface roughness using a single low cost sensor that is easily implemented in numerical control machine tools in order to make on-line decisions on workpiece surface finish quality. Packet feature extraction in vibration signals was applied to correlate the sensor signals to measured surface roughness. For the successful application of the WPT method, mother wavelets, packet decomposition level, and appropriate packet selection methods should be considered, but are poorly understood aspects in the literature. In this novel contribution, forty mother wavelets, optimal decomposition level, and packet reduction methods were analysed, as well as identifying the effective frequency range providing the best packet feature extraction for monitoring surface finish. The results show that mother wavelet biorthogonal 4.4 in decomposition level L3 with the fusion of the orthogonal vibration components (ax + ay + az) were the best option in the vibration signal and surface roughness correlation. The best packets were found in the medium-high frequency DDA (6250-9375 Hz) and high frequency ADA (9375-12500 Hz) ranges, and the feed acceleration component ay was the primary source of information. The packet reduction methods forfeited packets with relevant features to the signal, leading to poor results for the prediction of surface roughness. WPT is a robust vibration signal processing method for the monitoring of surface roughness using a single sensor without other information sources, satisfactory results were obtained in comparison to other processing methods with a low computational cost.

  18. On the Design of an Efficient Cardiac Health Monitoring System Through Combined Analysis of ECG and SCG Signals.

    Science.gov (United States)

    Sahoo, Prasan Kumar; Thakkar, Hiren Kumar; Lin, Wen-Yen; Chang, Po-Cheng; Lee, Ming-Yih

    2018-01-28

    Cardiovascular disease (CVD) is a major public concern and socioeconomic problem across the globe. The popular high-end cardiac health monitoring systems such as magnetic resonance imaging (MRI), computerized tomography scan (CT scan), and echocardiography (Echo) are highly expensive and do not support long-term continuous monitoring of patients without disrupting their activities of daily living (ADL). In this paper, the continuous and non-invasive cardiac health monitoring using unobtrusive sensors is explored aiming to provide a feasible and low-cost alternative to foresee possible cardiac anomalies in an early stage. It is learned that cardiac health monitoring based on sole usage of electrocardiogram (ECG) signals may not provide powerful insights as ECG provides shallow information on various cardiac activities in the form of electrical impulses only. Hence, a novel low-cost, non-invasive seismocardiogram (SCG) signal along with ECG signals are jointly investigated for the robust cardiac health monitoring. For this purpose, the in-laboratory data collection model is designed for simultaneous acquisition of ECG and SCG signals followed by mechanisms for the automatic delineation of relevant feature points in acquired ECG and SCG signals. In addition, separate feature points based novel approach is adopted to distinguish between normal and abnormal morphology in each ECG and SCG cardiac cycle. Finally, a combined analysis of ECG and SCG is carried out by designing a Naïve Bayes conditional probability model. Experiments on Institutional Review Board (IRB) approved licensed ECG/SCG signals acquired from real subjects containing 12,000 cardiac cycles show that the proposed feature point delineation mechanisms and abnormal morphology detection methods consistently perform well and give promising results. In addition, experimental results show that the combined analysis of ECG and SCG signals provide more reliable cardiac health monitoring compared to the

  19. On the Design of an Efficient Cardiac Health Monitoring System Through Combined Analysis of ECG and SCG Signals

    Directory of Open Access Journals (Sweden)

    Prasan Kumar Sahoo

    2018-01-01

    Full Text Available Cardiovascular disease (CVD is a major public concern and socioeconomic problem across the globe. The popular high-end cardiac health monitoring systems such as magnetic resonance imaging (MRI, computerized tomography scan (CT scan, and echocardiography (Echo are highly expensive and do not support long-term continuous monitoring of patients without disrupting their activities of daily living (ADL. In this paper, the continuous and non-invasive cardiac health monitoring using unobtrusive sensors is explored aiming to provide a feasible and low-cost alternative to foresee possible cardiac anomalies in an early stage. It is learned that cardiac health monitoring based on sole usage of electrocardiogram (ECG signals may not provide powerful insights as ECG provides shallow information on various cardiac activities in the form of electrical impulses only. Hence, a novel low-cost, non-invasive seismocardiogram (SCG signal along with ECG signals are jointly investigated for the robust cardiac health monitoring. For this purpose, the in-laboratory data collection model is designed for simultaneous acquisition of ECG and SCG signals followed by mechanisms for the automatic delineation of relevant feature points in acquired ECG and SCG signals. In addition, separate feature points based novel approach is adopted to distinguish between normal and abnormal morphology in each ECG and SCG cardiac cycle. Finally, a combined analysis of ECG and SCG is carried out by designing a Naïve Bayes conditional probability model. Experiments on Institutional Review Board (IRB approved licensed ECG/SCG signals acquired from real subjects containing 12,000 cardiac cycles show that the proposed feature point delineation mechanisms and abnormal morphology detection methods consistently perform well and give promising results. In addition, experimental results show that the combined analysis of ECG and SCG signals provide more reliable cardiac health monitoring compared to

  20. Remaining useful life prediction based on noisy condition monitoring signals using constrained Kalman filter

    International Nuclear Information System (INIS)

    Son, Junbo; Zhou, Shiyu; Sankavaram, Chaitanya; Du, Xinyu; Zhang, Yilu

    2016-01-01

    In this paper, a statistical prognostic method to predict the remaining useful life (RUL) of individual units based on noisy condition monitoring signals is proposed. The prediction accuracy of existing data-driven prognostic methods depends on the capability of accurately modeling the evolution of condition monitoring (CM) signals. Therefore, it is inevitable that the RUL prediction accuracy depends on the amount of random noise in CM signals. When signals are contaminated by a large amount of random noise, RUL prediction even becomes infeasible in some cases. To mitigate this issue, a robust RUL prediction method based on constrained Kalman filter is proposed. The proposed method models the CM signals subject to a set of inequality constraints so that satisfactory prediction accuracy can be achieved regardless of the noise level of signal evolution. The advantageous features of the proposed RUL prediction method is demonstrated by both numerical study and case study with real world data from automotive lead-acid batteries. - Highlights: • A computationally efficient constrained Kalman filter is proposed. • Proposed filter is integrated into an online failure prognosis framework. • A set of proper constraints significantly improves the failure prediction accuracy. • Promising results are reported in the application of battery failure prognosis.

  1. Noise and DC balanced outlet temperature signals for monitoring coolant flow in LMFBR fuel elements

    International Nuclear Information System (INIS)

    Edelmann, M.

    1977-01-01

    Local cooling disturbances in LMFBR fuel elements may have serious safety implications for the whole reactor core. They have to be detected reliably in an early stage of their formation therefore. This can be accomplished in principle by individual monitoring of the coolant flow rate or the coolant outlet temperature of the sub-assemblies with high precision. In this paper a method is proposed to increase the sensitivity of outlet temperature signals to cooling disturbances. Using balanced temperature signals provides a means for eliminating the normal variations from the original signals which limit the sensitivity and speed of response to cooling disturbances. It is shown that a balanced signal can be derived easily from the original temperature signal by subtracting an inlet temperature and a neutron detector signal with appropriate time shift. The method was tested with tape-recorded noise signals of the KNK I reactor at Karlsruhe. The experimental results confirm the theoretical predictions. A significant reduction of the uncertainty of measured outlet temperatures was achieved. This enables very sensitive and fast response monitoring of coolant flow. Furthermore, it was found that minimizing the variance of the balanced signal offers the possibility for a rough determination of the heat transfer coefficient of the fuel rods during normal reactor operation at power. (author)

  2. Monitoring and Management of Toxicities of Novel B Cell Signaling Agents.

    Science.gov (United States)

    Rhodes, Joanna; Mato, Anthony; Sharman, Jeff P

    2018-04-11

    B cell signaling agents, including ibrutinib, idelalisib, and the BCL-2 inhibitor venetoclax have become an integral part of therapy for patients with non-Hodgkin's lymphomas. The toxicity profiles of these medications is distinct from chemoimmunotherapy. Here, we will review the mechanism of action of these drugs, their efficacy, and toxicity management. Ibrutinib use is associated with increased risk of atrial fibrillation and bleeding which can be managed using dose interruptions and modifications. Patients on idelalisib require close clinical and frequent laboratory monitoring, particularly of liver function tests to ensure there are no serious adverse events. Monitoring for infections is important in patients on both idelalisib and ibrutinib. Venetoclax requires close clinical and laboratory monitoring to prevent significant tumor lysis. Targeted B cell receptor therapies each have unique side effect profiles which require careful clinical monitoring. As we continue to use these therapies, optimal management strategies will continue to be elucidated.

  3. Finding Multiple Peaks Signal in Fast Beam Conditions Monitor (BCM1F)

    CERN Document Server

    Bin Ab Maalek, Abu Ubaidah Amir; CERN. Geneva. EP Department

    2017-01-01

    Fast Beam Conditions Monitor (BCM1F) is diamond and silicon sensors based luminometer of CMS detector. The methods of finding multiple peaks signal in BCM1F is shown. Multiple peaks signal found at signal with width between 60 ns - 300 ns. Double peaks are counted as single hit in the constant threshold analysis and leads to underestimation in the luminosity. Therefore it should be estimated for different filling schemes and sensor types. The percentage of long width pulse in different sensor for different fill are calculated. About 30 \\% long width pulse found in sCVD sensor, 12 \\% in pCVD and no more than 1 \\% for silicon sensor.

  4. Nonintrusive biological signal monitoring in a car to evaluate a driver's stress and health state.

    Science.gov (United States)

    Baek, Hyun Jae; Lee, Haet Bit; Kim, Jung Soo; Choi, Jong Min; Kim, Ko Keun; Park, Kwang Suk

    2009-03-01

    Nonintrusive monitoring of a driver's physiological signals was introduced and evaluated in a car as a test of extending the concept of ubiquitous healthcare to vehicles. Electrocardiogram, photoplethysmogram, galvanic skin response, and respiration were measured in the ubiquitous healthcare car (U-car) using nonintrusively installed sensors on the steering wheel, driver's seat, and seat belt. Measured signals were transmitted to the embedded computer via Bluetooth(R) communication and processed. We collected and analyzed physiological signals during driving in order to estimate a driver's stress state while using this system. In order to compare the effect of stress on physical and mental conditions, two categories of stresses were defined. Experimental results show that a driver's physiological signals were measured with acceptable quality for analysis without interrupting driving, and they were changed meaningfully due to elicited stress. This nonintrusive monitoring can be used to evaluate a driver's state of health and stress.

  5. COMPASS: an Interoperable Personal Health System to Monitor and Compress Signals in Chronic Obstructive Pulmonary Disease

    Directory of Open Access Journals (Sweden)

    Thomas Hofer

    2015-11-01

    Full Text Available In the past years the progress on the mobile market has made possible an advancement in terms of telemedicine systems and definition of systems for monitoring chronic illnesses. The distribution of mobile devices in developed countries is increasing. Many of these devices are equipped with wireless standards including Bluetooth and the amount of sold Smartphones is constantly increasing. Our approach is oriented towards this market, using existing devices to enable in-home patient monitoring and even further to ubiquitious monitoring. The idea is to increase the quality of care, reduce costs and gather medical grade data, especially vital signs, with a resolution of minutes or even less, which is nowadays only possible in an ICU (Intensive Care Units. In this paper we will present the COMPASS personal health system (PHS platform, and how this platform enables Android devices to collect, analyze and send sensor data to an observation storage by means of interoperability standards. Furthermore, we will also present how this data can be compressed using advanced compressed sensing techniques and how to optimize these techniques with genetic algorithms to improve the RMSE of the reconstructed signal after compression. We also produce a preliminary evaluation of the algorithm against the state of the art algorithms for compressed sensing.

  6. Fabrication of a Micro-Needle Array Electrode by Thermal Drawing for Bio-Signals Monitoring.

    Science.gov (United States)

    Ren, Lei; Jiang, Qing; Chen, Keyun; Chen, Zhipeng; Pan, Chengfeng; Jiang, Lelun

    2016-06-17

    A novel micro-needle array electrode (MAE) fabricated by thermal drawing and coated with Ti/Au film was proposed for bio-signals monitoring. A simple and effective setup was employed to form glassy-state poly (lactic-co-glycolic acid) (PLGA) into a micro-needle array (MA) by the thermal drawing method. The MA was composed of 6 × 6 micro-needles with an average height of about 500 μm. Electrode-skin interface impedance (EII) was recorded as the insertion force was applied on the MAE. The insertion process of the MAE was also simulated by the finite element method. Results showed that MAE could insert into skin with a relatively low compression force and maintain stable contact impedance between the MAE and skin. Bio-signals, including electromyography (EMG), electrocardiography (ECG), and electroencephalograph (EEG) were also collected. Test results showed that the MAE could record EMG, ECG, and EEG signals with good fidelity in shape and amplitude in comparison with the commercial Ag/AgCl electrodes, which proves that MAE is an alternative electrode for bio-signals monitoring.

  7. Fabrication of a Micro-Needle Array Electrode by Thermal Drawing for Bio-Signals Monitoring

    Directory of Open Access Journals (Sweden)

    Lei Ren

    2016-06-01

    Full Text Available A novel micro-needle array electrode (MAE fabricated by thermal drawing and coated with Ti/Au film was proposed for bio-signals monitoring. A simple and effective setup was employed to form glassy-state poly (lactic-co-glycolic acid (PLGA into a micro-needle array (MA by the thermal drawing method. The MA was composed of 6 × 6 micro-needles with an average height of about 500 μm. Electrode-skin interface impedance (EII was recorded as the insertion force was applied on the MAE. The insertion process of the MAE was also simulated by the finite element method. Results showed that MAE could insert into skin with a relatively low compression force and maintain stable contact impedance between the MAE and skin. Bio-signals, including electromyography (EMG, electrocardiography (ECG, and electroencephalograph (EEG were also collected. Test results showed that the MAE could record EMG, ECG, and EEG signals with good fidelity in shape and amplitude in comparison with the commercial Ag/AgCl electrodes, which proves that MAE is an alternative electrode for bio-signals monitoring.

  8. Design and measurement of signal processing system for cavity beam position monitor

    International Nuclear Information System (INIS)

    Wang Baopeng; Leng Yongbin; Yu Luyang; Zhou Weimin; Yuan Renxian; Chen Zhichu

    2013-01-01

    In this paper, in order to achieve the output signal processing of cavity beam position monitor (CBPM), we develop a digital intermediate frequency receiver architecture based signal processing system, which consists of radio frequency (RF) front end and high speed data acquisition board. The beam position resolution in the CBPM signal processing system is superior to 1 μm. Two signal processing algorithms, fast Fourier transform (FFT) and digital down converter (DDC), are evaluated offline using MATLAB platform, and both can be used to achieve, the CW input signal, position resolutions of 0.31 μm and 0.10 μm at -16 dBm. The DDC algorithm for its good compatibility is downloaded into the FPGA to realize online measurement, reaching the position resolution of 0.49 μm due to truncation error. The whole system works well and the performance meets design target. (authors)

  9. Bluetooth-based sensor networks for remotely monitoring the physiological signals of a patient.

    Science.gov (United States)

    Zhang, Ying; Xiao, Hannan

    2009-11-01

    Integrating intelligent medical microsensors into a wireless communication network makes it possible to remotely collect physiological signals of a patient, release the patient from being tethered to monitoring medical instrumentations, and facilitate the patient's early hospital discharge. This can further improve life quality by providing continuous observation without the need of disrupting the patient's normal life, thus reducing the risk of infection significantly, and decreasing the cost of the hospital and the patient. This paper discusses the implementation issues, and describes the overall system architecture of our developed Bluetooth sensor network for patient monitoring and the corresponding heart activity sensors. It also presents our approach to developing the intelligent physiological sensor nodes involving integration of Bluetooth radio technology, hardware and software organization, and our solutions for onboard signal processing.

  10. A Wireless Physiological Signal Monitoring System with Integrated Bluetooth and WiFi Technologies.

    Science.gov (United States)

    Yu, Sung-Nien; Cheng, Jen-Chieh

    2005-01-01

    This paper proposes a wireless patient monitoring system which integrates Bluetooth and WiFi wireless technologies. A wireless portable multi-parameter device was designated to acquire physiological signals and transmit them to a local server via Bluetooth wireless technology. Four kinds of monitor units were designed to communicate via the WiFi wireless technology, including a local monitor unit, a control center, mobile devices (personal digital assistant; PDA), and a web page. The use of various monitor units is intending to meet different medical requirements for different medical personnel. This system was demonstrated to promote the mobility and flexibility for both the patients and the medical personnel, which further improves the quality of health care.

  11. Monitoring presence of chemical agents

    International Nuclear Information System (INIS)

    Preston, J.M.

    1984-01-01

    The specification describes a case for use with a hand-portable chemical agent detector for continuously monitoring an atmosphere for the presence of predetermined chemical agents. The detector having means for ionizing air samples and providing at an output terminal electrical signals representative of the mobility spectrum of ionized chemical vapours produced by the ionizing means. The case comprises means for defining a chamber in the case for supporting and removably enclosing the detector, means for communicating ambient atmosphere to the chamber, electrical circuit means in the case, the circuit means being adapted to be detachably connected to the detector output terminal when the detector is positioned in the chamber and being responsive to the electrical signals for producing an alarm signal when the signals detect a chemical agent concentration in the atmosphere exceeding a predetermined concentration level, and alarm means responsive to the alarm signal. (author)

  12. Real-Time Estimation for Cutting Tool Wear Based on Modal Analysis of Monitored Signals

    Directory of Open Access Journals (Sweden)

    Yongjiao Chi

    2018-05-01

    Full Text Available There is a growing body of literature that recognizes the importance of product safety and the quality problems during processing. The working status of cutting tools may lead to project delay and cost overrun if broken down accidentally, and tool wear is crucial to processing precision in mechanical manufacturing, therefore, this study contributes to this growing area of research by monitoring condition and estimating wear. In this research, an effective method for tool wear estimation was constructed, in which, the signal features of machining process were extracted by ensemble empirical mode decomposition (EEMD and were used to estimate the tool wear. Based on signal analysis, vibration signals that had better linear relationship with tool wearing process were decomposed, then the intrinsic mode functions (IMFs, frequency spectrums of IMFs and the features relating to amplitude changes of frequency spectrum were obtained. The trend that tool wear changes with the features was fitted by Gaussian fitting function to estimate the tool wear. Experimental investigation was used to verify the effectiveness of this method and the results illustrated the correlation between tool wear and the modal features of monitored signals.

  13. A configurable and low-power mixed signal SoC for portable ECG monitoring applications.

    Science.gov (United States)

    Kim, Hyejung; Kim, Sunyoung; Van Helleputte, Nick; Artes, Antonio; Konijnenburg, Mario; Huisken, Jos; Van Hoof, Chris; Yazicioglu, Refet Firat

    2014-04-01

    This paper describes a mixed-signal ECG System-on-Chip (SoC) that is capable of implementing configurable functionality with low-power consumption for portable ECG monitoring applications. A low-voltage and high performance analog front-end extracts 3-channel ECG signals and single channel electrode-tissue-impedance (ETI) measurement with high signal quality. This can be used to evaluate the quality of the ECG measurement and to filter motion artifacts. A custom digital signal processor consisting of 4-way SIMD processor provides the configurability and advanced functionality like motion artifact removal and R peak detection. A built-in 12-bit analog-to-digital converter (ADC) is capable of adaptive sampling achieving a compression ratio of up to 7, and loop buffer integration reduces the power consumption for on-chip memory access. The SoC is implemented in 0.18 μm CMOS process and consumes 32 μ W from a 1.2 V while heart beat detection application is running, and integrated in a wireless ECG monitoring system with Bluetooth protocol. Thanks to the ECG SoC, the overall system power consumption can be reduced significantly.

  14. Probing weld quality monitoring in friction stir welding through characterization of signals by fractal theory

    Energy Technology Data Exchange (ETDEWEB)

    Das, Bipul; Bag, Swarup; Pal, Sukhomay [Indian Institute of Technology Guwahati, Assam (India)

    2017-05-15

    Providing solutions towards the improvisation of welding technologies is the recent trend in the Friction stir welding (FSW) process. We present a monitoring approach for ultimate tensile strength of the friction stir welded joints based on information extracted from process signals through implementing fractal theory. Higuchi and Katz algorithms were executed on current and tool rotational speed signals acquired during friction stir welding to estimate fractal dimensions. Estimated fractal dimensions when correlated with the ultimate tensile strength of the joints deliver an increasing trend with the increase in joint strength. It is observed that dynamicity of the system strengthens the weld joint, i.e., the greater the fractal dimension, the better will be the quality of the weld. Characterization of signals by fractal theory indicates that the single-valued indicator can be an alternative for effective monitoring of the friction stir welding process.

  15. Probing weld quality monitoring in friction stir welding through characterization of signals by fractal theory

    International Nuclear Information System (INIS)

    Das, Bipul; Bag, Swarup; Pal, Sukhomay

    2017-01-01

    Providing solutions towards the improvisation of welding technologies is the recent trend in the Friction stir welding (FSW) process. We present a monitoring approach for ultimate tensile strength of the friction stir welded joints based on information extracted from process signals through implementing fractal theory. Higuchi and Katz algorithms were executed on current and tool rotational speed signals acquired during friction stir welding to estimate fractal dimensions. Estimated fractal dimensions when correlated with the ultimate tensile strength of the joints deliver an increasing trend with the increase in joint strength. It is observed that dynamicity of the system strengthens the weld joint, i.e., the greater the fractal dimension, the better will be the quality of the weld. Characterization of signals by fractal theory indicates that the single-valued indicator can be an alternative for effective monitoring of the friction stir welding process.

  16. Integrated Optimization of Long-Range Underwater Signal Detection, Feature Extraction, and Classification for Nuclear Treaty Monitoring

    NARCIS (Netherlands)

    Tuma, M.; Rorbech, V.; Prior, M.; Igel, C.

    2016-01-01

    We designed and jointly optimized an integrated signal processing chain for detection and classification of long-range passive-acoustic underwater signals recorded by the global geophysical monitoring network of the Comprehensive Nuclear-Test-Ban Treaty Organization. Starting at the level of raw

  17. A signal processing application for evaluating self-monitoring blood glucose strategies in a software agent model.

    Science.gov (United States)

    Wang, Zhanle; Paranjape, Raman

    2015-07-01

    We propose the signal processing technique of calculating a cross-correlation function and an average deviation between the continuous blood glucose and the interpolation of limited blood glucose samples to evaluate blood glucose monitoring frequency in a self-aware patient software agent model. The diabetic patient software agent model [1] is a 24-h circadian, self-aware, stochastic model of a diabetic patient's blood glucose levels in a software agent environment. The purpose of this work is to apply a signal processing technique to assist patients and physicians in understanding the extent of a patient's illness using a limited number of blood glucose samples. A second purpose of this work is to determine an appropriate blood glucose monitoring frequency in order to have a minimum number of samples taken that still provide a good understanding of the patient's blood glucose levels. For society in general, the monitoring cost of diabetes is an extremely important issue, and these costs can vary tremendously depending on monitoring approaches and monitoring frequencies. Due to the cost and discomfort associated with blood glucose monitoring, today, patients expect monitoring frequencies specific to their health profile. The proposed method quantitatively assesses various monitoring protocols (from 6 times per day to 1 time per week) in nine predefined categories of patient agents in terms of risk factors of health status and age. Simulation results show that sampling 6 times per day is excessive, and not necessary for understanding the dynamics of the continuous signal in the experiments. In addition, patient agents in certain conditions only need to sample their blood glucose 1 time per week to have a good understanding of the characteristics of their blood glucose. Finally, an evaluation scenario is developed to visualize this concept, in which appropriate monitoring frequencies are shown based on the particular conditions of patient agents. This base line can

  18. Smart driver monitoring : when signal processing meets human factors : in the driver's seat

    NARCIS (Netherlands)

    Aghaei, A.S.; Donmez, B.; Liu, C.C.; He, D.; Liu, G.; Plataniotis, K.N.; Chen, H.Y.W.; Sojoudi, Z.

    2016-01-01

    This article provides an interdisciplinary perspective on driver monitoring systems by discussing state-of-the-art signal processing solutions in the context of road safety issues identified in human factors research. Recently, the human factors community has made significant progress in

  19. An energy monitor for electron accelerators

    International Nuclear Information System (INIS)

    Geske, G.

    1990-01-01

    A monitor useful for checks of the energy selector scale of medical electron accelerators was developed and tested. It consists of a linear array of flat ionization chambers sandwiched between absorber plates of low-Z material. The first chamber at the electron beam entrance may be used to produce a reference signal S r , if not another suitable reference signal is taken. The following chambers are electrically connected and deliver the measuring signal S m . A clinical dosimeter can be used for recording current or charge. The energy-dependent electron range parameters R p , R 50 and R 80 in water vary as linear functions of the ratio reference singal/measuring signal. The best linear fit was obtained for the half value layer R 50 . Three types of the energy monitor are described, and experimental results obtained with a linear accelerator and a betatron between 5 and 25 MeV are reported. Uncertainties for checks of R 50 with a calibrated energy monitor were not larger than 1 to 2 mm. Theoretical considerations by a computer model support these results. (orig./HP) [de

  20. Health monitoring of 90° bolted joints using fuzzy pattern recognition of ultrasonic signals

    International Nuclear Information System (INIS)

    Jalalpour, M; El-Osery, A I; Austin, E M; Reda Taha, M M

    2014-01-01

    Bolted joints are important parts for aerospace structures. However, there is a significant risk associated with assembling bolted joints due to potential human error during the assembly process. Such errors are expensive to find and correct if exposed during environmental testing, yet checking the integrity of individual fasteners after assembly would be a time consuming task. Recent advances in structural health monitoring (SHM) can provide techniques to not only automate this process but also make it reliable. This integrity monitoring requires damage features to be related to physical conditions representing the structural integrity of bolted joints. In this paper an SHM technique using ultrasonic signals and fuzzy pattern recognition to monitor the integrity of 90° bolted joints in aerospace structures is described. The proposed technique is based on normalized fast Fourier transform (NFFT) of transmitted signals and fuzzy pattern recognition. Moreover, experimental observations of a case study on an aluminum 90° bolted joint are presented. We demonstrate the ability of the proposed method to efficiently monitor and indicate bolted joint integrity. (paper)

  1. Microprocessor-based simulator of surface ECG signals

    International Nuclear Information System (INIS)

    MartInez, A E; Rossi, E; Siri, L Nicola

    2007-01-01

    In this work, a simulator of surface electrocardiogram recorded signals (ECG) is presented. The device, based on a microcontroller and commanded by a personal computer, produces an analog signal resembling actual ECGs, not only in time course and voltage levels, but also in source impedance. The simulator is a useful tool for electrocardiograph calibration and monitoring, to incorporate as well in educational tasks and in clinical environments for early detection of faulty behaviour

  2. Safe and effective error rate monitors for SS7 signaling links

    Science.gov (United States)

    Schmidt, Douglas C.

    1994-04-01

    This paper describes SS7 error monitor characteristics, discusses the existing SUERM (Signal Unit Error Rate Monitor), and develops the recently proposed EIM (Error Interval Monitor) for higher speed SS7 links. A SS7 error monitor is considered safe if it ensures acceptable link quality and is considered effective if it is tolerant to short-term phenomena. Formal criteria for safe and effective error monitors are formulated in this paper. This paper develops models of changeover transients, the unstable component of queue length resulting from errors. These models are in the form of recursive digital filters. Time is divided into sequential intervals. The filter's input is the number of errors which have occurred in each interval. The output is the corresponding change in transmit queue length. Engineered EIM's are constructed by comparing an estimated changeover transient with a threshold T using a transient model modified to enforce SS7 standards. When this estimate exceeds T, a changeover will be initiated and the link will be removed from service. EIM's can be differentiated from SUERM by the fact that EIM's monitor errors over an interval while SUERM's count errored messages. EIM's offer several advantages over SUERM's, including the fact that they are safe and effective, impose uniform standards in link quality, are easily implemented, and make minimal use of real-time resources.

  3. Multi-signal Visualization of Physiology (MVP): a novel visualization dashboard for physiological monitoring of Traumatic Brain Injury patients.

    Science.gov (United States)

    Sebastian, Kevin; Sari, Vivian; Loy, Liang Yu; Zhang, Feng; Zhang, Zhuo; Feng, Mengling

    2012-01-01

    To prevent Traumatic Brain Injury (TBI) patients from secondary brain injuries, patients' physiological readings are continuously monitored. However, the visualization dashboards of most existing monitoring devices cannot effectively present all physiological information of TBI patients and are also ineffective in facilitating neuro-clinicians for fast and accurate diagnosis. To address these shortcomings, we proposed a new visualization dashboard, namely the Multi-signal Visualization of Physiology (MVP). MVP makes use of multi-signal polygram to collate various physiological signals, and it also utilizes colors and the concept of "safe/danger zones" to assist neuro-clinicians to achieve fast and accurate diagnosis. Moreover, MVP allows neuro-clinicians to review historical physiological statuses of TBI patients, which can guide and optimize clinicians' diagnosis and prognosis decisions. The performance of MVP is tested and justified with an actual Philips monitoring device.

  4. Development of an induction motor abnormality monitoring system(IMAMS) using power line signal analysis

    International Nuclear Information System (INIS)

    Jung, Jae Cheon

    1997-02-01

    An induction motor abnormality monitoring system using power line signal analysis is developed in this work. Various studies have focused their attention on the detection of particular harmonic frequencies produced from each defect mode of motors. However, these harmonic frequencies are valuable only when the motor has a continuous slip frequency and operate in constant torque/load condition. The basic concept of the system developed in this work is to detect the characteristic harmonic frequencies occurred when the motor is in abnormal state and to compare it with a predetermined setpoint. Based on these analyses, the place and degree of defect can be easily identified. The experimental results under test bench simulation are also introduced. To find out an alternative way to obtain a threshold level independent of slip/torque, with the rotating field theory, the ratio between harmonic current and total current was calculated with the simplified circuit that is equivalent to two abnormal cases, such as the spatial rotor resistance variation and the symmetrical components changes with field. Also, the threshold level calculation was done with performed the rotating field theory. The results show that they are in good agreement with a experimental results. Further studies are undertaken to extend this work to the on-line monitoring and diagnostic system with a likelihood ratio test method for field application

  5. Rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae produces multiple DSF-family signals in regulation of virulence factor production

    Directory of Open Access Journals (Sweden)

    Cha Jae-Soon

    2010-07-01

    Full Text Available Abstract Background Xanthomonas oryzae pv. oryzae (Xoo is the causal agent of rice bacterial blight disease. Xoo produces a range of virulence factors, including EPS, extracellular enzyme, iron-chelating siderophores, and type III-secretion dependent effectors, which are collectively essential for virulence. Genetic and genomics evidence suggest that Xoo might use the diffusible signal factor (DSF type quorum sensing (QS system to regulate the virulence factor production. However, little is known about the chemical structure of the DSF-like signal(s produced by Xoo and the factors influencing the signal production. Results Xoo genome harbours an rpf cluster comprising rpfB, rpfF, rpfC and rpfG. The proteins encoded by these genes are highly homologous to their counterparts in X. campestris pv. campestris (Xcc, suggesting that Xcc and Xoo might use similar mechanisms for DSF biosynthesis and autoregulation. Consistent with in silico analysis, the rpfF mutant was DSF-deficient and the rpfC mutant produced about 25 times higher DSF-like activity than the wild type Xoo strain KACC10331. From the supernatants of rpfC mutant, we purified three compounds showing strong DSF-like activity. Mass spectrometry and NMR analysis revealed that two of them were the previously characterized DSF and BDSF; the third one was a novel unsaturated fatty acid with 2 double bonds and was designated as CDSF in this study. Further analysis showed that all the three DSF-family signals were synthesized via the enzyme RpfF encoded by Xoo2868. DSF and BDSF at a final concentration of 3 μM to the rpfF mutant could fully restore its extracellular xylanase activity and EPS production to the wild type level, but CDSF was less active than DSF and BDSF in induction of EPS and xylanase. DSF and CDSF shared a similar cell density-dependent production time course with the maximum production being detected at 42 h after inoculation, whereas the maximum production of BDSF was observed

  6. A SIGNAL ENHANCED PORTABLE RAMAN PROBE FOR ANESTHETIC GAS MONITORING

    Directory of Open Access Journals (Sweden)

    S. Schlüter

    2015-03-01

    Full Text Available The spontaneous Raman scattering technique is an excellent tool for a quantitative analysis of multi-species gas mixtures. It is a noninvasive optical method for species identification and gas phase concentration measurement of all Raman active molecules, since the intensity of the species specific Raman signal is linearly dependent on the concentration. Applying a continuous wave (CW laser it typically takes a few seconds to capture a gas phase Raman spectrum at room temperature. Nevertheless in contrast to these advantages the weak Raman signal intensity is a major drawback. Thus, it is still challenging to detect gas phase Raman spectra in alow-pressure regime with a temporal resolution of only a few 100 ms. In this work a fully functional gas phase Raman system for measurements in the low-pressure regime (p ≥ 980 hPa (absolute is presented. It overcomes the drawback of a weak Raman signal by using a multipass cavity. A description of the sensor setup and of the multipass arrangement will be presented. Moreover the complete functionality of the sensor system will be demonstrated by measurements at an anesthesia simulator under clinical relevant conditions and in comparison to a conventional gas monitor.

  7. The characterization of NMR signal for blood pressure monitoring system and its testing

    Directory of Open Access Journals (Sweden)

    Bambang Murdaka Eka Jati

    2016-02-01

    Full Text Available ABSTRACT A blood monitoring system based on NMR method has been designed on constructed. This set-up of equipment used magnetic permanent, radio frequency (RF, receiver coil (RC, function generator (FG, amplifier which included the filter, as well as the oscilloscope digital storage. The background of this research was based on the sensitivity of NMR signal. The signal must be separated from signals background. This method was done by adjusting the frequency on FG, which was connected to radio frequency (RF coil, on empty sample. Subsequently, NMR signal was received by RC, and that signal could be shown on oscilloscope at resonance condition. The true frequency on NMR signal was Larmor frequency, and the other was background. The two variables of this experiment were the position of RF coil and the location temperature (20 up to 30oC. In conclusion, the resonance frequency of NMR signal (as Larmor frequency was 4.7 MHz (at static magnetic field of 1,600 gauss and it could be separated from background signals (3.4 and 6.2 MHz, and that signal was almost constant to room temperature. The equipment was used for sample testing. It gave systole/diastole data of 110/70 mmHg (on sphygmomanometer that was similar to 17/9 mV (on NMR signal. ABSTRAK Telah dikembangkan alat pemantauan tekanan darah berdasar prinsip NMR.

  8. Radiographic apparatus and method for monitoring film exposure time

    International Nuclear Information System (INIS)

    Vatne, R.S.; Woodmansee, W.E.

    1981-01-01

    In connection with radiographic inspection of structural and industrial materials, method and apparatus are disclosed for automatically determining and displaying the time required to expose a radiographic film positioned to receive radiation passed by a test specimen, so that the finished film is exposed to an optimum blackening (density) for maximum film contrast. A plot is made of the variations in a total exposure parameter (representing the product of detected radiation rate and time needed to cause optimum film blackening) as a function of the voltage level applied to an X-ray tube. An electronic function generator storing the shape of this plot is incorporated into an exposure monitoring apparatus, such that for a selected tube voltage setting, the function generator produces an electrical analog signal of the corresponding exposure parameter. During the exposure, another signal is produced representing the rate of radiation as monitored by a diode detector positioned so as to receive the same radiation that is incident on the film. The signal representing the detected radiation rate is divided, by an electrical divider circuit into the signal representing total exposure, and the resulting quotient is an electrical signal representing the required exposure time. (author)

  9. Probability of background to produce a signal-like excess, for all Higgs masses tested.

    CERN Document Server

    ATLAS, collaboration

    2012-01-01

    The probability of background to produce a signal-like excess, for all the Higgs boson masses tested. At almost all masses, the probability (solid curve) is at least a few percent; however, at 126.5 GeV it dips to 3x10-7, or one chance in three million, the '5-sigma' gold-standard normally used for the discovery of a new particle. A Standard Model Higgs boson with that mass would produce a dip to 4.6 sigma.

  10. An energy monitor for electron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Geske, G. (Friedrich-Schiller-Universitaet, Jena (German Democratic Republic). Klinik und Poliklinik des Bereiches Medizin)

    1990-09-01

    A monitor useful for checks of the energy selector scale of medical electron accelerators was developed and tested. It consists of a linear array of flat ionization chambers sandwiched between absorber plates of low-Z material. The first chamber at the electron beam entrance may be used to produce a reference signal S{sub r}, if not another suitable reference signal is taken. The following chambers are electrically connected and deliver the measuring signal S{sub m}. A clinical dosimeter can be used for recording current or charge. The energy-dependent electron range parameters R{sub p}, R{sub 50} and R{sub 80} in water vary as linear functions of the ratio reference singal/measuring signal. The best linear fit was obtained for the half value layer R{sub 50}. Three types of the energy monitor are described, and experimental results obtained with a linear accelerator and a betatron between 5 and 25 MeV are reported. Uncertainties for checks of R{sub 50} with a calibrated energy monitor were not larger than 1 to 2 mm. Theoretical considerations by a computer model support these results. (orig./HP).

  11. 47 CFR 76.614 - Cable television system regular monitoring.

    Science.gov (United States)

    2010-10-01

    ...-137 and 225-400 MHz shall provide for a program of regular monitoring for signal leakage by... in these bands of 20 uV/m or greater at a distance of 3 meters. During regular monitoring, any leakage source which produces a field strength of 20 uV/m or greater at a distance of 3 meters in the...

  12. Monitoring and predicting cognitive state and performance via physiological correlates of neuronal signals.

    Science.gov (United States)

    Russo, Michael B; Stetz, Melba C; Thomas, Maria L

    2005-07-01

    Judgment, decision making, and situational awareness are higher-order mental abilities critically important to operational cognitive performance. Higher-order mental abilities rely on intact functioning of multiple brain regions, including the prefrontal, thalamus, and parietal areas. Real-time monitoring of individuals for cognitive performance capacity via an approach based on sampling multiple neurophysiologic signals and integrating those signals with performance prediction models potentially provides a method of supporting warfighters' and commanders' decision making and other operationally relevant mental processes and is consistent with the goals of augmented cognition. Cognitive neurophysiological assessments that directly measure brain function and subsequent cognition include positron emission tomography, functional magnetic resonance imaging, mass spectroscopy, near-infrared spectroscopy, magnetoencephalography, and electroencephalography (EEG); however, most direct measures are not practical to use in operational environments. More practical, albeit indirect measures that are generated by, but removed from the actual neural sources, are movement activity, oculometrics, heart rate, and voice stress signals. The goal of the papers in this section is to describe advances in selected direct and indirect cognitive neurophysiologic monitoring techniques as applied for the ultimate purpose of preventing operational performance failures. These papers present data acquired in a wide variety of environments, including laboratory, simulator, and clinical arenas. The papers discuss cognitive neurophysiologic measures such as digital signal processing wrist-mounted actigraphy; oculometrics including blinks, saccadic eye movements, pupillary movements, the pupil light reflex; and high-frequency EEG. These neurophysiological indices are related to cognitive performance as measured through standard test batteries and simulators with conditions including sleep loss

  13. A Non-Uniformly Under-Sampled Blade Tip-Timing Signal Reconstruction Method for Blade Vibration Monitoring

    Directory of Open Access Journals (Sweden)

    Zheng Hu

    2015-01-01

    Full Text Available High-speed blades are often prone to fatigue due to severe blade vibrations. In particular, synchronous vibrations can cause irreversible damages to the blade. Blade tip-timing methods (BTT have become a promising way to monitor blade vibrations. However, synchronous vibrations are unsuitably monitored by uniform BTT sampling. Therefore, non-equally mounted probes have been used, which will result in the non-uniformity of the sampling signal. Since under-sampling is an intrinsic drawback of BTT methods, how to analyze non-uniformly under-sampled BTT signals is a big challenge. In this paper, a novel reconstruction method for non-uniformly under-sampled BTT data is presented. The method is based on the periodically non-uniform sampling theorem. Firstly, a mathematical model of a non-uniform BTT sampling process is built. It can be treated as the sum of certain uniform sample streams. For each stream, an interpolating function is required to prevent aliasing in the reconstructed signal. Secondly, simultaneous equations of all interpolating functions in each sub-band are built and corresponding solutions are ultimately derived to remove unwanted replicas of the original signal caused by the sampling, which may overlay the original signal. In the end, numerical simulations and experiments are carried out to validate the feasibility of the proposed method. The results demonstrate the accuracy of the reconstructed signal depends on the sampling frequency, the blade vibration frequency, the blade vibration bandwidth, the probe static offset and the number of samples. In practice, both types of blade vibration signals can be particularly reconstructed by non-uniform BTT data acquired from only two probes.

  14. Surface acoustic wave dust deposition monitor

    Science.gov (United States)

    Fasching, G.E.; Smith, N.S. Jr.

    1988-02-12

    A system is disclosed for using the attenuation of surface acoustic waves to monitor real time dust deposition rates on surfaces. The system includes a signal generator, a tone-burst generator/amplifier connected to a transmitting transducer for converting electrical signals into acoustic waves. These waves are transmitted through a path defining means adjacent to a layer of dust and then, in turn, transmitted to a receiving transducer for changing the attenuated acoustic wave to electrical signals. The signals representing the attenuated acoustic waves may be amplified and used in a means for analyzing the output signals to produce an output indicative of the dust deposition rates and/or values of dust in the layer. 8 figs.

  15. Using signal ''KVANT-1'' direct-reading dosemeter for the purposes of personnel monitoring

    International Nuclear Information System (INIS)

    Glinskij, G.A.; Karasev, V.S.; Mukhin, I.E.; Chumak, V.K.

    1977-01-01

    Presented is the description of ''KVANT-1'' dosemeter for monitoring personnel doses of gamma and X radiation. The dosemeter permits to judge on the radiation intensity, to control directly the dose being accumulated, to store the reading of the dose accumulated for a necessary period of time, to obtain sound signal in case of reaching the limit of a pre-set dose. Presented are a general view, block diagram, and the discription of the dosemeter desing and operation. Advantages of the ''KVANT-1'' dosemeter are shown as compared with the conventional personnel monitoring IFK-2,3 and KID-2 dosemeters [ru

  16. Charge balancing fill rate monitor

    International Nuclear Information System (INIS)

    Rothman, J.L.; Blum, E.B.

    1995-01-01

    A fill rate monitor has been developed for the NSLS storage rings to allow machine tuning over a very large dynamic range of beam current. Synchrotron light, focused on a photodiode, produces a signal proportional to the beam current. A charge balancing circuit processes the diode current, creating an output signal proportional to the current injected into the ring. The unit operates linearly over a dynamic range of 120 dB and can resolve pulses of injected beam as small as 1 μA

  17. An energy-efficient communication method based on the relationships between biological signals for ubiquitous health monitoring.

    Science.gov (United States)

    Kwon, Hyok Chon; Na, Doosu; Ko, Byung Geun; Lee, Songjun

    2008-01-01

    Wireless sensor networks have been studied in the area of intelligent transportation systems, disaster perception, environment monitoring, ubiquitous healthcare, home network, and so on. For the ubiquitous healthcare, the previous systems collect the sensed health related data at portable devices without regard to correlations of various biological signals to determine the health conditions. It is not the energy-efficient method to gather a lot of information into a specific node to decide the health condition. Since the biological signals are related with each other to estimate certain body condition, it is necessary to be collected selectively by their relationship for energy efficiency of the networked nodes. One of researches about low power consumption is the reduction of the amount of packet transmission. In this paper, a health monitoring system, which allows the transmission of the reduced number of packets by means of setting the routing path considered the relations of biological signals, is proposed.

  18. Detection of coherent beam-beam modes with digitized beam position monitor signals

    CERN Document Server

    Stancari, G.; White, S.M.

    2014-01-01

    A system for bunch-by-bunch detection of transverse proton and antiproton coherent oscillations in the Fermilab Tevatron collider is described. It is based on the signal from a single beam-position monitor located in a region of the ring with large amplitude functions. The signal is digitized over a large number of turns and Fourier-analyzed offline with a dedicated algorithm. To enhance the signal, band-limited noise is applied to the beam for about 1 s. This excitation does not adversely affect the circulating beams even at high luminosities. The device has a response time of a few seconds, a frequency resolution of $1.6\\times 10^{-5}$ in fractional tune, and it is sensitive to oscillation amplitudes of 60 nm. It complements Schottky detectors as a diagnostic tool for tunes, tune spreads, and beam-beam effects. Measurements of coherent mode spectra are presented and compared with models of beam-beam oscillations.

  19. Construction of a Vibration Monitoring System for HANARO's Rotating Machinery and Analysis of Pump Vibration Signals

    International Nuclear Information System (INIS)

    Ryu, Jeong Soo; Yoon, Doo Byung

    2005-01-01

    HANARO is an open-tank-in-pool type research reactor with a thermal power of 30MW. In order to remove the heat generated by the reactor core and the reflector vessel, primary cooling pumps and reflector cooling pumps circulate coolant. These pumps are installed at the RCI(Reactor Concrete Island) which is covered by heavy concrete hatches. For the prevention of an abnormal operation of these pumps in the RCI, it is necessary to construct a vibration monitoring system that provides an alarm signal to the reactor control room when the rotating speed or the vibration level exceeds the allowable limit. The first objective of this work is to construct a vibration monitoring system for HANARO's rotating machinery. The second objective is to verify the possibility of condition monitoring of the rotating machinery. To construct a vibration monitoring system, as a first step, the standards and references related to the vibration monitoring system were investigated. In addition, to determine the number and the location of sensors that can effectively characterize the overall vibration of a pump, the vibration of the primary cooling pumps and the reflector cooling pumps were measured. Based on these results, detailed construction plans for the vibration monitoring system for HANARO were established. Then, in accordance with the construction plans, the vibration monitoring system for HANARO's rotating machinery was manufactured and installed at HANARO. To achieve the second objective, FFT analysis and bearing fault detection of the measured vibration signals were performed. The analysis results demonstrate that the accelerometers mounted at the bearing locations of the pumps can effectively monitor the pump condition

  20. Integration and enhancement of low-level signals from air-pollution monitoring sensors

    Energy Technology Data Exchange (ETDEWEB)

    Dowd, G F; Dubois, L; Monkman, J L

    1975-09-01

    In this paper, we have demonstrated how signal enhancement techniques would be advantageous in the low-level analysis of air pollutants. We have further shown what type of signal-to-noise gain may be expected from an off-the-shelf, inexpensive run-of-the-mill mercury monitor. As long as an evoked response time constant is introduced into the measuring system, noise of a random nature may be reduced to such an extent that trace signals, buried deep in the electrical background, may be reliably measured. If we couple this type of analysis to a multi-parameter mercury analyzer, contributing factors may be evaluated. This will result in a more efficient system application. We have also reported a manner in which evoked response time is related to instrument onset time. However, there are other methods for obtaining an evoked response. Of note is the use of wavelength in the enhancement of spectrophotometric signals. In additional work now being carried out in our laboratory, there are indications that it is possible to relate this type of processing to SO/sub 2/ analyzing systems using conductometry. (auth)

  1. Study on Electrophysiological Signal Monitoring of Plant under Stress Based on Integrated Op-Amps and Patch Electrode

    Directory of Open Access Journals (Sweden)

    Weiming Cai

    2017-01-01

    Full Text Available Electrophysiological signal in plant is a weak electrical signal, which can fluctuate with the change of environment. An amplification detection system was designed for plant electrical signal acquisition by using integrated op-amps (CA3140, AD620, and INA118, patch electrode, data acquisition card (NI USB-6008, computer, and shielded box. Plant electrical signals were also studied under pressure and flooding stress. The amplification detection system can make nondestructive acquisition for Aquatic Scindapsus and Guaibcn with high precision, high sensitivity, low power consumption, high common mode rejection ratio, and working frequency bandwidth. Stress experiments were conducted through the system; results show that electrical signals were produced in the leaf of Aquatic Scindapsus under the stress of pressure. Electrical signals in the up-leaf surface of Aquatic Scindapsus were stronger than the down-leaf surface. Electrical signals produced in the leaf of Guaibcn were getting stronger when suffering flooding stress. The more the flooding stress was severe, the faster the electrical signal changed, the longer the time required for returning to a stable state was, and the greater the electrical signal got at the stable state was.

  2. Expert system for the automatic analysis of the Eddy current signals from the monitoring of vapor generators of a PWR, type reactor

    International Nuclear Information System (INIS)

    Lefevre, F.; Baumaire, A.; Comby, R.; Benas, J.C.

    1990-01-01

    The automatization of the monitoring of the steam generator tubes required some developments in the field of data processing. The monitoring is performed by means of Eddy current tests. Improvements in signal processing and in pattern recognition associated to the artificial intelligence techniques induced EDF (French Electricity Company) to develop an automatic signal processing system. The system, named EXTRACSION (French acronym for Expert System for the Processing and classification of Signals of Nuclear Nature), insures the coherence between the different fields of knowledge (metallurgy, measurement, signals) during data processing by applying an object oriented representation [fr

  3. Advanced Signal Processing for High Temperatures Health Monitoring of Condensed Water Height in Steam Pipes

    Science.gov (United States)

    Lih, Shyh-Shiuh; Bar-Cohen, Yoseph; Lee, Hyeong Jae; Takano, Nobuyuki; Bao, Xiaoqi

    2013-01-01

    An advanced signal processing methodology is being developed to monitor the height of condensed water thru the wall of a steel pipe while operating at temperatures as high as 250deg. Using existing techniques, previous study indicated that, when the water height is low or there is disturbance in the environment, the predicted water height may not be accurate. In recent years, the use of the autocorrelation and envelope techniques in the signal processing has been demonstrated to be a very useful tool for practical applications. In this paper, various signal processing techniques including the auto correlation, Hilbert transform, and the Shannon Energy Envelope methods were studied and implemented to determine the water height in the steam pipe. The results have shown that the developed method provides a good capability for monitoring the height in the regular conditions. An alternative solution for shallow water or no water conditions based on a developed hybrid method based on Hilbert transform (HT) with a high pass filter and using the optimized windowing technique is suggested. Further development of the reported methods would provide a powerful tool for the identification of the disturbances of water height inside the pipe.

  4. Information selection and signal probability in multisource monitoring under the influence of centrally active drugs : Phentermine versus pentobarbital

    NARCIS (Netherlands)

    Volkerts, E.R; van Laar, M.W; Verbaten, M.N; Mulder, G.; Maes, R.A A

    1996-01-01

    The present study is concerned with the relationship between drug-induced arousal shifts and sampling [(monitoring)] behaviour in a three-source task with an a priori signal occurrence probability of 0.6, 0.3, and 0.1. The multisource monitoring task and procedure was adopted from Hockey (1973) who

  5. Potential use of produced oil sample analysis to monitor SAGD performance

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Nexen Petroleum International, Calgary, AB (Canada); Wollen, C. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[OPTI-Nexen Inc., Calgary, AB (Canada); Yang, P.; Fustic, M. [Nexen Petroleum International, Calgary, AB (Canada)

    2008-10-15

    Oil viscosity and compositional gradients can affect the performance of steam injection recovery processes. In this study, reservoir simulations were conducted to investigate the effects of viscosity variation with depth on steam assisted gravity drainage (SAGD) processes and produced oil characteristics. The 2-D reservoir model consisted of a reservoir with a 40 m clean sand matrix, overtopped with interbedded shales and sand. The oil phase was comprised of 2 pseudo-components representing top and bottom bitumens. Viscosities and concentrations of the pseudo-components were calculated using linear mixing rules. Four different viscosity distribution scenarios were examined. Conceptual 3-D models were then constructed to examine the characteristics of produced oil samples in scenarios with shale barriers extending down the well directions and blocking parts of the reservoir. Results from the simulations showed that produced oil characteristics are related to the in situ profiles of reservoir flow barriers. Produced oil characteristics can be used in conjunction with oil rates, surface heave and other data to predict steam chamber development and detect the presence of baffles and barriers. The relationship between the SAGD steam chamber and variations in produced fluid characteristics were accurately characterized by the simulations. It was concluded that the approach can be used to monitor SAGD steam chamber growth. 10 refs., 1 tab., 19 figs.

  6. Design, development and test of the gearbox condition monitoring system using sound signal processing

    Directory of Open Access Journals (Sweden)

    M Zamani

    2016-09-01

    Full Text Available Introduction One of the ways used for minimizing the cost of maintenance and repairs of rotating industrial equipment is condition monitoring using acoustic analysis. One of the most important problems which always have been under consideration in industrial equipment application is confidence possibility. Each dynamic, electrical, hydraulic or thermal system has certain characteristics which show the normal condition of the machine during function. Any changes of the characteristics can be a signal of a problem in the machine. The aim of condition monitoring is system condition determination using measurements of the signals of characteristics and using this information for system impairment prognostication. There are a lot of ways for condition monitoring of different systems, but sound analysis is accepted and used extensively as a method for condition investigation of rotating machines. The aim of this research is the design and construction of considered gearbox and using of obtaining data in frequency and time spectrum in order to analyze the sound and diagnosis. Materials and Methods This research was conducted at the department of mechanical biosystem workshop at Aboureihan College at Tehran University in February 15th.2015. In this research, in order to investigate the trend of diagnosis and gearbox condition, a system was designed and then constructed. The sound of correct and damaged gearbox was investigated by audiometer and stored in computer for data analysis. Sound measurement was done in three pinions speed of 749, 1050 and 1496 rpm and for correct gearboxes, damage of the fracture of a tooth and a tooth wear. Gearbox design and construction: In order to conduct the research, a gearbox with simple gearwheels was designed according to current needs. Then mentioned gearbox and its accessories were modeled in CATIA V5-R20 software and then the system was constructed. Gearbox is a machine that is used for mechanical power transition

  7. Temperature monitoring device and thermocouple assembly therefor

    Science.gov (United States)

    Grimm, Noel P.; Bauer, Frank I.; Bengel, Thomas G.; Kothmann, Richard E.; Mavretish, Robert S.; Miller, Phillip E.; Nath, Raymond J.; Salton, Robert B.

    1991-01-01

    A temperature monitoring device for measuring the temperature at a surface of a body, composed of: at least one first thermocouple and a second thermocouple; support members supporting the thermocouples for placing the first thermocouple in contact with the body surface and for maintaining the second thermocouple at a defined spacing from the body surface; and a calculating circuit connected to the thermocouples for receiving individual signals each representative of the temperature reading produced by a respective one of the first and second thermocouples and for producing a corrected temperature signal having a value which represents the temperature of the body surface and is a function of the difference between the temperature reading produced by the first thermocouple and a selected fraction of the temperature reading provided by the second thermocouple.

  8. A Monte Carlo technique for signal level detection in implanted intracranial pressure monitoring.

    Science.gov (United States)

    Avent, R K; Charlton, J D; Nagle, H T; Johnson, R N

    1987-01-01

    Statistical monitoring techniques like CUSUM, Trigg's tracking signal and EMP filtering have a major advantage over more recent techniques, such as Kalman filtering, because of their inherent simplicity. In many biomedical applications, such as electronic implantable devices, these simpler techniques have greater utility because of the reduced requirements on power, logic complexity and sampling speed. The determination of signal means using some of the earlier techniques are reviewed in this paper, and a new Monte Carlo based method with greater capability to sparsely sample a waveform and obtain an accurate mean value is presented. This technique may find widespread use as a trend detection method when reduced power consumption is a requirement.

  9. PASP Plus Transient Pulse Monitor (TPM) - Data Analysis and Interpretation Report

    National Research Council Canada - National Science Library

    Adamo, Richard

    1996-01-01

    The Transient Pulse Monitor (TPM), part of the PASP Plus experiment aboard the APEX spacecraft, is designed to detect and characterize electromagnetic transient signals produced by electrostatic discharges on the solar array test modules...

  10. An Enhanced Empirical Wavelet Transform for Features Extraction from Wind Turbine Condition Monitoring Signals

    Directory of Open Access Journals (Sweden)

    Pu Shi

    2017-07-01

    Full Text Available Feature extraction from nonlinear and non-stationary (NNS wind turbine (WT condition monitoring (CM signals is challenging. Previously, much effort has been spent to develop advanced signal processing techniques for dealing with CM signals of this kind. The Empirical Wavelet Transform (EWT is one of the achievements attributed to these efforts. The EWT takes advantage of Empirical Mode Decomposition (EMD in dealing with NNS signals but is superior to the EMD in mode decomposition and robustness against noise. However, the conventional EWT meets difficulty in properly segmenting the frequency spectrum of the signal, especially when lacking pre-knowledge of the signal. The inappropriate segmentation of the signal spectrum will inevitably lower the accuracy of the EWT result and thus raise the difficulty of WT CM. To address this issue, an enhanced EWT is proposed in this paper by developing a feasible and efficient spectrum segmentation method. The effectiveness of the proposed method has been verified by using the bearing and gearbox CM data that are open to the public for the purpose of research. The experiment has shown that, after adopting the proposed method, it becomes much easier and more reliable to segment the frequency spectrum of the signal. Moreover, benefitting from the correct segmentation of the signal spectrum, the fault-related features of the CM signals are presented more explicitly in the time-frequency map of the enhanced EWT, despite the considerable noise contained in the signal and the shortage of pre-knowledge about the machine being investigated.

  11. Evaluation of a Multichannel Non-Contact ECG System and Signal Quality Algorithms for Sleep Apnea Detection and Monitoring

    Directory of Open Access Journals (Sweden)

    Ivan D. Castro

    2018-02-01

    Full Text Available Sleep-related conditions require high-cost and low-comfort diagnosis at the hospital during one night or longer. To overcome this situation, this work aims to evaluate an unobtrusive monitoring technique for sleep apnea. This paper presents, for the first time, the evaluation of contactless capacitively-coupled electrocardiography (ccECG signals for the extraction of sleep apnea features, together with a comparison of different signal quality indicators. A multichannel ccECG system is used to collect signals from 15 subjects in a sleep environment from different positions. Reference quality labels were assigned for every 30-s segment. Quality indicators were calculated, and their signal classification performance was evaluated. Features for the detection of sleep apnea were extracted from capacitive and reference signals. Sleep apnea features related to heart rate and heart rate variability achieved high similarity to the reference values, with p-values of 0.94 and 0.98, which is in line with the more than 95% beat-matching obtained. Features related to signal morphology presented lower similarity with the reference, although signal similarity metrics of correlation and coherence were relatively high. Quality-based automatic classification of the signals had a maximum accuracy of 91%. Best-performing quality indicators were based on template correlation and beat-detection. Results suggest that using unobtrusive cardiac signals for the automatic detection of sleep apnea can achieve similar performance as contact signals, and indicates clinical value of ccECG. Moreover, signal segments can automatically be classified by the proposed quality metrics as a pre-processing step. Including contactless respiration signals is likely to improve the performance and provide a complete unobtrusive cardiorespiratory monitoring solution; this is a promising alternative that will allow the screening of more patients with higher comfort, for a longer time, and at

  12. Characterizing noise in the global nuclear weapon monitoring system

    Science.gov (United States)

    Schultz, Colin

    2013-03-01

    Under the auspices of the Comprehensive Nuclear-Test-Ban Treaty Organization, a worldwide monitoring system designed to detect the illegal testing of nuclear weaponry has been under construction since 1999. The International Monitoring System is composed of a range of sensors, including detectors for hydroacoustic and seismic signals, and when completed, will include 60 infrasound measurement arrays set to detect low-frequency sound waves produced by an atmospheric nuclear detonation.

  13. An in-vacuum wall current monitor and low cost signal sampling system

    International Nuclear Information System (INIS)

    Yin, Y.; Rawnsley, W.R.; Mackenzie, G.H.

    1993-11-01

    The beam bunches extracted from the TRIUMF cyclotron are usually about 4 ns long, contain ∼ 4 x 10 7 protons, and are spaced at 43 ns. A wall current monitor capable of giving the charge distribution within a bunch, on a bunch by bunch basis, has recently been installed together with a sampling system for routine display in the control room. The wall current monitor is enclosed in a vacuum vessel and no ceramic spacer is required. This enhances the response to high frequencies, ferrite rings extend the low frequency response. Bench measurements show a flat response between a few hundred kilohertz and 4.6 GHz. For a permanent display in the control room the oscilloscope will be replaced by a Stanford Research Systems fast sampler module, a scanner module, and an interface module made at TRIUMF. The time to acquire one 10 ns distribution encompassing the beam bunch is 30 ms with a sample width of 100 ps and an average sample spacing of 13 ps. The scan, sample, and retrace signals are buffered carried on 70 m differential lines to the control room. An analog scope in XYZ mode provides a real time display. Signal averaging can be performed by using a digital oscilloscope in YT mode. (author). 6 refs., 2 tabs., 7 figs

  14. Bio-Signal Complexity Analysis in Epileptic Seizure Monitoring: A Topic Review

    Directory of Open Access Journals (Sweden)

    Zhenning Mei

    2018-05-01

    Full Text Available Complexity science has provided new perspectives and opportunities for understanding a variety of complex natural or social phenomena, including brain dysfunctions like epilepsy. By delving into the complexity in electrophysiological signals and neuroimaging, new insights have emerged. These discoveries have revealed that complexity is a fundamental aspect of physiological processes. The inherent nonlinearity and non-stationarity of physiological processes limits the methods based on simpler underlying assumptions to point out the pathway to a more comprehensive understanding of their behavior and relation with certain diseases. The perspective of complexity may benefit both the research and clinical practice through providing novel data analytics tools devoted for the understanding of and the intervention about epilepsies. This review aims to provide a sketchy overview of the methods derived from different disciplines lucubrating to the complexity of bio-signals in the field of epilepsy monitoring. Although the complexity of bio-signals is still not fully understood, bundles of new insights have been already obtained. Despite the promising results about epileptic seizure detection and prediction through offline analysis, we are still lacking robust, tried-and-true real-time applications. Multidisciplinary collaborations and more high-quality data accessible to the whole community are needed for reproducible research and the development of such applications.

  15. Neuroelectronics and modeling of electrical signals for monitoring and control of Parkinson's disease

    Science.gov (United States)

    Chintakuntla, Ritesh R.; Abraham, Jose K.; Varadan, Vijay K.

    2009-03-01

    The brain and the human nervous system are perhaps the most researched but least understood components of the human body. This is so because of the complex nature of its working and the high density of functions. The monitoring of neural signals could help one better understand the working of the brain and newer recording and monitoring methods have been developed ever since it was discovered that the brain communicates internally by means of electrical pulses. Neuroelectronics is the field which deals with the interface between electronics or semiconductors to living neurons. This includes monitoring of electrical activity from the brain as well as the development of feedback devices for stimulation of parts of the brain for treatment of disorders. In this paper these electrical signals are modeled through a nano/microelectrode arrays based on the electronic equivalent model using Cadence PSD 15.0. The results were compared with those previously published models such as Kupfmuller and Jenik's model, McGrogan's Neuron Model which are based on the Hodgkin and Huxley model. We have developed and equivalent circuit model using discrete passive components to simulate the electrical activity of the neurons. The simulated circuit can be easily be modified by adding some more ionic channels and the results can be used to predict necessary external stimulus needed for stimulation of neurons affected by the Parkinson's disease (PD). Implementing such a model in PD patients could predict the necessary voltages required for the electrical stimulation of the sub-thalamus region for the control tremor motion.

  16. Listening to the Deep: live monitoring of ocean noise and cetacean acoustic signals.

    Science.gov (United States)

    André, M; van der Schaar, M; Zaugg, S; Houégnigan, L; Sánchez, A M; Castell, J V

    2011-01-01

    The development and broad use of passive acoustic monitoring techniques have the potential to help assessing the large-scale influence of artificial noise on marine organisms and ecosystems. Deep-sea observatories have the potential to play a key role in understanding these recent acoustic changes. LIDO (Listening to the Deep Ocean Environment) is an international project that is allowing the real-time long-term monitoring of marine ambient noise as well as marine mammal sounds at cabled and standalone observatories. Here, we present the overall development of the project and the use of passive acoustic monitoring (PAM) techniques to provide the scientific community with real-time data at large spatial and temporal scales. Special attention is given to the extraction and identification of high frequency cetacean echolocation signals given the relevance of detecting target species, e.g. beaked whales, in mitigation processes, e.g. during military exercises. Copyright © 2011. Published by Elsevier Ltd.

  17. ATLAS Tile Calorimeter calibration and monitoring systems

    Science.gov (United States)

    Cortés-González, Arely

    2018-01-01

    The ATLAS Tile Calorimeter is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes, located in the outer part of the calorimeter. Neutral particles may also produce a signal after interacting with the material and producing charged particles. The readout is segmented into about 5000 cells, each of them being read out by two photomultipliers in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. This comprises Cesium radioactive sources, Laser, charge injection elements and an integrator based readout system. Information from all systems allows to monitor and equalise the calorimeter response at each stage of the signal production, from scintillation light to digitisation. Calibration runs are monitored from a data quality perspective and used as a cross-check for physics runs. The data quality efficiency achieved during 2016 was 98.9%. These calibration and stability of the calorimeter reported here show that the TileCal performance is within the design requirements and has given essential contribution to reconstructed objects and physics results.

  18. Plant monitoring system

    International Nuclear Information System (INIS)

    Tamaoki, Tetsuo.

    1994-01-01

    The memory means of the present invention memorize conditions for analyzing a sampling period for inputting process signals and time sequential data of the process signals. The process signals are analyzed following after sampling period and the analysis conditions stored in the memory means preceding to monitoring. A monitoring condition setting means controls and subsequently updates the sampling period and the analysis conditions in the memory means based on the analysis data, to finally set monitoring conditions. With such procedures, analysis conditions such as optimum analysis frequency range, signal sampling period and correlational characteristics between process noise signals are automatically selected. (I.S.)

  19. Can the Accuracy of Home Blood Glucose Monitors be affected by the Received Signal Strength of 900 MHz GSM Mobile Phones?

    Science.gov (United States)

    Eslami, J; Ghafaripour, F; Mortazavi, S A R; Mortazavi, S M J; Shojaei-Fard, M B

    2015-12-01

    People who use home blood glucose monitors may use their mobile phones in the close vicinity of medical devices. This study is aimed at investigating the effect of the signal strength of 900 MHz GSM mobile phones on the accuracy of home blood glucose monitors. Sixty non-diabetic volunteer individuals aged 21 - 28 years participated in this study. Blood samples were analyzed for glucose level by using a common blood glucose monitoring system. Each blood sample was analyzed twice, within ten minutes in presence and absence of electromagnetic fields generated by a common GSM mobile phone during ringing. Blood samples were divided into 3 groups of 20 samples each. Group 1: exposure to mobile phone radiation with weak signal strength. Group2: exposure to mobile phone radiation with strong signal strength. Group3: exposure to a switched-on mobile phone with no signal strength. The magnitude of the changes in the first, second and third group between glucose levels of two measurements (׀ΔC׀) were 7.4±3.9 mg/dl, 10.2±4.5 mg/dl, 8.7±8.4 mg/dl respectively. The difference in the magnitude of the changes between the 1st and the 3rd groups was not statistically significant. Furthermore, the difference in the magnitude of the changes between the 2nd and the 3rd groups was not statistically significant. Findings of this study showed that the signal strength of 900 MHz GSM mobile phones cannot play a significant role in changing the accuracy of home blood glucose monitors.

  20. Continuous and Cuffless Blood Pressure Monitoring Based on ECG and SpO2 Signals ByUsing Microsoft Visual C Sharp.

    Science.gov (United States)

    Younessi Heravi, M A; Khalilzadeh, M A; Joharinia, S

    2014-03-01

    One of the main problems especially in operating room and monitoring devices is measurement of Blood Pressure (BP) by sphygmomanometer cuff. Objective :In this study we designed a new method to measure BP changes continuously for detecting information between cuff inflation times by using vital signals in monitoring devices. This will be achieved by extraction of the time difference between each cardiac cycle and a relative pulse wave. Finger pulse and ECG signals in lead I were recorded by a monitoring device. The output of monitoring device wasinserted in a computer by serial network communication. A software interface (Microsoft Visual C#.NET ) was used to display and process the signals in the computer. Time difference between each cardiac cycle and pulse signal was calculated throughout R wave detection in ECG and peak of pulse signal by the software. The relation between time difference in two waves and BP was determined then the coefficients of equation were obtained in different physical situations. The results of estimating BP were compared with the results of sphygmomanometer method and the error rate was calculated. In this study, 25 subjects participated among them 15 were male and 10 were female. The results showed that BP was linearly related to time difference. Average of coefficient correlation was 0.9±0.03 for systolic and 0.82±0.04 for diastolic blood pressure. The highest error percentage was calculated 8% for male and 11% for female group. Significant difference was observed between the different physical situation and arm movement changes. The relationship between time difference and age was estimated in a linear relationship with a correlation coefficient of 0.76. By determining linear relation values with high accuracy, BP can be measured with insignificant error. Therefore it can be suggested as a new method to measure the blood pressure continuously.

  1. Advanced pulse oximeter signal processing technology compared to simple averaging. I. Effect on frequency of alarms in the operating room.

    Science.gov (United States)

    Rheineck-Leyssius, A T; Kalkman, C J

    1999-05-01

    To determine the effect of a new signal processing technique (Oxismart, Nellcor, Inc., Pleasanton, CA) on the incidence of false pulse oximeter alarms in the operating room (OR). Prospective observational study. Nonuniversity hospital. 53 ASA physical status I, II, and III consecutive patients undergoing general anesthesia with tracheal intubation. In the OR we compared the number of alarms produced by a recently developed third generation pulse oximeter (Nellcor Symphony N-3000) with Oxismart signal processing technique and a conventional pulse oximeter (Criticare 504). Three pulse oximeters were used simultaneously in each patient: a Nellcor pulse oximeter, a Criticare with the signal averaging time set at 3 seconds (Criticareaverage3s) and a similar unit with the signal averaging time set at 21 seconds (Criticareaverage21s). For each pulse oximeter, the number of false (artifact) alarms was counted. One false alarm was produced by the Nellcor (duration 55 sec) and one false alarm by the Criticareaverage21s monitor (5 sec). The incidence of false alarms was higher in Criticareaverage3s. In eight patients, Criticareaverage3s produced 20 false alarms (p signal processing compared with the Criticare monitor with the longer averaging time of 21 seconds.

  2. Methods, apparatus, and systems for monitoring transmission systems

    Science.gov (United States)

    Polk, Robert E [Idaho Falls, ID; Svoboda, John M [Idaho Falls, ID; West, Phillip B [Idaho Falls, ID; Heath, Gail L [Iona, ID; Scott, Clark L [Idaho Falls, ID

    2010-08-31

    A sensing platform for monitoring a transmission system, and method therefor, may include a sensor that senses one or more conditions relating to a condition of the transmission system and/or the condition of an environment around the transmission system. A control system operatively associated with the sensor produces output data based on an output signal produced by the sensor. A transmitter operatively associated with the control system transmits the output data from the control system.

  3. Statistical Analysis of Stress Signals from Bridge Monitoring by FBG System

    Directory of Open Access Journals (Sweden)

    Xiao-Wei Ye

    2018-02-01

    Full Text Available In this paper, a fiber Bragg grating (FBG-based stress monitoring system instrumented on an orthotropic steel deck arch bridge is demonstrated. The FBG sensors are installed at two types of critical fatigue-prone welded joints to measure the strain and temperature signals. A total of 64 FBG sensors are deployed around the rib-to-deck and rib-to-diagram areas at the mid-span and quarter-span of the investigated orthotropic steel bridge. The local stress behaviors caused by the highway loading and temperature effect during the construction and operation periods are presented with the aid of a wavelet multi-resolution analysis approach. In addition, the multi-modal characteristic of the rainflow counted stress spectrum is modeled by the method of finite mixture distribution together with a genetic algorithm (GA-based parameter estimation approach. The optimal probability distribution of the stress spectrum is determined by use of Bayesian information criterion (BIC. Furthermore, the hot spot stress of the welded joint is calculated by an extrapolation method recommended in the specification of International Institute of Welding (IIW. The stochastic characteristic of stress concentration factor (SCF of the concerned welded joint is addressed. The proposed FBG-based stress monitoring system and probabilistic stress evaluation methods can provide an effective tool for structural monitoring and condition assessment of orthotropic steel bridges.

  4. Frequency Analysis of Acoustic Emission Signal to Monitor Damage Evolution in Masonry Structures

    International Nuclear Information System (INIS)

    Masera, D; Bocca, P; Grazzini, A

    2011-01-01

    A crucial aspect in damage evaluation of masonry structures is the analysis of long-term behaviour and for this reason fatigue analysis has a great influence on safety assessment of this structures. Acoustic Emission (AE) are very effective non-destructive techniques applied to identify micro and macro-defects and their temporal evolution in several materials. This technique permits to estimate the velocity of ultrasound waves propagation and the amount of energy released during fracture propagation to obtain information on the criticality of the ongoing process. By means of AE monitoring, an experimental analysis on a set of reinforced and unreinforced masonry walls under variable amplitude and static loading has been carried out. During these tests, the AE signals were recorded. The AE signals were analysed using Fast Fourier Transform (FFT) to examine the frequency distribution of the micro and macro cracking. It possible to evaluate the evolution of the wavelength of the AE signal through the two characteristic peak in the AE spectrum signals and the wave speed of the P or S waves. This wavelength evolution can be represent the microcrak and macrocrack evolution in masonry walls. This procedure permits to estimate the fracture dimension characteristic in several loading condition and for several masonry reinforced condition.

  5. Control of earphone produced binaural signals

    DEFF Research Database (Denmark)

    Hammershøi, Dorte; Hoffmann, Pablo F.

    2011-01-01

    While most people keep a high attention to the significance of the binaural recording method, whether it is e.g. individual or non-individual (as e.g. artificial head recording), many pay less attention to the type of earphone used to reproduce the binaural signals, and to the accurate control...

  6. Can the Accuracy of Home Blood Glucose Monitors be affected by the Received Signal Strength of 900 MHz GSM Mobile Phones?

    Directory of Open Access Journals (Sweden)

    Eslami J.

    2015-12-01

    Full Text Available Background: People who use home blood glucose monitors may use their mobile phones in the close vicinity of medical devices. This study is aimed at investigating the effect of the signal strength of 900 MHz GSM mobile phones on the accuracy of home blood glucose monitors. Methods: Sixty non-diabetic volunteer individuals aged 21 - 28 years participated in this study. Blood samples were analyzed for glucose level by using a common blood glucose monitoring system. Each blood sample was analyzed twice, within ten minutes in presence and absence of electromagnetic fields generated by a common GSM mobile phone during ringing. Blood samples were divided into 3 groups of 20 samples each. Group 1: exposure to mobile phone radiation with weak signal strength. Group2: exposure to mobile phone radiation with strong signal strength. Group3: exposure to a switched–on mobile phone with no signal strength. Results: The magnitude of the changes in the first, second and third group between glucose levels of two measurements (׀ΔC׀ (were 7.4±3.9 mg/dl, 10.2±4.5 mg/ dl, 8.7±8.4 mg/dl respectively. The difference in the magnitude of the changes between the 1st and the 3rd groups was not statistically significant. Furthermore, the difference in the magnitude of the changes between the 2nd and the 3rd groups was not statistically significant. Conclusion: Findings of this study showed that the signal strength of 900 MHz GSM mobile phones cannot play a significant role in changing the accuracy of home blood glucose monitors.

  7. Can the Accuracy of Home Blood Glucose Monitors be affected by the Received Signal Strength of 900 MHz GSM Mobile Phones?

    Science.gov (United States)

    Eslami, J.; Ghafaripour, F.; Mortazavi, S.A.R.; Mortazavi, S.M.J.; Shojaei-fard, M.B.

    2015-01-01

    Background People who use home blood glucose monitors may use their mobile phones in the close vicinity of medical devices. This study is aimed at investigating the effect of the signal strength of 900 MHz GSM mobile phones on the accuracy of home blood glucose monitors. Methods Sixty non-diabetic volunteer individuals aged 21 - 28 years participated in this study. Blood samples were analyzed for glucose level by using a common blood glucose monitoring system. Each blood sample was analyzed twice, within ten minutes in presence and absence of electromagnetic fields generated by a common GSM mobile phone during ringing. Blood samples were divided into 3 groups of 20 samples each. Group 1: exposure to mobile phone radiation with weak signal strength. Group2: exposure to mobile phone radiation with strong signal strength. Group3: exposure to a switched–on mobile phone with no signal strength. Results The magnitude of the changes in the first, second and third group between glucose levels of two measurements (׀ΔC׀) were 7.4±3.9 mg/dl, 10.2±4.5 mg/dl, 8.7±8.4 mg/dl respectively. The difference in the magnitude of the changes between the 1st and the 3rd groups was not statistically significant. Furthermore, the difference in the magnitude of the changes between the 2nd and the 3rd groups was not statistically significant. Conclusion Findings of this study showed that the signal strength of 900 MHz GSM mobile phones cannot play a significant role in changing the accuracy of home blood glucose monitors. PMID:26688798

  8. Sustained Attention in Auditory and Visual Monitoring Tasks: Evaluation of the Administration of a Rest Break or Exogenous Vibrotactile Signals.

    Science.gov (United States)

    Arrabito, G Robert; Ho, Geoffrey; Aghaei, Behzad; Burns, Catherine; Hou, Ming

    2015-12-01

    Performance and mental workload were observed for the administration of a rest break or exogenous vibrotactile signals in auditory and visual monitoring tasks. Sustained attention is mentally demanding. Techniques are required to improve observer performance in vigilance tasks. Participants (N = 150) monitored an auditory or a visual display for changes in signal duration in a 40-min watch. During the watch, participants were administered a rest break or exogenous vibrotactile signals. Detection accuracy was significantly greater in the auditory than in the visual modality. A short rest break restored detection accuracy in both sensory modalities following deterioration in performance. Participants experienced significantly lower mental workload when monitoring auditory than visual signals, and a rest break significantly reduced mental workload in both sensory modalities. Exogenous vibrotactile signals had no beneficial effects on performance, or mental workload. A rest break can restore performance in auditory and visual vigilance tasks. Although sensory differences in vigilance tasks have been studied, this study is the initial effort to investigate the effects of a rest break countermeasure in both auditory and visual vigilance tasks, and it is also the initial effort to explore the effects of the intervention of a rest break on the perceived mental workload of auditory and visual vigilance tasks. Further research is warranted to determine exact characteristics of effective exogenous vibrotactile signals in vigilance tasks. Potential applications of this research include procedures for decreasing the temporal decline in observer performance and the high mental workload imposed by vigilance tasks. © 2015, Her Majesty the Queen in Right of Canada, as represented by the Minister of National Defence.

  9. MONITORING HIGH-FREQUENCY OCEAN SIGNALS USING LOW-COST GNSS/IMU BUOYS

    Directory of Open Access Journals (Sweden)

    Y.-L. Huang

    2016-06-01

    Full Text Available In oceans there are different ocean signals covering the multi-frequencies including tsunami, meteotsunami, storm surge, as sea level change, and currents. These signals have the direct and significant impact on the economy and life of human-beings. Therefore, measuring ocean signals accurately becomes more and more important and necessary. Nowadays, there are many techniques and methods commonly used for monitoring oceans, but each has its limitation. For example, tide gauges only measure sea level relative to benchmarks and are disturbed unevenly, and satellite altimeter measurements are not continuous and inaccurate near coastal oceans. In addition, high-frequency ocean signals such as tsunami and meteotsunami cannot be sufficiently detected by 6-minutes tide gauge measurements or 10-day sampled altimetry data. Moreover, traditional accelerometer buoy is heavy, expensive and the low-frequency noise caused by the instrument is unavoidable. In this study, a small, low-cost and self-assembly autonomous Inertial Measurement Unit (IMU that independently collects continuous acceleration and angular velocity data is mounted on a GNSS buoy to provide the positions and tilts of the moving buoy. The main idea is to integrate the Differential GNSS (DGNSS or Precise Point Positioning (PPP solutions with IMU data, and then evaluate the performance by comparing with in situ tide gauges. The validation experiments conducted in the NCKU Tainan Hydraulics Laboratory showed that GNSS and IMU both can detect the simulated regular wave frequency and height, and the field experiments in the Anping Harbor, Tainan, Taiwan showed that the low-cost GNSS buoy has an excellent ability to observe significant wave heights in amplitude and frequency.

  10. Technological monitoring radar: a weak signals interpretation tool for the identification of strategic surprises

    Directory of Open Access Journals (Sweden)

    Adalton Ozaki

    2011-07-01

    Full Text Available In the current competitive scenario, marked by rapid and constant changes, it is vital that companies actively monitor the business environment, in search of signs which might anticipate changes. This study poses to propose and discuss a tool called Technological Monitoring Radar, which endeavours to address the following query: “How can a company systematically monitor the environment and capture signs that anticipate opportunities and threats concerning a particular technology?”. The literature review covers Competitive Intelligence, Technological Intelligence, Environmental Analysis and Anticipative Monitoring. Based on the critical analysis of the literature, a tool called Technological Monitoring Radar is proposed comprising five environments to be monitored (political, economical, technological, social and competition each of which with key topics for analysis. To exemplify the use of the tool, it is applied to the smartphone segment in an exclusively reflexive manner, and without the participation of a specific company. One of the suggestions for future research is precisely the application of the proposed methodology in an actual company. Despite the limitation of this being a theoretical study, the example demonstrated the tool´s applicability. The radar prove to be very useful for a company that needs to monitor the environment in search of signs of change. This study´s main contribution is to relate different fields of study (technological intelligence, environmental analysis and anticipative monitoring and different approaches to provide a practical tool that allows a manager to identify and better visualize opportunities and threats, thus avoiding strategic surprises in the technological arena.Key words: Technological monitoring. Technological intelligence. Competitive intelligence. Weak signals.

  11. Method and apparatus for stabilizing signals in radioactive well logging tools

    International Nuclear Information System (INIS)

    Kampfer, J.G.; Ingram, L.A.

    1977-01-01

    A method and apparatus are presented for stabilizing signals in radioactive well logging tools. In the tool a main scintillating crystal and photomultiplier tube for detecting radiation induced in the borehole by a source of radiation are provided and a reference crystal, including a source of mono-energetic radiation, for producing continuous reference signals of a predetermined energy level. The signals are monitored and the spectrum is stabilized to correct for drift of the data signals introduced by the photomultiplier tube and the data transmission system. The preferred mono-energetic reference signals are selected to appear in the energy spectrum at a level which minimizes error. An electronic circuit at the surface provides a correction signal for adjusting the gain of a data signal amplifier responsive to changes in the reference signal, thereby correcting for drift in the data signal

  12. Procedures and techniques for monitoring the radiation detection, signalization and alarm systems in the centralized ambience monitoring systems of the basic nuclear facilities of the CEN Saclay

    International Nuclear Information System (INIS)

    Andre, J.-J.; Drouet, J.; Leblanc, P.

    1979-01-01

    After referring to the regulations governing the 'systematic ambience monitoring' in the basic nuclear facilities, the main radiation detection, signalization and alarm devices existing at present in these facilities of the Saclay Nuclear Study Centre are described. The analysis of the operating defects of the measuring channels and detection possibilities leads to the anomalies being classified in two separate groups: the anomalies of the logical 'all or nothing' type of which all the possible origins are integrated into a so-called 'continuity' line and the evolutive anomalies of various origins corresponding to poor functioning extending possibly to a complete absence of signal. The techniques for testing the detection devices of the radiation monitoring board set up in the 'Departement de Rayonnements' at the Saclay Nuclear Study Centre are also described [fr

  13. Fatigue of Ti6Al4V Structural Health Monitoring Systems Produced by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Maria Strantza

    2016-02-01

    Full Text Available Selective laser melting (SLM is an additive manufacturing (AM process which is used for producing metallic components. Currently, the integrity of components produced by SLM is in need of improvement due to residual stresses and unknown fracture behavior. Titanium alloys produced by AM are capable candidates for applications in aerospace and industrial fields due to their fracture resistance, fatigue behavior and corrosion resistance. On the other hand, structural health monitoring (SHM system technologies are promising and requested from the industry. SHM systems can monitor the integrity of a structure and during the last decades the research has primarily been influenced by bionic engineering. In that aspect a new philosophy for SHM has been developed: the so-called effective structural health monitoring (eSHM system. The current system uses the design freedom provided by AM. The working principle of the system is based on crack detection by means of a network of capillaries that are integrated in a structure. The main objective of this research is to evaluate the functionality of Ti6Al4V produced by the SLM process in the novel SHM system and to confirm that the eSHM system can successfully detect cracks in SLM components. In this study four-point bending fatigue tests on Ti6Al4V SLM specimens with an integrated SHM system were conducted. Fractographic analysis was performed after the final failure, while finite element simulations were used in order to determine the stress distribution in the capillary region and on the component. It was proven that the SHM system does not influence the crack initiation behavior during fatigue. The results highlight the effectiveness of the eSHM on SLM components, which can potentially be used by industrial and aerospace applications.

  14. Seismic monitoring of the Yucca Mountain facility

    International Nuclear Information System (INIS)

    Garbin, H.D.; Herrington, P.B.; Kromer, R.P.

    1997-01-01

    Questions have arisen regarding the applicability of seismic sensors to detect mining (re-entry) with a tunnel boring machine (TBM). Unlike cut and blast techniques of mining which produce impulsive seismic signals, the TBM produces seismic signals which are of long duration. (There are well established techniques available for detecting and locating the sources of the impulsive signals.) The Yucca Mountain repository offered an opportunity to perform field evaluations of the capabilities of seismic sensors because during much of 1996, mining there was progressing with the use of a TBM. During the mining of the repository's southern branch, an effort was designed to evaluate whether the TBM could be detected, identified and located using seismic sensors. Three data acquisition stations were established in the Yucca Mountain area to monitor the TBM activity. A ratio of short term average to long term average algorithm was developed for use in signal detection based on the characteristics shown in the time series. For location of the source of detected signals, FK analysis was used on the array data to estimate back azimuths. The back azimuth from the 3 component system was estimated from the horizontal components. Unique features in the timing of the seismic signal were used to identify the source as the TBM

  15. A noise reconfigurable current-reuse resistive feedback amplifier with signal-dependent power consumption for fetal ECG monitoring

    NARCIS (Netherlands)

    Song, Shuang; Rooijakkers, M.J.; Harpe, P.; Rabotti, C.; Mischi, M.; Van Roermund, A.H.M.; Cantatore, E.

    2016-01-01

    This paper presents a noise-reconfigurable resistive feedback amplifier with current-reuse technique for fetal ECG monitoring. The proposed amplifier allows for both tuning of the noise level and changing the power consumption according to the signal properties, minimizing the total power

  16. Quorum sensing signaling molecules produced by reference and emerging soft-rot bacteria (Dickeya and Pectobacterium spp..

    Directory of Open Access Journals (Sweden)

    Alexandre Crépin

    Full Text Available Several small diffusible molecules are involved in bacterial quorum sensing and virulence. The production of autoinducers-1 and -2, quinolone, indole and γ-amino butyrate signaling molecules was investigated in a set of soft-rot bacteria belonging to six Dickeya or Pectobacterium species including recent or emerging potato isolates.Using bacterial biosensors, immunoassay, and chromatographic analysis, we showed that soft-rot bacteria have the common ability to produce transiently during their exponential phase of growth the N-3-oxo-hexanoyl- or the N-3-oxo-octanoyl-l-homoserine lactones and a molecule of the autoinducer-2 family. Dickeya spp. produced in addition the indole-3-acetic acid in tryptophan-rich conditions. All these signaling molecules have been identified for the first time in the novel Dickeya solani species. In contrast, quinolone and γ-amino butyrate signals were not identified and the corresponding synthases are not present in the available genomes of soft-rot bacteria. To determine if the variations of signal production according to growth phase could result from expression modifications of the corresponding synthase gene, the respective mRNA levels were estimated by reverse transcriptase-PCR. While the N-acyl-homoserine lactone production is systematically correlated to the synthase expression, that of the autoinducer-2 follows the expression of an enzyme upstream in the activated methyl cycle and providing its precursor, rather than the expression of its own synthase.Despite sharing the S-adenosylmethionine precursor, no strong link was detected between the production kinetics or metabolic pathways of autoinducers-1 and -2. In contrast, the signaling pathway of autoinducer-2 seems to be switched off by the indole-3-acetic acid pathway under tryptophan control. It therefore appears that the two genera of soft-rot bacteria have similarities but also differences in the mechanisms of communication via the diffusible molecules

  17. Quorum Sensing Signaling Molecules Produced by Reference and Emerging Soft-Rot Bacteria (Dickeya and Pectobacterium spp.)

    Science.gov (United States)

    Crépin, Alexandre; Barbey, Corinne; Beury-Cirou, Amélie; Hélias, Valérie; Taupin, Laure; Reverchon, Sylvie; Nasser, William; Faure, Denis; Dufour, Alain; Orange, Nicole; Feuilloley, Marc; Heurlier, Karin; Burini, Jean-François; Latour, Xavier

    2012-01-01

    Background Several small diffusible molecules are involved in bacterial quorum sensing and virulence. The production of autoinducers-1 and -2, quinolone, indole and γ-amino butyrate signaling molecules was investigated in a set of soft-rot bacteria belonging to six Dickeya or Pectobacterium species including recent or emerging potato isolates. Methodology/Principal Findings Using bacterial biosensors, immunoassay, and chromatographic analysis, we showed that soft-rot bacteria have the common ability to produce transiently during their exponential phase of growth the N-3-oxo-hexanoyl- or the N-3-oxo-octanoyl-l-homoserine lactones and a molecule of the autoinducer-2 family. Dickeya spp. produced in addition the indole-3-acetic acid in tryptophan-rich conditions. All these signaling molecules have been identified for the first time in the novel Dickeya solani species. In contrast, quinolone and γ-amino butyrate signals were not identified and the corresponding synthases are not present in the available genomes of soft-rot bacteria. To determine if the variations of signal production according to growth phase could result from expression modifications of the corresponding synthase gene, the respective mRNA levels were estimated by reverse transcriptase-PCR. While the N-acyl-homoserine lactone production is systematically correlated to the synthase expression, that of the autoinducer-2 follows the expression of an enzyme upstream in the activated methyl cycle and providing its precursor, rather than the expression of its own synthase. Conclusions/Significance Despite sharing the S-adenosylmethionine precursor, no strong link was detected between the production kinetics or metabolic pathways of autoinducers-1 and -2. In contrast, the signaling pathway of autoinducer-2 seems to be switched off by the indole-3-acetic acid pathway under tryptophan control. It therefore appears that the two genera of soft-rot bacteria have similarities but also differences in the

  18. Quorum sensing signals are produced by Aeromonas salmonicida and quorum sensing inhibitors can reduce production of a potential virulence factor

    DEFF Research Database (Denmark)

    Rasch, Maria; Kastbjerg, Vicky Gaedt; Bruhn, Jesper Bartholin

    2007-01-01

    Many pathogens control production of virulence factors by self-produced signals in a process called quorum sensing (QS). We demonstrate that acyl homoserine lactone (AHL) signals, which enable bacteria to express certain phenotypes in relation to cell density, are produced by a wide spectrum...... of Aeromonas salmonicida strains. All 31 typical strains were AHL producers as were 21 of 26 atypical strains, but on a strain population basis, production of virulence factors such as protease, lipase, A-layer or pigment did not correlate with the production and accumulation of AHLs in the growth medium...... of Aeromonas salmonicida. The most efficient compound N-(heptylsulfanylacetyl)-L-homoserine lactone (HepS-AHL), reduced protease production by a factor of 10. Five extracellular proteases were detected on gelatin-containing sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) gels and 3...

  19. Continuous and Cuffless Blood Pressure Monitoring Based on ECG and SpO2 Signals By Using Microsoft Visual C Sharp

    Directory of Open Access Journals (Sweden)

    Younessi Heravi M. A.

    2014-03-01

    Full Text Available Background: One of the main problems especially in operating room and monitoring devices is measurement of Blood Pressure (BP by sphygmomanometer cuff. Objective: In this study we designed a new method to measure BP changes continuously for detecting information between cuff inflation times by using vital signals in monitoring devices. This will be achieved by extraction of the time difference between each cardiac cycle and a relative pulse wave. Methods: Finger pulse and ECG signals in lead I were recorded by a monitoring device. The output of monitoring device was inserted in a computer by serial network communication. A software interface (Microsoft Visual C#.NET was used to display and process the signals in the computer. Time difference between each cardiac cycle and pulse signal was calculated throughout R wave detection in ECG and peak of pulse signal by the software. The relation between time difference in two waves and BP was determined then the coefficients of equation were obtained in different physical situations. The results of estimating BP were compared with the results of sphygmomanometer method and the error rate was calculated. Results: In this study, 25 subjects participated among them 15 were male and 10 were female. The results showed that BP was linearly related to time difference. Average of coefficient correlation was 0.9±0.03 for systolic and 0.82±0.04 for diastolic blood pressure. The highest error percentage was calculated 8% for male and 11% for female group. Significant difference was observed between the different physical situation and arm movement changes. The relationship between time difference and age was estimated in a linear relationship with a correlation coefficient of 0.76. Conclusion: By determining linear relation values with high accuracy, BP can be measured with insignificant error. Therefore it can be suggested as a new method to measure the blood pressure continuously.

  20. Larger Neural Responses Produce BOLD Signals That Begin Earlier in Time

    Directory of Open Access Journals (Sweden)

    Serena eThompson

    2014-06-01

    Full Text Available Functional MRI analyses commonly rely on the assumption that the temporal dynamics of hemodynamic response functions (HRFs are independent of the amplitude of the neural signals that give rise to them. The validity of this assumption is particularly important for techniques that use fMRI to resolve sub-second timing distinctions between responses, in order to make inferences about the ordering of neural processes. Whether or not the detailed shape of the HRF is independent of neural response amplitude remains an open question, however. We performed experiments in which we measured responses in primary visual cortex (V1 to large, contrast-reversing checkerboards at a range of contrast levels, which should produce varying amounts of neural activity. Ten subjects (ages 22-52 were studied in each of two experiments using 3 Tesla scanners. We used rapid, 250 msec, temporal sampling (repetition time, or TR and both short and long inter-stimulus interval (ISI stimulus presentations. We tested for a systematic relationship between the onset of the HRF and its amplitude across conditions, and found a strong negative correlation between the two measures when stimuli were separated in time (long- and medium-ISI experiments, but not the short-ISI experiment. Thus, stimuli that produce larger neural responses, as indexed by HRF amplitude, also produced HRFs with shorter onsets. The relationship between amplitude and latency was strongest in voxels with lowest mean-normalized variance (i.e., parenchymal voxels. The onset differences observed in the longer-ISI experiments are likely attributable to mechanisms of neurovascular coupling, since they are substantially larger than reported differences in the onset of action potentials in V1 as a function of response amplitude.

  1. Neutron monitoring system

    International Nuclear Information System (INIS)

    Okido, Fumiyasu; Arita, Setsuo.

    1994-01-01

    The present invention concerns neutron monitoring for monitoring reactor power, and presents a generation state of abnormal signals by monitoring output signals from neutron sensors, judges abnormal signals at an excessively high level outputted from the sensors to a measuring operator or a reactor operator. That is, a threshold value judging means judges whether a sensor signal exceeds a predetermined threshold value or not. When it exceeds the value, recognition signals are outputted to a memory means. The memory means memorizes the times of input of the recognition signals on every period of interval signals outputted from a reference signal generation means. The memory content of the memory means and the previously inputted hysteresis of the sensor are compared and judged, to determine the extent of the degradation of the sensors and output the result of the judgement and hysteresis information to the display means. The input means accesses to the judging means and the memory means to retrieve and correct the content of the memory means and the hysteresis information inputted to the judging means. (I.S.)

  2. Brain Tissue Oxygen: In Vivo Monitoring with Carbon Paste Electrodes

    Directory of Open Access Journals (Sweden)

    John P. Lowry

    2005-11-01

    Full Text Available In this communication we review selected experiments involving the use ofcarbon paste electrodes (CPEs to monitor and measure brain tissue O2 levels in awakefreely-moving animals. Simultaneous measurements of rCBF were performed using the H2clearance technique. Voltammetric techniques used include both differential pulse (O2 andconstant potential amperometry (rCBF. Mild hypoxia and hyperoxia produced rapidchanges (decrease and increase respectively in the in vivo O2 signal. Neuronal activation(tail pinch and stimulated grooming produced similar increases in both O2 and rCBFindicating that CPE O2 currents provide an index of increases in rCBF when such increasesexceed O2 utilization. Saline injection produced a transient increase in the O2 signal whilechloral hydrate produced slower more long-lasting changes that accompanied the behavioralchanges associated with anaesthesia. Acetazolamide increased O2 levels through an increasein rCBF.

  3. Design of acoustic emission monitoring system based on VC++

    Science.gov (United States)

    Yu, Yang; He, Wei

    2015-12-01

    At present, a lot of companies at home and abroad have researched and produced a batch of specialized monitoring instruments for acoustic emission (AE). Most of them cost highly and the system function exists in less stable and less portability for the testing environment and transmission distance and other aspects. Depending on the research background and the status quo, a dual channel intelligent acoustic emission monitoring system was designed based on Microsoft Foundation Classes in Visual Studio C++ to solve some of the problems in the acoustic emission research and meet the needs of actual monitoring task. It contains several modules such as main module, acquisition module, signal parameters setting module and so on. It could give out corrosion AE waveform and signal parameters results according to the main menu selected parameters. So the needed information could be extracted from the experiments datum to solve the problem deeply. This soft system is the important part of AE detection g system.

  4. Incore monitoring device

    International Nuclear Information System (INIS)

    Tai, Ichiro; Shirayama, Shin-pei; Nozaki, Shin-ichi.

    1978-01-01

    Purpose: To provide an incore monitoring device wherein both radiation monitoring and acoustic monitoring are carried out simultaneously by one detector, whereby installation of the device and signal pick-up are facilitated. Incore conditions are accurately grasped. Constitution: When a neutron is irradiated in a state where a DC voltage is applied between the electrode and the vessel in the device, an ionization current is occured by (n.γ) reaction of the transformed substance as in an ionization chamber, Accordingly, a voltage drop occurs at both ends of the resistor of the radiation signal processing system, as a result of which a neutron flux can be detected. Further, when a sound is generated in the reactor, the monitoring device bottom wall which formed by a piezoelectric element detects the sound-waves. This output signal is picked up by the acoustic signal processing system to judge the generation of sound. (Aizawa, K.)

  5. Progress for on-line acoustic emission monitoring of cracks in reactor systems

    International Nuclear Information System (INIS)

    Hutton, P.H.; Friesel, M.A.; Kurtz, R.J.

    1985-10-01

    This paper reviews FY1985 accomplishments and FY1986 plans for the NRC sponsored research program concerned with ''Acoustic Emission/Flaw Relationships for Inservice Monitoring of Nuclear Reactor Pressure Boundaries''. The objective of the acoustic emission (AE) monitoring program is to develop and validate the use of AE methods for continuous surveillance of reactor pressure boundaries to detect flaw growth. Topics discussed include testing AE monitoring on reactors, refinement of an AE signal identification relationship, study of slow crack growth rate effects on AE generation, and activity to produce an ASTM standard for AE monitoring and to gain ASME code acceptance of AE monitoring

  6. Diagnostic and monitoring systems produced in Vuje, Okruzna 5, 918 64 Trnava, Slovak Republic

    International Nuclear Information System (INIS)

    Oksa, G.; Bahna, J.; Murin, V.; Kucharek, P.; Smutny, S.

    1996-01-01

    Based on the 20 years experience in on-line vibration diagnostics of mechanical components in the primary circuit of nuclear power plant PWR WWER-440, Vuje, Okruzna 5, 918 64 Trnava produces its own diagnostic and monitoring systems since 1990. The variety of diagnostic systems includes: loose part monitoring system (LPMS), monitoring system of main circulating pumps (MCPMS), vibration monitoring system (LVMS), leakage monitoring system (LMS). The emphasis in the hardware solution is put on the design modularity and versatility so that many subcomponents (circuit boards) are common or highly similar for all systems. Using exclusively digital data for processing enhances the reliability of the measurements and allows the easy data transportation from one computer to another (e.g., for more sophisticated analysis). Trends in the software development follow the similar path as for the hardware solution - namely, the modularity and versatility of software is the imperative goal. The modern operating systems also incorporate the ability of network communication, which is crucial for the integration of stand-alone diagnostic systems into nuclear power plants information system. So far a number of systems have been successfully installed: 6 LPMSs (Jaslovske Bohunice, Dukovany), 4 MCPMs (Jaslovske Bohunice) and 2 LVMSs (Jaslovske Bohunice), all systems operate in PWR WWER-440 environment. Another diagnostic systems are under construction: 2 LPMSs (Temelin, PWR WWER-1000), 2 MCMSs (Mochovce - PWR WWER-440) and 2 LMSs (Jaslovske Bohunice). (author). 1 fig

  7. Diagnostic and monitoring systems produced in Vuje, Okruzna 5, 918 64 Trnava, Slovak Republic

    Energy Technology Data Exchange (ETDEWEB)

    Oksa, G; Bahna, J; Murin, V; Kucharek, P; Smutny, S [Vyskumny Ustav Jadrovych Elektrarni, Trnava (Slovakia)

    1997-12-31

    Based on the 20 years experience in on-line vibration diagnostics of mechanical components in the primary circuit of nuclear power plant PWR WWER-440, Vuje, Okruzna 5, 918 64 Trnava produces its own diagnostic and monitoring systems since 1990. The variety of diagnostic systems includes: loose part monitoring system (LPMS), monitoring system of main circulating pumps (MCPMS), vibration monitoring system (LVMS), leakage monitoring system (LMS). The emphasis in the hardware solution is put on the design modularity and versatility so that many subcomponents (circuit boards) are common or highly similar for all systems. Using exclusively digital data for processing enhances the reliability of the measurements and allows the easy data transportation from one computer to another (e.g., for more sophisticated analysis). Trends in the software development follow the similar path as for the hardware solution - namely, the modularity and versatility of software is the imperative goal. The modern operating systems also incorporate the ability of network communication, which is crucial for the integration of stand-alone diagnostic systems into nuclear power plants information system. So far a number of systems have been successfully installed: 6 LPMSs (Jaslovske Bohunice, Dukovany), 4 MCPMs (Jaslovske Bohunice) and 2 LVMSs (Jaslovske Bohunice), all systems operate in PWR WWER-440 environment. Another diagnostic systems are under construction: 2 LPMSs (Temelin, PWR WWER-1000), 2 MCMSs (Mochovce - PWR WWER-440) and 2 LMSs (Jaslovske Bohunice). (author). 1 fig.

  8. An intelligent fetal monitoring system

    International Nuclear Information System (INIS)

    Inaba, J.; Akatsuka, T.; Kubo, T.; Iwasaki, H.

    1986-01-01

    An intelligent monitoring system is constructed by a multi-micro-computer system. The monitoring signals are fetal heart rate (FHR) and uterine contraction (UC) through the conventional monitoring device for a day until the delivery. These signals are fed to a micro-computer in digital format, and evaluated by the computer in real time according to the diagnostic algorithm of the expert physician. Monitoring signals are always displayed on the CRT screen and in the case of dangerous state of the fetus, warning signal will appear on the screen and the doctor or nurse will be called. All these signals are sent to the next micro-computer with 10MB hard disk system. On this computer, the doctor and nurse can retrieve and inspect the details of the process by clock-key and/or events-key. After finishing monitoring process, summarized report is constructed and printed out on the paper

  9. Dynamics of response-conflict monitoring and individual differences in response control and behavioral control: an electrophysiological investigation using a stop-signal task.

    Science.gov (United States)

    Stahl, Jutta; Gibbons, Henning

    2007-03-01

    The aim of the present study was to investigate the functional significance of error (related) negativity Ne/ERN and individual differences in human action monitoring. A response-conflict model of Ne/ERN should be tested applying a stop-signal paradigm. After a few modifications of Ne/ERN response-conflict theory (Yeung N, Botvinick MM, Cohen JD. The neural basis of error detection: conflict monitoring and the error-related negativity. Psychological Review 2004:111(4);931-959), strength and time course of response conflict could be modeled as a function of stop-signal delay. In Experiment 1, 35 participants performed a visual two-choice response-time task but tried to withhold the response if an auditory stop signal was presented. Probability of stopping errors was held at 50% using variable delays between visual and auditory stimuli. Experiment 2 (n=10) employed both auditory go and stop signals and confirmed that Ne/ERN effects are due to conflict induced by the auditory stop signal, and not the mere presence or absence of an additional stimulus. As predicted, amplitudes of both the stimulus-locked and response-locked Ne/ERN were largest for non-stopped responses, followed by successfully stopped and go responses. However, independently of response type Ne/ERN also increased with increasing stop-signal delay. Since longer delay invokes stronger response conflict, results specifically support the notion of Ne/ERN reflecting response-conflict monitoring. Furthermore, individual differences related to measures of response control and behavioral control were observed. Both low response control estimated from stop-task performance and high psychometric impulsivity were accompanied by smaller Ne/ERN amplitude on stop trials, suggesting reduced response-conflict monitoring. The present study supported the response-conflict view of Ne/ERN. Furthermore, the observed relationship between impulsivity and Ne/ERN amplitude suggested that individuals with low behavioral

  10. Analysis of acoustic emission signals of fatigue crack growth and corrosion processes. Investigation of the possibilities for continuous condition monitoring of transport containers by acoustic emission testing; Analyse der Schallemissionssignale aus Ermuedungsrisswachstum und Korrosionsprozessen. Untersuchung der Moeglichkeiten fuer die kontinuierliche Zustandsueberwachung von Transportbehaeltern mittels Schallemissionspruefung

    Energy Technology Data Exchange (ETDEWEB)

    Wachsmuth, Janne

    2016-05-01

    Fatigue crack growth and active corrosion processes are the main causes of structural failures of transport products like road tankers, railway tank cars and ships. To prevent those failures, preventive, time-based maintenance is performed. However, preventive inspections are costly and include the risk of not detecting a defect, which could lead to a failure within the next service period. An alternative is the idea of continuous monitoring of the whole structure by means of acoustic emission testing (AT). With AT, defects within the material shall be detected and repaired directly after their appearance. Acoustic emission testing is an online non-destructive testing method. Acoustic emission (AE) arises from changes within the material and is transported by elastic waves through the material. If the AE event generates enough energy, the elastic wave propagates to the boundaries of the component, produces a displacement in the picometre scale and can be detected by a piezoelectric sensor. The sensor produces an electrical signal. From this AE signal, AE features such as the maximum amplitude or the frequency can be extracted. Methods of signal analysis are used to investigate the time and frequency dependency of signal groups. The purpose of the signal analysis is to connect the AE signal with the originating AE source. If predefined damage mechanisms are identified, referencing the damage condition of the structure is possible. Acoustic emission from events of the actual crack propagation process can for example lead to the crack growth rate or the stress intensity factor, both specific values from fracture mechanics. A new development in the domain of acoustic emission testing is the pattern recognition of AE signals. Specific features are extracted from the AE signals to assign them to their damage mechanisms. In this thesis the AE signals from the damage mechanisms corrosion and fatigue crack growth are compared and analysed. The damage mechanisms were

  11. Video and thermal imaging system for monitoring interiors of high temperature reaction vessels

    Science.gov (United States)

    Saveliev, Alexei V [Chicago, IL; Zelepouga, Serguei A [Hoffman Estates, IL; Rue, David M [Chicago, IL

    2012-01-10

    A system and method for real-time monitoring of the interior of a combustor or gasifier wherein light emitted by the interior surface of a refractory wall of the combustor or gasifier is collected using an imaging fiber optic bundle having a light receiving end and a light output end. Color information in the light is captured with primary color (RGB) filters or complimentary color (GMCY) filters placed over individual pixels of color sensors disposed within a digital color camera in a BAYER mosaic layout, producing RGB signal outputs or GMCY signal outputs. The signal outputs are processed using intensity ratios of the primary color filters or the complimentary color filters, producing video images and/or thermal images of the interior of the combustor or gasifier.

  12. Quality monitoring of salt produced in Indonesia through seawater evaporation on HDPE geomembrane lined ponds

    Science.gov (United States)

    Jumaeri; Sulistyaningsih, T.; Alighiri, D.

    2018-03-01

    Salt is one of the primary ingredients that humans always need for various purposes, both for consumption and industry. The need for high-quality salt continues to increase, as long as industry growth. It must improve product quality through the development of salt production process technology. In this research, the quality monitoring of salt produced in Indonesia by evaporation of seawater on ponds lined using high-density polyethylene (HDPE) geomembrane has been studied. The manufacturing of salt carried out through the gradual precipitation principle on prepared ponds. HDPE geomembrane is used to coat evaporation ponds with viscosity 12-22°Be and crystallization ponds with a viscosity of 23°Be. The monitoring of the product is carried out in the particular periods during the salt production period. The result of control shows that the quality of salt produced in HDPE geomembrane coated salt ponds has an average NaCl content of 95.75%, so it has fulfilled with Indonesia National Standard (SNI), that is NaCl> 94.70%. The production of salt with HDPE geomembrane can improve the quality of salt product from NaCl 85.4% (conventional system) to 95.75%.

  13. Process and equipment for monitoring flux distribution in a nuclear reactor outside the core

    International Nuclear Information System (INIS)

    Graham, K.F.; Gopal, R.

    1977-01-01

    This concerns the monitoring system for axial flux distribution during the whole load operating range lying outside the core of, for example, a PWR. Flux distribution cards can be produced continuously. The core is divided into at least three sections, which are formed by dividing it at right angles to the longitudinal axis, and the flux is measured outside the core using adjacent detectors. Their output signals are calibrated by amplifiers so that the load distribution in the associated sections is reproduced. A summation of the calibrated output signals and the formation of a mean load signal takes place in summing stages. For monitoring, this is compared with a value which corresponds to the maximum permissible load setting. Apart from this the position of the control rods in the core can be taken into account by multiplication of the mean load signals by suitable peak factors. The distribution of monitoring positions or the position of the detectors can be progressive or symmetrical along the axis. (DG) 891 HP [de

  14. Regularized non-stationary morphological reconstruction algorithm for weak signal detection in microseismic monitoring: methodology

    Science.gov (United States)

    Huang, Weilin; Wang, Runqiu; Chen, Yangkang

    2018-05-01

    Microseismic signal is typically weak compared with the strong background noise. In order to effectively detect the weak signal in microseismic data, we propose a mathematical morphology based approach. We decompose the initial data into several morphological multiscale components. For detection of weak signal, a non-stationary weighting operator is proposed and introduced into the process of reconstruction of data by morphological multiscale components. The non-stationary weighting operator can be obtained by solving an inversion problem. The regularized non-stationary method can be understood as a non-stationary matching filtering method, where the matching filter has the same size as the data to be filtered. In this paper, we provide detailed algorithmic descriptions and analysis. The detailed algorithm framework, parameter selection and computational issue for the regularized non-stationary morphological reconstruction (RNMR) method are presented. We validate the presented method through a comprehensive analysis through different data examples. We first test the proposed technique using a synthetic data set. Then the proposed technique is applied to a field project, where the signals induced from hydraulic fracturing are recorded by 12 three-component geophones in a monitoring well. The result demonstrates that the RNMR can improve the detectability of the weak microseismic signals. Using the processed data, the short-term-average over long-term average picking algorithm and Geiger's method are applied to obtain new locations of microseismic events. In addition, we show that the proposed RNMR method can be used not only in microseismic data but also in reflection seismic data to detect the weak signal. We also discussed the extension of RNMR from 1-D to 2-D or a higher dimensional version.

  15. Activation of inflammatory signaling by lipopolysaccharide produces a prolonged increase of voluntary alcohol intake in mice

    Science.gov (United States)

    Blednov, Y.A.; Benavidez, J.M.; Geil, C.; Perra, S.; Morikawa, H.; Harris, R.A.

    2011-01-01

    Previous studies showed that mice with genetic predisposition for high alcohol consumption as well as human alcoholics show changes in brain expression of genes related to immune signaling. In addition, mutant mice lacking genes related to immune function show decreased alcohol consumption (Blednov et al., in press), suggesting that immune signaling promotes alcohol consumption. To test the possibility that activation of immune signaling will increase alcohol consumption, we treated mice with lipopolysaccaride (LPS; 1 mg/kg, i.p.) and tested alcohol consumption in the continuous two-bottle choice test. To take advantage of the long-lasting activation of brain immune signaling by LPS, we measured drinking beginning one week or one month after LPS treatment and continued the studies for several months. LPS produced persistent increases in alcohol consumption in C57/Bl6 J (B6) inbred mice, FVBxB6F1 and B6xNZBF1 hybrid mice, but not in FVB inbred mice. To determine if this effect of LPS is mediated through binding to TLR4, we tested mice lacking CD14, a key component of TLR4 signaling. These null mutants showed no increase of alcohol intake after treatment with LPS. LPS treatment decreased ethanol-conditioned taste aversion but did not alter ethanol-conditioned place preference (B6xNZBF1 mice). Electro-physiological studies of dopamine neurons in the ventral tegmental area showed that pretreatment of mice with LPS decreased the neuronal firing rate. These results suggest that activation of immune signaling promotes alcohol consumption and alters certain aspects of alcohol reward/aversion. PMID:21266194

  16. Nuclear reactor instrumentation power monitor

    International Nuclear Information System (INIS)

    Suzuki, Shigeru.

    1989-01-01

    The present invention concerns a nuclear reactor instrumentation power monitor that can be used in, for example, BWR type nuclear power plants. Signals from multi-channel detectors disposed on field units are converted respectively by LPRM signal circuits. Then, the converted signals are further converted by a multiplexer into digital signals and transmitted as serial data to a central monitor unit. The thus transmitted serial data are converted into parallel data in the signal processing section of the central monitor unit. Then, LPRM signals are taken out from each of channel detectors to conduct mathematical processing such as trip judgment or averaging. Accordingly, the field unit and the central monitor unit can be connected by way of only one data transmission cable thereby enabling to reduce the number of cables. Further, since the data are transmitted on digital form, it less undergoes effect of noises. (I.S.)

  17. Pathogen Screening of Naturally Produced Yakima River Spring Chinook Smolts; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Joan B. (Washington Department of Fish and Wildlife, Olympia, WA)

    2005-05-01

    In the spring of 2004 naturally produced smolts outmigrating from the Yakima River Basin were collected for the sixth year of pathogen screening. This component of the evaluation is to monitor whether introduction of hatchery produced smolts would impact the prevalence of specific pathogens in the naturally produced spring chinook smolts. Increases in prevalence of any of these pathogens could negatively impact the survival of these fish. Since 1999 the Cle Elum Hatchery has been releasing spring chinook salmon smolts into the upper Yakima River to increase natural production. In 1998 and 2000 through 2004 naturally produced smolts were collected for monitoring at the Chandler smolt collection facility on the lower Yakima River. Smolts were collected from mid to late outmigration, with a target of 200 fish each year. The pathogens monitored were infectious hematopoeitic necrosis virus, infectious pancreatic necrosis virus, viral hemorrhagic septicemia virus, Flavobacterium psychrophilum, Flavobacterium columnare, Aeromonas salmonicida, Yersinia ruckeri, Edwardsiella ictaluri, Renibacterium salmoninarum and Myxobolus cerebralis. Of these pathogens, only R. salmoninarum was detected in very low levels in the naturally produced smolts outmigrating in 2004. To date, only bacterial pathogens have been detected and prevalences have been low. There have been small variations each year and these changes are attributed to normal fluctuations in prevalence. All of the pathogens detected are widely distributed in Washington State.

  18. Preliminary Uncertainty Analysis for SMART Digital Core Protection and Monitoring System

    International Nuclear Information System (INIS)

    Koo, Bon Seung; In, Wang Kee; Hwang, Dae Hyun

    2012-01-01

    The Korea Atomic Energy Research Institute (KAERI) developed on-line digital core protection and monitoring systems, called SCOPS and SCOMS as a part of SMART plant protection and monitoring system. SCOPS simplified the protection system by directly connecting the four RSPT signals to each core protection channel and eliminated the control element assembly calculator (CEAC) hardware. SCOMS adopted DPCM3D method in synthesizing core power distribution instead of Fourier expansion method being used in conventional PWRs. The DPCM3D method produces a synthetic 3-D power distribution by coupling a neutronics code and measured in-core detector signals. The overall uncertainty analysis methodology which is used statistically combining uncertainty components of SMART core protection and monitoring system was developed. In this paper, preliminary overall uncertainty factors for SCOPS/SCOMS of SMART initial core were evaluated by applying newly developed uncertainty analysis method

  19. Monitoring super-volcanoes: geophysical and geochemical signals at Yellowstone and other large caldera systems.

    Science.gov (United States)

    Lowenstern, Jacob B; Smith, Robert B; Hill, David P

    2006-08-15

    Earth's largest calderas form as the ground collapses during immense volcanic eruptions, when hundreds to thousands of cubic kilometres of magma are explosively withdrawn from the Earth's crust over a period of days to weeks. Continuing long after such great eruptions, the resulting calderas often exhibit pronounced unrest, with frequent earthquakes, alternating uplift and subsidence of the ground, and considerable heat and mass flux. Because many active and extinct calderas show evidence for repetition of large eruptions, such systems demand detailed scientific study and monitoring. Two calderas in North America, Yellowstone (Wyoming) and Long Valley (California), are in areas of youthful tectonic complexity. Scientists strive to understand the signals generated when tectonic, volcanic and hydrothermal (hot ground water) processes intersect. One obstacle to accurate forecasting of large volcanic events is humanity's lack of familiarity with the signals leading up to the largest class of volcanic eruptions. Accordingly, it may be difficult to recognize the difference between smaller and larger eruptions. To prepare ourselves and society, scientists must scrutinize a spectrum of volcanic signals and assess the many factors contributing to unrest and toward diverse modes of eruption.

  20. The spectral analysis of cyclo-non-stationary signals

    Science.gov (United States)

    Abboud, D.; Baudin, S.; Antoni, J.; Rémond, D.; Eltabach, M.; Sauvage, O.

    2016-06-01

    Condition monitoring of rotating machines in speed-varying conditions remains a challenging task and an active field of research. Specifically, the produced vibrations belong to a particular class of non-stationary signals called cyclo-non-stationary: although highly non-stationary, they contain hidden periodicities related to the shaft angle; the phenomenon of long term modulations is what makes them different from cyclostationary signals which are encountered under constant speed regimes. In this paper, it is shown that the optimal way of describing cyclo-non-stationary signals is jointly in the time and the angular domains. While the first domain describes the waveform characteristics related to the system dynamics, the second one reveals existing periodicities linked to the system kinematics. Therefore, a specific class of signals - coined angle-time cyclostationary is considered, expressing the angle-time interaction. Accordingly, the related spectral representations, the order-frequency spectral correlation and coherence functions are proposed and their efficiency is demonstrated on two industrial cases.

  1. Smart signal processing for an evolving electric grid

    Science.gov (United States)

    Silva, Leandro Rodrigues Manso; Duque, Calos Augusto; Ribeiro, Paulo F.

    2015-12-01

    Electric grids are interconnected complex systems consisting of generation, transmission, distribution, and active loads, recently called prosumers as they produce and consume electric energy. Additionally, these encompass a vast array of equipment such as machines, power transformers, capacitor banks, power electronic devices, motors, etc. that are continuously evolving in their demand characteristics. Given these conditions, signal processing is becoming an essential assessment tool to enable the engineer and researcher to understand, plan, design, and operate the complex and smart electronic grid of the future. This paper focuses on recent developments associated with signal processing applied to power system analysis in terms of characterization and diagnostics. The following techniques are reviewed and their characteristics and applications discussed: active power system monitoring, sparse representation of power system signal, real-time resampling, and time-frequency (i.e., wavelets) applied to power fluctuations.

  2. Paracrine signaling in a bacterium.

    Science.gov (United States)

    López, Daniel; Vlamakis, Hera; Losick, Richard; Kolter, Roberto

    2009-07-15

    Cellular differentiation is triggered by extracellular signals that cause target cells to adopt a particular fate. Differentiation in bacteria typically involves autocrine signaling in which all cells in the population produce and respond to the same signal. Here we present evidence for paracrine signaling in bacterial populations-some cells produce a signal to which only certain target cells respond. Biofilm formation in Bacillus involves two centrally important signaling molecules, ComX and surfactin. ComX triggers the production of surfactin. In turn, surfactin causes a subpopulation of cells to produce an extracellular matrix. Cells that produced surfactin were themselves unable to respond to it. Likewise, once surfactin-responsive cells commenced matrix production, they no longer responded to ComX and could not become surfactin producers. Insensitivity to ComX was the consequence of the extracellular matrix as mutant cells unable to make matrix responded to both ComX and surfactin. Our results demonstrate that extracellular signaling was unidirectional, with one subpopulation producing a signal and a different subpopulation responding to it. Paracrine signaling in a bacterial population ensures the maintenance, over generations, of particular cell types even in the presence of molecules that would otherwise cause those cells to differentiate into other cell types.

  3. Low-complexity R-peak detection in ECG signals: a preliminary step towards ambulatory fetal monitoring.

    Science.gov (United States)

    Rooijakkers, Michiel; Rabotti, Chiara; Bennebroek, Martijn; van Meerbergen, Jef; Mischi, Massimo

    2011-01-01

    Non-invasive fetal health monitoring during pregnancy has become increasingly important. Recent advances in signal processing technology have enabled fetal monitoring during pregnancy, using abdominal ECG recordings. Ubiquitous ambulatory monitoring for continuous fetal health measurement is however still unfeasible due to the computational complexity of noise robust solutions. In this paper an ECG R-peak detection algorithm for ambulatory R-peak detection is proposed, as part of a fetal ECG detection algorithm. The proposed algorithm is optimized to reduce computational complexity, while increasing the R-peak detection quality compared to existing R-peak detection schemes. Validation of the algorithm is performed on two manually annotated datasets, the MIT/BIH Arrhythmia database and an in-house abdominal database. Both R-peak detection quality and computational complexity are compared to state-of-the-art algorithms as described in the literature. With a detection error rate of 0.22% and 0.12% on the MIT/BIH Arrhythmia and in-house databases, respectively, the quality of the proposed algorithm is comparable to the best state-of-the-art algorithms, at a reduced computational complexity.

  4. Signal Processing Methods Monitor Cranial Pressure

    Science.gov (United States)

    2010-01-01

    Dr. Norden Huang, of Goddard Space Flight Center, invented a set of algorithms (called the Hilbert-Huang Transform, or HHT) for analyzing nonlinear and nonstationary signals that developed into a user-friendly signal processing technology for analyzing time-varying processes. At an auction managed by Ocean Tomo Federal Services LLC, licenses of 10 U.S. patents and 1 domestic patent application related to HHT were sold to DynaDx Corporation, of Mountain View, California. DynaDx is now using the licensed NASA technology for medical diagnosis and prediction of brain blood flow-related problems, such as stroke, dementia, and traumatic brain injury.

  5. Processing of acoustic signal in rock desintegration

    Directory of Open Access Journals (Sweden)

    Futó Jozef

    2002-12-01

    Full Text Available For the determination of an effective rock disintegration for a given tool and rock type it is needed to define an optimal disintegration regime. Optimisation of the disintegration process by drilling denotes the finding out an appropriate couple of input parameters of disintegration, i.e. the thrust and revolutions for a quasi-equal rock environment. The disintegration process can be optimised to reach the maximum immediate drilling rate, to reach the minimum specific disintegration energy or to reach the maximum ratio of immediate drilling rate and specific disintegration energy. For the determination of the optimal thrust and revolutions it is needed to monitor the disintegration process. Monitoring of the disintegration process in real conditions is complicated by unfavourable factors, such as the presence of water, dust, vibrations etc. Following our present experience in the monitoring of drilling or full-profile driving, we try to replace the monitoring of input values by monitoring of the scanned acoustic signal. This method of monitoring can extend the optimisation of disintegration process in the technical practice. Its advantage consists in the registration of one acoustic signal by an appropriate microphone. Monitoring of acoustic signal is used also in monitoring of metal machining by milling and turning jobs. The research results of scanning of the acoustic signal in machining of metals are encouraging. Acoustic signal can be processed by different statistical parameters. The paper decribes some results of monitoring of the acoustic signal in rock disintegration on the drilling stand of the Institute of Geotechnics SAS in Košice. The acoustic signal has been registered and processed in no-load run of electric motor, in no-load run of electric motor with a drilling fluid, and in the Ruskov andesite drilling. Registration and processing of the acoustic signal is solved as a part of the research grant task within the basic research

  6. Monitoring shale in iron ore

    International Nuclear Information System (INIS)

    Aylmer, J.A.; Holmes, R.J.; Miles, J.G.

    1981-01-01

    Apparatus for determining the concentration of a radioactive constituent in a sample of material is claimed. It comprises: a radiation detector; a weightometer; and an electronic means to calculate the ratio of the intensity of the radiation monitored by the detector to the mass of the sample. Apparatus for sorting samples of a material on a conveyor in accordance with the concentration of a radioactive constituent is also claimed. It comprises: a low energy souce of gamma radiation positioned above the conveyor; a gamma detector positioned below the conveyor which can receive gamma radiation from the source and the constituent; an electronic calculator adapted to receive the output signals from the detector and to produce a signal representative of the ratio of the intensity of received characteristic radiation from a sample to the mass of a sample; and sorting means responsive to the output signal for controlling the destination of a sample on leaving the conveyor

  7. Response of a neutron monitor area with TLDs pairs

    Energy Technology Data Exchange (ETDEWEB)

    Guzman G, K. A.; Borja H, C. G.; Valero L, C.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Gallego, E.; Lorente, A., E-mail: ing_karen_guzman@yahoo.com.mx [Universidad Politecnica de Madrid, Departamento de Ingenieria Nuclear, Jose Gutierrez Abascal 2, E-28006 Madrid (Spain)

    2011-10-15

    The response of a passive neutron monitor area has been calculated using the Monte Carlo code MCNP5. The response was the amount of n({sup 6}Li, T){alpha} reactions occurring in a TLD-600 located at the center of a cylindrical polyethylene moderator. Fluence, (n, a) and H*(10) responses were calculated for 47 monoenergetic neutron sources. The H*(10) relative response was compared with responses of commercially available neutron monitors being alike. Due to {sup 6}Li cross section (n, {alpha}) reactions are mainly produced by thermal neutrons, however TLD-600 is sensitive to gamma-rays; to eliminate the signal due to photons monitor area was built to hold 2 pairs of TLD-600 and 2 pairs of TLD-700, thus from the difference between TLD-600 and TLD-700 readouts the net signal due to neutrons is obtained. The monitor area was calibrated at the Universidad Politecnica de Madrid using a {sup 241}AmBe neutron source; net TLD readout was compared with the H*(10) measured with a Bert hold Lb-6411. Performance of the neutron monitor area was determined through two independent experiments, in both cases the H*(10) was statistically equal to H*(10) measured with a Bert hold Lb-6411. Neutron monitor area with TLDs pairs can be used in working areas with intense, mixed and pulsed radiation fields. (Author)

  8. Digital beam position and phase monitor for P-LINAC for FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Almalki, Mohammed

    2013-07-01

    For the planned P-LINAC for the FAIR facility, Beam Position Monitors (BPM) will be installed at 14 locations along the LINAC. The digital signal processing to derive the transverse beam position and the beam phase will be implemented by ''Libera Single Pass H''. The specification for position measurement is 0.1 mm spatial resolution and phase accuracy is 1 degree with respect to 325 MHz acceleration frequency. The results from the Libera digital signal processing were compared with the time-domain approach and the FFT analytic calculations. The first test was performed at the GSI UNILAC with a Ne4+ beam at 1.4 MeV / u. A single BPM was used to act as a ''Bunch arrival monitor'' to characterize the dependence of beam arrival time on bunch shape. The signals were sampled at 117.440 MHz with a 16-bit ADC to produce I and Q data streams. The first experimental results are reported.

  9. Condition monitoring and fault diagnosis of motor bearings using undersampled vibration signals from a wireless sensor network

    Science.gov (United States)

    Lu, Siliang; Zhou, Peng; Wang, Xiaoxian; Liu, Yongbin; Liu, Fang; Zhao, Jiwen

    2018-02-01

    Wireless sensor networks (WSNs) which consist of miscellaneous sensors are used frequently in monitoring vital equipment. Benefiting from the development of data mining technologies, the massive data generated by sensors facilitate condition monitoring and fault diagnosis. However, too much data increase storage space, energy consumption, and computing resource, which can be considered fatal weaknesses for a WSN with limited resources. This study investigates a new method for motor bearings condition monitoring and fault diagnosis using the undersampled vibration signals acquired from a WSN. The proposed method, which is a fusion of the kurtogram, analog domain bandpass filtering, bandpass sampling, and demodulated resonance technique, can reduce the sampled data length while retaining the monitoring and diagnosis performance. A WSN prototype was designed, and simulations and experiments were conducted to evaluate the effectiveness and efficiency of the proposed method. Experimental results indicated that the sampled data length and transmission time of the proposed method result in a decrease of over 80% in comparison with that of the traditional method. Therefore, the proposed method indicates potential applications on condition monitoring and fault diagnosis of motor bearings installed in remote areas, such as wind farms and offshore platforms.

  10. A New Digital Signal Processing Method for Spectrum Interference Monitoring

    Science.gov (United States)

    Angrisani, L.; Capriglione, D.; Ferrigno, L.; Miele, G.

    2011-01-01

    Frequency spectrum is a limited shared resource, nowadays interested by an ever growing number of different applications. Generally, the companies providing such services pay to the governments the right of using a limited portion of the spectrum, consequently they would be assured that the licensed radio spectrum resource is not interested by significant external interferences. At the same time, they have to guarantee that their devices make an efficient use of the spectrum and meet the electromagnetic compatibility regulations. Therefore the competent authorities are called to control the access to the spectrum adopting suitable management and monitoring policies, as well as the manufacturers have to periodically verify the correct working of their apparatuses. Several measurement solutions are present on the market. They generally refer to real-time spectrum analyzers and measurement receivers. Both of them are characterized by good metrological accuracies but show costs, dimensions and weights that make no possible a use "on the field". The paper presents a first step in realizing a digital signal processing based measurement instrument able to suitably accomplish for the above mentioned needs. In particular the attention has been given to the DSP based measurement section of the instrument. To these aims an innovative measurement method for spectrum monitoring and management is proposed in this paper. It performs an efficient sequential analysis based on a sample by sample digital processing. Three main issues are in particular pursued: (i) measurement performance comparable to that exhibited by other methods proposed in literature; (ii) fast measurement time, (iii) easy implementation on cost-effective measurement hardware.

  11. Equipment abnormality monitoring device

    International Nuclear Information System (INIS)

    Ando, Yasumasa

    1991-01-01

    When an operator hears sounds in a plantsite, the operator compares normal sounds of equipment which he previously heard and remembered with sounds he actually hears, to judge if they are normal or abnormal. According to the method, there is a worry that abnormal conditions can not be appropriately judged in a case where the number of objective equipments is increased and in a case that the sounds are changed gradually slightly. Then, the device of the present invention comprises a plurality of monitors for monitoring the operation sound of equipments, a recording/reproducing device for recording and reproducing the signals, a selection device for selecting the reproducing signals among the recorded signals, an acoustic device for converting the signals to sounds, a switching device for switching the signals to be transmitted to the acoustic device between to signals of the monitor and the recording/reproducing signals. The abnormality of the equipments can be determined easily by comparing the sounds representing the operation conditions of equipments for controlling the plant operation and the sounds recorded in their normal conditions. (N.H.)

  12. Development of capacitive beam position, beam current and Schottky-signal monitors for the Cryogenic Storage Ring (CSR)

    International Nuclear Information System (INIS)

    Laux, Felix

    2011-01-01

    In this thesis novel techniques based on capacitive pickups for the determination of the beam current, the beam position and the Schottky-signal in storage rings have been developed. Beam current measurements at the heavy ion storage ring TSR with a capacitive pickup have been found in very good agreement with the theory. Using this device the accurate measurement of beam currents at the TSR far below 1 μA is now possible. This method will also be used at the Cryogenic Storage Ring (CSR) at which beam currents in the range of 1 nA-1 μA are expected. For the first time, position measurements with a resonant amplifier system for capacitive pickups have been examined at the TSR for later use of this technique in the CSR. With this method an increased signal-to-noise ratio can be achieved using a parallel inductance. A comparison with measurements using the rest gas beam profile monitor has shown very good agreement even at very low intensities. Experiments with the cryo-capable electronics for the CSR beam position monitors have shown an achievable quality factor of Q=500, resulting in the prospect of precise position measurements at the CSR even at very low beam currents. The CSR Schottky-Pickup will also be equipped with a resonant amplifier system with a comparable quality factor. An estimation of the signal-to-noise ratio suggests a detection limit of a few protons. (orig.)

  13. Possible earthquake precursors revealed by LF radio signals

    Directory of Open Access Journals (Sweden)

    P. F. Biagi

    2001-01-01

    Full Text Available Among radio signals, low frequency (LF radio signals lie in the band between 30–300 kHz. Monitoring equipment with the ability to measure the electric strength of such signals at field sites, were designed and assembled in Italy. From 1993 onwards, the electric field strength of the MCO (216 kHz, France broadcasting station has been collecting measurements at two sites in central Italy that were chosen according to very low noise levels. At the end of 1996, radio signals from the CLT (189 kHz, Italy and CZE (270 kHz, Czech Republic broadcasting stations were included in the measurements. Meteorological data from central Italy were also collected over the same time period in order to study the influence of weather conditions on the experimental measurements. During the monitoring period, we observed some evident attenuation of the electric field strength in some of the radio signals at some of the receivers. The duration of the attenuation observed was several days, so it could possibly be related to particular meteorological conditions. On the other hand, this phenomenon might represent precursors of moderate (3.0 M 3.5 earthquakes that occurred near the receivers (within 50 km along the transmitter-receiver path. In this case, it is possible that the pre-seismic processes could have produced irregularities in the troposphere, such as ducts, reflecting layers and scattering zones, so that some local troposphere defocusing of the radio signals might have occurred. These observations were related only to moderate earthquakes and in these cases, suitable meteorological conditions were probably needed to observe the effect. Between February – March 1998, we observed at one measuring site, a significant increase in the CZE electric field strength. Unfortunately, we could not use the data of the other receiver in this case, due to frequent interruptions in the data set. The increase might have been a precursor of the strong seismic sequence (M = 5

  14. Method for reducing x-ray background signals from insertion device x-ray beam position monitors

    Directory of Open Access Journals (Sweden)

    Glenn Decker

    1999-11-01

    Full Text Available A method is described that provides a solution to the long-standing problem of stray radiation-induced signals on photoemission-based x-ray beam position monitors (BPMs located on insertion device x-ray beam lines. The method involves the introduction of a chicane into the accelerator lattice that directs unwanted x radiation away from the photosensitive x-ray BPM blades. This technique has been implemented at the Advanced Photon Source, and experimental confirmation of the technique is provided.

  15. Research progress of laser welding process dynamic monitoring technology based on plasma characteristics signal

    Directory of Open Access Journals (Sweden)

    Teng WANG

    2017-02-01

    Full Text Available During the high-power laser welding process, plasmas are induced by the evaporation of metal under laser radiation, which can affect the coupling of laser energy and the workpiece, and ultimately impact on the reliability of laser welding quality and process directly. The research of laser-induced plasma is a focus in high-power deep penetration welding field, which provides a promising research area for realizing the automation of welding process quality inspection. In recent years, the research of laser welding process dynamic monitoring technology based on plasma characteristics is mainly in two aspects, namely the research of plasma signal detection and the research of laser welding process modeling. The laser-induced plasma in the laser welding is introduced, and the related research of laser welding process dynamic monitoring technology based on plasma characteristics at home and abroad is analyzed. The current problems in the field are summarized, and the future development trend is put forward.

  16. Online Monitoring of Temperature Using Wireless Module in a Rotating Drum-Applicable to Leather Industries

    Directory of Open Access Journals (Sweden)

    T. Narayani

    2015-07-01

    Full Text Available In order to ensure safe and efficient operation of unit processes, foremost requirement is accurate measurement of process variables, with which quality can be monitored and controlled. Understanding the necessity of online monitoring of process temperature in tanning/dyeing process, the article is focused on wireless measurement of physical parameters involved in wet processing of hides/ skins and monitoring through digital computer for further analysis. It’s a challenging task to measure and communicate the process information from a closed rotating drum. Wireless communication is proposed because of its enhanced security, superfast operating speed, and increased mobility. The physical parameters which are predominant in tanning process are temperature, pH, conductivity etc. of the process fluid. It is necessary to carryout dyeing at 65 0C for producing raw to wet blue process. As a first attempt, wireless module for temperature measurement has been developed. The module includes signal transmitter and receiver section. In the transmitter section, the temperature which is measured by an integrated sensor is converted into frequency signal and imposed on a radio frequency signal (career signal and get transmitted in air. On the other side, receiver section receives the radio frequency signal and converts that into electrical signals to interface with the digital computer for online monitoring. The module is able to receive and control temperature of tanning drum within a distance of 100 meters. Real time experiments on the fabricated model show interesting results for commercialization.

  17. Monitoring, genomic study and control of patulin producing fungi in Korean fruits

    International Nuclear Information System (INIS)

    Kim, Dongho; Lim, Sangyong; Joe, Minho; Yun, Hyejung; Kim, Suhyun; Park, Jongchun

    2008-07-01

    This study was intended to apply irradiation technology for the degradation of patulin from apples and apple juices by investigating their physical, mechanical, biological, and pharmacochemical properties in view of potential uses in the bio-industry. The patulin producing fungi was separated from in Korean apples. Totally, 16 morphological types of fungi were isolated from the apples and a patulin producing fungi was identified. The isolated patulin producing fungus was found to a represent species of Penicillium crustosum. The patulin, dissolved in distilled water at a concentration of 50 ppm was practically degraded by the gamma irradiation at the dose of 1.0 kGy, while 33% of the patulin was remained at apple juice. In conclusion, it was suggested that 1 kGy of gamma irradiation (recommended radiation doses for radicidation and/or quarantine in fruits) is effective for the reduction of patulin, but the nutritional elements should be considered because the radio-degradation effects are environment dependant. The effects of a gamma irradiation on the physiochemical and physical characteristics of apple was investigated during a post-irradiation storage at 4 and 25. Gamma irradiation dose not affect stability of the nutritional contents, functional properties and physical characteristics of apples, especially in the condition of a cold storage after a radiation treatment. The degradation condition characteristics of patulin in apple juice and functional properties of corresponding condition were monitored by response surface methodology (RSM)

  18. Monitoring, genomic study and control of patulin producing fungi in Korean fruits

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongho; Lim, Sangyong; Joe, Minho; Yun, Hyejung [KAERI, Daejeon (Korea, Republic of); Kim, Suhyun [KBSI, Daejeon (Korea, Republic of); Park, Jongchun [Seonam Univ., Asan (Korea, Republic of)

    2008-07-15

    This study was intended to apply irradiation technology for the degradation of patulin from apples and apple juices by investigating their physical, mechanical, biological, and pharmacochemical properties in view of potential uses in the bio-industry. The patulin producing fungi was separated from in Korean apples. Totally, 16 morphological types of fungi were isolated from the apples and a patulin producing fungi was identified. The isolated patulin producing fungus was found to a represent species of Penicillium crustosum. The patulin, dissolved in distilled water at a concentration of 50 ppm was practically degraded by the gamma irradiation at the dose of 1.0 kGy, while 33% of the patulin was remained at apple juice. In conclusion, it was suggested that 1 kGy of gamma irradiation (recommended radiation doses for radicidation and/or quarantine in fruits) is effective for the reduction of patulin, but the nutritional elements should be considered because the radio-degradation effects are environment dependant. The effects of a gamma irradiation on the physiochemical and physical characteristics of apple was investigated during a post-irradiation storage at 4 and 25. Gamma irradiation dose not affect stability of the nutritional contents, functional properties and physical characteristics of apples, especially in the condition of a cold storage after a radiation treatment. The degradation condition characteristics of patulin in apple juice and functional properties of corresponding condition were monitored by response surface methodology (RSM)

  19. On-line generation of three-dimensional core power distribution using incore detector signals to monitor safety limits

    International Nuclear Information System (INIS)

    Jang, Jin Wook; Lee, Ki Bog; Na, Man Gyun; Lee, Yoon Joon

    2004-01-01

    It is essential in commercial reactors that the safety limits imposed on the fuel pellets and fuel clad barriers, such as the Linear Power Density (LPD) and the Departure from Nucleate Boiling Ratio (DNBR), are not violated during reactor operations. In order to accurately monitor the safety limits of current reactor states, a detailed three-dimensional (3D) core power distribution should be estimated from the in-core detector signals. In this paper, we propose a calculation methodology for detailed 3D core power distribution, using in-core detector signals and core monitoring constants such as the 3D Coupling Coefficients (3DCC), node power fraction, and pin-to-node factors. Also, the calculation method for several core safety parameters is introduced. The core monitoring constants for the real core state are promptly provided by the core design code and on-line MASTER(Multi-purpose Analyzer for Static and Transient Effects of Reactors), coupled with the core monitoring program. Through the plant computer, core state variables, which include reactor thermal power, control rod bank position, boron concentration, inlet moderator temperature, and flow rate, are supplied as input data for MASTER. MASTER performs the core calculation based on the neutron balance equation and generates several core monitoring constants corresponding to the real core state in addition to the expected core power distribution. The accuracy of the developed method is verified through a comparison with the current CECOR method. Because in all the verification calculation cases the proposed method shows a more conservative value than the best estimated value and a less conservative one than the current CECOR and COLSS methods, it is also confirmed that this method secures a greater operating margin through the simulation of the YGN-3 cycle-1 core from the viewpoint of the power peaking factor for the LPD and the pseudo hot pin axial power distribution for the DNBR calculation

  20. Signals in water - the deep originated CO2 in the Peschiera-Capone acqueduct in relation to monitoring of seismic activity in central Italy

    Directory of Open Access Journals (Sweden)

    Claudio Martini

    2017-01-01

    Full Text Available Valuation of the analysis performed on groundwater of Central Lazio by ACEA ATO2 SpA from 2001 to 2016, according to the model proposed by Chiodini et al. in 2004 that identifies in the Tyrrhenian coast of central and southern Italy, two notable releasing areas of the CO2 produced by the sub-crustal magma activity, or two areas of natural degassing of the planet: the TRDS area (Tuscan Roman degassing structure and the CDS area (Campanian degassing structure. Reconstruction of the CO2 produced by degassing through the analysis of the components of inorganic carbon measured in groundwater of Central Lazio (Rome and Rieti districts between 2001 and 2016. Causal relationship of the activity of mantle degassing in the TRDS area with the disastrous earthquake occurred at L’Aquila in April 6, 2009. Current use of the dissolved inorganic carbon measurement in the Peschiera and Capore spring waters to monitor the activity of mantle degassing in the TRDS area, in order to have an early warning signal of possible seismic activity in the Central Apennines. Revision and data updating after the earthquake in August 24, 2016 at Amatrice.

  1. On-line Monitoring System Based on Principle of Electro-acoustic Monitoring for Transformer Partial Discharge

    Directory of Open Access Journals (Sweden)

    Guang Ya LIU

    2014-02-01

    Full Text Available Partial discharge inside a transformer is mainly responsible for the insulation aging and damage of the transformer. However, partial discharge is usually accompanied by external signals like sound, light and electrical signals and detectable physical phenomena such as characteristical gas and dielectric loss. Therefore, it is of great significance to monitor online the external signals and phenomena formed during partial discharge of the transformer when the transformer diagnoses faults. This paper gives a comprehensive overview of the electro-acoustic joint monitoring principles and its monitoring systems and the judgment skills concerned, on the basis of which the monitoring system is designed.

  2. Automatic produce quality monitoring in Reefer containers

    NARCIS (Netherlands)

    Lukasse, L.J.S.; Sanders, M.G.; Kramer, de J.E.

    2003-01-01

    Current day perishable supply chains require intermediate points for manual produce quality inspection. Over the last decade international seatransport of fruit and vegetables in reefer containers has grown tremendously. Reefer containers may completely close the cold chain only if produce quality

  3. A GIS Software Toolkit for Monitoring Areal Snow Cover and Producing Daily Hydrologic Forecasts using NASA Satellite Imagery, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Aniuk Consulting, LLC, proposes to create a GIS software toolkit for monitoring areal snow cover extent and producing streamflow forecasts. This toolkit will be...

  4. Acoustic Localization with Infrasonic Signals

    Science.gov (United States)

    Threatt, Arnesha; Elbing, Brian

    2015-11-01

    Numerous geophysical and anthropogenic events emit infrasonic frequencies (<20 Hz), including volcanoes, hurricanes, wind turbines and tornadoes. These sounds, which cannot be heard by the human ear, can be detected from large distances (in excess of 100 miles) due to low frequency acoustic signals having a very low decay rate in the atmosphere. Thus infrasound could be used for long-range, passive monitoring and detection of these events. An array of microphones separated by known distances can be used to locate a given source, which is known as acoustic localization. However, acoustic localization with infrasound is particularly challenging due to contamination from other signals, sensitivity to wind noise and producing a trusted source for system development. The objective of the current work is to create an infrasonic source using a propane torch wand or a subwoofer and locate the source using multiple infrasonic microphones. This presentation will present preliminary results from various microphone configurations used to locate the source.

  5. Online analysis of protein inclusion bodies produced in E. coli by monitoring alterations in scattered and reflected light.

    Science.gov (United States)

    Ude, Christian; Ben-Dov, Nadav; Jochums, André; Li, Zhaopeng; Segal, Ester; Scheper, Thomas; Beutel, Sascha

    2016-05-01

    The online monitoring of recombinant protein aggregate inclusion bodies during microbial cultivation is an immense challenge. Measurement of scattered and reflected light offers a versatile and non-invasive measurement technique. Therefore, we investigated two methods to detect the formation of inclusion bodies and monitor their production: (1) online 180° scattered light measurement (λ = 625 nm) using a sensor platform during cultivation in shake flask and (2) online measurement of the light reflective interference using a porous Si-based optical biosensor (SiPA). It could be shown that 180° scattered light measurement allows monitoring of alterations in the optical properties of Escherichia coli BL21 cells, associated with the formation of inclusion bodies during cultivation. A reproducible linear correlation between the inclusion body concentration of the non-fluorescent protein human leukemia inhibitory factor (hLIF) carrying a thioredoxin tag and the shift ("Δamp") in scattered light signal intensity was observed. This was also observed for the glutathione-S-transferase-tagged green fluorescent protein (GFP-GST). Continuous online monitoring of reflective interference spectra reveals a significant increase in the bacterium refractive index during hLIF production in comparison to a non-induced reference that coincide with the formation of inclusion bodies. These online monitoring techniques could be applied for fast and cost-effective screening of different protein expression systems.

  6. Long-lived Hybrid Incore Detector for Core Monitoring and Protection

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Kyoon Ho [KEPCO Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    The signal production mechanism in a rhodium (Rh) fixed in-core detector emitter relies primarily on the beta particles resulting from neutron absorptions in either of two Rh isotopes to produce an electric current. As the neutron transmutation process depletes the Rh isotopes, the signal output per unit neutron flux from an Rh detector emitter will decrease. A vanadium detector is primarily sensitive to neutrons, but with a somewhat slower reaction time as that of a Rh detector. The benefit of vanadium over rhodium is its low depletion rate, which is a factor of 7 times less than that of rhodium. Platinum detectors are very sensitive to gamma flux, but only mildly sensitive to neutron flux. Because the depletion rate of platinum is very small, it can be neglected. Generally, both gamma and neutron signals are proportional to the assembly power. The characteristics of a new detector are the long life time due to the low depletion of emitter materials and the capability of reactor protection as well as reactor monitoring. The new detector uses vanadium and platinum as the emitter materials to meet the long life time and reactor protection capability. Vanadium detector is used for reactor monitoring and platinum detector is used for reactor protection. To determine the number of emitter strings, a comparative study of the power peaking factor monitoring accuracy for various self-powered fixed in-core detector geometries was made, and the configuration of the optimal detector design was also established and verified. The design of a new detector consists of five-string vanadium detector elements, and three-string platinum detector elements. The detector assembly also contains a background wire for compensation of noise signal and a thermocouple for use in the post-accident monitoring system. This new hybrid detector can be used for both reactor Monitoring And reactor Protection (MAP)

  7. Apparatus and method for monitoring the presence of a conductive media

    Science.gov (United States)

    DuVall, Bruce W.; Valentine, James W.; Morey, Kenneth O.

    1979-01-01

    An inductive level sensor has inductively coupled primary and secondary windings. Circuitry drives the primary with an AC signal of constant current magnitude and selected frequency f to induce in the secondary, a voltage signal V of magnitude .vertline.V.vertline., frequency f and phase difference .phi. from the driving signal. Circuitry operates to generate a voltage output signal proportional to .vertline.V.vertline. cos (.phi.-.theta.), where .theta. is a selectively set phase shift factor. By properly and selectively adjusting the frequency f and phase shift factor .theta., an output signal .vertline.V.vertline. cos (.phi.-.theta.) can be provided which self-compensates for changes in mutual inductance caused by operating temperature variations so that an output signal is produced which is substantially linearly proportional to changes in the level of a pool of liquid metal being monitored. Disclosed also is calibration circuitry and circuitry for converting the voltage signal .vertline.V.vertline. cos (.phi.-.theta.) into a current signal.

  8. An Intelligent Monitoring Network for Detection of Cracks in Anvils of High-Press Apparatus.

    Science.gov (United States)

    Tian, Hao; Yan, Zhaoli; Yang, Jun

    2018-04-09

    Due to the endurance of alternating high pressure and temperature, the carbide anvils of the high-press apparatus, which are widely used in the synthetic diamond industry, are prone to crack. In this paper, an acoustic method is used to monitor the crack events, and the intelligent monitoring network is proposed to classify the sound samples. The pulse sound signals produced by such cracking are first extracted based on a short-time energy threshold. Then, the signals are processed with the proposed intelligent monitoring network to identify the operation condition of the anvil of the high-pressure apparatus. The monitoring network is an improved convolutional neural network that solves the problems that may occur in practice. The length of pulse sound excited by the crack growth is variable, so a spatial pyramid pooling layer is adopted to solve the variable-length input problem. An adaptive weighted algorithm for loss function is proposed in this method to handle the class imbalance problem. The good performance regarding the accuracy and balance of the proposed intelligent monitoring network is validated through the experiments finally.

  9. Wide range neutron flux monitor

    International Nuclear Information System (INIS)

    Endo, Yorimasa; Fukushima, Toshiki.

    1983-01-01

    Purpose: To provide a wide range neutron-flux monitor adapted such that the flux monitoring function and alarming function can automatically by shifted from pulse counting system to cambel method system. Constitution: A wide range neutron-flux monitor comprises (la) pulse counting system and (lb) cambel-method system for inputting detection signals from neutron detectors and separating them into signals for the pulse measuring system and the cambel measuring system, (2) overlap detection and calculation circuit for detecting the existence of the overlap of two output signals from the (la) and (lb) systems, and (3) trip circuit for judging the abnormal state of neutron detectors upon input of the detection signals. (Seki, T.)

  10. Biosensors for Real-Time Monitoring of Radiation-Induced Biologic Effects in Space

    Science.gov (United States)

    Baker, James R.; Balogh, Lajos; Majoros, Istvan; Keszler, Balazs; Myc, Andrzej; Kukowska-Latallo, Jolanta; Norris, Theodore; delaiglesia, Felix; Beeson, Nicholas W. (Compiler)

    2002-01-01

    This work seeks to develop cellular biosensors based on dendritic polymers. Nanoscale polymer structures less than 20 nm in diameter will be used as the basis of the biosensors. The structures will be designed to target into specific cells of an astronaut and be able to monitor health issues such as exposure to radiation. Multiple components can be assembled on the polymers including target directors, analytical devices (such as molecular probes), and reporting agents. The reporting will be accomplished through fluorescence signal monitoring, with the use of multispectral analysis for signal interpretation. These nanosensors could facilitate the success and increase the safety of extended space flight. The design and assembly of these devices has been pioneered at the Center for Biologic Nanotechnology in the University of Michigan. This period, synthesis of the test-bed biosensors continued. Studies were performed on the candidate fluorescent dyes to determine which might be suitable for the biosensor under development. Development continued on producing an artificial capillary bed as a tool for the use in the production of the fluorescence signal monitor. Work was also done on the in vitro multispectral analysis system, which uses the robotic microscope.

  11. Effects of optical attenuation, heat diffusion, and acoustic coherence in photoacoustic signals produced by nanoparticles

    Science.gov (United States)

    Alba-Rosales, J. E.; Ramos-Ortiz, G.; Escamilla-Herrera, L. F.; Reyes-Ramírez, B.; Polo-Parada, L.; Gutiérrez-Juárez, G.

    2018-04-01

    The behavior of the photoacoustic signal produced by nanoparticles as a function of their concentration was studied in detail. As the concentration of nanoparticles is increased in a sample, the peak-to-peak photoacoustic amplitude increases linearly up to a certain value, after which an asymptotic saturated behavior is observed. To elucidate the mechanisms responsible for these observations, we evaluate the effects of nanoparticles concentration, the optical attenuation, and the effects of heat propagation from nano-sources to their surroundings. We found that the saturation effect of the photoacoustic signal as a function of the concentration of nanoparticles is explained by a combination of two different mechanisms. As has been suggested previously, but not modeled correctly, the most important mechanism is attributed to optical attenuation. The second mechanism is due to an interference destructive process attributed to the superimposition of the photoacoustic amplitudes generated for each nanoparticle, and this explanation is reinforced through our experimental and simulations results; based on this, it is found that the linear behavior of the photoacoustic amplitude could be restricted to optical densities ≤0.5.

  12. Calibration and Monitoring systems of the ATLAS Tile Hadron Calorimeter

    CERN Document Server

    BOUMEDIENE, D; The ATLAS collaboration

    2012-01-01

    The TileCal is the hadronic calorimeter covering the most central region of the ATLAS experiment at LHC. It is a sampling calorimeter with iron plates as absorber and plastic scintillating tiles as the active material. The scintillation light produced by the passage of charged particles is transmitted by wavelength shifting fibers to about 10000 photomultiplier tubes (PMTs). Integrated on the calorimeter there is a composite device that allows to monitor and/or equalize the signals at various stages of its formation. This device is based on signal generation from different sources: radioactive, LASER and charge injection and minimum bias events produces in proton-proton collisions. In this contribution is given a brief description of the different systems hardware and presented the latest results on their performance, like the determination of the conversion factors, linearity and stability.

  13. Non-Imaging Acoustical Properties in Monitoring Arteriovenous Hemodialysis Access. A Review

    Directory of Open Access Journals (Sweden)

    Anas Mohd Noor

    2015-12-01

    Full Text Available The limitations of the gold standard angiography technique in arteriovenous access surveillance have opened a gap for researchers to find the best way to monitor this condition with low-cost, non-invasive and continuous bedside monitoring. The phonoangiography technique has been developed prior to these limits. This measurement and monitoring technique, associated with intelligence signal processing, promises better analysis for early detection of hemodialysis access problems, such as stenosis and thrombosis. Some research groups have shown that the phonoangiography technique could identify as many as 20% of vascular diameter changes and also its frequency characteristics due to hemodialysis access problems. The frequency characteristics of these acoustical signals are presented and discussed in detail to understand the association with the stenosis level, blood flows, sensor locations, fundamental frequency bands of normal and abnormal conditions, and also the spectral energy produced. This promising technique could be used in the near future as a tool for pre-diagnosis of arteriovenous access before any further access correction by surgical techniques is required. This paper provides an extensive review of various arteriovenous access monitoring techniques based on non-imaging acoustical properties.

  14. An electromagnetic signals monitoring and analysis wireless platform employing personal digital assistants and pattern analysis techniques

    Science.gov (United States)

    Ninos, K.; Georgiadis, P.; Cavouras, D.; Nomicos, C.

    2010-05-01

    This study presents the design and development of a mobile wireless platform to be used for monitoring and analysis of seismic events and related electromagnetic (EM) signals, employing Personal Digital Assistants (PDAs). A prototype custom-developed application was deployed on a 3G enabled PDA that could connect to the FTP server of the Institute of Geodynamics of the National Observatory of Athens and receive and display EM signals at 4 receiver frequencies (3 KHz (E-W, N-S), 10 KHz (E-W, N-S), 41 MHz and 46 MHz). Signals may originate from any one of the 16 field-stations located around the Greek territory. Employing continuous recordings of EM signals gathered from January 2003 till December 2007, a Support Vector Machines (SVM)-based classification system was designed to distinguish EM precursor signals within noisy background. EM-signals corresponding to recordings preceding major seismic events (Ms≥5R) were segmented, by an experienced scientist, and five features (mean, variance, skewness, kurtosis, and a wavelet based feature), derived from the EM-signals were calculated. These features were used to train the SVM-based classification scheme. The performance of the system was evaluated by the exhaustive search and leave-one-out methods giving 87.2% overall classification accuracy, in correctly identifying EM precursor signals within noisy background employing all calculated features. Due to the insufficient processing power of the PDAs, this task was performed on a typical desktop computer. This optimal trained context of the SVM classifier was then integrated in the PDA based application rendering the platform capable to discriminate between EM precursor signals and noise. System's efficiency was evaluated by an expert who reviewed 1/ multiple EM-signals, up to 18 days prior to corresponding past seismic events, and 2/ the possible EM-activity of a specific region employing the trained SVM classifier. Additionally, the proposed architecture can form a

  15. Infrared system for monitoring movement of objects

    Science.gov (United States)

    Valentine, Kenneth H.; Falter, Diedre D.; Falter, Kelly G.

    1991-01-01

    A system for monitoring moving objects, such as the flight of honeybees and other insects, using a pulsed laser light source. This system has a self-powered micro-miniaturized transmitting unit powered, in the preferred embodiment, with an array solar cells. This transmitting unit is attached to the object to be monitored. These solar cells provide current to a storage energy capacitor to produce, for example, five volts for the operation of the transmitter. In the simplest embodiment, the voltage on the capacitor operates a pulse generator to provide a pulsed energizing signal to one or more very small laser diodes. The pulsed light is then received at a receiving base station using substantially standard means which converts the light to an electrical signal for processing in a microprocessor to create the information as to the movement of the object. In the case of a unit for monitoring honeybees and other insects, the transmitting unit weighs less than 50 mg, and has a size no larger than 1.times.3.times.5 millimeters. Also, the preferred embodiment provides for the coding of the light to uniquely identify the particular transmitting unit that is being monitored. A "wake-up" circuit is provided in the preferred embodiment whereby there is no transmission until the voltage on the capacitor has exceeded a pre-set threshold. Various other uses of the motion-detection system are described.

  16. Beam diagnostics using transition radiation produced by a 100 Mev electron beam

    International Nuclear Information System (INIS)

    Jablonka, M.; Leroy, J.; Hanus, X.; Derost, J.C.; Wartski, L.

    1991-01-01

    We report on several experiments using the optical transition radiation (OTR) produced by a 100 MeV electron beam. In using a sensitive video camera coupled with a digital image processing system an accurate and simple beam profile monitor has been devised. In measuring with a photo-multiplier the radiation emitted in a small solid angle around the direction of the OTR emission, a signal very sensitive to beam energy variations has been obtained. These experiments have been carried out on the Saclay ALS linac

  17. Measurand transient signal suppressor

    Science.gov (United States)

    Bozeman, Richard J., Jr. (Inventor)

    1994-01-01

    A transient signal suppressor for use in a controls system which is adapted to respond to a change in a physical parameter whenever it crosses a predetermined threshold value in a selected direction of increasing or decreasing values with respect to the threshold value and is sustained for a selected discrete time interval is presented. The suppressor includes a sensor transducer for sensing the physical parameter and generating an electrical input signal whenever the sensed physical parameter crosses the threshold level in the selected direction. A manually operated switch is provided for adapting the suppressor to produce an output drive signal whenever the physical parameter crosses the threshold value in the selected direction of increasing or decreasing values. A time delay circuit is selectively adjustable for suppressing the transducer input signal for a preselected one of a plurality of available discrete suppression time and producing an output signal only if the input signal is sustained for a time greater than the selected suppression time. An electronic gate is coupled to receive the transducer input signal and the timer output signal and produce an output drive signal for energizing a control relay whenever the transducer input is a non-transient signal which is sustained beyond the selected time interval.

  18. Unit Monitors Manchester-Format Data Buses

    Science.gov (United States)

    Amador, Jose J.

    1994-01-01

    Circuit card converts data signals into convenient hexadecimal form for troubleshooting. Bus-monitoring unit converts data signals from Manchester II format used on data bus into hexadecimal format. Monitoring circuit causes hexadecimal words to display on video terminal, where test engineer compares them with hexadecimal records for troubleshooting. Circuit monitors one bus or two buses simultaneously.

  19. The Pajarito Monitor: a high-sensitivity monitoring system for highly enriched uranium

    International Nuclear Information System (INIS)

    Fehlau, P.E.; Coop, K.; Garcia, C.; Martinez, J.

    1984-01-01

    The Pajarito Monitor for Special Nuclear Material is a high-sensitivity gamma-ray monitoring system for detecting small quantities of highly enriched uranium transported by pedestrians or motor vehicles. The monitor consists of two components: a walk-through personnel monitor and a vehicle monitor. The personnel monitor has a plastic-scintillator detector portal, a microwave occupancy monitor, and a microprocessor control unit that measures the radiation intensity during background and monitoring periods to detect transient diversion signals. The vehicle monitor examines stationary motor vehicles while the vehicle's occupants pass through the personnel portal to exchange their badges. The vehicle monitor has four groups of large plastic scintillators that scan the vehicle from above and below. Its microprocessor control unit measures separate radiation intensities in each detector group. Vehicle occupancy is sensed by a highway traffic detection system. Each monitor's controller is responsible for detecting diversion as well as serving as a calibration and trouble-shooting aid. Diversion signals are detected by a sequential probability ratio hypothesis test that minimizes the monitoring time in the vehicle monitor and adapts itself well to variations in individual passage speed in the personnel monitor. Designed to be highly sensitive to diverted enriched uranium, the monitoring system also exhibits exceptional sensitivity for plutonium

  20. A motion-tolerant approach for monitoring SpO2 and heart rate using photoplethysmography signal with dual frame length processing and multi-classifier fusion.

    Science.gov (United States)

    Fan, Feiyi; Yan, Yuepeng; Tang, Yongzhong; Zhang, Hao

    2017-12-01

    Monitoring pulse oxygen saturation (SpO 2 ) and heart rate (HR) using photoplethysmography (PPG) signal contaminated by a motion artifact (MA) remains a difficult problem, especially when the oximeter is not equipped with a 3-axis accelerometer for adaptive noise cancellation. In this paper, we report a pioneering investigation on the impact of altering the frame length of Molgedey and Schuster independent component analysis (ICAMS) on performance, design a multi-classifier fusion strategy for selecting the PPG correlated signal component, and propose a novel approach to extract SpO 2 and HR readings from PPG signal contaminated by strong MA interference. The algorithm comprises multiple stages, including dual frame length ICAMS, a multi-classifier-based PPG correlated component selector, line spectral analysis, tree-based HR monitoring, and post-processing. Our approach is evaluated by multi-subject tests. The root mean square error (RMSE) is calculated for each trial. Three statistical metrics are selected as performance evaluation criteria: mean RMSE, median RMSE and the standard deviation (SD) of RMSE. The experimental results demonstrate that a shorter ICAMS analysis window probably results in better performance in SpO 2 estimation. Notably, the designed multi-classifier signal component selector achieved satisfactory performance. The subject tests indicate that our algorithm outperforms other baseline methods regarding accuracy under most criteria. The proposed work can contribute to improving the performance of current pulse oximetry and personal wearable monitoring devices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Bluetooth telemedicine processor for multichannel biomedical signal transmission via mobile cellular networks.

    Science.gov (United States)

    Rasid, Mohd Fadlee A; Woodward, Bryan

    2005-03-01

    One of the emerging issues in m-Health is how best to exploit the mobile communications technologies that are now almost globally available. The challenge is to produce a system to transmit a patient's biomedical signals directly to a hospital for monitoring or diagnosis, using an unmodified mobile telephone. The paper focuses on the design of a processor, which samples signals from sensors on the patient. It then transmits digital data over a Bluetooth link to a mobile telephone that uses the General Packet Radio Service. The modular design adopted is intended to provide a "future-proofed" system, whose functionality may be upgraded by modifying the software.

  2. Extracellular vesicles mediate signaling between the aqueous humor producing and draining cells in the ocular system.

    Science.gov (United States)

    Lerner, Natalie; Avissar, Sofia; Beit-Yannai, Elie

    2017-01-01

    Canonical Wnt signaling is associated with glaucoma pathogenesis and intraocular pressure (IOP) regulation. Our goal was to gain insight into the influence of non-pigmented ciliary epithelium (NPCE)-derived exosomes on Wnt signaling by trabecular meshwork (TM) cells. The potential impact of exosomes on Wnt signaling in the ocular drainage system remains poorly understood. Exosomes isolated from media collected from cultured NPCE cells by differential ultracentrifugation were characterized by dynamic light scattering (DLS), tunable resistive pulse sensing (TRPS), and nanoparticle tracking analysis (NTA), sucrose density gradient migration and transmission electron microscopy (TEM). The cellular target specificity of the NPCE-derived exosomes was investigated by confocal microscopy-based monitoring of the uptake of DiD-labeled exosomes over time, as compared to uptake by various cell lines. Changes in Wnt protein levels in TM cells induced by NPCE exosomes were evaluated by Western blot. Exosomes derived from NPCE cells were purified and detected as small rounded 50-140 nm membrane vesicles, as defined by DLS, NTA, TRPS and TEM. Western blot analysis indicated that the nanovesicles were positive for classic exosome markers, including Tsg101 and Alix. Isolated nanoparticles were found in sucrose density fractions typical of exosomes (1.118-1.188 g/mL sucrose). Using confocal microscopy, we demonstrated time-dependent specific accumulation of the NPCE-derived exosomes in NTM cells. Other cell lines investigated hardly revealed any exosome uptake. We further showed that exosomes induced changes in Wnt signaling protein expression in the TM cells. Western blot analysis further revealed decreased phosphorylation of GKS3β and reduced β-catenin levels. Finally, we found that treatment of NTM cells with exosomes resulted in a greater than 2-fold decrease in the level of β-catenin in the cytosolic fraction. In contrast, no remarkable difference in the amount of

  3. Registration and processing of acoustic signal in rock drilling

    Directory of Open Access Journals (Sweden)

    Futó Jozef

    2002-03-01

    Full Text Available For the determination of an effective rock disintegration for a given tool and rock type it is needed to define an optimal disintegration regime. Optimisation of the disintegration process by drilling denotes the finding out an appropriate couple of input parameters of disintegration, i.e. the thrust and revolutions for a quasi-equal rock environment. The disintegration process can be optimised to reach the maximum immediate drilling rate, to reach the minimum specific disintegration energy or to reach the maximum ratio of immediate drilling rate and specific disintegration energy. For the determination of the optimal thrust and revolutions it is needed to monitor the disintegration process. Monitoring of the disintegration process in real conditions is complicated by unfavourable factors, such as the presence of water, dust, vibrations etc. Following our present experience in the monitoring of drilling or full-profile driving, we try to replace the monitoring of input values by monitoring of the scanned acoustic signal. This method of monitoring can extend the optimisation of disintegration process in the technical practice. Its advantage consists in the registration of one acoustic signal by an appropriate microphone. Monitoring of acoustic signal is used also in monitoring of metal machining by milling and turning jobs. The research results of scanning of the acoustic signal in machining of metals are encouraging. Acoustic signal can be processed by different statistical parameters. The paper decribes some results of monitoring of the acoustic signal in rock disintegration on the drilling stand of the Institute of Geotechnics SAS in Košice. The acoustic signal has been registered and processed in no-load run of electric motor, in no-load run of electric motor with a drilling fluid, and in the Ruskov andesite drilling. Registration and processing of the acoustic signal is solved as a part of the research grant task within the basic research

  4. Color formation monitoring of extruded melt mixed PP/MMT nanocomposite

    International Nuclear Information System (INIS)

    Reis, Kelen C. dos; Bertolino, Marcelo K.

    2009-01-01

    This work advances the use of colorimeter technique to analyze the desegregation of the MMT clay tactoids during the preparation of PP/MMT nanocomposites via polymer melt compounding. X-ray diffraction and the light extinction level (turbidity) measured by the intensity of the detector's signal were used to monitoring platelet exfoliation. On tactoids exfoliation their size are reduced below the minimum particle size to produce light extinction (turbidity) and so the signal intensity reduces as the nano size composite is formed, the luminosity of nanocomposite increased as expected. The color formation was brown, yellow and green and it depends of the organoclay type. (author)

  5. Beam position monitoring

    International Nuclear Information System (INIS)

    Shafer, R.E.

    1990-01-01

    Beam monitoring in accelerators is reviewed, with emphasis on the engineering aspects of the problem. Guidelines for monitor design are given. Advantages and disadvantages of various electrode designs and signal processing methods are reviewed

  6. Monitoring apparatus

    International Nuclear Information System (INIS)

    Keats, A.B.

    1981-01-01

    An improved monitoring apparatus for use with process plants, such as nuclear reactors, is described. System failure in the acquisition of data from the plant, owing to stuck signals, is avoided by arranging input signals from transducers in the plant in a test pattern. (U.K.)

  7. Robust signal extraction for on-line monitoring data

    NARCIS (Netherlands)

    Davies, P.L.; Fried, R.; Gather, U.

    2004-01-01

    Data from the automatic monitoring of intensive care patients exhibits trends, outliers, and level changes as well as periods of relative constancy. All this is overlaid with a high level of noise and there are dependencies between the different items measured. Current monitoring systems tend to

  8. Reactor power monitoring device

    International Nuclear Information System (INIS)

    Kono, Shigehiro.

    1990-01-01

    Among a plurality of power monitoring programs in a reactor power monitoring device, rapid response is required for a scram judging program for the power judging processing of scram signals. Therefore, the scram judging program is stored independently from other power monitoring programs, applied with a priority order, and executed in parallel with other programs, to output scram signals when the detected data exceeds a predetermined value. As a result, the capacity required for the scram judging program is reduced and the processing can be conducted in a short period of time. In addition, since high priority is applied to the scram judging program which is divided into a small capacity, it is executed at higher frequency than other programs when they are executed in parallel. That is, since the entire processings for the power monitoring program are repeated in a short cycle, the response speed of the scram signals required for high responsivity can be increased. (N.H.)

  9. Monitoring of operating processes

    International Nuclear Information System (INIS)

    Barry, R.F.

    1981-01-01

    Apparatus is described for monitoring the processes of a nuclear reactor to detect off-normal operation of any process and for testing the monitoring apparatus. The processes are evaluated by response to their paramters, such as temperature, pressure, etc. The apparatus includes a pair of monitoring paths or signal processing units. Each unit includes facilities for receiving on a time-sharing basis, a status binary word made up of digits each indicating the status of a process, whether normal or off-normal, and test-signal binary words simulating the status binary words. The status words and test words are processed in succession during successive cycles. During each cycle, the two units receive the same status word and the same test word. The test words simulate the status words both when they indicate normal operation and when they indicate off-normal operation. Each signal-processing unit includes a pair of memories. Each memory receives a status word or a test word, as the case may be, and converts the received word into a converted status word or a converted test word. The memories of each monitoring unit operate into a non-coincidence which signals non-coincidence of the converted word out of one memory of a signal-processing unit not identical to the converted word of the other memory of the same unit

  10. A Versatile Vector for In Vivo Monitoring of Type I Interferon Induction and Signaling.

    Directory of Open Access Journals (Sweden)

    Estanislao Nistal-Villan

    Full Text Available Development of reporter systems for in vivo examination of IFN-β induction or signaling of type I interferon (IFN-I pathways is of great interest in order to characterize biological responses to different inducers such as viral infections. Several reporter mice have been developed to monitor the induction of both pathways in response to different agonists. However, alternative strategies that do not require transgenic mice breeding have to date not been reported. In addition, detection of these pathways in vivo in animal species other than mice has not yet been addressed. Herein we describe a simple method based on the use of an adeno-associated viral vector (AAV8-3xIRF-ISRE-Luc containing an IFN-β induction and signaling-sensitive promoter sequence controlling the expression of the reporter gene luciferase. This vector is valid for monitoring IFN-I responses in vivo elicited by diverse stimuli in different organs. Intravenous administration of the vector in C57BL/6 mice and Syrian hamsters was able to detect activation of the IFN pathway in the liver upon systemic treatment with different pro-inflammatory agents and infection with Newcastle disease virus (NDV. In addition, intranasal instillation of AAV8-3xIRF-ISRE-Luc showed a rapid and transient IFN-I response in the respiratory tract of mice infected with the influenza A/PR8/34 virus lacking the NS1 protein. In comparison, this response was delayed and exacerbated in mice infected with influenza A/PR/8 wild type virus. In conclusion, the AAV8-3xIRF-ISRE-Luc vector offers the possibility of detecting IFN-I activation in response to different stimuli and in different animal models with no need for reporter transgenic animals.

  11. Shared performance monitor in a multiprocessor system

    Science.gov (United States)

    Chiu, George; Gara, Alan G.; Salapura, Valentina

    2012-07-24

    A performance monitoring unit (PMU) and method for monitoring performance of events occurring in a multiprocessor system. The multiprocessor system comprises a plurality of processor devices units, each processor device for generating signals representing occurrences of events in the processor device, and, a single shared counter resource for performance monitoring. The performance monitor unit is shared by all processor cores in the multiprocessor system. The PMU comprises: a plurality of performance counters each for counting signals representing occurrences of events from one or more the plurality of processor units in the multiprocessor system; and, a plurality of input devices for receiving the event signals from one or more processor devices of the plurality of processor units, the plurality of input devices programmable to select event signals for receipt by one or more of the plurality of performance counters for counting, wherein the PMU is shared between multiple processing units, or within a group of processors in the multiprocessing system. The PMU is further programmed to monitor event signals issued from non-processor devices.

  12. Sodium fast reactor power monitoring using {sup 20}F tagging agent

    Energy Technology Data Exchange (ETDEWEB)

    Coulon, R.; Normand, S. [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, Centre de Saclay, 91191 Gif sur Yvette Cedex (France); Ban, G. [ENSICAEN, F-14050 Caen (France); Dumarcher, V.; Brau, H. P.; Barbot, L.; Domenech, T.; Kondrasovs, V.; Corre, G.; Frelin, A. M.; Montagu, T.; Dautremer, T.; Barat, E.

    2009-07-01

    This work deals with the use of gamma spectrometry to monitor the fourth generation sodium fast reactor (SFR) power. Simulation part has shown that power monitoring in short response time and with high accuracy is possible measuring delayed gamma emitters produced in the liquid sodium. An experimental test is under preparation at French SFR Phenix experimental reactor to validate simulation studies. Physical calculations have been done to correlate gamma activity to the released thermal power. Gamma emitter production rate in the reactor core was calculated with technical and nuclear data as sodium velocity, atomic densities, neutron spectra and incident neutron cross-sections of fission reactions, and also sodium activation reactions producing gamma emitters. Then, a thermal hydraulic transfer function was used for taking into account primary sodium flow in our calculations. Gamma spectra were then determined by Monte-Carlo simulations. The experiment will be set during the reactor 'ultimate testing'. The Delayed Neutron Detection (DND) system cell has been chosen as the best available primary sodium sample for gamma power monitoring on Phenix reactor due to short sodium transit time from reactor core to measurement sample and homogenized sampling in the reactor hot pool. The main gamma spectrometer is composed of a coaxial high purity germanium diode (HPGe) coupled with a transistor reset preamplifier. The signal is then processed by a digital signal processing system (called Adonis) which always gives optimum answer even for high count rate and various time activity measurements. For power monitoring problematic, use of a short decay period gamma emitter as the {sup 20}F will allow to obtain a very fast response system without cumulative and flow distortion effects. These works introduce advantages and performances of this new power monitoring system for future SFR. (authors)

  13. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    Marjanovic, Marija; The ATLAS collaboration

    2018-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibers to photo-multiplier tubes (PMTs), located in the outer part of the calorimeter. The readout is segmented into about 5000 cells, each one being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of the full readout chain during the data taking, a set of calibration sub-systems is used. The TileCal calibration system comprises Cesium radioactive sources, laser, charge injection elements, and an integrator based readout system. Combined information from all systems allows to monitor and to equalize the calorimeter response at each stage of the signal evolution, from scintillation light to digitization. Calibration runs are monitored from a data quality perspective and u...

  14. Monitor of dynamic parameters in real time; Monitor de parametros dinamicos en tiempo real

    Energy Technology Data Exchange (ETDEWEB)

    Rojas S, A.S.; Ruiz E, J.A. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)

    2008-07-01

    In the complex physical systems exist parameters that are necessary for monitoring in real time. In the nuclear industry, particularly in a reactor this surveillance is important, where the times of the reactions are almost instantaneous. Although many of these parameters are monitored, given the advance of the computer systems the monitoring could either be enlarged direct or indirect of other parameters. The analysis of the neutron noise in the nuclear reactors, plays an important role, the noise signal it contains information about the operation conditions of a system, when analyzing it with analysis methodologies of analogical signals to provide important information for the early detection of possible flaws and to indicate the permissible operation levels. To show the characteristics of the operation of the system of Monitoring of Dynamic Parameters in Real Time, oscillations of neutron noise of the TRIGA Mark III of the ININ were analyzed, these were caused with the control bar to a power of 10 Watts, the oscillations were carried out to a frequency of 1Hz, signal of low frequency. In this work a virtual instrument that allows by means of the spectral analysis method in frequency point by point is presented, to indicate in real time periodic variations that could be presented in the neutron noise signal, visualizing in advance the dynamic behavior of the system or nuclear plant. Another of the tests of the monitoring system presented is that of the oscillatory event happened in the reactor of Laguna Verde Nucleo electric Central, would be convenient to have an instrument of surveillance for monitoring through the neutron noise signal the behavior of some important parameter to predict and to indicate in an immediate way an abnormal condition in the reactor operation or in the plant system. These parameters can be the power, the recirculation water flow, etc. The monitor is based on a personal computer (PC), a data acquisition card (ADC) and a computer program

  15. Development of a criticality monitoring and alarm system

    International Nuclear Information System (INIS)

    Egey, Julio; Izraelevitch, Federico H.; Matatagui, Emilio

    2009-01-01

    In this work we are presenting the development of a Criticality Monitor and Alarm System (SIMAC). It monitors the burst of radiation produced during such an accident and triggers an alarm for evacuation in case the radiation exceeds a pre-established threshold. It consists of two subsystems, one for gamma rays and the other for neutrons. Each subsystem has three independent detectors modules. Each module is composed of an ion chamber plus its associated electronics, feeding a logic module that in turn would trigger the evacuation alarm. An additional feature is a PC interface for data acquisition. The radiation detectors are ion chambers working in current mode. The electronics associated to each detector can manage a wide signal range using a logarithmic converter. (author)

  16. Development of interleukin-17-producing Vγ2+ γδ T cells is reduced by ICOS signaling in the thymus

    DEFF Research Database (Denmark)

    Buus, Terkild Brink; Schmidt, Jonas Damgård; Bonefeld, Charlotte Menné

    2016-01-01

    . In this study, we have investigated the role of inducible T cell co-stimulator (ICOS) on the development of γδ T cells. We show that ICOS is expressed by a population of immature Vγ2+CD45RBlow γδ T cells predisposed to interleukin-17 (IL-17) production. We found that treatment with ICOS specific antibodies...... drastically reduces fetal development of IL-17-producing γδ T cells by agonistic actions, and that ICOS deficient mice have a significant increase in the population of IL-17-producing Vγ2+ γδ T cells in the thymus, spleen, lymph nodes and skin and exhibit exacerbated sensitization responses to 2......,4-dinitrofluorobenzene. In conclusion, this study demonstrates that development of IL-17-producing Vγ2+ γδ T cells is reduced by ICOS signaling in the thymus....

  17. Preliminary study of acoustic emission (ae) noise signal identification for crude oil storage tank

    International Nuclear Information System (INIS)

    Nurul Ain Ahmad Latif; Shukri Mohd

    2008-08-01

    This preliminary work was carried out to simulate the Acoustic Emission (AE) signal contributed by pitting corrosion, and noise signal from environment during crude oil storage tanks monitoring. The purpose of this study is to prove that acoustic emission (AE) could be used to detect the formation of pitting corrosion in the crude oil storage tank and differentiated it from other sources of noise signal. In this study, the pitting corrosion was simulated by inducing low voltage and low amperage current onto the crude oil storage tank material (ASTM 516 G 70). Water drop, air blow and surface rubbing were applied onto the specimen surface. To simulate the noise signal produce by rain fall, wind blow and other sources of noise during AE crude oil storage tanks monitoring. AE sensor was attached onto the other surface of specimen to acquire all of these AE signals which then has send to AE DiSP 24 data acquisition system for signal conditioning. AE win software has been used to analyse this entire signal. It is found that, simulated pitting corrosion could be detected by AE system and differentiated from other sources of noise by using amplitude analysis. From the amplitude analysis is shown that 20-30 dB is the range amplitude for the blow test, 50-60 dB for surface rubbing test and over than 60 dB for water drop test. (Author)

  18. Decomposition of Near-Infrared Spectroscopy Signals Using Oblique Subspace Projections: Applications in Brain Hemodynamic Monitoring

    Directory of Open Access Journals (Sweden)

    Alexander Caicedo

    2016-11-01

    Full Text Available Clinical data is comprised by a large number of synchronously collected biomedical signals that are measured at different locations. Deciphering the interrelationships of these signals can yield important information about their dependence providing some useful clinical diagnostic data. For instance, by computing the coupling between Near-Infrared Spectroscopy signals (NIRS and systemic variables the status of the hemodynamic regulation mechanisms can be assessed. In this paper we introduce an algorithm for the decomposition of NIRS signals into additive components. The algorithm, SIgnal DEcomposition base on Obliques Subspace Projections (SIDE-ObSP, assumes that the measured NIRS signal is a linear combination of the systemic measurements, following the linear regression model y = Ax + _. SIDE-ObSP decomposes the output such that, each component in the decomposition represents the sole linear influence of one corresponding regressor variable. This decomposition scheme aims at providing a better understanding of the relation between NIRS and systemic variables, and to provide a framework for the clinical interpretation of regression algorithms, thereby, facilitating their introduction into clinical practice. SIDE-ObSP combines oblique subspace projections (ObSP with the structure of a mean average system in order to define adequate signal subspaces. To guarantee smoothness in the estimated regression parameters, as observed in normal physiological processes, we impose a Tikhonov regularization using a matrix differential operator. We evaluate the performance of SIDE-ObSP by using a synthetic dataset, and present two case studies in the field of cerebral hemodynamics monitoring using NIRS. In addition, we compare the performance of this method with other system identification techniques. In the first case study data from 20 neonates during the first three days of life was used, here SIDE-ObSP decoupled the influence of changes in arterial oxygen

  19. Decomposition of Near-Infrared Spectroscopy Signals Using Oblique Subspace Projections: Applications in Brain Hemodynamic Monitoring.

    Science.gov (United States)

    Caicedo, Alexander; Varon, Carolina; Hunyadi, Borbala; Papademetriou, Maria; Tachtsidis, Ilias; Van Huffel, Sabine

    2016-01-01

    Clinical data is comprised by a large number of synchronously collected biomedical signals that are measured at different locations. Deciphering the interrelationships of these signals can yield important information about their dependence providing some useful clinical diagnostic data. For instance, by computing the coupling between Near-Infrared Spectroscopy signals (NIRS) and systemic variables the status of the hemodynamic regulation mechanisms can be assessed. In this paper we introduce an algorithm for the decomposition of NIRS signals into additive components. The algorithm, SIgnal DEcomposition base on Obliques Subspace Projections (SIDE-ObSP), assumes that the measured NIRS signal is a linear combination of the systemic measurements, following the linear regression model y = Ax + ϵ . SIDE-ObSP decomposes the output such that, each component in the decomposition represents the sole linear influence of one corresponding regressor variable. This decomposition scheme aims at providing a better understanding of the relation between NIRS and systemic variables, and to provide a framework for the clinical interpretation of regression algorithms, thereby, facilitating their introduction into clinical practice. SIDE-ObSP combines oblique subspace projections (ObSP) with the structure of a mean average system in order to define adequate signal subspaces. To guarantee smoothness in the estimated regression parameters, as observed in normal physiological processes, we impose a Tikhonov regularization using a matrix differential operator. We evaluate the performance of SIDE-ObSP by using a synthetic dataset, and present two case studies in the field of cerebral hemodynamics monitoring using NIRS. In addition, we compare the performance of this method with other system identification techniques. In the first case study data from 20 neonates during the first 3 days of life was used, here SIDE-ObSP decoupled the influence of changes in arterial oxygen saturation from the

  20. Westinghouse use of artificial intelligence in signal interpretation

    International Nuclear Information System (INIS)

    Mark, R.H.

    1984-01-01

    This paper discusses Westinghouse's use of artificial intelligence to assist inspectors who routinely monitor the thousands of tubes in nuclear steam generators. Using the AI technology has made the inspection process easier to learn and to apply. The system uses pattern recognition to identify off-normal conditions. As part of the in-service inspection program for nuclear power reactors, utilities make a practice of inspecting the condition of the large heat exchangers that produce the steam that turns the electric turbine generator. The same data are presented for inspection using form, motion, and color to call attention to off-normal signal patterns

  1. Bolt Stress Monitor

    Science.gov (United States)

    1978-01-01

    In photo, an engineer is using a new Ultrasonic Bolt Stress Monitor developed by NASA's Langley Research Center to determine whether a bolt is properly tightened. A highly accurate device, the monitor is an important tool in construction of such structures as pressure vessels, bridges and power plants, wherein precise measurement of the stress on a tightened bolt is critical. Overtightened or undertightened bolts can fail and cause serious industrial accidents or costly equipment break-downs. There are a number of methods for measuring bolt stress. Most widely used and least costly is the torque wrench, which is inherently inaccurate; it does not take into account the friction between nut and bolt, which has an influence on stress. At the other end of the spectrum, there are accurate stress-measuring systems, but they are expensive and not portable. The battery-powered Langley monitor fills a need; it is inexpensive, lightweight, portable and extremely accurate because it is not subject to friction error. Sound waves are transmitted to the bolt and a return signal is received. As the bolt is tightened, it undergoes changes in resonance due to stress, in the manner that a violin string changes tone when it is tightened. The monitor measures the changes in resonance and provides a reading of real stress on the bolt. The device, patented by NASA, has aroused wide interest and a number of firms have applied for licenses to produce it for the commercial market.

  2. Non-linear multivariate and multiscale monitoring and signal denoising strategy using Kernel Principal Component Analysis combined with Ensemble Empirical Mode Decomposition method

    Science.gov (United States)

    Žvokelj, Matej; Zupan, Samo; Prebil, Ivan

    2011-10-01

    The article presents a novel non-linear multivariate and multiscale statistical process monitoring and signal denoising method which combines the strengths of the Kernel Principal Component Analysis (KPCA) non-linear multivariate monitoring approach with the benefits of Ensemble Empirical Mode Decomposition (EEMD) to handle multiscale system dynamics. The proposed method which enables us to cope with complex even severe non-linear systems with a wide dynamic range was named the EEMD-based multiscale KPCA (EEMD-MSKPCA). The method is quite general in nature and could be used in different areas for various tasks even without any really deep understanding of the nature of the system under consideration. Its efficiency was first demonstrated by an illustrative example, after which the applicability for the task of bearing fault detection, diagnosis and signal denosing was tested on simulated as well as actual vibration and acoustic emission (AE) signals measured on purpose-built large-size low-speed bearing test stand. The positive results obtained indicate that the proposed EEMD-MSKPCA method provides a promising tool for tackling non-linear multiscale data which present a convolved picture of many events occupying different regions in the time-frequency plane.

  3. Oscillator monitor

    International Nuclear Information System (INIS)

    McNeill, G.A.

    1981-01-01

    Present high-speed data acquisition systems in nuclear diagnostics use high-frequency oscillators to provide timing references for signals recorded on fast, traveling-wave oscilloscopes. An oscillator's sinusoidal wave shape is superimposed on the recorded signal with each cycle representing a fixed time increment. During data analysis the sinusoid is stripped from the signal, leaving a clean signal shape with known timing. Since all signal/time relationships are totally dependant upon working oscillators, these critical devices must have remote verification of proper operation. This manual presents the newly-developed oscillator monitor which will provide the required verification

  4. Radiation signal processing system

    International Nuclear Information System (INIS)

    Bennett, M.; Knoll, G.; Strange, D.

    1980-01-01

    An improved signal processing system for radiation imaging apparatus comprises: a radiation transducer producing transducer signals proportional to apparent spatial coordinates of detected radiation events; means for storing true spatial coordinates corresponding to a plurality of predetermined apparent spatial coordinates relative to selected detected radiation events said means for storing responsive to said transducer signal and producing an output signal representative of said true spatial coordinates; and means for interpolating the true spatial coordinates of the detected radiation events located intermediate the stored true spatial coordinates, said means for interpolating communicating with said means for storing

  5. Improved Fuzzy Logic System to Evaluate Milk Electrical Conductivity Signals from On-Line Sensors to Monitor Dairy Goat Mastitis

    Directory of Open Access Journals (Sweden)

    Mauro Zaninelli

    2016-07-01

    Full Text Available The aim of this study was to develop and test a new fuzzy logic model for monitoring the udder health status (HS of goats. The model evaluated, as input variables, the milk electrical conductivity (EC signal, acquired on-line for each gland by a dedicated sensor, the bandwidth length and the frequency and amplitude of the first main peak of the Fourier frequency spectrum of the recorded milk EC signal. Two foremilk gland samples were collected from eight Saanen goats for six months at morning milking (lactation stages (LS: 0–60 Days In Milking (DIM; 61–120 DIM; 121–180 DIM, for a total of 5592 samples. Bacteriological analyses and somatic cell counts (SCC were used to define the HS of the glands. With negative bacteriological analyses and SCC < 1,000,000 cells/mL, glands were classified as healthy. When bacteriological analyses were positive or showed a SCC > 1,000,000 cells/mL, glands were classified as not healthy (NH. For each EC signal, an estimated EC value was calculated and a relative deviation was obtained. Furthermore, the Fourier frequency spectrum was evaluated and bandwidth length, frequency and amplitude of the first main peak were identified. Before using these indexes as input variables of the fuzzy logic model a linear mixed-effects model was developed to evaluate the acquired data considering the HS, LS and LS × HS as explanatory variables. Results showed that performance of a fuzzy logic model, in the monitoring of mammary gland HS, could be improved by the use of EC indexes derived from the Fourier frequency spectra of gland milk EC signals recorded by on-line EC sensors.

  6. Subcriticality monitoring method for reactor

    International Nuclear Information System (INIS)

    Ueda, Makoto.

    1991-01-01

    The present invention accurately monitors the reactor subcriticality and ensures the critical safety, irrespective of the presence or absence of artificial neutron sources. That is, when the subcriticality is monitored upon reactivity changing operation which causes reactivity change to the reactor during shutdown, neutron monitors are disposed at a plurality of monitoring positions. Then, neutron counting ratio before and after conducting the reactivity changing operation is determined. The subcriticality of the reactor is monitored by the ratio and the state of scattering of the ratio of neutron counting rate between each of the neutron monitors. With such procedures, signals of the neutron monitors are used, the characteristic that the change of the signals depend on the change of the neutron multiplication of the reactor core can be utilized whether artificial neutron sources (external neutron sources) are disposed or not. Accordingly, the subcriticality can be monitored more reliably. (I.S.)

  7. Detecting self-produced speech errors before and after articulation: An ERP investigation

    Directory of Open Access Journals (Sweden)

    Kevin Michael Trewartha

    2013-11-01

    Full Text Available It has been argued that speech production errors are monitored by the same neural system involved in monitoring other types of action errors. Behavioral evidence has shown that speech errors can be detected and corrected prior to articulation, yet the neural basis for such pre-articulatory speech error monitoring is poorly understood. The current study investigated speech error monitoring using a phoneme-substitution task known to elicit speech errors. Stimulus-locked event-related potential (ERP analyses comparing correct and incorrect utterances were used to assess pre-articulatory error monitoring and response-locked ERP analyses were used to assess post-articulatory monitoring. Our novel finding in the stimulus-locked analysis revealed that words that ultimately led to a speech error were associated with a larger P2 component at midline sites (FCz, Cz, and CPz. This early positivity may reflect the detection of an error in speech formulation, or a predictive mechanism to signal the potential for an upcoming speech error. The data also revealed that general conflict monitoring mechanisms are involved during this task as both correct and incorrect responses elicited an anterior N2 component typically associated with conflict monitoring. The response-locked analyses corroborated previous observations that self-produced speech errors led to a fronto-central ERN. These results demonstrate that speech errors can be detected prior to articulation, and that speech error monitoring relies on a central error monitoring mechanism.

  8. The cAMP-dependent protein kinase inhibitor H-89 attenuates the bioluminescence signal produced by Renilla Luciferase.

    Directory of Open Access Journals (Sweden)

    Katie J Herbst

    2009-05-01

    Full Text Available Investigations into the regulation and functional roles of kinases such as cAMP-dependent protein kinase (PKA increasingly rely on cellular assays. Currently, there are a number of bioluminescence-based assays, for example reporter gene assays, that allow the study of the regulation, activity, and functional effects of PKA in the cellular context. Additionally there are continuing efforts to engineer improved biosensors that are capable of detecting real-time PKA signaling dynamics in cells. These cell-based assays are often utilized to test the involvement of PKA-dependent processes by using H-89, a reversible competitive inhibitor of PKA.We present here data to show that H-89, in addition to being a competitive PKA inhibitor, attenuates the bioluminescence signal produced by Renilla luciferase (RLuc variants in a population of cells and also in single cells. Using 10 microM of luciferase substrate and 10 microM H-89, we observed that the signal from RLuc and RLuc8, an eight-point mutation variant of RLuc, in cells was reduced to 50% (+/-15% and 54% (+/-14% of controls exposed to the vehicle alone, respectively. In vitro, we showed that H-89 decreased the RLuc8 bioluminescence signal but did not compete with coelenterazine-h for the RLuc8 active site, and also did not affect the activity of Firefly luciferase. By contrast, another competitive inhibitor of PKA, KT5720, did not affect the activity of RLuc8.The identification and characterization of the adverse effect of H-89 on RLuc signal will help deconvolute data previously generated from RLuc-based assays looking at the functional effects of PKA signaling. In addition, for the current application and future development of bioluminscence assays, KT5720 is identified as a more suitable PKA inhibitor to be used in conjunction with RLuc-based assays. These principal findings also provide an important lesson to fully consider all of the potential effects of experimental conditions on a cell

  9. Asynchronous monitoring of the quality of multilevel optical PAM signals

    Science.gov (United States)

    Siuzdak, J.

    2017-08-01

    In the paper, there is analyzed the signal quality assessment method based on delay tap asynchronous sampling, both for binary and multilevel PAM signals. The obtained multilevel phase diagrams are far more complicated than binary ones. The phase diagrams are affected by the signal distortions but it is difficult to relate reliably the phase diagram form to the distortion type and its influence on the signal quality.

  10. JACoW Lightweight acquisition system for analogue signals

    CERN Document Server

    Bielawski, Bartosz

    2018-01-01

    In a complex machine such as a particle accelerator there are thousands of analogue signals that need monitoring and even more signals that could be used for debugging or as a tool for detecting symptoms of potentially avoidable problems. Usually it is not feasible to acquire and monitor all of these signals not only because of the cost but also because of cabling and space required. The Radio Frequency system in the Large Hadron Collider (LHC) is protected by multiple hardware interlocks that ensure safe operation of klystrons, superconducting cavities and all the other equipment. In parallel, a diagnostic system has been deployed to monitor the health of the klystrons. Due to the limited amount of space and the moderate number of signals to be monitored, a standard approach with a full VME or Compact PCI crate has not been selected. Instead, small embedded industrial computers with Universal Serial Bus (USB) oscilloscopes chosen for the specific application have been installed. This cost effective, rapidly ...

  11. Novel Oversampling Technique for Improving Signal-to-Quantization Noise Ratio on Accelerometer-Based Smart Jerk Sensors in CNC Applications.

    Science.gov (United States)

    Rangel-Magdaleno, Jose J; Romero-Troncoso, Rene J; Osornio-Rios, Roque A; Cabal-Yepez, Eduardo

    2009-01-01

    Jerk monitoring, defined as the first derivative of acceleration, has become a major issue in computerized numeric controlled (CNC) machines. Several works highlight the necessity of measuring jerk in a reliable way for improving production processes. Nowadays, the computation of jerk is done by finite differences of the acceleration signal, computed at the Nyquist rate, which leads to low signal-to-quantization noise ratio (SQNR) during the estimation. The novelty of this work is the development of a smart sensor for jerk monitoring from a standard accelerometer, which has improved SQNR. The proposal is based on oversampling techniques that give a better estimation of jerk than that produced by a Nyquist-rate differentiator. Simulations and experimental results are presented to show the overall methodology performance.

  12. Acoustic signal emission monitoring as a novel method to predict steam pops during radiofrequency ablation: preliminary observations.

    Science.gov (United States)

    Chik, William W B; Kosobrodov, Roman; Bhaskaran, Abhishek; Barry, Michael Anthony Tony; Nguyen, Doan Trang; Pouliopoulos, Jim; Byth, Karen; Sivagangabalan, Gopal; Thomas, Stuart P; Ross, David L; McEwan, Alistair; Kovoor, Pramesh; Thiagalingam, Aravinda

    2015-04-01

    Steam pop is an explosive rupture of cardiac tissue caused by tissue overheating above 100 °C, resulting in steam formation, predisposing to serious complications associated with radiofrequency (RF) ablations. However, there are currently no reliable techniques to predict the occurrence of steam pops. We propose the utility of acoustic signals emitted during RF ablation as a novel method to predict steam pop formation and potentially prevent serious complications. Radiofrequency generator parameters (power, impedance, and temperature) were temporally recorded during ablations performed in an in vitro bovine myocardial model. The acoustic system consisted of HTI-96-min hydrophone, microphone preamplifier, and sound card connected to a laptop computer. The hydrophone has the frequency range of 2 Hz to 30 kHz and nominal sensitivity in the range -240 to -165 dB. The sound was sampled at 96 kHz with 24-bit resolution. Output signal from the hydrophone was fed into the camera audio input to synchronize the video stream. An automated system was developed for the detection and analysis of acoustic events. Nine steam pops were observed. Three distinct sounds were identified as warning signals, each indicating rapid steam formation and its release from tissue. These sounds had a broad frequency range up to 6 kHz with several spectral peaks around 2-3 kHz. Subjectively, these warning signals were perceived as separate loud clicks, a quick succession of clicks, or continuous squeaking noise. Characteristic acoustic signals were identified preceding 80% of pops occurrence. Six cardiologists were able to identify 65% of acoustic signals accurately preceding the pop. An automated system identified the characteristic warning signals in 85% of cases. The mean time from the first acoustic signal to pop occurrence was 46 ± 20 seconds. The automated system had 72.7% sensitivity and 88.9% specificity for predicting pops. Easily identifiable characteristic acoustic emissions

  13. Pathogen Screening of Naturally Produced Yakima River Spring Chinook Smolts; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 6 of 7, 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Joan B. (Washington Department of Fish and Wildlife, Olympia, WA)

    2004-05-01

    In 1999 the Cle Elum Hatchery began releasing spring chinook salmon smolts into the upper Yakima River to increase natural production. Part of the evaluation of this program is to monitor whether introduction of hatchery produced smolts would impact the prevalence of specific pathogens in the naturally produced spring chinook smolts. Increases in prevalence of any of these pathogens could negatively impact the survival of these fish. In 1998 and 2000 through 2003 naturally produced smolts were collected for monitoring at the Chandler smolt collection facility on the lower Yakima River. Smolts were collected from mid to late outmigration, with a target of 200 fish each year. The pathogens monitored were infectious hematopoeitic necrosis virus, infectious pancreatic necrosis virus, viral hemorrhagic septicemia virus, Flavobacterium psychrophilum, Flavobacterium columnare, Aeromonas salmonicida, Yersinia ruckeri, Edwardsiella ictaluri, Renibacterium salmoninarum and Myxobolus cerebralis. To date, only the bacterial pathogens have been detected and prevalences have been low. Prevalences have varied each year and these changes are attributed to normal fluctuation of prevalence. All of the pathogens detected are widely distributed in Washington State.

  14. A Versatile Beam Loss Monitoring System for CLIC

    CERN Document Server

    Kastriotou, Maria; Farabolini, Wilfrid; Holzer, Eva Barbara; Nebot Del Busto, Eduardo; Tecker, Frank; Welsch, Carsten

    2016-01-01

    The design of a potential CLIC beam loss monitoring (BLM) system presents multiple challenges. To successfully cover the 48 km of beamline, ionisation chambers and optical fibre BLMs are under investigation. The former fulfils all CLIC requirements but would need more than 40000 monitors to protect the whole facility. For the latter, the capability of reconstructing the original loss position with a multi-bunch beam pulse and multiple loss locations still needs to be quantified. Two main sources of background for beam loss measurements are identified for CLIC. The two-beam accelerator scheme introduces so-called crosstalk, i.e. detection of losses originating in one beam line by the monitors protecting the other. Moreover, electrons emitted from the inner surface of RF cavities and boosted by the high RF gradients may produce signals in neighbouring BLMs, limiting their ability to detect real beam losses. This contribution presents the results of dedicated experiments performed in the CLIC Test Facility to qu...

  15. Verification of the Viability of Equipotential Switching Direct Current Potential Drop Method for Piping Wall Loss Monitoring with Signal Sensitivity Analysis

    International Nuclear Information System (INIS)

    Ryu, Kyung Ha; Hwang, Il Soon; Kim, Ji Hyun

    2008-01-01

    Flow accelerated corrosion (FAC) phenomenon of low alloy carbon steels in nuclear power plant has been known as one of major degradation mechanisms. It has a potential to cause nuclear pipe rupture accident which may directly impact on the plant reliability and safety. Recently, the equipotential switching direct current potential drop (ES-DCPD) method has been developed, by the present authors, as a method to monitor wall loss in a piping. This method can rapidly monitor the thinning of piping, utilizing either the wide range monitoring (WiRM) or the narrow range monitoring (NaRM) technique. WiRM is a method to monitor wide range of straight piping, whereas NaRM focuses significantly on a narrow range such as an elbow. WiRM and NaRM can improve the reliability of the current FAC screening method that is based on computer modeling on fluid flow conditions. In this paper, the measurements by ES-DCPD are performed with signal sensitivity analyses in the laboratory environment for extended period and showed the viability of ES-DCPD for real plant applications.

  16. Dynamic goal states: adjusting cognitive control without conflict monitoring.

    Science.gov (United States)

    Scherbaum, Stefan; Dshemuchadse, Maja; Ruge, Hannes; Goschke, Thomas

    2012-10-15

    A central topic in the cognitive sciences is how cognitive control is adjusted flexibly to changing environmental demands at different time scales to produce goal-oriented behavior. According to an influential account, the context-sensitive recruitment of cognitive control is mediated by a specialized conflict monitoring process that registers current conflict and signals the demand for enhanced control in subsequent trials. This view has been immensely successful not least due to supporting evidence from neuroimaging studies suggesting that the conflict monitoring function is localized within the anterior cingulate cortex (ACC) which, in turn, signals the demand for enhanced control to the prefrontal cortex (PFC). In this article, we propose an alternative model of the adaptive regulation of cognitive control based on multistable goal attractor network dynamics and adjustments of cognitive control within a conflict trial. Without incorporation of an explicit conflict monitoring module, the model mirrors behavior in conflict tasks accounting for effects of response congruency, sequential conflict adaptation, and proportion of incongruent trials. Importantly, the model also mirrors frequency tagged EEG data indicating continuous conflict adaptation and suggests a reinterpretation of the correlation between ACC and the PFC BOLD data reported in previous imaging studies. Together, our simulation data propose an alternative interpretation of both behavioral data as well as imaging data that have previously been interpreted in favor of a specialized conflict monitoring process in the ACC. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Photoplethysmogram signal quality estimation using repeated Gaussian filters and cross-correlation

    International Nuclear Information System (INIS)

    Karlen, W; Kobayashi, K; Dumont, G A; Ansermino, J M

    2012-01-01

    Pulse oximeters are monitors that noninvasively measure heart rate and blood oxygen saturation (SpO 2 ). Unfortunately, pulse oximetry is prone to artifacts which negatively impact the accuracy of the measurement and can cause a significant number of false alarms. We have developed an algorithm to segment pulse oximetry signals into pulses and estimate the signal quality in real time. The algorithm iteratively calculates a signal quality index (SQI) ranging from 0 to 100. In the presence of artifacts and irregular signal morphology, the algorithm outputs a low SQI number. The pulse segmentation algorithm uses the derivative of the signal to find pulse slopes and an adaptive set of repeated Gaussian filters to select the correct slopes. Cross-correlation of consecutive pulse segments is used to estimate signal quality. Experimental results using two different benchmark data sets showed a good pulse detection rate with a sensitivity of 96.21% and a positive predictive value of 99.22%, which was equivalent to the available reference algorithm. The novel SQI algorithm was effective and produced significantly lower SQI values in the presence of artifacts compared to SQI values during clean signals. The SQI algorithm may help to guide untrained pulse oximeter users and also help in the design of advanced algorithms for generating smart alarms. (paper)

  18. Photoplethysmogram signal quality estimation using repeated Gaussian filters and cross-correlation.

    Science.gov (United States)

    Karlen, W; Kobayashi, K; Ansermino, J M; Dumont, G A

    2012-10-01

    Pulse oximeters are monitors that noninvasively measure heart rate and blood oxygen saturation (SpO2). Unfortunately, pulse oximetry is prone to artifacts which negatively impact the accuracy of the measurement and can cause a significant number of false alarms. We have developed an algorithm to segment pulse oximetry signals into pulses and estimate the signal quality in real time. The algorithm iteratively calculates a signal quality index (SQI) ranging from 0 to 100. In the presence of artifacts and irregular signal morphology, the algorithm outputs a low SQI number. The pulse segmentation algorithm uses the derivative of the signal to find pulse slopes and an adaptive set of repeated Gaussian filters to select the correct slopes. Cross-correlation of consecutive pulse segments is used to estimate signal quality. Experimental results using two different benchmark data sets showed a good pulse detection rate with a sensitivity of 96.21% and a positive predictive value of 99.22%, which was equivalent to the available reference algorithm. The novel SQI algorithm was effective and produced significantly lower SQI values in the presence of artifacts compared to SQI values during clean signals. The SQI algorithm may help to guide untrained pulse oximeter users and also help in the design of advanced algorithms for generating smart alarms.

  19. Synchronous monitoring of muscle dynamics and electromyogram

    Science.gov (United States)

    Zakir Hossain, M.; Grill, Wolfgang

    2011-04-01

    A non-intrusive novel detection scheme has been implemented to detect the lateral muscle extension, force of the skeletal muscle and the motor action potential (EMG) synchronously. This allows the comparison of muscle dynamics and EMG signals as a basis for modeling and further studies to determine which architectural parameters are most sensitive to changes in muscle activity. For this purpose the transmission time for ultrasonic chirp signal in the frequency range of 100 kHz to 2.5 MHz passing through the muscle under observation and respective motor action potentials are recorded synchronously to monitor and quantify biomechanical parameters related to muscle performance. Additionally an ultrasonic force sensor has been employed for monitoring. Ultrasonic traducers are placed on the skin to monitor muscle expansion. Surface electrodes are placed suitably to pick up the potential for activation of the monitored muscle. Isometric contraction of the monitored muscle is ensured by restricting the joint motion with the ultrasonic force sensor. Synchronous monitoring was initiated by a software activated audio beep starting at zero time of the subsequent data acquisition interval. Computer controlled electronics are used to generate and detect the ultrasonic signals and monitor the EMG signals. Custom developed software and data analysis is employed to analyze and quantify the monitored data. Reaction time, nerve conduction speed, latent period between the on-set of EMG signals and muscle response, degree of muscle activation and muscle fatigue development, rate of energy expenditure and motor neuron recruitment rate in isometric contraction, and other relevant parameters relating to muscle performance have been quantified with high spatial and temporal resolution.

  20. A study of the feasibility of monitoring sealed geological repositories using seismic sensors

    International Nuclear Information System (INIS)

    Garbin, H.D.; Herrington, P.B.; Kromer, R.P.

    1999-01-01

    Questions have arisen regarding the applicability of seismic sensors to detect mining (re-entry) with a tunnel boring machine (TBM). Unlike cut and blast techniques of mining which produce impulsive seismic signals, the TBM produces seismic signals which are of long duration. (There are well established techniques available for detecting and locating the sources of the impulsive signals). The Yucca Mountain repository offered an opportunity to perform field evaluations of the capabilities of seismic sensors because during much of 1996, mining there was progressing with the use of a TBM. During the mining of the repository's southern branch, an effort was designed to evaluate whether the TBM could be detected, identified and located using seismic sensors. Three data acquisition stations were established in the Yucca Mountain area to monitor the TBM activity. A ratio of short term average to long term average algorithm was developed for use in detection based on the characteristics shown in the time series. For location of the source of detected signals, FK analysis was used on the array data to estimate back azimuths. The back azimuth from the 3 component system was estimated from the horizontal components. Unique features in the timing of the seismic signal were used to identify the source as the TBM. (author)

  1. A study of the feasibility of monitoring sealed geological repositories using seismic sensors

    International Nuclear Information System (INIS)

    Garbin, H.D.; Herrington, P.B.; Kromer, R.P.

    1997-10-01

    Questions have arisen regarding the applicability of seismic sensors to detect mining (re-entry) with a tunnel boring machine (TBM). Unlike cut and blast techniques of mining which produce impulsive seismic signals, the TBM produces seismic signals which are of long duration. (There are well established techniques available for detecting and locating the sources of the impulsive signals.) The Yucca Mountain repository offered an opportunity to perform field evaluations of the capabilities of seismic sensors because during much of 1996, mining there was progressing with the use of a TBM. During the mining of the repository's southern branch, an effort was designed to evaluate whether the TBM could be detected, identified and located using seismic sensors. Three data acquisition stations were established in the Yucca Mountain area to monitor the TBM activity. A ratio of short term average to long term average algorithm was developed for use in detection based on the characteristics shown in the time series. For location of the source of detected signals, FK analysis was used on the array data to estimate back azimuths. The back azimuth from the 3 component system was estimated from the horizontal components. Unique features in the timing of the seismic signal were used to identify the source as the TBM

  2. Reconfigurable Sensor Monitoring System

    Science.gov (United States)

    Alhorn, Dean C. (Inventor); Dutton, Kenneth R. (Inventor); Howard, David E. (Inventor); Smith, Dennis A. (Inventor)

    2017-01-01

    A reconfigurable sensor monitoring system includes software tunable filters, each of which is programmable to condition one type of analog signal. A processor coupled to the software tunable filters receives each type of analog signal so-conditioned.

  3. Artificial intelligence applications in fixed area monitor for TRIGA reactor building and service building

    International Nuclear Information System (INIS)

    Talpalariu, C.; Talpalariu, J.; Vaja, N.; Matei, C.

    2008-01-01

    This system is intended for the protection of personnel working in those areas of the Reactor Building and Service Building where high gamma radiation fields are expected. A detector, sensitive to gamma radiation, is installed in each of the areas to be monitored. The detector will send a signal, proportional to the radiation level in the area, to a corresponding electronic module (Alarm Unit), where the signal will be amplified and checked against alarm set points for possible alarming conditions. In case the field exceeds the alarm set values, the Alarm Unit will produce a signal that will trigger the field alarms (Horn and Beacon) located in the area where the condition occurred. Each Alarm Unit will send a numerical input to central computer command. he system is required to accomplish the following tasks: - Monitors the level of gamma radiation in those areas of the Station where high radiation fields are expected; - Provides a continuous and centralized display of the radiation level in each of the monitored areas. The display shall be in exposure rate units (R/h); - Provides a visual and audible alarm in each monitored areas; Allows the control room operator to check at any time the radiation levels and alarm conditions in each of the monitored areas; - Control room operator shall be alerted of any alarm conditions that occurs in the Station. A typical monitoring loop is composed of the following components: Detector Assembly type: CI-MA - 522 two channels, two ranges; Horn and Beacon Assembly; Remote Indicating Meter with Warning Lights; Central computer; common equipment for all 40 loops. (authors)

  4. Digital signal processing the Tevatron BPM signals

    International Nuclear Information System (INIS)

    Cancelo, G.; James, E.; Wolbers, S.

    2005-01-01

    The Beam Position Monitor (TeV BPM) readout system at Fermilab's Tevatron has been updated and is currently being commissioned. The new BPMs use new analog and digital hardware to achieve better beam position measurement resolution. The new system reads signals from both ends of the existing directional stripline pickups to provide simultaneous proton and antiproton measurements. The signals provided by the two ends of the BPM pickups are processed by analog band-pass filters and sampled by 14-bit ADCs at 74.3MHz. A crucial part of this work has been the design of digital filters that process the signal. This paper describes the digital processing and estimation techniques used to optimize the beam position measurement. The BPM electronics must operate in narrow-band and wide-band modes to enable measurements of closed-orbit and turn-by-turn positions. The filtering and timing conditions of the signals are tuned accordingly for the operational modes. The analysis and the optimized result for each mode are presented

  5. Experimental muscle pain produces central modulation of proprioceptive signals arising from jaw muscle spindles.

    Science.gov (United States)

    Capra, N F; Ro, J Y

    2000-05-01

    The aim of the present study was to investigate the effects of intramuscular injection with hypertonic saline, a well-established experimental model for muscle pain, on central processing of proprioceptive input from jaw muscle spindle afferents. Fifty-seven cells were recorded from the medial edge of the subnucleus interpolaris (Vi) and the adjacent parvicellular reticular formation from 11 adult cats. These cells were characterized as central units receiving jaw muscle spindle input based on their responses to electrical stimulation of the masseter nerve, muscle palpation and jaw stretch. Forty-five cells, which were successfully tested with 5% hypertonic saline, were categorized as either dynamic-static (DS) (n=25) or static (S) (n=20) neurons based on their responses to different speeds and amplitudes of jaw movement. Seventy-six percent of the cells tested with an ipsilateral injection of hypertonic saline showed a significant modulation of mean firing rates (MFRs) during opening and/or holding phases. The most remarkable saline-induced change was a significant reduction of MFR during the hold phase in S units (100%, 18/18 modulated). Sixty-nine percent of the DS units (11/16 modulated) also showed significant changes in MFRs limited to the hold phase. However, in the DS neurons, the MFRs increased in seven units and decreased in four units. Finally, five DS neurons showed significant changes of MFRs during both opening and holding phases. Injections of isotonic saline into the ipsilateral masseter muscle had little effect, but hypertonic saline injections made into the contralateral masseter muscle produced similar results to ipsilateral injections with hypertonic saline. These results unequivocally demonstrate that intramuscular injection with an algesic substance, sufficient to produce muscle pain, produces significant changes in the proprioceptive properties of the jaw movement-related neurons. Potential mechanisms involved in saline-induced changes in the

  6. Ceramic BeO exoelectron dosimeters for tritium and radon monitoring

    International Nuclear Information System (INIS)

    Gammage, R.B.

    1979-01-01

    An environmental monitoring device with BeO ceramic dosimeters can be used to measure 222 Rn in dwellings. Radon diffuses into a porous hemispheric chamber and the radon daughters are electrostatically collected on aluminized Mylar foil covering the BeO dosimeter that records the alpha activity. A 10:1 signal-to-background ratio results from a radon exposure of only pCi-h/l. This high sensitivity makes accurate radon measurement possible within one day, even at near background levels of a few tenths pCi/l. The BeO exoelectron dosimeter is also uniquely suited for monitoring occupational exposure to insoluble tritium gas. At one-fifth the maximum permissible concentration, exposure for 8 hours gives a 10:1 signal-to-background exoelectron response to the low energy beta rays. Compensation for any exoelectron response caused by photon radiation can be made by reading the thermoluminescence. The tritium exposure produces negligible thermoluminescence. Progress in these and other applications is now totally dependent on achieving reliability and long-term stability of the exoelectron dosimeter

  7. A novel LabVIEW-based multi-channel non-invasive abdominal maternal-fetal electrocardiogram signal generator.

    Science.gov (United States)

    Martinek, Radek; Kelnar, Michal; Koudelka, Petr; Vanus, Jan; Bilik, Petr; Janku, Petr; Nazeran, Homer; Zidek, Jan

    2016-02-01

    This paper describes the design, construction, and testing of a multi-channel fetal electrocardiogram (fECG) signal generator based on LabVIEW. Special attention is paid to the fetal heart development in relation to the fetus' anatomy, physiology, and pathology. The non-invasive signal generator enables many parameters to be set, including fetal heart rate (FHR), maternal heart rate (MHR), gestational age (GA), fECG interferences (biological and technical artifacts), as well as other fECG signal characteristics. Furthermore, based on the change in the FHR and in the T wave-to-QRS complex ratio (T/QRS), the generator enables manifestations of hypoxic states (hypoxemia, hypoxia, and asphyxia) to be monitored while complying with clinical recommendations for classifications in cardiotocography (CTG) and fECG ST segment analysis (STAN). The generator can also produce synthetic signals with defined properties for 6 input leads (4 abdominal and 2 thoracic). Such signals are well suited to the testing of new and existing methods of fECG processing and are effective in suppressing maternal ECG while non-invasively monitoring abdominal fECG. They may also contribute to the development of a new diagnostic method, which may be referred to as non-invasive trans-abdominal CTG +  STAN. The functional prototype is based on virtual instrumentation using the LabVIEW developmental environment and its associated data acquisition measurement cards (DAQmx). The generator also makes it possible to create synthetic signals and measure actual fetal and maternal ECGs by means of bioelectrodes.

  8. PORTABLE ACOUSTIC MONITORING PACKAGE (PAMP)

    Energy Technology Data Exchange (ETDEWEB)

    John l. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Deepak Mehra

    2003-07-01

    The 1st generation acoustic monitoring package was designed to detect and analyze weak acoustic signals inside natural gas transmission lines. Besides a microphone it housed a three-inch diameter aerodynamic acoustic signal amplifier to maximize sensitivity to leak induced {Delta}p type signals. The theory and test results of this aerodynamic signal amplifier was described in the master's degree thesis of our Research Assistant Deepak Mehra who is about to graduate. To house such a large three-inch diameter sensor required the use of a steel 300-psi rated 4 inch weld neck flange, which itself weighed already 29 pounds. The completed 1st generation Acoustic Monitoring Package weighed almost 100 pounds. This was too cumbersome to mount in the field, on an access port at a pipeline shut-off valve. Therefore a 2nd generation and truly Portable Acoustic Monitor was built. It incorporated a fully self-contained {Delta}p type signal sensor, rated for line pressures up to 1000 psi with a base weight of only 6 pounds. This is the Rosemont Inc. Model 3051CD-Range 0, software driven sensor, which is believed to have industries best total performance. Its most sensitive unit was purchased with a {Delta}p range from 0 to 3 inch water. This resulted in the herein described 2nd generation: Portable Acoustic Monitoring Package (PAMP) for pipelines up to 1000 psi. Its 32-pound total weight includes an 18-volt battery. Together with a 3 pound laptop with its 4-channel data acquisition card, completes the equipment needed for field acoustic monitoring of natural gas transmission pipelines.

  9. Sodium fast reactor power monitoring using gamma spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Coulon, R.; Normand, S.; Barbot, L.; Domenech, T.; Kondrasovs, V.; Corre, G.; Frelin, A.M. [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, CEA - Saclay DRT/LIST/DETECS/SSTM, Batiment 516 - P.C. no 72, Gif sur Yvette, F-91191 (France); Montagu, T.; Dautremer, T.; Barat, E. [CEA, LIST, Laboratoire Processus Stochastiques et Spectres (France); Ban, G. [ENSICAEN (France)

    2009-06-15

    This work deals with the use of high flux gamma spectrometry to monitor the fourth generation of sodium fast reactor (SFR) power. The simulation study part of this work has shown that power monitoring in a short time response and with a good accuracy is possible. An experimental test is under preparation at the French SFR Phenix experimental reactor to validate simulation studies. First, physical calculations have been done to correlate gamma activity to the released thermal power. Gamma emitter production rate in the reactor core was calculated with technical and nuclear data as the sodium velocity, the atomic densities, Phenix neutron spectrum and incident neutron cross-sections of reactions producing gamma emitters. A thermal hydraulic transfer function was used for modeling primary sodium flow in our calculations. For the power monitoring problematic, use of a short decay period gamma emitter will allow to have a very fast response system without cumulative effect. We have determined that the best tagging agent is 20F which emits 1634 keV energy photons with a decay period of 11 s. The gamma spectrum was determined by flux point and a pulse high tally MCNP5.1.40 simulation and shown the possibility to measure the signal of this radionuclide. The experiment will be set during the reactor 'end life testing'. The Delayed Neutron Detection (DND) room has been chosen as the best available location on Phenix reactor to measure this kind of radionuclide due to a short transit time from reactor core to measurement sample. This location is optimum for global power measurement because homogenized sampling in the reactor hot pool. The main spectrometer is composed of a coaxial high purity germanium diode (HPGe) coupled with a transistor reset preamplifier. The HPGe diode signal will be processed by the Adonis digital signal processing due to high flux and fast activity measurement. Post-processing softwares will be used to limit statistical problems of the

  10. Calibration device for wide range monitor

    International Nuclear Information System (INIS)

    Kodoku, Masaya; Sato, Toshifumi.

    1989-01-01

    The calibration device for a wide range monitor according to the present invention can continuously calibrate the entire counting regions of a wide range monitor. The wide range monitor detect the reactor power in the neutron source region by means of a pulse counting method and detects the reactor power in the intermediate region by means of a cambell method. A calibration signal outputting means is disposed for continuously outputting, as such calibration signals, pulse number varying signals in which the number of pulses per unit time varies depending on the reactor power in the neutron source region to be simulated and amplitude square means varying signal in which the mean square value of amplitude varies depending on the reactor power in the intermediate region to be simulated. By using both of the calibration signals, calibration can be conducted for the nuclear reactor power in the neutron source region and the intermediate region even if the calibration is made over two regions, further, calibration for the period present over the two region can be conducted easily as well. (I.S.)

  11. Atmospheric methods for nuclear test monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Simons, D.J. [Los Alamos National Laboratory, NM (United States)

    1994-12-31

    This report describes two atmomospheric methods for the monitoring and detection of underground nuclear explosions: Near infrasound technique, and ionospheric monitoring. Ground motion from underground explosions cause induced air pressure perturbations. The ionospheric technique utilizes the very strong air pressure pulse which is launched straight up above an underground explosion. When the pressure disturbance reaches the ionosphere, it becomes a 10 % pressure perturbation. Detection involves sending radio waves through the ionosphere with transmitters and recievers on the ground. Radar analysis yields interpretable signals. The near infrasound method detects the signal which is projected into the side lobes of the main signal. Both of the atmospheric methods were utilized on the monitoring of the NPE underground chemical explosion experiment. Results are described.

  12. Characterizing the spatial variability of local and background concentration signals for air pollution at the neighbourhood scale

    Science.gov (United States)

    Shairsingh, Kerolyn K.; Jeong, Cheol-Heon; Wang, Jonathan M.; Evans, Greg J.

    2018-06-01

    Vehicle emissions represent a major source of air pollution in urban districts, producing highly variable concentrations of some pollutants within cities. The main goal of this study was to identify a deconvolving method so as to characterize variability in local, neighbourhood and regional background concentration signals. This method was validated by examining how traffic-related and non-traffic-related sources influenced the different signals. Sampling with a mobile monitoring platform was conducted across the Greater Toronto Area over a seven-day period during summer 2015. This mobile monitoring platform was equipped with instruments for measuring a wide range of pollutants at time resolutions of 1 s (ultrafine particles, black carbon) to 20 s (nitric oxide, nitrogen oxides). The monitored neighbourhoods were selected based on their land use categories (e.g. industrial, commercial, parks and residential areas). The high time-resolution data allowed pollutant concentrations to be separated into signals representing background and local concentrations. The background signals were determined using a spline of minimums; local signals were derived by subtracting the background concentration from the total concentration. Our study showed that temporal scales of 500 s and 2400 s were associated with the neighbourhood and regional background signals respectively. The percent contribution of the pollutant concentration that was attributed to local signals was highest for nitric oxide (NO) (37-95%) and lowest for ultrafine particles (9-58%); the ultrafine particles were predominantly regional (32-87%) in origin on these days. Local concentrations showed stronger associations than total concentrations with traffic intensity in a 100 m buffer (ρ:0.21-0.44). The neighbourhood scale signal also showed stronger associations with industrial facilities than the total concentrations. Given that the signals show stronger associations with different land use suggests that

  13. Target-induced formation of gold amalgamation on DNA-based sensing platform for electrochemical monitoring of mercury ion coupling with cycling signal amplification strategy

    International Nuclear Information System (INIS)

    Chen, Jinfeng; Tang, Juan; Zhou, Jun; Zhang, Lan; Chen, Guonan; Tang, Dianping

    2014-01-01

    Graphical abstract: -- Highlights: •We report a new electrochemical sensing protocol for the detection of mercury ion. •Gold amalgamation on DNA-based sensing platform was used as nanocatalyst. •The signal was amplified by cycling signal amplification strategy. -- Abstract: Heavy metal ion pollution poses severe risks in human health and environmental pollutant, because of the likelihood of bioaccumulation and toxicity. Driven by the requirement to monitor trace-level mercury ion (Hg 2+ ), herein we construct a new DNA-based sensor for sensitive electrochemical monitoring of Hg 2+ by coupling target-induced formation of gold amalgamation on DNA-based sensing platform with gold amalgamation-catalyzed cycling signal amplification strategy. The sensor was simply prepared by covalent conjugation of aminated poly-T (25) oligonucleotide onto the glassy carbon electrode by typical carbodiimide coupling. Upon introduction of target analyte, Hg 2+ ion was intercalated into the DNA polyion complex membrane based on T–Hg 2+ –T coordination chemistry. The chelated Hg 2+ ion could induce the formation of gold amalgamation, which could catalyze the p-nitrophenol with the aid of NaBH 4 and Ru(NH 3 ) 6 3+ for cycling signal amplification. Experimental results indicated that the electronic signal of our system increased with the increasing Hg 2+ level in the sample, and has a detection limit of 0.02 nM with a dynamic range of up to 1000 nM Hg 2+ . The strategy afforded exquisite selectivity for Hg 2+ against other environmentally related metal ions. In addition, the methodology was evaluated for the analysis of Hg 2+ in spiked tap-water samples, and the recovery was 87.9–113.8%

  14. A Wireless Monitoring Sub-nA Resolution Test Platform for Nanostructure Sensors

    Science.gov (United States)

    Jang, Chi Woong; Byun, Young Tae; Lee, Taikjin; Woo, Deok Ha; Lee, Seok; Jhon, Young Min

    2013-01-01

    We have constructed a wireless monitoring test platform with a sub-nA resolution signal amplification/processing circuit (SAPC) and a wireless communication network to test the real-time remote monitoring of the signals from carbon nanotube (CNT) sensors. The operation characteristics of the CNT sensors can also be measured by the ISD-VSD curve with the SAPC. The SAPC signals are transmitted to a personal computer by Bluetooth communication and the signals from the computer are transmitted to smart phones by Wi-Fi communication, in such a way that the signals from the sensors can be remotely monitored through a web browser. Successful remote monitoring of signals from a CNT sensor was achieved with the wireless monitoring test platform for detection of 0.15% methanol vapor with 0.5 nA resolution and 7 Hz sampling rate. PMID:23783735

  15. A Wireless Monitoring Sub-nA Resolution Test Platform for Nanostructure Sensors

    Directory of Open Access Journals (Sweden)

    Young Min Jhon

    2013-06-01

    Full Text Available We have constructed a wireless monitoring test platform with a sub-nA resolution signal amplification/processing circuit (SAPC and a wireless communication network to test the real-time remote monitoring of the signals from carbon nanotube (CNT sensors. The operation characteristics of the CNT sensors can also be measured by the ISD-VSD curve with the SAPC. The SAPC signals are transmitted to a personal computer by Bluetooth communication and the signals from the computer are transmitted to smart phones by Wi-Fi communication, in such a way that the signals from the sensors can be remotely monitored through a web browser. Successful remote monitoring of signals from a CNT sensor was achieved with the wireless monitoring test platform for detection of 0.15% methanol vapor with 0.5 nA resolution and 7 Hz sampling rate.

  16. Signal recovery of the corrupted metal impact signal using the adaptive filtering in NPPs

    International Nuclear Information System (INIS)

    Kim, Dai Il; Shin, Won Ky; Oh, Sung Hun; Yun, Won Young

    1995-01-01

    Loose Part Monitoring System (LPMS) is one of the fundamental diagnostic tools installed in the nuclear power plants. In this paper, recovery process algorithm and model for the corrupted impact signal generated by loose parts is presented. The characteristics of this algorithm can obtain a proper burst signal even though background noise is considerably high level comparing with actual impact signal. To verify performance of the proposed algorithm, we evaluate mathematically signal-to-noise ratio of primary output and noise. The performance of this recovery process algorithm is shown through computer simulation

  17. Automated monitoring of recovered water quality

    Science.gov (United States)

    Misselhorn, J. E.; Hartung, W. H.; Witz, S. W.

    1974-01-01

    Laboratory prototype water quality monitoring system provides automatic system for online monitoring of chemical, physical, and bacteriological properties of recovered water and for signaling malfunction in water recovery system. Monitor incorporates whenever possible commercially available sensors suitably modified.

  18. Flexible Sensing Electronics for Wearable/Attachable Health Monitoring.

    Science.gov (United States)

    Wang, Xuewen; Liu, Zheng; Zhang, Ting

    2017-07-01

    Wearable or attachable health monitoring smart systems are considered to be the next generation of personal portable devices for remote medicine practices. Smart flexible sensing electronics are components crucial in endowing health monitoring systems with the capability of real-time tracking of physiological signals. These signals are closely associated with body conditions, such as heart rate, wrist pulse, body temperature, blood/intraocular pressure and blood/sweat bio-information. Monitoring such physiological signals provides a convenient and non-invasive way for disease diagnoses and health assessments. This Review summarizes the recent progress of flexible sensing electronics for their use in wearable/attachable health monitoring systems. Meanwhile, we present an overview of different materials and configurations for flexible sensors, including piezo-resistive, piezo-electrical, capacitive, and field effect transistor based devices, and analyze the working principles in monitoring physiological signals. In addition, the future perspectives of wearable healthcare systems and the technical demands on their commercialization are briefly discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A method to synchronize signals from multiple patient monitoring devices through a single input channel for inclusion in list-mode acquisitions

    International Nuclear Information System (INIS)

    O’Connor, J. Michael; Pretorius, P. Hendrik; Johnson, Karen; King, Michael A.

    2013-01-01

    Purpose: This technical note documents a method that the authors developed for combining a signal to synchronize a patient-monitoring device with a second physiological signal for inclusion into list-mode acquisition. Our specific application requires synchronizing an external patient motion-tracking system with a medical imaging system by multiplexing the tracking input with the ECG input. The authors believe that their methodology can be adapted for use in a variety of medical imaging modalities including single photon emission computed tomography (SPECT) and positron emission tomography (PET). Methods: The authors insert a unique pulse sequence into a single physiological input channel. This sequence is then recorded in the list-mode acquisition along with the R-wave pulse used for ECG gating. The specific form of our pulse sequence allows for recognition of the time point being synchronized even when portions of the pulse sequence are lost due to collisions with R-wave pulses. This was achieved by altering our software used in binning the list-mode data to recognize even a portion of our pulse sequence. Limitations on heart rates at which our pulse sequence could be reliably detected were investigated by simulating the mixing of the two signals as a function of heart rate and time point during the cardiac cycle at which our pulse sequence is mixed with the cardiac signal. Results: The authors have successfully achieved accurate temporal synchronization of our motion-tracking system with acquisition of SPECT projections used in 17 recent clinical research cases. In our simulation analysis the authors determined that synchronization to enable compensation for body and respiratory motion could be achieved for heart rates up to 125 beats-per-minute (bpm). Conclusions: Synchronization of list-mode acquisition with external patient monitoring devices such as those employed in motion-tracking can reliably be achieved using a simple method that can be implemented using

  20. A method to synchronize signals from multiple patient monitoring devices through a single input channel for inclusion in list-mode acquisitions

    Energy Technology Data Exchange (ETDEWEB)

    O’Connor, J. Michael; Pretorius, P. Hendrik; Johnson, Karen; King, Michael A., E-mail: Michael.King@umassmed.edu [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States)

    2013-12-15

    Purpose: This technical note documents a method that the authors developed for combining a signal to synchronize a patient-monitoring device with a second physiological signal for inclusion into list-mode acquisition. Our specific application requires synchronizing an external patient motion-tracking system with a medical imaging system by multiplexing the tracking input with the ECG input. The authors believe that their methodology can be adapted for use in a variety of medical imaging modalities including single photon emission computed tomography (SPECT) and positron emission tomography (PET). Methods: The authors insert a unique pulse sequence into a single physiological input channel. This sequence is then recorded in the list-mode acquisition along with the R-wave pulse used for ECG gating. The specific form of our pulse sequence allows for recognition of the time point being synchronized even when portions of the pulse sequence are lost due to collisions with R-wave pulses. This was achieved by altering our software used in binning the list-mode data to recognize even a portion of our pulse sequence. Limitations on heart rates at which our pulse sequence could be reliably detected were investigated by simulating the mixing of the two signals as a function of heart rate and time point during the cardiac cycle at which our pulse sequence is mixed with the cardiac signal. Results: The authors have successfully achieved accurate temporal synchronization of our motion-tracking system with acquisition of SPECT projections used in 17 recent clinical research cases. In our simulation analysis the authors determined that synchronization to enable compensation for body and respiratory motion could be achieved for heart rates up to 125 beats-per-minute (bpm). Conclusions: Synchronization of list-mode acquisition with external patient monitoring devices such as those employed in motion-tracking can reliably be achieved using a simple method that can be implemented using

  1. The CMS Fast Beams Condition Monitor Backend Electronics based on MicroTCA technology

    CERN Document Server

    Zagozdzinska, Agnieszka Anna

    2016-01-01

    The Fast Beams Condition Monitor (BCM1F), upgraded for LHC Run II, is one sub-system of the Beam Radiation Instrumentation and Luminosity Project of the CMS experiment. It is based on 24 single crystal CVD diamond sensors. Each sensor is metallised with two pads, being read out by a dedicated fast frontend chip produced in 130 nm CMOS technology. Signals for real time monitoring are processed by custom-made back-end electronics to measure separately rates corresponding to LHC collision products, machine induced background and residual activation exploiting different arrival times. The system is built in MicroTCA technology and uses high speed analog-to-digital converters. The data processing module designed for the FPGA allows a distinguishing of collision and machine induced background, both synchronous to the LHC clock, from the residual activation products. In operational modes of high rates, consecutive events, spaced in time by less than 12.5 ns, may partially overlap. Hence, novel signal processing tec...

  2. Tutorial on beam current monitoring

    International Nuclear Information System (INIS)

    Webber, Robert C.

    2000-01-01

    This paper is a tutorial level review covering a wide range of aspects related to charged particle beam current measurement. The tutorial begins with a look at the characteristics of the beam as a signal source, the associated electromagnetic fields, the influence of the typical accelerator environment on those fields, and the usual means of modifying and controlling that environment to facilitate beam current measurement. Short descriptions of three quite different types of current monitors are presented and a quantitative review of the classical transformer circuit is given. Recognizing that environmental noise pick-up may present a large source of error in quantitative measurements, signal handling considerations are given considerable attention using real-life examples. An example of a successful transport line beam current monitor implementation is presented and the tutorial concludes with a few comments about signal processing and current monitor calibration issues

  3. Electromagnetic signals produced by elastic waves in the Earth's crust

    Science.gov (United States)

    Sgrigna, V.; Buzzi, A.; Conti, L.; Guglielmi, A. V.; Pokhotelov, O. A.

    2004-03-01

    The paper describes the excitation of geoelectromagnetic-field oscillations caused by elastic waves propagating in the Earth's crust and generated by natural and anthropogenic phenomena, such as earthquakes, explosions, etc. Two mechanisms of electromagnetic signal generation, i.e. induction and electrokinetics ones, are considered and a comparative analysis between them is carried out. The first mechanism is associated with the induction of Foucault currents due to movements of the Earth's crust in the core geomagnetic field. The second mechanism is connected with movements of liquids filling pores and cracks of rocks. An equation is derived for describing in a uniform way these two manifestations of seismomagnetism. The equation is solved for body and surface waves. The study shows that a magnetic precursor signal is moving in the front of elastic waves.

  4. Capabilities of infrared weld monitor

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, P.G.; Keske, J.S.; Leong, K.H.; Kornecki, G.

    1997-11-01

    A non-obtrusive pre-aligned, solid-state device has been developed to monitor the primary infrared emissions during laser welding. The weld monitor output is a 100-1000 mV signal that depends on the beam power and weld characteristics. The DC level of this signal is related to weld penetration, while AC portions of the output can be correlated with surface irregularities and part misalignment or contamination. Changes in DC behavior are also noted for both full and deep penetration welds. Full penetration welds are signified by an abrupt reduction in the weld monitor output. Bead on plate welds were made on steel, aluminum, and magnesium with both a CW CO{sub 2} laser and a pulsed Nd:YAG laser to explore the relationships between the weld characteristics and the weld monitor output.

  5. An Ultrasonic Contactless Sensor for Breathing Monitoring

    Directory of Open Access Journals (Sweden)

    Philippe Arlotto

    2014-08-01

    Full Text Available The monitoring of human breathing activity during a long period has multiple fundamental applications in medicine. In breathing sleep disorders such as apnea, the diagnosis is based on events during which the person stops breathing for several periods during sleep. In polysomnography, the standard for sleep disordered breathing analysis, chest movement and airflow are used to monitor the respiratory activity. However, this method has serious drawbacks. Indeed, as the subject should sleep overnight in a laboratory and because of sensors being in direct contact with him, artifacts modifying sleep quality are often observed. This work investigates an analysis of the viability of an ultrasonic device to quantify the breathing activity, without contact and without any perception by the subject. Based on a low power ultrasonic active source and transducer, the device measures the frequency shift produced by the velocity difference between the exhaled air flow and the ambient environment, i.e., the Doppler effect. After acquisition and digitization, a specific signal processing is applied to separate the effects of breath from those due to subject movements from the Doppler signal. The distance between the source and the sensor, about 50 cm, and the use of ultrasound frequency well above audible frequencies, 40 kHz, allow monitoring the breathing activity without any perception by the subject, and therefore without any modification of the sleep quality which is very important for sleep disorders diagnostic applications. This work is patented (patent pending 2013-7-31 number FR.13/57569.

  6. Remote Arrhythmia Monitoring System Developed

    Science.gov (United States)

    York, David W.; Mackin, Michael A.; Liszka, Kathy J.; Lichter, Michael J.

    2004-01-01

    Telemedicine is taking a step forward with the efforts of team members from the NASA Glenn Research Center, the MetroHealth campus of Case Western University, and the University of Akron. The Arrhythmia Monitoring System is a completed, working test bed developed at Glenn that collects real-time electrocardiogram (ECG) signals from a mobile or homebound patient, combines these signals with global positioning system (GPS) location data, and transmits them to a remote station for display and monitoring. Approximately 300,000 Americans die every year from sudden heart attacks, which are arrhythmia cases. However, not all patients identified at risk for arrhythmias can be monitored continuously because of technological and economical limitations. Such patients, who are at moderate risk of arrhythmias, would benefit from technology that would permit long-term continuous monitoring of electrical cardiac rhythms outside the hospital environment. Embedded Web Technology developed at Glenn to remotely command and collect data from embedded systems using Web technology is the catalyst for this new telemetry system (ref. 1). In the end-to-end system architecture, ECG signals are collected from a patient using an event recorder and are transmitted to a handheld personal digital assistant (PDA) using Bluetooth, a short-range wireless technology. The PDA concurrently tracks the patient's location via a connection to a GPS receiver. A long distance link is established via a standard Internet connection over a 2.5-generation Global System for Mobile Communications/General Packet Radio Service (GSM/GPRS)1 cellular, wireless infrastructure. Then, the digital signal is transmitted to a call center for monitoring by medical professionals.

  7. Neural network approach to the prediction of seismic events based on low-frequency signal monitoring of the Kuril-Kamchatka and Japanese regions

    Directory of Open Access Journals (Sweden)

    Irina Popova

    2013-08-01

    Full Text Available Very-low-frequency/ low-frequency (VLF/LF sub-ionospheric radiowave monitoring has been widely used in recent years to analyze earthquake preparatory processes. The connection between earthquakes with M ≥5.5 and nighttime disturbances of signal amplitude and phase has been established. Thus, it is possible to use nighttime anomalies of VLF/LF signals as earthquake precursors. Here, we propose a method for estimation of the VLF/LF signal sensitivity to seismic processes using a neural network approach. We apply the error back-propagation technique based on a three-level perceptron to predict a seismic event. The back-propagation technique involves two main stages to solve the problem; namely, network training, and recognition (the prediction itself. To train a neural network, we first create a so-called ‘training set’. The ‘teacher’ specifies the correspondence between the chosen input and the output data. In the present case, a representative database includes both the LF data received over three years of monitoring at the station in Petropavlovsk-Kamchatsky (2005-2007, and the seismicity parameters of the Kuril-Kamchatka and Japanese regions. At the first stage, the neural network established the relationship between the characteristic features of the LF signal (the mean and dispersion of a phase and an amplitude at nighttime for a few days before a seismic event and the corresponding level of correlation with a seismic event, or the absence of a seismic event. For the second stage, the trained neural network was applied to predict seismic events from the LF data using twelve time intervals in 2004, 2005, 2006 and 2007. The results of the prediction are discussed.

  8. Signal generation in gas detectors

    International Nuclear Information System (INIS)

    Stillman, A.

    1993-01-01

    This tutorial describes the generation of electrical signals in gas detectors. Ionization of the gas by the passage of charged particles generates these signals. Starting with the Bethe-Bloch equation, the treatment is a general introduction to the production of ion-pairs in gas devices. I continue with the characterization of the ionization as an electrical signal, and calculate the signal current in a simple example. Another example demonstrates the effect of space charge on the design of a detector. The AGS Booster ionization profile monitor is a model for this calculation

  9. Study on the Relationship Between Emission Signals and Weld Defect for In-Process Monitoring in CO{sub 2} Laser Welding of Zn-Coated Steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Do; Lee, Chang Je [Korea Maritime University, Busan (Korea, Republic of)

    2010-10-15

    In this study, the plasma induced by CO{sub 2} laser lap welding of 6t Zn coated steel used for ship building was measured using photodiodes and a microphone. Then, the welding phenomenon with gap clearance of lap joint was compared with RMS-treated signal. Thus, we found that intensity of the RMS-treated signal increased with Zn vaporization; further, the presence of defects results in rapid variations with the RMS value as a function of lap-joint parameters. Besides, the FFT value of the raw signal with variations of changing welding parameters was calculated, and then the calculated FFT frequency value was set as the bandwidth of digital filter for a more accurate in-process monitoring. The RMS values were acquired by filtering the raw signal. By matching the weld beads and the calculated RMS values, we confirmed that there is a strong relationship between the signals and the defects.

  10. Processing of cell-surface signalling anti-sigma factors prior to signal recognition is aconserved autoproteolytic mechanism that produces two functional domains.

    NARCIS (Netherlands)

    Bastiaansen, K.C.J.T.; Otero-Asman, J.R.; Luirink, J.; Bitter, W.; Llamas, M.A.

    2015-01-01

    Cell-surface signalling (CSS) enables Gram-negative bacteria to transduce an environmental signal into a cytosolic response. This regulatory cascade involves an outer membrane receptor that transmits the signal to an anti-sigma factor in the cytoplasmic membrane, allowing the activation of an

  11. Target-induced formation of gold amalgamation on DNA-based sensing platform for electrochemical monitoring of mercury ion coupling with cycling signal amplification strategy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jinfeng; Tang, Juan; Zhou, Jun; Zhang, Lan; Chen, Guonan; Tang, Dianping, E-mail: dianping.tang@fzu.edu.cn

    2014-01-31

    Graphical abstract: -- Highlights: •We report a new electrochemical sensing protocol for the detection of mercury ion. •Gold amalgamation on DNA-based sensing platform was used as nanocatalyst. •The signal was amplified by cycling signal amplification strategy. -- Abstract: Heavy metal ion pollution poses severe risks in human health and environmental pollutant, because of the likelihood of bioaccumulation and toxicity. Driven by the requirement to monitor trace-level mercury ion (Hg{sup 2+}), herein we construct a new DNA-based sensor for sensitive electrochemical monitoring of Hg{sup 2+} by coupling target-induced formation of gold amalgamation on DNA-based sensing platform with gold amalgamation-catalyzed cycling signal amplification strategy. The sensor was simply prepared by covalent conjugation of aminated poly-T{sub (25)} oligonucleotide onto the glassy carbon electrode by typical carbodiimide coupling. Upon introduction of target analyte, Hg{sup 2+} ion was intercalated into the DNA polyion complex membrane based on T–Hg{sup 2+}–T coordination chemistry. The chelated Hg{sup 2+} ion could induce the formation of gold amalgamation, which could catalyze the p-nitrophenol with the aid of NaBH{sub 4} and Ru(NH{sub 3}){sub 6}{sup 3+} for cycling signal amplification. Experimental results indicated that the electronic signal of our system increased with the increasing Hg{sup 2+} level in the sample, and has a detection limit of 0.02 nM with a dynamic range of up to 1000 nM Hg{sup 2+}. The strategy afforded exquisite selectivity for Hg{sup 2+} against other environmentally related metal ions. In addition, the methodology was evaluated for the analysis of Hg{sup 2+} in spiked tap-water samples, and the recovery was 87.9–113.8%.

  12. Schisandra chinensis produces the antidepressant-like effects in repeated corticosterone-induced mice via the BDNF/TrkB/CREB signaling pathway.

    Science.gov (United States)

    Yan, Tingxu; Xu, Mengjie; Wan, Shutong; Wang, Mengshi; Wu, Bo; Xiao, Feng; Bi, Kaishun; Jia, Ying

    2016-09-30

    The present study aimed to examine the antidepressant-like effects and the possible mechanisms of Schisandra chinensis on depressive-like behavior induced by repeated corticosterone injections in mice. Here we evaluated the effect of an ethanol extract of the dried fruit of S. chinensis (EESC) on BDNF/TrkB/CREB signaling in the hippocampus and the prefrontal cortex. Three weeks of corticosterone injections in mice resulted in depressive-like behavior, as indicated by the significant decrease in sucrose consumption and increase the immobility time in the forced swim test, but without any influence on the locomotor activity. Further, there was a significant increase in serum corticosterone level and a significant downregulation of BDNF/TrkB/CREB signaling pathway in the hippocampus and prefrontal cortex in CORT-treated mice. Treatment of mice with EESC (600mg/kg) significantly ameliorated all the behavioral and biochemical changes induced by corticosterone. Moreover, pharmacological inhibition of BDNF signaling by K252a abolished entirely the antidepressant-like effect triggered by chronic EESC treatment. These results suggest that EESC produces an antidepressant-like effect in CORT-induced depression in mice, which is possibly mediated, at least in part, by rectifying the stress-based hypothalamic-pituitary-adrenal (HPA) axis dysfunction paradigm and upregulation of BDNF/TrkB/CREB signaling pathway. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. CERN GSM monitoring system

    CERN Multimedia

    Ghabrous Larrea, C

    2009-01-01

    As a result of the tremendous development of GSM services over the last years, the number of related services used by organizations has drastically increased. Therefore, monitoring GSM services is becoming a business critical issue in order to be able to react appropriately in case of incident. In order to provide with GSM coverage all the CERN underground facilities, more than 50 km of leaky feeder cable have been deployed. This infrastructure is also used to propagate VHF radio signals for the CERN’s fire brigade. Even though CERN’s mobile operator monitors the network, it cannot guarantee the availability of GSM services, and for sure not VHF services, where signals are carried by the leaky feeder cable. So, a global monitoring system has become critical to CERN. In addition, monitoring this infrastructure will allow to characterize its behaviour over time, especially with LHC operation. Given that commercial solutions were not yet mature, CERN developed a system based on GSM probes and an application...

  14. Monitoring Local Regional Hemodynamic Signal Changes during Motor Execution and Motor Imagery Using Near-Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Naoki eIso

    2016-01-01

    Full Text Available The aim of this study was to clarify the topographical localization of motor-related regional hemodynamic signal changes during motor execution (ME and motor imagery (MI by using near-infrared spectroscopy (NIRS, as this technique is more clinically expedient than established methods (e.g. fMRI. Twenty right-handed healthy subjects participated in this study. The experimental protocol was a blocked design consisting of 3 cycles of 20 s of task performance and 30 s of rest. The tapping sequence task was performed with their fingers under 4 conditions: ME and MI with the right or left hand. Hemodynamic brain activity was measured with NIRS to monitor changes in oxygenated hemoglobin (oxy-Hb concentration. Oxy-Hb in the somatosensory motor cortex (SMC increased significantly only during contralateral ME and showed a significant interaction between task and hand. There was a main effect of hand in the left SMC. Although there were no significant main effects or interactions in the supplemental motor area (SMA and premotor area (PMA, oxy-Hb increased substantially under all conditions. These results clarified the topographical localization by motor-related regional hemodynamic signal changes during ME and MI by using NIRS.

  15. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00445232; The ATLAS collaboration

    2016-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs), located on the outside of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The TileCal calibration system comprises Cesium radioactive sources, laser and charge injection elements and it allows to monitor and equalize the calorimeter response at each stage of the signal production, from scin...

  16. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00445232; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs), located on the outside of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The TileCal calibration system comprises cesium radioactive sources, Laser and charge injection elements, and allows for monitoring and equalization of the calorimeter response at each stage of the signal production, ...

  17. Detection of Noise in Composite Step Signal Pattern by Visualizing Signal Waveforms

    Directory of Open Access Journals (Sweden)

    Chaman Verma

    2018-03-01

    Full Text Available The Step Composite Signals is the combination of vital informative signals that are compressed and coded to produce a predefined test image on a display device. It carries the desired sequence of information from source to destination. This information may be transmitted as digital signal, video information or data signal required as an input for the destination module. For testing of display panels, Composite Test Signals are the most important attribute of test signal transmission system. In the current research paper we present an approach for the noise detection in Composite Step Signal by analysing Composite Step Signal waveforms. The analysis of the signal waveforms reveals that the noise affected components of the signal and subsequently noise reduction process is initiated which targets noisy signal component only. Thus the quality of signal is not compromised during noise reduction process.

  18. Characteristics of Acceleration and Acoustic Emission Signals from Mechanical Seals

    International Nuclear Information System (INIS)

    Lee, Do Hwan; Ha, Che Woong

    2015-01-01

    Based on these results, the applicability of acceleration signals for condition monitoring of mechanical seals is examined in the present study. Mechanical seals are used for pumps to prevent excessive leakage that might be occurred between rotational and stationary parts. The mechanical seals account for the major pump component failures. In spite of its importance, there have been few studies on condition monitoring of the components. Recently, some researchers have paid attention to the application of acoustic emission (AE) sensors for the fault detection of seals. The characteristics of acceleration and AE signals obtained from various defects are investigated. In order to prevent excessive leakage from mechanical seals, a condition monitoring technique is necessary. Based on the previous studies on AE techniques for seal monitoring, the signal characteristics from accelerometer

  19. Characteristics of Acceleration and Acoustic Emission Signals from Mechanical Seals

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Do Hwan; Ha, Che Woong [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Based on these results, the applicability of acceleration signals for condition monitoring of mechanical seals is examined in the present study. Mechanical seals are used for pumps to prevent excessive leakage that might be occurred between rotational and stationary parts. The mechanical seals account for the major pump component failures. In spite of its importance, there have been few studies on condition monitoring of the components. Recently, some researchers have paid attention to the application of acoustic emission (AE) sensors for the fault detection of seals. The characteristics of acceleration and AE signals obtained from various defects are investigated. In order to prevent excessive leakage from mechanical seals, a condition monitoring technique is necessary. Based on the previous studies on AE techniques for seal monitoring, the signal characteristics from accelerometer.

  20. The introduction of radiation monitor produced by several nuclear instrument factories

    International Nuclear Information System (INIS)

    Yu Liying

    2005-01-01

    The paper introduce some radiation monitor products of several nuclear instrument factories include Xi'an Nuclear Instrument Factory, MGP Instruments Inc, and Canberra Industries Inc. The introduction aspects include the range, configuration, and application of products. So, the paper is reference for the designer with responsibility for radiation monitoring system of new nuclear project. (authors)

  1. Vibration Signal Forecasting on Rotating Machinery by means of Signal Decomposition and Neurofuzzy Modeling

    Directory of Open Access Journals (Sweden)

    Daniel Zurita-Millán

    2016-01-01

    Full Text Available Vibration monitoring plays a key role in the industrial machinery reliability since it allows enhancing the performance of the machinery under supervision through the detection of failure modes. Thus, vibration monitoring schemes that give information regarding future condition, that is, prognosis approaches, are of growing interest for the scientific and industrial communities. This work proposes a vibration signal prognosis methodology, applied to a rotating electromechanical system and its associated kinematic chain. The method combines the adaptability of neurofuzzy modeling with a signal decomposition strategy to model the patterns of the vibrations signal under different fault scenarios. The model tuning is performed by means of Genetic Algorithms along with a correlation based interval selection procedure. The performance and effectiveness of the proposed method are validated experimentally with an electromechanical test bench containing a kinematic chain. The results of the study indicate the suitability of the method for vibration forecasting in complex electromechanical systems and their associated kinematic chains.

  2. Signal frequency distribution and natural-time analyses from acoustic emission monitoring of an arched structure in the Castle of Racconigi

    Directory of Open Access Journals (Sweden)

    G. Niccolini

    2017-07-01

    Full Text Available The stability of an arch as a structural element in the thermal bath of King Charles Albert (Carlo Alberto in the Royal Castle of Racconigi (on the UNESCO World Heritage List since 1997 was assessed by the acoustic emission (AE monitoring technique with application of classical inversion methods to recorded AE data. First, damage source location by means of triangulation techniques and signal frequency analysis were carried out. Then, the recently introduced method of natural-time analysis was preliminarily applied to the AE time series in order to reveal a possible entrance point to a critical state of the monitored structural element. Finally, possible influence of the local seismic and microseismic activity on the stability of the monitored structure was investigated. The criterion for selecting relevant earthquakes was based on the estimation of the size of earthquake preparation zones. The presented results suggest the use of the AE technique as a tool for detecting both ongoing structural damage processes and microseismic activity during preparation stages of seismic events.

  3. Signal frequency distribution and natural-time analyses from acoustic emission monitoring of an arched structure in the Castle of Racconigi

    Science.gov (United States)

    Niccolini, Gianni; Manuello, Amedeo; Marchis, Elena; Carpinteri, Alberto

    2017-07-01

    The stability of an arch as a structural element in the thermal bath of King Charles Albert (Carlo Alberto) in the Royal Castle of Racconigi (on the UNESCO World Heritage List since 1997) was assessed by the acoustic emission (AE) monitoring technique with application of classical inversion methods to recorded AE data. First, damage source location by means of triangulation techniques and signal frequency analysis were carried out. Then, the recently introduced method of natural-time analysis was preliminarily applied to the AE time series in order to reveal a possible entrance point to a critical state of the monitored structural element. Finally, possible influence of the local seismic and microseismic activity on the stability of the monitored structure was investigated. The criterion for selecting relevant earthquakes was based on the estimation of the size of earthquake preparation zones. The presented results suggest the use of the AE technique as a tool for detecting both ongoing structural damage processes and microseismic activity during preparation stages of seismic events.

  4. Contact-Free Heartbeat Signal for Human Identification and Forensics

    DEFF Research Database (Denmark)

    Nasrollahi, Kamal; Haque, Mohammad Ahsanul; Irani, Ramin

    2017-01-01

    on the subject’s body. Though it might be possible to use touch-based sensors in applications like patient monitoring, it won’t be that easy to use them in identification and forensics applications, espe- cially if subjects are not cooperative. To deal with this problem, recently computer vision techniques have......The heartbeat signal, which is one of the physiological signals, is of great importance in many real-world applications, for example, in patient monitoring and biometric recognition. The traditional methods for measuring such this signal use contact-based sensors that need to be installed...

  5. Signal processing for solar array monitoring, fault detection, and optimization

    CERN Document Server

    Braun, Henry; Spanias, Andreas

    2012-01-01

    Although the solar energy industry has experienced rapid growth recently, high-level management of photovoltaic (PV) arrays has remained an open problem. As sensing and monitoring technology continues to improve, there is an opportunity to deploy sensors in PV arrays in order to improve their management. In this book, we examine the potential role of sensing and monitoring technology in a PV context, focusing on the areas of fault detection, topology optimization, and performance evaluation/data visualization. First, several types of commonly occurring PV array faults are considered and detection algorithms are described. Next, the potential for dynamic optimization of an array's topology is discussed, with a focus on mitigation of fault conditions and optimization of power output under non-fault conditions. Finally, monitoring system design considerations such as type and accuracy of measurements, sampling rate, and communication protocols are considered. It is our hope that the benefits of monitoring presen...

  6. PEANO, a toolbox for real-time process signal validation and estimation

    International Nuclear Information System (INIS)

    Fantoni, Paolo F.; Figedy, Stefan; Racz, Attila

    1998-02-01

    PEANO (Process Evaluation and Analysis by Neural Operators), a toolbox for real time process signal validation and condition monitoring has been developed. This system analyses the signals, which are e.g. the readings of process monitoring sensors, computes their expected values and alerts if real values are deviated from the expected ones more than limits allow. The reliability level of the current analysis is also produced. The system is based on neuro-fuzzy techniques. Artificial Neural Networks and Fuzzy Logic models can be combined to exploit learning and generalisation capability of the first technique with the approximate reasoning embedded in the second approach. Real-time process signal validation is an application field where the use of this technique can improve the diagnosis of faulty sensors and the identification of outliers in a robust and reliable way. This study implements a fuzzy and possibilistic clustering algorithm to classify the operating region where the validation process has to be performed. The possibilistic approach (rather than probabilistic) allows a ''don't know'' classification that results in a fast detection of unforeseen plant conditions or outliers. Specialised Artificial Neural Networks are used for the validation process, one for each fuzzy cluster in which the operating map has been divided. There are two main advantages in using this technique: the accuracy and generalisation capability is increased compared to the case of a single network working in the entire operating region, and the ability to identify abnormal conditions, where the system is not capable to operate with a satisfactory accuracy, is improved. This model has been tested in a simulated environment on a French PWR, to monitor safety-related reactor variables over the entire power-flow operating map. (author)

  7. PEANO, a toolbox for real-time process signal validation and estimation

    Energy Technology Data Exchange (ETDEWEB)

    Fantoni, Paolo F.; Figedy, Stefan; Racz, Attila

    1998-02-01

    PEANO (Process Evaluation and Analysis by Neural Operators), a toolbox for real time process signal validation and condition monitoring has been developed. This system analyses the signals, which are e.g. the readings of process monitoring sensors, computes their expected values and alerts if real values are deviated from the expected ones more than limits allow. The reliability level of the current analysis is also produced. The system is based on neuro-fuzzy techniques. Artificial Neural Networks and Fuzzy Logic models can be combined to exploit learning and generalisation capability of the first technique with the approximate reasoning embedded in the second approach. Real-time process signal validation is an application field where the use of this technique can improve the diagnosis of faulty sensors and the identification of outliers in a robust and reliable way. This study implements a fuzzy and possibilistic clustering algorithm to classify the operating region where the validation process has to be performed. The possibilistic approach (rather than probabilistic) allows a ''don't know'' classification that results in a fast detection of unforeseen plant conditions or outliers. Specialised Artificial Neural Networks are used for the validation process, one for each fuzzy cluster in which the operating map has been divided. There are two main advantages in using this technique: the accuracy and generalisation capability is increased compared to the case of a single network working in the entire operating region, and the ability to identify abnormal conditions, where the system is not capable to operate with a satisfactory accuracy, is improved. This model has been tested in a simulated environment on a French PWR, to monitor safety-related reactor variables over the entire power-flow operating map. (author)

  8. 500 MHz narrowband beam position monitor electronics for electron synchrotrons

    International Nuclear Information System (INIS)

    Mohos, I.; Dietrich, J.

    1998-01-01

    Narrowband beam position monitor electronics were developed in the Forschungszentrum Juelich-IKP for the orbit measurement equipment used at ELSA Bonn. The equipment uses 32 monitor chambers, each with four capacitive button electrodes. The monitor electronics, consisting of an rf signal processing module (BPM-RF) and a data acquisition and control module (BPM-DAQ), sequentially process and measure the monitor signals and deliver calculated horizontal and vertical beam position data via a serial network

  9. 500 MHz narrowband beam position monitor electronics for electron synchrotrons

    Science.gov (United States)

    Mohos, I.; Dietrich, J.

    1998-12-01

    Narrowband beam position monitor electronics were developed in the Forschungszentrum Jülich-IKP for the orbit measurement equipment used at ELSA Bonn. The equipment uses 32 monitor chambers, each with four capacitive button electrodes. The monitor electronics, consisting of an rf signal processing module (BPM-RF) and a data acquisition and control module (BPM-DAQ), sequentially process and measure the monitor signals and deliver calculated horizontal and vertical beam position data via a serial network.

  10. Muon Signals at a Low Signal-to-Noise Ratio Environment

    CERN Document Server

    Zakareishvili, Tamar; The ATLAS collaboration

    2017-01-01

    Calorimeters provide high-resolution energy measurements for particle detection. Muon signals are important for evaluating electronics performance, since they produce a signal that is close to electronic noise values. This work provides a noise RMS analysis for the Demonstrator drawer of the 2016 Tile Calorimeter (TileCal) Test Beam in order to help reconstruct events in a low signal-to-noise environment. Muon signals were then found for a beam penetrating through all three layers of the drawer. The Demonstrator drawer is an electronic candidate for TileCal, part of the ATLAS experiment for the Large Hadron Collider that operates at the European Organization for Nuclear Research (CERN).

  11. Classification of Steps on Road Surface Using Acceleration Signals

    Directory of Open Access Journals (Sweden)

    Junji Takahashi

    2015-12-01

    Full Text Available In order to reduce a road monitoring cost, we propose a system to monitor extensively road condition by cyclists with a smartphone. In this paper, we propose two methods towards road monitoring. First is to classify road signals to four road conditions. Second is to extract road signal from a smartphone's accelerometer in three positions: pants' side pocket, chest pocket and a bag in a front basket. In pants' side pocket, road signal is extracted by Independent Component Analysis. In chest pocket and bag in a front basket, road signal is extracted by selecting 1-axis affected from gravitational acceleration. In the experiment of the classification method, overall accuracy was 75%. The experimental results of the extraction methods with correlation coefficient showed the overall accuracy were more than 0.7 in pants' side pocket and chest pocket, the overall accuracy was less than 0.3 in bag in a front basket.

  12. Biomedical application of wavelets: analysis of electroencephalograph signals for monitoring depth of anesthesia

    Science.gov (United States)

    Abbate, Agostino; Nayak, A.; Koay, J.; Roy, R. J.; Das, Pankaj K.

    1996-03-01

    The wavelet transform (WT) has been used to study the nonstationary information in the electroencephalograph (EEG) as an aid in determining the anesthetic depth. A complex analytic mother wavelet is utilized to obtain the time evolution of the various spectral components of the EEG signal. The technique is utilized for the detection and spectral analysis of transient and background processes in the awake and asleep states. It can be observed that the response of both states before the application of the stimulus is similar in amplitude but not in spectral contents, which suggests a background activity of the brain. The brain reacts to the external stimulus in two different modes depending on the state of consciousness of the subject. In the case of awake state, there is an evident increase in response, while for the sleep state a reduction in this activity is observed. This analysis seems to suggest that the brain has an ongoing background process that monitors external stimulus in both the sleep and awake states.

  13. Wavelet analysis deformation monitoring data of high-speed railway bridge

    Science.gov (United States)

    Tang, ShiHua; Huang, Qing; Zhou, Conglin; Xu, HongWei; Liu, YinTao; Li, FeiDa

    2015-12-01

    Deformation monitoring data of high-speed railway bridges will inevitably be affected because of noise pollution, A deformation monitoring point of high-speed railway bridge was measurd by using sokkia SDL30 electronic level for a long time,which got a large number of deformation monitoring data. Based on the characteristics of the deformation monitoring data of high-speed railway bridge, which contain lots of noise. Based on the MATLAB software platform, 120 groups of deformation monitoring data were applied to analysis of wavelet denoising.sym6,db6 wavelet basis function were selected to analyze and remove the noise.The original signal was broken into three layers wavelet,which contain high frequency coefficients and low frequency coefficients.However, high frequency coefficient have plenty of noise.Adaptive method of soft and hard threshold were used to handle in the high frequency coefficient.Then,high frequency coefficient that was removed much of noise combined with low frequency coefficient to reconstitute and obtain reconstruction wavelet signal.Root Mean Square Error (RMSE) and Signal-To-Noise Ratio (SNR) were regarded as evaluation index of denoising,The smaller the root mean square error and the greater signal-to-noise ratio indicate that them have a good effect in denoising. We can surely draw some conclusions in the experimental analysis:the db6 wavelet basis function has a good effect in wavelet denoising by using a adaptive soft threshold method,which root mean square error is minimum and signal-to-noise ratio is maximum.Moreover,the reconstructed image are more smooth than original signal denoising after wavelet denoising, which removed noise and useful signal are obtained in the original signal.Compared to the other three methods, this method has a good effect in denoising, which not only retain useful signal in the original signal, but aiso reach the goal of removing noise. So, it has a strong practical value in a actual deformation monitoring

  14. On monitoring unrecorded alcohol consumption

    Directory of Open Access Journals (Sweden)

    Jürgen Rehm

    2015-06-01

    Full Text Available Unrecorded alcohol consumption is a global problem, with about 25% of all alcohol consumption concerning this category. There are different forms of unrecorded alcohol, legally produced versus illegally produced, artisanal vs industrially produced, and then surrogate alcohol, which is officially not intended for human consumption. Monitoring and surveillance of unrecorded consumption is not well developed. The World Health Organization has developed a monitoring system, using the Nominal Group Technique, a variant of the Delphi methodology. Experiences with this methodology over the past two years are reported. Finally, conclusions for the monitoring and surveillance at the national level are given.

  15. Parametric roll resonance monitoring using signal-based detection

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Blanke, Mogens; Falkenberg, Thomas

    2015-01-01

    Extreme roll motion of ships can be caused by several phenomena, one of which is parametric roll resonance. Several incidents occurred unexpectedly around the millennium and caused vast fiscal losses on large container vessels. The phenomenon is now well understood and some consider parametric roll...... algorithms in real conditions, and to evaluate the frequency of parametric roll events on the selected vessels. Detection performance is scrutinised through the validation of the detected events using owners’ standard methods, and supported by available wave radar data. Further, a bivariate statistical...... analysis of the outcome of the signal-based detectors is performed to assess the real life false alarm probability. It is shown that detection robustness and very low false warning rates are obtained. The study concludes that small parametric roll events are occurring, and that the proposed signal...

  16. Artificial neural network with self-organizing mapping for reactor stability monitoring

    International Nuclear Information System (INIS)

    Okumura, Motofumi; Tsuji, Masashi; Shimazu, Yoichiro

    2009-01-01

    In boiling water reactor (BWR) stability monitoring, damping ratio has been used as a stability index. A method for estimating the damping ratio by applying Principal Component Analysis (PCA) to neutron detector signals measured with local power range monitors (LPRMs) had been developed; in this method, measured fluctuating signal is decomposed into some independent components and the signal components directly related to stability are extracted among them to determine the damping ratio. For online monitoring, it is necessary to select stability related signal components efficiently. The self-organizing map (SOM) is one of the artificial neural networks (ANNs) and has the characteristics such that online learning is possible without supervised learning within a relatively short time. In the present study, the SOM was applied to extract the relevant signal components more quickly and more accurately, and the availability was confirmed through the feasibility study. For realizing online stability monitoring only with ANNs, another type of ANN that performs online processing of PCA was combined with SOM. And stability monitoring performance was investigated. (author)

  17. Trends in Nuclear Explosion Monitoring Research & Development - A Physics Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Maceira, Monica [Los Alamos National Laboratory; Blom, Philip Stephen [Los Alamos National Laboratory; Maccarthy, Jonathan K. [Los Alamos National Laboratory; Marcillo, Omar Eduardo [Los Alamos National Laboratory; Euler, Garrett Gene [Los Alamos National Laboratory; Begnaud, Michael Lee [Los Alamos National Laboratory; Ford, Sean R. [Lawrence Livermore National Laboratory; Pasyanos, Michael E. [Lawrence Livermore National Laboratory; Orris, Gregory J. [Naval Research Laboratory; Foxe, Michael P. [Pacific Northwest National Laboratory; Arrowsmith, Stephen J. [Sandia National Laboratory; Merchant, B. John [Sandia National Laboratory; Slinkard, Megan E. [Sandia National Laboratory

    2017-06-01

    This document entitled “Trends in Nuclear Explosion Monitoring Research and Development – A Physics Perspective” reviews the accessible literature, as it relates to nuclear explosion monitoring and the Comprehensive Nuclear-Test-Ban Treaty (CTBT, 1996), for four research areas: source physics (understanding signal generation), signal propagation (accounting for changes through physical media), sensors (recording the signals), and signal analysis (processing the signal). Over 40 trends are addressed, such as moving from 1D to 3D earth models, from pick-based seismic event processing to full waveform processing, and from separate treatment of mechanical waves in different media to combined analyses. Highlighted in the document for each trend are the value and benefit to the monitoring mission, key papers that advanced the science, and promising research and development for the future.

  18. PC based vibration monitoring system

    International Nuclear Information System (INIS)

    Jain, Sanjay K.; Roy, D.A.; Pithawa, C.K.; Patil, R.K.

    2004-01-01

    Health of large rotating machinery gets reflected in the vibration signature of the rotor and supporting structures and proper recording of these signals and their analysis can give a clear picture of the health of the machine. Using these data and their trending, it is possible to predict an impending trouble in the machine so that preventive action can be taken in time and catastrophic failure can be avoided. Continuous monitoring and analysis can give quick warning and enable operator to take preventive measures. Reactor Control Division, BARC is developing a PC based Vibration monitoring system for turbo generator machinery. The System can acquire 20 vibration signals at a rate of 5000 samples per second and also 15 process signals at a rate of 100 samples/ sec. The software for vibration monitoring system includes acquisition modules, analysis modules and Graphical User Interface module. The acquisition module involves initialization, setting of required parameters and acquiring the data from PC-based data acquisition cards. The acquired raw vibration data is then stored for analysis using various software packages. The display and analysis of acquired data is done in LabVIEW 7.0 where the data is displayed in time as well as frequency domain along with the RMS value of the signal. (author)

  19. Sequential probability ratio controllers for safeguards radiation monitors

    International Nuclear Information System (INIS)

    Fehlau, P.E.; Coop, K.L.; Nixon, K.V.

    1984-01-01

    Sequential hypothesis tests applied to nuclear safeguards accounting methods make the methods more sensitive to detecting diversion. The sequential tests also improve transient signal detection in safeguards radiation monitors. This paper describes three microprocessor control units with sequential probability-ratio tests for detecting transient increases in radiation intensity. The control units are designed for three specific applications: low-intensity monitoring with Poisson probability ratios, higher intensity gamma-ray monitoring where fixed counting intervals are shortened by sequential testing, and monitoring moving traffic where the sequential technique responds to variable-duration signals. The fixed-interval controller shortens a customary 50-s monitoring time to an average of 18 s, making the monitoring delay less bothersome. The controller for monitoring moving vehicles benefits from the sequential technique by maintaining more than half its sensitivity when the normal passage speed doubles

  20. The sesquiterpene botrydial produced by Botrytis cinerea induces the hypersensitive response on plant tissues and its action is modulated by salicylic acid and jasmonic acid signaling.

    Science.gov (United States)

    Rossi, Franco Rubén; Gárriz, Andrés; Marina, María; Romero, Fernando Matías; Gonzalez, María Elisa; Collado, Isidro González; Pieckenstain, Fernando Luis

    2011-08-01

    Botrytis cinerea, as a necrotrophic fungus, kills host tissues and feeds on the remains. This fungus is able to induce the hypersensitive response (HR) on its hosts, thus taking advantage on the host's defense machinery for generating necrotic tissues. However, the identity of HR effectors produced by B. cinerea is not clear. The aim of this work was to determine whether botrydial, a phytotoxic sesquiterpene produced by B. cinerea, is able to induce the HR on plant hosts, using Arabidopsis thaliana as a model. Botrydial induced the expression of the HR marker HSR3, callose deposition, and the accumulation of reactive oxygen species and phenolic compounds. Botrydial also induced the expression of PR1 and PDF1.2, two pathogenesis-related proteins involved in defense responses regulated by salicylic acid (SA) and jasmonic acid (JA), respectively. A. thaliana and tobacco plants defective in SA signaling were more resistant to botrydial than wild-type plants, as opposed to A. thaliana plants defective in JA signaling, which were more sensitive. It can be concluded that botrydial induces the HR on its hosts and its effects are modulated by host signaling pathways mediated by SA and JA.

  1. Volcano monitoring using the Global Positioning System: Filtering strategies

    Science.gov (United States)

    Larson, K.M.; Cervelli, Peter; Lisowski, M.; Miklius, Asta; Segall, P.; Owen, S.

    2001-01-01

    Permanent Global Positioning System (GPS) networks are routinely used for producing improved orbits and monitoring secular tectonic deformation. For these applications, data are transferred to an analysis center each day and routinely processed in 24-hour segments. To use GPS for monitoring volcanic events, which may last only a few hours, real-time or near real-time data processing and subdaily position estimates are valuable. Strategies have been researched for obtaining station coordinates every 15 min using a Kalman filter; these strategies have been tested on data collected by a GPS network on Kilauea Volcano. Data from this network are tracked continuously, recorded every 30 s, and telemetered hourly to the Hawaiian Volcano Observatory. A white noise model is heavily impacted by data outages and poor satellite geometry, but a properly constrained random walk model fits the data well. Using a borehole tiltmeter at Kilauea's summit as ground-truth, solutions using different random walk constraints were compared. This study indicates that signals on the order of 5 mm/h are resolvable using a random walk standard deviation of 0.45 cm/???h. Values lower than this suppress small signals, and values greater than this have significantly higher noise at periods of 1-6 hours. Copyright 2001 by the American Geophysical Union.

  2. Physiologic Status Monitoring via the Gastrointestinal Tract

    Science.gov (United States)

    2016-02-25

    monitoring is similar with many other ambulatory physiological monitoring systems, and this one of the same limitations of the existing “ gold standard... pollution on acoustic signal fidelity. Reassuringly, data collected here appeared robust in spite of room noise contributions ranging from 70 to 80 dB...Noise pollution , Page 10 of 24 either from ambient or internal sources, may also be addressed using more robust signal processing algorithms

  3. An ultra low energy biomedical signal processing system operating at near-threshold

    NARCIS (Netherlands)

    Hulzink, J.; Konijnenburg, M.; Ashouei, M.; Breeschoten, A.; Berset, T.; Huisken, J.; Stuyt, J.; Groot, H. de; Barat, F.; David, J.; Ginderdeuren, J. van

    2011-01-01

    This paper presents a voltage-scalable digital signal processing system designed for the use in a wireless sensor node (WSN) for ambulatory monitoring of biomedical signals. To fulfill the requirements of ambulatory monitoring, power consumption, which directly translates to the WSN battery lifetime

  4. A fast non-intercepting linac beam position and current monitor

    International Nuclear Information System (INIS)

    Hansen, J.W.; Wille, M.

    1982-01-01

    A non-intercepting beam monitor consisting of four detecting loops is used to determine the spatial postion and current of a pulsed beam from an electron linear accelerator. The monitor detects the magnetic field radiated by the substructure of the electron bunches created by the accelerating microwave. The detecting loops are interconnected two by two, by means of two coaxial hybrid junctions, the two sets positioned perpendicular to each other. By means of the two signals from the diametrically positioned detecting loops, a good spatial displacement and current monitoring sensitivity are achieved by subtracting one signal from the other and adding the two signals, respectively. For displacements below 2 mm from the center axis an average sensitivity of 0.5 mV/mm x mA is measured, whereas displacements more than 2 mm yields 1.3 mV/mm x mA. A sensitivity of 0.2 mV/mA in current monitoring is measured, and the rise time of the monitored pulse signal is better than 5 ns measured from 10 to 90% of the pulse height. Design strategy and performance of the monitor are described. (orig.)

  5. On monitoring unrecorded alcohol consumption

    OpenAIRE

    Rehm, Jürgen; Poznyak, Vladimir

    2015-01-01

    Unrecorded alcohol consumption is a global problem, with about 25% of all alcohol consumption concerning this category. There are different forms of unrecorded alcohol, legally produced versus illegally produced, artisanal vs industrially produced, and then surrogate alcohol, which is officially not intended for human consumption. Monitoring and surveillance of unrecorded consumption is not well developed. The World Health Organization has developed a monitoring system, using the Nominal Grou...

  6. The development of digital monitoring technique

    International Nuclear Information System (INIS)

    Koo, In Soo; Kim, D. H.; Kim, J. S.; Kim, C. H.; Kim, G. O.; Park, H. Y.; Suh, S. Y.; Sung, S. H.; Song, S. J.; Lee, C. K.; Jang, G. S.; Hur, S.

    1997-08-01

    A study has been performed for advanced DSP technology for the digital nuclear I and C systems for the monitoring and diagnosis techniques for high-pressurized structures integrity in NSSS. In the development of advanced DSP technology, real time process, communication network and signal validation were selected as the essential technologies of the digital signal process, and the requirements and methodology for the application of these technologies in NPP were established through technical analysis. Based on its results, the DPIS and the signal validation algorithm were developed. For the real-time process, the necessary requirements were define and the methodology of real-time software modeling was developed. For the communication network, the methodology of selection of the communication technique and developing procedure were established with an extraction of requirements. Functions, requirements, structure and technical specification were developed for the DPIS, and a real-time signal validation algorithm was developed and implemented for the signal validation. In a study on monitoring techniques for abnormal conditions, test and experimental facilities have been set up in order to carry out the required tests during research activities. Studies concentrated on how to acquire proper vibration or emission signals from mechanical structures and equipments, and to diagnose effectively the abnormal conditions of high pressure structure integrity. The algorithms of automatic signal analysis and diagnosis for abnormal conditions have been developed in this study to assist the operator's monitoring and diagnosis activities on structure integrity using new technologies. (author). 23 refs., 68 tabs., 196 figs

  7. The development of digital monitoring technique

    Energy Technology Data Exchange (ETDEWEB)

    Koo, In Soo; Kim, D. H.; Kim, J. S.; Kim, C. H.; Kim, G. O.; Park, H. Y.; Suh, S. Y.; Sung, S. H.; Song, S. J.; Lee, C. K.; Jang, G. S.; Hur, S.

    1997-08-01

    A study has been performed for advanced DSP technology for the digital nuclear I and C systems for the monitoring and diagnosis techniques for high-pressurized structures integrity in NSSS. In the development of advanced DSP technology, real time process, communication network and signal validation were selected as the essential technologies of the digital signal process, and the requirements and methodology for the application of these technologies in NPP were established through technical analysis. Based on its results, the DPIS and the signal validation algorithm were developed. For the real-time process, the necessary requirements were define and the methodology of real-time software modeling was developed. For the communication network, the methodology of selection of the communication technique and developing procedure were established with an extraction of requirements. Functions, requirements, structure and technical specification were developed for the DPIS, and a real-time signal validation algorithm was developed and implemented for the signal validation. In a study on monitoring techniques for abnormal conditions, test and experimental facilities have been set up in order to carry out the required tests during research activities. Studies concentrated on how to acquire proper vibration or emission signals from mechanical structures and equipments, and to diagnose effectively the abnormal conditions of high pressure structure integrity. The algorithms of automatic signal analysis and diagnosis for abnormal conditions have been developed in this study to assist the operator`s monitoring and diagnosis activities on structure integrity using new technologies. (author). 23 refs., 68 tabs., 196 figs.

  8. Bioelectric Signal Measuring System

    Science.gov (United States)

    Guadarrama-Santana, A.; Pólo-Parada, L.; García-Valenzuela, A.

    2015-01-01

    We describe a low noise measuring system based on interdigitated electrodes for sensing bioelectrical signals. The system registers differential voltage measurements in order of microvolts. The base noise during measurements was in nanovolts and thus, the sensing signals presented a very good signal to noise ratio. An excitation voltage of 1Vrms with 10 KHz frequency was applied to an interdigitated capacitive sensor without a material under test and to a mirror device simultaneously. The output signals of both devices was then subtracted in order to obtain an initial reference value near cero volts and reduce parasitic capacitances due to the electronics, wiring and system hardware as well. The response of the measuring system was characterized by monitoring temporal bioelectrical signals in real time of biological materials such as embryo chicken heart cells and bovine suprarenal gland cells.

  9. New system of the in core monitoring - PTK SVRK

    International Nuclear Information System (INIS)

    Urban, P.

    2000-01-01

    In this paper author describes new system (PTK SVRK) for in-core monitoring system of the Mochovce nuclear power plant installed instead of the HINDUKUSH in-core monitoring system, which are determined to monitor the core parameters. This system (HINDUKUSH), supplied by the Russian party in scope of the original design, became old during the idle time, and the components, which is it built from, are not produced any more. Thus, its utilisation had to undergo a technical end economic analysis. It resulted in classification to the work complex of the technical specification of safety measures. Its implementation conditioned the commissioning of the power plant nuclear unit. The program and technical system of the in-core monitoring (PTK SVRK) consists of two levels - a 'closed' basic, which fulfils the task of the primal system operation for the Unit operators, and an 'open' top level, which serves as a tool for the additional tasks of a prognosis, monitoring, and analysis of the processes taking place in the nuclear core by the monitoring physicists. The basic level of PTK SVRK has 100% redundancy because of its composition and configuration. It is namely formed by two identical, equivalent, and independent sets. Any of them may be operational or redundant. Every set consists of an apparatus processing the signals coming from the technology or the calculation complex, which converts these signals to physical parameters and controls the physically mathematical model of the monitored equipment. The results are presented to the operational staff as outputs on the workstations in the control room in a form of cartograms, graphs, histograms, tables, etc. The bases of the system calculation model are time-proven programs BIPR7 and PERMAK, which are used also in this power plant. The top level of PTK SVRK has a structure supporting the system openness for its further utilisation. Today it is formed by a server and two workstations. Besides the above-mentioned tasks, the

  10. Target-induced formation of gold amalgamation on DNA-based sensing platform for electrochemical monitoring of mercury ion coupling with cycling signal amplification strategy.

    Science.gov (United States)

    Chen, Jinfeng; Tang, Juan; Zhou, Jun; Zhang, Lan; Chen, Guonan; Tang, Dianping

    2014-01-31

    Heavy metal ion pollution poses severe risks in human health and environmental pollutant, because of the likelihood of bioaccumulation and toxicity. Driven by the requirement to monitor trace-level mercury ion (Hg(2+)), herein we construct a new DNA-based sensor for sensitive electrochemical monitoring of Hg(2+) by coupling target-induced formation of gold amalgamation on DNA-based sensing platform with gold amalgamation-catalyzed cycling signal amplification strategy. The sensor was simply prepared by covalent conjugation of aminated poly-T(25) oligonucleotide onto the glassy carbon electrode by typical carbodiimide coupling. Upon introduction of target analyte, Hg(2+) ion was intercalated into the DNA polyion complex membrane based on T-Hg(2+)-T coordination chemistry. The chelated Hg(2+) ion could induce the formation of gold amalgamation, which could catalyze the p-nitrophenol with the aid of NaBH4 and Ru(NH3)6(3+) for cycling signal amplification. Experimental results indicated that the electronic signal of our system increased with the increasing Hg(2+) level in the sample, and has a detection limit of 0.02nM with a dynamic range of up to 1000nM Hg(2+). The strategy afforded exquisite selectivity for Hg(2+) against other environmentally related metal ions. In addition, the methodology was evaluated for the analysis of Hg(2+) in spiked tap-water samples, and the recovery was 87.9-113.8%. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Study of thermal - hydraulic sensors signal fluctuations in PWR

    International Nuclear Information System (INIS)

    Hennion, F.

    1987-10-01

    This thesis deals with signal fluctuations of thermal-hydraulic sensors in the main coolant primary of a pressurized water reactor. The aim of this work is to give a first response about the potentiality of use of these noise signals for the functionning monitoring. Two aspects have been studied: - the modelisation of temperature fluctuations of core thermocouples, by a Monte-Carlo method, gives the main characteristics of these signals and their domain of application. - the determination of eigenfrequency in the primary by an acoustic representation could permit the monitoring of local and global thermo-hydraulic conditions [fr

  12. Monitoring of radionuclides in carbon steel blooms produced by EAF process

    Directory of Open Access Journals (Sweden)

    Sofilić T.

    2011-01-01

    Full Text Available Because natural and artificial isotopes in steel might originate from steel scrap or from the residue of the material that was used in the technological process, thus monitoring especially artificial radionuclides 60Co, 137Cs and 192Ir deserve special attention. The analysis by g-spectrometry has been applied to determine the presence of natural isotopes 40K, 226Ra, 232Th and 238U as well as of the artificial isotope 60Co, 137Cs and 192Ir and their activity in the produced steel round blooms in the Steel Mill of CMC Sisak d.o.o. At the same time the content of radionuclides in the other materials (ferroalloys, bauxite, fluorite, lime, coke, graphite electrodes, refractory blocks used in the same steel making process was investigated. The measured values regarding the presence of individual isotopes and their activity in steel were as follows: 40K all values were less than 1.6 Bqkg-1; 232Th all activities values were less than 0.02 Bqkg-1; 226Ra all activities values were less than 0.01 Bqkg-1; 238U all activities values were less than 1.10 Bqkg-1; 60Co all activities values were less than 0.02 Bqkg-1; 192Ir all activities values were less than 0.02 Bqkg-1 and 137Cs all activities values were less than 0.30 Bqkg-1.

  13. Sensor signal analysis by neural networks for surveillance in nuclear reactors

    International Nuclear Information System (INIS)

    Keyvan, S.; Rabelo, L.C.

    1992-01-01

    The application of neural networks as a tool for reactor diagnostics is examined here. Reactor pump signals utilized in a wear-out monitoring system developed for early detection of the degradation of a pump shaft are analyzed as a semi-benchmark test to study the feasibility of neural networks for monitoring and surveillance in nuclear reactors. The Adaptive Resonance Theory (ART 2 and ART 2-A) paradigm of neural networks is applied in this study. The signals are collected signals as well as generated signals simulating the wear progress. The wear-out monitoring system applies noise analysis techniques, and is capable of distinguishing these signals apart and providing a measure of the progress of the degradation. This paper presents the results of the analysis of these data, and provides an evaluation on the performance of ART 2-A and ART 2 for reactor signal analysis. The selection of ART 2 is due to its desired design principles such as unsupervised learning, stability-plasticity, search-direct access, and the match-reset tradeoffs

  14. A Prototype Wire Position Monitoring System

    International Nuclear Information System (INIS)

    Wang, Wei

    2010-01-01

    The Wire Position Monitoring System (WPM) will track changes in the transverse position of LCLS Beam Position Monitors (BPMs) to 1(micro)m over several weeks. This position information will be used between applications of beam based alignment to correct for changes in component alignment. The WPM system has several requirements. The sensor range must be large enough so that precision sensor positioning is not required. The resolution needs to be small enough so that the signal can be used to monitor motion to 1(micro)m. The system must be stable enough so that system drift does not mimic motion of the component being monitored. The WPM sensor assembly consists of two parts, the magnetic sensor and an integrated lock-in amplifier. The magnetic sensor picks up a signal from the alternating current in a stretched wire. The voltage v induced in the sensor is proportional to the wire displacement from the center of the sensor. The integrated lock-in amplifier provides a DC output whose magnitude is proportional to the AC signal from the magnetic sensor. The DC output is either read on a digital voltmeter or digitized locally and communicated over a computer interface.

  15. High-level expression of nattokinase in Bacillus licheniformis by manipulating signal peptide and signal peptidase.

    Science.gov (United States)

    Cai, D; Wei, X; Qiu, Y; Chen, Y; Chen, J; Wen, Z; Chen, S

    2016-09-01

    Nattokinase is an enzyme produced by Bacillus licheniformis and has potential to be used as a drug for treating cardiovascular disease due to its beneficial effects of preventing fibrin clots etc. However, the low activity and titre of this protein produced by B. licheniformis often hinders its application of commercial production. The aim of this work is to improve the nattokinase production by manipulating signal peptides and signal peptidases in B. licheniformis. The P43 promoter, amyL terminator and AprN target gene were used to form the nattokinase expression vector, pHY-SP-NK, which was transformed into B. licheniformis and nattokinase was expressed successfully. A library containing 81 predicted signal peptides was constructed for nattokinase expression in B. licheniformis, with the maximum activity being obtained under the signal peptide of AprE. Among four type I signal peptidases genes (sipS, sipT, sipV, sipW) in B. licheniformis, the deletion of sipV resulted in a highest decrease in nattokinase activity. Overexpression of sipV in B. licheniformis led to a nattokinase activity of 35·60 FU ml(-1) , a 4·68-fold improvement over activity produced by the initial strain. This work demonstrates the potential of B. licheniformis for industrial production of nattokinase through manipulation of signal peptides and signal peptidases expression. This study has screened the signal peptides of extracellular proteins of B. licheniformis for nattokinase production. Four kinds of Type I signal peptidases genes have been detected respectively in B. licheniformis to identify which one played the vital role for nattokinase production. This study provided a promising strain for industry production of nattokinase. © 2016 The Society for Applied Microbiology.

  16. Fetal Cardiac Doppler Signal Processing Techniques: Challenges and Future Research Directions

    Directory of Open Access Journals (Sweden)

    Saeed Abdulrahman Alnuaimi

    2017-12-01

    Full Text Available The fetal Doppler Ultrasound (DUS is commonly used for monitoring fetal heart rate and can also be used for identifying the event timings of fetal cardiac valve motions. In early-stage fetuses, the detected Doppler signal suffers from noise and signal loss due to the fetal movements and changing fetal location during the measurement procedure. The fetal cardiac intervals, which can be estimated by measuring the fetal cardiac event timings, are the most important markers of fetal development and well-being. To advance DUS-based fetal monitoring methods, several powerful and well-advanced signal processing and machine learning methods have recently been developed. This review provides an overview of the existing techniques used in fetal cardiac activity monitoring and a comprehensive survey on fetal cardiac Doppler signal processing frameworks. The review is structured with a focus on their shortcomings and advantages, which helps in understanding fetal Doppler cardiogram signal processing methods and the related Doppler signal analysis procedures by providing valuable clinical information. Finally, a set of recommendations are suggested for future research directions and the use of fetal cardiac Doppler signal analysis, processing, and modeling to address the underlying challenges.

  17. Monitor inspection device

    International Nuclear Information System (INIS)

    Ueshima, Yoshinobu.

    1995-01-01

    The device of the present invention reliably conducts monitoring by radiation monitors in a nuclear power plant thereby contributing to save the number of radiation operators and reduction of radiation exposure. Namely, radiation monitors continuously measure a plurality of γ-ray levels. A branched simultaneously counting circuit receives these signals. The output of the branched simultaneously counting circuit is inputted to a differentiation means. The differentiation means calculates a variation coefficient for each of the radiation monitoring values, namely, equivalent dose rates, and records and monitors change with time of the equivalent dose rates. With such procedures, the results of the monitoring of γ-ray levels can be judged objectively corresponding to the increase of the equivalent dose rates. As a result, the number of radiation operators can be saves and radiation exposure of the radiation operators can be reduced. (I.S.)

  18. A Real-Time Rejection Circuit to Automatically Reject Multiple Interfering Hopping Signals While Passing a Lower Level Desired Signal.

    Science.gov (United States)

    contain the low level desired frequency components that are passed through an inverse transform device for producing a frequency domain signal of the desired signal uncorrupted by unwanted signals. Patent applications. (RRH)

  19. Experience with digital acoustic monitoring systems for PWRs and BWRs

    International Nuclear Information System (INIS)

    Olma, B.J.

    1998-01-01

    Substantial progress could be reached both in system technics and in application of digital acoustic monitoring systems for assessing mechanical integrity of reactor primary systems. For the surveillance of PWRs and BWRs during power operation of the plants, acoustic signals of Loose Parts Monitoring System sensors are continuously monitored for signal bursts associated with metallic impacts. ISTec/GRS experience with its digital systems MEDEA and RAMSES has shown that acoustic signature analysis is very successful for detecting component failures at an early stage. Methods for trending and classification of digital burst signals are shown, experience with their practical use will be presented. (author)

  20. Dispersion induced power fading for radio frequency signals and its application for fast online PMD and CD monitoring

    Science.gov (United States)

    Ning, G.; Shum, P.

    2007-06-01

    We derive the expressions for the power fading including first-order polarization mode dispersion (PMD), chromatic dispersion, chirp parameter as well as polarization-dependent chromatic dispersion (PCD), which is dependent on the angle of precession of output state of polarization around the PMD vector. From the expression for radio frequency (RF) signals power fading, we get the average power fading for chromatic dispersion, chirp parameter, first-order PMD and PCD for both double sideband (DSB) modulation and single sideband (SSB) modulation. We also demonstrate a fast PMD and chromatic dispersion monitoring technology with reduced polarization-dependent gain. The measured results agree well with theoretical analysis.

  1. Wearable System for Acquisition and Monitoring of Biological Signals

    Science.gov (United States)

    Piccinini, D. J.; Andino, N. B.; Ponce, S. D.; Roberti, MA; López, y. N.

    2016-04-01

    This paper presents a modular, wearable system for acquisition and wireless transmission of biological signals. Configurable slaves for different signals (such as ECG, EMG, inertial sensors, and temperature) based in the ADS1294 Medical Analog Front End are connected to a Master, based in the CC3200 microcontroller, both from Texas Instruments. The slaves are configurable according to the specific application, providing versatility to the wearable system. The battery consumption is reduced, through a couple of Li-ion batteries and the circuit has also a battery charger. A custom made box was designed and fabricated in a 3D printer, preserving the requirements of low cost, low weight and safety recommendations.

  2. On line monitoring of a welding process by pulsed Nd-YAG laser; Controle en ligne d'un procede de soudage par laser Nd-YAG pulse

    Energy Technology Data Exchange (ETDEWEB)

    Chardon, St.; Voisin, Y.; Gorria, P. [Universite de Bourgogne, Lab. LE2I, 21 - Dijon (France); Vauzelle, Th. [CEA/Valduc, Dept. Fabrications et Technologies Nucleaires, DFTN, 21 - Is-sur-Tille (France)

    1999-07-01

    Laser weld quality inspection can be assured by the machine qualification (before and during welding), and by on line monitoring of the operation. The similarity of the signals produced by pulsed lasers (machine or interaction) leads us to develop a specific data acquisition and processing software. During a welding operation, laser-material interaction results in a characteristically emission of optical, acoustical and electrical signals. These signals are measured by different kinds of sensors (photodiode, microphone, or an electric probe), then recorded and treated with the quoted software. Signal processing tools utilization in conjunction with classification techniques (stress polytopes), introduce an innovating approach of on line inspection. Discriminant parameters determination (signals/defect correlation) become thus automatic and non subjective. (authors)

  3. Development of Wireless Smart Sensor for Structure and Machine Monitoring

    Directory of Open Access Journals (Sweden)

    Ismoyo Haryanto

    2013-07-01

    Full Text Available Vibration based condition monitoring is a method used for determining the condition of a system. The condition of mechanical or a structural system can be determined from the vibration. The vibration that is produced by the system indicates the condition of a system and possibly used to calculate the lifetime of a system or even used to take early action before fatal failure occurred. This paper explains how the wireless smart sensor can be used to identify the health condition of a system by monitoring the vibration parameters. The wireless smart sensor would continously  senses the vibration parameters of the system in a real-time systems and then data will be transmitted wirelessly  to a base station which is a host PC used for digital signal processing, from there the vibration will be plotted as a graph which used to analyzed the condition of the system. Finally, several tested performed to the real system to verify the accuracy of a smart sensor and the method of condition based monitoring.

  4. Net analyte signal based statistical quality control

    NARCIS (Netherlands)

    Skibsted, E.T.S.; Boelens, H.F.M.; Westerhuis, J.A.; Smilde, A.K.; Broad, N.W.; Rees, D.R.; Witte, D.T.

    2005-01-01

    Net analyte signal statistical quality control (NAS-SQC) is a new methodology to perform multivariate product quality monitoring based on the net analyte signal approach. The main advantage of NAS-SQC is that the systematic variation in the product due to the analyte (or property) of interest is

  5. The AutoAssociative Neural Network in signal analysis: II. Application to on-line monitoring of a simulated BWR component

    International Nuclear Information System (INIS)

    Marseguerra, M.; Zoia, A.

    2005-01-01

    In this paper, Robust AutoAssociative Neural Networks (RAANN) are applied to a series of signals produced by the Halden simulator of the 1200MWe BWR Forsmark-3 plant in Sweden. The applications concern: - correction of drifts and gross errors in sensors, for diagnostic and control purposes, - cluster analysis, to individuate a failed component and the intensity of the failure, - forecasting system signals, for safety or economic purposes, - reconstruction of unmeasured signals (virtual sensors). In the attainment of the above results, the geometric interpretation of the mapping performed by the network, propounded in Part I of this work, has provided a reasoned choice of the most critical free parameter, i.e., the number f of nodes of the bottleneck layer, thus allowing a deep understanding of the network functioning and also avoiding the traditional and troubling procedure of selection by trial-and-error. The theoretical basis of this analysis, discussed in details in the companion paper, is founded on the idea of dimension and in particular of fractal dimension, which has been used as a numerical estimator of f

  6. Combination of digital signal processing methods towards an improved analysis algorithm for structural health monitoring.

    Science.gov (United States)

    Pentaris, Fragkiskos P.; Makris, John P.

    2013-04-01

    In Structural Health Monitoring (SHM) is of great importance to reveal valuable information from the recorded SHM data that could be used to predict or indicate structural fault or damage in a building. In this work a combination of digital signal processing methods, namely FFT along with Wavelet Transform is applied, together with a proposed algorithm to study frequency dispersion, in order to depict non-linear characteristics of SHM data collected in two university buildings under natural or anthropogenic excitation. The selected buildings are of great importance from civil protection point of view, as there are the premises of a public higher education institute, undergoing high use, stress, visit from academic staff and students. The SHM data are collected from two neighboring buildings that have different age (4 and 18 years old respectively). Proposed digital signal processing methods are applied to the data, presenting a comparison of the structural behavior of both buildings in response to seismic activity, weather conditions and man-made activity. Acknowledgments This work was supported in part by the Archimedes III Program of the Ministry of Education of Greece, through the Operational Program "Educational and Lifelong Learning", in the framework of the project entitled «Interdisciplinary Multi-Scale Research of Earthquake Physics and Seismotectonics at the front of the Hellenic Arc (IMPACT-ARC) » and is co-financed by the European Union (European Social Fund) and Greek National Fund.

  7. Remote monitoring in international safeguards

    International Nuclear Information System (INIS)

    Dupree, S.A.; Sonnier, C.S.; Johnson, C.S.

    1996-01-01

    In recent years, technology that permits the integration of monitoring sensors and instruments into a coherent network has become available. Such integrated monitoring systems provide a means for the automatic collection and assessment of sensor signals and instrument readings and for processing such signals and readings in near real time. To gain experience with the new monitoring system technology, the US Department of energy, through bilateral agreements with its international partners, has initiated a project to emplace demonstration systems in various nuclear facilities and conduct field trials of the technology. This effort is the International Remote Monitoring Project. Under this project, remote monitoring systems are being deployed around the world in an incremental manner. Each deployment is different and each offers lessons for improving the performance and flexibility of the technology. Few problems were encountered with the operation of the installations to date, and much has been learned about the operation and use of the new technology. In the future, the authors believe systems for safeguards applications should be capable of being monitored remotely, emphasize the use of sensors, and utilize selective triggering for recording of images. Remote monitoring across national borders can occur only in the context of a cooperative, nonadversarial implementation regime. However, significant technical and policy work remains to be done before widespread safeguards implementation of remote monitoring should be considered. This paper shows that an abundance of technology supports the implementation of integrated and remote monitoring systems. Current field trials of remote monitoring systems are providing practical data and operational experience to aid in the design of tomorrow's systems

  8. Smart Sensor ASIC for Nuclear Power Monitoring

    International Nuclear Information System (INIS)

    Kerwin, David B.; Merkel, Kenneth G.; Rouxel, Olivier

    2013-06-01

    Mixed-signal integrated circuits are used in a variety of applications where ionizing radiation is present, including satellites, space vehicles, nuclear reactor monitoring, medical imaging, and cancer therapy. While total ionizing radiation is present in each of these environments, the type of radiation (e.g. heavy ions vs. high-energy x-rays) and other environmental factors present unique challenges to the mixed-signal designer. This paper discusses a Smart Sensor radiation hardened, mixed-signal, application specific integrated circuit (ASIC) specifically designed for sensor monitoring in a nuclear reactor environment. Results after exposure to gamma rays, neutrons, and temperatures up to 200 deg. C are reported. (authors)

  9. Vicarious reinforcement learning signals when instructing others.

    Science.gov (United States)

    Apps, Matthew A J; Lesage, Elise; Ramnani, Narender

    2015-02-18

    Reinforcement learning (RL) theory posits that learning is driven by discrepancies between the predicted and actual outcomes of actions (prediction errors [PEs]). In social environments, learning is often guided by similar RL mechanisms. For example, teachers monitor the actions of students and provide feedback to them. This feedback evokes PEs in students that guide their learning. We report the first study that investigates the neural mechanisms that underpin RL signals in the brain of a teacher. Neurons in the anterior cingulate cortex (ACC) signal PEs when learning from the outcomes of one's own actions but also signal information when outcomes are received by others. Does a teacher's ACC signal PEs when monitoring a student's learning? Using fMRI, we studied brain activity in human subjects (teachers) as they taught a confederate (student) action-outcome associations by providing positive or negative feedback. We examined activity time-locked to the students' responses, when teachers infer student predictions and know actual outcomes. We fitted a RL-based computational model to the behavior of the student to characterize their learning, and examined whether a teacher's ACC signals when a student's predictions are wrong. In line with our hypothesis, activity in the teacher's ACC covaried with the PE values in the model. Additionally, activity in the teacher's insula and ventromedial prefrontal cortex covaried with the predicted value according to the student. Our findings highlight that the ACC signals PEs vicariously for others' erroneous predictions, when monitoring and instructing their learning. These results suggest that RL mechanisms, processed vicariously, may underpin and facilitate teaching behaviors. Copyright © 2015 Apps et al.

  10. Differential B-dot and D-dot monitors for current and voltage measurements on a 20-MA 3-MV pulsed-power accelerator

    International Nuclear Information System (INIS)

    Shoup, Roy Willlam; Gilliland, Terrance Leo; Lee, James R.; Speas, Christopher Shane; Kim, Alexandre A.; Struve, Kenneth William; York, Mathew William; Leifeste, Gordon T.; Rochau, Gregory Alan; Sharpe, Arthur William; Stygar, William A.; Porter, John Larry Jr.; Wagoner, Tim C.; Reynolds, Paul Gerard; Slopek, Jeffrey Scott; Moore, William B.S.; Dinwoodie, Thomas Albert; Woodring, R.M.; Broyles, Robin Scott; Mills, Jerry Alan; Melville, J.A.; Dudley, M.E.; Androlewicz, K.E.; Mourning, R.W.; Moore, J.K.; Serrano, Jason Dimitri; Ives, H.C.; Johnson, M.F.; Peyton, B.P.; Leeper, Ramon Joe; Savage, Mark Edward; Donovan, Guy Louis; Spielman, R.B.; Seamen, Johann F.

    2007-01-01

    We have developed a system of differential-output monitors that diagnose current and voltage in the vacuum section of a 20-MA 3-MV pulsed-power accelerator. The system includes 62 gauges: 3 current and 6 voltage monitors that are fielded on each of the accelerator's 4 vacuum-insulator stacks, 6 current monitors on each of the accelerator's 4 outer magnetically insulated transmission lines (MITLs), and 2 current monitors on the accelerator's inner MITL. The inner-MITL monitors are located 6 cm from the axis of the load. Each of the stack and outer-MITL current monitors comprises two separate B-dot sensors, each of which consists of four 3-mm-diameter wire loops wound in series. The two sensors are separately located within adjacent cavities machined out of a single piece of copper. The high electrical conductivity of copper minimizes penetration of magnetic flux into the cavity walls, which minimizes changes in the sensitivity of the sensors on the 100-ns time scale of the accelerator's power pulse. A model of flux penetration has been developed and is used to correct (to first order) the B-dot signals for the penetration that does occur. The two sensors are designed to produce signals with opposite polarities; hence, each current monitor may be regarded as a single detector with differential outputs. Common-mode-noise rejection is achieved by combining these signals in a 50-(Omega) balun. The signal cables that connect the B-dot monitors to the balun are chosen to provide reasonable bandwidth and acceptable levels of Compton drive in the bremsstrahlung field of the accelerator. A single 50-ω cable transmits the output signal of each balun to a double-wall screen room, where the signals are attenuated, digitized (0.5-ns/sample), numerically compensated for cable losses, and numerically integrated. By contrast, each inner-MITL current monitor contains only a single B-dot sensor. These monitors are fielded in opposite-polarity pairs. The two signals from a pair are

  11. Real-time process signal validation based on neuro-fuzzy and possibilistic approach

    International Nuclear Information System (INIS)

    Figedy, S.; Fantoni, P.F.; Hoffmann, M.

    2001-01-01

    Real-time process signal validation is an application field where the use of fuzzy logic and Artificial Neural Networks can improve the diagnostics of faulty sensors and the identification of outliers in a robust and reliable way. This study implements a fuzzy and possibilistic clustering algorithm to classify the operating region where the validation process is to be performed. The possibilistic approach allows a fast detection of unforeseen plant conditions. Specialized Artificial Neural Networks are used, one for each fuzzy cluster. This offers two main advantages: the accuracy and generalization capability is increased compared to the case of a single network working in the entire operating region, and the ability to identify abnormal conditions, where the system is not capable to operate with a satisfactory accuracy, is improved. This system analyzes the signals, which are e.g. the readings of process monitoring sensors, computes their expected values and alerts if real values are deviated from the expected ones more than limits allow. The reliability level of the current analysis is also produced. This model has been tested on a simulated data from the PWR type of a nuclear power plant, to monitor safety-related reactor variables over the entire power-flow operating map and were installed in real conditions of BWR nuclear reactor. (Authors)

  12. Automated detection of sleep apnea from electrocardiogram signals using nonlinear parameters

    International Nuclear Information System (INIS)

    Acharya, U Rajendra; Faust, Oliver; Chua, Eric Chern-Pin; Lim, Teik-Cheng; Lim, Liang Feng Benjamin

    2011-01-01

    Sleep apnoea is a very common sleep disorder which can cause symptoms such as daytime sleepiness, irritability and poor concentration. To monitor patients with this sleeping disorder we measured the electrical activity of the heart. The resulting electrocardiography (ECG) signals are both non-stationary and nonlinear. Therefore, we used nonlinear parameters such as approximate entropy, fractal dimension, correlation dimension, largest Lyapunov exponent and Hurst exponent to extract physiological information. This information was used to train an artificial neural network (ANN) classifier to categorize ECG signal segments into one of the following groups: apnoea, hypopnoea and normal breathing. ANN classification tests produced an average classification accuracy of 90%; specificity and sensitivity were 100% and 95%, respectively. We have also proposed unique recurrence plots for the normal, hypopnea and apnea classes. Detecting sleep apnea with this level of accuracy can potentially reduce the need of polysomnography (PSG). This brings advantages to patients, because the proposed system is less cumbersome when compared to PSG

  13. Monitoring method of short-emitters

    International Nuclear Information System (INIS)

    Gasanov, R.A.

    2013-01-01

    Radioprospecting is the initial stage of radioelectronic warfare and its main purpose is destination of the radio signal, determination of its parameters, to detect the content of broadcasts, as well as detection the locating of devices emitting radio signal. In all cases, the probability of signal interception is basically determined by the specified parameters of signals intelligence. The increase in speed is accompanied by a decrease in resolution and vice versa. This paper discusses the method of monitoring the short-term radio emissions, which adapts to the electromagnetic environment

  14. An evanescent wave biosensor--Part I: Fluorescent signal acquisition from step-etched fiber optic probes.

    Science.gov (United States)

    Anderson, G P; Golden, J P; Ligler, F S

    1994-06-01

    A fiber-optic biosensor capable of remote continuous monitoring has recently been designed. To permit sensing at locations separate from the optoelectronic instrumentation, long optical fibers are utilized. An evanescent wave immuno-probe is prepared by removing the cladding near the distal end of the fiber and covalently attaching antibodies to the core. Probes with a radius unaltered from that of the original core inefficiently returned the signal produced upon binding the fluorescent-labelled antigen. To elucidate the limiting factors in signal acquisition, a series of fibers with increasingly reduced probe core radius was examined. The results were consistent with the V-number mismatch, the difference in mode carrying capacity between the clad and unclad fiber, being a critical factor in limiting signal coupling from the fiber probe. However, it was also delineated that conditions which conserve excitation power, such that power in the evanescent wave is optimized, must also be met to obtain a maximal signal. The threshold sensitivity for the optimal step-etched fiber probe was improved by over 20-fold in an immunoassay, although, it was demonstrated that signal acquisition decreased along the probe length, suggesting that a sensor region of uniform radius is not ideal.

  15. Isoflurane produces antidepressant effects and induces TrkB signaling in rodents

    DEFF Research Database (Denmark)

    Antila, Hanna; Ryazantseva, Maria; Popova, Dina

    2017-01-01

    in the learned helplessness paradigm and regulates molecular events implicated in the mechanism of action of rapid-acting antidepressant ketamine: activation of brain-derived neurotrophic factor (BDNF) receptor TrkB, facilitation of mammalian target of rapamycin (mTOR) signaling pathway and inhibition...

  16. MONITORING OF A GLUTEN CONTENT IN SELECTED MEAT PRODUCTS FROM THREE BIGGEST MEAT PRODUCERS IN SLOVAKIA

    Directory of Open Access Journals (Sweden)

    Ladislav Staruch

    2012-02-01

    Full Text Available The work is focused on a monitoring of a gluten content in selected meat products from three biggest and most popular meat producers in Slovakia. Gluten is a type of protein complex which is typical naturally presented component of wheat, barley and rye. Flour from this sources with natural gluten content is also added into the some type of meat products and other foodstuffs for a technological reasons hand in hand with economic reasons.  Some of the gluten quantities could be hazardous for sensitive people as celiatics and allergic to gluten. Within the context of this reasons there is a need to control the amounts of this hidden type of gluten inclusive of spice mixes using in a meat production. Monitoring by itself was realized with a use of the sandwich ELISA RIDASCREEN® Fast Gliadin test. ELISA means enzyme linked immunosorbent assay. It is based on a specific reaction among the enzyme and antigen leading to a creation of a complex.  This test provides us exact quantitification of a gluten content in this type of food products using a colorimetric reaction of a complex by observing of all fundamentals of this technique. There were analysed 16 meat products and 5 types of spice mixes in total.doi:10.5219/167

  17. Data eye monitor method and apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Gara, Alan G [Mount Kisco, NY; Marcella, James A [Rochester, MN; Ohmacht, Martin [Yorktown Heights, NY

    2012-01-31

    An apparatus and method for providing a data eye monitor. The data eye monitor apparatus utilizes an inverter/latch string circuit and a set of latches to save the data eye for providing an infinite persistent data eye. In operation, incoming read data signals are adjusted in the first stage individually and latched to provide the read data to the requesting unit. The data is also simultaneously fed into a balanced XOR tree to combine the transitions of all incoming read data signals into a single signal. This signal is passed along a delay chain and tapped at constant intervals. The tap points are fed into latches, capturing the transitions at a delay element interval resolution. Using XORs, differences between adjacent taps and therefore transitions are detected. The eye is defined by segments that show no transitions over a series of samples. The eye size and position can be used to readjust the delay of incoming signals and/or to control environment parameters like voltage, clock speed and temperature.

  18. Uncertainty Quantification for Monitoring of Civil Structures from Vibration Measurements

    Science.gov (United States)

    Döhler, Michael; Mevel, Laurent

    2014-05-01

    Health Monitoring of civil structures can be performed by detecting changes in the modal parameters of a structure, or more directly in the measured vibration signals. For a continuous monitoring the excitation of a structure is usually ambient, thus unknown and assumed to be noise. Hence, all estimates from the vibration measurements are realizations of random variables with inherent uncertainty due to (unknown) process and measurement noise and finite data length. In this talk, a strategy for quantifying the uncertainties of modal parameter estimates from a subspace-based system identification approach is presented and the importance of uncertainty quantification in monitoring approaches is shown. Furthermore, a damage detection method is presented, which is based on the direct comparison of the measured vibration signals without estimating modal parameters, while taking the statistical uncertainty in the signals correctly into account. The usefulness of both strategies is illustrated on data from a progressive damage action on a prestressed concrete bridge. References E. Carden and P. Fanning. Vibration based condition monitoring: a review. Structural Health Monitoring, 3(4):355-377, 2004. M. Döhler and L. Mevel. Efficient multi-order uncertainty computation for stochastic subspace identification. Mechanical Systems and Signal Processing, 38(2):346-366, 2013. M. Döhler, L. Mevel, and F. Hille. Subspace-based damage detection under changes in the ambient excitation statistics. Mechanical Systems and Signal Processing, 45(1):207-224, 2014.

  19. Artificial neural network with self-organizing mapping for reactor stability monitoring

    International Nuclear Information System (INIS)

    Okumura, Motofumi; Tsuji, Masashi; Shimazu, Yoichiro; Narabayashi, Tadashi

    2008-01-01

    In BWR stability monitoring damping ratio has been used as a stability index. A method for estimating the damping ratio by applying Principal Component Analysis (PCA) to neutron detector signals measured with local power range monitors (LPRMs) had been developed; In this method, measured fluctuating signal is decomposed into some independent components and the signal component directly related to stability is extracted among them to determine the damping ratio. For online monitoring, it is necessary to select stability related signal component efficiently. The self-organizing map (SOM) is one of the artificial neural networks and has the characteristics such that online learning is possible without supervised learning within a relatively short time. In the present study, the SOM was applied to extract the relevant signal component more quickly and more accurately, and the availability was confirmed through the feasibility study. (author)

  20. A vibration-based health monitoring program for a large and seismically vulnerable masonry dome

    Science.gov (United States)

    Pecorelli, M. L.; Ceravolo, R.; De Lucia, G.; Epicoco, R.

    2017-05-01

    Vibration-based health monitoring of monumental structures must rely on efficient and, as far as possible, automatic modal analysis procedures. Relatively low excitation energy provided by traffic, wind and other sources is usually sufficient to detect structural changes, as those produced by earthquakes and extreme events. Above all, in-operation modal analysis is a non-invasive diagnostic technique that can support optimal strategies for the preservation of architectural heritage, especially if complemented by model-driven procedures. In this paper, the preliminary steps towards a fully automated vibration-based monitoring of the world’s largest masonry oval dome (internal axes of 37.23 by 24.89 m) are presented. More specifically, the paper reports on signal treatment operations conducted to set up the permanent dynamic monitoring system of the dome and to realise a robust automatic identification procedure. Preliminary considerations on the effects of temperature on dynamic parameters are finally reported.

  1. Novel Flexible Wearable Sensor Materials and Signal Processing for Vital Sign and Human Activity Monitoring.

    Science.gov (United States)

    Servati, Amir; Zou, Liang; Wang, Z Jane; Ko, Frank; Servati, Peyman

    2017-07-13

    Advances in flexible electronic materials and smart textile, along with broad availability of smart phones, cloud and wireless systems have empowered the wearable technologies for significant impact on future of digital and personalized healthcare as well as consumer electronics. However, challenges related to lack of accuracy, reliability, high power consumption, rigid or bulky form factor and difficulty in interpretation of data have limited their wide-scale application in these potential areas. As an important solution to these challenges, we present latest advances in novel flexible electronic materials and sensors that enable comfortable and conformable body interaction and potential for invisible integration within daily apparel. Advances in novel flexible materials and sensors are described for wearable monitoring of human vital signs including, body temperature, respiratory rate and heart rate, muscle movements and activity. We then present advances in signal processing focusing on motion and noise artifact removal, data mining and aspects of sensor fusion relevant to future clinical applications of wearable technology.

  2. Differential-output B-dot and D-dot monitors for current and voltage measurements on a 20-MA, 3-MV pulsed-power accelerator

    Directory of Open Access Journals (Sweden)

    T. C. Wagoner

    2008-10-01

    Full Text Available We have developed a system of differential-output monitors that diagnose current and voltage in the vacuum section of a 20-MA 3-MV pulsed-power accelerator. The system includes 62 gauges: 3 current and 6 voltage monitors that are fielded on each of the accelerator’s 4 vacuum-insulator stacks, 6 current monitors on each of the accelerator’s 4 outer magnetically insulated transmission lines (MITLs, and 2 current monitors on the accelerator’s inner MITL. The inner-MITL monitors are located 6 cm from the axis of the load. Each of the stack and outer-MITL current monitors comprises two separate B-dot sensors, each of which consists of four 3-mm-diameter wire loops wound in series. The two sensors are separately located within adjacent cavities machined out of a single piece of copper. The high electrical conductivity of copper minimizes penetration of magnetic flux into the cavity walls, which minimizes changes in the sensitivity of the sensors on the 100-ns time scale of the accelerator’s power pulse. A model of flux penetration has been developed and is used to correct (to first order the B-dot signals for the penetration that does occur. The two sensors are designed to produce signals with opposite polarities; hence, each current monitor may be regarded as a single detector with differential outputs. Common-mode-noise rejection is achieved by combining these signals in a 50-Ω balun. The signal cables that connect the B-dot monitors to the balun are chosen to provide reasonable bandwidth and acceptable levels of Compton drive in the bremsstrahlung field of the accelerator. A single 50-Ω cable transmits the output signal of each balun to a double-wall screen room, where the signals are attenuated, digitized (0.5-ns/sample, numerically compensated for cable losses, and numerically integrated. By contrast, each inner-MITL current monitor contains only a single B-dot sensor. These monitors are fielded in opposite-polarity pairs. The two

  3. Experimental demonstration of adaptive digital monitoring and compensation of chromatic dispersion for coherent DP-QPSK receiver

    DEFF Research Database (Denmark)

    Borkowski, Robert; Zhang, Xu; Zibar, Darko

    2011-01-01

    We experimentally demonstrate a digital signal processing (DSP)-based optical performance monitoring (OPM) algorithm for inservice monitoring of chromatic dispersion (CD) in coherent transport networks. Dispersion accumulated in 40 Gbit/s QPSK signal after 80 km of fiber transmission is successfu...... drives an adaptive digital CD equalizer. © 2011 Optical Society of America.......We experimentally demonstrate a digital signal processing (DSP)-based optical performance monitoring (OPM) algorithm for inservice monitoring of chromatic dispersion (CD) in coherent transport networks. Dispersion accumulated in 40 Gbit/s QPSK signal after 80 km of fiber transmission...

  4. Three-dimensional WS2 nanosheet networks for H2O2 produced for cell signaling

    Science.gov (United States)

    Tang, Jing; Quan, Yingzhou; Zhang, Yueyu; Jiang, Min; Al-Enizi, Abdullah M.; Kong, Biao; An, Tiance; Wang, Wenshuo; Xia, Limin; Gong, Xingao; Zheng, Gengfeng

    2016-03-01

    Hydrogen peroxide (H2O2) is an important molecular messenger for cellular signal transduction. The capability of direct probing of H2O2 in complex biological systems can offer potential for elucidating its manifold roles in living systems. Here we report the fabrication of three-dimensional (3D) WS2 nanosheet networks with flower-like morphologies on a variety of conducting substrates. The semiconducting WS2 nanosheets with largely exposed edge sites on flexible carbon fibers enable abundant catalytically active sites, excellent charge transfer, and high permeability to chemicals and biomaterials. Thus, the 3D WS2-based nano-bio-interface exhibits a wide detection range, high sensitivity and rapid response time for H2O2, and is capable of visualizing endogenous H2O2 produced in living RAW 264.7 macrophage cells and neurons. First-principles calculations further demonstrate that the enhanced sensitivity of probing H2O2 is attributed to the efficient and spontaneous H2O2 adsorption on WS2 nanosheet edge sites. The combined features of 3D WS2 nanosheet networks suggest attractive new opportunities for exploring the physiological roles of reactive oxygen species like H2O2 in living systems.Hydrogen peroxide (H2O2) is an important molecular messenger for cellular signal transduction. The capability of direct probing of H2O2 in complex biological systems can offer potential for elucidating its manifold roles in living systems. Here we report the fabrication of three-dimensional (3D) WS2 nanosheet networks with flower-like morphologies on a variety of conducting substrates. The semiconducting WS2 nanosheets with largely exposed edge sites on flexible carbon fibers enable abundant catalytically active sites, excellent charge transfer, and high permeability to chemicals and biomaterials. Thus, the 3D WS2-based nano-bio-interface exhibits a wide detection range, high sensitivity and rapid response time for H2O2, and is capable of visualizing endogenous H2O2 produced in

  5. Development of a system to monitor laryngeal movement during swallowing using a bend sensor.

    Directory of Open Access Journals (Sweden)

    Qiang Li

    Full Text Available BACKGROUND: Swallowing dysfunction (also known as dysphagia, which results in a deterioration of nutritional intake, slows rehabilitation and causes aspiration pneumonia, is very common following neurological impairments. Although videofluorographic (VF examination is widely used for detecting aspiration, an objective and non-invasive method for assessing swallowing function has yet to be established because of a lack of adequate devices and protocols. In this paper, a bend sensor whose resistance is altered by bending was introduced to monitor swallowing-related laryngeal movement. METHODS: Six healthy male volunteers were recruited in the present study. Specific time points on the signal waveform produced by the bend sensor were defined to describe laryngeal movement by differential analysis. Additionally, the physiological significance of the obtained waveform was confirmed by analyzing the sequential correlations between the signal waveform from the bend sensor and hyoid bone kinetics simultaneously recorded by VF. RESULTS: Seven time points were successfully defined on the signal waveform to reference laryngeal movement. Each time point was well correlated with certain VF events, with evidence of no significant time lags, and there were positive correlations between waveform time points and matched VF events. Furthermore, obvious similarities were noticed between the duration of each phase on the signal waveform and the duration of the matched hyoid bone activity. CONCLUSIONS: The present monitoring system using a bend sensor might be useful for observing the temporal aspects of laryngeal movement during swallowing, and it was well coordinated with hyoid bone movement.

  6. Beam-ripple monitor with secondary electrons

    International Nuclear Information System (INIS)

    Sato, Shinji; Kanazawa, Mitsutaka; Noda, Koji; Takada, Eiichi; Komiyama, Akihito; Ichinohe, Ken-ichi; Sano, Yoshinobu

    1997-01-01

    To replace the scintillation-ripple monitor, we have developed a new monitor with a smaller destructive effect on the beam. In this monitor, we use secondary electrons emitted from an aluminum foil with a thickness of 2 μm. The signals of secondary electrons are amplified by an electron multiplier having a maximum gain of 10 6 . By using the new monitor, we could clearly observe the beam ripple with a beam intensity of 3.6x10 8 pps (particle per second). This monitor can also be used as an intensity monitor in the range of 10 4 - 10 9 pps. (author)

  7. Identification of 5-hydroxytryptamine-producing cells by detection of fluorescence in paraffin-embedded tissue sections

    Directory of Open Access Journals (Sweden)

    Y. Kaneko

    2016-09-01

    Full Text Available 5-Hydroxytryptamine (5-HT produced by enterochromaffin (EC cells is an important enteric mucosal signaling ligand and has been implicated in several gastrointestinal diseases, including inflammatory bowel disease and functional disorders such as irritable bowel syndrome. The present study reports a new, simple and rapid visualization method of 5-HT-producing EC cells utilizing detection of autofluorescence in paraffin-embedded tissue sections after formalin fixation. In human samples, there was a high incidence of autofluorescence+ cells in the 5-HT+ cells in the pyloric, small intestinal and colonic glands, while co-localization was lacking between autofluorescence+ and gastrin+ cells in the pyloric and small intestinal glands. Autofluorescence+ EC cells were detected in the colon of mice and rats. Autofluorescence+ cells were also observed in 5-HT+ β cells in the pancreatic islets of Langerhans in pregnant mice, while non-pregnant mouse pancreatic islet cells showed no 5-HT immunoreactivity or autofluorescence. These results suggest that autofluorescence+ cells are identical to 5-HT+ cells, and the source of autofluorescence may be 5-HT itself or molecules related to its synthesis or degradation. This autofluorescence signal detection method may be applicable for monitoring of inflammatory status of inflammatory bowel diseases in both the experimental and clinical settings.

  8. Preliminary Design of Monitoring and Control Subsystem for GNSS Ground Station

    Directory of Open Access Journals (Sweden)

    Seongkyun Jeong

    2008-06-01

    Full Text Available GNSS (Global Navigation Satellite System Ground Station monitors navigation satellite signal, analyzes navigation result, and uploads correction information to satellite. GNSS Ground Station is considered as a main object for constructing GNSS infra-structure and applied in various fields. ETRI (Electronics and Telecommunications Research Institute is developing Monitoring and Control subsystem, which is subsystem of GNSS Ground Station. Monitoring and Control subsystem acquires GPS and Galileo satellite signal and provides signal monitoring data to GNSS control center. In this paper, the configurations of GNSS Ground Station and Monitoring and Control subsystem are introduced and the preliminary design of Monitoring and Control subsystem is performed. Monitoring and Control subsystem consists of data acquisition module, data formatting and archiving module, data error correction module, navigation solution determination module, independent quality monitoring module, and system operation and maintenance module. The design process uses UML (Unified Modeling Language method which is a standard for developing software and consists of use-case modeling, domain design, software structure design, and user interface structure design. The preliminary design of Monitoring and Control subsystem enhances operation capability of GNSS Ground Station and is used as basic material for detail design of Monitoring and Control subsystem.

  9. Contact-Free Heartbeat Signal for Human Identification and Forensics

    DEFF Research Database (Denmark)

    Nasrollahi, Kamal; Haque, Mohammad Ahsanul; Irani, Ramin

    2017-01-01

    The heartbeat signal, which is one of the physiological signals, is of great importance in many real-world applications, for example, in patient monitoring and biometric recognition. The traditional methods for measuring such this signal use contact-based sensors that need to be installed...... been developed for contact-free extraction of the heartbeat signal. We have recently used the contact-free measured heartbeat signal, for bio- metric recognition, and have obtained promising results, indicating the importance of these signals for biometrics recognition and also for forensics...

  10. Producing Distribution Maps for a Spatially-Explicit Ecosystem Model Using Large Monitoring and Environmental Databases and a Combination of Interpolation and Extrapolation

    Directory of Open Access Journals (Sweden)

    Arnaud Grüss

    2018-01-01

    Full Text Available To be able to simulate spatial patterns of predator-prey interactions, many spatially-explicit ecosystem modeling platforms, including Atlantis, need to be provided with distribution maps defining the annual or seasonal spatial distributions of functional groups and life stages. We developed a methodology combining extrapolation and interpolation of the predictions made by statistical habitat models to produce distribution maps for the fish and invertebrates represented in the Atlantis model of the Gulf of Mexico (GOM Large Marine Ecosystem (LME (“Atlantis-GOM”. This methodology consists of: (1 compiling a large monitoring database, gathering all the fisheries-independent and fisheries-dependent data collected in the northern (U.S. GOM since 2000; (2 compiling a large environmental database, storing all the environmental parameters known to influence the spatial distribution patterns of fish and invertebrates of the GOM; (3 fitting binomial generalized additive models (GAMs to the large monitoring and environmental databases, and geostatistical binomial generalized linear mixed models (GLMMs to the large monitoring database; and (4 employing GAM predictions to infer spatial distributions in the southern GOM, and GLMM predictions to infer spatial distributions in the U.S. GOM. Thus, our methodology allows for reasonable extrapolation in the southern GOM based on a large amount of monitoring and environmental data, and for interpolation in the U.S. GOM accurately reflecting the probability of encountering fish and invertebrates in that region. We used an iterative cross-validation procedure to validate GAMs. When a GAM did not pass the validation test, we employed a GAM for a related functional group/life stage to generate distribution maps for the southern GOM. In addition, no geostatistical GLMMs were fit for the functional groups and life stages whose depth, longitudinal and latitudinal ranges within the U.S. GOM are not entirely covered by

  11. Monitoring UV-induced signalling pathways in an ex vivo skin organ culture model using phospho-antibody array.

    Science.gov (United States)

    Lenain, Christelle; Gamboa, Bastien; Perrin, Agnes; Séraïdaris, Alexia; Bertino, Béatrice; Rival, Yves; Bernardi, Mathieu; Piwnica, David; Méhul, Bruno

    2018-05-01

    We investigated UV-induced signalling in an ex vivo skin organ culture model using phospho-antibody array. Phosphorylation modulations were analysed in time-course experiments following exposure to solar-simulated UV and validated by Western blot analyses. We found that UV induced P-p38 and its substrates, P-ERK1/2 and P-AKT, which were previously shown to be upregulated by UV in cultured keratinocytes and in vivo human skin. This indicates that phospho-antibody array applied to ex vivo skin organ culture is a relevant experimental system to investigate signalling events following perturbations. As the identified proteins are components of pathways implicated in skin tumorigenesis, UV-exposed skin organ culture model could be used to investigate the effect on these pathways of NMSC cancer drug candidates. In addition, we found that phospho-HCK is induced upon UV exposure, producing a new candidate for future studies investigating its role in the skin response to UV and UV-induced carcinogenesis. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Ultrasound and photoacoustic imaging to monitor ocular stem cell delivery and tissue regeneration (Conference Presentation)

    Science.gov (United States)

    Kubelick, Kelsey; Snider, Eric; Yoon, Heechul; Ethier, C. Ross; Emelianov, Stanislav Y.

    2017-03-01

    Glaucoma is associated with dysfunction of the trabecular meshwork (TM), a fluid drainage tissue in the anterior eye. A promising treatment involves delivery of stem cells to the TM to restore tissue function. Currently histology is the gold standard for tracking stem cell delivery and differentiation. To expedite clinical translation, non-invasive longitudinal monitoring in vivo is desired. Our current research explores a technique combining ultrasound (US) and photoacoustic (PA) imaging to track mesenchymal stem cells (MSCs) after intraocular injection. Adipose-derived MSCs were incubated with gold nanospheres to label cells (AuNS-MSCs) for PA imaging. Successful labeling was first verified with in vitro phantom studies. Next, MSC delivery was imaged ex vivo in porcine eyes, while intraocular pressure was hydrostatically clamped to maintain a physiological flow rate through the TM. US/PA imaging was performed before, during, and after AuNS-MSC delivery. Additionally, spectroscopic PA imaging was implemented to isolate PA signals from AuNS-MSCs. In vitro cell imaging showed AuNS-MSCs produce strong PA signals, suggesting that MSCs can be tracked using PA imaging. While the cornea, sclera, iris, and TM region can be visualized with US imaging, pigmented tissues also produce PA signals. Both modalities provide valuable anatomical landmarks for MSC localization. During delivery, PA imaging can visualize AuNS-MSC motion and location, creating a unique opportunity to guide ocular cell delivery. Lastly, distinct spectral signatures of AuNS-MSCs allow unmixing, with potential for quantitative PA imaging. In conclusion, results show proof-of-concept for monitoring MSC ocular delivery, raising opportunities for in vivo image-guided cell delivery.

  13. System for monitoring an industrial or biological process

    Science.gov (United States)

    Gross, Kenneth C.; Wegerich, Stephan W.; Vilim, Rick B.; White, Andrew M.

    1998-01-01

    A method and apparatus for monitoring and responding to conditions of an industrial process. Industrial process signals, such as repetitive manufacturing, testing and operational machine signals, are generated by a system. Sensor signals characteristic of the process are generated over a time length and compared to reference signals over the time length. The industrial signals are adjusted over the time length relative to the reference signals, the phase shift of the industrial signals is optimized to the reference signals and the resulting signals output for analysis by systems such as SPRT.

  14. ECG Holter monitor with alert system and mobile application

    Science.gov (United States)

    Teron, Abigail C.; Rivera, Pedro A.; Goenaga, Miguel A.

    2016-05-01

    This paper proposes a new approach on the Holter monitor by creating a portable Electrocardiogram (ECG) Holter monitor that will alert the user by detecting abnormal heart beats using a digital signal processing software. The alarm will be triggered when the patient experiences arrhythmias such as bradycardia and tachycardia. The equipment is simple, comfortable and small in size that fit in the hand. It can be used at any time and any moment by placing three leads to the person's chest which is connected to an electronic circuit. The ECG data will be transmitted via Bluetooth to the memory of a selected mobile phone using an application that will store the collected data for up to 24 hrs. The arrhythmia is identified by comparing the reference signals with the user's signal. The diagnostic results demonstrate that the ECG Holter monitor alerts the user when an arrhythmia is detected thru the Holter monitor and mobile application.

  15. Potential of acoustic monitoring for safety assessment of primary system

    International Nuclear Information System (INIS)

    Olma, B.J.

    1997-01-01

    Safety assessment of the primary system and its components with respect to their mechanical integrity is increasingly supported by acoustic signature analysis during power operation of the plants. Acoustic signals of Loose Parts Monitoring System sensors are continuously monitored by dedicated digital systems for signal bursts associated with metallic impacts. Several years of ISTec/GRS experience and the practical use of its digital systems MEDEA and RAMSES have shown that acoustic monitoring is very successful for detecting component failures at an early stage. Advanced powerful tools for classification and acoustic evaluation of burst signals have recently been realized. The paper presents diagnosis experiences of BWR's and PWR's safety assessment. (author). 7 refs, 8 figs

  16. Enhancement of Twins Fetal ECG Signal Extraction Based on Hybrid Blind Extraction Techniques

    Directory of Open Access Journals (Sweden)

    Ahmed Kareem Abdullah

    2017-07-01

    Full Text Available ECG machines are noninvasive system used to measure the heartbeat signal. It’s very important to monitor the fetus ECG signals during pregnancy to check the heat activity and to detect any problem early before born, therefore the monitoring of ECG signals have clinical significance and importance. For multi-fetal pregnancy case the classical filtering algorithms are not sufficient to separate the ECG signals between mother and fetal. In this paper the mixture consists of mixing from three ECG signals, the first signal is the mother ECG (M-ECG signal, second signal the Fetal-1 ECG (F1-ECG, and third signal is the Fetal-2 ECG (F2-ECG, these signals are extracted based on modified blind source extraction (BSE techniques. The proposed work based on hybridization between two BSE techniques to ensure that the extracted signals separated well. The results demonstrate that the proposed work very efficiently to extract the useful ECG signals

  17. Motile cilia of human airway epithelia contain hedgehog signaling components that mediate noncanonical hedgehog signaling.

    Science.gov (United States)

    Mao, Suifang; Shah, Alok S; Moninger, Thomas O; Ostedgaard, Lynda S; Lu, Lin; Tang, Xiao Xiao; Thornell, Ian M; Reznikov, Leah R; Ernst, Sarah E; Karp, Philip H; Tan, Ping; Keshavjee, Shaf; Abou Alaiwa, Mahmoud H; Welsh, Michael J

    2018-02-06

    Differentiated airway epithelia produce sonic hedgehog (SHH), which is found in the thin layer of liquid covering the airway surface. Although previous studies showed that vertebrate HH signaling requires primary cilia, as airway epithelia mature, the cells lose primary cilia and produce hundreds of motile cilia. Thus, whether airway epithelia have apical receptors for SHH has remained unknown. We discovered that motile cilia on airway epithelial cells have HH signaling proteins, including patched and smoothened. These cilia also have proteins affecting cAMP-dependent signaling, including Gα i and adenylyl cyclase 5/6. Apical SHH decreases intracellular levels of cAMP, which reduces ciliary beat frequency and pH in airway surface liquid. These results suggest that apical SHH may mediate noncanonical HH signaling through motile cilia to dampen respiratory defenses at the contact point between the environment and the lung, perhaps counterbalancing processes that stimulate airway defenses. Copyright © 2018 the Author(s). Published by PNAS.

  18. Revolutionary optical sensor for physiological monitoring in the battlefield

    Science.gov (United States)

    Kingsley, Stuart A.; Sriram, Sriram; Pollick, Andrea; Marsh, John

    2004-09-01

    SRICO has developed a revolutionary approach to physiological status monitoring using state-of-the-art optical chip technology. The company"s patent pending Photrode is a photonic electrode that uses unique optical voltage sensing technology to measure and monitor electrophysiological parameters. The optical-based monitoring system enables dry-contact measurements of EEG and ECG signals that require no surface preparation or conductive gel and non-contact measurements of ECG signals through the clothing. The Photrode applies high performance optical integrated circuit technology, that has been successfully implemented in military & commercial aerospace, missile, and communications applications for sensing and signal transmission. SRICO"s award winning Photrode represents a new paradigm for the measurement of biopotentials in a reliable, convenient, and non-intrusive manner. Photrode technology has significant applications on the battlefield for rapid triage to determine the brain dead from those with viable brain function. An ECG may be obtained over the clothing without any direct skin contact. Such applications would enable the combat medic to receive timely medical information and to make important decisions regarding identification, location, triage priority and treatment of casualties. Other applications for the Photrode include anesthesia awareness monitoring, sleep medicine, mobile medical monitoring for space flight, emergency patient care, functional magnetic resonance imaging, various biopotential signal acquisition (EMG, EOG), and routine neuro and cardio diagnostics.

  19. A novel noncontact electromagnetic field-based sensor for the monitoring of resonant fatigue tests

    International Nuclear Information System (INIS)

    Nam, Si-Byung; Yun, Gun Jin; Binienda, Wieslaw; Carletta, Joan; Kim, Dong-Han

    2011-01-01

    In this paper, a prototype of an electromagnetic field-based (EFB) vibration sensor that uses a novel sensing technique to monitor the resonant fatigue testing of a conductive and/or ferromagnetic target specimen is presented. The distance from the target to a coil within the sensor affects the impedance of the coil. The electronic circuitry for the sensor consists of a relaxation oscillator, an embedded microprocessor module and a high-speed digital-to-analog converter. The impedance of the coil determines the frequency of oscillation of the relaxation oscillator's output, so that vibration of the target causes changes in the oscillation frequency. A timer in the embedded microprocessor module is used to count the oscillations, producing a digital signal that indicates the coil-to-target distance. The digital signal is instantaneously converted to an analog signal to produce the sensor's output. The key technologies proposed include: (1) a novel timer counting method using the input capture functionality and timer of the embedded microprocessor module and (2) significant simplification of the analog electronic circuitry. The performance of the proposed sensor has been verified using AISI 1095 carbon steel and Al6061–T6 aluminum alloy specimens during resonant fatigue tests. The sensor shows a good linearity between displacement amplitudes and output voltages

  20. Microseismic Monitoring Design Optimization Based on Multiple Criteria Decision Analysis

    Science.gov (United States)

    Kovaleva, Y.; Tamimi, N.; Ostadhassan, M.

    2017-12-01

    Borehole microseismic monitoring of hydraulic fracture treatments of unconventional reservoirs is a widely used method in the oil and gas industry. Sometimes, the quality of the acquired microseismic data is poor. One of the reasons for poor data quality is poor survey design. We attempt to provide a comprehensive and thorough workflow, using multiple criteria decision analysis (MCDA), to optimize planning micriseismic monitoring. So far, microseismic monitoring has been used extensively as a powerful tool for determining fracture parameters that affect the influx of formation fluids into the wellbore. The factors that affect the quality of microseismic data and their final results include average distance between microseismic events and receivers, complexity of the recorded wavefield, signal-to-noise ratio, data aperture, etc. These criteria often conflict with each other. In a typical microseismic monitoring, those factors should be considered to choose the best monitoring well(s), optimum number of required geophones, and their depth. We use MDCA to address these design challenges and develop a method that offers an optimized design out of all possible combinations to produce the best data acquisition results. We believe that this will be the first research to include the above-mentioned factors in a 3D model. Such a tool would assist companies and practicing engineers in choosing the best design parameters for future microseismic projects.

  1. Signaling aggression.

    Science.gov (United States)

    van Staaden, Moira J; Searcy, William A; Hanlon, Roger T

    2011-01-01

    From psychological and sociological standpoints, aggression is regarded as intentional behavior aimed at inflicting pain and manifested by hostility and attacking behaviors. In contrast, biologists define aggression as behavior associated with attack or escalation toward attack, omitting any stipulation about intentions and goals. Certain animal signals are strongly associated with escalation toward attack and have the same function as physical attack in intimidating opponents and winning contests, and ethologists therefore consider them an integral part of aggressive behavior. Aggressive signals have been molded by evolution to make them ever more effective in mediating interactions between the contestants. Early theoretical analyses of aggressive signaling suggested that signals could never be honest about fighting ability or aggressive intentions because weak individuals would exaggerate such signals whenever they were effective in influencing the behavior of opponents. More recent game theory models, however, demonstrate that given the right costs and constraints, aggressive signals are both reliable about strength and intentions and effective in influencing contest outcomes. Here, we review the role of signaling in lieu of physical violence, considering threat displays from an ethological perspective as an adaptive outcome of evolutionary selection pressures. Fighting prowess is conveyed by performance signals whose production is constrained by physical ability and thus limited to just some individuals, whereas aggressive intent is encoded in strategic signals that all signalers are able to produce. We illustrate recent advances in the study of aggressive signaling with case studies of charismatic taxa that employ a range of sensory modalities, viz. visual and chemical signaling in cephalopod behavior, and indicators of aggressive intent in the territorial calls of songbirds. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Investigating the possible effect of electrode support structure on motion artifact in wearable bioelectric signal monitoring.

    Science.gov (United States)

    Cömert, Alper; Hyttinen, Jari

    2015-05-15

    With advances in technology and increasing demand, wearable biosignal monitoring is developing and new applications are emerging. One of the main challenges facing the widespread use of wearable monitoring systems is the motion artifact. The sources of the motion artifact lie in the skin-electrode interface. Reducing the motion and deformation at this interface should have positive effects on signal quality. In this study, we aim to investigate whether the structure supporting the electrode can be designed to reduce the motion artifact with the hypothesis that this can be achieved by stabilizing the skin deformations around the electrode. We compare four textile electrodes with different support structure designs: a soft padding larger than the electrode area, a soft padding larger than the electrode area with a novel skin deformation restricting design, a soft padding the same size as the electrode area, and a rigid support the same size as the electrode. With five subjects and two electrode locations placed over different kinds of tissue at various mounting forces, we simultaneously measured the motion artifact, a motion affected ECG, and the real-time skin-electrode impedance during the application of controlled motion to the electrodes. The design of the electrode support structure has an effect on the generated motion artifact; good design with a skin stabilizing structure makes the electrodes physically more motion artifact resilient, directly affecting signal quality. Increasing the applied mounting force shows a positive effect up to 1,000 gr applied force. The properties of tissue under the electrode are an important factor in the generation of the motion artifact and the functioning of the electrodes. The relationship of motion artifact amplitude to the electrode movement magnitude is seen to be linear for smaller movements. For larger movements, the increase of motion generated a disproportionally larger artifact. The motion artifact and the induced

  3. SignalPlant: an open signal processing software platform.

    Science.gov (United States)

    Plesinger, F; Jurco, J; Halamek, J; Jurak, P

    2016-07-01

    The growing technical standard of acquisition systems allows the acquisition of large records, often reaching gigabytes or more in size as is the case with whole-day electroencephalograph (EEG) recordings, for example. Although current 64-bit software for signal processing is able to process (e.g. filter, analyze, etc) such data, visual inspection and labeling will probably suffer from rather long latency during the rendering of large portions of recorded signals. For this reason, we have developed SignalPlant-a stand-alone application for signal inspection, labeling and processing. The main motivation was to supply investigators with a tool allowing fast and interactive work with large multichannel records produced by EEG, electrocardiograph and similar devices. The rendering latency was compared with EEGLAB and proves significantly faster when displaying an image from a large number of samples (e.g. 163-times faster for 75  ×  10(6) samples). The presented SignalPlant software is available free and does not depend on any other computation software. Furthermore, it can be extended with plugins by third parties ensuring its adaptability to future research tasks and new data formats.

  4. Gamma-ray and neutron area monitoring system of linear IFMIF prototype accelerator building

    International Nuclear Information System (INIS)

    Takahashi, Hiroki; Kojima, Toshiyuki; Narita, Takahiro; Tsutsumi, Kazuyoshi; Maebara, Sunao; Sakaki, Hironao; Nishiyama, Koichi

    2013-01-01

    Highlights: • Area monitoring system and control system are needed for LIPAc radiation management. • To secure the radiation safety, these systems are linked with two kinds of data path. • Hardwired data paths are adopted to realize the fast transfer of interlock signals. • Dual LAN and shared memory are adopted to the reliable transfer of monitoring data. • Data transfers without unnecessary load are designed and configured for these systems. -- Abstract: The linear IFMIF prototype accelerator (LIPAc) produces deuteron beam with 1 MW power. Since huge number of neutrons occur from such a high power beam, therefore, it is important for the radiation management to design a high reliability area monitoring system for gamma-rays and neutrons. To obtain the valuable operation data of the high-power deuteron beam at LIPAc, it is important to link and record the beam operation data and the area monitoring data. We realize the reliable data transfer to provide the area monitoring data to the accelerator control system which needs a high reliability using the shared-memory data link method. This paper describes the area monitoring system in the LIPAc building and the data-link between this system and the LIPAc control system

  5. Real-time nondestructive monitoring of the gas tungsten arc welding (GTAW) process by combined airborne acoustic emission and non-contact ultrasonics

    Science.gov (United States)

    Zhang, Lu; Basantes-Defaz, Alexandra-Del-Carmen; Abbasi, Zeynab; Yuhas, Donald; Ozevin, Didem; Indacochea, Ernesto

    2018-03-01

    Welding is a key manufacturing process for many industries and may introduce defects into the welded parts causing significant negative impacts, potentially ruining high-cost pieces. Therefore, a real-time process monitoring method is important to implement for avoiding producing a low-quality weld. Due to high surface temperature and possible contamination of surface by contact transducers, the welding process should be monitored via non-contact transducers. In this paper, airborne acoustic emission (AE) transducers tuned at 60 kHz and non-contact ultrasonic testing (UT) transducers tuned at 500 kHz are implemented for real time weld monitoring. AE is a passive nondestructive evaluation method that listens for the process noise, and provides information about the uniformity of manufacturing process. UT provides more quantitative information about weld defects. One of the most common weld defects as burn-through is investigated. The influences of weld defects on AE signatures (time-driven data) and UT signals (received signal energy, change in peak frequency) are presented. The level of burn-through damage is defined by using single method or combine AE/UT methods.

  6. Structural health monitoring feature design by genetic programming

    International Nuclear Information System (INIS)

    Harvey, Dustin Y; Todd, Michael D

    2014-01-01

    Structural health monitoring (SHM) systems provide real-time damage and performance information for civil, aerospace, and other high-capital or life-safety critical structures. Conventional data processing involves pre-processing and extraction of low-dimensional features from in situ time series measurements. The features are then input to a statistical pattern recognition algorithm to perform the relevant classification or regression task necessary to facilitate decisions by the SHM system. Traditional design of signal processing and feature extraction algorithms can be an expensive and time-consuming process requiring extensive system knowledge and domain expertise. Genetic programming, a heuristic program search method from evolutionary computation, was recently adapted by the authors to perform automated, data-driven design of signal processing and feature extraction algorithms for statistical pattern recognition applications. The proposed method, called Autofead, is particularly suitable to handle the challenges inherent in algorithm design for SHM problems where the manifestation of damage in structural response measurements is often unclear or unknown. Autofead mines a training database of response measurements to discover information-rich features specific to the problem at hand. This study provides experimental validation on three SHM applications including ultrasonic damage detection, bearing damage classification for rotating machinery, and vibration-based structural health monitoring. Performance comparisons with common feature choices for each problem area are provided demonstrating the versatility of Autofead to produce significant algorithm improvements on a wide range of problems. (paper)

  7. Application of proton exchange membrane fuel cells for the monitoring and direct usage of biohydrogen produced by Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Oncel, S.; Vardar-Sukan, F. [Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Bornova, Izmir (Turkey)

    2011-01-01

    Photo-biologically produced hydrogen by Chlamydomonas reinhardtii is integrated with a proton exchange (PEM) fuel cell for online electricity generation. To investigate the fuel cell efficiency, the effect of hydrogen production on the open circuit fuel cell voltage is monitored during 27 days of batch culture. Values of volumetric hydrogen production, monitored by the help of the calibrated water columns, are related with the open circuit voltage changes of the fuel cell. From the analysis of this relation a dead end configuration is selected to use the fuel cell in its best potential. After the open circuit experiments external loads are tested for their effects on the fuel cell voltage and current generation. According to the results two external loads are selected for the direct usage of the fuel cell incorporating with the photobioreactors (PBR). Experiments with the PEM fuel cell generate a current density of 1.81 mA cm{sup -2} for about 50 h with 10 {omega} load and 0.23 mA cm{sup -2} for about 80 h with 100 {omega} load. (author)

  8. Failure Diagnosis System for a Ball-Screw by Using Vibration Signals

    Directory of Open Access Journals (Sweden)

    Won Gi Lee

    2015-01-01

    Full Text Available Recently, in order to reduce high maintenance costs and to increase operating ratio in manufacturing systems, condition-based maintenance (CBM has been developed. CBM is carried out with indicators, which show equipment’s faults and performance deterioration. In this study, indicator signal acquisition and condition monitoring are applied to a ball-screw-driven stage. Although ball-screw is a typical linearly reciprocating part and is widely used in industry, it has not gained attention to be diagnosed compared to rotating parts such as motor, pump, and bearing. First, the vibration-based monitoring method, which uses vibration signal to monitor the condition of a machine, is proposed. Second, Wavelet transform is used to analyze the defect signals in time-frequency domain. Finally, the failure diagnosis system is developed using the analysis, and then its performance is evaluated. Using the system, we estimated the severity of failure and detect the defect position. The low defect frequency (≈58.7 Hz is spread all over the time in the Wavelet-filtered signal with low frequency range. Its amplitude reflects the progress of defect. The defect position was found in the signal with high frequency range (768~1,536 Hz. It was detected from the interval between abrupt changes of signal.

  9. Instrumentation techniques for monitoring shock and detonation waves

    Science.gov (United States)

    Dick, R. D.; Parrish, R. L.

    1985-09-01

    CORRTEX (Continuous Reflectometry for Radius Versus Time Experiments), SLIFER (Shorted Location Indication by Frequency of Electrical Resonance), and pin probes were used to monitor several conditions of blasting such as the detonation velocity of the explosive, the functioning of the stemming column confining the explosive, and rock mass motion. CORRTEX is a passive device that employs time-domain reflectometry to interrogate the two-way transit time of a coaxial cable. SLIFER is an active device that monitors the changing frequency resulting from a change in length of a coaxial cable forming an element of an oscillator circuit. Pin probes in this application consist of RG-174 coaxial cables, each with an open circuit, placed at several known locations within the material. Each cable is connected to a pulse-forming network and a voltage source. When the cables are shorted by the advancing wave, time-distance data are produced from which a velocity can be computed. Each technique, installation of the gauge, examples of the signals, and interpretation of the records are described.

  10. Color formation monitoring of extruded melt mixed PP/MMT nanocomposite;Analise colorimetrica de nanocompositos PP/MMT obtidos via extrusao

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Kelen C. dos; Bertolino, Marcelo K. [Universidade Federal de Sao Carlos (PPGCEM/UFSCar), Sao Carlos, SP (Brazil). Programa de Pos-graduacao em Ciencia e Engenharia de Materiais; Canevarolo, Sebastiao V., E-mail: caneva@power.ufscar.b [Universidade Federal de Sao Carlos (UFSCar), Sao Carlos, SP (Brazil)

    2009-07-01

    This work advances the use of colorimeter technique to analyze the desegregation of the MMT clay tactoids during the preparation of PP/MMT nanocomposites via polymer melt compounding. X-ray diffraction and the light extinction level (turbidity) measured by the intensity of the detector's signal were used to monitoring platelet exfoliation. On tactoids exfoliation their size are reduced below the minimum particle size to produce light extinction (turbidity) and so the signal intensity reduces as the nano size composite is formed, the luminosity of nanocomposite increased as expected. The color formation was brown, yellow and green and it depends of the organoclay type. (author)

  11. Regression models of reactor diagnostic signals

    International Nuclear Information System (INIS)

    Vavrin, J.

    1989-01-01

    The application is described of an autoregression model as the simplest regression model of diagnostic signals in experimental analysis of diagnostic systems, in in-service monitoring of normal and anomalous conditions and their diagnostics. The method of diagnostics is described using a regression type diagnostic data base and regression spectral diagnostics. The diagnostics is described of neutron noise signals from anomalous modes in the experimental fuel assembly of a reactor. (author)

  12. Very early age concrete hydration characterization monitoring using piezoceramic based smart aggregates

    International Nuclear Information System (INIS)

    Kong, Qingzhao; Song, Gangbing; Hou, Shuang; Ji, Qing; Mo, Y L

    2013-01-01

    Very early age (0–20 h) concrete hydration is a complicated chemical reaction. During the very early age period, the concrete condition dramatically changes from liquid state to solid state. This paper presents the authors’ recent research on monitoring very early age concrete hydration characterization by using piezoceramic based smart aggregates. The smart aggregate (SA) transducer is designed as a sandwich structure using two marble blocks and a pre-soldered lead zirconate titanate (PZT) patch. Based on the electromechanical property of piezo materials, the PZT patches function as both actuators and sensors. In addition, the marble blocks provide reliable protection to the fragile PZT patch and develop the SA into a robust embedded actuator or sensor in the structure. The active-sensing approach, which involved a pair of smart aggregates with one as an actuator and the other one as a sensor, was applied in this paper’s experimental investigation of concrete hydration characterization monitoring. In order to completely understand the hydration condition of the inhomogeneous, over-cluttering, high-scattering characteristics of concrete (specifically of very early concrete), a swept sine wave and several constant frequency sine waves were chosen and produced by a function generator to excite the embedded actuating smart aggregate. The PZT vibration induced ultrasonic wave propagated through the concrete and was sent to the other smart aggregate sensor. The electrical signal transferred from the smart aggregate sensor was recorded during the test. As the concrete hydration reaction was occurring, the characteristic of the electrical signal continuously changed. This paper describes the successful investigation of the three states (the fluid state, the transition state, and the hardened state) of very early age concrete hydration based on classification of the received electrical signal. Specifically, the amplitude and frequency response of the electrical

  13. Development of laser weld monitoring system for PWR space grid

    International Nuclear Information System (INIS)

    Chung, Chin Man; Kim, Cheol Jung; Kim, Min Suk

    1998-06-01

    The laser welding monitoring system was developed to inspect PWR space grid welding for KNFC. The demands for this optical monitoring system were applied to Q.C. and process control in space grid welding. The thermal radiation signal from weld pool can be get the variation of weld pool size. The weld pool size and depth are verified by analyzed wavelength signals from weld pool. Applied this monitoring system in space grid weld, improved the weld productivity. (author). 4 refs., 5 tabs., 31 figs

  14. Non-stationary condition monitoring through event alignment

    DEFF Research Database (Denmark)

    Pontoppidan, Niels Henrik; Larsen, Jan

    2004-01-01

    We present an event alignment framework which enables change detection in non-stationary signals. change detection. Classical condition monitoring frameworks have been restrained to laboratory settings with stationary operating conditions, which are not resembling real world operation....... In this paper we apply the technique for non-stationary condition monitoring of large diesel engines based on acoustical emission sensor signals. The performance of the event alignment is analyzed in an unsupervised probabilistic detection framework based on outlier detection with either Principal Component...... Analysis or Gaussian Processes modeling. We are especially interested in the true performance of the condition monitoring performance with mixed aligned and unaligned data, e.g. detection of fault condition of unaligned examples versus false alarms of aligned normal condition data. Further, we expect...

  15. On-line monitoring for calibration reduction

    International Nuclear Information System (INIS)

    Hoffmann, Mario; Gran, Frauke Schmitt; Thunem, Harald P-J.

    2004-04-01

    On-Line Monitoring (OLM) of a channel's calibration state evaluates instrument channel performance by assessing its consistency with other plant indications. Industry and experience at several plants has shown this overall approach to be very effective in identifying instrument channels that are exhibiting degrading or inconsistent performance characteristics. The Halden Reactor Project has developed the signal validation system PEANO, which can be used to assist with the tasks of OLM. To further enhance the PEANO System for use as a calibration reduction tool, the following two additional modules have been developed; HRP Prox, which performs pre-processing and statistical analysis of signal data, Batch Monitoring Module (BMM), which is an off-line batch monitoring and reporting suite. The purpose and functionality of the HRP Prox and BMM modules are discussed in this report, as well as the improvements made to the PEANO Server to support these new modules. The Halden Reactor Project has established a Halden On-Line Monitoring User Group (HOLMUG), devoted to the discussion and implementation of on-line monitoring techniques in power plants. It is formed by utilities, vendors, regulatory bodies and research institutes that meet regularly to discuss implementation aspects of on-line monitoring, technical specification changes, cost-benefit analysis and regulatory issues. (Author)

  16. A bendable and wearable cardiorespiratory monitoring device fusing two noncontact sensor principles.

    Science.gov (United States)

    Teichmann, Daniel; De Matteis, Dennis; Bartelt, Thorsten; Walter, Marian; Leonhardt, Steffen

    2015-05-01

    A mobile device is presented for monitoring both respiration and pulse. The device is developed as a bendable/flexible inlay that can be placed in a shirt pocket or the inside pocket of a jacket. To achieve optimum monitoring performance, the device combines two sensor principles, which work in a safe noncontact way through several layers of cotton or other textiles. One sensor, based on magnetic induction, is intended for respiratory monitoring, and the other is a reflective photoplethysmography sensor intended for pulse detection. Because each sensor signal has some dependence on both physiological parameters, fusing the sensor signals allows enhanced signal coverage.

  17. Java online monitoring framework

    International Nuclear Information System (INIS)

    Ronan, M.; Kirkby, D.; Johnson, A.S.; Groot, D. de

    1997-10-01

    An online monitoring framework has been written in the Java Language Environment to develop applications for monitoring special purpose detectors during commissioning of the PEP-II Interaction Region. PEP-II machine parameters and signals from several of the commissioning detectors are logged through VxWorks/EPICS and displayed by Java display applications. Remote clients are able to monitor the machine and detector performance using graphical displays and analysis histogram packages. In this paper, the design and implementation of the object-oriented Java framework is described. Illustrations of data acquisition, display and histograming applications are also given

  18. Model-based monitoring of rotors with multiple coexisting faults

    International Nuclear Information System (INIS)

    Rossner, Markus

    2015-01-01

    Monitoring systems are applied to many rotors, but only few monitoring systems can separate coexisting errors and identify their quantity. This research project solves this problem using a combination of signal-based and model-based monitoring. The signal-based part performs a pre-selection of possible errors; these errors are further separated with model-based methods. This approach is demonstrated for the errors unbalance, bow, stator-fixed misalignment, rotor-fixed misalignment and roundness errors. For the model-based part, unambiguous error definitions and models are set up. The Ritz approach reduces the model order and therefore speeds up the diagnosis. Identification algorithms are developed for the different rotor faults. Hereto, reliable damage indicators and proper sub steps of the diagnosis have to be defined. For several monitoring problems, measuring both deflection and bearing force is very useful. The monitoring system is verified by experiments on an academic rotor test rig. The interpretation of the measurements requires much knowledge concerning the dynamics of the rotor. Due to the model-based approach, the system can separate errors with similar signal patterns and identify bow and roundness error online at operation speed. [de

  19. Heart activity monitoring using 3D hologram based on smartphone.

    Science.gov (United States)

    Thap, Tharoeun; Heewon Chung; Jinseok Lee

    2016-08-01

    In this paper, we used smartphone to obtained pulsatile signal from a fingertip by illuminating the skin tissue using flashlight and with an on-board camera to record the change of the light intensity reflected from the tissue. The pulsatile signal is produced by analyzing average green component values of the frames taken by the camera and the heart rate is estimated in real time by detecting the pulse peaks. Based on each instant obtained heartbeat, we design a heart animation that beats according to each interval of the heartbeat. At the same time, we made a simple pyramid shaped hologram from a transparent OHP film to show the heart animation acting above the smartphone screen in three-dimensional view. With this application, users can actually monitor their heart activity in 3D rather than just to see the pulsatile signal graphically. The performances were done in two different conditions: under bright and dark environments. The holograms were made based on three different materials: grey transparent film, clear transparent film, and hard black acrylic board; the grey transparent film provided better performance and we achieved satisfactory results regardless of all environments.

  20. UAV Based Agricultural Planning and Landslide Monitoring

    Directory of Open Access Journals (Sweden)

    Servet Yaprak

    2017-12-01

    Full Text Available The use of Unmanned Aerial Vehicle (UAV tools has become widespread in map production, land surveying, landslide, erosion monitoring, monitoring of agricultural activities, aerial crop surveying, forest fire detection and monitoring operations. In this study, GEO 2 UAV manufactured by TEKNOMER equipped with SONY A6000 camera has been used. The flight plan have been performed with 100 m altitude, with 80% longitudinal and 60% side overlapping. Ground Control Points (GCPs have been observed with Topcon and Trimble GNSS geodetic receivers. Recorded GNSS signals have been processed with LGO V.8.4 software to get sensitive location information. 985 photos have been taken for the 344 hectares the agricultural area. 291 photos have been taken for 50 hectares the landslide area. All photos were processed by PIX4D software. For the agricultural area, 25 GCPs and for the landslide area, 8 GCPs have been included in the evaluation. 3D images were produced with pixel matching algorithms. As a result, the RMS evaluation was obtained as ±0.054 m for the agricultural area and as ±0.018 m for the landslide area. UAV images have indisputable contributions to the management of catastrophes such as landslides and earthquakes, and it is impossible to make terrestrial measurements in areas where disaster impact continues.

  1. Flexible and wearable electronic silk fabrics for human physiological monitoring

    Science.gov (United States)

    Mao, Cuiping; Zhang, Huihui; Lu, Zhisong

    2017-09-01

    The development of textile-based devices for human physiological monitoring has attracted tremendous interest in recent years. However, flexible physiological sensing elements based on silk fabrics have not been realized. In this paper, ZnO nanorod arrays are grown in situ on reduced graphene oxide-coated silk fabrics via a facile electro-deposition method for the fabrication of silk-fabric-based mechanical sensing devices. The data show that well-aligned ZnO nanorods with hexagonal wurtzite crystalline structures are synthesized on the conductive silk fabric surface. After magnetron sputtering of gold electrodes, silk-fabric-based devices are produced and applied to detect periodic bending and twisting. Based on the electric signals, the deformation and release processes can be easily differentiated. Human arterial pulse and respiration can also be real-time monitored to calculate the pulse rate and respiration frequency, respectively. Throat vibrations during coughing and singing are detected to demonstrate the voice recognition capability. This work may not only help develop silk-fabric-based mechanical sensing elements for potential applications in clinical diagnosis, daily healthcare monitoring and voice recognition, but also provide a versatile method for fabricating textile-based flexible electronic devices.

  2. Machine Learning Techniques for Optical Performance Monitoring from Directly Detected PDM-QAM Signals

    DEFF Research Database (Denmark)

    Thrane, Jakob; Wass, Jesper; Piels, Molly

    2017-01-01

    Linear signal processing algorithms are effective in dealing with linear transmission channel and linear signal detection, while the nonlinear signal processing algorithms, from the machine learning community, are effective in dealing with nonlinear transmission channel and nonlinear signal...... detection. In this paper, a brief overview of the various machine learning methods and their application in optical communication is presented and discussed. Moreover, supervised machine learning methods, such as neural networks and support vector machine, are experimentally demonstrated for in-band optical...

  3. Evaluation of Deep Subsurface Resistivity Imaging for Hydrofracture Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Hibbs, Andrew [GroundMetrics, Inc., San Diego, CA (United States); Wilt, Michael [GroundMetrics, Inc., San Diego, CA (United States)

    2016-09-28

    This report describes the results of the first of its kind monitoring of a hydrofracture operation with electromagnetic measurements. The researchers teamed with oil and gas producer Encana Corporation to design and execute a borehole to surface monitoring of three fracture stages at a well pad in central Colorado. The field project consisted of an equipment upgrade, a survey design and modeling phase, several weeks of data collection, and data processing and interpretation. Existing Depth to Surface Resistivity (DSR) instrumentation was upgraded to allow for continuous high precision recording from downhole sources. The full system can now collect data continuously for up to 72 hours, which is sufficient to measure data for 10 frac stages. Next we used numerical modeling and frac treatment data supplied by Encana to design a field survey to detect EM signal from induced fractures. Prior to modeling we developed a novel technique for using well casing as an antenna for a downhole source. Modeling shows that 1) a measurable response for an induced fracture could be achieved if the facture fluid was of high salinity 2) an optimum fracture response is created when the primary source field is parallel to the well casing but perpendicular to the fracture direction. In mid-July, 2014 we installed an array of more than 100 surface sensors, distributed above the treatment wells and extending for approximately 1 km north and 750 m eastward. We applied a 0.6 Hz square wave signal to a downhole current electrode located in a horizontal well 200 m offset from the treatment well with a return electrode on the surface. The data were transmitted to a recording trailer via Wi-Fi where we monitored receiver and transmitter channels continuously in a 72-hour period which covered 7 frac stages, three of which were high salinity. Although the background conditions were very noisy we were able to extract a clear signal from the high salinity stages. Initial data interpretation attempts

  4. System for Monitoring and Analysis of Vibrations at Electric Motors

    Directory of Open Access Journals (Sweden)

    Gabriela Rață

    2014-09-01

    Full Text Available The monitoring of vibration occurring at the electric motors is of paramount importance to ensure their optimal functioning. This paper presents a monitoring system of vibrations occurring at two different types of electric motors, using a piezoelectric accelerometer (ICP 603C11 and a data acquisition board from National Instruments (NI 6009. Vibration signals taken from different parts of electric motors are transferred to computer through the acquisition board. A virtual instrument that allows real-time monitoring and Fourier analysis of signals from the vibration sensor was implemented in LabVIEW.

  5. Neural networks for the monitoring of rotating machinery

    International Nuclear Information System (INIS)

    Alguindigue, I.E.; Loskiewicz-Buczak

    1991-01-01

    Vibration monitoring of components in engineering systems and plants involves the collection of vibration data and detailed analysis to detect features which reflect the operational state of the machinery. The analysis leads to the identification of potential failures and their causes, and makes it possible to perform efficient preventive maintenance. This paper describes a methodology for the automation of some of the activities related to motion and vibration monitoring in these systems. The technique involves training a neural network to model the inter- relationship between signals from two related sensors mounted on an engineering system or component at a time when it is known to be operating properly. Then one signal (or its characteristics) is put into the neural network model to predict the second signal (or its characteristics). This predicted signal is continuously compared with the actual signal A deviation between the predicted and actual signal indicates a changing relationship, usually failure of the component or system. This deviation may be quantified and provides meaningful information about the degree of degradation and deterioration of the component

  6. Risk monitors - The State of the Art in their Development and Use at Nuclear Power Plants - Produced on behalf of IAEA and OECD/NEA WGRisk

    International Nuclear Information System (INIS)

    Shepherd, C.H.; Yllera, F.J.; Kaufer, B.; Henneke, D.W.; Gaynor, D.; Sedlak, J.; Evans, M.G.K.; Boneham, P.; Horne, B.; Guymer, P.; Hatfield, M.; Hewitt, J.; Shanley, L.; Sorman, J.; Chao, C.C.; Pullen, R.; Reinhart, F.M.; Lantaron, A.; Huerta, A.; Vojnovic, D.; Hollo, E.; Fukuda, M.; De Gelder, P.; Schulz, R.; Lanore, J.M.

    2004-01-01

    This report provides a description of the state-of-the-art in the development and use of Risk Monitors at nuclear power plants in the Member States. The work has been carried out jointly by IAEA and OECD WGRisk. The information presented in this report has been obtained from three questionnaires on the development and use of Risk Monitors, software and Regulatory perspectives; from OECD and IAEA Workshops on Risk Monitors; and from IAEA consultants meetings and WGRisk Task Group meetings. Some of the work carried out to produce the report has been funded by the United Kingdom Nuclear Installations Inspectorate. The aim is to produce a report that describes the state of the art in the development of Risk Monitors and their use at nuclear power plants. This will: - define the terminology that relates to Risk Monitors as used in this report, - describe the state of the art in the development and use of Risk Monitors at nuclear power plants, and indicate future developments, - provide information on the software packages available for Risk Monitors, - identify the issues that need to be addressed in the development of a Living PSA for use in a Risk Monitor application and give guidance on how these issues can be resolved, - give information on the issues relating to the design of the Risk Monitor operator interface so that it gives a tool that can be used by all station staff, - discuss the issues that relate to the qualitative and quantitative risk measures addressed by Risk Monitors such as the definition of the Operational Safety Criteria which define the risk levels, the calculation of the Allowed Configuration Time and the definition of the qualitative risk levels that relate to the availability of safety systems, - give insights into the costs involved, the benefits that can be obtained from Risk Monitors and their limitations, and - discuss the regulatory perspective on the use of Risk Monitors to provide risk information that can be used during nuclear power

  7. Fiber optic sensor for continuous health monitoring in CFRP composite materials

    Science.gov (United States)

    Rippert, Laurent; Papy, Jean-Michel; Wevers, Martine; Van Huffel, Sabine

    2002-07-01

    An intensity modulated sensor, based on the microbending concept, has been incorporated in laminates produced from a C/epoxy prepreg. Pencil lead break tests (Hsu-Neilsen sources) and tensile tests have been performed on this material. In this research study, fibre optic sensors will be proven to offer an alternative for the robust piezoelectric transducers used for Acoustic Emission (AE) monitoring. The main emphasis has been put on the use of advanced signal processing techniques based on time-frequency analysis. The signal Short Time Fourier Transform (STFT) has been computed and several robust noise reduction algorithms, such as Wiener adaptive filtering, improved spectral subtraction filtering, and Singular Value Decomposition (SVD) -based filtering, have been applied. An energy and frequency -based detection criterion is put forward to detect transient signals that can be correlated with Modal Acoustic Emission (MAE) results and thus damage in the composite material. There is a strong indication that time-frequency analysis and the Hankel Total Least Squares (HTLS) method can also be used for damage characterization. This study shows that the signal from a quite simple microbend optical sensor contains information on the elastic energy released whenever damage is being introduced in the host material by mechanical loading. Robust algorithms can be used to retrieve and analyze this information.

  8. Physics-based signal processing algorithms for micromachined cantilever arrays

    Science.gov (United States)

    Candy, James V; Clague, David S; Lee, Christopher L; Rudd, Robert E; Burnham, Alan K; Tringe, Joseph W

    2013-11-19

    A method of using physics-based signal processing algorithms for micromachined cantilever arrays. The methods utilize deflection of a micromachined cantilever that represents the chemical, biological, or physical element being detected. One embodiment of the method comprises the steps of modeling the deflection of the micromachined cantilever producing a deflection model, sensing the deflection of the micromachined cantilever and producing a signal representing the deflection, and comparing the signal representing the deflection with the deflection model.

  9. (abstract) ARGOS: a System to Monitor Ulysses Nutation and Thruster Firings from Variations of the Spacecraft Radio Signal

    Science.gov (United States)

    McElrath, T. P.; Cangahuala, L. A.; Miller, K. J.; Stravert, L. R.; Garcia-Perez, Raul

    1995-01-01

    Ulysses is a spin-stabilized spacecraft that experienced significant nutation after its launch in October 1990. This was due to the Sun-spacecraft-Earth geometry, and a study of the phenomenon predicted that the nutation would again be a problem during 1994-95. The difficulty of obtaining nutation estimates in real time from the spacecraft telemetry forced the ESA/NASA Ulysses Team to explore alternative information sources. The work performed by the ESA Operations Team provided a model for a system that uses the radio signal strength measurements to monitor the spacecraft dynamics. These measurements (referred to as AGC) are provided once per second by the tracking stations of the DSN. The system was named ARGOS (Attitude Reckoning from Ground Observable Signals) after the ever-vigilant, hundred-eyed giant of Greek Mythology. The ARGOS design also included Doppler processing, because Doppler shifts indicate thruster firings commanded by the active nutation control carried out onboard the spacecraft. While there is some visibility into thruster activity from telemetry, careful processing of the high-sample-rate Doppler data provides an accurate means of detecting the presence and time of thruster firings. DSN Doppler measurements are available at a ten-per-second rate in the same tracking data block as the AGC data.

  10. ATLAS Tile calorimeter calibration and monitoring systems

    Science.gov (United States)

    Chomont, Arthur; ATLAS Collaboration

    2017-11-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs), located on the outside of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The TileCal calibration system comprises cesium radioactive sources, Laser and charge injection elements, and allows for monitoring and equalization of the calorimeter response at each stage of the signal production, from scintillation light to digitization. Based on LHC Run 1 experience, several calibration systems were improved for Run 2. The lessons learned, the modifications, and the current LHC Run 2 performance are discussed.

  11. Seismic signal of near steady uniform flows

    Science.gov (United States)

    Mangeney, A.; Bachelet, V.; Toussaint, R.; de Rosny, J.

    2017-12-01

    The seismic signal generated by rockfalls, landslides or avalanches is a unique tool to detect, characterize and monitor gravitational flow activity. A major challenge in this domain is to retrieve the dynamic properties of the flow from the emitted seismic signal. In this study, we propose laboratory experiments where the dynamic properties of the flow (velocity, granular temperature, density, etc.) are measured together with the generated seismic signal. We investigate near steady uniform flows made of glass beads of 2mm diameter, flowing throughout a thin rectangular channel of 10 cm width, with tunable tilt angle and height flow, thanks to an adjustable opening gate. The flow is monitored from the spine with a fast camera (5000 fps), and the emitted waves are recorded by accelerometers (10Hz - 54 kHz), stuck on the back side of the bottom of the channel. Among others, three seismic parameters are analyzed: the power radiated by the flow, the mean frequency of the signal, and the modulation of its amplitude. We show that they are linked to three dynamical properties: the mean kinetic energy of the flow, the speed of collisions between beads and the vertical oscillation of the beads, respectively.

  12. Bystander signaling via oxidative metabolism.

    Science.gov (United States)

    Sawal, Humaira Aziz; Asghar, Kashif; Bureik, Matthias; Jalal, Nasir

    2017-01-01

    The radiation-induced bystander effect (RIBE) is the initiation of biological end points in cells (bystander cells) that are not directly traversed by an incident-radiation track, but are in close proximity to cells that are receiving the radiation. RIBE has been indicted of causing DNA damage via oxidative stress, besides causing direct damage, inducing tumorigenesis, producing micronuclei, and causing apoptosis. RIBE is regulated by signaling proteins that are either endogenous or secreted by cells as a means of communication between cells, and can activate intracellular or intercellular oxidative metabolism that can further trigger signaling pathways of inflammation. Bystander signals can pass through gap junctions in attached cell lines, while the suspended cell lines transmit these signals via hormones and soluble proteins. This review provides the background information on how reactive oxygen species (ROS) act as bystander signals. Although ROS have a very short half-life and have a nanometer-scale sphere of influence, the wide variety of ROS produced via various sources can exert a cumulative effect, not only in forming DNA adducts but also setting up signaling pathways of inflammation, apoptosis, cell-cycle arrest, aging, and even tumorigenesis. This review outlines the sources of the bystander effect linked to ROS in a cell, and provides methods of investigation for researchers who would like to pursue this field of science.

  13. Development of a Modified Kernel Regression Model for a Robust Signal Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Ibrahim; Heo, Gyunyoung [Kyung Hee University, Yongin (Korea, Republic of)

    2016-10-15

    The demand for robust and resilient performance has led to the use of online-monitoring techniques to monitor the process parameters and signal validation. On-line monitoring and signal validation techniques are the two important terminologies in process and equipment monitoring. These techniques are automated methods of monitoring instrument performance while the plant is operating. To implementing these techniques, several empirical models are used. One of these models is nonparametric regression model, otherwise known as kernel regression (KR). Unlike parametric models, KR is an algorithmic estimation procedure which assumes no significant parameters, and it needs no training process after its development when new observations are prepared; which is good for a system characteristic of changing due to ageing phenomenon. Although KR is used and performed excellently when applied to steady state or normal operating data, it has limitation in time-varying data that has several repetition of the same signal, especially if those signals are used to infer the other signals. The convectional KR has limitation in correctly estimating the dependent variable when time-varying data with repeated values are used to estimate the dependent variable especially in signal validation and monitoring. Therefore, we presented here in this work a modified KR that can resolve this issue which can also be feasible in time domain. Data are first transformed prior to the Euclidian distance evaluation considering their slopes/changes with respect to time. The performance of the developed model is evaluated and compared with that of conventional KR using both the lab experimental data and the real time data from CNS provided by KAERI. The result shows that the proposed developed model, having demonstrated high performance accuracy than that of conventional KR, is capable of resolving the identified limitation with convectional KR. We also discovered that there is still need to further

  14. Monitor and control device in a nuclear power plant

    International Nuclear Information System (INIS)

    Neda, Toshikatsu.

    1980-01-01

    Purpose: To facilitate and ensure monitor and control, as well as improve the operation efficiency and save man power, by render the operation automatic utilizing a process computer and centralizing the monitor and control functions. Constitution: All of the operations from the start up to stop in a nuclear power plant are conducted by way of a monitor and control board. The process data for the nuclear power plant are read into the process computer and displayed on a CRT display. Controls are carried out respectively for the control rod on a control rod panel, for the feedwater rate on a feedwater control panel, for the recycling flow rate on a recycling control panel and for the turbine generator on a turbine control panel. When the operation is conducted by an automatic console, operation signals from the console are imputted into the process computer and the state of the power plant is monitored and automatic operation is carried out based on the operation signals and from signals from each of the panels. (Moriyama, K.)

  15. A randomised clinical trial of intrapartum fetal monitoring with computer analysis and alerts versus previously available monitoring

    Directory of Open Access Journals (Sweden)

    Santos Cristina

    2010-10-01

    Full Text Available Abstract Background Intrapartum fetal hypoxia remains an important cause of death and permanent handicap and in a significant proportion of cases there is evidence of suboptimal care related to fetal surveillance. Cardiotocographic (CTG monitoring remains the basis of intrapartum surveillance, but its interpretation by healthcare professionals lacks reproducibility and the technology has not been shown to improve clinically important outcomes. The addition of fetal electrocardiogram analysis has increased the potential to avoid adverse outcomes, but CTG interpretation remains its main weakness. A program for computerised analysis of intrapartum fetal signals, incorporating real-time alerts for healthcare professionals, has recently been developed. There is a need to determine whether this technology can result in better perinatal outcomes. Methods/design This is a multicentre randomised clinical trial. Inclusion criteria are: women aged ≥ 16 years, able to provide written informed consent, singleton pregnancies ≥ 36 weeks, cephalic presentation, no known major fetal malformations, in labour but excluding active second stage, planned for continuous CTG monitoring, and no known contra-indication for vaginal delivery. Eligible women will be randomised using a computer-generated randomisation sequence to one of the two arms: continuous computer analysis of fetal monitoring signals with real-time alerts (intervention arm or continuous CTG monitoring as previously performed (control arm. Electrocardiographic monitoring and fetal scalp blood sampling will be available in both arms. The primary outcome measure is the incidence of fetal metabolic acidosis (umbilical artery pH ecf > 12 mmol/L. Secondary outcome measures are: caesarean section and instrumental vaginal delivery rates, use of fetal blood sampling, 5-minute Apgar score Discussion This study will provide evidence of the impact of intrapartum monitoring with computer analysis and real

  16. BAKNET - Communication network for radiation monitoring devices

    International Nuclear Information System (INIS)

    Cohen, Y.; Wengrowicz, U.; Tirosh, D.; Barak, D.

    1997-01-01

    A system, based on a new concept of controlling and monitoring distributed radiation monitors, has been developed and approved at the NRCN. The system, named B AKNET Network , consists of a series of communication adapters connected to a main PC via an RS-485 communication network (see Fig. 1). The network's maximal length is 1200 meters and it enables connection of up to 128 adapters. The BAKNET adapters are designed to interface output signals of different types of stationary radiation monitors to a main PC. The BAKNET adapters' interface type includes: digital, analog, RS-232, and mixed output signals. This allows versatile interfacing of different stationary radiation monitors to the main computer. The connection to the main computer is via an RS-485 network, utilizing an identical communication protocol. The PC software, written in C ++ under MS-Windows, consists of two main programs. The first is the data collection program and the second is the Human Machine Interface (HMI). (authors)

  17. Valve packing leakage monitoring device

    International Nuclear Information System (INIS)

    Ezekoye, L.I.

    1985-01-01

    A device for monitoring leakage of fluid across a seal in a component connected to a pressurized fluid system including a housing having a chamber with an inlet for receiving fluid leaking across the seal and an outlet. A positioning means is connected to an orifice plug so as to move the plug for permitting the fluid to be discharged through the orifice at the same rate at which it enters the first chamber and means for detecting the movement of the plug is provided to produce and output signal corresponding to the distance moved by the plug and thereby indicate flow rate. The positioning means compromise a piston attached to the plug by a hollow tube and springs, which at low flow rates locate the piston. When flow increases sufficiently pressure increases and urges the piston upwards. A magnetic portion of tube actuates a succession of proximity switches to indicate flow rate. (author)

  18. Active voltammetric microsensors with neural signal processing.

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, M. C.

    1998-12-11

    Many industrial and environmental processes, including bioremediation, would benefit from the feedback and control information provided by a local multi-analyte chemical sensor. For most processes, such a sensor would need to be rugged enough to be placed in situ for long-term remote monitoring, and inexpensive enough to be fielded in useful numbers. The multi-analyte capability is difficult to obtain from common passive sensors, but can be provided by an active device that produces a spectrum-type response. Such new active gas microsensor technology has been developed at Argonne National Laboratory. The technology couples an electrocatalytic ceramic-metallic (cermet) microsensor with a voltammetric measurement technique and advanced neural signal processing. It has been demonstrated to be flexible, rugged, and very economical to produce and deploy. Both narrow interest detectors and wide spectrum instruments have been developed around this technology. Much of this technology's strength lies in the active measurement technique employed. The technique involves applying voltammetry to a miniature electrocatalytic cell to produce unique chemical ''signatures'' from the analytes. These signatures are processed with neural pattern recognition algorithms to identify and quantify the components in the analyte. The neural signal processing allows for innovative sampling and analysis strategies to be employed with the microsensor. In most situations, the whole response signature from the voltammogram can be used to identify, classify, and quantify an analyte, without dissecting it into component parts. This allows an instrument to be calibrated once for a specific gas or mixture of gases by simple exposure to a multi-component standard rather than by a series of individual gases. The sampled unknown analytes can vary in composition or in concentration, the calibration, sensing, and processing methods of these active voltammetric microsensors can

  19. Active voltammetric microsensors with neural signal processing

    Science.gov (United States)

    Vogt, Michael C.; Skubal, Laura R.

    1999-02-01

    Many industrial and environmental processes, including bioremediation, would benefit from the feedback and control information provided by a local multi-analyte chemical sensor. For most processes, such a sensor would need to be rugged enough to be placed in situ for long-term remote monitoring, and inexpensive enough to be fielded in useful numbers. The multi-analyte capability is difficult to obtain from common passive sensors, but can be provided by an active device that produces a spectrum-type response. Such new active gas microsensor technology has been developed at Argonne National Laboratory. The technology couples an electrocatalytic ceramic-metallic (cermet) microsensor with a voltammetric measurement technique and advanced neural signal processing. It has been demonstrated to be flexible, rugged, and very economical to produce and deploy. Both narrow interest detectors and wide spectrum instruments have been developed around this technology. Much of this technology's strength lies in the active measurement technique employed. The technique involves applying voltammetry to a miniature electrocatalytic cell to produce unique chemical 'signatures' from the analytes. These signatures are processed with neural pattern recognition algorithms to identify and quantify the components in the analyte. The neural signal processing allows for innovative sampling and analysis strategies to be employed with the microsensor. In most situations, the whole response signature from the voltammogram can be used to identify, classify, and quantify an analyte, without dissecting it into component parts. This allows an instrument to be calibrated once for a specific gas or mixture of gases by simple exposure to a multi-component standard rather than by a series of individual gases. The sampled unknown analytes can vary in composition or in concentration; the calibration, sensing, and processing methods of these active voltammetric microsensors can detect, recognize, and

  20. Development and seismic evaluation of the seismic monitoring analysis system for HANARO

    International Nuclear Information System (INIS)

    Ryu, J. S.; Youn, D. B.; Kim, H. G.; Woo, J. S.

    2003-01-01

    Since the start of operation, the seismic monitoring system has been utilized for monitoring an earthquake at the HANARO site. The existing seismic monitoring system consists of field sensors and monitoring panel. The analog-type monitoring system with magnetic tape recorder is out-of-date model. In addition, the disadvantage of the existing system is that it does not include signal-analyzing equipment. Therefore, we have improved the analog seismic monitoring system except the field sensors into a new digital Seismic Monitoring Analysis System(SMAS) that can monitor and analyze earthquake signals. To achieve this objective for HANARO, the digital type hardware of the SMAS has been developed. The seismic monitoring and analysis programs that can provide rapid and precise information for an earthquake were developed. After the installation of the SMAS, we carried out the Site Acceptance Test (SAT) to confirm the functional capability of the newly developed system. The results of the SAT satisfy the requirements of the fabrication technical specifications. In addition, the seismic characteristics and structural integrity of the SMAS were evaluated. The results show that the cabinet of SMAS can withstand the effects of seismic loads and remain functional. This new SMAS is operating in the HANARO instrument room to acquire and analyze the signal of an earthquake

  1. Modeling of the active vibroseismic monitoring

    International Nuclear Information System (INIS)

    Kovalevskij, V.V.

    2006-01-01

    The results of the mathematical modeling of vibroseismic monitoring of changes in the elastic characteristics in the interior Earth's crust zone are presented. The model of the 'Earth's crust-mantle' system with point vibrational source on the free surface is considered. The estimates of sensitivity of active monitoring method with harmonic vibrational signals is determined. (author)

  2. Results of the Ongoing Monitoring of the Position of a Geostationary Telecommunication Satellite by the Method of Spatially Separated Basis Receiving of Digital Satellite Television Signals

    Science.gov (United States)

    Bushuev, F.; Kaliuzhnyi, M.; Sybiryakova, Y.; Shulga, O.; Moskalenko, S.; Balagura, O.; Kulishenko, V.

    2016-10-01

    The results of the ongoing monitoring of the position of geostationary telecommunication satellite Eutelsat-13B (13° East) are presented in the article. The results were obtained using a radio engineering complex (RC) of four stations receiving digital satellite television and a data processing centre. The stations are located in Kyiv, Mukachevo, Kharkiv and Mykolaiv. The equipment of each station allows synchronous recording (by the GPS) of fragments of DVB-S signal from the quadrature detector output of the satellite television receiver. Samples of the complex signal are archived and sent to the data processing center through the Internet. Here three linearly independent slant range differences (Δr) for three pairs of the stations are determined as a result of correlation processing of received signals. Every second measured values of Δr are used to calculate Cartesian coordinates (XYZ) of the satellite in the coordinate system WGS84 by multilateration method. The time series of Δr, X, Y and Z obtained during continuous observations from March to May 2015 are presented in the article. Single-measurement errors of Δr, X, Y and Z are equal to 2.6 m, 3540 m, 705 m and 455 m, respectively. The complex is compared with known analogues. Ways of reduction of measurement errors of satellite coordinates are considered. The radio engineering complex could be considered a prototype of a system of independent ongoing monitoring of the position of geostationary telecommunication satellites.

  3. Monitoring distributed object and component communication

    NARCIS (Netherlands)

    Diakov, N.K.

    2004-01-01

    This thesis presents our work in the area of monitoring distributed software applications (DSAs). We produce three main results: (1) a design approach for building monitoring systems, (2) a design of a system for MOnitoring Distributed Object and Component Communication (MODOCC) behavior in

  4. Biological signals classification and analysis

    CERN Document Server

    Kiasaleh, Kamran

    2015-01-01

    This authored monograph presents key aspects of signal processing analysis in the biomedical arena. Unlike wireless communication systems, biological entities produce signals with underlying nonlinear, chaotic nature that elude classification using the standard signal processing techniques, which have been developed over the past several decades for dealing primarily with standard communication systems. This book separates what is random from that which appears to be random, and yet is truly deterministic with random appearance. At its core, this work gives the reader a perspective on biomedical signals and the means to classify and process such signals. In particular, a review of random processes along with means to assess the behavior of random signals is also provided. The book also includes a general discussion of biological signals in order to demonstrate the inefficacy of the well-known techniques to correctly extract meaningful information from such signals. Finally, a thorough discussion of recently ...

  5. Thermoelectric powered wireless sensors for spent fuel monitoring

    International Nuclear Information System (INIS)

    Carstens, T.; Corradini, M.; Blanchard, J.; Ma, Z.

    2011-01-01

    This paper describes using thermoelectric generators to power wireless sensors to monitor spent nuclear fuel during dry-cask storage. OrigenArp was used to determine the decay heat of the spent fuel at different times during the service life of the dry-cask. The Engineering Equation Solver computer program modeled the temperatures inside the spent fuel storage facility during its service life. The temperature distribution in a thermoelectric generator and heat sink was calculated using the computer program Finite Element Heat Transfer. From these temperature distributions the power produced by the thermoelectric generator was determined as a function of the service life of the dry-cask. In addition, an estimation of the path loss experienced by the wireless signal can be made based on materials and thickness of the structure. Once the path loss is known, the transmission power and thermoelectric generator power requirements can be determined. This analysis estimates that a thermoelectric generator can produce enough power for a sensor to function and transmit data from inside the dry-cask throughout its service life. (authors)

  6. Solar Wind Monitor--A School Geophysics Project

    Science.gov (United States)

    Robinson, Ian

    2018-01-01

    Described is an established geophysics project to construct a solar wind monitor based on a nT resolution fluxgate magnetometer. Low-cost and appropriate from school to university level it incorporates elements of astrophysics, geophysics, electronics, programming, computer networking and signal processing. The system monitors the earth's field in…

  7. Improving Remote Health Monitoring: A Low-Complexity ECG Compression Approach.

    Science.gov (United States)

    Elgendi, Mohamed; Al-Ali, Abdulla; Mohamed, Amr; Ward, Rabab

    2018-01-16

    Recent advances in mobile technology have created a shift towards using battery-driven devices in remote monitoring settings and smart homes. Clinicians are carrying out diagnostic and screening procedures based on the electrocardiogram (ECG) signals collected remotely for outpatients who need continuous monitoring. High-speed transmission and analysis of large recorded ECG signals are essential, especially with the increased use of battery-powered devices. Exploring low-power alternative compression methodologies that have high efficiency and that enable ECG signal collection, transmission, and analysis in a smart home or remote location is required. Compression algorithms based on adaptive linear predictors and decimation by a factor B / K are evaluated based on compression ratio (CR), percentage root-mean-square difference (PRD), and heartbeat detection accuracy of the reconstructed ECG signal. With two databases (153 subjects), the new algorithm demonstrates the highest compression performance ( CR = 6 and PRD = 1.88 ) and overall detection accuracy (99.90% sensitivity, 99.56% positive predictivity) over both databases. The proposed algorithm presents an advantage for the real-time transmission of ECG signals using a faster and more efficient method, which meets the growing demand for more efficient remote health monitoring.

  8. Improving Remote Health Monitoring: A Low-Complexity ECG Compression Approach

    Directory of Open Access Journals (Sweden)

    Mohamed Elgendi

    2018-01-01

    Full Text Available Recent advances in mobile technology have created a shift towards using battery-driven devices in remote monitoring settings and smart homes. Clinicians are carrying out diagnostic and screening procedures based on the electrocardiogram (ECG signals collected remotely for outpatients who need continuous monitoring. High-speed transmission and analysis of large recorded ECG signals are essential, especially with the increased use of battery-powered devices. Exploring low-power alternative compression methodologies that have high efficiency and that enable ECG signal collection, transmission, and analysis in a smart home or remote location is required. Compression algorithms based on adaptive linear predictors and decimation by a factor B / K are evaluated based on compression ratio (CR, percentage root-mean-square difference (PRD, and heartbeat detection accuracy of the reconstructed ECG signal. With two databases (153 subjects, the new algorithm demonstrates the highest compression performance ( CR = 6 and PRD = 1.88 and overall detection accuracy (99.90% sensitivity, 99.56% positive predictivity over both databases. The proposed algorithm presents an advantage for the real-time transmission of ECG signals using a faster and more efficient method, which meets the growing demand for more efficient remote health monitoring.

  9. Detection of chaotic dynamics in human gait signals from mobile devices

    Science.gov (United States)

    DelMarco, Stephen; Deng, Yunbin

    2017-05-01

    The ubiquity of mobile devices offers the opportunity to exploit device-generated signal data for biometric identification, health monitoring, and activity recognition. In particular, mobile devices contain an Inertial Measurement Unit (IMU) that produces acceleration and rotational rate information from the IMU accelerometers and gyros. These signals reflect motion properties of the human carrier. It is well-known that the complexity of bio-dynamical systems gives rise to chaotic dynamics. Knowledge of chaotic properties of these systems has shown utility, for example, in detecting abnormal medical conditions and neurological disorders. Chaotic dynamics has been found, in the lab, in bio-dynamical systems data such as electrocardiogram (heart), electroencephalogram (brain), and gait data. In this paper, we investigate the following question: can we detect chaotic dynamics in human gait as measured by IMU acceleration and gyro data from mobile phones? To detect chaotic dynamics, we perform recurrence analysis on real gyro and accelerometer signal data obtained from mobile devices. We apply the delay coordinate embedding approach from Takens' theorem to reconstruct the phase space trajectory of the multi-dimensional gait dynamical system. We use mutual information properties of the signal to estimate the appropriate delay value, and the false nearest neighbor approach to determine the phase space embedding dimension. We use a correlation dimension-based approach together with estimation of the largest Lyapunov exponent to make the chaotic dynamics detection decision. We investigate the ability to detect chaotic dynamics for the different one-dimensional IMU signals, across human subject and walking modes, and as a function of different phone locations on the human carrier.

  10. Respiratory Information Extraction from Electrocardiogram Signals

    KAUST Repository

    Amin, Gamal El Din Fathy

    2010-01-01

    The Electrocardiogram (ECG) is a tool measuring the electrical activity of the heart, and it is extensively used for diagnosis and monitoring of heart diseases. The ECG signal reflects not only the heart activity but also many other physiological

  11. GPR Image and Signal Processing for Pavement and Road Monitoring on Android Smartphones and Tablets

    Science.gov (United States)

    Benedetto, Francesco; Benedetto, Andrea; Tedeschi, Antonio

    2014-05-01

    Ground Penetrating Radar (GPR) is a geophysical method that uses radar pulses to image the subsurface. This non-destructive method uses electromagnetic radiation and detects the reflected signals from subsurface structures. It can detect objects, changes in material, and voids and cracks. GPR has many applications in a number of fields. In the field of civil engineering one of the most advanced technologies used for road pavement monitoring is based on the deployment of advanced GPR systems. One of the most relevant causes of road pavement damage is often referable to water intrusion in structural layers. In this context, GPR has been recently proposed as a method to estimate moisture content in a porous medium without preventive calibration. Hence, the development of methods to obtain an estimate of the moisture content is a crucial research field involving economic, social and strategic aspects in road safety for a great number of public and private Agencies. In particular, a recent new approach was proposed to estimate moisture content in a porous medium basing on the theory of Rayleigh scattering, showing a shift of the frequency peak of the GPR spectrum towards lower frequencies as the moisture content increases in the soil. Addressing some of these issues, this work proposes a mobile application, for smartphones and tablets, for GPR image and signal processing. Our application has been designed for the Android mobile operating system, since it is open source and android mobile platforms are selling the most smartphones in the world (2013). The GPR map can be displayed in black/white or color and the user can zoom and navigate into the image. The map can be loaded in two different ways: from the local memory of the portable device or from a remote server. This latter possibility can be very useful for real-time and mobile monitoring of road and pavement inspection. In addition, the application allows analyzing the GPR data also in the frequency domain. It is

  12. Feedback correction of injection errors using digital signal-processing techniques

    Directory of Open Access Journals (Sweden)

    N. S. Sereno

    2007-01-01

    Full Text Available Efficient transfer of electron beams from one accelerator to another is important for 3rd-generation light sources that operate using top-up. In top-up mode, a constant amount of charge is injected at regular intervals into the storage ring to replenish beam lost primarily due to Touschek scattering. Top-up therefore requires that the complex of injector accelerators that fill the storage ring transport beam with a minimum amount of loss. Injection can be a source of significant beam loss if not carefully controlled. In this note we describe a method of processing injection transient signals produced by beam-position monitors and using the processed data in feedback. Feedback control using the technique described here has been incorporated in the Advanced Photon Source (APS booster synchrotron to correct injection transients.

  13. Matrix effect correction with internal flux monitor in radiation waste characterization with the Differential Die-away Technique

    International Nuclear Information System (INIS)

    Antoni, Rodolphe; Passard, Christian; Loridon, Joel; Perot, Bertrand; Batifol, Marc; Tarnec, Stephane-le; Guillaumin, Francois; Grassi, Gabriele; Strock, Pierre

    2013-06-01

    Radioactive waste drums filled with compacted metallic residues (spent fuel hulls and nozzles) produced at AREVA La Hague reprocessing plant are measured by neutron interrogation with the Differential Die-away measurement Technique (DDT). The purpose is to assay fissile material quantities present in radioactive waste packages. In the future, old hulls and nozzles containing Ion-Exchange Resin (IER) will be measured. IERs provide moderating properties to the matrix, not encountered during the current measurement. In this context, the Nuclear Measurement Laboratory (NML) of the CEA Cadarache has been asked by AREVA NC to explore the possibility of implementing a matrix effect correction method, based on internal monitor ( 3 He proportional counter) signal correlated to the matrix effect. In order to validate this method, a benchmark was performed with PROMETHEE 6 R and D measurement cell at the NML, with a similar cavity configuration to that of the industrial station. An experience design on two main factors regarding the matrix effect (absorbing and moderating ratios) has been studied. Considering the variation range of both factors for old waste measurement, 5 test matrices have been defined. They have been measured in PROMETHEE 6 and simulated using the particle transport code MCNP. Tests have been carried out experimentally using 235 U platelets. Results show that the experimental internal monitor is sensitive to the matrix but not to the fissile material presence and location. In addition, differences between experiment and model are satisfactory (<10%), in terms of prompt calibration coefficient (useful signal of fissile materials) and internal monitor signal, considering the complexity of the measurement method and numerical model, and the large range of moderator and absorption ratios. The relationship between the prompt calibration coefficient and the internal monitor signal observed in PROMETHEE 6, both for experience and model, can be fitted with a

  14. Matrix effect correction with internal flux monitor in radiation waste characterization with the differential die-away technique

    International Nuclear Information System (INIS)

    Antoni, R.; Passard, C.; Loridon, J.; Perot, B.; Batifol, M.; Tarnec, S. le; Guillaumin, F.; Grassi, G.; Strock, P.

    2014-01-01

    Radioactive waste drums filled with compacted metallic residues (spent fuel hulls and nozzles) produced at AREVA La Hague reprocessing plant are measured by neutron interrogation with the Differential Die-away measurement Technique (DDT). The purpose is to assay fissile material quantities present in radioactive waste packages. In the future, old hulls and nozzles containing Ion-Exchange Resin (IER) will be measured. IERs provide moderating properties to the matrix, not encountered during the current measurement. In this context, the Nuclear Measurement Laboratory (NML) of the CEA Cadarache has been asked by AREVA NC to explore the possibility of implementing a matrix effect correction method, based on internal monitor ( 3 He proportional counter) signal correlated to the matrix effect. In order to validate this method, a benchmark was performed with PROMETHEE 6 R and D measurement cell at the NML, with a similar cavity configuration to that of the industrial station. An experimental design on two main factors regarding the matrix effect (absorbing and moderating ratios) has been studied. Considering the variation range of both factors for old waste measurement, 5 test matrices have been defined. They have been measured in PROMETHEE 6 and simulated using the particle transport code MCNP. Tests have been carried out experimentally using platelets. Results show that the experimental internal monitor is sensitive to the matrix but not to the fissile material presence and location. In addition, differences between experiment and model are satisfactory (≤10%), in terms of prompt calibration coefficient (useful signal of fissile materials) and internal monitor signal, considering the complexity of the measurement method and numerical model, and the large range of moderator and absorption ratios. The relationship between the prompt calibration coefficient and the internal monitor signal observed in PROMETHEE 6, both for experience and model, can be fitted with a similar

  15. Non-invasive monitoring of chewing and swallowing for objective quantification of ingestive behavior

    International Nuclear Information System (INIS)

    Sazonov, Edward; Schuckers, Stephanie; Lopez-Meyer, Paulo; Makeyev, Oleksandr; Sazonova, Nadezhda; Melanson, Edward L; Neuman, Michael

    2008-01-01

    A methodology of studying of ingestive behavior by non-invasive monitoring of swallowing (deglutition) and chewing (mastication) has been developed. The target application for the developed methodology is to study the behavioral patterns of food consumption and producing volumetric and weight estimates of energy intake. Monitoring is non-invasive based on detecting swallowing by a sound sensor located over laryngopharynx or by a bone-conduction microphone and detecting chewing through a below-the-ear strain sensor. Proposed sensors may be implemented in a wearable monitoring device, thus enabling monitoring of ingestive behavior in free-living individuals. In this paper, the goals in the development of this methodology are two-fold. First, a system comprising sensors, related hardware and software for multi-modal data capture is designed for data collection in a controlled environment. Second, a protocol is developed for manual scoring of chewing and swallowing for use as a gold standard. The multi-modal data capture was tested by measuring chewing and swallowing in 21 volunteers during periods of food intake and quiet sitting (no food intake). Video footage and sensor signals were manually scored by trained raters. Inter-rater reliability study for three raters conducted on the sample set of five subjects resulted in high average intra-class correlation coefficients of 0.996 for bites, 0.988 for chews and 0.98 for swallows. The collected sensor signals and the resulting manual scores will be used in future research as a gold standard for further assessment of sensor design, development of automatic pattern recognition routines and study of the relationship between swallowing/chewing and ingestive behavior

  16. Non-invasive monitoring of chewing and swallowing for objective quantification of ingestive behavior.

    Science.gov (United States)

    Sazonov, Edward; Schuckers, Stephanie; Lopez-Meyer, Paulo; Makeyev, Oleksandr; Sazonova, Nadezhda; Melanson, Edward L; Neuman, Michael

    2008-05-01

    A methodology of studying of ingestive behavior by non-invasive monitoring of swallowing (deglutition) and chewing (mastication) has been developed. The target application for the developed methodology is to study the behavioral patterns of food consumption and producing volumetric and weight estimates of energy intake. Monitoring is non-invasive based on detecting swallowing by a sound sensor located over laryngopharynx or by a bone-conduction microphone and detecting chewing through a below-the-ear strain sensor. Proposed sensors may be implemented in a wearable monitoring device, thus enabling monitoring of ingestive behavior in free-living individuals. In this paper, the goals in the development of this methodology are two-fold. First, a system comprising sensors, related hardware and software for multi-modal data capture is designed for data collection in a controlled environment. Second, a protocol is developed for manual scoring of chewing and swallowing for use as a gold standard. The multi-modal data capture was tested by measuring chewing and swallowing in 21 volunteers during periods of food intake and quiet sitting (no food intake). Video footage and sensor signals were manually scored by trained raters. Inter-rater reliability study for three raters conducted on the sample set of five subjects resulted in high average intra-class correlation coefficients of 0.996 for bites, 0.988 for chews and 0.98 for swallows. The collected sensor signals and the resulting manual scores will be used in future research as a gold standard for further assessment of sensor design, development of automatic pattern recognition routines and study of the relationship between swallowing/chewing and ingestive behavior.

  17. Design and research of safety monitor and control system based on CAN BUS

    International Nuclear Information System (INIS)

    Wen Xinling; Chen Yu; Zhang Zhen; Zhao Yubin

    2007-01-01

    In Order to protect machine operator under danger work area in producing-manufacturing industry, we present a distributed safety monitor and control system based on CAN BUS technology. The detection signal is collected based on the photo-voltage characteristics of the infrared sensor and it was processed with the core of AT89C51. The microprocessor controls the CAN BUS controller SJA1000/transceiver PCA82C250 to structure CAN BUS communication system to transmit the data. Through the serial interface MAX232 connected main controller with each control node, PC can monitor and control each machine in real time and renew control scheme. This paper introduces composition principle and the methods of hardware design in detail. Experiments shown that the system has yield control precision of 0.1 mm, defend distance more than 15 m and the measurement accuracy of 100%. Moreover, it can realize to reform FA431 and monitor cotton-breaking, yarn-breaking and product quality. Productivity is improved about 25%-35%. (authors)

  18. New strategies to produce and detect singlet oxygen in a cell

    DEFF Research Database (Denmark)

    Gollmer, Anita

    2012-01-01

    of the general methodology to generate and detect singlet oxygen is currently of great importance in order to better understand the roles played by singlet oxygen in photo-induced cell death. From a mechanistic perspective, experiments performed at the level of a single cell provide unique insight......Singlet oxygen, the first excited electronic state of molecular oxygen, plays a major role in oxygen-dependent photo-induced cell death. In such systems, singlet oxygen is generally produced in a photosensitized process wherein light is absorbed by a molecule (the so-called sensitizer) which......, and that is the perspective of this study. Although the direct optical detection of singlet oxygen by its near IR phosphorescence is the ideal way to monitor this species, it suffers from the problem of weak signal intensity. Fluorescent probes can be a more sensitive way to detect singlet oxygen. The photochemical behavior...

  19. Ghost signals in Allison emittance scanners

    International Nuclear Information System (INIS)

    Stockli, Martin P.; Leitner, M.; Moehs, D.P.; Keller, R.; Welton, R.F.

    2004-01-01

    For over 20 years, Allison scanners have been used to measure emittances of low-energy ion beams. We show that scanning large trajectory angles produces ghost signals caused by the sampled beamlet impacting on an electric deflection plate. The ghost signal strength is proportional to the amount of beam entering the scanner. Depending on the ions, and their velocity, the ghost signals can have the opposite or the same polarity as the main beam signals. The ghost signals cause significant errors in the emittance estimates because they appear at large trajectory angles. These ghost signals often go undetected because they partly overlap with the real signals, are mostly below the 1% level, and often hide in the noise. A simple deflection plate modification is shown to reduce the ghost signal strength by over 99%

  20. Ghost Signals In Allison Emittance Scanners

    International Nuclear Information System (INIS)

    Stockli, Martin P.; Leitner, M.; Keller, R.; Moehs, D.P.; Welton, R. F.

    2005-01-01

    For over 20 years, Allison scanners have been used to measure emittances of low-energy ion beams. We show that scanning large trajectory angles produces ghost signals caused by the sampled beamlet impacting on an electric deflection plate. The ghost signal strength is proportional to the amount of beam entering the scanner. Depending on the ions, and their velocity, the ghost signals can have the opposite or the same polarity as the main beam signals. The ghost signals cause significant errors in the emittance estimates because they appear at large trajectory angles. These ghost signals often go undetected because they partly overlap with the real signals, are mostly below the 1% level, and often hide in the noise. A simple deflection plate modification is shown to reduce the ghost signal strength by over 99%

  1. Respiratory Information Extraction from Electrocardiogram Signals

    KAUST Repository

    Amin, Gamal El Din Fathy

    2010-12-01

    The Electrocardiogram (ECG) is a tool measuring the electrical activity of the heart, and it is extensively used for diagnosis and monitoring of heart diseases. The ECG signal reflects not only the heart activity but also many other physiological processes. The respiratory activity is a prominent process that affects the ECG signal due to the close proximity of the heart and the lungs. In this thesis, several methods for the extraction of respiratory process information from the ECG signal are presented. These methods allow an estimation of the lung volume and the lung pressure from the ECG signal. The potential benefit of this is to eliminate the corresponding sensors used to measure the respiration activity. A reduction of the number of sensors connected to patients will increase patients’ comfort and reduce the costs associated with healthcare. As a further result, the efficiency of diagnosing respirational disorders will increase since the respiration activity can be monitored with a common, widely available method. The developed methods can also improve the detection of respirational disorders that occur while patients are sleeping. Such disorders are commonly diagnosed in sleeping laboratories where the patients are connected to a number of different sensors. Any reduction of these sensors will result in a more natural sleeping environment for the patients and hence a higher sensitivity of the diagnosis.

  2. Characterization of Atmospheric Infrasound for Improved Weather Monitoring

    Science.gov (United States)

    Threatt, Arnesha; Elbing, Brian

    2016-11-01

    Collaboration Leading Operational UAS Development for Meteorology and Atmospheric Physics (CLOUD MAP) is a multi-university collaboration focused on development and implementation of unmanned aircraft systems (UAS) and integration with sensors for atmospheric measurements. A primary objective for this project is to create and demonstrate UAS capabilities needed to support UAS operating in extreme conditions, such as a tornado producing storm system. These storm systems emit infrasound (acoustic signals below human hearing, <20 Hz) up to 2 hours before tornadogenesis. Due to an acoustic ceiling and weak atmospheric absorption, infrasound can be detected from distances in excess of 300 miles. Thus infrasound could be used for long-range, passive monitoring and detection of tornadogenesis as well as directing UAS resources to high-decision-value-information. To achieve this the infrasonic signals with and without severe storms must be understood. This presentation will report findings from the first CLOUD MAP field demonstration, which acquired infrasonic signals while simultaneously sampling the atmosphere with UAS. Infrasonic spectra will be shown from a typical calm day, a continuous source (pulsed gas-combustion torch), singular events, and UAS flights as well as localization results from a controlled source and multiple microphones. This work was supported by NSF Grant 1539070: CLOUD MAP - Collaboration Leading Operational UAS Development for Meteorology and Atmospheric Physics.

  3. Schottky signal analysis: tune and chromaticity computation

    CERN Document Server

    Chanon, Ondine

    2016-01-01

    Schottky monitors are used to determine important beam parameters in a non-destructive way. The Schottky signal is due to the internal statistical fluctuations of the particles inside the beam. In this report, after explaining the different components of a Schottky signal, an algorithm to compute the betatron tune is presented, followed by some ideas to compute machine chromaticity. The tests have been performed with offline and/or online LHC data.

  4. Liquid Argon TPC Signal Formation, Signal Processing and Hit Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Baller, Bruce [Fermilab

    2017-03-11

    This document describes the early stage of the reconstruction chain that was developed for the ArgoNeuT and MicroBooNE experiments at Fermilab. These experiments study accelerator neutrino interactions that occur in a Liquid Argon Time Projection Chamber. Reconstructing the properties of particles produced in these interactions requires knowledge of the micro-physics processes that affect the creation and transport of ionization electrons to the readout system. A wire signal deconvolution technique was developed to convert wire signals to a standard form for hit reconstruction, to remove artifacts in the electronics chain and to remove coherent noise.

  5. Renewable Energy Monitoring Protocol. Update 2010. Methodology for the calculation and recording of the amounts of energy produced from renewable sources in the Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Te Buck, S.; Van Keulen, B.; Bosselaar, L.; Gerlagh, T.; Skelton, T.

    2010-07-15

    This is the fifth, updated edition of the Dutch Renewable Energy Monitoring Protocol. The protocol, compiled on behalf of the Ministry of Economic Affairs, can be considered as a policy document that provides a uniform calculation method for determining the amount of energy produced in the Netherlands in a renewable manner. Because all governments and organisations use the calculation methods described in this protocol, this makes it possible to monitor developments in this field well and consistently. The introduction of this protocol outlines the history and describes its set-up, validity and relationship with other similar documents and agreements. The Dutch Renewable Energy Monitoring Protocol is compiled by NL Agency, and all relevant parties were given the chance to provide input. This has been incorporated as far as is possible. Statistics Netherlands (CBS) uses this protocol to calculate the amount of renewable energy produced in the Netherlands. These data are then used by the Ministry of Economic Affairs to gauge the realisation of policy objectives. In June 2009 the European Directive for energy from renewable sources was published with renewable energy targets for the Netherlands. This directive used a different calculation method - the gross energy end-use method - whilst the Dutch definition is based on the so-called substitution method. NL Agency was asked to add the calculation according to the gross end use method, although this is not clearly defined on a number of points. In describing the method, the unanswered questions become clear, as do, for example, the points the Netherlands should bring up in international discussions.

  6. Control system for a nuclear power producing unit

    International Nuclear Information System (INIS)

    Durrant, O.W.

    1978-01-01

    The invention provides in a control system for a nuclear power producing unit comprising a pressurized water reactor, a once-through steam generator provided with feedwater supply means, a turbine-generator supplied with steam from the steam generator and means maintaining a flow of pressurized water through the reactor and steam generator. The combination comprising; means generating a feed forward control signal proportional to the desired power output of the power producing unit, a second means for adjusting the reactor heat release, a third means for adjusting the rate of flow of feedwater to the steam generator, the second and third means solely responsive to and operated in parallel from the feed forward control signal whereby the reactor heat release and the rate of flow of feedwater to the steam generator are each maintained in a discrete functional relationship to the feed forward control signal

  7. Continuous Monitoring of GAMMA Radiation Field in the Reactor RA Building

    International Nuclear Information System (INIS)

    Stalevski, T.

    2008-01-01

    This paper presents the system for continuos monitoring of gamma doze rate in the reactor RA building. Industrial (PC compatible) computer acquires analog signals from eight ionization chambers and eight analog signals from three BPH devices. Digital output interface is used for testing ionization chambers and BPH devices. Computer program for data analyzes and presentation is written in graphical programming language LabVIEW and enables monitoring of measured data in real time. Measured data can be monitored over local computer network, Internet and mobile devices using standard web browsers. (author)

  8. A neuro-fuzzy inference system for sensor monitoring

    International Nuclear Information System (INIS)

    Na, Man Gyun

    2001-01-01

    A neuro-fuzzy inference system combined with the wavelet denoising, PCA (principal component analysis) and SPRT (sequential probability ratio test) methods has been developed to monitor the relevant sensor using the information of other sensors. The paramters of the neuro-fuzzy inference system which estimates the relevant sensor signal are optimized by a genetic algorithm and a least-squares algorithm. The wavelet denoising technique was applied to remove noise components in input signals into the neuro-fuzzy system. By reducing the dimension of an input space into the neuro-fuzzy system without losing a significant amount of information, the PCA was used to reduce the time necessary to train the neuro-fuzzy system, simplify the structure of the neuro-fuzzy inference system and also, make easy the selection of the input signals into the neuro-fuzzy system. By using the residual signals between the estimated signals and the measured signals, the SPRT is applied to detect whether the sensors are degraded or not. The proposed sensor-monitoring algorithm was verified through applications to the pressurizer water level, the pressurizer pressure, and the hot-leg temperature sensors in pressurized water reactors

  9. Nonintercepting emittance monitor

    International Nuclear Information System (INIS)

    Miller, R.H.; Clendenin, J.E.; James, M.B.; Sheppard, J.C.

    1983-08-01

    A nonintercepting emittance monitor is a helpful device for measuring and improving particle beams in accelerators and storage rings as it allows continuous monitoring of the beam's distribution in phase space, and perhaps closed loop computer control of the distributions. Stripline position monitors are being investigated for use as nonintercepting emittance monitors for a beam focused by a FODO array in the first 100 meters of our linear accelerator. The technique described here uses the signal from the four stripline probes of a single position monitor to measure the quadrupole mode of the wall current in the beam pipe. This current is a function of the quadrupole moment of the beam, sigma 2 /sub x/ - sigma 2 /sub y/. In general, six independent measurements of the quadrupole moment are necessary to determine the beam emittance. This technique is dependent on the characteristically large variations of sigma 2 /sub x/ - sigma 2 /sub y/ in a FODO array. It will not work in a focusing system where the beam is round at each focusing element

  10. Statistical methods to monitor the West Valley off-gas system

    International Nuclear Information System (INIS)

    Eggett, D.L.

    1990-01-01

    This paper reports on the of-gas system for the ceramic melter operated at the West Valley Demonstration Project at West Valley, NY, monitored during melter operation. A one-at-a-time method of monitoring the parameters of the off-gas system is not statistically sound. Therefore, multivariate statistical methods appropriate for the monitoring of many correlated parameters will be used. Monitoring a large number of parameters increases the probability of a false out-of-control signal. If the parameters being monitored are statistically independent, the control limits can be easily adjusted to obtain the desired probability of a false out-of-control signal. The principal component (PC) scores have desirable statistical properties when the original variables are distributed as multivariate normals. Two statistics derived from the PC scores and used to form multivariate control charts are outlined and their distributional properties reviewed

  11. Covert Sexual Signaling: Human Flirtation and Implications for other Social Species

    Directory of Open Access Journals (Sweden)

    Andrew Gersick

    2014-07-01

    Full Text Available According to signaling theory and a large body of supporting evidence, males across many taxa produce courtship signals that honestly advertise their quality. The cost of producing or performing these signals maintains signal honesty, such that females are typically able to choose the best males by selecting those that produce the loudest, brightest, longest, or otherwise highest-intensity signals, using signal strength as a measure of quality. Set against this background, human flirting behavior, characterized by its frequent subtlety or covertness, is mysterious. Here we propose that the explanation for subtle and ambiguous signals in human courtship lies in socially imposed costs that (a vary with social context and (b are amplified by the unusual ways in which language makes all interactions potentially public. Flirting is a class of courtship signaling that conveys the signaler's intentions and desirability to the intended receiver while minimizing the costs that would accompany an overt courtship attempt. This proposal explains humans' taxonomically unusual courtship displays and generates a number of novel predictions for both humans and non-human social animals. Individuals who are courting should vary the intensity of their signals to suit the level of risk attached to the particular social configuration, and receivers may assess this flexible matching of signal to context as an indicator of the signaler's broader behavioral flexibility and social intelligence.

  12. Germline signaling mediates the synergistically prolonged longevity produced by double mutations in daf-2 and rsks-1 in C. elegans.

    Science.gov (United States)

    Chen, Di; Li, Patrick Wai-Lun; Goldstein, Benjamin A; Cai, Waijiao; Thomas, Emma Lynn; Chen, Fen; Hubbard, Alan E; Melov, Simon; Kapahi, Pankaj

    2013-12-26

    Inhibition of DAF-2 (insulin-like growth factor 1 [IGF-1] receptor) or RSKS-1 (S6K), key molecules in the insulin/IGF-1 signaling (IIS) and target of rapamycin (TOR) pathways, respectively, extend lifespan in Caenorhabditis elegans. However, it has not been clear how and in which tissues they interact with each other to modulate longevity. Here, we demonstrate that a combination of mutations in daf-2 and rsks-1 produces a nearly 5-fold increase in longevity that is much greater than the sum of single mutations. This synergistic lifespan extension requires positive feedback regulation of DAF-16 (FOXO) via the AMP-activated protein kinase (AMPK) complex. Furthermore, we identify germline as the key tissue for this synergistic longevity. Moreover, germline-specific inhibition of rsks-1 activates DAF-16 in the intestine. Together, our findings highlight the importance of the germline in the significantly increased longevity produced by daf-2 rsks-1, which has important implications for interactions between the two major conserved longevity pathways in more complex organisms. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  13. System theory in industrial patient monitoring: an overview.

    Science.gov (United States)

    Baura, G D

    2004-01-01

    Patient monitoring refers to the continuous observation of repeating events of physiologic function to guide therapy or to monitor the effectiveness of interventions, and is used primarily in the intensive care unit and operating room. Commonly processed signals are the electrocardiogram, intraarterial blood pressure, arterial saturation of oxygen, and cardiac output. To this day, the majority of physiologic waveform processing in patient monitors is conducted using heuristic curve fitting. However in the early 1990s, a few enterprising engineers and physicians began using system theory to improve their core processing. Applications included improvement of signal-to-noise ratio, either due to low signal levels or motion artifact, and improvement in feature detection. The goal of this mini-symposium is to review the early work in this emerging field, which has led to technologic breakthroughs. In this overview talk, the process of system theory algorithm research and development is discussed. Research for industrial monitors involves substantial data collection, with some data used for algorithm training and the remainder used for validation. Once the algorithms are validated, they are translated into detailed specifications. Development then translates these specifications into DSP code. The DSP code is verified and validated per the Good Manufacturing Practices mandated by FDA.

  14. Traveling wave monitor

    International Nuclear Information System (INIS)

    Heus, H.; Heutenik, B.; Kroes, F.; Maaskant, A.; Sluyk, T.

    The signals of the monitors, by means of ''Prodlines,'' are first brought out of the radiation surroundings of the tunnel. These coaxial cables have a very low attenuation for 2856 Mc and they couple well thermally, thus originating the least possible phase differentials through thermal expansion. To remove the last tenths of millimeters, a calibration can then still be applied. Only after calibration does the relative measurement become absolute. The conversion electronics are located in the instrument boxes. Here the signals are first mixed to a lower frequency (10 Mc) from where it is easier to perform an amplitude-independent phase detection. To this effect, the signals are first ''limited,'' after which a phase detection can take place, independently of the amplitude (i.e., of the beam current). Subsequently, there is an amplification in the Lf amplifiers and 50 ohm driver steps. The signal can, even via long cables, be carried to an oscilloscope; it can also be sent via the video highway

  15. Quantification of analytes affected by relevant interfering signals under quality controlled conditions

    International Nuclear Information System (INIS)

    Bettencourt da Silva, Ricardo J.N.; Santos, Julia R.; Camoes, M. Filomena G.F.C.

    2006-01-01

    The analysis of organic contaminants or residues in biological samples is frequently affected by the presence of compounds producing interfering instrumental signals. This feature is responsible for the higher complexity and cost of these analyses and/or by a significant reduction of the number of studied analytes in a multi-analyte method. This work presents a methodology to estimate the impact of the interfering compounds on the quality of the analysis of complex samples, based on separative instrumental methods of analysis, aiming at supporting the inclusion of analytes affected by interfering compounds in the list of compounds analysed in the studied samples. The proposed methodology involves the study of the magnitude of the signal produced by the interfering compounds in the analysed matrix, and is applicable to analytical systems affected by interfering compounds with varying concentration in the studied matrix. The proposed methodology is based on the comparison of the signals from a representative number of examples of the studied matrix, in order to estimate the impact of the presence of such compounds on the measurement quality. The treatment of the chromatographic signals necessary to collect these data can be easily performed considering algorithms of subtraction of chromatographic signals available in most of the analytical instrumentation software. The subtraction of the interfering compounds signal from the sample signal allows the compensation of the interfering effect irrespective of the relative magnitude of the interfering and analyte signals, supporting the applicability of the same model of the method performance for a broader concentration range. The quantification of the measurement uncertainty was performed using the differential approach, which allows the estimation of the contribution of the presence of the interfering compounds to the quality of the measurement. The proposed methodology was successfully applied to the analysis of

  16. Hierarchical Leak Detection and Localization Method in Natural Gas Pipeline Monitoring Sensor Networks

    OpenAIRE

    Ning Yu; Renjian Feng; Jiangwen Wan; Yinfeng Wu; Yang Yu

    2011-01-01

    In light of the problems of low recognition efficiency, high false rates and poor localization accuracy in traditional pipeline security detection technology, this paper proposes a type of hierarchical leak detection and localization method for use in natural gas pipeline monitoring sensor networks. In the signal preprocessing phase, original monitoring signals are dealt with by wavelet transform technology to extract the single mode signals as well as characteristic parameters. In the initia...

  17. Estimation of Threshold for the Signals of the BLMs around the LHC Final Focus Triplet Magnets

    CERN Document Server

    Cerutti, F; Ferrari, A; Hoa, C; Mauri, M; Mereghetti, A; Sapinski, M; Wildner, E; CERN. Geneva. ATS Department

    2012-01-01

    The Interaction Points of the Large Hadron Collider are the regions where the two circulating beams collide. Hence, the magnets the closest to any Interaction Point are exposed to an elevated radiation field due to the collision debris. In this study the signal in the Beam Loss Monitors due to the debris is estimated. In addition, for three different scenarios of beam losses, the energy density in the coils and the signal in the Beam Loss Monitors at quench are computed. It is shown that the Beam Loss Monitors, as presently installed on the vacuum vessel of the magnets, cannot disentangle the signal due to a localised loss from the constant signal due to the debris in case of steady-state losses.

  18. Mobile health-monitoring system through visible light communication.

    Science.gov (United States)

    Tan, Yee-Yong; Chung, Wan-Young

    2014-01-01

    Promising development in the light emitting diode (LED) technology has spurred the interest to adapt LED for both illumination and data transmission. This has fostered the growth of interest in visible light communication (VLC), with on-going research to utilize VLC in various applications. This paper presents a mobile-health monitoring system, where healthcare information such as biomedical signals and patient information are transmitted via the LED lighting. A small and portable receiver module is designed and developed to be attached to the mobile device, providing a seamless monitoring environment. Three different healthcare information including ECG, PPG signals and HL7 text information is transmitted simultaneously, using a single channel VLC. This allows for a more precise and accurate monitoring and diagnosis. The data packet size is carefully designed, to transmit information in a minimal packet error rate. A comprehensive monitoring application is designed and developed through the use of a tablet computer in our study. Monitoring and evaluation such as heart rate and arterial blood pressure measurement can be performed concurrently. Real-time monitoring is demonstrated through experiment, where non-hazardous transmission method can be implemented alongside a portable device for better and safer healthcare service.

  19. Environmental monitoring and assessment of antibacterial metabolite producing actinobacteria screened from marine sediments in south coastal regions of Karnataka, India.

    Science.gov (United States)

    Skariyachan, Sinosh; Garka, Shruthi; Puttaswamy, Sushmitha; Shanbhogue, Shobitha; Devaraju, Raksha; Narayanappa, Rajeswari

    2017-06-01

    Assessment of the therapeutic potential of secondary metabolite producing microorganisms from the marine coastal areas imparts scope and application in the field of environmental monitoring. The present study aims to screen metabolites with antibacterial potential from actionbacteria associated with marine sediments collected from south coastal regions of Karnataka, India. The actinobacteria were isolated and characterized from marine sediments by standard protocol. The metabolites were extracted, and antibacterial potential was analyzed against eight hospital associated bacteria. The selected metabolites were partially characterized by proximate analysis, SDS-PAGE, and FTIR-spectroscopy. The antibiogram of the test clinical isolates revealed that they were emerged as multidrug-resistant strains (P ≤ 0.05). Among six actinobacteria (IS1-1S6) screened, 100 μl -1 metabolite from IS1 showed significant antibacterial activities against all the clinical isolates except Pseudomonas aeruginosa. IS2 demonstrated antimicrobial potential towards Proteus mirabilis, Streptococcus pyogenes, and Escherichia coli. The metabolite from IS3 showed activity against Strep. pyogenes and E. coli. The metabolites from IS4, IS5, and IS6 exhibited antimicrobial activities against Ps. aeruginosa (P ≤ 0.05). The two metabolites that depicted highest antibacterial activities against the test strains were suggested to be antimicrobial peptides with low molecular weight. These isolates were characterized and designated as Streptomyces sp. strain mangaluru01 and Streptomyces sp. mangaloreK01 by 16S ribosomal DNA (rDNA) sequencing. This study suggests that south coastal regions of Karnataka, India, are one of the richest sources of antibacterial metabolites producing actinobacteria and monitoring of these regions for therapeutic intervention plays profound role in healthcare management.

  20. Remote monitoring of vibrational information in spider webs

    Science.gov (United States)

    Mortimer, B.; Soler, A.; Siviour, C. R.; Vollrath, F.

    2018-06-01

    Spiders are fascinating model species to study information-acquisition strategies, with the web acting as an extension of the animal's body. Here, we compare the strategies of two orb-weaving spiders that acquire information through vibrations transmitted and filtered in the web. Whereas Araneus diadematus monitors web vibration directly on the web, Zygiella x-notata uses a signal thread to remotely monitor web vibration from a retreat, which gives added protection. We assess the implications of these two information-acquisition strategies on the quality of vibration information transfer, using laser Doppler vibrometry to measure vibrations of real webs and finite element analysis in computer models of webs. We observed that the signal thread imposed no biologically relevant time penalty for vibration propagation. However, loss of energy (attenuation) was a cost associated with remote monitoring via a signal thread. The findings have implications for the biological use of vibrations by spiders, including the mechanisms to locate and discriminate between vibration sources. We show that orb-weaver spiders are fascinating examples of organisms that modify their physical environment to shape their information-acquisition strategy.

  1. Signal anomaly detection and characterization

    International Nuclear Information System (INIS)

    Morgenstern, V.M.; Upadhyaya, B.R.; Gloeckler, O.

    1988-08-01

    As part of a comprehensive signal validation system, we have developed a signal anomaly detector, without specifically establishing the cause of the anomaly. A signal recorded from process instrumentation is said to have an anomaly, if during steady-state operation, the deviation in the level of the signal, its root-mean-square (RMS) value, or its statistical distribution changes by a preset value. This deviation could be an unacceptable increase or a decrease in the quantity being monitored. An anomaly in a signal may be characterized by wideband or single-frequency noise, bias error, pulse-type error, nonsymmetric behavior, or a change in the signal bandwidth. Various signatures can be easily computed from data samples and compared against specified threshold values. We want to point out that in real processes, pulses can appear with different time widths, and at different rates of change of the signal. Thus, in characterizing an anomaly as a pulse-type, the fastest pulse width is constrained by the signal sampling interval. For example, if a signal is sampled at 100 Hz, we will not be able to detect pulses occurring at kHz rates. Discussion with utility and Combustion Engineering personnel indicated that it is not practical to detect pulses having a narrow time width. 9 refs., 11 figs., 8 tabs

  2. Monitoring method of an atomic power plant

    International Nuclear Information System (INIS)

    Koba, Akitoshi; Goto, Seiichiro; Ohashi, Hideaki.

    1975-01-01

    Object: To make a monitoring vehicle, which is loaded with various detecting elements, go round along the monorail disposed so as to surround various devices to thereby early discover various abnormal conditions. Structure: The monitoring vehicle is travelled on the monorail disposed so as to surround the periphery of various devices in an atomic power plant so that detection signals from an ITV camera, temperature and radioactive rays and sound detecting elements, and the like are received through a slide contact between the wheel and transmitting and receiving line disposed in the wheel groove to transmit the signals to a central control panel. (Yoshihara, H.)

  3. Low-complexity R-peak detection for ambulatory fetal monitoring

    NARCIS (Netherlands)

    Rooijakkers, M.J.; Rabotti, C.; Oei, S.G.; Mischi, M.

    2012-01-01

    Non-invasive fetal health monitoring during pregnancy is becoming increasingly important because of the increasing number of high-risk pregnancies. Despite recent advances in signal-processing technology, which have enabled fetal monitoring during pregnancy using abdominal electrocardiogram (ECG)

  4. Extracellular signaling and multicellularity in Bacillus subtilis.

    Science.gov (United States)

    Shank, Elizabeth Anne; Kolter, Roberto

    2011-12-01

    Bacillus subtilis regulates its ability to differentiate into distinct, co-existing cell types in response to extracellular signaling molecules produced either by itself, or present in its environment. The production of molecules by B. subtilis cells, as well as their response to these signals, is not uniform across the population. There is specificity and heterogeneity both within genetically identical populations as well as at the strain-level and species-level. This review will discuss how extracellular signaling compounds influence B. subtilis multicellularity with regard to matrix-producing cannibal differentiation, germination, and swarming behavior, as well as the specificity of the quorum-sensing peptides ComX and CSF. It will also highlight how imaging mass spectrometry can aid in identifying signaling compounds and contribute to our understanding of the functional relationship between such compounds and multicellular behavior. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Monitoring the Simultaneous Presentation of Multiple Spatialized Speech Signals in the Free Field

    National Research Council Canada - National Science Library

    Nelson, W. T; Bolia, Robert S; Ericson, Mark A; McKinley, Richard L

    1998-01-01

    .... Factorial combinations of three variables, including the number of localized speech signals, the location of the speech signals along the horizontal plane, and the sex of the talker were employed...

  6. Evaluation Of Vibration-Monitoring Gear-Diagnostic System

    Science.gov (United States)

    Townsend, Dennis P.; Zakrajsek, James J.

    1995-01-01

    Report describes experimental evaluation of commercial electronic system designed to monitor vibration signal from accelerometer on gear-box to detect vibrations indicative of damage to gears. System includes signal-conditioning subsystem and personal computer in which analog-to-digital converter installed. Results show system fairly effective in detecting surface fatigue pits on spur-gear teeth.

  7. Portal monitor incorporating smart probes

    International Nuclear Information System (INIS)

    Bartos, D.; Constantin, F.; Guta, T.

    2003-01-01

    Portal monitors are intended for detection of radioactive and special nuclear materials in vehicles, pedestrians, luggage, as well as for prevention of illegal traffic of radioactive sources. Monitors provide audio and visual alarms when radioactive and/or special nuclear materials are detected. They can be recommended to officers of customs, border guard and emergency services, civil defense, fire brigades, police and military departments or nuclear research or energetic facilities. The portal monitor developed by us consists in a portal frame, which sustains five intelligent probes having long plastic scintillator (0.5 liters each). The probes communicate, by serial transmission, with a Central Unit constructed on the basis of the 80552 microcontroller. This one manages the handshake, calculates the background, establishes the measuring time, starts and stops each measurement and makes all the other decisions. Sound signals and an infrared sensor monitor the passing through the portal and the measuring procedure. For each measurement the result is displayed on a LCD device contaminated/uncontaminated; for the contaminated case a loud and long sound signal is also issued. An RS 232 serial interface is provided in order to further developments or custom made devices. As a result, the portal monitor detects 1 μ Ci 137 Cs, spread all over a human body, in a 20 μR/h gamma background for a measuring time of 1.5 or 10 seconds giving a 99% confidence factor. (authors)

  8. SIMULATION OF A NEONATAL MONITOR FOR MEDICAL TRAINING PURPOSES SIMULACIÓN DE UN MONITOR NEONATAL PARA ENTRENAMIENTO MÉDICO SIMULAÇÃO DE UM MONITOR NEONATAL PARA TREINAMENTO MÉDICO

    Directory of Open Access Journals (Sweden)

    Jenny Cifuentes

    2011-12-01

    Full Text Available The design of a neonatal monitor for medical training purposes is hereby presented. In order to do that, the following main vital signs were modeled and simulated: ECG, pulse, blood pressure, CO2 level, among others. The signals were integrated to a graphic interface that generates different scenarios showing signals of patients with or without pathologies. Simulated signals were validated against real ones and, in general, the error is less than 5%; in addition, the neonatal monitor was assessed by 16 specialists; those doctors stated that simulated signals are of "excellent quality", "truthful" and that the interface is "user friendly".Se presenta el desarrollo de un monitor neonatal orientado al entrenamiento médico. Para esto se modelaron y simularon los principales signos vitales como son: señal ECG, señal de pulso, presión arterial, nivel de CO2, entre otros. Las señales fueron integradas en una interfaz gráfica, la cual permite generar diferentes escenarios de pacientes, no solo normales sino también con patologías. Las señales simuladas fueron validadas contra señales reales y, en general, el error es inferior al 5%. El monitor neonatal fue evaluado por 16 médicos especialistas quienes manifestaron que las señales simuladas son "de excelente calidad", "fidedignas" y que la interfaz es "amigable al usuario".Apresenta-se o desenvolvimento de um monitor neonatal orientado ao treinamento médico. Para isto se modelaram e simularam os principais signos vitais: sinal ECG, sinal de premo, pressão arterial, nível de CO2, entre outros. Os sinais foram integrados em uma interface gráfica, a qual permite gerar diferentes cenários de pacientes, não só normais senão também com patologias. Os sinais simulados foram validados contra sinais reais e, em geral, o erro é inferior a 5%. O monitor neonatal foi avaliado por 16 médicos especialistas que manifestaram que os sinais simulados são "de excelente qualidade", "fidedignos" e que

  9. A machine protection beam position monitor system

    International Nuclear Information System (INIS)

    Medvedko, E.; Smith, S.; Fisher, A.

    1998-01-01

    Loss of the stored beam in an uncontrolled manner can cause damage to the PEP-II B Factory. We describe here a device which detects large beam position excursions or unexpected beam loss and triggers the beam abort system to extract the stored beam safely. The bad-orbit abort trigger beam position monitor (BOAT BPM) generates a trigger when the beam orbit is far off the center (>20 mm), or rapid beam current loss (dI/dT) is detected. The BOAT BPM averages the input signal over one turn (136 kHz). AM demodulation is used to convert input signals at 476 MHz to baseband voltages. The detected signal goes to a filter section for suppression of the revolution frequency, then on to amplifiers, dividers, and comparators for position and current measurements and triggering. The derived current signal goes to a special filter, designed to perform dI/dT monitoring at fast, medium, and slow current loss rates. The BOAT BPM prototype test results confirm the design concepts. copyright 1998 American Institute of Physics

  10. On Time Domain Analysis of Photoplethysmogram Signals for Monitoring Heat Stress

    Directory of Open Access Journals (Sweden)

    Mohamed Elgendi

    2015-09-01

    Full Text Available There are a limited number of studies on heat stress dynamics during exercise using the photoplethysmogram (PPG and its second derivative (APG. However, we investigate the most suitable index from short PPG signal recordings for heat stress assessment. The APG waveform consists of a, b, c and d waves in systole and an e wave in diastole. Our preliminary results indicate that the use of the energy of aa area, derived from PPG signals measured from emergency responders in tropical conditions, is promising in determining the heat stress level using 20-s recordings. After examining 14 time domain features using leave-one-out cross-validation, we found that the aa energy extracted from PPG signals is the most informative feature for classifying heat-stressed subjects, with an overall accuracy of 79%. Moreover, the combination of the aa energy with the traditional heart rate variability index of heat stress (i.e., the square root of the mean of the squares of the successive aa intervals improved the heat stress detection to an overall accuracy of 83%.

  11. Slope stability radar for monitoring mine walls

    Science.gov (United States)

    Reeves, Bryan; Noon, David A.; Stickley, Glen F.; Longstaff, Dennis

    2001-11-01

    Determining slope stability in a mining operation is an important task. This is especially true when the mine workings are close to a potentially unstable slope. A common technique to determine slope stability is to monitor the small precursory movements, which occur prior to collapse. The slope stability radar has been developed to remotely scan a rock slope to continuously monitor the spatial deformation of the face. Using differential radar interferometry, the system can detect deformation movements of a rough wall with sub-millimeter accuracy, and with high spatial and temporal resolution. The effects of atmospheric variations and spurious signals can be reduced via signal processing means. The advantage of radar over other monitoring techniques is that it provides full area coverage without the need for mounted reflectors or equipment on the wall. In addition, the radar waves adequately penetrate through rain, dust and smoke to give reliable measurements, twenty-four hours a day. The system has been trialed at three open-cut coal mines in Australia, which demonstrated the potential for real-time monitoring of slope stability during active mining operations.

  12. Use of self-powered detectors of near containment gamma monitoring

    International Nuclear Information System (INIS)

    Kemp, J.; LaFontaine, M.; Sharma, H.

    2001-01-01

    A study was conducted during the period April to May 1988, to select a self-powered detector (SPD) with an appropriate emitter for measuring the gamma radiation dose rate in near-containment. The selected SPD would be used in the containment monitoring systems for the Ringhals and Forsmark reactors in Sweden. In-containment gamma radiation (81 keV to ∼3 MeV energy range) could result from the release of gaseous fission-product nuclides of bromine, krypton, iodine and xenon. Associated dose rates can range from 10 to 10 6 Gy/h. Tests were performed on platinum and vanadium emitter SPDs 1 using 60 Co, 192 Ir and X-ray gamma/photon sources. A gamma energy dependent polarity change in the signal from the Pt SPD (signal goes from positive to negative as energy drops below 100 keV), coupled with a non-linear response, eliminated that design from further study in this application. The vanadium SPDs produced a linear, negative signal irrespective of the impingent gamma energy level. The gamma sensitivity of the 18 V SPDs tested in the program, ranged from -1.07 x 10 -14 A/Gy/h to -1.87 x 10 -14 A/Gy/h per metre emitter length. (author)

  13. Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals

    Science.gov (United States)

    Li, Chuan; Sanchez, René-Vinicio; Zurita, Grover; Cerrada, Mariela; Cabrera, Diego; Vásquez, Rafael E.

    2016-08-01

    Fault diagnosis is an effective tool to guarantee safe operations in gearboxes. Acoustic and vibratory measurements in such mechanical devices are all sensitive to the existence of faults. This work addresses the use of a deep random forest fusion (DRFF) technique to improve fault diagnosis performance for gearboxes by using measurements of an acoustic emission (AE) sensor and an accelerometer that are used for monitoring the gearbox condition simultaneously. The statistical parameters of the wavelet packet transform (WPT) are first produced from the AE signal and the vibratory signal, respectively. Two deep Boltzmann machines (DBMs) are then developed for deep representations of the WPT statistical parameters. A random forest is finally suggested to fuse the outputs of the two DBMs as the integrated DRFF model. The proposed DRFF technique is evaluated using gearbox fault diagnosis experiments under different operational conditions, and achieves 97.68% of the classification rate for 11 different condition patterns. Compared to other peer algorithms, the addressed method exhibits the best performance. The results indicate that the deep learning fusion of acoustic and vibratory signals may improve fault diagnosis capabilities for gearboxes.

  14. Monitoring of polycyclic aromatic hydrocarbons in a produced water disposal area in the Potiguar Basin, Brazilian equatorial margin.

    Science.gov (United States)

    Lourenço, Rafael André; de Oliveira, Fábio Francisco; de Souza, João Maximino; Nudi, Adriana Haddad; de Luca Rebello Wagener, Ângela; de Fátima Guadalupe Meniconi, Maria; Francioni, Eleine

    2016-09-01

    The Potiguar Basin has oil and gas production fields offshore and onshore. All treated produced water (PW) from these fields is discharged through submarine outfalls. Although polycyclic aromatic hydrocarbons (PAHs) are minor constituents of PW, their input into the marine ecosystem is environmentally critical due to potential ecological hazards. A 2-year monitoring program was conducted in the vicinity of the outfalls to evaluate PAH bioaccumulation in marine life from PW discharges. The study was performed using transplanted bivalves Crassostrea brasiliana and semipermeable membrane devices (SPMDs) to measure PAH concentrations via bioaccumulation and in seawater. The bioaccumulation of PAH in transplanted bivalves reached up to 1105 ng g(-1) in the vicinity of the monitored outfall. Significantly lower PAH concentrations were found in the reference area in comparison to the studied area around the outfalls. Time-integrated PAH concentrations in seawater ranged from 38 to 0.3 ng L(-1) near the outfalls and from 10 ng L(-1) to not detected in the reference area. Both measurement techniques were found to be effective for determining a gradient of descending PAH concentrations from the outfalls. In addition, this study also evaluated the bioavailability of PAH for local marine biota and provided information about the influence of PW discharges on the water quality of marine ecosystems.

  15. Design of excitation signals for active system monitoring in a performance assessment setup

    DEFF Research Database (Denmark)

    Green, Torben; Izadi-Zamanabadi, Roozbeh; Niemann, Hans Henrik

    2011-01-01

    This paper investigates how the excitation signal should be chosen for a active performance setup. The signal is used in a setup where the main purpose is to detect whether a parameter change of the controller has changed the global performance significantly. The signal has to be able to excite...... the dynamics of the subsystem under investigation both before and after the parameter change. The controller is well know, but there exists no detailed knowledge about the dynamics of the subsystem....

  16. ESR detection of free radicals produced in irradiated fresh fruits and dried foods

    International Nuclear Information System (INIS)

    Bustos G, E.; Gomes, V.; Garcia, F.; Azorin, J.

    2007-01-01

    Full text: Electron spin resonance (ESR) technique was used to measure the stability of free radicals produced by the irradiation treatment in mangoes and in four spices: black pepper, oregano, 'guajillo' chili and 'morron' chili. The ESR spectra for mangoes were scanned in three different parts from the seeds and were recorded in fresh and dried tissues. The ESR spectra in fresh tissue of no irradiated mangoes, were a sextet line signal produced by Mn 2+ ion and a singlet centered at g = 2.00 produced by the endogenous radical. New resonances were observed in the irradiated samples at 1.5 mT and 3 mT respects to the center line for right and left side. These new resonance signals were-observed for eight days in mangoes treated at 1.00 kGy, and for three days at 0.15 kGy. The resonance due to the irradiation was observed in Iyophilized mangoes only one day after the treatment, in the vacuum dried samples, no new resonances were observed. The triplet signal, as well as the central single line appeared after irradiation in black pepper, morron chili and guajillo chili. These signals were also observed in the irradiated spices at any radiation dose higher than 1.0 kGy. The signals decrease promptly, in ten days after the 'irradiation. It was not possible to observe the triplet signal in oregano, even when the samples were analyzed immediately after irradiation treatment. The only signal observed in irradiated spice was the endogenous radical. This signal increased as the radiation dose increased and decreased during storage time at room temperature. Results showed that free radicals produced in irradiated fresh fruits or dried foods have a quick recombination. It was observed that in the spices the signal remains for several weeks meanwhile only eight days in mangoes. (Author)

  17. Criticality monitoring with digital systems and solid state neutron detectors

    International Nuclear Information System (INIS)

    Willhoite, S.B.

    1984-01-01

    A commercially available system for criticality monitoring combines the well established technology of digital radiation monitoring with state-of-the art detector systems capable of detecting criticality excursions of varying length and intensity with a high degree of confidence. The field microcomputer servicing the detector clusters contains hardware and software to acquire detector information in both the digital count rate and bit sensing modes supported by the criticality detectors. In both cases special criticality logic in the field microcomputer is used to determine the validity of the criticality event. The solid-state neutron detector consists of a 6 LiF wafer coupled to a diffused-junction charged particle detector. Alpha particles resulting from (n,α) interactions within the lithium wafer produce a pulsed signal corresponding to neutron intensity. Special detector circuitry causes the setting of a criticality bit recognizable by the microcomputer should neutron field intensities either exceed a hardware selectable frequency or saturate the detector resulting in a high current condition. These two modes of criticality sensing, in combination with the standard method of comparing an operator selectable alarm setpoint with the detector count rate, results in a criticality system capable of effective operation under the most demanding criticality monitoring conditions

  18. Development of real time monitoring for ITER first wall erosion

    International Nuclear Information System (INIS)

    Berryman, Ian.; Pallaras, Luke; Thomson, Laura; Wang, Michael; Riley, Daniel P.

    2009-01-01

    Full text: This project aims to contribute to the current research on the first wall erosion diagnostic for the ITER fusion reactor. The plasma-facing first wall tiles of the ITER tokamak reactor are exposed to an expected neutron flux of O. 7 8 M W/m2 and a thermal load of O. 5M W/m 2 during operation. Instabilities in the magnetically confined plasma, such as edge-Iocalised modes, cause the plasma to come into direct contact with the first wall. The resulting thermal loads can vaporise and ablate the tile material. Moreover, a flux of high-energy neutrons produced during the fusion process results in a range of radiation effects. Therefore, a diagnostic is necessary to monitor the extent and rate of damage caused to the first wall. We have considered and critically assessed the viability of six alternative diagnostic methods, encompassing both established and novel concepts. From these, a design featuring embedded conducting elements was selected as the strongest candidate, as by monitoring electrical signals it has the potential to detect both bulk erosion and radiation damage.

  19. Nonlinear filtering for LIDAR signal processing

    Directory of Open Access Journals (Sweden)

    D. G. Lainiotis

    1996-01-01

    Full Text Available LIDAR (Laser Integrated Radar is an engineering problem of great practical importance in environmental monitoring sciences. Signal processing for LIDAR applications involves highly nonlinear models and consequently nonlinear filtering. Optimal nonlinear filters, however, are practically unrealizable. In this paper, the Lainiotis's multi-model partitioning methodology and the related approximate but effective nonlinear filtering algorithms are reviewed and applied to LIDAR signal processing. Extensive simulation and performance evaluation of the multi-model partitioning approach and its application to LIDAR signal processing shows that the nonlinear partitioning methods are very effective and significantly superior to the nonlinear extended Kalman filter (EKF, which has been the standard nonlinear filter in past engineering applications.

  20. Fetal QRS extraction from abdominal recordings via model-based signal processing and intelligent signal merging

    International Nuclear Information System (INIS)

    Haghpanahi, Masoumeh; Borkholder, David A

    2014-01-01

    Noninvasive fetal ECG (fECG) monitoring has potential applications in diagnosing congenital heart diseases in a timely manner and assisting clinicians to make more appropriate decisions during labor. However, despite advances in signal processing and machine learning techniques, the analysis of fECG signals has still remained in its preliminary stages. In this work, we describe an algorithm to automatically locate QRS complexes in noninvasive fECG signals obtained from a set of four electrodes placed on the mother’s abdomen. The algorithm is based on an iterative decomposition of the maternal and fetal subspaces and filtering of the maternal ECG (mECG) components from the fECG recordings. Once the maternal components are removed, a novel merging technique is applied to merge the signals and detect the fetal QRS (fQRS) complexes. The algorithm was trained and tested on the fECG datasets provided by the PhysioNet/CinC challenge 2013. The final results indicate that the algorithm is able to detect fetal peaks for a variety of signals with different morphologies and strength levels encountered in clinical practice. (paper)

  1. Adequacy of supply standards for the electricity market: from obligations to informal market signals

    International Nuclear Information System (INIS)

    Werven, Michiel J.N. van; Nooij, Michiel de; Scheepers, Martin J.J.

    2005-06-01

    The adequacy of supply standard is ultimately based on a loss of load probability in combination with assumptions about the extent to which the national system can count on assistance of adjoining electricity supply systems during times of shortages. It can be used to calculate the required generation capacity in an ex-ante market analysis using different future scenarios. This standard in combination with monitoring of (future) market developments on the basis of several market indicators, can give a signal to market participants with respect to the expected adequacy of supply in the longer term. Market participants are informed about the actual and expected future status of adequacy of supply in the market. It is, however, very important that the assessment and the resulting signal should not be used by the government to intervene in the market, but only to improve market transparency and assist producers, suppliers, and consumers in their decisions towards an effective and efficient response on long-term market developments. Specific policy measures based on the monitoring results could provoke strategic behaviour of market participants. The signalising standard might be a powerful instrument in helping to solve the generation adequacy problem. This solution can be seen as a compromise between options that fully rely on an optimal response by the free electricity market and options where governments take the full responsibility

  2. "Internet of Things" Real-Time Free Flap Monitoring.

    Science.gov (United States)

    Kim, Sang Hun; Shin, Ho Seong; Lee, Sang Hwan

    2018-01-01

    Free flaps are a common treatment option for head and neck reconstruction in plastic reconstructive surgery, and monitoring of the free flap is the most important factor for flap survival. In this study, the authors performed real-time free flap monitoring based on an implanted Doppler system and "internet of things" (IoT)/wireless Wi-Fi, which is a convenient, accurate, and efficient approach for surgeons to monitor a free flap. Implanted Doppler signals were checked continuously until the patient was discharged by the surgeon and residents using their own cellular phone or personal computer. If the surgeon decided that a revision procedure or exploration was required, the authors checked the consumed time (positive signal-to-operating room time) from the first notification when the flap's status was questioned to the determination for revision surgery according to a chart review. To compare the efficacy of real-time monitoring, the authors paired the same number of free flaps performed by the same surgeon and monitored the flaps using conventional methods such as a physical examination. The total survival rate was greater in the real-time monitoring group (94.7% versus 89.5%). The average time for the real-time monitoring group was shorter than that for the conventional group (65 minutes versus 86 minutes). Based on this study, real-time free flap monitoring using IoT technology is a method that surgeon and reconstruction team can monitor simultaneously at any time in any situation.

  3. GTA Beamloss-Monitor System

    International Nuclear Information System (INIS)

    Rose, C.R.; Fortgang, C.M.; Power, J.P.

    1992-01-01

    The GTA Beamless-Monitor System at Los Alamos National Laboratory has been designed to detect high-energy particle loss in the accelerator beamline and shut down the accelerator before any damage can occur. To do this, the Beamless-Monitor System measures the induced gamma radiation, from (p, γ) reactions, at 15 selected points along the beamline, converts this measured radiation to electrical signals integrates and compares them to preset limits, and, in the event of an over-limit condition causes the Fast-Protect System to shut down the entire accelerator. The system dynamic range exceeds 70 dB which will enable experimenters to use the Beamless-Monitor System to help steer the beam as well as provide signals for a Fast-Protect System. The system response time is less than 7 μs assuming a step-function, worst-case beam spill of 50 mA. The system resolution, based on the noise floor of the electronics is about 1.3 mRads/s. Production units have been built and meet the above specifications. The remainder of the system will be installed and tested later in 1992/1993 with the GTA accelerator. The ionization chamber sensitivity and response time are described in the paper

  4. GTA beamloss-monitor system

    International Nuclear Information System (INIS)

    Rose, C.R.; Fortgang, C.M.; Power, J.P.

    1992-01-01

    The GTA Beamloss-Monitor System at Los Alamos National Laboratory has been designed to detect high-energy particle loss in the accelerator beamline and shut down the accelerator before any damage can occur. To do this, the Beamloss-Monitor System measures the induced gamma radiation, from (p,γ) reactions, at 15 selected points along the beamline, converts this measured radiation to electrical signals, integrates and compares them to preset limits, and, in the event of an over-limit condition causes the Fast-Protect System to shut down the entire accelerator. The system dynamic range exceeds 70 dB which will enable experimenters to use the Beamloss-Monitor System to help steer the beam as well as provide signals for a Fast-Protect System. The system response time is less than 7 μs assuming a step-function, worst-case beam spill of 50 mA. The system resolution, based on the noise floor of the electronics, is about 1.3 mRads/s. Production units have been built and meet the above specifications. The remainder of the system will be installed and tested later in 1992/93 with the GTA accelerator. The ionization chamber sensitivity and response time are described in the paper. (Author) 4 figs., ref

  5. Neonatal non-contact respiratory monitoring based on real-time infrared thermography

    Directory of Open Access Journals (Sweden)

    Abbas Abbas K

    2011-10-01

    Full Text Available Abstract Background Monitoring of vital parameters is an important topic in neonatal daily care. Progress in computational intelligence and medical sensors has facilitated the development of smart bedside monitors that can integrate multiple parameters into a single monitoring system. This paper describes non-contact monitoring of neonatal vital signals based on infrared thermography as a new biomedical engineering application. One signal of clinical interest is the spontaneous respiration rate of the neonate. It will be shown that the respiration rate of neonates can be monitored based on analysis of the anterior naris (nostrils temperature profile associated with the inspiration and expiration phases successively. Objective The aim of this study is to develop and investigate a new non-contact respiration monitoring modality for neonatal intensive care unit (NICU using infrared thermography imaging. This development includes subsequent image processing (region of interest (ROI detection and optimization. Moreover, it includes further optimization of this non-contact respiration monitoring to be considered as physiological measurement inside NICU wards. Results Continuous wavelet transformation based on Debauches wavelet function was applied to detect the breathing signal within an image stream. Respiration was successfully monitored based on a 0.3°C to 0.5°C temperature difference between the inspiration and expiration phases. Conclusions Although this method has been applied to adults before, this is the first time it was used in a newborn infant population inside the neonatal intensive care unit (NICU. The promising results suggest to include this technology into advanced NICU monitors.

  6. Signal correlations in biomass combustion. An information theoretic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ruusunen, M.

    2013-09-01

    Increasing environmental and economic awareness are driving the development of combustion technologies to efficient biomass use and clean burning. To accomplish these goals, quantitative information about combustion variables is needed. However, for small-scale combustion units the existing monitoring methods are often expensive or complex. This study aimed to quantify correlations between flue gas temperatures and combustion variables, namely typical emission components, heat output, and efficiency. For this, data acquired from four small-scale combustion units and a large circulating fluidised bed boiler was studied. The fuel range varied from wood logs, wood chips, and wood pellets to biomass residue. Original signals and a defined set of their mathematical transformations were applied to data analysis. In order to evaluate the strength of the correlations, a multivariate distance measure based on information theory was derived. The analysis further assessed time-varying signal correlations and relative time delays. Ranking of the analysis results was based on the distance measure. The uniformity of the correlations in the different data sets was studied by comparing the 10-quantiles of the measured signal. The method was validated with two benchmark data sets. The flue gas temperatures and the combustion variables measured carried similar information. The strongest correlations were mainly linear with the transformed signal combinations and explicable by the combustion theory. Remarkably, the results showed uniformity of the correlations across the data sets with several signal transformations. This was also indicated by simulations using a linear model with constant structure to monitor carbon dioxide in flue gas. Acceptable performance was observed according to three validation criteria used to quantify modelling error in each data set. In general, the findings demonstrate that the presented signal transformations enable real-time approximation of the studied

  7. Signals of ENPEMF Used in Earthquake Prediction

    Science.gov (United States)

    Hao, G.; Dong, H.; Zeng, Z.; Wu, G.; Zabrodin, S. M.

    2012-12-01

    The signals of Earth's natural pulse electromagnetic field (ENPEMF) is a combination of the abnormal crustal magnetic field pulse affected by the earthquake, the induced field of earth's endogenous magnetic field, the induced magnetic field of the exogenous variation magnetic field, geomagnetic pulsation disturbance and other energy coupling process between sun and earth. As an instantaneous disturbance of the variation field of natural geomagnetism, ENPEMF can be used to predict earthquakes. This theory was introduced by A.A Vorobyov, who expressed a hypothesis that pulses can arise not only in the atmosphere but within the Earth's crust due to processes of tectonic-to-electric energy conversion (Vorobyov, 1970; Vorobyov, 1979). The global field time scale of ENPEMF signals has specific stability. Although the wave curves may not overlap completely at different regions, the smoothed diurnal ENPEMF patterns always exhibit the same trend per month. The feature is a good reference for observing the abnormalities of the Earth's natural magnetic field in a specific region. The frequencies of the ENPEMF signals generally locate in kilo Hz range, where frequencies within 5-25 kilo Hz range can be applied to monitor earthquakes. In Wuhan, the best observation frequency is 14.5 kilo Hz. Two special devices are placed in accordance with the S-N and W-E direction. Dramatic variation from the comparison between the pulses waveform obtained from the instruments and the normal reference envelope diagram should indicate high possibility of earthquake. The proposed detection method of earthquake based on ENPEMF can improve the geodynamic monitoring effect and can enrich earthquake prediction methods. We suggest the prospective further researches are about on the exact sources composition of ENPEMF signals, the distinction between noise and useful signals, and the effect of the Earth's gravity tide and solid tidal wave. This method may also provide a promising application in

  8. Method and device for monitoring distortion in an optical network

    NARCIS (Netherlands)

    2012-01-01

    A method and a device for monitoring of distortion in an optical network are provided, wherein at least one reference signal and at least one data signal are conveyed via an optical link and wherein a distortion of the at least one data signal is determined based on the at least one reference

  9. Real time pressure signal system for a rotary engine

    Science.gov (United States)

    Rice, W. J. (Inventor)

    1984-01-01

    A real-time IMEP signal which is a composite of those produced in any one chamber of a three-lobed rotary engine is developed by processing the signals of four transducers positioned in a Wankel engine housing such that the rotor overlaps two of the transducers for a brief period during each cycle. During the overlap period of any two transducers, their output is compared and sampled for 10 microseconds per 0.18 degree of rotation by a sampling switch and capacitive circuit. When the switch is closed, the instantaneous difference between the value of the transducer signals is provided while with the switch open the average difference is produced. This combined signal, along with the original signal of the second transducer, is fed through a multiplexer to a pressure output terminal. Timing circuits, controlled by a crank angle encoder on the engine, determine which compared transducer signals are applied to the output terminal and when, as well as the open and closed periods of the switches.

  10. Data monitoring system of technical diagnosis system for EAST

    International Nuclear Information System (INIS)

    Qian Jing; Weng Peide; Chen Zhuomin; Wu Yu; Xi Weibin; Luo Jiarong

    2010-01-01

    Technical diagnosis system (TDS) is an important subsystem to monitor status parameters of EAST (experimental advanced superconducting tokamak). The upgraded TDS data monitoring system is comprised of management floor, monitoring floor and field floor.. Security protection, malfunction record and analysis are designed to make the system stable, robust and friendly. During the past EAST campaigns, the data monitoring system has been operated reliably and stably. The signal conditioning system and software architecture are described. (authors)

  11. Laser-produced plasma EUV source using a colloidal microjet target containing tin dioxide nanoparticles

    Science.gov (United States)

    Higashiguchi, Takeshi; Dojyo, Naoto; Sasaki, Wataru; Kubodera, Shoichi

    2006-10-01

    We realized a low-debris laser-produced plasma extreme ultraviolet (EUV) source by use of a colloidal microjet target, which contained low-concentration (6 wt%) tin-dioxide nanoparticles. An Nd:YAG laser was used to produce a plasma at the intensity on the order of 10^11 W/cm^2. The use of low concentration nanoparticles in a microjet target with a diameter of 50 μm regulated the neutral debris emission from a target, which was monitored by a silicon witness plate placed 30 cm apart from the source in a vacuum chamber. No XPS signals of tin and/or oxygen atoms were observed on the plate after ten thousand laser exposures. The low concentration nature of the target was compensated and the conversion efficiency (CE) was improved by introducing double pulses of two Nd:YAG lasers operated at 532 and 1064 nm as a result of controlling the micro-plasma characteristics. The EUV CE reached its maximum of 1.2% at the delay time of approximately 100 ns with the main laser intensiy of 2 x10^11 W/cm^2. The CE value was comparable to that of a tin bulk target, which, however, produced a significant amount of neutral debris.

  12. Discrete-Time Biomedical Signal Encryption

    Directory of Open Access Journals (Sweden)

    Victor Grigoraş

    2017-12-01

    Full Text Available Chaotic modulation is a strong method of improving communication security. Analog and discrete chaotic systems are presented in actual literature. Due to the expansion of digital communication, discrete-time systems become more efficient and closer to actual technology. The present contribution offers an in-depth analysis of the effects chaos encryption produce on 1D and 2D biomedical signals. The performed simulations show that modulating signals are precisely recovered by the synchronizing receiver if discrete systems are digitally implemented and the coefficients precisely correspond. Channel noise is also applied and its effects on biomedical signal demodulation are highlighted.

  13. Radiation monitoring: an introduction. Rev. ed.

    International Nuclear Information System (INIS)

    Hayward, P.; Arnott, D.

    1987-01-01

    This Greenpeace pamphlet has been produced in reponse to requests from members of the public wishing to set up monitoring groups. It lists some U.K. manufacturers of radiation monitoring equipment and the contributors have summarized information available from manufacturer's own catalogues describing the equipment, what it will and will not do and costing various programmes. Three types of monitoring are discussed: monitoring the level of background gamma radiation, monitoring radioactive contamination, (early warning systems), and monitoring food and environmental samples for very low levels of radiation. (UK)

  14. A study on the method for cancelling the background noise of the impact signal

    International Nuclear Information System (INIS)

    Kim, J. S.; Ham, C. S.; Park, J. H.

    1998-01-01

    In this paper, we compared the noise canceller (time domain analysis method) to the spectral subtraction (frequency domain analysis method) for cancelling background noise when the Loose Part Monitoring System's accelerometers combined the noise signal with the impact signal if the impact signal exists. In the operation of a nuclear power plant monitoring, alarm triggering occurs due to a peak signal in the background noise, an amplitude increase by component operation such as control rod movement or abrupt pump operation. This operation causes the background noise in LPMS. Thus this noise inputs to LPMS together with the impact signal. In case that this noise amplitude is very large comparing to that of the impact signal, we may not analyze the impact position and mass estimation. We analyzed two methods for cancelling background noise. First, we evaluate the signal to noise ratio utilizing the noise canceller. Second, we evaluate the signal to noise ratio utilizing the spectral subtraction. The evaluation resulted superior the noise canceller to the spectral subtraction on the signal to noise ratio

  15. Temporal structure of an electric signal produced upon interaction of radiation from a HF laser with the bottom surface of a water column

    International Nuclear Information System (INIS)

    Andreev, Sergei N; Kazantsev, S Yu; Kononov, I G; Pashinin, Pavel P; Firsov, K N

    2009-01-01

    Generation of an electric signal is investigated when a HF-laser pulse interacts with the lower surface of a water column in a cell with a bottom transparent to laser radiation, while the upper surface of the water column remains open. The electric signal exhibits a temporal structure of two spikes spaced by time τ which is linearly dependent on the laser output energy. It is found that the value of τ (up to 1.3 ms) is an order of magnitude greater than the time during which the vapour pressure in a cavity produced due to the volume explosive boiling of water in the exposed area is greater than the atmospheric pressure. The second spike was determined to appear upon the collapse of the vapour cavity. A mathematical model is constructed that explains the motion of the water column above the vapour cavity taking into account the temporal evolution of the vapour pressure above it. It is shown that the prolonged lifetime of the vapour cavity after the decrease in the vapour pressure down to the atmospheric value is caused by the inertial motion of the water column acquiring the velocity at the initial stage of the cavity expansion. The calculated time of the water column motion agrees well with the experimental time interval between the spikes of an electric signal. (interaction of laser radiation with matter)

  16. Signal Digitizer and Cross-Correlation Application Specific Integrated Circuit

    Science.gov (United States)

    Baranauskas, Dalius (Inventor); Baranauskas, Gytis (Inventor); Zelenin, Denis (Inventor); Kangaslahti, Pekka (Inventor); Tanner, Alan B. (Inventor); Lim, Boon H. (Inventor)

    2017-01-01

    According to one embodiment, a cross-correlator comprises a plurality of analog front ends (AFEs), a cross-correlation circuit and a data serializer. Each of the AFEs comprises a variable gain amplifier (VGA) and a corresponding analog-to-digital converter (ADC) in which the VGA receives and modifies a unique analog signal associates with a measured analog radio frequency (RF) signal and the ADC produces digital data associated with the modified analog signal. Communicatively coupled to the AFEs, the cross-correlation circuit performs a cross-correlation operation on the digital data produced from different measured analog RF signals. The data serializer is communicatively coupled to the summing and cross-correlating matrix and continuously outputs a prescribed amount of the correlated digital data.

  17. Time-Frequency Analysis of Signals Generated by Rotating Machines

    Directory of Open Access Journals (Sweden)

    R. Zetik

    1999-06-01

    Full Text Available This contribution is devoted to the higher order time-frequency analyses of signals. Firstly, time-frequency representations of higher order (TFRHO are defined. Then L-Wigner distribution (LWD is given as a special case of TFRHO. Basic properties of LWD are illustrated based on the analysis of mono-component and multi-component synthetic signals and acoustical signals generated by rotating machine. The obtained results confirm usefulness of LWD application for the purpose of rotating machine condition monitoring.

  18. Hemodynamic monitoring in the critically ill.

    Science.gov (United States)

    Voga, G

    1995-06-01

    Monitoring of vital functions is one of the most important and essential tools in the management of critically ill patients in the ICU. Today it is possible to detect and analyze a great variety of physiological signals by various noninvasive and invasive techniques. An intensivist should be able to select and perform the most appropriate monitoring method for the individual patient considering risk-benefit ratio of the particular monitoring technique and the need for immediate therapy, specific diagnosis, continuous monitoring and evaluation of morphology should be included. Despite rapid development of noninvasive monitoring techniques, invasive hemodynamic monitoring in still one of the most basic ICU procedures. It enables monitoring of pressures, flow and saturation, pressures in the systemic and pulmonary circulation, estimation of cardiac performance and judgment of the adequacy of the cardiocirculatory system. Carefully and correctly obtained information are basis for proper hemodynamic assessment which usually effects the therapeutic decisions.

  19. WAVELETS AND PRINCIPAL COMPONENT ANALYSIS METHOD FOR VIBRATION MONITORING OF ROTATING MACHINERY

    OpenAIRE

    Bendjama, Hocine; S. Boucherit, Mohamad

    2017-01-01

    Fault diagnosis is playing today a crucial role in industrial systems. To improve reliability, safety and efficiency advanced monitoring methods have become increasingly important for many systems. The vibration analysis method is essential in improving condition monitoring and fault diagnosis of rotating machinery. Effective utilization of vibration signals depends upon effectiveness of applied signal processing techniques. In this paper, fault diagnosis is performed using a com...

  20. FPGA-based GEM detector signal acquisition for SXR spectroscopy system

    Science.gov (United States)

    Wojenski, A.; Pozniak, K. T.; Kasprowicz, G.; Kolasinski, P.; Krawczyk, R.; Zabolotny, W.; Chernyshova, M.; Czarski, T.; Malinowski, K.

    2016-11-01

    The presented work is related to the Gas Electron Multiplier (GEM) detector soft X-ray spectroscopy system for tokamak applications. The used GEM detector has one-dimensional, 128 channel readout structure. The channels are connected to the radiation-hard electronics with configurable analog stage and fast ADCs, supporting speeds of 125 MSPS for each channel. The digitalized data is sent directly to the FPGAs using fast serial links. The preprocessing algorithms are implemented in the FPGAs, with the data buffering made in the on-board 2Gb DDR3 memory chips. After the algorithmic stage, the data is sent to the Intel Xeon-based PC for further postprocessing using PCI-Express link Gen 2. For connection of multiple FPGAs, PCI-Express switch 8-to-1 was designed. The whole system can support up to 2048 analog channels. The scope of the work is an FPGA-based implementation of the recorder of the raw signal from GEM detector. Since the system will work in a very challenging environment (neutron radiation, intense electro-magnetic fields), the registered signals from the GEM detector can be corrupted. In the case of the very intense hot plasma radiation (e.g. laser generated plasma), the registered signals can overlap. Therefore, it is valuable to register the raw signals from the GEM detector with high number of events during soft X-ray radiation. The signal analysis will have the direct impact on the implementation of photon energy computation algorithms. As the result, the system will produce energy spectra and topological distribution of soft X-ray radiation. The advanced software was developed in order to perform complex system startup and monitoring of hardware units. Using the array of two one-dimensional GEM detectors it will be possible to perform tomographic reconstruction of plasma impurities radiation in the SXR region.

  1. Miniaturized Human Insertable Cardiac Monitoring System with Wireless Power Transmission Technique

    Directory of Open Access Journals (Sweden)

    Jong-Ha Lee

    2016-01-01

    Full Text Available Prolonged monitoring is more likely to diagnose atrial fibrillation accurately than intermittent or short-term monitoring. In this study, an implantable electrocardiograph (ECG sensor to monitor atrial fibrillation patients in real time was developed. The implantable sensor is composed of a micro controller unit, an analog-to-digital converter, a signal transmitter, an antenna, and two electrodes. The sensor detects ECG signals from the two electrodes and transmits these to an external receiver carried by the patient. Because the sensor continuously transmits signals, its battery consumption rate is extremely high; therefore, the sensor includes a wireless power transmission module that allows it to charge wirelessly from an external power source. The integrated sensor has the approximate dimensions 3 mm × 4 mm × 14 mm, which is small enough to be inserted into a patient without the need for major surgery. The signal and power transmission data sampling rate and frequency of the unit are 300 samples/s and 430 Hz, respectively. To validate the developed sensor, experiments were conducted on small animals.

  2. A Repeated Signal Difference for Recognising Patterns

    Directory of Open Access Journals (Sweden)

    Kieran Greer

    2016-08-01

    Full Text Available This paper describes a new mechanism that might help with defining pattern sequences, by the fact that it can produce an upper bound on the ensemble value that can persistently oscillate with the actual values produced from each pattern. With every firing event, a node also receives an on/off feedback switch. If the node fires then it sends a feedback result depending on the input signal strength. If the input signal is positive or larger, it can store an ‘on’ switch feedback for the next iteration. If the signal is negative or smaller it can store an ‘off’ switch feedback for the next iteration. If the node does not fire, then it does not affect the current feedback situation and receives the switch command produced by the last active pattern event for the same neuron. The upper bound therefore also represents the largest or most enclosing pattern set and the lower value is for the actual set of firing patterns. If the pattern sequence repeats, it will oscillate between the two values, allowing them to be recognised and measured more easily, over time. Tests show that changing the sequence ordering produces different value sets, which can also be measured.

  3. Real time neutron flux monitoring using Rh self powered neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Juna, Byung Jin; Lee, Byung Chul; Park, Sang Jun; Jung, Hoan Sung [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    Rhodium (Rh) self powered neutron detectors (SPNDs) are widely used for on line monitoring of local neutron flux. Its signal is slower than the actual variation of neutron flux owing to a delayed {beta} decay of the Rh activation product, but real time monitoring is possible by solving equations between the neutron reaction rate in the detector and its signal. While the measuring system is highly reliable, the accuracy depends on the method solving the equations and accuracy of the parameters in the equations. The uncertain parameters are the contribution of gamma rays to the signal, and the branching ratios of Rh 104 and Rh 104m after the neutron absorption of Rh 103. Real time neutron flux monitoring using Rh SPNDs has been quite successful for neutron transmutation doping (NTD) at HANARO. We revisited the initial data used for the verification of a real time monitoring system, to refine algorithm for a better solution and to check the parameters for correctness. As a result, we suggest an effective way to determine the prompt parameter.

  4. Real time neutron flux monitoring using Rh self powered neutron detector

    International Nuclear Information System (INIS)

    Juna, Byung Jin; Lee, Byung Chul; Park, Sang Jun; Jung, Hoan Sung

    2012-01-01

    Rhodium (Rh) self powered neutron detectors (SPNDs) are widely used for on line monitoring of local neutron flux. Its signal is slower than the actual variation of neutron flux owing to a delayed β decay of the Rh activation product, but real time monitoring is possible by solving equations between the neutron reaction rate in the detector and its signal. While the measuring system is highly reliable, the accuracy depends on the method solving the equations and accuracy of the parameters in the equations. The uncertain parameters are the contribution of gamma rays to the signal, and the branching ratios of Rh 104 and Rh 104m after the neutron absorption of Rh 103. Real time neutron flux monitoring using Rh SPNDs has been quite successful for neutron transmutation doping (NTD) at HANARO. We revisited the initial data used for the verification of a real time monitoring system, to refine algorithm for a better solution and to check the parameters for correctness. As a result, we suggest an effective way to determine the prompt parameter

  5. A mixed signal ECG processing platform with an adaptive sampling ADC for portable monitoring applications.

    Science.gov (United States)

    Kim, Hyejung; Van Hoof, Chris; Yazicioglu, Refet Firat

    2011-01-01

    This paper describes a mixed-signal ECG processing platform with an 12-bit ADC architecture that can adapt its sampling rate according to the input signals rate of change. This enables the sampling of ECG signals with significantly reduced data rate without loss of information. The presented adaptive sampling scheme reduces the ADC power consumption, enables the processing of ECG signals with lower power consumption, and reduces the power consumption of the radio while streaming the ECG signals. The test results show that running a CWT-based R peak detection algorithm using the adaptively sampled ECG signals consumes only 45.6 μW and it leads to 36% less overall system power consumption.

  6. Traffic data for local emissions monitoring at a signalized intersection

    NARCIS (Netherlands)

    Bigazzi, A.; Lint, J.W.C. van; Klunder, G.; Stelwagen, U.; Ligterink, N.E.

    2010-01-01

    In order to assist planning efforts for air pollution-responsive dynamic traffic management (DTM) systems, this research assesses the accuracy of local emissions monitoring based on traffic data and models. The study quantifies the benefits of increased data resolution for short-term emissions

  7. EUROmediCAT signal detection

    DEFF Research Database (Denmark)

    Given, Joanne E; Loane, Maria; Luteijn, Johannes Michiel

    2016-01-01

    AIMS: To evaluate congenital anomaly (CA)-medication exposure associations produced by the new EUROmediCAT signal detection system and determine which require further investigation. METHODS: Data from 15 EUROCAT registries (1995-2011) with medication exposures at the chemical substance (5th level...

  8. Bioluminescence Monitoring of Neuronal Activity in Freely Moving Zebrafish Larvae

    Science.gov (United States)

    Knafo, Steven; Prendergast, Andrew; Thouvenin, Olivier; Figueiredo, Sophie Nunes; Wyart, Claire

    2017-01-01

    The proof of concept for bioluminescence monitoring of neural activity in zebrafish with the genetically encoded calcium indicator GFP-aequorin has been previously described (Naumann et al., 2010) but challenges remain. First, bioluminescence signals originating from a single muscle fiber can constitute a major pitfall. Second, bioluminescence signals emanating from neurons only are very small. To improve signals while verifying specificity, we provide an optimized 4 steps protocol achieving: 1) selective expression of a zebrafish codon-optimized GFP-aequorin, 2) efficient soaking of larvae in GFP-aequorin substrate coelenterazine, 3) bioluminescence monitoring of neural activity from motor neurons in free-tailed moving animals performing acoustic escapes and 4) verification of the absence of muscle expression using immunohistochemistry. PMID:29130058

  9. Real-time power plant monitoring and verification and validation issues

    International Nuclear Information System (INIS)

    Ciftcioglu, Oe.; Tuerkcan, E.

    1993-03-01

    By means of the advances in the computer technology, the implementation of a real-time power plant monitoring and dynamic signal analysis system is described. As hardware and software, the system has several essential components to perform the task. Among these, mention may be made of a remote-controlled data acquisition system, a fast data processing system and a dynamic signal analysis system. For a complex system like an NPP, the system verification and validation is an important issue as the plant operation involves many engineering disciplines and also the 'soft sciences'. Additionally, the real-time requirements impose substantial time limitation for the implementation of tasks. The system V and V is accomplished partly by means of V and V of the system components which are monitored by the help of sensory signals. Therefore, an essential part of the V and V task involves the real-time analyses of the data provided by these signals. In this respect the NPP real-time monitoring system described possesses the required design features to carry out this task which provides enhanced reliability and availability in plant operation. (orig./HP)

  10. Monitoring product safety in the postmarketing environment.

    Science.gov (United States)

    Sharrar, Robert G; Dieck, Gretchen S

    2013-10-01

    The safety profile of a medicinal product may change in the postmarketing environment. Safety issues not identified in clinical development may be seen and need to be evaluated. Methods of evaluating spontaneous adverse experience reports and identifying new safety risks include a review of individual reports, a review of a frequency distribution of a list of the adverse experiences, the development and analysis of a case series, and various ways of examining the database for signals of disproportionality, which may suggest a possible association. Regulatory agencies monitor product safety through a variety of mechanisms including signal detection of the adverse experience safety reports in databases and by requiring and monitoring risk management plans, periodic safety update reports and postauthorization safety studies. The United States Food and Drug Administration is working with public, academic and private entities to develop methods for using large electronic databases to actively monitor product safety. Important identified risks will have to be evaluated through observational studies and registries.

  11. Tool Wear Monitoring Using Time Series Analysis

    Science.gov (United States)

    Song, Dong Yeul; Ohara, Yasuhiro; Tamaki, Haruo; Suga, Masanobu

    A tool wear monitoring approach considering the nonlinear behavior of cutting mechanism caused by tool wear and/or localized chipping is proposed, and its effectiveness is verified through the cutting experiment and actual turning machining. Moreover, the variation in the surface roughness of the machined workpiece is also discussed using this approach. In this approach, the residual error between the actually measured vibration signal and the estimated signal obtained from the time series model corresponding to dynamic model of cutting is introduced as the feature of diagnosis. Consequently, it is found that the early tool wear state (i.e. flank wear under 40µm) can be monitored, and also the optimal tool exchange time and the tool wear state for actual turning machining can be judged by this change in the residual error. Moreover, the variation of surface roughness Pz in the range of 3 to 8µm can be estimated by the monitoring of the residual error.

  12. Assessments of Voice Use and Voice Quality among College/University Singing Students Ages 18–24 through Ambulatory Monitoring with a Full Accelerometer Signal

    Science.gov (United States)

    Schloneger, Matthew; Hunter, Eric

    2016-01-01

    The multiple social and performance demands placed on college/university singers could put their still developing voices at risk. Previous ambulatory monitoring studies have analyzed the duration, intensity, and frequency (in Hz) of voice use among such students. Nevertheless, no studies to date have incorporated the simultaneous acoustic voice quality measures into the acquisition of these measures to allow for direct comparison during the same voicing period. Such data could provide greater insight into how young singers use their voices, as well as identify potential correlations between vocal dose and acoustic changes in voice quality. The purpose of this study was to assess the voice use and estimated voice quality of college/university singing students (18–24 y/o, N = 19). Ambulatory monitoring was conducted over three full, consecutive weekdays measuring voice from an unprocessed accelerometer signal measured at the neck. From this signal were analyzed traditional vocal dose metrics such as phonation percentage, dose time, cycle dose, and distance dose. Additional acoustic measures included perceived pitch, pitch strength, LTAS slope, alpha ratio, dB SPL 1–3 kHz, and harmonic-to-noise ratio. Major findings from more than 800 hours of recording indicated that among these students (a) higher vocal doses correlated significantly with greater voice intensity, more vocal clarity and less perturbation; and (b) there were significant differences in some acoustic voice quality metrics between non-singing, solo singing and choral singing. PMID:26897545

  13. Monitoring device for the power distribution within a nuclear reactor core

    International Nuclear Information System (INIS)

    Tanzawa, Tomio; Kumanomido, Hironori; Toyoshi, Isamu.

    1986-01-01

    Purpose: To provide a monitoring device for the power distribution in the reactor core that calculates the power distribution based on the measurement by instruments disposed within the reactor core of BWR type reactors. Constitution: The power distribution monitoring device in a reactor core comprises a signal correcting device, a signal normalizing device and a power distribution calculating device, in which the power distribution calculating device is constituted with an average power calculating device for four fuel assemblies and an average power calculating device for fuel assemblies. Gamma-ray signals corrected by the signal correcting device and signals from neutron detectors are inputted to the signal normalizing device, both of which are calibrated to determine the axial gamma-ray signal distribution in the central water gap region with the four fuel assemblies being as the unit. The average power from the four fuel assemblies are inputted to the fuel assembly average power calculating device to allocate to each of the fuel assembly average power thereby attaining the purpose. Further, thermal restriction values are calculated thereby enabling to secure the fuel integrity. (Kamimura, M.)

  14. Acoustic monitoring techniques for corrosion degradation in cemented waste canisters

    International Nuclear Information System (INIS)

    Naish, C.C.; Buttle, D.; Wallace-Sims, R.; O'Brien, T.M.

    1991-01-01

    This report describes work to investigate acoustic emission as a non-intrusive monitor of corrosion and degradation of cemented wasteforms where the waste is a potentially reactive metal. The acoustic data collected shows good correlation with the corrosion rate as measured by hydrogen gas evolution rates and the electrochemically measured corrosion rates post cement hardening. The technique has been shown to be sensitive in detecting stress caused by expansive corrosion product within the cemented wasteform. The attenuation of the acoustic signal by the wasteform reduced the signal received by the monitoring equipment by a factor of 10 over a distance of approximately 150-400 mm, dependent on the water level in the cement. Full size packages were successfully monitored. It is concluded that the technique offers good potential for monitoring cemented containers of the more reactive metals, for example Magnox and aluminium. (author)

  15. EFFECT OF OXYGEN INHALATION ON MICROEMBOLIC SIGNALS IN PATIENTS WITH MECHANICAL AORTIC VALVE

    Directory of Open Access Journals (Sweden)

    K. Ghandehari Z. Izadimoud

    2005-06-01

    Full Text Available Microembolic signals (MES are frequently observed in transcranial ‎Doppler (TCD recordings of patients with mechanical heart valve (MHV. If gaseous bubbles are the underlying cause, number of MES produced by MHV could be reduced with oxygen ‎inhalation. From September 2003 to September ‎2004, a consecutive series of 14 patients ‎with St Jude aortic valve visited in the cardiology clinic were referred to ‎neurosonology unit, Valie Asr Hospital, Khorasan. TCD monitoring of MES was performed with an ultrasound device and a 2 MHz probe. The MES counts were recorded during 30 ‎minutes breathing room air and thereafter 30 minutes breathing through a facial mask ‎with reservoir bag (6 liter O2 per minute. The criteria of MES detection were ‎characteristic chirping sound, unidirectional signal, random appearance within cardiac ‎cycle and intensity increase ≥ 3dB above background. The MES counts in two periods ‎of monitoring were compared with paired t test and significance was declared at P ‎< 0.05. Twelve patients (8 females and 4 males were investigated. Oxygen ventilation ‎caused a significant decrease of MES counts in the patients in comparison to breathing ‎room air (P = 0.001. It seems that MES in patients with MHV are mainly gaseous bubbles ‎caused by blood agitation with MHV. The quantity of MES in patients with MHV is ‎not related to the risk of thromboembolic complications in these patients.

  16. Monitoring circuit for reactor safety systems

    Science.gov (United States)

    Keefe, Donald J.

    1976-01-01

    The ratio between the output signals of a pair of reactor safety channels is monitored. When ratio falls outside of a predetermined range, it indicates that one or more of the safety channels has malfunctioned.

  17. Ultrasensitive aptamer-based multiplexed electrochemical detection by coupling distinguishable signal tags with catalytic recycling of DNase I.

    Science.gov (United States)

    Tang, Dianping; Tang, Juan; Li, Qunfang; Su, Biling; Chen, Guonan

    2011-10-01

    This work reports an aptamer-based, disposable, and multiplexed sensing platform for simultaneous electrochemical determination of small molecules, employing adenosine triphosphate (ATP) and cocaine as the model target analytes. The multiplexed sensing strategy is based on target-induced release of distinguishable redox tag-conjugated aptamers from a magnetic graphene platform. The electronic signal of the aptasensors could be further amplified by coupling DNase I with catalytic recycling of self-produced reactants. The assay was based on the change in the current at the various peak potentials in the presence of the corresponding signal tags. Experimental results revealed that the multiplexed electrochemical aptasensor enabled the simultaneous monitoring of ATP and cocaine in a single run with wide working ranges and low detection limits (LODs: 0.1 pM for ATP and 1.5 pM for cocaine). This concept offers promise for rapid, simple, and cost-effective analysis of biological samples.

  18. High bandwidth beam current monitor

    International Nuclear Information System (INIS)

    Baltrusaitis, R.M.; Ekdahl, C.A.; Cooper, R.G.; Peterson, E.; Warn, C.E.

    1993-01-01

    A stripline directional coupler beam current monitor capable of measuring the time structure of a 30-ps electron beam bunch has been developed. The time response performance of the monitor compares very well with Cherenkov light produced in quartz by the electron beam. The four-pickup monitor is now used on a routine basis for measuring the beam duration, tuning for optimized beam bunching, and centering the bunch in the beam pipe

  19. Fabrication of Flexible Microneedle Array Electrodes for Wearable Bio-Signal Recording.

    Science.gov (United States)

    Ren, Lei; Xu, Shujia; Gao, Jie; Lin, Zi; Chen, Zhipeng; Liu, Bin; Liang, Liang; Jiang, Lelun

    2018-04-13

    Laser-direct writing (LDW) and magneto-rheological drawing lithography (MRDL) have been proposed for the fabrication of a flexible microneedle array electrode (MAE) for wearable bio-signal monitoring. Conductive patterns were directly written onto the flexible polyethylene terephthalate (PET) substrate by LDW. The microneedle array was rapidly drawn and formed from the droplets of curable magnetorheological fluid with the assistance of an external magnetic field by MRDL. A flexible MAE can maintain a stable contact interface with curved human skin due to the flexibility of the PET substrate. Compared with Ag/AgCl electrodes and flexible dry electrodes (FDE), the electrode-skin interface impedance of flexible MAE was the minimum even after a 50-cycle bending test. Flexible MAE can record electromyography (EMG), electroencephalography (EEG) and static electrocardiography (ECG) signals with good fidelity. The main features of the dynamic ECG signal recorded by flexible MAE are the most distinguishable with the least moving artifacts. Flexible MAE is an attractive candidate electrode for wearable bio-signal monitoring.

  20. Outsourced Probe Data Effectiveness on Signalized Arterials

    Energy Technology Data Exchange (ETDEWEB)

    Young, Stanley E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sharifi, Elham [University of Maryland; Eshragh, Sepideh [University of Maryland; Hamedi, Masoud [University of Maryland; Juster, Reuben M. [University of Maryland; Kaushik, Kartik [University of Maryland

    2017-07-31

    This paper presents results of an I-95 Corridor Coalition sponsored project to assess the ability of outsourced vehicle probe data to provide accurate travel time on signalized roadways for the purposes of real-time operations as well as performance measures. The quality of outsourced probe data on freeways has led many departments of transportation to consider such data for arterial performance monitoring. From April 2013 through June of 2014, the University of Maryland Center for Advanced Transportation Technology gathered travel times from several arterial corridors within the mid-Atlantic region using Bluetooth traffic monitoring (BTM) equipment, and compared these travel times with the data reported to the I95 Vehicle Probe Project (VPP) from an outsourced probe data vendor. The analysis consisted of several methodologies: (1) a traditional analysis that used precision and bias speed metrics; (2) a slowdown analysis that quantified the percentage of significant traffic disruptions accurately captured in the VPP data; (3) a sampled distribution method that uses overlay methods to enhance and analyze recurring congestion patterns. (4) Last, the BTM and VPP data from each 24-hour period of data collection were reviewed by the research team to assess the extent to which VPP captured the nature of the traffic flow. Based on the analysis, probe data is recommended only on arterial roadways with signal densities (measured in signals per mile) up to one, and it should be tested and used with caution for signal densities between one and two, and is not recommended when signal density exceeds two.