WorldWideScience

Sample records for monitor remote handling

  1. Remote handling at LAMPF

    International Nuclear Information System (INIS)

    Grisham, D.L.; Lambert, J.E.

    1983-01-01

    Experimental area A at the Clinton P. Anderson Meson Physics Facility (LAMPF) encompasses a large area. Presently there are four experimental target cells along the main proton beam line that have become highly radioactive, thus dictating that all maintenance be performed remotely. The Monitor remote handling system was developed to perform in situ maintenance at any location within area A. Due to the complexity of experimental systems and confined space, conventional remote handling methods based upon hot cell and/or hot bay concepts are not workable. Contrary to conventional remote handling which require special tooling for each specifically planned operation, the Monitor concept is aimed at providing a totally flexible system capable of remotely performing general mechanical and electrical maintenance operations using standard tools. The Monitor system is described

  2. Monitor: a short-cut approach to remote-handling at LAMPF

    International Nuclear Information System (INIS)

    Horne, R.A.; Ekberg, E.L.

    1975-01-01

    The monitor, constructed from relatively cheap commercial components, is a straightforward, totally remotely operated handling system intended to work on components in the LAMPF external beam line or elsewhere. It can be towed or lifted into position, then hard-wire controlled from a distance by using television. (auth)

  3. A Perspective on Remote Handling Operations and Human Machine Interface for Remote Handling in Fusion

    International Nuclear Information System (INIS)

    Haist, B.; Hamilton, D.; Sanders, St.

    2006-01-01

    A large-scale fusion device presents many challenges to the remote handling operations team. This paper is based on unique operational experience at JET and gives a perspective on remote handling task development, logistics and resource management, as well as command, control and human-machine interface systems. Remote operations require an accurate perception of a dynamic environment, ideally providing the operators with the same unrestricted knowledge of the task scene as would be available if they were actually at the remote work location. Traditional camera based systems suffer from a limited number of viewpoints and also degrade quickly when exposed to high radiation. Virtual Reality and Augmented Reality software offer great assistance. The remote handling system required to maintain a tokamak requires a large number of different and complex pieces of equipment coordinating to perform a large array of tasks. The demands on the operator's skill in performing the tasks can escalate to a point where the efficiency and safety of operations are compromised. An operations guidance system designed to facilitate the planning, development, validation and execution of remote handling procedures is essential. Automatic planning of motion trajectories of remote handling equipment and the remote transfer of heavy loads will be routine and need to be reliable. This paper discusses the solutions developed at JET in these areas and also the trends in management and presentation of operational data as well as command, control and HMI technology development offering the potential to greatly assist remote handling in future fusion machines. (author)

  4. Beginnings of remote handling at the RAL Spallation Neutron Source

    International Nuclear Information System (INIS)

    Liska, D.J.; Hirst, J.

    1985-01-01

    Expenditure of funds and resources for remote maintenance systems traditionally are delayed until late in an accelerator's development. However, simple remote-surveillance equipment can be included early in facility planning to set the stage for future remote-handling needs and to identify appropriate personnel. Some basic equipment developed in the UK at the Spallation Neutron Source (SNS) that serves this function and that has been used to monitor beam loss during commissioning is described. A photograph of this equipment, positioned over the extractor septum magnet, is shown. This method can serve as a pattern approach to the problem of initiating remote-handling activities in other facilities

  5. Recent advances in remote handling at LAMPF

    International Nuclear Information System (INIS)

    Lambert, J.E.; Grisham, D.L.

    1985-01-01

    The Clinton P. Anderson Meson Physics Facility (LAMPF) has operated at beam currents above 200 microamperes since 1976. As a result, the main experimental beam line (Line A) has become increasingly radioactive over the years. Since 1976 the radiation levels have steadily increased from 100 mR/hr to levels that exceed 10,000 R/hr in the components near the pion production targets. During this time the LAMPF remote handling system, Monitor, has continued to operate successfully in the ever-increasing radiation levels, as well as with more complex remote-handling situations. This paper briefly describes the evolution of Monitor and specifically describes the complete rebuild of the A-6 target area, which is designated as the beam stop, but also includes isotope production capabilities and a primitive neutron irradiation facility. The new facility includes not only the beam stop and isotope production, but also facilities for proton irradiation and a ten-fold expansion in neutron irradiation facilities

  6. Measurement and control system for the ITER remote handling mock-up test

    International Nuclear Information System (INIS)

    Oka, K.; Kakudate, S.; Takiguchi, Y.; Ako, K.; Taguchi, K.; Tada, E.; Ozaki, F.; Shibanuma, K.

    1998-01-01

    The mock-up test platforms composed of full-scale remote handling (RH) equipment were developed for demonstrating remote replacement of the ITER blanket and divertor. In parallel, the measurement and control system for operating these RH equipment were constructed on the basis of open architecture with object oriented feature, aiming at realization of fully-remoted automatic operation required for ITER. This paper describes the design concept of the measurement and control system for the remote handling equipment of ITER, and outlines the measured performances of the fabricated measurement system for the remote handling mock-up tests, which includes Data Acquisition System (DAS), Visual Monitoring System (VMS) and Virtual Reality System (VRS). (authors)

  7. A Perspective on Equipment Design for Fusion Remote Handling

    International Nuclear Information System (INIS)

    Mills, S.; Haist, B.; Hamilton, D.

    2006-01-01

    basis. To foresee and therefore prevent equipment failure technologies such as online condition monitoring and self-diagnosis will be essential. The economics of future fusion projects will demand that commercial off-the-shelf equipment be used in the remote handling system wherever possible and that the integration and support of the systems are as simple as possible. The modularization and standardisation of components and software is therefore essential. The paper will discuss possible methods for addressing these needs of the preparation, maintenance and support of remote operations. If ignored, this aspect has significant potential to inflate costs and reduce operational effectiveness. The paper will also discuss innovations and developments which have the potential for improving some of the key technologies required for fusion machines such as in pipe joining techniques and actuator developments. (author)

  8. Remote-handled transuranic system assessment appendices. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    Volume 2 of this report contains six appendices to the report: Inventory and generation of remote-handled transuranic waste; Remote-handled transuranic waste site storage; Characterization of remote-handled transuranic waste; RH-TRU waste treatment alternatives system analysis; Packaging and transportation study; and Remote-handled transuranic waste disposal alternatives.

  9. Remote-handled transuranic system assessment appendices. Volume 2

    International Nuclear Information System (INIS)

    1995-11-01

    Volume 2 of this report contains six appendices to the report: Inventory and generation of remote-handled transuranic waste; Remote-handled transuranic waste site storage; Characterization of remote-handled transuranic waste; RH-TRU waste treatment alternatives system analysis; Packaging and transportation study; and Remote-handled transuranic waste disposal alternatives

  10. Development of spent fuel remote handling technology

    International Nuclear Information System (INIS)

    Yoon, J. S.; Hong, H. D.; Kim, S. H.

    2004-02-01

    In this research, the remote handling technology is developed for the advanced spent fuel conditioning process which gives a possible solution to deal with the rapidly increasing spent fuels. In detail, a fuel rod slitting device is developed for the decladding of the spent fuel. A series of experiments has been performed to find out the optimal condition of the spent fuel voloxidation which converts the UO 2 pellet into U 3 O 8 powder. The design requirements of the ACP equipment for hot test is established by analysing the modular requirement, radiation hardening and thermal protection of the process equipment, etc. The prototype of the servo manipulator is developed. The manipulator has an excellent performance in terms of the payload to weight ratio that is 30 % higher than that of existing manipulators. To provide reliability and safety of the ACP, the 3 dimensional graphic simulator is developed. Using the simulator the remote handling operation is simulated and as a result, the optimal layout of ACP is obtained. The supervisory control system is designed to control and monitor the several different unit processes. Also the failure monitoring system is developed to detect the possible accidents of the reduction reactor

  11. Welding method by remote handling

    International Nuclear Information System (INIS)

    Hashinokuchi, Minoru.

    1994-01-01

    Water is charged into a pit (or a water reservoir) and an article to be welded is placed on a support in the pit by remote handling. A steel plate is disposed so as to cover the article to be welded by remote handling. The welding device is positioned to the portion to be welded and fixed in a state where the article to be welded is shielded from radiation by water and the steel plate. Water in the pit is drained till the portion to be welded is exposed to the atmosphere. Then, welding is conducted. After completion of the welding, water is charged again to the pit and the welding device and fixing jigs are decomposed in a state where the article to be welded is shielded again from radiation by water and the steel plate. Subsequently, the steel plate is removed by remote handling. Then, the article to be welded is returned from the pit to a temporary placing pool by remote handling. This can reduce operator's exposure. Further, since the amount of the shielding materials can be minimized, the amount of radioactive wastes can be decreased. (I.N.)

  12. Remote handling equipment

    International Nuclear Information System (INIS)

    Clement, G.

    1984-01-01

    After a definition of intervention, problems encountered for working in an adverse environment are briefly analyzed for development of various remote handling equipments. Some examples of existing equipments are given [fr

  13. Full scale tests on remote handled FFTF fuel assembly waste handling and packaging

    International Nuclear Information System (INIS)

    Allen, C.R.; Cash, R.J.; Dawson, S.A.; Strode, J.N.

    1986-01-01

    Handling and packaging of remote handled, high activity solid waste fuel assembly hardware components from spent FFTF reactor fuel assemblies have been evaluated using full scale components. The demonstration was performed using FFTF fuel assembly components and simulated components which were handled remotely using electromechanical manipulators, shielding walls, master slave manipulators, specially designed grapples, and remote TV viewing. The testing and evaluation included handling, packaging for current and conceptual shipping containers, and the effects of volume reduction on packing efficiency and shielding requirements. Effects of waste segregation into transuranic (TRU) and non-transuranic fractions also are discussed

  14. Getting to grips with remote handling and robotics

    Energy Technology Data Exchange (ETDEWEB)

    Mosey, D [Ontario Hydro, Toronto (Canada)

    1984-12-01

    A report on the Canadian Nuclear Society Conference on robotics and remote handling in the nuclear industry, September 1984. Remote handling in reactor operations, particularly in the Candu reactors is discussed, and the costs and benefits of use of remote handling equipment are considered. Steam generator inspection and repair is an area in which practical application of robotic technology has made a major advance.

  15. Experience of remote under water handling operations at Tarapur Atomic Power Station

    International Nuclear Information System (INIS)

    Agarwal, S.K.

    1990-01-01

    Each Refuelling outage of Tarapur Atomic Power Station Reactors involves a great deal of remote underwater handling operations using special remote handling tools, working deep down in the reactor vessel under about sixty feet of water and in the narrow confines of highly radioactive core. The remote underwater handling operations include incore and out of core sipping operations, fuel reloading or shuffling, uncoupling of control rod drives, replacement and shuffling of control blades, replacement of local power range monitors, spent fuel shipment in casks, retrieval of fallen or displaced fuel top guide spacers, orifices and their installation, underwater CCTV inspection of reactor internals, core verification, channelling and dechannelling of fuel bundles, inspection of fuel bundles and channels, unbolting and removal of old racks, installation of high density racks, removal and reinstallation of fuel support plugs and guide tubes, underwater cutting of irradiated hardware material and their disposal, fuel reconstitution, removal and reinstallation of system dryer separator etc.. The paper describes in brief the salient experience of remote underwater handling operations at TAPS especially the unusual problems faced and solved, by using special tools, employing specific techniques and by repeated efforts, patience, ingenuity and skills. (author). 10 figs

  16. Remote handling for an ISIS target change

    International Nuclear Information System (INIS)

    Broome, T.A.; Holding, M.

    1989-01-01

    During 1987 two ISIS targets were changed. This document describes the main features of the remote handling aspects of the work. All the work has to be carried out using remote handling techniques. The radiation level measured on the surface of the reflector when the second target had been removed was about 800 mGy/h demonstrating that hands on operations on any part of the target reflector moderator assembly is not practical. The target changes were the first large scale operations in the Target Station Remote Handling Cell and a great deal was learned about both equipment and working practices. Some general principles emerged which are applicable to other active handling tasks on facilities like ISIS and these are discussed below. 8 figs

  17. Remote handling recognition and display device

    International Nuclear Information System (INIS)

    Kimura, Motohiko.

    1979-01-01

    Purpose: To surely recognize the movements of remote handling equipments in a reactor by the use of a device in a simple structure. Constitution: A light emission surface and a light reception surface are provided, for example, putting therebetween a hook of a nob of a control rod as a remote control equipment. Depending on the position of the hook, there are two possible cases where the light can not arrive the light reception surface inhibited by the hook and where the light can be received not inhibited by the hook. By visually monitoring the presence or absence of the light reception from the outside of the reactor, the movement of the nob for the control rod can be recognized. Optical fibers connect the optical source with the light emission surface, and the light reception surface with the display surface. (Ikeda, J.)

  18. PREPD O and VE remote handling system

    International Nuclear Information System (INIS)

    Theil, T.N.

    1985-01-01

    The Process Experimental Pilot Plant (PREPP) at the Idaho National Engineering Laboratory is designed for volume reduction and packaging of transuranic (TRU) waste. The PREPP opening and verification enclosure (O and VE) remote handling system, within that facility, is designed to provide examination of the contents of various TRU waste storage containers. This remote handling system will provide the means of performing a hazardous operation that is currently performed manually. The TeleRobot to be used in this system is a concept that will incorporate and develop man in the loop operation (manual mode), standardized automatic sequencing of end effector tools, increased payload and reach over currently available computer-controlled robots, and remote handling of a hazardous waste operation. The system is designed within limited space constraints and an operation that was originally planned, and is currently being manually performed at other plants. The PREPP O and VE remote handling system design incorporates advancing technology to improve the working environment in the nuclear field

  19. Remote handling demonstration of ITER blanket module replacement

    International Nuclear Information System (INIS)

    Kakudate, S.; Nakahira, M.; Oka, K.; Taguchi, K.; Obara, K.; Tada, E.; Shibanuma, K.; Tesini, A.; Haange, R.; Maisonnier, D.

    2001-01-01

    In ITER, the in-vessel components such as blanket are to be maintained or replaced remotely since they will be activated by 14 MeV neutrons, and a complete exchange of shielding blanket with breeding blanket is foreseen after the Basic Performance Phase. The blanket is segmented into about seven hundred modules to facilitate remote maintainability and allow individual module replacement. For this, the remote handing equipment for blanket maintenance is required to handle a module with a dead weight of about 4 tonne within a positioning accuracy of a few mm under intense gamma radiation. According to the ITER R and D program, a rail-mounted vehicle manipulator system was developed and the basic feasibility of this system was verified through prototype testing. Following this, development of full-scale remote handling equipment has been conducted as one of the ITER Seven R and D Projects aiming at a remote handling demonstration of the ITER blanket. As a result, the Blanket Test Platform (BTP) composed of the full-scale remote handling equipment has been completed and the first integrated performance test in March 1998 has shown that the fabricate remote handling equipment satisfies the main requirements of ITER blanket maintenance. (author)

  20. Remote handling technology for nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Sakai, Akira; Maekawa, Hiromichi; Ohmura, Yutaka

    1997-01-01

    Design and R and D on nuclear fuel cycle facilities has intended development of remote handling and maintenance technology since 1977. IHI has completed the design and construction of several facilities with remote handling systems for Power Reactor and Nuclear Fuel Development Corporation (PNC), Japan Atomic Energy Research Institute (JAERI), and Japan Nuclear Fuel Ltd. (JNFL). Based on the above experiences, IHI is now undertaking integration of specific technology and remote handling technology for application to new fields such as fusion reactor facilities, decommissioning of nuclear reactors, accelerator testing facilities, and robot simulator-aided remote operation systems in the future. (author)

  1. Remote handling systems for the Pride application

    International Nuclear Information System (INIS)

    Kim, K.; Lee, J.; Lee, H.; Kim, S.; Kim, H.

    2010-10-01

    In this paper is described the development of remote handling systems for use in the pyro processing technology development. Remote handling systems mainly include a BDSM (Bridge transported Dual arm Servo-Manipulator) and a simulator, all of which will be applied to the Pride (Pyro process integrated inactive demonstration facility) that is under construction at KAERI. BDMS that will traverse the length of the ceiling is designed to have two pairs of master-slave manipulators of which each pair of master-slave manipulators has a kinematic similarity and a force reflection. A simulator is also designed to provide an efficient means for simulating and verifying the conceptual design, developments, arrangements, and rehearsal of the pyro processing equipment and relevant devices from the viewpoint of remote operation and maintenance. In our research is presented activities and progress made in developing remote handling systems to be used for the remote operation and maintenance of the pyro processing equipment and relevant devices in the Pride. (Author)

  2. Remote handling machines

    International Nuclear Information System (INIS)

    Sato, Shinri

    1985-01-01

    In nuclear power facilities, the management of radioactive wastes is made with its technology plus the automatic techniques. Under the radiation field, the maintenance or aid of such systems is important. To cope with this situation, MF-2 system, MF-3 system and a manipulator system as remote handling machines are described. MF-2 system consists of an MF-2 carrier truck, a control unit and a command trailer. It is capable of handling heavy-weight objects. The system is not by hydraulic but by electrical means. MF-3 system consists of a four-crawler truck and a manipulator. The truck is versatile in its posture by means of the four independent crawlers. The manipulator system is bilateral in operation, so that the delicate handling is made possible. (Mori, K.)

  3. Canadian capabilities in fusion fuels technology and remote handling

    International Nuclear Information System (INIS)

    1987-10-01

    This report describes Canadian expertise in fusion fuels technology and remote handling. The Canadian Fusion Fuels Technology Project (CFFTP) was established and is funded by the Canadian government, the province of Ontario and Ontario Hydro to focus on the technology necessary to produce and manage the tritium and deuterium fuels to be used in fusion power reactors. Its activities are divided amongst three responsibility areas, namely, the development of blanket, first wall, reactor exhaust and fuel processing systems, the development of safe and reliable operating procedures for fusion facilities, and, finally, the application of these developments to specific projects such as tritium laboratories. CFFTP also hopes to utilize and adapt Canadian developments in an international sense, by, for instance, offering training courses to the international tritium community. Tritium management expertise is widely available in Canada because tritium is a byproduct of the routine operation of CANDU reactors. Expertise in remote handling is another byproduct of research and development of of CANDU facilities. In addition to describing the remote handling technology developed in Canada, this report contains a brief description of the Canadian tritium laboratories, storage beds and extraction plants as well as a discussion of tritium monitors and equipment developed in support of the CANDU reactor and fusion programs. Appendix A lists Canadian manufacturers of tritium equipment and Appendix B describes some of the projects performed by CFFTP for offshore clients

  4. Development of standard components for remote handling

    International Nuclear Information System (INIS)

    Taguchi, Kou; Kakudate, Satoshi; Nakahira, Masataka; Ito, Akira

    1998-01-01

    The core of Fusion Experimental Reactor consists of various components such as superconducting magnets and forced-cooled in-vessel components, which are remotely maintained due to intense of gamma radiation. Mechanical connectors such as cooling pipe connections, insulation joints and electrical connectors are commonly used for maintenance of these components and have to be standardized in terms of remote handling. This paper describes these mechanical connectors developed as the standard component compatible with remote handling and tolerable for radiation. (author)

  5. Development of standard components for remote handling

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, Kou; Kakudate, Satoshi; Nakahira, Masataka; Ito, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-04-01

    The core of Fusion Experimental Reactor consists of various components such as superconducting magnets and forced-cooled in-vessel components, which are remotely maintained due to intense of gamma radiation. Mechanical connectors such as cooling pipe connections, insulation joints and electrical connectors are commonly used for maintenance of these components and have to be standardized in terms of remote handling. This paper describes these mechanical connectors developed as the standard component compatible with remote handling and tolerable for radiation. (author)

  6. Development of remote handling technology for nuclear fuel cycle facilities in Japan

    International Nuclear Information System (INIS)

    Maekawa, Hiromichi; Sakai, Akira; Miura, Noriaki; Kozaka, Tetsuo; Hamada, Takashi

    2015-01-01

    and two bilateral servo-manipulators and ITV (Industrial Television) systems for monitoring are installed for Maintenance and also Operation in the cell. These cranes and manipulators are mounted on the bridge to ensure the wide range of operations in the cell and also designed to be remotely maintained themselves by each other. In case of K-facility (active tests stated in 2007) the operating experiences at TVF were reflected to make some improvements on its remote handling system in order to ensure the availability and reduce the cost. There adopted the unilateral servo-manipulator and the auxiliary hoist with remote operation support system, the rack module design for periodically replaced components, and the direct contact maintenance for the in cell cranes and manipulators in the shielded parking space. The glass melter in the vitrification process is designed to be replaced every 5 years, so the remote replacement and dismantling technology for the spent melters have been also developed and installed in TVF and K-facility for 40 years’ operation. This paper describes our development experiences on the design, construction, operation, and maintenance of the remote handling systems in nuclear fuel cycle facilities in Japan. (author)

  7. Conceptual design of CFETR divertor remote handling compatible structure

    International Nuclear Information System (INIS)

    Dai, Huaichu; Yao, Damao; Cao, Lei; Zhou, Zibo; Li, Lei

    2016-01-01

    Highlights: • Conceptual design for the CFETR divertor have been proposed, especially the divertor remote handling compatible structure. • The degrees of freedom of the divertor are analyzed in order to validate the design the divertor supports structure. • Besides the ITER-like scheme, a new scheme for the divertor remote handling compatible supports is proposed, that is the rack and pinion mechanism. • The installation/removel process is verified through simulation in Delmia in order to check design quality for remote handling requirements. - Abstract: Divertor is one of key components of tokamak fusion reactor. The CFETR is China Fusion Engineering Test Reactor. Its divertor will expose to tritium environment and neutron radiation. Materials of the divertor will be radioactived, and cannot be handled by personnel directly. To develop structure which compatible with robots handle for installation, maintenance and removing is required. This paper introduces a conceptual design of CFETR divertor module which compatible with remote handling end-effectors. The divertor module is confined by inner and outer support. The inner support is only confined divertor module radial, toroidal and vertical moving freedom degrees, but not confined rotating freedom degrees. The outer support is the structure that can confine rotating freedom degrees and should also be compatible with remote handling end-effectors.

  8. Conceptual design of CFETR divertor remote handling compatible structure

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Huaichu, E-mail: yaodm@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei (China); Yao, Damao; Cao, Lei; Zhou, Zibo; Li, Lei [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-11-15

    Highlights: • Conceptual design for the CFETR divertor have been proposed, especially the divertor remote handling compatible structure. • The degrees of freedom of the divertor are analyzed in order to validate the design the divertor supports structure. • Besides the ITER-like scheme, a new scheme for the divertor remote handling compatible supports is proposed, that is the rack and pinion mechanism. • The installation/removel process is verified through simulation in Delmia in order to check design quality for remote handling requirements. - Abstract: Divertor is one of key components of tokamak fusion reactor. The CFETR is China Fusion Engineering Test Reactor. Its divertor will expose to tritium environment and neutron radiation. Materials of the divertor will be radioactived, and cannot be handled by personnel directly. To develop structure which compatible with robots handle for installation, maintenance and removing is required. This paper introduces a conceptual design of CFETR divertor module which compatible with remote handling end-effectors. The divertor module is confined by inner and outer support. The inner support is only confined divertor module radial, toroidal and vertical moving freedom degrees, but not confined rotating freedom degrees. The outer support is the structure that can confine rotating freedom degrees and should also be compatible with remote handling end-effectors.

  9. Remote handling needs of the Princeton Plasma Physics Laboratory

    International Nuclear Information System (INIS)

    Smiltnieks, V.

    1982-07-01

    This report is the result of a Task Force study commissioned by the Canadian Fusion Fuels Technology Project (CFFTP) to investigate the remote handling requirements at the Princeton Plasma Physics Laboratory (PPPL) and identify specific areas where CFFTP could offer a contractual or collaborative participation, drawing on the Canadian industrial expertise in remote handling technology. The Task Force reviewed four areas related to remote handling requirements; the TFTR facility as a whole, the service equipment required for remote maintenance, the more complex in-vessel components, and the tritium systems. Remote maintenance requirements both inside the vacuum vessel and around the periphery of the machine were identified as the principal areas where Canadian resources could effectively provide an input, initially in requirement definition, concept evaluation and feasibility design, and subsequently in detailed design and manufacture. Support requirements were identified in such areas as the mock-up facility and a variety of planning studies relating to reliability, availability, and staff training. Specific tasks are described which provide an important data base to the facility's remote handling requirements. Canadian involvement in the areas is suggested where expertise exists and support for the remote handling work is warranted. Reliability, maintenance operations, inspection strategy and decommissioning are suggested for study. Several specific components are singled out as needing development

  10. Advanced remote handling developments for high radiation applications

    International Nuclear Information System (INIS)

    Herndon, J.N.; Kring, C.T.; Feldman, M.J.; Kuban, D.P.; Martin, H.L.; Rowe, J.C.; Hamel, W.R.

    1985-01-01

    The Remote Control Engineering Task of the Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory has been developing advanced techniques for remote maintenance of future US fuel reprocessing plants. These efforts are based on the application of teleoperated, force-reflecting servomanipulators for dexterous remote handling with television viewing for large-volume hazardous applications. These developments fully address the nonrepetitive nature of remote maintenance in the unstructured environments encountered in fuel reprocessing. This paper covers the primary emphasis in the present program; the design, fabrication, and installation of a prototype remote handling system for reprocessing applications, the Advanced Integrated Maintenance System

  11. Trends in remote handling device development

    International Nuclear Information System (INIS)

    Raimondi, T.

    1991-01-01

    A brief review is given of studies on layouts and methods for handling some major components requiring remote maintenance in future fusion reactors: Neutral sources and beam lines, the blanket, divertor plates, armour tiles and vacuum pumps. Comparison is made to problems encountered in JET, methods and equipment used and development work done there. Areas requiring development and research are outlined. These include topics which are the subject of papers presented here, such as dynamic studies and control of transporters, improvements to the man-machine interface and hot cell equipment. A variety of other topics where effort is needed are also mentioned: Environmental tolerance of components and equipment, TV viewing and compensation of viewing difficulties with aids such as computer graphics and image processing, safety assessment, computer aids for remote manipulation, remote cutting and welding techniques, routine in-vessel inspection methods and selection of connectors and flanges for remote handling. (orig.)

  12. Remote technologies for handling spent fuel

    International Nuclear Information System (INIS)

    Ramakumar, M.S.

    1999-01-01

    The nuclear programme in India involves building and operating power and research reactors, production and use of isotopes, fabrication of reactor fuel, reprocessing of irradiated fuel, recovery of plutonium and uranium-233, fabrication of fuel containing plutonium-239, uranium-233, post-irradiation examination of fuel and hardware and handling solid and liquid radioactive wastes. Fuel that could be termed 'spent' in thermal reactors is a source for second generation fuel (plutonium and uranium-233). Therefore, it is only logical to extend remote techniques beyond handling fuel from thermal reactors to fuel from fast reactors, post-irradiation examination etc. Fabrication of fuel containing plutonium and uranium-233 poses challenges in view of restriction on human exposure to radiation. Hence, automation will serve as a step towards remotisation. Automated systems, both rigid and flexible (using robots) need to be developed and implemented. Accounting of fissile material handled by robots in local area networks with appropriate access codes will be possible. While dealing with all these activities, it is essential to pay attention to maintenance and repair of the facilities. Remote techniques are essential here. There are a number of commonalities in these requirements and so development of modularized subsystems, and integration of different configurations should receive attention. On a long-term basis, activities like decontamination, decommissioning of facilities and handling of waste generated have to be addressed. While robotized remote systems have to be designed for existing facilities, future designs of facilities should take into account total operation with robotic remote systems. (author)

  13. Remote Inspection, Measurement and Handling for LHC

    CERN Document Server

    Kershaw, K; Coin, A; Delsaux, F; Feniet, T; Grenard, J L; Valbuena, R

    2007-01-01

    Personnel access to the LHC tunnel will be restricted to varying extents during the life of the machine due to radiation, cryogenic and pressure hazards. The ability to carry out visual inspection, measurement and handling activities remotely during periods when the LHC tunnel is potentially hazardous offers advantages in terms of safety, accelerator down time, and costs. The first applications identified were remote measurement of radiation levels at the start of shut-down, remote geometrical survey measurements in the collimation regions, and remote visual inspection during pressure testing and initial machine cool-down. In addition, for remote handling operations, it will be necessary to be able to transmit several real-time video images from the tunnel to the control room. The paper describes the design, development and use of a remotely controlled vehicle to demonstrate the feasibility of meeting the above requirements in the LHC tunnel. Design choices are explained along with operating experience to-dat...

  14. ITER L 6 equatorial maintenance duct remote handling study

    International Nuclear Information System (INIS)

    Millard, J.

    1996-09-01

    The status and conclusions of a preliminary study of equatorial maintenance duct remote handling is reported. Due to issues with the original duct design a significant portion of the study had to be refocused on equatorial duct layout studies. The study gives an overview of some of the options for design of these ducts and the impact of the design on the equipment to work in the duct. To develop a remote handling concept for creating access through the ducts the following design tasks should be performed: define the operations sequences for equatorial maintenance duct opening and closing; review the remote handling requirements for equatorial maintenance duct opening and closing; design concept for door and pipe handling equipment and to propose preliminary procedures for material handling outsides the duct. 35 figs

  15. Project Execution Plan for the Remote Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Danny Anderson

    2014-07-01

    As part of ongoing cleanup activities at the Idaho National Laboratory (INL), closure of the Radioactive Waste Management Complex (RWMC) is proceeding under the Comprehensive Environmental Response, Compensation, and Liability Act (42 USC 9601 et seq. 1980). INL-generated radioactive waste has been disposed of at RWMC since 1952. The Subsurface Disposal Area (SDA) at RWMC accepted the bulk of INL’s contact and remote-handled low-level waste (LLW) for disposal. Disposal of contact-handled LLW and remote-handled LLW ion-exchange resins from the Advanced Test Reactor in the open pit of the SDA ceased September 30, 2008. Disposal of remote-handled LLW in concrete disposal vaults at RWMC will continue until the facility is full or until it must be closed in preparation for final remediation of the SDA (approximately at the end of fiscal year FY 2017). The continuing nuclear mission of INL, associated ongoing and planned operations, and Naval spent fuel activities at the Naval Reactors Facility (NRF) require continued capability to appropriately dispose of contact and remote handled LLW. A programmatic analysis of disposal alternatives for contact and remote-handled LLW generated at INL was conducted by the INL contractor in Fiscal Year 2006; subsequent evaluations were completed in Fiscal Year 2007. The result of these analyses was a recommendation to the Department of Energy (DOE) that all contact-handled LLW generated after September 30, 2008, be disposed offsite, and that DOE proceed with a capital project to establish replacement remote-handled LLW disposal capability. An analysis of the alternatives for providing replacement remote-handled LLW disposal capability has been performed to support Critical Decision-1. The highest ranked alternative to provide this required capability has been determined to be the development of a new onsite remote-handled LLW disposal facility to replace the existing remote-handled LLW disposal vaults at the SDA. Several offsite DOE

  16. Development of monitoring-control methods for heavy remote handling operations in an irradiated environment

    Energy Technology Data Exchange (ETDEWEB)

    Argouac' h, J R [Alsthom-Atlantique, ACB Nantes (France)

    1984-11-01

    Heavy remote handling equipment units have benefited from the progress made in robotics, but with certain specific constraints linked to the environment in which they are required to operate. Notably, these constraints impose the exclusive use of electrical techniques.

  17. Remote-Handled Low-Level Waste Disposal Project Code of Record

    Energy Technology Data Exchange (ETDEWEB)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2012-06-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  18. Remote-Handled Low-Level Waste Disposal Project Code of Record

    Energy Technology Data Exchange (ETDEWEB)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2014-06-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  19. Remote-Handled Low-Level Waste Disposal Project Code of Record

    Energy Technology Data Exchange (ETDEWEB)

    Austad, S. L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Guillen, L. E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); McKnight, C. W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ferguson, D. S. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  20. Observations on human-technology interaction aspects in remote handling for fusion

    International Nuclear Information System (INIS)

    Salminen, Karoliina

    2009-01-01

    Remote handling can been seen as cooperation between human and machine. One of the characteristics of remote handling is that there is always a human involved in the technique: there is always a human guiding and supervising the movements and deciding the actions of the machine. Unlike many other fields of remote handling for fusion, the human-technology interaction side has not been studied carefully recently. The state-of-the-art research about different kinds of remote handling systems shows that there is a lot of information available in this subject, but there is a clear need for studies where the special needs of ITER are taken into account. During the PREFIT programme, the human-interaction aspects of remote handling have been studied, and the goal has been to find solutions compatible with ITER. Some of the aspects that make ITER a unique system are its new technology combining state-of-the-art knowledge from several different fields, and its very international working environment. When discussing the human aspects, the fact of the multinational cooperation cannot be neglected. Since the majority of the information found in the literature review is not about remote handling, references need to be taken from other industries, like aviation. This article consists of ITER remote handling relevant findings in state-of-the-art research and information and knowledge gained during the PREFIT programme, especially during the training periods at JET in Culham and at CEA in Fontenay-aux-Roses. It also discusses the importance of human-technology interaction field in remote handling, especially in ITER.

  1. Remote handling of JET in-torus components. A practical experience

    International Nuclear Information System (INIS)

    Mills, S.; Brade, R.; Edwards, P.

    2000-01-01

    This paper summarises the experiences gained from the extensive handling of JET components inside the torus. The problems involved with handling components not designed to be remotely handled and the methods used to overcome them are described and discussed with specific examples from recent JET remote operations. The method employed for remotely producing structural TIG welds is explained. The problems of dextrous manipulation in an inverted attitude are discussed and the methods of amelioration are described

  2. Augmented virtualised reality-Applications and benefits in remote handling for fusion

    International Nuclear Information System (INIS)

    King, Ryan; Hamilton, David

    2009-01-01

    Over the last 10 years VR has been used at JET in an increasingly important role. It now finds use in various aspects of task preparation including planning, mock-up, training and task overview. It also plays an important role in actual operations where it is used to gain a more complete view of the work area. The JET VR implementation does not have on-line monitoring of the remote environment and the robot modelling has accuracy limitations, so this system cannot be used as the primary means of viewing. Work is currently underway with the aim of allowing such as system to run at ITER with full remote environment monitoring with high enough precision and accuracy so as to allow its use as the primary viewing method. This paper looks at how this augmented virtualised reality solution would be applied and considers some of the additional benefits AVR could have in remote handling for fusion.

  3. Design of remote handling equipment for the ITER NBI

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Kiyoshi; Tada, Eisuke [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-08-01

    The ITER machine has three Neutral Beam Injectors (NBIs) placed tangential to the plasma at a minimum radius of 6.25 m. During operation, neutrons produced by the D-T reactions will irradiate the NBI structure and it will become radioactive. Radiation levels will be such that all subsequent maintenance of the NBIs must be carried out remotely. The presence of tritium and possibly radioactive dust requires that precautions be taken during maintenance to prevent the escape of these contaminants beyond the prescribed boundaries. The scope of this task is both the development of remote maintenance procedures and the design of the remote handling equipment to handle the NBIs. This report describes the design of remote handling tools for the ion source and its filaments, transfer cask, maintenance time, manufacturing schedule and cost estimation. (author)

  4. Overhead remote handling systems for the process facility modifications project

    International Nuclear Information System (INIS)

    Wiesener, R.W.; Grover, D.L.

    1987-01-01

    Each of the cells in the process facility modifications (PFM) project complex is provided with a variety of general purpose remote handling equipment including bridge cranes, monorail hoist, bridge-mounted electromechanical manipulator (EMM) and an overhead robot used for high efficiency particulate air (HEPA) filter changeout. This equipment supplements master-slave manipulators (MSMs) located throughout the complex to provide an overall remote handling system capability. The overhead handling equipment is used for fuel and waste material handling operations throughout the process cells. The system also provides the capability for remote replacement of all in-cell process equipment which may fail or be replaced for upgrading during the lifetime of the facility

  5. Remote operational trials with the ITER FDR divertor handling equipment

    International Nuclear Information System (INIS)

    Irving, M.; Baldi, L.; Benamati, G.; Galbiati, L.; Giacomelli, S.; Lorenzelli, L.; Micciche, G.; Muro, L.; Polverari, A.; Palmer, J.; Martin, E.

    2003-01-01

    The ITER divertor test platform (DTP) located at ENEA's Research Centre in Brasimone, Italy is a full-scale mock-up of a 72 deg. arc of the ITER 1998 vessel divertor region--the result of a major initiative over the period 1996-2000. Since the implementation of this facility, the design of the ITER vessel--and therefore much of the remote maintenance equipment--has changed substantially. However, the nature and principles of the remote handling equipment are still very similar, and hence many valuable lessons can yet be learned from the existing equipment for the future. In particular, true remote handling tests of the major maintenance subsystems were seen as an important step in determining their suitability for ITER. This paper describes and documents a series of three, discrete, remote-handling trials carried out using most of the major DTP subsystems, and presents an overview of the conclusions and suggestions for future development of ITER cassette remote handling equipment

  6. High-definition television evaluation for remote handling task performance

    International Nuclear Information System (INIS)

    Fujita, Y.; Omori, E.; Hayashi, S.; Draper, J.V.; Herndon, J.N.

    1986-01-01

    In a plant that employs remote handling techniques for equipment maintenance, operators perform maintenance tasks primarily by using the information from television systems. The efficiency of the television system has a significant impact on remote maintenance task performance. High-definition television (HDTV) transmits a video image with more than twice the number of horizontal scan lines as standard-resolution television (1125 for HDTV to 525 for standard-resolution NTSC television). The added scan lines dramatically improve the resolution of images on the HDTV monitors. This paper describes experiments designed to evaluate the impact of HDTV on the performance of typical remote tasks. The experiments described in this paper compared the performance of four operators using HDTV with their performance while using other television systems. The experiments included four television systems: (a) high-definition color television, (b) high-definition monochromatic television, (c) standard-resolution monochromatic television, and (d) standard-resolution stereoscopic monochromatic television

  7. Development of a Remote Monitoring System Using Meteor Burst Technology

    International Nuclear Information System (INIS)

    Ewanic, M.A.; Dunstan, M.T.; Reichhardt, D.K.

    2006-01-01

    Monitoring the cleanup and closure of contaminated sites requires extensive data acquisition, processing, and storage. At remote sites, the task of monitoring often becomes problematical due to the lack of site infrastructure (i.e., electrical power lines, telephone lines, etc.). MSE Technology Applications, Inc. (MSE) has designed an economical and efficient remote monitoring system that will handle large amounts of data; process the data, if necessary; and transmit this data over long distances. Design criteria MSE considered during the development of the remote monitoring system included: the ability to handle multiple, remote sampling points with independent sampling frequencies; robust (i.e., less susceptible to moisture, heat, and cold extremes); independent of infrastructure; user friendly; economical; and easy to expand system capabilities. MSE installed and tested a prototype system at the Mike Mansfield Advanced Technology Center (MMATC), Butte, Montana, in June 2005. The system MSE designed and installed consisted of a 'master' control station and two remote 'slave' stations. Data acquired at the two slave stations were transmitted to the master control station, which then transmits a complete data package to a ground station using meteor burst technology. The meteor burst technology has no need for hardwired land-lines or man-made satellites. Instead, it uses ionized particles in the Earth's atmosphere to propagate a radio signal. One major advantage of the system is that it can be configured to accept data from virtually any type of device, so long as the signal from the device can be read and recorded by a standard data-logger. In fact, MSE has designed and built an electrical resistivity monitoring system that will be powered and controlled by the meteor burst system components. As sites move through the process of remediation and eventual closure, monitoring provides data vital to the successful long term management of the site. The remote

  8. Remote handling design for moderator-reflector maintenance in JSNS

    International Nuclear Information System (INIS)

    Teshigawara, Makoto; Aizawa, Hideyuki; Harada, Masahide; Kinoshita, Hidetaka; Meigo, Shinichiro; Maekawa, Fujio; Kaminaga, Masanori; Kato, Takashi; Ikeda, Yujiro

    2005-05-01

    This report introduces the present design status of remote-handling devices for activated and used components such as moderator and reflector in a spallation neutron source of the Material and Life Science Facility (MLF) at J-PARC (Japan Proton Accelerator Research Complex). The design concept and maintenance scenario are also mentioned. A key maintenance scenario adopts that the used components should be taken out from the MLF to the other storage facility after the volume reduction of them. Almost full remote handling is available to the maintenance work except for the connection/disconnection pipes of the cooling water. Remote handling for the cooling water system is under designing and it will be prepared before being significant radiation dose by accumulation of beryllium ( 7 Be) in future. Total six remote handling devices are used for moderator-reflector maintenance. They are also available to the proton beam window and muon target maintenance. Maintenance scenario is separated into two works. One is to replace used components to new ones during beam-stop and the other is dispose used components during beam operation. Required period of replacement work is estimated to be ∼15 days, on the other hand, the disposal work is ∼26 days after dry up work (∼30 days), respectively. Study of the maintenance scenario and the remote handling design brings about the reasonable procedures and period of the maintenance work. (author)

  9. Preliminary Safety Design Report for Remote Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Solack; Carol Mason

    2012-03-01

    A new onsite, remote-handled low-level waste disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled low-level waste disposal for remote-handled low-level waste from the Idaho National Laboratory and for nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled low-level waste in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This preliminary safety design report supports the design of a proposed onsite remote-handled low-level waste disposal facility by providing an initial nuclear facility hazard categorization, by discussing site characteristics that impact accident analysis, by providing the facility and process information necessary to support the hazard analysis, by identifying and evaluating potential hazards for processes associated with onsite handling and disposal of remote-handled low-level waste, and by discussing the need for safety features that will become part of the facility design.

  10. Remote handling in ZEPHYR

    International Nuclear Information System (INIS)

    Andelfinger, C.; Lackner, E.; Ulrich, M.; Weber, G.; Schilling, H.B.

    1982-04-01

    A conceptual design of the ZEPHYR building is described. The listed radiation data show that remote handling devices will be necessary in most areas of the building. For difficult repair and maintenance works it is intended to transfer complete units from the experimental hall to a hot cell which provides better working conditions. The necessary crane systems and other transport means are summarized as well as suitable commercially available manipulators and observation devices. The conept of automatic devices for cutting and welding and other operations inside the vacuum vessel and the belonging position control system is sketched. Guidelines for the design of passive components are set up in order to facilitate remote operation. (orig.)

  11. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2011-04-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  12. Remote-Handled Low Level Waste Disposal Project Alternatives Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2010-10-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  13. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2011-03-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  14. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2010-06-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  15. Handling trolley for Argonne M8, Pye Mo 1815, Pye Heavy Duty, etc. remote manipulators

    International Nuclear Information System (INIS)

    Roussel, E.; Labiche, M.; Chevallier, E.

    1962-01-01

    The removal and installation of remote manipulators and periscopes in hot cells are delicate operations requiring a specific handling trolley. This note describes the technical specifications of such a trolley having the following advantages: occupies a minimal space when not in use, easy and efficient fastening and monitoring, smooth moving of the remote manipulators during removal or installation, trolley stability and immobility during operation, requires only two operators

  16. Development of nuclear fuel cycle remote handling technology

    International Nuclear Information System (INIS)

    Kim, K. H.; Park, B. S.; Kim, S. H.

    2012-04-01

    This report presents the development of remote handling systems and remote equipment for use in the pyprocessing verification at the PRIDE (PyRoprocess Integrated inactive Demonstration facility). There are four areas conducted in this work. In first area, the prototypes of an engineering-scale high-throughput decladding voloxidizer which is capable of separating spent fuel rod-cuts into hulls and powder and collecting them separately, and an automatic equipment which is capable of collecting residual powder remaining on separated hulls were developed. In second area, a servo-manipulator system was developed to operate and maintain pyroprocess equipment located at the argon cell of the PRIDE in a remote manner. A servo-manipulator with dual arm that is mounted on the lower part of a bridge transporter will be installed on the ceiling of the in-cell and can travel the length of the ceiling. In third area, a digital mock-up and a remote handling evaluation mock-up were constructed to evaluate the pyroprocess equipments from the in-cell arrangements, remote operability and maintainability viewpoint before they are installed in the PRIDE. In last area, a base technology for remote automation of integrated pyroprocess was developed. The developed decladding voloxidizer and automatic equipment will be utilized in the development of a head-end process for pyroprocessing. In addition, the developed servo-manipulator will be used for remote operation and maintenance of the pyroprocess equipments in the PRIDE. The constructed digital mock-up and remote handling evaluation mock-up will be also used to verify and improve the pyroprocess equipments for the PRIDE application. Moreover, these remote technologies described above can be directly used in the PRIDE and applied for the KAPF (Korea Advanced Pyroprocess Facility) development

  17. Development of remote handling techniques for the HLLW solidification plant

    International Nuclear Information System (INIS)

    Tosha, Yoshitsugu; Iwata, Toshio; Inada, Eiichi; Nagaki, Hiroshi; Yamamoto, Masao

    1982-01-01

    To develop the techniques for the remote maintenance of the equipment in a HLLW (high-level liquid waste) solidification plant, the mock-up test facility (MTF) has been designed and constructed. Before its construction, the specific mock-up equipment was manufactured and tested. The results of the test and the outline of the MTF are described. As the mock-up equipment, a denitrater-concentrator, a ceramic melter and a canister handling equipment were selected. Remote operation was performed according to the maintenance program, and the evaluation of the component was conducted on the easiness of operation, performance, and the suitability to remote handling equipment. As a result of the test, four important elements were identified; they were guides, lifting fixtures, remote handling bolts, and remote pipe connectors. Many improvements of these elements were achieved, and reflected in the design of the MTF. The MTF is a steel-framed and slate-covered building (25 mL x 20 mW x 27 mH) with five storys of test bases. It contains the following four main systems: pretreatment and off-gas treatment system, glass melting system, canister handling system and secondary waste liquid recovery system. Further development of the remote maintenance techniques is expected through the test in the MTF. (Aoki, K.)

  18. Development of remote handling tools for glove box

    International Nuclear Information System (INIS)

    Tomita, Yutaka; Nemoto, Takeshi; Denuma, Akio; Todokoro, Akio

    1996-01-01

    For a part of advanced nuclear fuel recycling technology development, we will separate and recover Americium from the MOX fuel scrap by solvent extraction. When we carry this examination, reduction of exposure from Americium-241 is one of important problems. To solve this problem fundamentally, we studied many joints type of the remote handling tools for glove box and produced a trial production machine. Also, we carried out basic function examinations of it. As a result, we got the prospect of development of the remote handling tools which could treat Americium in glove box. (author)

  19. Application of advanced remote systems technology to future waste handling facilities

    International Nuclear Information System (INIS)

    Kring, C.T.; Meacham, S.A.

    1987-01-01

    The Consolidated Fuel Reprocessing Program (CFRP) at Oak Ridge National Laboratory (ORNL) has been advancing the technology of remote handling and remote maintenance for in-cell systems planned for future nuclear fuel reprocessing plants. Much of the experience and technology developed over the past decade in this endeavor is directly applicable to the proposed in-cell systems being considered for the facilities of the Federal Waste Management System (FWMS). The application of teleoperated, force-reflecting servomanipulators with television viewing could be a major step forward in waste handling facility design. Primary emphasis in the current program is the operation of a prototype remote handling and maintenance system, the advanced servomanipulator (ASM), which specifically addresses the requirements of fuel reprocessing and waste handling with emphasis on force reflection, remote maintainability, reliability, radiation tolerance, and corrosion resistance. Concurrent with the evolution of dexterous manipulators, concepts have also been developed that provide guidance for standardization of the design of the remotely operated and maintained equipment, the interface between the maintenance tools and the equipment, and the interface between the in-cell components and the facility

  20. Remote Monitoring Transparency Program

    International Nuclear Information System (INIS)

    Sukhoruchkin, V.K.; Shmelev, V.M.; Roumiantsev, A.N.

    1996-01-01

    The objective of the Remote Monitoring Transparency Program is to evaluate and demonstrate the use of remote monitoring technologies to advance nonproliferation and transparency efforts that are currently being developed by Russia and the United States without compromising the national security to the participating parties. Under a lab-to-lab transparency contract between Sandia National Laboratories (SNL) and the Kurchatov Institute (KI RRC), the Kurchatov Institute will analyze technical and procedural aspects of the application of remote monitoring as a transparency measure to monitor inventories of direct- use HEU and plutonium (e.g., material recovered from dismantled nuclear weapons). A goal of this program is to assist a broad range of political and technical experts in learning more about remote monitoring technologies that could be used to implement nonproliferation, arms control, and other security and confidence building measures. Specifically, this program will: (1) begin integrating Russian technologies into remote monitoring systems; (2) develop remote monitoring procedures that will assist in the application of remote monitoring techniques to monitor inventories of HEU and Pu from dismantled nuclear weapons; and (3) conduct a workshop to review remote monitoring fundamentals, demonstrate an integrated US/Russian remote monitoring system, and discuss the impacts that remote monitoring will have on the national security of participating countries

  1. Remote systems and automation in radioactive waste package handling

    International Nuclear Information System (INIS)

    Gneiting, B.C.; Hayward, M.L.

    1987-01-01

    A proof-of-principle test was conducted at the Hanford Engineering Development Laboratory (HEDL) to demonstrate the feasibility of performing cask receiving and unloading operations in a remote and partially automated manner. This development testing showed feasibility of performing critical cask receipt, preparation, and unloading operations from a single control station using remote controls and indirect viewing. Using robotics and remote automation in a cask handling system can result in lower personnel exposure levels and cask turnaround times while maintaining operational flexibility. An automated cask handling system presents a flexible state-of-the-art, cost effective alternative solution to hands-on methods that have been used in the past

  2. Application of remote handling compatibility on ITER plant

    International Nuclear Information System (INIS)

    Sanders, S.; Rolfe, A.; Mills, S.F.; Tesini, A.

    2011-01-01

    The ITER plant will require fully remote maintenance during its operational life. For this to be effective, safe and efficient the plant will have to be developed in accordance with remote handling (RH) compatibility requirements. A system for ensuring RH compatibility on plant designed for Tokamaks was successfully developed and applied, inter alia, by the authors when working at the JET project. The experience gained in assuring RH compatibility of plant at JET is now being applied to RH relevant ITER plant. The methodologies required to ensure RH compatibility of plant include the standardization of common plant items, standardization of RH features, availability of common guidance on RH best practice and a protocol for design and interface review and approval. The protocol in use at ITER is covered by the ITER Remote Maintenance Management System (IRMMS) defines the processes and utilization of management controls including Plant Definition Forms (PDF), Task Definition Forms (TDFs) and RH Compatibility Assessment Forms (RHCA) and the ITER RH Code of Practice. This paper will describe specific examples where the authors have applied the methodology proven at JET to ensure remote handling compatibility on ITER plant. Examples studied are: ·ELM coils (to be installed in-vessel behind the Blanket Modules) - handling both in-vessel, in Casks and at the Hot Cell as well as fully remote installation and connection (mechanical and electrical) in-vessel. ·Neutral beam systems (in-vessel and in the NB Cell) - beam sources, cesium oven, beam line components (accessed in the NB Cell) and Duct Liner (remotely replaced from in-vessel). ·Divertor (in-vessel) - cooling pipe work and remotely operated electrical connector. The RH compatibility process can significantly affect plant design. This paper should therefore be of interest to all parties who develop ITER plant designs.

  3. Automation and remote handling activities in BARC: an overview

    International Nuclear Information System (INIS)

    Badodkar, D.N.

    2016-01-01

    Division of Remote Handling and Robotics, BARC has been working on design and development of various application specific remote handling and automation systems for nuclear front-end and back-end fuel cycle technologies. Division is also engaged in preservice and in-service inspection of coolant channels for Pressurized Heavy Water Reactors in India. Design and development of Reactor Control Mechanisms for Nuclear Research and Power Reactors (PHWRs and Compact LWRs) is another important activity carried out in this division. Robotic systems for Indoor and Outdoor surveillance in and around nuclear installations have also been developed. A line scan camera based system has been developed for measuring individual PHWR fuel pellet lengths as well as stack length. An industrial robot is used for autonomous exchange of pellets to achieve desired stack length. The system can be extended for active fuel pellets also. An automation system has been conceptualized for remote handling and transfer of spent fuel bundles from storage pool directly to the chopper unit of reprocessing plant. In case of Advanced Heavy Water Reactor which uses mixed oxides of (Th-Pu) and (Th-"2"3"3U ) as fuel, automation system for front-end fuel cycle has been designed, which includes Powder processing and pressing; Pellet handling and inspection; Pin handling and inspection; and Cluster assembly and dis-assembly in shielded facilities. System demonstration through fullscale mock-up facility is nearing completion. Above talk is presented on behalf of all the officers and staff of DRHR. The talk is mainly focused on development of an automated fuel fabrication facility for mixed oxides of (Th- Pu)/(Th-"2"3"3U ) fuel pins. An overview of divisional ongoing activities in the field of remote handling and automation are also covered. (author)

  4. Eye-in-Hand Manipulation for Remote Handling: Experimental Setup

    Science.gov (United States)

    Niu, Longchuan; Suominen, Olli; Aref, Mohammad M.; Mattila, Jouni; Ruiz, Emilio; Esque, Salvador

    2018-03-01

    A prototype for eye-in-hand manipulation in the context of remote handling in the International Thermonuclear Experimental Reactor (ITER)1 is presented in this paper. The setup consists of an industrial robot manipulator with a modified open control architecture and equipped with a pair of stereoscopic cameras, a force/torque sensor, and pneumatic tools. It is controlled through a haptic device in a mock-up environment. The industrial robot controller has been replaced by a single industrial PC running Xenomai that has a real-time connection to both the robot controller and another Linux PC running as the controller for the haptic device. The new remote handling control environment enables further development of advanced control schemes for autonomous and semi-autonomous manipulation tasks. This setup benefits from a stereovision system for accurate tracking of the target objects with irregular shapes. The overall environmental setup successfully demonstrates the required robustness and precision that remote handling tasks need.

  5. Remote systems and automation in radioactive waste package handling

    International Nuclear Information System (INIS)

    Gneiting, B.C.; Hayward, M.L.

    1987-01-01

    A proof-of-principle test was conducted at the Hanford Engineering Development Laboratory (HEDL) to demonstrate the feasibility of performing cask receiving and unloading operations in a remote and partially automated manner. This development testing showed feasibility of performing critical cask receipt, preparation, and unloading operations from a single control station using remote controls and indirect viewing. Using robotics and remote automation in a cask handling system can result in lower personnel exposure levels and cask turnaround times while maintaining operational flexibility. An automated cask handling system presents a flexible state-of-the-art, cost effective alternative solution to hands-on methods that have been used in the past. 7 refs., 13 figs

  6. Remote handling in reprocessing plants

    International Nuclear Information System (INIS)

    Streiff, G.

    1984-01-01

    Remote control will be the rule for maintenance in hot cells of future spent fuel reprocessing plants because of the radioactivity level. New handling equipments will be developed and intervention principles defined. Existing materials, recommendations for use and new manipulators are found in the PMDS' documentation. It is also a help in the choice and use of intervention means and a guide for the user [fr

  7. Man-machine cooperation in remote handling for fusion plants

    International Nuclear Information System (INIS)

    Leinemann, K.

    1984-01-01

    Man-machine cooperation in remote handling for fusion plants comprises cooperation for design of equipment and planning of procedures using a CAD system, and cooperation during operation of the equipment with computer aided telemanipulation systems (CAT). This concept is presently being implemented for support of slave positioning, camera tracking, and camera alignment in the KfK manipulator test facility. The pilot implementation will be used to test various man-machine interface layouts, and to establish a set of basic buildings blocks for future implementations of advanced remote handling control systems. (author)

  8. Potential applications of advanced remote handling and maintenance technology to future waste handling facilities

    International Nuclear Information System (INIS)

    Kring, C.T.; Herndon, J.N.; Meacham, S.A.

    1987-01-01

    The Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory (ORNL) has been advancing the technology in remote handling and remote maintenance of in-cell systems planned for future US nuclear fuel reprocessing plants. Much of the experience and technology developed over the past decade in this endeavor are directly applicable to the in-cell systems being considered for the facilities of the Federal Waste Management System (FWMS). The ORNL developments are based on the application of teleoperated force-reflecting servomanipulators controlled by an operator completely removed from the hazardous environment. These developments address the nonrepetitive nature of remote maintenance in the unstructured environments encountered in a waste handling facility. Employing technological advancements in dexterous manipulators, as well as basic design guidelines that have been developed for remotely maintained equipment and processes, can increase operation and maintenance system capabilities, thereby allowing the attainment of two Federal Waste Management System major objectives: decreasing plant personnel radiation exposure and increasing plant availability by decreasing the mean-time-to-repair in-cell maintenance and process equipment

  9. Potential applications of advanced remote handling and maintenance technology to future waste handling facilities

    International Nuclear Information System (INIS)

    Kring, C.T.; Herndon, J.N.; Meacham, S.A.

    1987-01-01

    The Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory (ORNL) has been advancing the technology in remote handling and remote maintenance of in-cell systems planned for future U.S. nuclear fuel reprocessing plants. Much of the experience and technology developed over the past decade in this endeavor are directly applicable to the in-cell systems being considered for the facilities of the Federal Waste Management System (FWMS). The ORNL developments are based on the application of teleoperated force-reflecting servomanipulators controlled by an operator completely removed from the hazardous environment. These developments address the nonrepetitive nature of remote maintenance in the unstructured environments encountered in a waste handling facility. Employing technological advancements in dexterous manipulators, as well as basic design guidelines that have been developed for remotely maintained equipment and processes, can increase operation and maintenance system capabilities, thereby allowing the attainment of two Federal Waste Management System major objectives: decreasing plant personnel radiation exposure and increasing plant availability by decreasing the mean-time-to-repair in-cell maintenance and process equipment

  10. Remote handling equipment for SNS

    International Nuclear Information System (INIS)

    Poulten, B.H.

    1983-01-01

    This report gives information on the areas of the SNS, facility which become highly radioactive preventing hands-on maintenance. Levels of activity are sufficiently high in the Target Station Area of the SNS, especially under fault conditions, to warrant reactor technology to be used in the design of the water, drainage and ventilation systems. These problems, together with the type of remote handling equipment required in the SNS, are discussed

  11. Mission Need Statement for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Project

    International Nuclear Information System (INIS)

    Harvego, Lisa

    2009-01-01

    The Idaho National Laboratory proposes to establish replacement remote-handled low-level waste disposal capability to meet Nuclear Energy and Naval Reactors mission-critical, remote-handled low-level waste disposal needs beyond planned cessation of existing disposal capability at the end of Fiscal Year 2015. Remote-handled low-level waste is generated from nuclear programs conducted at the Idaho National Laboratory, including spent nuclear fuel handling and operations at the Naval Reactors Facility and operations at the Advanced Test Reactor. Remote-handled low-level waste also will be generated by new programs and from segregation and treatment (as necessary) of remote-handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex. Replacement disposal capability must be in place by Fiscal Year 2016 to support uninterrupted Idaho operations. This mission need statement provides the basis for the laboratory's recommendation to the Department of Energy to proceed with establishing the replacement remote-handled low-level waste disposal capability, project assumptions and constraints, and preliminary cost and schedule information for developing the proposed capability. Without continued remote-handled low-level waste disposal capability, Department of Energy missions at the Idaho National Laboratory would be jeopardized, including operations at the Naval Reactors Facility that are critical to effective execution of the Naval Nuclear Propulsion Program and national security. Remote-handled low-level waste disposal capability is also critical to the Department of Energy's ability to meet obligations with the State of Idaho

  12. Remote handling assessment of attachment concepts for DEMO blanket segments

    Energy Technology Data Exchange (ETDEWEB)

    Iglesias, Daniel, E-mail: daniel.iglesias@ccfe.ac.uk [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Bastow, Roger; Cooper, Dave; Crowe, Robert; Middleton-Gear, Dave [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Sibois, Romain [VTT, Technical Research Centre of Finland, Industrial Systems, ROViR, Tampere (Finland); Carloni, Dario [Institute of Neutron Physics and Reactor Technology, Karlsruhe Institute of Technology (KIT) (Germany); Vizvary, Zsolt; Crofts, Oliver [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Harman, Jon [EFDA Close Support Unit Garching, Boltzmannstaße 2, D-85748 Garching bei München (Germany); Loving, Antony [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)

    2015-10-15

    Highlights: • Challenges are identified for the remote handling of blanket segments’ attachments. • Two attachment design approaches are assessed for remote handling (RH) feasibility. • An alternative is proposed, which potentially simplifies and speeds-up RH operations. • Up to three different assemblies are proposed for the remote handling of the attachments. • Proposed integrated design of upper port is compatible with the attachment systems. - Abstract: The replacement strategy of the massive Multi-Module Blanket Segments (MMS) is a key driver in the design of several DEMO systems. These include the blankets themselves, the vacuum vessel (VV) and its ports and the Remote Maintenance System (RMS). Common challenges to any blanket attachment system have been identified, such as the need for applying a preload to the MMS manifold, the effects of the decay heat and several uncertainties related to permanent deformations when removing the blanket segments after service. The WP12 kinematics of the MMS in-vessel transportation was adapted to the requirements of each of the supports during 2013 and 2014 design activities. The RM equipment envisaged for handling attachments and earth connections may be composed of up to three different assemblies. An In-Vessel Mover at the divertor level handles the lower support and earth bonding, and could stabilize the MMS during transportation. A Shield Plug crane with a 6 DoF manipulator operates the upper attachment and earth straps. And a Vertical Maintenance Crane is responsible for the in-vessel MMS transportation and can handle the removable upper support pins. A final proposal is presented which can potentially reduce the number of required systems, at the same time that speeds-up the RMS global operations.

  13. Robotics and remote handling in the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    This book presents the papers given at a conference on the use of remote handling equipment in nuclear facilities. Topics considered at the conference included dose reduction, artificial intelligence in nuclear plant maintenance, robotic welding, uncertainty covariances, reactor operation and inspection, reactor maintenance and repair, uranium mining, fuel fabrication, reactor component manufacture, irradiated fuel and radioactive waste management, and radioisotope handling.

  14. A MGy radiation-hardened sensor instrumentation link for nuclear reactor monitoring and remote handling

    Energy Technology Data Exchange (ETDEWEB)

    Verbeeck, Jens; Cao, Ying [KU Leuven - KUL, Div. LRD-MAGyICS, Kasteelpark Arenberg 10, 3001 Heverlee (Belgium); Van Uffelen, Marco; Mont Casellas, Laura; Damiani, Carlo; Morales, Emilio Ruiz; Santana, Roberto Ranz [Fusion for Energy - F4E, c/Josep,n deg. 2, Torres Diagonal Litoral, Ed. B3, 08019 Barcelona (Spain); Meek, Richard; Haist, Bernhard [Oxford Technologies Ltd. OTL, 7 Nuffield Way, Abingdon OX14 1RL (United Kingdom); De Cock, Wouter; Vermeeren, Ludo [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Steyaert, Michiel [KU Leuven, ESAT-MICAS, KasteelparkArenberg 10, 3001 Heverlee (Belgium); Leroux, Paul [KU Leuven, ESAT-MICAS, KasteelparkArenberg 10, 3001 Heverlee (Belgium)

    2015-07-01

    Decommissioning, dismantling and remote handling applications in nuclear facilities all require robotic solutions that are able to survive in radiation environments. Recently raised safety, radiation hardness and cost efficiency demands from both the nuclear regulatory and the society impose severe challenges in traditional methods. For example, in case of the dismantling of the Fukushima sites, solutions that survive accumulated doses higher than 1 MGy are mandatory. To allow remote operation of these tools in nuclear environments, electronics were used to be shielded with several centimeters of lead or even completely banned in these solutions. However, shielding electronics always leads to bulky and heavy solutions, which reduces the flexibility of robotic tools. It also requires longer repair time and produces extra waste further in a dismantling or decommissioning cycle. In addition, often in current reactor designs, due to size restrictions and the need to inspect very tight areas there are limitations to the use of shielding. A MGy radiation-hardened sensor instrumentation link developed by MAGyICS provides a solution to build a flexible, easy removable and small I and C module with MGy radiation tolerance without any shielding. Hereby it removes all these pains to implement electronics in robotic tools. The demonstrated solution in this poster is developed for ITER Remote Handling equipments operating in high radiation environments (>1 MGy) in and around the Tokamak. In order to obtain adequately accurate instrumentation and control information, as well as to ease the umbilical management, there is a need of front-end electronics that will have to be located close to those actuators and sensors on the remote handling tool. In particular, for diverter remote handling, it is estimated that these components will face gamma radiation up to 300 Gy/h (in-vessel) and a total dose of 1 MGy. The radiation-hardened sensor instrumentation link presented here, consists

  15. Development of spent fuel remote handling technology

    Energy Technology Data Exchange (ETDEWEB)

    Park, B. S.; Yoon, J. S.; Hong, H. D. (and others)

    2007-02-15

    In this research, the remote handling technology was developed for the ACP application. The ACP gives a possible solution to reduce the rapidly cumulative amount of spent fuels generated from the nuclear power plants in Korea. The remote technologies developed in this work are a slitting device, a voloxidizer, a modified telescopic servo manipulator and a digital mock-up. A slitting device was developed to declad the spent fuel rod-cuts and collect the spent fuel UO{sub 2} pellets. A voloxidizer was developed to convert the spent fuel UO{sub 2} pellets obtained from the slitting process in to U{sub 3}O{sub 8} powder. Experiments were performed to test the capabilities and remote operation of the developed slitting device and voloxidizer by using simulated rod-cuts and fuel in the ACP hot cell. A telescopic servo manipulator was redesigned and manufactured improving the structure of the prototype. This servo manipulator was installed in the ACP hot cell, and the target module for maintenance of the process equipment was selected. The optimal procedures for remote operation were made through the maintenance tests by using the servo manipulator. The ACP digital mockup in a virtual environment was established to secure a reliability and safety of remote operation and maintenance. The simulation for the remote operation and maintenance was implemented and the operability was analyzed. A digital mockup about the preliminary conceptual design of an enginnering-scale ACP was established, and an analysis about a scale of facility and remote handling was accomplished. The real-time diagnostic technique was developed to detect the possible fault accidents of the slitting device. An assessment of radiation effect for various sensors was also conducted in the radiation environment.

  16. Failure of a yoke body pin of a remote handling device

    International Nuclear Information System (INIS)

    Kasiviswanathan, K.V.; Muralidharan, N.G.; Raj, B.

    1984-01-01

    This note analyses the cause of failure observed in a yoke body pin of a remote handling device (Master Slave Manipulator) used for handling highly radioactive materials, remotely in shielded enclosures. The yoke body constitutes an important part of the manipulator wrist assembly and was made out of AISI 420 grade steel as a single piece investment casting. (orig./IHOE) [de

  17. Proposed master-slave and automated remote handling system for high-temperature gas-cooled reactor fuel refabrication

    International Nuclear Information System (INIS)

    Grundmann, J.G.

    1974-01-01

    The Oak Ridge National Laboratory's Thorium-Uranium Recycle Facility (TURF) will be used to develop High-Temperature Gas-Cooled Reactor (HTGR) fuel recycle technology which can be applied to future HTGR commercial fuel recycling plants. To achieve recycle capabilities it is necessary to develop an effective material handling system to remotely transport equipment and materials and to perform maintenance tasks within a hot cell facility. The TURF facility includes hot cells which contain remote material handling equipment. To extend the capabilities of this equipment, the development of a master-slave manipulator and a 3D-TV system is necessary. Additional work entails the development of computer controls to provide: automatic execution of tasks, automatic traverse of material handling equipment, automatic 3D-TV camera sighting, and computer monitoring of in-cell equipment positions to prevent accidental collisions. A prototype system which will be used in the development of the above capabilities is presented. (U.S.)

  18. Applying HAZOP analysis in assessing remote handling compatibility of ITER port plugs

    NARCIS (Netherlands)

    Duisings, L. P. M.; van Til, S.; Magielsen, A. J.; Ronden, D. M. S.; Elzendoorn, B. S. Q.; Heemskerk, C. J. M.

    2013-01-01

    This paper describes the application of a Hazard and Operability Analysis (HAZOP) methodology in assessing the criticality of remote handling maintenance activities on port plugs in the ITER Hot Cell facility. As part of the ECHUL consortium, the remote handling team at the DIFFER Institute is

  19. Protecting worker health and safety using remote handling systems

    International Nuclear Information System (INIS)

    Dennison, D.K.; Merrill, R.D.; Reed, R.K.

    1995-03-01

    Lawrence Livermore National Laboratory (LLNL) is currently developing and installing two large-scale, remotely controlled systems for use in improving worker health and safety by minimizing exposure to hazardous and radioactive materials. The first system is a full-scale liquid feed system for use in delivering chemical reagents to LLNL's existing aqueous low-level radioactive and mixed waste treatment facility (Tank Farm). The Tank Farm facility is used to remove radioactive and toxic materials in aqueous wastes prior to discharge to the City of Livermore Water Reclamation Plant (LWRP), in accordance with established discharge limits. Installation of this new reagent feed system improves operational safety and process efficiency by eliminating the need to manually handle reagents used in the treatment processes. This was done by installing a system that can inject precisely metered amounts of various reagents into the treatment tanks and can be controlled either remotely or locally via a programmable logic controller (PLC). The second system uses a robotic manipulator to remotely handle, characterize, process, sort, and repackage hazardous wastes containing tritium. This system uses an IBM-developed gantry robot mounted within a special glove box enclosure designed to isolate tritiated wastes from system operators and minimize the potential for release of tritium to the atmosphere. Tritiated waste handling is performed remotely, using the robot in a teleoperational mode for one-of-a-kind functions and in an autonomous mode for repetitive operations. The system is compatible with an existing portable gas cleanup unit designed to capture any gas-phase tritium inadvertently released into the glove box during waste handling

  20. Remotely-operated equipment for inspection, measurement and handling

    CERN Document Server

    Bertone, C; CERN. Geneva. TS Department

    2008-01-01

    As part of the application of ALARA radiation dose reduction principles at CERN, inspection, measurement and handling interventions in controlled areas are being studied in detail. A number of activities which could be carried out as remote operations have already been identified and equipment is being developed. Example applications include visual inspection to check for ice formation on LHC components or water leaks, measurement of radiation levels before allowing personnel access, measurement of collimator or magnet alignment, visual inspection or measurements before fire service access in the event of fire, gas leak or oxygen deficiency. For these applications, a modular monorail train, TIM, has been developed with inspection and measurement wagons. In addition TIM provides traction, power and data communication for lifting and handling units such as the remote collimator exchange module and vision for other remotely operated units such as the TAN detector exchange mini-cranes. This paper describes the eq...

  1. Irradiation tests of critical components for remote handling in gamma radiation environment

    International Nuclear Information System (INIS)

    Obara, Henjiro; Kakudate, Satoshi; Oka, Kiyoshi

    1994-08-01

    Since the fusion power core of a D-T fusion reactor will be highly activated once it starts operation, personnel access will be prohibited so that assembly and maintenance of the components in the reactor core will have to be totally conducted by remote handling technology. Fusion experimental reactors such as ITER require unprecedented remote handling equipments which are tolerable under gamma radiation of more than 10 6 R/h. For this purpose, the Japan Atomic Energy Research Institute (JAERI) has been developing radiation hard components for remote handling purpose and a number of key components have been tested over 10 9 rad at a radiation dose rate of around 10 6 R/h, using Gamma Ray Radiation Test Facility in JAERI-Takasaki Establishment. This report summarizes the irradiation test results and the latest status of AC servo motor, potentiometer, optical elements, lubricant, sensors and cables, which are key elements of the remote handling system. (author)

  2. Advanced remote handling for future applications: The advanced integrated maintenance system

    International Nuclear Information System (INIS)

    Herndon, J.N.; Kring, C.T.; Rowe, J.C.

    1986-01-01

    The Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory has been developing advanced techniques for remote maintenance of future US fuel reprocessing plants. The developed technology has a wide spectrum of application for other hazardous environments. These efforts are based on the application of teleoperated, force-reflecting servomanipulators for dexterous remote handling with television viewing for large-volume hazardous applications. These developments fully address the nonrepetitive nature of remote maintenance in the unstructured environments encountered in fuel reprocessing. This paper covers the primary emphasis in the present program; the design, fabrication, installation, and operation of a prototype remote handling system for reprocessing applications, the Advanced Integrated Maintenance System

  3. Mission Need Statement for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego

    2009-06-01

    The Idaho National Laboratory proposes to establish replacement remote-handled low-level waste disposal capability to meet Nuclear Energy and Naval Reactors mission-critical, remote-handled low-level waste disposal needs beyond planned cessation of existing disposal capability at the end of Fiscal Year 2015. Remote-handled low-level waste is generated from nuclear programs conducted at the Idaho National Laboratory, including spent nuclear fuel handling and operations at the Naval Reactors Facility and operations at the Advanced Test Reactor. Remote-handled low-level waste also will be generated by new programs and from segregation and treatment (as necessary) of remote-handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex. Replacement disposal capability must be in place by Fiscal Year 2016 to support uninterrupted Idaho operations. This mission need statement provides the basis for the laboratory’s recommendation to the Department of Energy to proceed with establishing the replacement remote-handled low-level waste disposal capability, project assumptions and constraints, and preliminary cost and schedule information for developing the proposed capability. Without continued remote-handled low-level waste disposal capability, Department of Energy missions at the Idaho National Laboratory would be jeopardized, including operations at the Naval Reactors Facility that are critical to effective execution of the Naval Nuclear Propulsion Program and national security. Remote-handled low-level waste disposal capability is also critical to the Department of Energy’s ability to meet obligations with the State of Idaho.

  4. SNS Target Test Facility for remote handling design and verification

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Graves, V.B.; Schrock, S.L.

    1998-01-01

    The Target Test Facility will be a full-scale prototype of the Spallation Neutron Source Target Station. It will be used to demonstrate remote handling operations on various components of the mercury flow loop and for thermal/hydraulic testing. This paper describes the remote handling aspects of the Target Test Facility. Since the facility will contain approximately 1 cubic meter of mercury for the thermal/hydraulic tests, an enclosure will also be constructed that matches the actual Target Test Cell

  5. Examples of remote handling of irradiated fuel assemblies in Germany

    International Nuclear Information System (INIS)

    Peehs, M.; Knecht, K.

    1999-01-01

    Examples for the remote handling of irradiated fuel in Germany are presented in the following areas: - fuel assembling pool service activities; - early encapsulation of spent fuel in the pool of a nuclear power plant (NPP) at the end of the wet storage period. All development in remote fuel assembly handling envisages minimization of the radioactive dose applied to the operating staff. In the service area a further key objective for applying advanced methods is to perform the work faster and at a higher quality standard. The early encapsulation is a new technology to provide the final packaging of spent fuel already in the pool of a NPP to ensure reliable handling for all further back end processes. (author)

  6. Combined application of Product Lifecycle and Software Configuration Management systems for ITER remote handling

    International Nuclear Information System (INIS)

    Muhammad, Ali; Esque, Salvador; Aha, Liisa; Mattila, Jouni; Siuko, Mikko; Vilenius, Matti; Jaervenpaeae, Jorma; Irving, Mike; Damiani, Carlo; Semeraro, Luigi

    2009-01-01

    The advantages of Product Lifecycle Management (PLM) systems are widely understood among the industry and hence a PLM system is already in use by International Thermonuclear Experimental Reactor (ITER) Organization (IO). However, with the increasing involvement of software in the development, the role of Software Configuration Management (SCM) systems have become equally important. The SCM systems can be useful to meet the higher demands on Safety Engineering (SE), Quality Assurance (QA), Validation and Verification (V and V) and Requirements Management (RM) of the developed software tools. In an experimental environment, such as ITER, the new remote handling requirements emerge frequently. This means the development of new tools or the modification of existing tools and the development of new remote handling procedures or the modification of existing remote handling procedures. PLM and SCM systems together can be of great advantage in the development and maintenance of such remote handling system. In this paper, we discuss how PLM and SCM systems can be integrated together and play their role during the development and maintenance of ITER remote handling system. We discuss the possibility to investigate such setup at DTP2 (Divertor Test Platform 2), which is the full scale mock-up facility to verify the ITER divertor remote handling and maintenance concepts.

  7. Remote handling equipment for CANDU retubing

    International Nuclear Information System (INIS)

    Crawford, G.S.; Lowe, H.

    1993-01-01

    Numet Engineering Ltd. has designed and supplied remote handling equipment for Ontario Hydro's retubing operation of its CANDU reactors at the Bruce Nuclear Generating Station. This equipment consists of ''Retubing Tool Carriers'' an'' Worktables'' which operate remotely or manually at the reactor face. Together they function to transport tooling to and from the reactor face, to position and support tooling during retubing operations, and to deliver and retrieve fuel channels and channel components. This paper presents the fundamentals of the process and discusses the equipment supplied in terms of its design, manufacturing, components and controls, to meet the functional and quality requirements of Ontario Hydro's retubing process. (author)

  8. Potential application of nuclear remote-handling technology to underwater inspection and maintenance

    International Nuclear Information System (INIS)

    Eccleston, M.J.

    1990-01-01

    Examples are given of remote handling equipment developed within the nuclear industry and employing telemanipulative or telerobotic principles. In telerobotics the nuclear industry has been following a trend towards increased levels of autonomy, delegating operator control to a computer, for example, in resolved rate manipulator tip control, teach-and-repeat control and collision avoidance. Illustrations are presented of remote-handling techniques from the nuclear industry which may be carried over into undersea remote inspection, maintenance and repair systems. (author)

  9. Remote handling installation of diagnostics in the JET Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Allan, P., E-mail: Peter.Allan@ccfe.ac.uk [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Loving, A.B. [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Omran, H. [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Oxford Technologies Ltd, 7 Nuffield Way, Abingdon OX14 1RJ (United Kingdom); Collins, S.; Thomas, J. [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Parsloe, A.; Merrigan, I. [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); British Nuclear Services, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Hassall, I. [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Oxford Technologies Ltd, 7 Nuffield Way, Abingdon OX14 1RJ (United Kingdom)

    2011-10-15

    The requirement for an upgrade of the diagnostics for the JET ITER Like Wall (ILW) while maintaining personnel exposure to contamination as low as reasonably practicable or ALARP, has necessitated the development of a bespoke set of diagnostic components. These components, by virtue of their design and location, require a versatile yet comprehensive suite of remote handling tools to undertake their in-vessel installation. The installation of the various diagnostic components is covered in multiple tasks. Each task requires careful assessment and design of tools that can successfully interface with the components and comply with the handling and installation requirements. With remote maintenance a requirement, the looms/conduits were designed to be modular with connections which are electrically connected when the module is fitted or conversely disconnected when removed. The shape of each complex and often bulky component is verified during the design phase, to ensure that it can be delivered and installed to its specified location in the torus. This is done by matching the kinematic capabilities of the remote handling system and the path of the component through the torus by using a state of the art virtual reality system.

  10. Preliminary definition of the remote handling system for the current IFMIF Test Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Queral, V., E-mail: vicentemanuel.queral@ciemat.es [Laboratorio Nacional de Fusion, EURATOM-CIEMAT, 28040 Madrid (Spain); Urbon, J. [Laboratorio Nacional de Fusion, EURATOM-CIEMAT, 28040 Madrid (Spain); Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Garcia, A.; Cuarental, I.; Mota, F. [Laboratorio Nacional de Fusion, EURATOM-CIEMAT, 28040 Madrid (Spain); Micciche, G. [CR ENEA Brasimone, I-40035 Camugnano (BO) (Italy); Ibarra, A. [Laboratorio Nacional de Fusion, EURATOM-CIEMAT, 28040 Madrid (Spain); Rapisarda, D. [Laboratorio Nacional de Fusion, EURATOM-CIEMAT, 28040 Madrid (Spain); Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Casal, N. [Laboratorio Nacional de Fusion, EURATOM-CIEMAT, 28040 Madrid (Spain)

    2011-10-15

    A coherent design of the remote handling system with the design of the components to be manipulated is vital for reliable, safe and fast maintenance, having a decisive impact on availability, occupational exposures and operational cost of the facility. Highly activated components in the IFMIF facility are found at the Test Cell, a shielded pit where the samples are accurately located. The remote handling system for the Test Cell reference design was outlined in some past IFMIF studies. Currently a new preliminary design of the Test Cell in the IFMIF facility is being developed, introducing important modifications with respect to the reference one. This recent design separates the previous Vertical Test Assemblies in three functional components: Test Modules, shielding plugs and conduits. Therefore, it is necessary to adapt the previous design of the remote handling system to the new maintenance procedures and requirements. This paper summarises such modifications of the remote handling system, in particular the assessment of the feasibility of a modified commercial multirope crane for the handling of the weighty shielding plugs for the new Test Cell and a quasi-commercial grapple for the handling of the new Test Modules.

  11. Preliminary definition of the remote handling system for the current IFMIF Test Facilities

    International Nuclear Information System (INIS)

    Queral, V.; Urbon, J.; Garcia, A.; Cuarental, I.; Mota, F.; Micciche, G.; Ibarra, A.; Rapisarda, D.; Casal, N.

    2011-01-01

    A coherent design of the remote handling system with the design of the components to be manipulated is vital for reliable, safe and fast maintenance, having a decisive impact on availability, occupational exposures and operational cost of the facility. Highly activated components in the IFMIF facility are found at the Test Cell, a shielded pit where the samples are accurately located. The remote handling system for the Test Cell reference design was outlined in some past IFMIF studies. Currently a new preliminary design of the Test Cell in the IFMIF facility is being developed, introducing important modifications with respect to the reference one. This recent design separates the previous Vertical Test Assemblies in three functional components: Test Modules, shielding plugs and conduits. Therefore, it is necessary to adapt the previous design of the remote handling system to the new maintenance procedures and requirements. This paper summarises such modifications of the remote handling system, in particular the assessment of the feasibility of a modified commercial multirope crane for the handling of the weighty shielding plugs for the new Test Cell and a quasi-commercial grapple for the handling of the new Test Modules.

  12. Handling of multiassembly sealed baskets between reactor storage and a remote handling facility

    International Nuclear Information System (INIS)

    Massey, J.V.; Kessler, J.H.; McSherry, A.J.

    1989-06-01

    The storage of multiple fuel assemblies in sealed (welded) dry storage baskets is gaining increasing use to augment at-reactor fuel storage capacity. Since this increasing use will place a significant number of such baskets on reactor sites, some initial downstream planning for their future handling scenarios for retrieving multi-assembly sealed baskets (MSBs) from onsite storage and transferring and shipping the fuel (and/or the baskets) to a federally operated remote handling facility (RHF). Numerous options or at-reactor and away-from-reactor handling were investigated. Materials handling flowsheets were developed along with conceptual designs for the equipment and tools required to handle and open the MSBs. The handling options were evaluated and compared to a reference case, fuel handling sequence (i.e., fuel assemblies are taken from the fuel pool, shipped to a receiving and handling facility and placed into interim storage). The main parameters analyzed are throughout, radiation dose burden and cost. In addition to evaluating the handling of MSBs, this work also evaluated handling consolidated fuel canisters (CFCs). In summary, the handling of MSBs and CFCs in the store, ship and bury fuel cycle was found to be feasible and, under some conditions, to offer significant benefits in terms of throughput, cost and safety. 14 refs., 20 figs., 24 tabs

  13. Siting Study for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; Joan Connolly; Lance Peterson; Brennon Orr; Bob Starr

    2010-10-01

    The U.S. Department of Energy has identified a mission need for continued disposal capacity for remote-handled low-level waste (LLW) generated at the Idaho National Laboratory (INL). An alternatives analysis that was conducted to evaluate strategies to achieve this mission need identified two broad options for disposal of INL generated remote-handled LLW: (1) offsite disposal and (2) onsite disposal. The purpose of this study is to identify candidate sites or locations within INL boundaries for the alternative of an onsite remote handled LLW disposal facility and recommend the highest-ranked locations for consideration in the National Environmental Policy Act process. The study implements an evaluation based on consideration of five key elements: (1) regulations, (2) key assumptions, (3) conceptual design, (4) facility performance, and (5) previous INL siting study criteria, and uses a five-step process to identify, screen, evaluate, score, and rank 34 separate sites located across INL. The result of the evaluation is identification of two recommended alternative locations for siting an onsite remote-handled LLW disposal facility. The two alternative locations that best meet the evaluation criteria are (1) near the Advanced Test Reactor Complex and (2) west of the Idaho Comprehensive Environmental Response, Compensation, and Liability Act Disposal Facility.

  14. Preoperational checkout of the remote-handled transuranic waste handling at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1987-09-01

    This plan describes the preoperational checkout for handling Remote-Handled Transuranic (RH-TRU) Wastes from their receipt at the Waste Isolation Pilot Plant (WIPP) to their emplacement underground. This plan identifies the handling operations to be performed, personnel groups responsible for executing these operations, and required equipment items. In addition, this plan describes the quality assurance that will be exercised throughout the checkout, and finally, it establishes criteria by which to measure the success of the checkout. 7 refs., 5 figs

  15. Advantage of redundancy in the controllability of remote handling manipulator

    International Nuclear Information System (INIS)

    Muhammad, Ali; Mattila, Jouni; Vilenius, Matti; Siuko, Mikko; Semeraro, Luigi

    2011-01-01

    To carry out a variety of remote handling operations inside the ITER divertor a Water Hydraulic MANipulator (WHMAN) and its control system have been designed and developed at Tampere University of Technology. The manipulator is installed on top of Cassette Multifunctional Mover (CMM) to assist during the cassette removal and installation operations. While CMM is designed to carry heavy components such as cassettes through the service ducts relying on positioning accuracy and repeatability, WHMAN is designed to execute a mix of remote handling operations using position trajectories and master-slave telemanipulation. WHMAN is composed of eight joints: six rotational and two translational. Since a manipulator requires only six joints to acquire the desired position and orientation in operational-space, the two additional joints of WHMAN provide the redundant degrees of mobility. This paper presents how this redundancy of WHMAN can be an advantage to optimize the execution of remote handling tasks. The paper also discusses an effective way to practically exploit the redundancy. The results show that the additional degrees of freedom can be utilized to improve the dynamic behavior of the manipulator.

  16. Applying remote handling attributes to the ITER neutral beam cell monorail crane

    Energy Technology Data Exchange (ETDEWEB)

    Crofts, O., E-mail: Oliver.Crofts@CCFE.ac.uk [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Allan, P.; Raimbach, J. [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Tesini, A.; Choi, C.-H. [ITER Organisation, CS90 046, 13067 St. Paul les Durance Cedex (France); Damiani, C.; Van Uffelen, M. [Fusion for Energy, C/Josep Pla 2, Torres Diagonal Litoral-B3, E-08019 Barcelona (Spain)

    2013-10-15

    The maintenance requirements for the equipment in the ITER neutral beam cell require components to be lifted and transported within the cell by remote means. To meet this requirement, the provision of an overhead crane with remote handling capabilities has been initiated. The layout of the cell has driven the design to consist of a monorail crane that travels on a branched monorail track attached to the cell ceiling. This paper describes the principle design constraints and how the remote handling attributes were applied to the concept design of the monorail crane, concentrating on areas where novel design solutions have been required and on the remote recovery requirements and solutions.

  17. Applying remote handling attributes to the ITER neutral beam cell monorail crane

    International Nuclear Information System (INIS)

    Crofts, O.; Allan, P.; Raimbach, J.; Tesini, A.; Choi, C.-H.; Damiani, C.; Van Uffelen, M.

    2013-01-01

    The maintenance requirements for the equipment in the ITER neutral beam cell require components to be lifted and transported within the cell by remote means. To meet this requirement, the provision of an overhead crane with remote handling capabilities has been initiated. The layout of the cell has driven the design to consist of a monorail crane that travels on a branched monorail track attached to the cell ceiling. This paper describes the principle design constraints and how the remote handling attributes were applied to the concept design of the monorail crane, concentrating on areas where novel design solutions have been required and on the remote recovery requirements and solutions

  18. Conceptual design report for a remotely operated cask handling system. Revision 1

    International Nuclear Information System (INIS)

    Yount, J.A.; Berger, J.D.

    1984-09-01

    Recent advances in remote handling utilizing commercial robotics are conceptually applied to lowering operator cumulative radiation exposure and increasing throughput during cask handling operations in nuclear shipping and receiving facilities. Revision 1 incorporates functional criteria for facility equipment, equipment technical outline specifications, and interface control drawings to assist Architect Engineers in the application of remote handling to waste shipping and receiving facilities. The document has also been updated to show some of the equipment used in proof-of-principle testing during fiscal year 1984. 10 references, 50 figures, 1 table

  19. Robotics and remote handling concepts for disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    McAffee, Douglas; Raczka, Norman; Schwartztrauber, Keith

    1997-01-01

    This paper summarizes preliminary remote handling and robotic concepts being developed as part of the US Department of Energy's (DOE) Yucca Mountain Project. The DOE is currently evaluating the Yucca Mountain Nevada site for suitability as a possible underground geologic repository for the disposal of high level nuclear waste. The current advanced conceptual design calls for the disposal of more than 12,000 high level nuclear waste packages within a 225 km underground network of tunnels and emplacement drifts. Many of the waste packages may weigh as much as 66 tonnes and measure 1.8 m in diameter and 5.6 m long. The waste packages will emit significant levels of radiation and heat. Therefore, remote handling is a cornerstone of the repository design and operating concepts. This paper discusses potential applications areas for robotics and remote handling technologies within the subsurface repository. It also summarizes the findings of a preliminary technology survey which reviewed available robotic and remote handling technologies developed within the nuclear, mining, rail and industrial robotics and automation industries, and at national laboratories, universities, and related research institutions and government agencies

  20. Development of a Remote Handling System in an Integrated Pyroprocessing Facility

    Directory of Open Access Journals (Sweden)

    Hyo Jik Lee

    2013-10-01

    Full Text Available Over the course of a decade-long research programme, the Korea Atomic Energy Research Institute (KAERI has developed several remote handling systems for use in pyroprocessing research facilities. These systems are now used successfully for the operation and maintenance of processing equipment. The most recent remote handling system is the bridge-transported dual arm servo-manipulator system (BDSM, which is used for remote operation at the world's largest pyroprocess integrated inactive demonstration facility (PRIDE. Accurate and reliable servo-control is the basic requirement for the BDSM to accomplish any given tasks successfully in a hotcell environment. To achieve this end, the hardware and software of a digital signal processor-based remote control system were fully custom-developed and implemented to control the BDSM. To reduce the residual vibration of the BDSM, several input profiles, including input shaping, were carefully chosen and evaluated. Furthermore, a time delay controller was employed to achieve good tracking performance and systematic gain tuning. The experimental results demonstrate that the applied control algorithms are more effective than conventional approaches. The BDSM successfully completed its performance tests at a mock-up and was installed at PRIDE for real-world operation. The remote handling system at KAERI is expected to advance the actualization of pyroprocessing.

  1. Robot vision system R and D for ITER blanket remote-handling system

    International Nuclear Information System (INIS)

    Maruyama, Takahito; Aburadani, Atsushi; Takeda, Nobukazu; Kakudate, Satoshi; Nakahira, Masataka; Tesini, Alessandro

    2014-01-01

    For regular maintenance of the International Thermonuclear Experimental Reactor (ITER), a system called the ITER blanket remote-handling system is necessary to remotely handle the blanket modules because of the high levels of gamma radiation. Modules will be handled by robotic power manipulators and they must have a non-contact-sensing system for installing and grasping to avoid contact with other modules. A robot vision system that uses cameras was adopted for this non-contact-sensing system. Experiments for grasping modules were carried out in a dark room to simulate the environment inside the vacuum vessel and the robot vision system's measurement errors were studied. As a result, the accuracy of the manipulator's movements was within 2.01 mm and 0.31°, which satisfies the system requirements. Therefore, it was concluded that this robot vision system is suitable for the non-contact-sensing system of the ITER blanket remote-handling system

  2. Robot vision system R and D for ITER blanket remote-handling system

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Takahito, E-mail: maruyama.takahito@jaea.go.jp [Japan Atomic Energy Agency, Fusion Research and Development Directorate, Naka, Ibaraki-ken 311-0193 (Japan); Aburadani, Atsushi; Takeda, Nobukazu; Kakudate, Satoshi; Nakahira, Masataka [Japan Atomic Energy Agency, Fusion Research and Development Directorate, Naka, Ibaraki-ken 311-0193 (Japan); Tesini, Alessandro [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul Lez Durance (France)

    2014-10-15

    For regular maintenance of the International Thermonuclear Experimental Reactor (ITER), a system called the ITER blanket remote-handling system is necessary to remotely handle the blanket modules because of the high levels of gamma radiation. Modules will be handled by robotic power manipulators and they must have a non-contact-sensing system for installing and grasping to avoid contact with other modules. A robot vision system that uses cameras was adopted for this non-contact-sensing system. Experiments for grasping modules were carried out in a dark room to simulate the environment inside the vacuum vessel and the robot vision system's measurement errors were studied. As a result, the accuracy of the manipulator's movements was within 2.01 mm and 0.31°, which satisfies the system requirements. Therefore, it was concluded that this robot vision system is suitable for the non-contact-sensing system of the ITER blanket remote-handling system.

  3. Means for attaching remote handling tongs

    International Nuclear Information System (INIS)

    Kearney, A.S.

    1982-01-01

    A remote handling tong has a replaceable slave head assembly provided with a spring biased latch which engages a recess in a barrel member of the tong. The latch bolt extends transverse to the barrel member, and has studs which project at each end beyond the body of the slave head assembly so as to engage respective linear cam surfaces at a station for parking the slave head assembly. (author)

  4. Design for high productivity remote handling

    Energy Technology Data Exchange (ETDEWEB)

    Sykes, N., E-mail: nick.sykes@ccfe.ac.uk [Culham Centre For Fusion Energy, Culham Science Centre, OX14 3DB, Abingdon (United Kingdom); Collins, S.; Loving, A.B.; Ricardo, V. [Culham Centre For Fusion Energy, Culham Science Centre, OX14 3DB, Abingdon (United Kingdom); Villedieu, E. [Association Euratom-CEA Cadarache, DSM/IRFM, Saint Paul Les Durance (France)

    2011-10-15

    As the central part of a programme of enhancements in support of ITER, the Joint European Torus (JET) is being equipped with an all-metal wall. This enhancement programme requires the removal and installation of 6927 tile carriers and tiles, as well as the removal and installation of embedded diagnostics and antennas. The scale of this operation and the necessity to maximise operational availability of the facility added a requirement for high productivity in the remote activities to the existing exigencies of precision, reliability, cleanliness and operational security. This high productivity requirement has been incorporated into the design of the components and associated installation tooling, the design of the installation equipment, the development of installation procedures including the use of a mock-up for optimisation and training. Consideration of the remote handling installation process is vital during the design of the in vessel components. A number of features to meet the need of the high productivity while maintaining the function requirements have been incorporated into the metal wall components and associated tooling including kinematic design with guidance appropriate for remote operation. The component and tools are designed to guide the attachment of the installation tool, the installation path, and the interlocking with adjacent components without contact between the fragile castellated beryllium of the adjacent tiles. Other incorporated ergonomic features are discussed. At JET, the remote maintenance is conducted using end effectors, normally bi-lateral force feed back manipulator, mounted on driven, articulated booms. Prior to the current shutdown one long boom was used to conduct the installation and collect and deliver components to the 'short' boom which was linked to the tile carrier transfer facility. This led to loss of efficiency during these movements. The adoption of a new remote handling philosophy using 'point of

  5. Design for high productivity remote handling

    International Nuclear Information System (INIS)

    Sykes, N.; Collins, S.; Loving, A.B.; Ricardo, V.; Villedieu, E.

    2011-01-01

    As the central part of a programme of enhancements in support of ITER, the Joint European Torus (JET) is being equipped with an all-metal wall. This enhancement programme requires the removal and installation of 6927 tile carriers and tiles, as well as the removal and installation of embedded diagnostics and antennas. The scale of this operation and the necessity to maximise operational availability of the facility added a requirement for high productivity in the remote activities to the existing exigencies of precision, reliability, cleanliness and operational security. This high productivity requirement has been incorporated into the design of the components and associated installation tooling, the design of the installation equipment, the development of installation procedures including the use of a mock-up for optimisation and training. Consideration of the remote handling installation process is vital during the design of the in vessel components. A number of features to meet the need of the high productivity while maintaining the function requirements have been incorporated into the metal wall components and associated tooling including kinematic design with guidance appropriate for remote operation. The component and tools are designed to guide the attachment of the installation tool, the installation path, and the interlocking with adjacent components without contact between the fragile castellated beryllium of the adjacent tiles. Other incorporated ergonomic features are discussed. At JET, the remote maintenance is conducted using end effectors, normally bi-lateral force feed back manipulator, mounted on driven, articulated booms. Prior to the current shutdown one long boom was used to conduct the installation and collect and deliver components to the 'short' boom which was linked to the tile carrier transfer facility. This led to loss of efficiency during these movements. The adoption of a new remote handling philosophy using 'point of installation

  6. Guidelines for Remote Handling Maintenance of ITER Neutral Beam Components

    International Nuclear Information System (INIS)

    Cordier, J.-J.; Hemsworth, R.; Bayetti, P.

    2006-01-01

    Remote handling maintenance of ITER components is one of the main challenges of the ITER project. This type of maintenance shall be operational for the nuclear phase of exploitation of ITER, and be considered at a very early stage since it significantly impacts on the components design, interfaces management and integration business. A large part of the R/H equipment will be procured by the EU partner, in particular the whole Neutral Beam Remote Handling (RH) equipment package. A great deal of work has already been done in this field during the EDA phase of ITER project, but improvements and alternative option that are now proposed by ITER lead to added RH and maintenance engineering studies. The Neutral Beam Heating -and- Current Drive system 1 is being revisited by the ITER project. The vertical maintenance scheme that is presently considered by ITER, may significantly impact on the reference design of the Neutral Beam (NB) system and associated components and lead to new design of the NB box itself. In addition, revision of both NB cell radiation level zoning and remote handling classification of the beam line injector will also significantly impact on components design and maintenance. Based on the experience gained on the vertical maintenance scheme, developed in detail for the ITER Neutral Beam Test Facility 2 to be built in Europe in a near future, guidelines for the revision of the design and preliminary feasibility study of the remote handling vertical maintenance scheme of beam line components are described in the paper. A maintenance option for the SINGAP3 accelerator is also presented. (author)

  7. Progress in standardization for ITER Remote Handling control system

    International Nuclear Information System (INIS)

    Hamilton, David Thomas; Tesini, Alessandro; Ranz, Roberto; Kozaka, Hiroshi

    2014-01-01

    Graphical abstract: - Highlights: • Standard parts specified for ITER Remote Handling (RH) control system. • Standard approach for VR modeling of structural deformations in real-time. • RH Core System produced as standard platform for RH controller applications. • Synthetic Viewing investigated and demonstrated. • Structured language defined for RH operation procedures and motion sequences. - Abstract: An integrated control system architecture has been defined for the ITER Remote Handling (RH) equipment systems, and work has been continuing to develop and validate standards for this architecture. Evaluations of standard parts and a standard control room work-cell have contributed to an update of the RH Control System Design Handbook, while R and D activities have been carried out to validate concepts for standard solutions to ITER RH problems: the use of a standard master arm with different slave arms, the achievement of high accuracy tracking of RH operations within virtual reality, and condition monitoring of RH equipment systems. The standardization efforts have been consolidated through the development of a freely distributable software platform to support the adoption of the ITER RH standards. The RH Core System installs on top of the CODAC Core System and provides the basic platform for the development of ITER RH equipment controller applications. The standardization work has continued in the areas of RH viewing, network communication protocols, and a structured language for programming ITER RH operations. Prototyping has been done on high-level control system applications, and R and D has been carried out in the area of synthetic viewing for ITER RH. These developments will be reflected in a new version of the RH Core System to be produced during 2013

  8. Progress in standardization for ITER Remote Handling control system

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, David Thomas, E-mail: david.hamilton@iter.org [ITER Organization, Route de Vinon, 13115 St. Paul-lez-Durance (France); Tesini, Alessandro [ITER Organization, Route de Vinon, 13115 St. Paul-lez-Durance (France); Ranz, Roberto [Fusion for Energy, Torres Diagonal Litoral B3, Josep Pla 2, 08019 Barcelona (Spain); Kozaka, Hiroshi [Japan Atomic Energy Agency, Fusion Research and Development Directorate, Naka, Ibaraki-ken 311-0193 (Japan)

    2014-10-15

    Graphical abstract: - Highlights: • Standard parts specified for ITER Remote Handling (RH) control system. • Standard approach for VR modeling of structural deformations in real-time. • RH Core System produced as standard platform for RH controller applications. • Synthetic Viewing investigated and demonstrated. • Structured language defined for RH operation procedures and motion sequences. - Abstract: An integrated control system architecture has been defined for the ITER Remote Handling (RH) equipment systems, and work has been continuing to develop and validate standards for this architecture. Evaluations of standard parts and a standard control room work-cell have contributed to an update of the RH Control System Design Handbook, while R and D activities have been carried out to validate concepts for standard solutions to ITER RH problems: the use of a standard master arm with different slave arms, the achievement of high accuracy tracking of RH operations within virtual reality, and condition monitoring of RH equipment systems. The standardization efforts have been consolidated through the development of a freely distributable software platform to support the adoption of the ITER RH standards. The RH Core System installs on top of the CODAC Core System and provides the basic platform for the development of ITER RH equipment controller applications. The standardization work has continued in the areas of RH viewing, network communication protocols, and a structured language for programming ITER RH operations. Prototyping has been done on high-level control system applications, and R and D has been carried out in the area of synthetic viewing for ITER RH. These developments will be reflected in a new version of the RH Core System to be produced during 2013.

  9. Automatic refueling platform and CRD remote handling device for BWR plant

    International Nuclear Information System (INIS)

    Kato, Hiroaki; Takagi, Kaoru

    1978-01-01

    In BWR plants, machines for replacing fuel assemblies and control rod drives are usually operated directly by personnel. An automatic refueling platform and a CRD remote handling device aiming at radiation exposure reduction and handling perfectness are described, which are already used in BWR plants. Automation of the former is achieved in transporting fuel assemblies between a reactor pressure vessel and a fuel storage pool, shuffling fuel assemblies in a reactor core and moving fuel assemblies in a fuel storage pool. In the latter, replacement of CRDs is nearly all performed remotely. (Mori, K.)

  10. Survey of technology for decommissioning of nuclear fuel cycle facilities. 8. Remote handling and cutting techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Ryuichiro; Ishijima, Noboru [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1999-03-01

    In nuclear fuel cycle facility decommissioning and refurbishment, the remote handling techniques such as dismantling, waste handling and decontamination are needed to reduce personnel radiation exposure. The survey research for the status of R and D activities on remote handling tools suitable for nuclear facilities in the world and domestic existing commercial cutting tools applicable to decommissioning of the facilities was conducted. In addition, the drive mechanism, sensing element and control system applicable to the remote handling devices were also surveyed. This report presents brief surveyed summaries. (H. Itami)

  11. Localization of cask and plug remote handling system in ITER using multiple video cameras

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, João, E-mail: jftferreira@ipfn.ist.utl.pt [Instituto de Plasmas e Fusão Nuclear - Laboratório Associado, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Vale, Alberto [Instituto de Plasmas e Fusão Nuclear - Laboratório Associado, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Ribeiro, Isabel [Laboratório de Robótica e Sistemas em Engenharia e Ciência - Laboratório Associado, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)

    2013-10-15

    Highlights: ► Localization of cask and plug remote handling system with video cameras and markers. ► Video cameras already installed on the building for remote operators. ► Fiducial markers glued or painted on cask and plug remote handling system. ► Augmented reality contents on the video streaming as an aid for remote operators. ► Integration with other localization systems for enhanced robustness and precision. -- Abstract: The cask and plug remote handling system (CPRHS) provides the means for the remote transfer of in-vessel components and remote handling equipment between the Hot Cell building and the Tokamak building in ITER. Different CPRHS typologies will be autonomously guided following predefined trajectories. Therefore, the localization of any CPRHS in operation must be continuously known in real time to provide the feedback for the control system and also for the human supervision. This paper proposes a localization system that uses the video streaming captured by the multiple cameras already installed in the ITER scenario to estimate with precision the position and the orientation of any CPRHS. In addition, an augmented reality system can be implemented using the same video streaming and the libraries for the localization system. The proposed localization system was tested in a mock-up scenario with a scale 1:25 of the divertor level of Tokamak building.

  12. Localization of cask and plug remote handling system in ITER using multiple video cameras

    International Nuclear Information System (INIS)

    Ferreira, João; Vale, Alberto; Ribeiro, Isabel

    2013-01-01

    Highlights: ► Localization of cask and plug remote handling system with video cameras and markers. ► Video cameras already installed on the building for remote operators. ► Fiducial markers glued or painted on cask and plug remote handling system. ► Augmented reality contents on the video streaming as an aid for remote operators. ► Integration with other localization systems for enhanced robustness and precision. -- Abstract: The cask and plug remote handling system (CPRHS) provides the means for the remote transfer of in-vessel components and remote handling equipment between the Hot Cell building and the Tokamak building in ITER. Different CPRHS typologies will be autonomously guided following predefined trajectories. Therefore, the localization of any CPRHS in operation must be continuously known in real time to provide the feedback for the control system and also for the human supervision. This paper proposes a localization system that uses the video streaming captured by the multiple cameras already installed in the ITER scenario to estimate with precision the position and the orientation of any CPRHS. In addition, an augmented reality system can be implemented using the same video streaming and the libraries for the localization system. The proposed localization system was tested in a mock-up scenario with a scale 1:25 of the divertor level of Tokamak building

  13. Development of remote handling system based on 3-D shape recognition technique

    International Nuclear Information System (INIS)

    Tomizuka, Chiaki; Takeuchi, Yutaka

    2006-01-01

    In a nuclear facility, the maintenance and repair activities must be done remotely in a radioactive environment. Fuji Electric Systems Co., Ltd. has developed a remote handling system based on 3-D recognition technique. The system recognizes the pose and position of the target to manipulate, and visualizes the scene with the target in 3-D, enabling an operator to handle it easily. This paper introduces the concept and the key features of this system. (author)

  14. Analysis of ITER upper port plug remote handling maintenance scenarios

    International Nuclear Information System (INIS)

    Koning, J.F.; Baar, M.R. de; Elzendoorn, B.S.Q.; Heemskerk, C.J.M.; Ronden, D.M.S.; Schuth, W.J.

    2012-01-01

    Highlights: ► Remote Handling Study Centre: providing RH compatibility analysis. ► Simulation: virtual reality including kinematics and realtime physics simulator. ► Applied on analysis of RH compatibility of Upper Launcher component replacement. ► Resulting in lowered maintenance procedure time and lessons learned. - Abstract: The ITER tokamak has a modular design, with port plugs, blanket modules and divertor cassettes. This set-up allows for maintenance of diagnostics, heating systems and first wall elements. The maintenance can be done in situ, or in the Hot Cell. Safe and effective remote handling (RH) will be ensured by the RH requirements and standards. Compliance is verified through remote handling compatibility assessments at the ITER Design Review milestones. The Remote Handling Study Centre at FOM Institute DIFFER is created to study ITER RH maintenance processes at different levels of complexity, from relatively simple situational awareness checks using snap-shots in the CAD system, time studies using virtual reality (VR) animations, to extensive operational sequence validation with multiple operators in real-time. The multi-operator facility mimics an RH work-cell as presently foreseen in the ITER RH control room. Novel VR technology is used to create a realistic setting in which a team of RH operators can interact with virtual ITER environments. A physics engine is used to emulate real-time contact interaction as to provide realistic haptic feed-back. Complex interactions between the RH operators and the control room system software are tested. RH task performance is quantified and operational resource usage estimated. The article provides a description and lessons learned from a recent study on replacement of the Steering Mirror Assembly on the ECRH (Electron Cyclotron Resonance Heating) Upper Launcher port plug.

  15. Analysis of ITER upper port plug remote handling maintenance scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Koning, J.F., E-mail: j.f.koning@heemskerk-innovative.nl [FOM Institute DIFFER - Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM, Partner in the Trilateral Euregio Cluster and ITER-NL, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Baar, M.R. de; Elzendoorn, B.S.Q. [FOM Institute DIFFER - Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM, Partner in the Trilateral Euregio Cluster and ITER-NL, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Heemskerk, C.J.M. [Heemskerk Innovative Technology, Noordwijk (Netherlands); Ronden, D.M.S.; Schuth, W.J. [FOM Institute DIFFER - Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM, Partner in the Trilateral Euregio Cluster and ITER-NL, PO Box 1207, 3430 BE Nieuwegein (Netherlands)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Remote Handling Study Centre: providing RH compatibility analysis. Black-Right-Pointing-Pointer Simulation: virtual reality including kinematics and realtime physics simulator. Black-Right-Pointing-Pointer Applied on analysis of RH compatibility of Upper Launcher component replacement. Black-Right-Pointing-Pointer Resulting in lowered maintenance procedure time and lessons learned. - Abstract: The ITER tokamak has a modular design, with port plugs, blanket modules and divertor cassettes. This set-up allows for maintenance of diagnostics, heating systems and first wall elements. The maintenance can be done in situ, or in the Hot Cell. Safe and effective remote handling (RH) will be ensured by the RH requirements and standards. Compliance is verified through remote handling compatibility assessments at the ITER Design Review milestones. The Remote Handling Study Centre at FOM Institute DIFFER is created to study ITER RH maintenance processes at different levels of complexity, from relatively simple situational awareness checks using snap-shots in the CAD system, time studies using virtual reality (VR) animations, to extensive operational sequence validation with multiple operators in real-time. The multi-operator facility mimics an RH work-cell as presently foreseen in the ITER RH control room. Novel VR technology is used to create a realistic setting in which a team of RH operators can interact with virtual ITER environments. A physics engine is used to emulate real-time contact interaction as to provide realistic haptic feed-back. Complex interactions between the RH operators and the control room system software are tested. RH task performance is quantified and operational resource usage estimated. The article provides a description and lessons learned from a recent study on replacement of the Steering Mirror Assembly on the ECRH (Electron Cyclotron Resonance Heating) Upper Launcher port plug.

  16. Remote handling facility and equipment used for space truss assembly

    International Nuclear Information System (INIS)

    Burgess, T.W.

    1987-01-01

    The ACCESS truss remote handling experiments were performed at Oak Ridge National Laboratory's (ORNL's) Remote Operation and Maintenance Demonstration (ROMD) facility. The ROMD facility has been developed by the US Department of Energy's (DOE's) Consolidated Fuel Reprocessing Program to develop and demonstrate remote maintenance techniques for advanced nuclear fuel reprocessing equipment and other programs of national interest. The facility is a large-volume, high-bay area that encloses a complete, technologically advanced remote maintenance system that first began operation in FY 1982. The maintenance system consists of a full complement of teleoperated manipulators, manipulator transport systems, and overhead hoists that provide the capability of performing a large variety of remote handling tasks. This system has been used to demonstrate remote manipulation techniques for the DOE, the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan, and the US Navy in addition to the National Aeronautics and Space Administration. ACCESS truss remote assembly was performed in the ROMD facility using the Central Research Laboratory's (CRL) model M-2 servomanipulator. The model M-2 is a dual-arm, bilateral force-reflecting, master/slave servomanipulator which was jointly developed by CRL and ORNL and represents the state of the art in teleoperated manipulators commercially available in the United States today. The model M-2 servomanipulator incorporates a distributed, microprocessor-based digital control system and was the first successful implementation of an entirely digitally controlled servomanipulator. The system has been in operation since FY 1983. 3 refs., 2 figs

  17. Remote monitoring in international safeguards

    International Nuclear Information System (INIS)

    Dupree, S.A.; Sonnier, C.S.; Johnson, C.S.

    1996-01-01

    In recent years, technology that permits the integration of monitoring sensors and instruments into a coherent network has become available. Such integrated monitoring systems provide a means for the automatic collection and assessment of sensor signals and instrument readings and for processing such signals and readings in near real time. To gain experience with the new monitoring system technology, the US Department of energy, through bilateral agreements with its international partners, has initiated a project to emplace demonstration systems in various nuclear facilities and conduct field trials of the technology. This effort is the International Remote Monitoring Project. Under this project, remote monitoring systems are being deployed around the world in an incremental manner. Each deployment is different and each offers lessons for improving the performance and flexibility of the technology. Few problems were encountered with the operation of the installations to date, and much has been learned about the operation and use of the new technology. In the future, the authors believe systems for safeguards applications should be capable of being monitored remotely, emphasize the use of sensors, and utilize selective triggering for recording of images. Remote monitoring across national borders can occur only in the context of a cooperative, nonadversarial implementation regime. However, significant technical and policy work remains to be done before widespread safeguards implementation of remote monitoring should be considered. This paper shows that an abundance of technology supports the implementation of integrated and remote monitoring systems. Current field trials of remote monitoring systems are providing practical data and operational experience to aid in the design of tomorrow's systems

  18. Evaluating ITER remote handling middleware concepts

    International Nuclear Information System (INIS)

    Koning, J.F.; Heemskerk, C.J.M.; Schoen, P.; Smedinga, D.; Boode, A.H.; Hamilton, D.T.

    2013-01-01

    Highlights: ► Remote Handling Study Centre: middleware system setup and modules built. ► Aligning to ITER RH Control System Layout: prototype of database, VR and simulator. ► OpenSplice DDS, ZeroC ICE messaging and object oriented middlewares reviewed. ► Windows network latency found problematic for semi-realtime control over the network. -- Abstract: Remote maintenance activities in ITER will be performed by a unique set of hardware systems, supported by an extensive software kit. A layer of middleware will manage and control a complex set of interconnections between teams of operators, hardware devices in various operating theatres, and databases managing tool and task logistics. The middleware is driven by constraints on amounts and timing of data like real-time control loops, camera images, and database access. The Remote Handling Study Centre (RHSC), located at FOM institute DIFFER, has a 4-operator work cell in an ITER relevant RH Control Room setup which connects to a virtual hot cell back-end. The centre is developing and testing flexible integration of the Control Room components, resulting in proof-of-concept tests of this middleware layer. SW components studied include generic human-machine interface software, a prototype of a RH operations management system, and a distributed virtual reality system supporting multi-screen, multi-actor, and multiple independent views. Real-time rigid body dynamics and contact interaction simulation software supports simulation of structural deformation, “augmented reality” operations and operator training. The paper presents generic requirements and conceptual design of middleware components and Operations Management System in the context of a RH Control Room work cell. The simulation software is analyzed for real-time performance and it is argued that it is critical for middleware to have complete control over the physical network to be able to guarantee bandwidth and latency to the components

  19. Evaluating ITER remote handling middleware concepts

    Energy Technology Data Exchange (ETDEWEB)

    Koning, J.F., E-mail: j.f.koning@differ.nl [FOM Institute DIFFER, Association EURATOM-FOM, Partner in the Trilateral Euregio Cluster and ITER-NL, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Heemskerk, C.J.M.; Schoen, P.; Smedinga, D. [Heemskerk Innovative Technology, Noordwijk (Netherlands); Boode, A.H. [University of Applied Sciences InHolland, Alkmaar (Netherlands); Hamilton, D.T. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2013-10-15

    Highlights: ► Remote Handling Study Centre: middleware system setup and modules built. ► Aligning to ITER RH Control System Layout: prototype of database, VR and simulator. ► OpenSplice DDS, ZeroC ICE messaging and object oriented middlewares reviewed. ► Windows network latency found problematic for semi-realtime control over the network. -- Abstract: Remote maintenance activities in ITER will be performed by a unique set of hardware systems, supported by an extensive software kit. A layer of middleware will manage and control a complex set of interconnections between teams of operators, hardware devices in various operating theatres, and databases managing tool and task logistics. The middleware is driven by constraints on amounts and timing of data like real-time control loops, camera images, and database access. The Remote Handling Study Centre (RHSC), located at FOM institute DIFFER, has a 4-operator work cell in an ITER relevant RH Control Room setup which connects to a virtual hot cell back-end. The centre is developing and testing flexible integration of the Control Room components, resulting in proof-of-concept tests of this middleware layer. SW components studied include generic human-machine interface software, a prototype of a RH operations management system, and a distributed virtual reality system supporting multi-screen, multi-actor, and multiple independent views. Real-time rigid body dynamics and contact interaction simulation software supports simulation of structural deformation, “augmented reality” operations and operator training. The paper presents generic requirements and conceptual design of middleware components and Operations Management System in the context of a RH Control Room work cell. The simulation software is analyzed for real-time performance and it is argued that it is critical for middleware to have complete control over the physical network to be able to guarantee bandwidth and latency to the components.

  20. Advanced robotic remote handling system for reactor dismantlement

    International Nuclear Information System (INIS)

    Shinohara, Yoshikuni; Usui, Hozumi; Fujii, Yoshio

    1991-01-01

    An advanced robotic remote handling system equipped with a multi-functional amphibious manipulator has been developed and used to dismantle a portion of radioactive reactor internals of an experimental boiling water reactor in the program of reactor decommissioning technology development carried out by the Japan Atomic Energy Research Institute. (author)

  1. ITER - TVPS remote handling critical design issues

    International Nuclear Information System (INIS)

    1990-09-01

    This report describes critical design issues concerning remote maintenance of the ITER Torus Vacuum Pumping System (TVPS). The key issues under investigation are the regeneration/isolation valve seal and seal mechanism replacement; impact of inert gas operation; impact of remote handling (RH) on the building configuration and RH equipment requirements. Seal exchange concepts are developed and their impact on the valve design identified. Concerns regarding the design and operation of RH equipment in an inert gas atmosphere are also explored. The report compares preliminary RH equipment options, pumping equipment maintenance frequency and their impact on the building design, and makes recommendations where a conflict exists between pumping equipment and the building layout. (51 figs., 11 refs.)

  2. Factors affecting remote handling productivity during installation of the ITER-like wall at JET

    International Nuclear Information System (INIS)

    Collins, S.; Matthews, G.; Thomas, J.; Hermon, G.

    2013-01-01

    Highlights: ► The paper describes the challenges to achieve the installation of the ILW beryllium sliced wall. ► Examines the factual difference between estimated remote handling in-vessel durations and those achieved, with a view to quantifying the typical disparity between the two. ► The paper will elaborate and highlight the contributing factors. This offers an opportunity to provide provenance for availability estimates of devices such as ITER and DEMO. ► The paper will identify and describe the factors influencing the ratio between estimated versus the actual durations for remote handling operations. -- Abstract: Remote handling operations at JET have encountered many challenges to achieve the installation of the ILW beryllium sliced wall during the Enhanced Performance stage 2 (EP2) shutdown of JET. This was a demanding and challenging activity which was based on the experience gained from a period of over 15 years (20,000 h operations) of JET In-Vessel remote handling operations. This paper describes the difference between estimated remote handling in-vessel durations and those actually achieved with a view to quantifying the typical disparity between them. There are many factors that affect productivity of the remote handling operations and it is important to accommodate these either in the design of the component or within the production of the operational procedures with a view to minimise all impact on the final task duration. Some factors that affect the efficiency are outside the control of the design and operational procedures. These are unforeseen anomalies that were encountered during the removal, naked wall survey and installation of the components. Recoveries from these anomalies are extremely challenging and need to be addressed efficiently in order to minimise the impact on the shutdown duration and prevent optimised panned activities from becoming inefficient by fragmentation

  3. Remote handling experiments with the MASCOT IV servomanipulator at JET and prospects of enhancements

    International Nuclear Information System (INIS)

    Hamilton, D.; Colombi, S.; Galbiati, L.; Haist, B.; Mills, S.; Raimondi, T.

    1995-01-01

    Ongoing remote handling trials are being performed at JET, using the MASCOT IV servomanipulator, in order to establish the feasibility of proposed remote handling tasks. This promotes the development of appropriate tools and methods, the determination of time scales, and suggests modifications to be incorporated into the final design of the related JET components. (orig.)

  4. Use of remote monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Fournel, E; Gouilloux, C

    1977-01-01

    Paper traces the development of remote monitoring devices, since their first appearance for safety purposes. Discusses their uses in coal mines: working and safety (definitions); sources and channels of information (transmission of information by automatic or verbal means); mine control stations; duties and responsibilities of persons in charge. Examines the contribution made by remote monitoring to management in production sector. Gives examples of assistance given to production management showing a very advantageous result on balance, by their use. The use of computers in real time and in batched mode is compared. Discusses their use in monitoring mine atmosphere. Very favorable results have already been obtained in France and abroad. The broadening scope and future of remote monitoring is considered.

  5. Man/machine interface for a nuclear cask remote handling control station: system design requirements

    International Nuclear Information System (INIS)

    Clarke, M.M.; Kreifeldt, J.G.; Draper, J.V.

    1984-01-01

    Design requirements are presented for a control station of a proposed semi-automated facility for remote handling of nuclear waste casks. Functional and operational man/machine interface: controls, displays, software format, station architecture, and work environment. In addition, some input is given to the design of remote sensing systems in the cask handling areas. 18 references, 9 figures, 12 tables

  6. Conceptual design report for a remotely operated cask handling system

    International Nuclear Information System (INIS)

    Yount, J.A.; Berger, J.D.

    Recent advances in remote handling utilizing commercial robotics are conceptually applied to the problem of lowering operator cumulative dose and increasing throughput during cask handling operations in proposed nuclear waste container shipping and receiving facilities. The functional criteria for each subsystem are defined, and candidate systems are described. The report also contains a generic description of a waste receiving facility, to show possible deployment configurations for the equipment

  7. Conceptual design of a test facility for the remote handling operations of the ITER Test Blanker Modules

    International Nuclear Information System (INIS)

    Marqueta, A.; Garcia, I.; Gomez, A.; Garcia, L.; Sedano, E.; Fernandez, I.

    2012-01-01

    Conceptual Design of a test facility for the remote handling operations of the ITER Test Blanket Modules. Conditions inside a fusion reactor are incompatible with conventional manual maintenance tasks. the same applies for ancillary equipment. As a consequence, it will become necessary to turn to remote visualization and remote handling techniques, which will have in consideration the extreme conditions, both physical and operating, of ITER. Main goal of the project has been the realization of the conceptual design for the test facility for the Test Blanket Modules of ITER and their associated systems, related to the Remote Handling operations regarding the Port Cell area. Besides the definition of the operations and the specification of the main components and ancillary systems of the TBM graphical simulation have been used for the design, verification and validation of the remote handling operations. (Author)

  8. The remote handling systems for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Isabel, E-mail: mir@isr.ist.utl.pt [Institute for Systems and Robotics/Instituto Superior Tecnico, Lisboa (Portugal); Damiani, Carlo [Fusion for Energy, Barcelona (Spain); Tesini, Alessandro [ITER Organization, Cadarache (France); Kakudate, Satoshi [ITER Tokamak Device Group, Japan Atomic Energy Agency, Ibaraki (Japan); Siuko, Mikko [VTT Systems Engineering, Tampere (Finland); Neri, Carlo [Associazione EURATOM ENEA, Frascati (Italy)

    2011-10-15

    The ITER remote handling (RH) maintenance system is a key component in ITER operation both for scheduled maintenance and for unexpected situations. It is a complex collection and integration of numerous systems, each one at its turn being the integration of diverse technologies into a coherent, space constrained, nuclearised design. This paper presents an integrated view and recent results related to the Blanket RH System, the Divertor RH System, the Transfer Cask System (TCS), the In-Vessel Viewing System, the Neutral Beam Cell RH System, the Hot Cell RH and the Multi-Purpose Deployment System.

  9. Remote technology related to the handling, storage and disposal of spent fuel. Proceedings of a technical committee meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    Reduced radiation exposure, greater reliability and cost savings are all potential benefits of the application of remote technologies to the handling of spent nuclear fuel. Remote equipment and technologies are used to some extent in all facilities handling fuel and high-level wastes whether they are for interim storage, processing/repacking, reprocessing or disposal. In view of the use and benefits of remote technologies, as well as recent technical and economic developments in the area, the IAEA organized the Technical Committee Meeting (TCM) on Remote Technology Related to the Handling, Storage and/or Disposal of Spent Fuel. Twenty-one papers were presented at the TCM, divided into five general areas: 1. Choice of technologies; 2. Use of remote technologies in fuel handling; 3. Use of remote technologies for fuel inspection and characterization; 4. Remote maintenance of facilities; and 5. Current and future developments. Refs, figs and tabs.

  10. Remote monitoring for international safeguards

    International Nuclear Information System (INIS)

    Dupree, S.A.; Sonnier, C.S.

    1999-01-01

    Remote monitoring is not a new technology, and its application to safeguards-relevant activities has been examined for a number of years. On behalf of the U.S. Department of Energy and international partners, remote monitoring systems have been emplaced in nuclear facilities and laboratories in various parts of the world. The experience gained from these Geld trials of remote monitoring systems has shown the viability of the concept of using integrated monitoring systems. Although a wide variety of sensors has been used in the remote monitoring field trials conducted to date, the possible range of instrumentation that might be used has scarcely been touched. As the technology becomes widespread, large amounts of data will become available to inspectors responsible for safeguards activities at the sites. Effective use of remote monitoring will require processing, archiving, presenting, and assessing of these data. To provide reasonable efficiency in the application of this technology, data processing should be done in a careful and organized manner. The problem will be not an issue of poring over scant records but of surviving under a deluge of information made possible by modern technology Fortunately, modem technology, which created the problem of the data glut, is available to come to the assistance of those inundated by data. Apart from the technological problems, one of the most important aspects of remote monitoring is the potential constraint related to the transmission of data out of a facility or beyond national borders. Remote monitoring across national borders can be seriously considered only in the context of a comprehensive, transparent, and open implementation regime. (author)

  11. Benchmarking the Remote-Handled Waste Facility at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Mendiratta, O.P.; Ploetz, D.K.

    2000-01-01

    ABSTRACT Facility decontamination activities at the West Valley Demonstration Project (WVDP), the site of a former commercial nuclear spent fuel reprocessing facility near Buffalo, New York, have resulted in the removal of radioactive waste. Due to high dose and/or high contamination levels of this waste, it needs to be handled remotely for processing and repackaging into transport/disposal-ready containers. An initial conceptual design for a Remote-Handled Waste Facility (RHWF), completed in June 1998, was estimated to cost $55 million and take 11 years to process the waste. Benchmarking the RHWF with other facilities around the world, completed in November 1998, identified unique facility design features and innovative waste processing methods. Incorporation of the benchmarking effort has led to a smaller yet fully functional, $31 million facility. To distinguish it from the June 1998 version, the revised design is called the Rescoped Remote-Handled Waste Facility (RRHWF) in this topical report. The conceptual design for the RRHWF was completed in June 1999. A design-build contract was approved by the Department of Energy in September 1999

  12. Benchmarking the Remote-Handled Waste Facility at the West Valley Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    O. P. Mendiratta; D. K. Ploetz

    2000-02-29

    ABSTRACT Facility decontamination activities at the West Valley Demonstration Project (WVDP), the site of a former commercial nuclear spent fuel reprocessing facility near Buffalo, New York, have resulted in the removal of radioactive waste. Due to high dose and/or high contamination levels of this waste, it needs to be handled remotely for processing and repackaging into transport/disposal-ready containers. An initial conceptual design for a Remote-Handled Waste Facility (RHWF), completed in June 1998, was estimated to cost $55 million and take 11 years to process the waste. Benchmarking the RHWF with other facilities around the world, completed in November 1998, identified unique facility design features and innovative waste pro-cessing methods. Incorporation of the benchmarking effort has led to a smaller yet fully functional, $31 million facility. To distinguish it from the June 1998 version, the revised design is called the Rescoped Remote-Handled Waste Facility (RRHWF) in this topical report. The conceptual design for the RRHWF was completed in June 1999. A design-build contract was approved by the Department of Energy in September 1999.

  13. International remote monitoring project Argentina Nuclear Power Station Spent Fuel Transfer Remote Monitoring System

    International Nuclear Information System (INIS)

    Schneider, S.; Lucero, R.; Glidewell, D.

    1997-01-01

    The Autoridad Regulataria Nuclear (ARN) and the United States Department of Energy (DOE) are cooperating on the development of a Remote Monitoring System for nuclear nonproliferation efforts. A Remote Monitoring System for spent fuel transfer will be installed at the Argentina Nuclear Power Station in Embalse, Argentina. The system has been designed by Sandia National Laboratories (SNL), with Los Alamos National Laboratory (LANL) and Oak Ridge National Laboratory (ORNL) providing gamma and neutron sensors. This project will test and evaluate the fundamental design and implementation of the Remote Monitoring System in its application to regional and international safeguards efficiency. This paper provides a description of the monitoring system and its functions. The Remote Monitoring System consists of gamma and neutron radiation sensors, RF systems, and video systems integrated into a coherent functioning whole. All sensor data communicate over an Echelon LonWorks Network to a single data logger. The Neumann DCM 14 video module is integrated into the Remote Monitoring System. All sensor and image data are stored on a Data Acquisition System (DAS) and archived and reviewed on a Data and Image Review Station (DIRS). Conventional phone lines are used as the telecommunications link to transmit on-site collected data and images to remote locations. The data and images are authenticated before transmission. Data review stations will be installed at ARN in Buenos Aires, Argentina, ABACC in Rio De Janeiro, IAEA Headquarters in Vienna, and Sandia National Laboratories in Albuquerque, New Mexico. 2 refs., 2 figs

  14. Development of a zonal applicability tool for remote handling equipment in DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Madzharov, Vladimir, E-mail: vladimir.madzharov@kit.edu [Karlsruhe Institute of Technology, Institute for Material Handling and Logistics, Karlsruhe (Germany); Mittwollen, Martin [Karlsruhe Institute of Technology, Institute for Material Handling and Logistics, Karlsruhe (Germany); Leichtle, Dieter [Fusion for Energy F4E, Barcelona (Spain); Hermon, Gary [Culham Center for Fusion Energy, Culham Science Centre, OX14 3DB Abingdon (United Kingdom)

    2015-10-15

    Highlights: • Radiation-hardness assessment of remote handling (RH) components used in DEMO. • A radiation assessment tool for supporting remote handling engineers. • Connecting data from the radiation field analysis to the radiation hardness data. • Output is the expected lifetime of the selected RH component used for maintenance. - Abstract: A radiation-induced damage caused by the ionizing radiation can induce a malfunctioning of the remote handling equipment (RHE) used during maintenance in fusion power plants, other nuclear power stations and high-energy accelerators facilities like e.g. IFMIF. Therefore to achieve a sufficient length of operational time inside future fusion power plants, a suitable radiation tolerant RHE for maintenance operations in radiation environments is inevitably required. To assess the influence of the radiation on remote handling equipment (RHE), an investigation about radiation hardness assessment of typically used RHE components, has been performed. Additionally, information about the absorbed total dose that every component can withstand before failure was collected. Furthermore, the development of a zonal applicability tool for supporting RHE designers has been started using Excel VBA. The tool connects the data from the radiation field analysis (3-D radiation map) to the radiation hardness data of the planned RHE for DEMO remote maintenance. The intelligent combination of the available information for the radiation behaviour and radiation level at certain time and certain location may help with the taking of decisions about the application of RHE in radiation environment. The user inputs the following parameters: the specific device used in the RHE, the planned location and the maintenance period. The output is the expected lifetime of the selected RHE component at the given location and maintenance period. Planned action times have to be also considered. After having all the parameters it can be decided, if specific RHE

  15. Modular remote radiation monitor

    International Nuclear Information System (INIS)

    Lacerda, Fabio; Farias, Marcos S.; Aghina, Mauricio A.C.; Oliveira, Mauro V.

    2013-01-01

    The Modular Remote Radiation Monitor (MRRM) is a novel radiation monitor suitable for monitoring environmental exposure to ionizing radiation. It is a portable compact-size low-power microprocessor-based electronic device which provides its monitoring data to other electronic systems, physically distant from it, by means of an electronic communication channel, which can be wired or wireless according to the requirements of each application. Besides its low-power highly-integrated circuit design, the Modular Remote Radiation Monitor is presented in a modular architecture, which promotes full compliance to the technical requirements of different applications while minimizing cost, size and power consumption. Its communication capability also supports the implementation of a network of multiple radiation monitors connected to a supervisory system, capable of remotely controlling each monitor independently as well as visualizing the radiation levels from all monitors. A prototype of the MRRM, functionally equivalent to the MRA-7027 radiation monitor, was implemented and connected to a wired MODBUS network of MRA-7027 monitors, responsible for monitoring ionizing radiation inside Argonauta reactor room at Instituto de Engenharia Nuclear. Based on the highly positive experimental results obtained, further design is currently underway in order to produce a consumer version of the MRRM. (author)

  16. Remote Monitoring of Cardiac Implantable Electronic Devices.

    Science.gov (United States)

    Cheung, Christopher C; Deyell, Marc W

    2018-01-08

    Over the past decade, technological advancements have transformed the delivery of care for arrhythmia patients. From early transtelephonic monitoring to new devices capable of wireless and cellular transmission, remote monitoring has revolutionized device care. In this article, we review the current evolution and evidence for remote monitoring in patients with cardiac implantable electronic devices. From passive transmission of device diagnostics, to active transmission of patient- and device-triggered alerts, remote monitoring can shorten the time to diagnosis and treatment. Studies have shown that remote monitoring can reduce hospitalization and emergency room visits, and improve survival. Remote monitoring can also reduce the health care costs, while providing increased access to patients living in rural or marginalized communities. Unfortunately, as many as two-thirds of patients with remote monitoring-capable devices do not use, or are not offered, this feature. Current guidelines recommend remote monitoring and interrogation, combined with annual in-person evaluation in all cardiac device patients. Remote monitoring should be considered in all eligible device patients and should be considered standard of care. Copyright © 2018 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  17. Healthcare Blockchain System Using Smart Contracts for Secure Automated Remote Patient Monitoring.

    Science.gov (United States)

    Griggs, Kristen N; Ossipova, Olya; Kohlios, Christopher P; Baccarini, Alessandro N; Howson, Emily A; Hayajneh, Thaier

    2018-06-06

    As Internet of Things (IoT) devices and other remote patient monitoring systems increase in popularity, security concerns about the transfer and logging of data transactions arise. In order to handle the protected health information (PHI) generated by these devices, we propose utilizing blockchain-based smart contracts to facilitate secure analysis and management of medical sensors. Using a private blockchain based on the Ethereum protocol, we created a system where the sensors communicate with a smart device that calls smart contracts and writes records of all events on the blockchain. This smart contract system would support real-time patient monitoring and medical interventions by sending notifications to patients and medical professionals, while also maintaining a secure record of who has initiated these activities. This would resolve many security vulnerabilities associated with remote patient monitoring and automate the delivery of notifications to all involved parties in a HIPAA compliant manner.

  18. ITER - torus vacuum pumping system remote handling issues

    International Nuclear Information System (INIS)

    Stringer, J.

    1992-11-01

    This report describes further design issues concerning remote maintenance of torus vacuum pumping systems options for ITER. The key issues under investigation in this report are flask support systems for valve seal exchange operations for the compound cryopump scheme and remote maintenance of a proposed multiple turbomolecular pump (TMP) system, an alternative ITER torus exhaust pumping option. Previous studies have shown that the overhead support methods for seal exchange flask equipment could malfunction due to valve/flask misalignment. A floor-mounted support system is described in this report. This scheme provides a more rigid support system for seal exchange operations. An alternative torus pumping system, based on the use of multiple TMPs, is studied from a remote maintenance standpoint. In this concept, centre distance spacing for pump/valve assemblies is too restrictive for remote maintenance. Recommendations are made for adequate spacing of these assemblies based on commercially-available 0.8 m and 1.0 m diameter valves. Fewer pumps will fit in this arrangement, which implies a need for larger TMPs. Pumps of this size are not commercially available. Other concerns regarding the servicing and storage of remote handling equipment in cells are also identified. (9 figs.)

  19. Development of spent fuel remote handling technology

    International Nuclear Information System (INIS)

    Yoon, Ji Sup; Park, B. S.; Park, Y. S.; Oh, S. C.; Kim, S. H.; Cho, M. W.; Hong, D. H.

    1997-12-01

    Since the nation's policy on spent fuel management is not finalized, the technical items commonly required for safe management and recycling of spent fuel - remote technologies of transportation, inspection, maintenance, and disassembly of spent fuel - are selected and pursued. In this regards, the following R and D activities are carried out : collision free transportation of spent fuel assembly, mechanical disassembly of spent nuclear fuel and graphical simulation of fuel handling / disassembly process. (author). 36 refs., 16 tabs., 77 figs

  20. The use of virtual reality for preparation and implementation of JET remote handling operations

    International Nuclear Information System (INIS)

    Sanders, S.; Rolfe, A.C.

    2003-01-01

    The use of real time 3-D computer graphic models for preparation and support of remote handling operations on JET has been in use since the mid 1980s. A complete review has been undertaken of the functional requirements and benefits of VR for remote handling and a subsequent market survey of the present state-of-the-art of VR systems has resulted in the implementation of a new system for JET. The VR system is used in two discrete modes: in on-line mode the remote handling equipment Electro-mechanical hardware is connected to the VR system and provides input for the VR system to update a real time 3-D display of the equipment inside the torus. This mode supplements the video camera system and assists with camera control and warnings of impending or potential collisions. In Off-line mode the operator manipulates the VR system model with no connections to the remote handling equipment. This mode is used during preparation of RH operational strategies, checking of operational feasibility and operations procedures. Various VR systems were evaluated against a detailed technical specification that covered visualisation function and performance, user interface design and base model input/creation capabilities. The cheapest of those systems that satisfied the technical requirements was selected

  1. Mock-up test on key components of ITER blanket remote handling system

    International Nuclear Information System (INIS)

    Takeda, Nobukazu; Kakudate, Satoshi; Nakahira, Masataka; Matsumoto, Yasuhiro; Taguchi, Koh; Kozaka, Hiroshi; Shibanuma, Kiyoshi; Tesini, Alessandro

    2009-01-01

    The maintenance operation of the ITER in-vessel component, such as a blanket and divertor, must be executed by the remote equipment because of the high gamma-ray environment. During the Engineering Design Activity (EDA), the Japan Atomic Energy Agency (then called as Japan Atomic Energy Research Institute) had been fabricated the prototype of the vehicle manipulator system for the blanket remote handling and confirmed feasibility of this system including automatic positioning of the blanket and rail deployment procedure of the articulated rail. The ITER agreement, which entered into force in the last year, formally decided that Japan will procure the blanket remote handling system and the JAEA, as the Japanese Domestic Agency, is continuing several R and Ds so that the system can be procured smoothly. The residual key issues after the EDA are rail connection and cable handling. The mock-ups of the rail connection mechanism and the cable handling system were fabricated from the last year and installed at the JAEA Naka Site in this March. The former was composed of the rail connecting mechanism, two rail segments and their handling systems. The latter one utilized a slip ring, which implemented 80 lines for power and 208 lines for signal, because there is an electrical contact between the rotating spool and the fixed base. The basic function of these systems was confirmed through the mock-up test. The rail connection mechanism, for example, could accept misalignment of 1.5-2 mm at least. The future test plan is also mentioned in the paper.

  2. Management of remote-handled defense transuranic wastes

    International Nuclear Information System (INIS)

    Ebra, M.A.; Pierce, G.D.; Carson, P.H.

    1988-01-01

    Transuranic (TRU) wastes generated by defense-related activities are scheduled for emplacement at the Waste Isolation Pilot Plant (WIPP) in New Mexico beginning in October 1988. After five years of operation as a research and development facility, the WIPP may be designated as a permanent repository for these wastes, if it has been demonstrated that this deep, geologically stable formation is a safe disposal option. Defense TRU wastes are currently stored at various Department of Energy (DOE) sites across the nation. Approximately 2% by volume of currently stored TRU wastes are defined, on the basis of dose rates, as remote-handled (RH). RH wastes continue to be generated at various locations operated by DOE contractors. They require special handling and processing prior to and during emplacement in the WIPP. This paper describes the strategy for managing defense RH TRU wastes

  3. Development of spent fuel remote handling technology

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ji Sup; Park, B S; Park, Y S; Oh, S C; Kim, S H; Cho, M W; Hong, D H

    1997-12-01

    Since the nation`s policy on spent fuel management is not finalized, the technical items commonly required for safe management and recycling of spent fuel - remote technologies of transportation, inspection, maintenance, and disassembly of spent fuel - are selected and pursued. In this regards, the following R and D activities are carried out : collision free transportation of spent fuel assembly, mechanical disassembly of spent nuclear fuel and graphical simulation of fuel handling / disassembly process. (author). 36 refs., 16 tabs., 77 figs

  4. Concept design of DEMO divertor cassette remote handling: Simply supported beam approach

    Energy Technology Data Exchange (ETDEWEB)

    Mozzillo, Rocco [CREATE, University of Naples Federico II, DII, P.le Tecchio 80, 80125, Naples (Italy); Di Gironimo, Giuseppei, E-mail: peppe.digironimo@gmail.com [CREATE, University of Naples Federico II, DII, P.le Tecchio 80, 80125, Naples (Italy); Mäkinen, Harri [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland); Miccichè, Gioacchino [ENEA – CR Brasimone, I-40032 Camugnano, BO (Italy); Määttä, Timo [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland)

    2017-03-15

    Highlights: • The present work focused on a new approach to the design of DEMO Divertor Cassette Remote Handling Equipment. • The work provides an alternative approach to the design based on the concept of a simply supported beam. • The approach proposed focuses a Divertor Cassette mover that performs the maintenance of the three cassettes at each port. • First rough dimensioning of the main components has been provided and demonstrating the feasibility of the design solutions. • The main idea of the work consisted on a design capable to use knowledge already adopted in industrial contexts. - Abstract: The present work focused on the development of a new approach to the concept design of DEMO Divertor Cassette (DC) Remote Handling Equipment (RHE). The approach is based on three main assumptions: the DC remote handling activities and the equipment shall be simplified as much as possible; technologies well known and consolidated in the industrial context can be adopted also in the nuclear fusion field; the design of the RHE should be based on a simply supported beam approach instead of cantilever approach. In detail, during the maintenance activities the barycentre of the DC is centred with respect to DC supports. This solution could simplify the design of RHE with a consequent reduction of the design and development costs. Moreover also the DC remote handling tasks shall be simplified in order to better manage the DC maintenance processes. For this reason the DC assembly and disassembly process has been simplified dividing the main sequences in basic movements. For each movement a dedicated tool has been conceived.

  5. Conceptual Design Report for Remote-Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

    2010-10-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  6. Radiation-tolerant cable management systems for remote handling applications in the nuclear industry

    International Nuclear Information System (INIS)

    Cullen, S.; Thom, M.

    1993-01-01

    Experience has shown that one of the most vulnerable areas within remote handling equipment is the umbilical cable and termination system. Repairs of a damaged system can be very long due to poorly designed termination techniques. Over the past five years W.L. Gore has gained considerable experience in the design and manufacture of cable systems, utilising unique radiation tolerant materials and manufacturing processes. The cable systems manufactured at the W.L. Gore, Dunfermline, Scotland facility have proven to give excellent performance in the most demanding of remote handling applications. (author)

  7. Finnish remote environmental monitoring field demonstration

    International Nuclear Information System (INIS)

    Toivonen, H.; Leppaenen, A.; Ylaetalo, S.; Lehtinen, J.; Hokkinen, J.; Tarvainen, M.; Crawford, T.; Glidewell, D.; Smartt, H.; Torres, J.

    1997-10-01

    Radiation and Nuclear Safety Authority (STUK), Helsinki, Finland and Sandia National Laboratories (SNL), working under the Finnish Support Program to IAEA Safeguards and the United States Department of Energy (DOE) funded International Remote Monitoring Program (Task FIN E 935), have undertaken a joint effort to demonstrate the use of remote monitoring for environmental air sampling and safeguards applications. The results of the task will be used by the IAEA to identify the feasibility, cost-effectiveness, reliability, advantages, and problems associated with remote environmental monitoring. An essential prerequisite for a reliable remote air sampling system is the protection of samples against tampering. Means must be developed to guarantee that the sampling itself has been performed as designed and the original samples are not substituted with samples produced with other equipment at another site. One such method is to label the samples with an unequivocal tag. In addition, the inspection personnel must have the capability to remotely monitor and access the automated environmental air sampling system through the use of various sensors and video imagery equipment. A unique aspect to this project is the network integration of remote monitoring equipment with a STUK radiation monitoring system. This integration will allow inspectors to remotely view air sampler radiation data and sensor/image data through separate software applications on the same review station. A sensor network and video system will be integrated with the SNL developed Modular Integrated Monitoring System (MIMS) to provide a comprehensive remote monitoring approach for safeguards purposes. This field trial system is being implemented through a multiphase approach for use by STUK, SNL, and for possible future use by the IAEA

  8. Progress in the design of the ITER Neutral Beam cell Remote Handling System

    Energy Technology Data Exchange (ETDEWEB)

    Shuff, R., E-mail: robin.shuff@f4e.europa.eu [Fusion for Energy, Torres Diagonal Litoral B3, Josep Pla 2, 08019 Barcelona (Spain); Van Uffelen, M.; Damiani, C. [Fusion for Energy, Torres Diagonal Litoral B3, Josep Pla 2, 08019 Barcelona (Spain); Tesini, A.; Choi, C.-H. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul-lez-Durance (France); Meek, R. [Oxford Technologies Limited, 7 Nuffield Way, Abingdon OX14 1RL (United Kingdom)

    2014-10-15

    The ITER Neutral Beam cell will include a suite of Remote Handling equipment for maintenance tasks. This paper summarises the current status and recent developments in the design of the ITER Neutral Beam Remote Handling System. Its concept design was successfully completed in July 2012 by CCFE in the frame of a grant agreement with F4E, in collaboration with the ITER Organisation, including major systems like monorail crane, Beam Line Transporter, beam source equipment, upper port and neutron shield equipment and associated tooling. Research and development activities are now underway on the monorail crane radiation hardened on-board control system and first of a kind remote pipe and lip seal maintenance tooling for the beam line vessel, reported in this paper.

  9. Progress in the design of the ITER Neutral Beam cell Remote Handling System

    International Nuclear Information System (INIS)

    Shuff, R.; Van Uffelen, M.; Damiani, C.; Tesini, A.; Choi, C.-H.; Meek, R.

    2014-01-01

    The ITER Neutral Beam cell will include a suite of Remote Handling equipment for maintenance tasks. This paper summarises the current status and recent developments in the design of the ITER Neutral Beam Remote Handling System. Its concept design was successfully completed in July 2012 by CCFE in the frame of a grant agreement with F4E, in collaboration with the ITER Organisation, including major systems like monorail crane, Beam Line Transporter, beam source equipment, upper port and neutron shield equipment and associated tooling. Research and development activities are now underway on the monorail crane radiation hardened on-board control system and first of a kind remote pipe and lip seal maintenance tooling for the beam line vessel, reported in this paper

  10. The ITER EC H&CD Upper Launcher: Analysis of vertical Remote Handling applied to the BSM maintenance

    NARCIS (Netherlands)

    Grossetti, G.; Aiello, G.; Heemskerk, C.; Elzendoorn, B.; Geßner, R.; Koning, J.; Meier, A.; Ronden, D.; Späh, P.; Scherer, T.; Schreck, S.; Strauß, D.; Vaccaro, A.

    2013-01-01

    This paper deals with Remote Handling activities foreseen on the Blanket Shield Module, the plasma facing component of the ITER Electron Cyclotron Heating and Current Drive Upper Launcher. The maintenance configuration considered here is the Vertical Remote Handling, meaning gravity acting along the

  11. Practical remote monitoring using COTS equipment

    International Nuclear Information System (INIS)

    Kadner, S.; White, R.M.; Pepper, S.

    1999-01-01

    It has been clear for some time that the gap between the international nonproliferation verification agenda and the available financial means can only be bridged by adoption of remote monitoring technologies in specific safeguards applications. Past technology development efforts have focused largely on sensor networking and dedicated communications services to link the inspector to the Safeguards instruments using the traditional verification paradigm. Today we have several Commercial Off The Shelf (COTS) sensor networking alternatives that are viable for Safeguards and it has been found that no single communication service can be uniformly deployed in all verification scenarios. While sensor networking is an important element of remote monitoring technology, it does not by itself provide a viable remote monitoring capability. This paper discusses several lessons have been learned from the IAEA's remote monitoring installation in Pelindaba, South Africa and how those lessons have been extended to near-term installations in Japan and Canada. Key among those lessons is that the traditional verification paradigm cannot, and should not, be carried forward into the remote monitoring regime and that the primary technology component of the successful remote monitoring installation is the Server, which processes, filters, categorizes, and otherwise acts on the sensor inputs to dramatically reduce the volume and increase the information -density of data that is transferred remotely using indigenous communication infrastructures. (author)

  12. A Dual-Mode UWB Wireless Platform with Random Pulse Length Detection for Remote Patient Monitoring

    DEFF Research Database (Denmark)

    Reyes, Carlos; Bisbe, Sergi; Shen, Ming

    2013-01-01

    on a single hardware platform, but it is capable of both monitoring and data transmission. This is achieved by employing a new random pulse length detection method that allows data transmission by using a modulated monitoring signal. To prove the proposed concept a test system has been built, using commercial......This paper presents a dual-mode ultra-wideband platform for wireless Remote Patient Monitoring (RPM). Existing RPM solutions are typically based on two different hardware platforms; one responsible for medical-data monitoring and one to handle data transmission. The proposed RPM topology is based...

  13. Technology of remote monitoring for nuclear activity monitoring

    International Nuclear Information System (INIS)

    Kwack, Ehn Ho; Kim, Jong Soo; Yoon, Wan Ki; Park, Sung Sik; Na, Won Woo; An, Jin Soo; Cha, Hong Ryul; Kim, Jung Soo

    2000-05-01

    In a view of safeguards monitoring at nuclear facilities, the monitoring is changing to remote method so that this report is described to remote monitoring(RM) applying on commercial NPP in Korea. To enhance IAEA safeguards efficiency and effectiveness, IAEA is taking into account of remote monitoring system(RMS) and testing as a field trial. IRMP(International Remote Monitoring Project) in participating many nations for development of RMS is proceeding their project such as technical exchange and research etc. In case of our country are carrying out the research relevant RM since acceptance RMS at 7th ROK-IAEA safeguards implementation review meeting. With a view to enhancement the RMS, installation location and element technology of the RM equipment are evaluated in a view of safeguards in Korea LWRs, and proposed a procedure for national inspection application through remote data evaluation from Younggwang-3 NPP. These results are large valuable to use of national inspection at time point extending installation to all Korea PWR NPP. In case of CANDU, neutron, gamma measurement and basic concept of network using optical fiber scintillating detector as remote verification method for dry storage canister are described. Also RM basic design of spent fuel transfer campaign is described that unattended RM without inspector instead of performing in participating together with IAEA and national inspector. The transfer campaign means the spent fuel storage pond to dry storage canister for about two months every year. Therefore, positively participation of IAEA strength safeguards project will be increased transparency for our nuclear activity as well as contributed to national relevant industry

  14. Technology of remote monitoring for nuclear activity monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kwack, Ehn Ho; Kim, Jong Soo; Yoon, Wan Ki; Park, Sung Sik; Na, Won Woo; An, Jin Soo; Cha, Hong Ryul; Kim, Jung Soo

    2000-05-01

    In a view of safeguards monitoring at nuclear facilities, the monitoring is changing to remote method so that this report is described to remote monitoring(RM) applying on commercial NPP in Korea. To enhance IAEA safeguards efficiency and effectiveness, IAEA is taking into account of remote monitoring system(RMS) and testing as a field trial. IRMP(International Remote Monitoring Project) in participating many nations for development of RMS is proceeding their project such as technical exchange and research etc. In case of our country are carrying out the research relevant RM since acceptance RMS at 7th ROK-IAEA safeguards implementation review meeting. With a view to enhancement the RMS, installation location and element technology of the RM equipment are evaluated in a view of safeguards in Korea LWRs, and proposed a procedure for national inspection application through remote data evaluation from Younggwang-3 NPP. These results are large valuable to use of national inspection at time point extending installation to all Korea PWR NPP. In case of CANDU, neutron, gamma measurement and basic concept of network using optical fiber scintillating detector as remote verification method for dry storage canister are described. Also RM basic design of spent fuel transfer campaign is described that unattended RM without inspector instead of performing in participating together with IAEA and national inspector. The transfer campaign means the spent fuel storage pond to dry storage canister for about two months every year. Therefore, positively participation of IAEA strength safeguards project will be increased transparency for our nuclear activity as well as contributed to national relevant industry.

  15. A fiber optic link for the remote handling in nuclear environment

    International Nuclear Information System (INIS)

    Breuze, G.; Carnet, B.; Friant, A.; Blanc, F.; Lordet, J.; Boisde, G.

    1988-01-01

    At CEA a R/D program is running to improve performances of servomanipulators used in nuclear fuel reprocessing plants. Present work gives the main environmental parameters (gamma rays exposition, temperature) and shows the basis of the digital link designed to remote-handle such a manipulator. Up to 10 5 Gy behavior of optical fibers and electronic components was studied. Two different optical cables were built, one for the long link (100 m), the second to set in an especially designed winding unwinding wheel. Six way permanent or remote-handle connectors were developed to connect optical interfaces and a leaktight penetration. Measured budget of the link taking into account efficient photoblesching of the pure silica core fiber and influence of gamma rays on the slave interface is presented [fr

  16. Remote data monitoring for CDF

    International Nuclear Information System (INIS)

    Kippenhan, H.A. Jr.; Lidinsky, W.; Roediger, G.

    1995-11-01

    Remote data monitoring from the physicists' home institutions has become an important issue in large international experiments to ensure high performance of the detectors and high quality of data and scientific results. The CDF experiment is a collaboration of 450 physicists from 36 institutions in the U.S., Japan, Canada, Italy and Taiwan. Future experiments at Fermilab, CERN and elsewhere will be even larger, and will be performed over a period of order 10 years. The ability of collaborators at remote sites to monitor the increasingly complex detectors and feed the results back into the data acquisition process will be of great importance We report on the status and performance of remote monitoring from Japan of the CDF experiment in Batavia Illinois. We also discuss feasibilities for modest Remote Control Rooms

  17. Remote-handling demonstration tests for the Fusion Materials Irradiation Test (FMIT) Facility

    International Nuclear Information System (INIS)

    Shen, E.J.; Hussey, M.W.; Kelly, V.P.; Yount, J.A.

    1982-01-01

    The mission of the Fusion Materials Irradiation Test (FMIT) Facility is to create a fusion-like environment for fusion materials development. Crucial to the success of FMIT is the development and testing of remote handling systems required to handle materials specimens and maintenance of the facility. The use of full scale mock-ups for demonstration tests provides the means for proving these systems

  18. Three-dimensional television system for remote handling

    International Nuclear Information System (INIS)

    Dumbreck, A.A.; Abel, E.

    1988-01-01

    The paper refers to work previously described on the development of 3-D Television Systems. 3-D TV had been developed with a view to proving whether it was a useful remote handling tool which would be easy to use and comfortable to view. The paper summarizes the work of evaluation trials at UK facilities and reviews the developments which have subsequently taken place. 3-D TV systems have been found to give improved performance in terms of speed and accuracy of operations and to reduce the number of camera views required. (author)

  19. SP-100 reactor disassembly remote handling test program

    International Nuclear Information System (INIS)

    Wilson, C.E.; Potter, J.D.; Maiden, G.E.; Vader, D.P.

    1991-01-01

    This paper is presented as an overview of the remote handling equipment validation testing, which will be conducted before installation and use in the ground engineering test facility. This equipment will be used to defuel the SP-100 reactor core after removing it from the Test Assembly following nuclear testing. A series of full scale mock-up operational tests will be conducted at a Hanford Site facility to verify equipment design, operation, and capabilities

  20. Progress in the design, R and D and procurement preparation of the ITER Divertor Remote Handling System

    Energy Technology Data Exchange (ETDEWEB)

    Esqué, Salvador, E-mail: Salvador.Esque@f4e.europa.eu [Fusion for Energy, Torres Diagonal Litoral B3, Josep Pla 2, 08019 Barcelona (Spain); Hille, Carine van; Ranz, Roberto; Damiani, Carlo [Fusion for Energy, Torres Diagonal Litoral B3, Josep Pla 2, 08019 Barcelona (Spain); Palmer, Jim; Hamilton, David [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul-lez-Durance (France)

    2014-10-15

    Highlights: •The ITER Divertor Remote Handling System (DRHS) reference design is presented. •Different R and D activities that have contributed to the development and validation of the current reference design are reported. •The DRHS turns to be a unique system in terms of complexity due to size of the to-be-handled components, the novelty of the remote operations and the operational conditions. -- Abstract: The ITER Divertor Remote Handling System (DRHS) consists of a number of dedicated remote handling equipment and tooling that will provide the means to perform the exchange of the divertor system in a full-remote way. In order to achieve this objective the DRHS will need to perform a number of novel and complex remote operations in a contaminated and space-constrained environment, in rather poor lightening conditions. Fusion for Energy has recently launched the tendering phase for the in-kind procurement of the DRHS. The procurement is based on a set of system requirements and functional specifications supported by a reference design which are presented and discussed in this paper along with the main outcomes of the different R and D activities that have contributed to the development and validation of the current reference design.

  1. The international remote monitoring project and implication

    International Nuclear Information System (INIS)

    Sonnier, C.S.; Johnson, C.S.

    1994-01-01

    The future of remote monitoring in International Safeguards system is analyzed. Problems of an update on the International Remote Monitoring Project are considered. The Project allows to remotely transmit safeguards-relevant data directly to IAEA from nuclear facilities worldwide. Description of integrated monitoring system (IMS) is given. A key element of state-of-art of IMS is modular nodal system which accepts information from sensors and provides information to both a data storage unit and a transmitter. Remote Monitoring Systems of Australia and Sweden are presented. 3 figs

  2. US remote monitoring operational experience

    International Nuclear Information System (INIS)

    Dupree, S.A.; Sonnier, C.S.

    1997-01-01

    Under international partnerships and bilateral agreements with the U.S. Department of Energy, Sandia National Laboratories, other national laboratories, and international partner organizations have emplaced remote monitoring systems in nuclear facilities and laboratories in various parts of the world for the purpose of conducting field trials of remote monitoring. The purpose of the present report is to review the results from these field trials and draw general conclusions regarding the trials. Many thousands of hours of sensor and system operation have been logged, and data have been retrieved from many locations. In virtually all cases the system components have functioned as intended and data have been successfully collected and transmitted for review. Comparisons between front-end-triggered video and time-lapse video have shown that the triggered record has captured all relevant monitored operations at the various nuclear facilities included in the field trials. We believe the utility and functional reliability of remote monitoring for international safeguards has been shown. However, it should be kept in mind that openness and transparency, including some form of short-notice inspections, are likely to be prerequisites to the safeguards implementation of remote monitoring in any State

  3. Safety handling manual for high dose rate remote afterloading system

    International Nuclear Information System (INIS)

    1999-01-01

    This manual is mainly for safety handling of 192 Ir-RALS (remote afterloading system) of high dose rate and followings were presented: Procedure and document format for the RALS therapy and for handling of its radiation source with the purpose of prevention of human errors and unexpected accidents, Procedure for preventing errors occurring in the treatment schedule and operation, and Procedure and format necessary for newly introducing the system into a facility. Consistency was intended in the description with the quality assurance guideline for therapy with small sealed radiation sources made by JASTRO (Japan Society for Therapeutic Radiology and Oncology). Use of the old type 60 Co-RALS was pointed out to be a serious problem remained and its safety handling procedure was also presented. (K.H.)

  4. Flexible path optimization for the Cask and Plug Remote Handling System in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Vale, Alberto, E-mail: avale@ipfn.ist.utl.pt [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Fonte, Daniel; Valente, Filipe; Ferreira, João [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Ribeiro, Isabel [Laboratório de Robótica e Sistemas em Engenharia e Ciência, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Gonzalez, Carmen [Fusion for Energy Agency (F4E), Torres Diagonal Litoral B3, Josep Pla 2, 08019 Barcelona (Spain)

    2013-10-15

    Highlights: ► Complementary approach for path optimization named free roaming that takes full advantage of the rhombic like kinematics of the Cask and Plug Remote Handling System (CPRHS). ► Possibility to find trajectories not possible in the past using the line guidance developed in a previous work, in particular when moving the Cask Transfer System (CTS) beneath the pallet or in rescue missions. ► Methodology that maximizes the common parts of different trajectories in the same level of ITER buildings. -- Abstract: The Cask and Plug Remote Handling System (CPRHS) provides the means for the remote transfer of in-vessel components and remote handling equipment between the Hot Cell Building and the Tokamak Building in ITER along pre-defined optimized trajectories. A first approach for CPRHS path optimization was previously proposed using line guidance as the navigation methodology to be adopted. This approach might not lead to feasible paths in new situations not considered during the previous work, as rescue operations. This paper addresses this problem by presenting a complementary approach for path optimization inspired in rigid body dynamics that takes full advantage of the rhombic like kinematics of the CPRHS. It also presents a methodology that maximizes the common parts of different trajectories in the same level of ITER buildings. The results gathered from 500 optimized trajectories are summarized. Conclusions and open issues are presented and discussed.

  5. Remote automated material handling of radioactive waste containers

    International Nuclear Information System (INIS)

    Greager, T.M.

    1994-09-01

    To enhance personnel safety, improve productivity, and reduce costs, the design team incorporated a remote, automated stacker/retriever, automatic inspection, and automated guidance vehicle for material handling at the Enhanced Radioactive and Mixed Waste Storage Facility - Phase V (Phase V Storage Facility) on the Hanford Site in south-central Washington State. The Phase V Storage Facility, scheduled to begin operation in mid-1997, is the first low-cost facility of its kind to use this technology for handling drums. Since 1970, the Hanford Site's suspect transuranic (TRU) wastes and, more recently, mixed wastes (both low-level and TRU) have been accumulating in storage awaiting treatment and disposal. Currently, the Hanford Site is only capable of onsite disposal of radioactive low-level waste (LLW). Nonradioactive hazardous wastes must be shipped off site for treatment. The Waste Receiving and Processing (WRAP) facilities will provide the primary treatment capability for solid-waste storage at the Hanford Site. The Phase V Storage Facility, which accommodates 27,000 drum equivalents of contact-handled waste, will provide the following critical functions for the efficient operation of the WRAP facilities: (1) Shipping/Receiving; (2) Head Space Gas Sampling; (3) Inventory Control; (4) Storage; (5) Automated/Manual Material Handling

  6. Track-mounted remote handling system for the Tokamak Fusion Engineering Test

    International Nuclear Information System (INIS)

    Kelly, V.P.; Berger, J.D.; Daubert, R.L.; Yount, J.A.

    1982-01-01

    Concepts for remote handling machines (IVM) designed to transverse the interior of toroidal vessels with guidance and support from track systems have been developed for the proposed Tokamak Fusion Engineering Test (TFET). TFET has been proposed as an upgrade for the Tokamak Fusion Test Reactor (TFTR), currently nearing completion. The track-mounted IVMs were conceived to perform in-vessel remote maintenance for TFET, including removal and replacement of pump limiter blades and protective tiles as well as other maintenance-related tasks such as vessel wall inspection leak testing and interior cleanup. The conceptual IVMs consist of three manipulator arms mounted on a common frame member: a single power manipulator arm with high load carrying capacity and two lower-capacity servomanipulator arms. Descriptions of the IVM concepts, in-vessel track systems, and ex-vessel handling systems are presented

  7. Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2011-05-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  8. Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

    2011-03-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  9. Current status of technology development on remote monitoring system

    International Nuclear Information System (INIS)

    Yoon, Wan Ki; Lee, Y. K.; Lee, Y. D.; Na, W. W.

    1997-03-01

    IAEA is planning to perform the remote monitoring system in nuclear facility in order to reinforce the economical and efficient inspection. National lab. in U.S. is developing the corresponding core technology and field trial will be done to test the remote monitoring system by considering the case that it replace the current safeguards system. U.S. setup the International Remote Monitoring Project to develop the technology. IAEA makes up remote monitoring team and setup the detail facility to apply remote monitoring system. Therefore, early participation in remote monitoring technology development will make contribution in international remote monitoring system and increase the transparency and confidence in domestic nuclear activities. (author). 12 refs., 20 figs

  10. Structural acceptance criteria Remote Handling Building Tritium Extraction Facility

    Energy Technology Data Exchange (ETDEWEB)

    Mertz, G.

    1999-12-16

    This structural acceptance criteria contains the requirements for the structural analysis and design of the Remote Handling Building (RHB) in the Tritium Extraction Facility (TEF). The purpose of this acceptance criteria is to identify the specific criteria and methods that will ensure a structurally robust building that will safely perform its intended function and comply with the applicable Department of Energy (DOE) structural requirements.

  11. Structural acceptance criteria Remote Handling Building Tritium Extraction Facility

    International Nuclear Information System (INIS)

    Mertz, G.

    1999-01-01

    This structural acceptance criteria contains the requirements for the structural analysis and design of the Remote Handling Building (RHB) in the Tritium Extraction Facility (TEF). The purpose of this acceptance criteria is to identify the specific criteria and methods that will ensure a structurally robust building that will safely perform its intended function and comply with the applicable Department of Energy (DOE) structural requirements

  12. Evaluation of a New Remote Handling Design for High Throughput Annular Centrifugal Contactors

    International Nuclear Information System (INIS)

    Meikrantz, David H.; Garn, Troy G.; Law, Jack D.; Macaluso, Lawrence L.

    2009-01-01

    Advanced designs of nuclear fuel recycling plants are expected to include more ambitious goals for aqueous based separations including; higher separations efficiency, high-level waste minimization, and a greater focus on continuous processes to minimize cost and footprint. Therefore, Annular Centrifugal Contactors (ACCs) are destined to play a more important role for such future processing schemes. Previous efforts defined and characterized the performance of commercial 5 cm and 12.5 cm single-stage ACCs in a 'cold' environment. The next logical step, the design and evaluation of remote capable pilot scale ACCs in a 'hot' or radioactive environment was reported earlier. This report includes the development of remote designs for ACCs that can process the large throughput rates needed in future nuclear fuel recycling plants. Novel designs were developed for the remote interconnection of contactor units, clean-in-place and drain connections, and a new solids removal collection chamber. A three stage, 12.5 cm diameter rotor module has been constructed and evaluated for operational function and remote handling in highly radioactive environments. This design is scalable to commercial CINC ACC models from V-05 to V-20 with total throughput rates ranging from 20 to 650 liters per minute. The V-05R three stage prototype was manufactured by the commercial vendor for ACCs in the U.S., CINC mfg. It employs three standard V-05 clean-in-place (CIP) units modified for remote service and replacement via new methods of connection for solution inlets, outlets, drain and CIP. Hydraulic testing and functional checks were successfully conducted and then the prototype was evaluated for remote handling and maintenance suitability. Removal and replacement of the center position V-05R ACC unit in the three stage prototype was demonstrated using an overhead rail mounted PaR manipulator. This evaluation confirmed the efficacy of this innovative design for interconnecting and cleaning

  13. Remote-Handled Transuranic Content Codes

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions

    2006-12-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: • A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. • A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is “3.” The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR

  14. Remote patient monitoring in chronic heart failure.

    Science.gov (United States)

    Palaniswamy, Chandrasekar; Mishkin, Aaron; Aronow, Wilbert S; Kalra, Ankur; Frishman, William H

    2013-01-01

    Heart failure (HF) poses a significant economic burden on our health-care resources with very high readmission rates. Remote monitoring has a substantial potential to improve the management and outcome of patients with HF. Readmission for decompensated HF is often preceded by a stage of subclinical hemodynamic decompensation, where therapeutic interventions would prevent subsequent clinical decompensation and hospitalization. Various methods of remote patient monitoring include structured telephone support, advanced telemonitoring technologies, remote monitoring of patients with implanted cardiac devices such as pacemakers and defibrillators, and implantable hemodynamic monitors. Current data examining the efficacy of remote monitoring technologies in improving outcomes have shown inconsistent results. Various medicolegal and financial issues need to be addressed before widespread implementation of this exciting technology can take place.

  15. Remote waste handling and feed preparation for Mixed Waste Management

    International Nuclear Information System (INIS)

    Couture, S.A.; Merrill, R.D.; Densley, P.J.

    1995-05-01

    The Mixed Waste Management Facility (MWMF) at the Lawrence Livermore National Laboratory (LLNL) will serve as a national testbed to demonstrate mature mixed waste handling and treatment technologies in a complete front-end to back-end --facility (1). Remote operations, modular processing units and telerobotics for initial waste characterization, sorting and feed preparation have been demonstrated at the bench scale and have been selected for demonstration in MWMF. The goal of the Feed Preparation design team was to design and deploy a robust system that meets the initial waste preparation flexibility and productivity needs while providing a smooth upgrade path to incorporate technology advances as they occur. The selection of telerobotics for remote handling in MWMF was made based on a number of factors -- personnel protection, waste generation, maturity, cost, flexibility and extendibility. Modular processing units were selected to enable processing flexibility and facilitate reconfiguration as new treatment processes or waste streams are brought on line for demonstration. Modularity will be achieved through standard interfaces for mechanical attachment as well as process utilities, feeds and effluents. This will facilitate reconfiguration of contaminated systems without drilling, cutting or welding of contaminated materials and with a minimum of operator contact. Modular interfaces also provide a standard connection and disconnection method that can be engineered to allow convenient remote operation

  16. Design and operation of a remotely operated plutonium waste size reduction and material handling process

    International Nuclear Information System (INIS)

    Stewart, J.A. III; Charlesworth, D.L.

    1986-01-01

    Noncombustible 238 Pu and 239 Pu waste is generated as a result of normal operation and decommissioning activity at the Savannah River Plant, and is being retrievably stored there. As part of the long-term plant to process the stored waste and current waste for permanent disposal, a remote size reduction and material handling process is being cold-tested at Savannah River Laboratory. The process consists of a large, low-speed shredder and material handling system, a remote worktable, a bagless transfer system, and a robotically controlled manipulator. Initial testing of the shredder and material handling system and a cycle test of the bagless transfer system has been completed. Fabrication and acceptance testing of the Telerobat, a robotically controlled manipulator has been completed. Testing is scheduled to begin in 3/86. Design features maximizing the ability to remotely maintain the equipment were incorporated. Complete cold-testing of the equipment is scheduled to be completed in 1987

  17. REMOTE MATERIAL HANDLING IN THE YUCCA MOUNTAIN WASTE PACKAGE CLOSURE CELL AND SUPPORT AREA GLOVEBOX

    International Nuclear Information System (INIS)

    K.M. Croft; S.M. Allen; M.W. Borland

    2005-01-01

    The Yucca Mountain Waste Package Closure System (WPCS) cells provide for shielding of highly radioactive materials contained in unsealed waste packages. The purpose of the cells is to provide safe environments for package handling and sealing operations. Once sealed, the packages are placed in the Yucca Mountain Repository. Closure of a typical waste package involves a number of remote operations. Those involved typically include the placement of matched lids onto the waste package. The lids are then individually sealed to the waste package by welding. Currently, the waste package includes three lids. One lid is placed before movement of the waste package to the closure cell; the final two are placed inside the closure cell, where they are welded to the waste package. These and other important operations require considerable remote material handling within the cell environment. This paper discusses the remote material handling equipment, designs, functions, operations, and maintenance, relative to waste package closure

  18. Daily remote monitoring of implantable cardioverter-defibrillators

    DEFF Research Database (Denmark)

    Hindricks, Gerhard; Varma, Niraj; Kacet, Salem

    2017-01-01

    Aims: Remote monitoring of implantable cardioverter-defibrillators may improve clinical outcome. A recent meta-analysis of three randomized controlled trials (TRUST, ECOST, IN-TIME) using a specific remote monitoring system with daily transmissions [Biotronik Home Monitoring (HM)] demonstrated...

  19. The Security Plan for the Joint Euratom/IAEA Remote Monitoring Network

    International Nuclear Information System (INIS)

    Stronkhorst, J.; Schoop, K.; Ruuska, K.; Kurek, S.; Levert, J.F.

    2015-01-01

    The European Commission and the IAEA have installed surveillance systems in all larger civil European nuclear facilities. The monitoring data is gathered by optical surveillance systems, electronic sealing systems and numerous measuring devices. The on-site joint Euratom/IAEA monitoring networks operate in general completely isolated from the operator's IT systems. To largely improve data security and reliability, remote data transmission (RDT) is installed on a growing number of sites, and the inspection data is daily transferred to the Data Collect Servers in Luxembourg and Vienna. A growing number of RDT connections and a growing number of security threats require an IT security policy that is pro-active as well as reactive in an efficient way. The risk based approach used in setting up the security plans assesses all elements of the monitoring network, from the implemented technical solution and the assessment of the security needs and threats, up to the incident handling and lessons learned. The results of the assessments are, for each individual RDT connection, described in the technical paragraphs and annexes, including system descriptions, network plans and contact information. The principles of secure data handling as implemented in the shared Euratom /IAEA monitoring network can apply to a broad range of industrial monitoring systems, where human interaction is in general the largest security risk. (author)

  20. Remotely controlled inspection and handling systems for decommissioning tasks in nuclear facilities

    International Nuclear Information System (INIS)

    Schreck, G.; Bach, W.; Haferkamp, H.

    1993-01-01

    The Institut fur Werkstoffkunde at the University of Hanover has recently developed three remotely controlled systems for different underwater inspection and dismantling tasks. ODIN I is a tool guiding device, particularly being designed for the dismantling of the steam dryer housing of the KRB A power plant at Gundremmingen, Germany. After being approved by the licencing organization TUEV Bayern, hot operation started in November 1992. The seven axes remotely controlled handling system ZEUS, consisting of a three translatory axes guiding machine and a tool handling device with four rotatory axes, has been developed for the demonstration of underwater plasma arc cutting of spherical metallic components with great wall thicknesses. A specially designed twin sensor system and a modular torch, exchanged by means of a remote controlled tool changing device, will be used for different complex cutting tasks. FAUST, an autonomous, freediving underwater vehicle, was designed for complex inspection, maintenance and dismantling tasks. It is equipped with two video cameras, an ultrasonic and a radiologic sensor and a small plasma torch. A gripper and a subsidiary vehicle for inspection may be attached. (author)

  1. Integrated digital control and man-machine interface for complex remote handling systems

    International Nuclear Information System (INIS)

    Rowe, J.C.; Spille, R.F.; Zimmermann, S.D.

    1986-12-01

    The Advanced Integrated Maintenance System (AIMS) is part of a continuing effort within the Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory to develop and extend the capabilities of remote manipulation and maintenance technology. The AIMS is a totally integrated approach to remote handling in hazardous environments. State-of-the-art computer systems connected through a high-speed communication network provide a real-time distributed control system that supports the flexibility and expandability needed for large integrated maintenance applications. A Man-Machine Interface provides high-level human interaction through a powerful color graphics menu-controlled operator console. An auxiliary control system handles the real-time processing needs for a variety of support hardware. A pair of dedicated fiber-optic-linked master/slave computer system control the Advanced Servomanipulator master/slave arms using powerful distributed digital processing methods. The FORTH language was used as a real-time operating and development environment for the entire system, and all of these components are integrated into a control room concept that represents the latest advancements in the development of remote maintenance facilities for hazardous environments

  2. The JOYO remote monitoring system

    International Nuclear Information System (INIS)

    Damico, Joseph P.; Hashimoto, Yu

    2000-01-01

    The evolution of the personal computer, operating systems and applications software and the Internet has brought drastic change and many benefits worldwide. Remote monitoring systems benefit from computer network and other modern software technologies. The availability of fast, inexpensive and secure communications enables new solutions for monitoring system applications. The JOYO Remote Monitoring System (RMS) utilizes computer network communications and modular software design to provide a distributed integrated solution for monitoring multiple storage locations. This paper describes the remote monitoring system installed at the JOYO Fast Reactor. The system combines sensors, software, and computer network technologies to create a powerful data collection, storage and dissemination capability. The RMS provides a flexible, scalable solution for a variety of applications. The RMS integrates a variety of state of the art technologies from several sources and serves as a test bed for cutting edge technologies that can be shared with outside users. This paper describes the system components and their operation and discusses system benefits. Current activities and future plants for the JOYO RMS will be discussed. (author)

  3. Facility operations transparency and remote monitoring

    International Nuclear Information System (INIS)

    Beddingfield, David

    2006-01-01

    Remote monitoring technologies offer many opportunities, not only to strengthen IAEA safeguards, but also to improve national, industrial and local oversight of various nuclear operations. Remote monitoring benefits in greater timeliness, reduced inspector presence and improved state-of-health awareness are well-known attributes. However, there is also the capability to organize data into a comprehensive knowledge of the 'normal operating envelope' of a facility. In considering future applications of remote monitoring there is also a need to develop a better understanding of the potential cost-savings versus higher up-front costs and potential long-term maintenance or upgrade costs. (author)

  4. Radioactivity, shielding, radiation damage, and remote handling

    International Nuclear Information System (INIS)

    Wilson, M.T.

    1975-01-01

    Proton beams of a few hundred million electron volts of energy are capable of inducing hundreds of curies of activity per microampere of beam intensity into the materials they intercept. This adds a new dimension to the parameters that must be considered when designing and operating a high-intensity accelerator facility. Large investments must be made in shielding. The shielding itself may become activated and require special considerations as to its composition, location, and method of handling. Equipment must be designed to withstand large radiation dosages. Items such as vacuum seals, water tubing, and electrical insulation must be fabricated from radiation-resistant materials. Methods of maintaining and replacing equipment are required that limit the radiation dosages to workers.The high-intensity facilities of LAMPF, SIN, and TRIUMF and the high-energy facility of FERMILAB have each evolved a philosophy of radiation handling that matches their particular machine and physical plant layouts. Special tooling, commercial manipulator systems, remote viewing, and other techniques of the hot cell and fission reactor realms are finding application within accelerator facilities. (U.S.)

  5. Development of nuclear fuel cycle remote handling technology

    International Nuclear Information System (INIS)

    Kim, K. H.; Park, B. S.; Kim, S. H.

    2010-04-01

    This report presents the development of remote handling systems and remote equipment for use in the pyprocessing verification at the PRIDE (PyRoprocess Integrated inactive Demonstration facility). There are three areas conducted in this work. In first area, developed were the prototypes of an engineering-scale high-throughput decladding voloxidizer which is capable of separating spent fuel rod-cuts into hulls and powder and collecting them separately and an automatic equipment which is capable of collecting residual powder remaining on separated hulls. In second area, a servo-manipulator prototype was developed to operate and maintain pyroprocess equipment located at the argon cell of the PRIDE in a remote manner. A servo-manipulator with dual arm that is mounted on the lower part of a bridge transporter will be installed on the ceiling of the in-cell and can travel the length of the ceiling. In last area, a simulator was developed to simulate and evaluate the design developments of the pyroprocess equipment from the in-cell arrangements, remote operability and maintainability viewpoint in a virtual process environment in advance before they are constructed. The developed decladding voloxidizer and automatic equipment will be utilized in the development of a head-end process for pyroprocessing. In addition, the developed servo-manipulator will be installed in the PRIDE and used for remote operation and maintenance of the pyroprocess equipment. The developed simulator will be also used to verify and improve the design of the pyroprocess equipment for the PRIDE application. Moreover, these remote technologies described above can be directly used in the PRIDE and applied for the ESPF (Engineering Scale Pyroprocess Facility) and KAPF (Korea Advanced Pyroprocess Facility) development

  6. Haptic shared control improves hot cell remote handling despite controller inaccuracies

    NARCIS (Netherlands)

    van Oosterhout, J.; Abbink, D. A.; Koning, J. F.; Boessenkool, H.; Wildenbeest, J. G. W.; Heemskerk, C. J. M.

    2013-01-01

    A promising solution to improve task performance in ITER hot cell remote handling is the use of haptic shared control. Haptic shared control can assist the human operator along a safe and optimal path with continuous guiding forces from an intelligent autonomous controller. Previous research tested

  7. Design principles for target stations and methods of remote handling at PSI

    International Nuclear Information System (INIS)

    Steiner, E.W.

    1992-01-01

    Two design concepts for target stations used at Paul Scherrer Institute (PSI) are shown. The method of the remote handling of activated elements is described and some conclusions with respect to a radioactive beam facility are given

  8. Solution for remote handling in accelerator installations

    International Nuclear Information System (INIS)

    Burgerjon, J.J.; Ekberg, E.L.; Grisham, D.L.; Horne, R.A.; Meyer, R.E.; Flatau, C.R.; Wilson, K.B.

    1977-01-01

    A description is given of a remote-handling system designed for the Los Alamos Clinton P. Anderson Meson Physics Facility (LAMPF), versatile enough to be used in a variety of situations found around particle accelerators. The system consists of a bilateral (force-reflecting) servomanipulator installed on an articulated hydraulic boom. The boom also carries the necessary tools and observation devices. The whole slave unit can be moved by crane or truck to the area of operation. A control cable connects the slave unit with the control station, located at a safe distance in a trailer. Various stages of development as well as some operating experience are discussed

  9. Savannah River Plant remote environmental monitoring system

    International Nuclear Information System (INIS)

    Schubert, J.F.

    1987-01-01

    The SRP remote environmental monitoring system consists of separations facilities stack monitors, production reactor stack monitors, twelve site perimeter monitors, river and stream monitors, a geostationary operational environmental satellite (GOES) data link, reactor cooling lake thermal monitors, meteorological tower system, Weather Information and Display (WIND) system computer, and the VANTAGE data base management system. The remote environmental monitoring system when fully implemented will provide automatic monitoring of key stack releases and automatic inclusion of these source terms in the emergency response codes

  10. Remote monitoring: A global partnership for safeguards

    International Nuclear Information System (INIS)

    Bardsley, J.

    1996-01-01

    With increased awareness of the significant changes of the past several years and their effect on the expectations to international safeguards, it is necessary to reflect on the direction for development of nuclear safeguards in a new era and the resulting implications. The time proven monitoring techniques, based on quantitative factors and demonstrated universal application, have shown their merit. However, the new expectations suggest a possibility that a future IAEA safeguards system could rely more heavily on the value of a comprehensive, transparent, and open implementation regime. With the establishment of such a regime, it is highly likely that remote monitoring will play a significant role. Several states have seen value in cooperating with each other to address the many problems associated with the remote interrogation of integrated monitoring systems. As a consequence the International Remote Monitoring Project was organized to examine the future of remote monitoring in International Safeguards. This paper provides an update on the technical issues, the future plans, and the safeguards implications of cooperative programs relating to remote monitoring. Without providing answers to the policy questions involved, it suggests that it is timely to begin addressing these issues

  11. Evolving the JET virtual reality system for delivering the JET EP2 shutdown remote handling tasks

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Adrian, E-mail: adrian.williams@oxfordtechnologies.co.uk [Oxford Technologies Ltd., 7 Nuffield Way, Abingdon, Oxon, OX14 1RJ (United Kingdom); JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Sanders, Stephen [Oxford Technologies Ltd., 7 Nuffield Way, Abingdon, Oxon, OX14 1RJ (United Kingdom); JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Weder, Gerard [Tree-C Technology BV, Buys Ballotstraat 8, 6716 BL Ede (Netherlands); JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Bastow, Roger; Allan, Peter; Hazel, Stuart [CCFE, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom)

    2011-10-15

    The quality, functionality and performance of the virtual reality (VR) system used at JET for preparation and implementation of remote handling (RH) operations has been progressively enhanced since its first use in the original JET remote handling shutdown in 1998. As preparation began for the JET EP2 (Enhanced Performance 2) shutdown it was recognised that the VR system being used was unable to cope with the increased functionality and the large number of 3D models needed to fully represent the JET in-vessel components and tooling planned for EP2. A bespoke VR software application was developed in collaboration with the OEM, which allowed enhancements to be made to the VR system to meet the requirements of JET remote handling in preparation for EP2. Performance improvements required to meet the challenges of EP2 could not be obtained from the development of the new VR software alone. New methodologies were also required to prepare source, CATIA models for use in the VR using a collection of 3D software packages. In collaboration with the JET drawing office, techniques were developed within CATIA using polygon reduction tools to reduce model size, while retaining surface detail at required user limits. This paper will discuss how these developments have played an essential part in facilitating EP2 remote handling task development and examine their impact during the EP2 shutdown.

  12. Evolving the JET virtual reality system for delivering the JET EP2 shutdown remote handling tasks

    International Nuclear Information System (INIS)

    Williams, Adrian; Sanders, Stephen; Weder, Gerard; Bastow, Roger; Allan, Peter; Hazel, Stuart

    2011-01-01

    The quality, functionality and performance of the virtual reality (VR) system used at JET for preparation and implementation of remote handling (RH) operations has been progressively enhanced since its first use in the original JET remote handling shutdown in 1998. As preparation began for the JET EP2 (Enhanced Performance 2) shutdown it was recognised that the VR system being used was unable to cope with the increased functionality and the large number of 3D models needed to fully represent the JET in-vessel components and tooling planned for EP2. A bespoke VR software application was developed in collaboration with the OEM, which allowed enhancements to be made to the VR system to meet the requirements of JET remote handling in preparation for EP2. Performance improvements required to meet the challenges of EP2 could not be obtained from the development of the new VR software alone. New methodologies were also required to prepare source, CATIA models for use in the VR using a collection of 3D software packages. In collaboration with the JET drawing office, techniques were developed within CATIA using polygon reduction tools to reduce model size, while retaining surface detail at required user limits. This paper will discuss how these developments have played an essential part in facilitating EP2 remote handling task development and examine their impact during the EP2 shutdown.

  13. NET remote workstation

    International Nuclear Information System (INIS)

    Leinemann, K.

    1990-10-01

    The goal of this NET study was to define the functionality of a remote handling workstation and its hardware and software architecture. The remote handling workstation has to fulfill two basic functions: (1) to provide the man-machine interface (MMI), that means the interface to the control system of the maintenance equipment and to the working environment (telepresence) and (2) to provide high level (task level) supporting functions (software tools) during the maintenance work and in the preparation phase. Concerning the man-machine interface, an important module of the remote handling workstation besides the standard components of man-machine interfacing is a module for graphical scene presentation supplementing viewing by TV. The technique of integrated viewing is well known from JET BOOM and TARM control using the GBsim and KISMET software. For integration of equipment dependent MMI functions the remote handling workstation provides a special software module interface. Task level support of the operator is based on (1) spatial (geometric/kinematic) models, (2) remote handling procedure models, and (3) functional models of the equipment. These models and the related simulation modules are used for planning, programming, execution monitoring, and training. The workstation provides an intelligent handbook guiding the operator through planned procedures illustrated by animated graphical sequences. For unplanned situations decision aids are available. A central point of the architectural design was to guarantee a high flexibility with respect to hardware and software. Therefore the remote handling workstation is designed as an open system based on widely accepted standards allowing the stepwise integration of the various modules starting with the basic MMI and the spatial simulation as standard components. (orig./HP) [de

  14. Development of simulator for remote handling system of ITER blanket

    International Nuclear Information System (INIS)

    Takeda, Nobukazu; Kakudate, Satoshi; Nakanhira, Masataka; Matsumoto, Yasuhiro; Shibanuma, K.

    2007-01-01

    The maintenance activity in the ITER has to be performed remotely because 14 MeV neutron caused by fusion reaction induces activation of structural material and emission of gamma ray. In general, it is one of the most critical issues to avoid collision between the remote maintenance system and in-vessel components. Therefore, the visual information in the vacuum vessel is required strongly to understand arrangement of these devices and components. However, there is a limitation of arrangement of viewing cameras in the vessel because of high intensity of gamma ray. It is expected that enough numbers of cameras and lights are not available because of arrangement restriction. Furthermore, visibility of the interested area such as the contacting part is frequently disturbed by the devices and components, thus it is difficult to recognize relative position between the devices and components only by visual information even if enough cameras and lights are equipped. From these reasons, the simulator to recognize the positions of each devices and components is indispensable for remote handling systems in fusion reactors. The authors have been developed a simulator for the remote maintenance system of the ITER blanket using a general 3D robot simulation software ''ENVISION''. The simulator is connected to the control system of the manipulator which was developed as a part of the blanket maintenance system in the EDA and can reconstruct the positions of the manipulator and the blanket module using the position data of the motors through the LAN. In addition, it can provide virtual visual information, such as the connecting operation behind the blanket module with making the module transparent on the screen. It can be used also for checking the maintenance sequence before the actual operation. The developed simulator will be modified further adding other necessary functions and finally completed as a prototype of the actual simulator for the blanket remote handling system

  15. ITER L 7 duct remote handling equipment design report

    International Nuclear Information System (INIS)

    Millard, J.

    1996-09-01

    The operation, design and interfaces of the 'Duct Vehicle' and it's associated remote handling equipment are briefly described in this document. This equipment is being designed by Spar Aerospace Ltd. for the Divertor Test Platform as part of ITER Research and Development Project L-7. Canadian Fusion Fuels Technology Project funds this work as part of the Canadian Contribution to ITER. This document describes the equipment design status at the September 1996 design review. 23 figs

  16. Hot Laboratories and Remote Handling

    International Nuclear Information System (INIS)

    2007-01-01

    The Opening talk of the workshop 'Hot Laboratories and Remote Handling' was given by Marin Ciocanescu with the communication 'Overview of R and D Program in Romanian Institute for Nuclear Research'. The works of the meeting were structured into three sections addressing the following items: Session 1. Hot cell facilities: Infrastructure, Refurbishment, Decommissioning; Session 2. Waste, transport, safety and remote handling issues; Session 3. Post-Irradiation examination techniques. In the frame of Section 1 the communication 'Overview of hot cell facilities in South Africa' by Wouter Klopper, Willie van Greunen et al, was presented. In the framework of the second session there were given the following four communications: 'The irradiated elements cell at PHENIX' by Laurent Breton et al., 'Development of remote equipment for DUPIC fuel fabrication at KAERI', by Jung Won Lee et al., 'Aspects of working with manipulators and small samples in an αβγ-box, by Robert Zubler et al., and 'The GIOCONDA experience of the Joint Research Centre Ispra: analysis of the experimental assemblies finalized to their safe recovery and dismantling', by Roberto Covini. Finally, in the framework of the third section the following five communications were presented: 'PIE of a CANDU fuel element irradiated for a load following test in the INR TRIGA reactor' by Marcel Parvan et al., 'Adaptation of the pole figure measurement to the irradiated items from zirconium alloys' by Yury Goncharenko et al., 'Fuel rod profilometry with a laser scan micrometer' by Daniel Kuster et al., 'Raman spectroscopy, a new facility at LECI laboratory to investigate neutron damage in irradiated materials' by Lionel Gosmain et al., and 'Analysis of complex nuclear materials with the PSI shielded analytical instruments' by Didier Gavillet. In addition, eleven more presentations were given as posters. Their titles were: 'Presentation of CETAMA activities (CEA analytic group)' by Alain Hanssens et al. 'Analysis of

  17. Influence of visual feedback on human task performance in ITER remote handling

    NARCIS (Netherlands)

    Schropp, Gwendolijn Y R; Heemskerk, Cock J M; Kappers, Astrid M L; Bergmann Tiest, Wouter M; Elzendoorn, Ben S Q; Bult, David

    In ITER, maintenance operations will be largely performed by remote handling (RH). Before ITER can be put into operation, safety regulations and licensing authorities require proof of maintainability for critical components. Part of the proof will come from using standard components and procedures.

  18. Analysis of operational possibilities and conditions of remote handling systems in nuclear facilities

    International Nuclear Information System (INIS)

    Hourfar, D.

    1989-01-01

    Accepting the development of the occupational radiation exposure in nuclear facilities, it will be showing possibilities of cost effective reduction of the dose rate through the application of robots and manipulators for the maintenance of nuclear power plants, fuel reprocessing plants, decommissioning and dismantling of the mentioned plants. Based on the experiences about industrial robot applications by manufacturing and manipulator applications by the handling of radioactive materials as well as analysis of the handling procedures and estimation of the dose intensity, it will be defining task-orientated requirements for the conceptual design of the remote handling systems. Furthermore the manifold applications of stationary and mobil arranged handling systems in temporary or permanent operation are described. (orig.) [de

  19. Environmental monitoring by means of remote sensing

    International Nuclear Information System (INIS)

    Theilen-Willige, B.

    1993-01-01

    Aircraft and satellite aerial photographs represent indispensible tools for environmental observation today. They contribute to a systematic inventory of important environmental parameters such as climate, vegetation or surface water. Their great importance lies in the continuous monitoring of large regions so that changes in environmental conditions are quickly detected. This book provides an overview of the capabilities of remote sensing in environmental monitoring and in the recognition of environmental problems as well as of the usefulness of remote sensing data for environmental planning. Also addressed is the role of remote sensing in the monitoring of natural hazards such as earthquakes and volcano eruptions as well as problems of remote sensing technology transfer to developing countries. (orig.) [de

  20. Demonstration of a remotely operated TRU waste size-reduction and material handling process

    International Nuclear Information System (INIS)

    Stewart, J.A. III; Schuler, T.F.; Ward, C.R.

    1986-01-01

    Noncombustible Pu-238 and Pu-239 waste is generated as a result of normal operation and decommissioning activity at the Savannah River Plant and is being retrievably stored at the site. As part of the long-term plan to process the stored waste and current waste for permanent disposal, a remote size-reduction and material handling process is being tested at Savannah River Laboratory to provide design support for the plant TRU Waste Facility scheduled to be completed in 1993. The process consists of a large, low-speed shredder and material handling system, a remote worktable, a bagless transfer system, and a robotically controlled manipulator, or Telerobot. Initial testing of the shredder and material handling system and a cycle test of the bagless transfer system were completed. Initial Telerobot run-in and system evaluation was completed. User software was evaluated and modified to support complete menu-driven operation. Telerobot prototype size-reduction tooling was designed and successfully tested. Complete nonradioactive testing of the equipment is scheduled to be completed in 1987

  1. Applying HAZOP analysis in assessing remote handling compatibility of ITER port plugs

    International Nuclear Information System (INIS)

    Duisings, L.P.M.; Til, S. van; Magielsen, A.J.; Ronden, D.M.S.; Elzendoorn, B.S.Q.; Heemskerk, C.J.M.

    2013-01-01

    Highlights: ► We applied HAZOP analysis to assess the criticality of remote handling maintenance activities on port plugs in the ITER Hot Cell facility. ► We identified several weak points in the general upper port plug maintenance concept. ► We made clear recommendations on redesign in port plug design, operational sequence and Hot Cell equipment. ► The use of a HAZOP approach for the ECH UL port can also be applied to ITER port plugs in general. -- Abstract: This paper describes the application of a Hazard and Operability Analysis (HAZOP) methodology in assessing the criticality of remote handling maintenance activities on port plugs in the ITER Hot Cell facility. As part of the ECHUL consortium, the remote handling team at the DIFFER Institute is developing maintenance tools and procedures for critical components of the ECH Upper launcher (UL). Based on NRG's experience with nuclear risk analysis and Hot Cell procedures, early versions of these tool concepts and maintenance procedures were subjected to a HAZOP analysis. The analysis identified several weak points in the general upper port plug maintenance concept and led to clear recommendations on redesigns in port plug design, the operational sequence and ITER Hot Cell equipment. The paper describes the HAZOP methodology and illustrates its application with specific procedures: the Steering Mirror Assembly (SMA) replacement and the exchange of the Mid Shield Optics (MSO) in the ECH UPL. A selection of recommended changes to the launcher design associated with the accessibility, maintainability and manageability of replaceable components are presented

  2. Remote monitoring of implantable cardiac devices: current state and future directions.

    Science.gov (United States)

    Ganeshan, Raj; Enriquez, Alan D; Freeman, James V

    2018-01-01

    Recent evidence has demonstrated substantial benefits associated with remote monitoring of cardiac implantable electronic devices (CIEDs), and treatment guidelines have endorsed the use of remote monitoring. Familiarity with the features of remote monitoring systems and the data supporting its use are vital for physicians' care for patients with CEIDs. Remote monitoring remains underutilized, but its use is expanding including in new practice settings including emergency departments. Patient experience and outcomes are positive, with earlier detection of clinical events such as atrial fibrillation, reductions in inappropriate implantable cardioverter-defibrillator (ICD) shocks and potentially a decrease in mortality with frequent remote monitoring utilizaiton. Rates of hospitalization are reduced among remote monitoring users, and the replacement of outpatient follow-up visits with remote monitoring transmissions has been shown to be well tolerated. In addition, health resource utilization is lower and remote monitoring has been associated with considerable cost savings. A dose relationship exists between use of remote monitoring and patient outcomes, and those with early and high transmission rates have superior outcomes. Remote monitoring provides clinicians with the ability to provide comprehensive follow-up care for patients with CIEDs. Patient outcomes are improved, and resource utilization is decreased with appropriate use of remote monitoring. Future efforts must focus on improving the utilization and efficiency of remote monitoring.

  3. Remote supervision of GIS monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Pannunzio, J.; Juge, P.; Ficheux, A.; Rayon, J.L. [Areva T and D Automation Canada Inc., Monteal, PQ (Canada)

    2007-07-01

    Operators of gas-insulated substations (GIS) are increasingly concerned with failure prevention, scheduled maintenance, personnel safety and shortage of maintenance crews. Until recently, the density levels of the insulating gas sulfur hexafluoride (SF6) was the only parameter controlled in gas-insulated substations. Modern digital type control and monitoring equipment have been widely used in the past decade. Remote indication of gas density and status of dynamic components was made possible and shown on local control panels. Modern GIS monitoring systems offer features such as SF6 monitoring, SF6 leakage trends, internal arc localization and detection. The required information is recorded in a local computer and displaced onto a local human machine interface (HMI) or a local industrial PC mounted next to the GIS. These monitoring systems are used as decision making tools to facilitate maintenance activities and optimize the management of assets. This paper presented the latest developments in digital monitoring systems in terms of modern digital architecture; management of information flows between monitoring systems and control systems; operation of remote supervision; configuration of high voltage substations and information sharing; and, types of links between GIS room and remote supervision. This paper also demonstrated what can be achieved by moving the central HMI of a GIS monitoring system to the decision-making centres. It was shown that integrated features that allow remote on-line or automated management have reached an acceptable level of reliability and comfort for operators. 5 figs.

  4. ITER - torus vacuum pumping system remote handling issues

    International Nuclear Information System (INIS)

    Stringer, J.

    1992-11-01

    This report describes design issues concerning remote maintenance of the ITER torus vacuum pumping system. Key issues under investigation in this report are bearings for inert gas operation, transporter integration options, cryopump access, gate valve maintenance frequency, tritium effects on materials, turbomolecular pump design, and remote maintenance. Alternative bearing materials are explored for inert gas operation. Encapsulated motors and rotary feedthroughs offer an alternative option where space requirements are restrictive. A number of transporter options are studied. The preferred scheme depends on the shielded reconfigured ducts to prevent streaming and activation of RH (remote handling) equipment. A radiation mapping of the cell is required to evaluate this concept. Valve seal and bellow life are critical issues and need to be evaluated, as they have a direct bearing on the provision of adequate RH equipment to meet scheduled and unscheduled maintenance outages. The limited space on the inboard side of the cryopumps for RH equipment access requires a reconfigured duct and manifold. A modified shielded duct arrangement is proposed, which would provide more access space, reduced activation of components, and the potential for improved valve seal life. Work at Mound Laboratories has shown the adverse effects of tritium on some bearing lubricants. Silicone-based lubricants should be avoided. (11 refs., 2 tabs., 31 figs.)

  5. The ITER EC H and CD Upper Launcher: Analysis of vertical Remote Handling applied to the BSM maintenance

    International Nuclear Information System (INIS)

    Grossetti, Giovanni; Aiello, Gaetano; Heemskerk, Cock; Elzendoorn, Ben; Geßner, Robby; Koning, Jarich; Meier, Andreas; Ronden, Dennis; Späh, Peter; Scherer, Theo; Schreck, Sabine; Strauß, Dirk; Vaccaro, Alessandro

    2013-01-01

    This paper deals with Remote Handling activities foreseen on the Blanket Shield Module, the plasma facing component of the ITER Electron Cyclotron Heating and Current Drive Upper Launcher. The maintenance configuration considered here is the Vertical Remote Handling, meaning gravity acting along the launcher radial axis. The plant, where the maintenance under consideration is occurring, is the Hot Cell Facility Work Cell. The study here reported has been carried out within the presently ongoing EFDA Goal Oriented Training program on Remote Handling (GOT-RH), which aims to support ITER activities. This document and its contents have to be considered as part of a more vast RAMI analysis to be developed within the GOT-RH, which aims to maximize the Electron Cyclotron Heating and Current Drive system availability. The Baseline CAD model of the Electron Cyclotron Heating and Current Drive Upper Launcher is currently in its preliminary design phase and does not provide enough details for developing a fully detailed maintenance strategy. Therefore, through a System Engineering approach, a set of assumptions was conceived on the launcher structure, as a basis for development of a Remote Handling strategy. Moreover, to compare different design solutions related to the possibility of integrating a quasi-optical component into the Blanket Shield Module, a Trade-Off was made, and its contents are shown here. The outcome of this System Engineering approach has been formalized into Task Definition Forms whose contents are reported here. The Remote Handling strategy presented in this work will be tested in the near future both through Virtual Reality simulations and through prototype experiments

  6. The ITER EC H and CD Upper Launcher: Analysis of vertical Remote Handling applied to the BSM maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Grossetti, Giovanni, E-mail: giovanni.grossetti@kit.edu [Karlsruhe Institute of Technology, Association KIT-EURATOM, P.O. Box 3640, D-76021 Karlsruhe (Germany); Aiello, Gaetano [Karlsruhe Institute of Technology, Association KIT-EURATOM, P.O. Box 3640, D-76021 Karlsruhe (Germany); Heemskerk, Cock [Heemskerk Innovative Technology, Merelhof 2, 2172 HZ Sassenheim (Netherlands); Elzendoorn, Ben [FOM Institute DIFFER, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Geßner, Robby [Karlsruhe Institute of Technology, Association KIT-EURATOM, P.O. Box 3640, D-76021 Karlsruhe (Germany); Koning, Jarich [Heemskerk Innovative Technology, Merelhof 2, 2172 HZ Sassenheim (Netherlands); Meier, Andreas [Karlsruhe Institute of Technology, Association KIT-EURATOM, P.O. Box 3640, D-76021 Karlsruhe (Germany); Ronden, Dennis [FOM Institute DIFFER, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Späh, Peter; Scherer, Theo; Schreck, Sabine; Strauß, Dirk; Vaccaro, Alessandro [Karlsruhe Institute of Technology, Association KIT-EURATOM, P.O. Box 3640, D-76021 Karlsruhe (Germany)

    2013-10-15

    This paper deals with Remote Handling activities foreseen on the Blanket Shield Module, the plasma facing component of the ITER Electron Cyclotron Heating and Current Drive Upper Launcher. The maintenance configuration considered here is the Vertical Remote Handling, meaning gravity acting along the launcher radial axis. The plant, where the maintenance under consideration is occurring, is the Hot Cell Facility Work Cell. The study here reported has been carried out within the presently ongoing EFDA Goal Oriented Training program on Remote Handling (GOT-RH), which aims to support ITER activities. This document and its contents have to be considered as part of a more vast RAMI analysis to be developed within the GOT-RH, which aims to maximize the Electron Cyclotron Heating and Current Drive system availability. The Baseline CAD model of the Electron Cyclotron Heating and Current Drive Upper Launcher is currently in its preliminary design phase and does not provide enough details for developing a fully detailed maintenance strategy. Therefore, through a System Engineering approach, a set of assumptions was conceived on the launcher structure, as a basis for development of a Remote Handling strategy. Moreover, to compare different design solutions related to the possibility of integrating a quasi-optical component into the Blanket Shield Module, a Trade-Off was made, and its contents are shown here. The outcome of this System Engineering approach has been formalized into Task Definition Forms whose contents are reported here. The Remote Handling strategy presented in this work will be tested in the near future both through Virtual Reality simulations and through prototype experiments.

  7. Remote Reactor Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Adam [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dazeley, Steve [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dobie, Doug [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marleau, Peter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brennan, Jim [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gerling, Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sumner, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sweany, Melinda [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-21

    The overall goal of the WATCHMAN project is to experimentally demonstrate the potential of water Cerenkov antineutrino detectors as a tool for remote monitoring of nuclear reactors. In particular, the project seeks to field a large prototype gadolinium-doped, water-based antineutrino detector to demonstrate sensitivity to a power reactor at ~10 kilometer standoff using a kiloton scale detector. The technology under development, when fully realized at large scale, could provide remote near-real-time information about reactor existence and operational status for small operating nuclear reactors out to distances of many hundreds of kilometers.

  8. Remote Maintenance Monitoring System -

    Data.gov (United States)

    Department of Transportation — The Remote Maintenance and Monitoring System (RMMS) is a collection of subsystems that includes telecommunication components, hardware, and software, which serve to...

  9. SRV-automatic handling device

    International Nuclear Information System (INIS)

    Yamada, Koji

    1987-01-01

    Automatic handling device for the steam relief valves (SRV's) is developed in order to achieve a decrease in exposure of workers, increase in availability factor, improvement in reliability, improvement in safety of operation, and labor saving. A survey is made during a periodical inspection to examine the actual SVR handling operation. An SRV automatic handling device consists of four components: conveyor, armed conveyor, lifting machine, and control/monitoring system. The conveyor is so designed that the existing I-rail installed in the containment vessel can be used without any modification. This is employed for conveying an SRV along the rail. The armed conveyor, designed for a box rail, is used for an SRV installed away from the rail. By using the lifting machine, an SRV installed away from the I-rail is brought to a spot just below the rail so that the SRV can be transferred by the conveyor. The control/monitoring system consists of a control computer, operation panel, TV monitor and annunciator. The SRV handling device is operated by remote control from a control room. A trial equipment is constructed and performance/function testing is carried out using actual SRV's. As a result, is it shown that the SRV handling device requires only two operators to serve satisfactorily. The required time for removal and replacement of one SRV is about 10 minutes. (Nogami, K.)

  10. Remote-handled transuranic waste study

    International Nuclear Information System (INIS)

    1995-10-01

    The Waste Isolation Pilot Plant (WIPP) was developed by the US Department of Energy (DOE) as a research and development facility to demonstrate the safe disposal of transuranic (TRU) radioactive wastes generated from the Nation's defense activities. The WIPP disposal inventory will include up to 250,000 cubic feet of TRU wastes classified as remote handled (RH). The remaining inventory will include contact-handled (CH) TRU wastes, which characteristically have less specific activity (radioactivity per unit volume) than the RH-TRU wastes. The WIPP Land Withdrawal Act (LWA), Public Law 102-579, requires a study of the effect of RH-TRU waste on long-term performance. This RH-TRU Waste Study has been conducted to satisfy the requirements defined by the LWA and is considered by the DOE to be a prudent exercise in the compliance certification process of the WIPP repository. The objectives of this study include: conducting an evaluation of the impacts of RH-TRU wastes on the performance assessment (PA) of the repository to determine the effects of Rh-TRU waste as a part of the total WIPP disposal inventory; and conducting a comparison of CH-TRU and RH-TRU wastes to assess the differences and similarities for such issues as gas generation, flammability and explosiveness, solubility, and brine and geochemical interactions. This study was conducted using the data, models, computer codes, and information generated in support of long-term compliance programs, including the WIPP PA. The study is limited in scope to post-closure repository performance and includes an analysis of the issues associated with RH-TRU wastes subsequent to emplacement of these wastes at WIPP in consideration of the current baseline design. 41 refs

  11. Remote and unattended monitoring techniques

    International Nuclear Information System (INIS)

    Abedin-Zadeh, R.; Whichello, J.

    1998-01-01

    In the last years, there has been a tremendous growth in the number of unattended assay and monitoring systems in the field. These systems have enabled reduced presence of inspectors while increasing the verification coverage. As part of the Strengthened safeguards System and in particular as part of the measures to improve the cost-effectiveness of safeguards, the possibility of remote transfer of authenticated and encrypted video surveillance, seals and radiation sensor data via telephone or special satellite links have been demonstrated and the necessary arrangements and infrastructure have been prepared. The evaluation of field trials of the remote monitoring systems have shown that the systems are effective in monitoring events of safeguards relevance in near real times. The systems are competitive from a cost standpoint when compared to current methods. The reduction of inspection efforts can be realized by application of remote monitoring technique with scheduled inspections and more effectively with the short notice or unannounced random inspections. It is expected that, upon completion of the necessary arrangements with the Member States authorities, the safeguards department will implement the technique widely before the year 2000

  12. Hot Laboratories and Remote Handling

    International Nuclear Information System (INIS)

    Bart, G.; Blanc, J.Y.; Duwe, R.

    2003-01-01

    The European Working Group on ' Hot Laboratories and Remote Handling' is firmly established as the major contact forum for the nuclear R and D facilities at the European scale. The yearly plenary meetings intend to: - Exchange experience on analytical methods, their implementation in hot cells, the methodologies used and their application in nuclear research; - Share experience on common infrastructure exploitation matters such as remote handling techniques, safety features, QA-certification, waste handling; - Promote normalization and co-operation, e.g., by looking at mutual complementarities; - Prospect present and future demands from the nuclear industry and to draw strategic conclusions regarding further needs. The 41. plenary meeting was held in CEA Saclay from September 22 to 24, 2003 in the premises and with the technical support of the INSTN (National Institute for Nuclear Science and Technology). The Nuclear Energy Division of CEA sponsored it. The Saclay meeting was divided in three topical oral sessions covering: - Post irradiation examination: new analysis methods and methodologies, small specimen technology, programmes and results; - Hot laboratory infrastructure: decommissioning, refurbishment, waste, safety, nuclear transports; - Prospective research on materials for future applications: innovative fuels (Generation IV, HTR, transmutation, ADS), spallation source materials, and candidate materials for fusion reactor. A poster session was opened to transport companies and laboratory suppliers. The meeting addressed in three sessions the following items: Session 1 - Post Irradiation Examinations. Out of 12 papers (including 1 poster) 7 dealt with surface and solid state micro analysis, another one with an equally complex wet chemical instrumental analytical technique, while the other four papers (including the poster) presented new concepts for digital x-ray image analysis; Session 2 - Hot laboratory infrastructure (including waste theme) which was

  13. Monitor 1979

    International Nuclear Information System (INIS)

    Grisham, D.L.; Ekberg, E.L.; Lambert, J.E.; Meyer, R.E.; Stroik, P.J.; Wickham, M.D.

    1979-01-01

    The status, improvements, and accomplishments of the Monitor remote-handling system previously reported are updated. It also outlines the goals for the future to improve the efficiency and speed of remote-maintenance operations at the Clinton P. Anderson Meson Physics Facility

  14. Observation and Monitoring of Mangrove Forests Using Remote Sensing: Opportunities and Challenges

    Directory of Open Access Journals (Sweden)

    Chandra Giri

    2016-09-01

    Full Text Available Mangrove forests, distributed in the tropical and subtropical regions of the world, are in a constant flux. They provide important ecosystem goods and services to nature and society. In recent years, the carbon sequestration potential and protective role of mangrove forests from natural disasters is being highlighted as an effective option for climate change adaptation and mitigation. The forests are under threat from both natural and anthropogenic forces. However, accurate, reliable, and timely information of the distribution and dynamics of mangrove forests of the world is not readily available. Recent developments in the availability and accessibility of remotely sensed data, advancement in image pre-processing and classification algorithms, significant improvement in computing, availability of expertise in handling remotely sensed data, and an increasing awareness of the applicability of remote sensing products has greatly improved our scientific understanding of changing mangrove forest cover attributes. As reported in this special issue, the use of both optical and radar satellite data at various spatial resolutions (i.e., 1 m to 30 m to derive meaningful forest cover attributes (e.g., species discrimination, above ground biomass is on the rise. This multi-sensor trend is likely to continue into the future providing a more complete inventory of global mangrove forest distributions and attribute inventories at enhanced temporal frequency. The papers presented in this “Special Issue” provide important remote sensing monitoring advancements needed to meet future scientific objectives for global mangrove forest monitoring from local to global scales.

  15. Cooperative Remote Monitoring, Arms control and nonproliferation technologies: Fourth quarter 1995

    Energy Technology Data Exchange (ETDEWEB)

    Alonzo, G M [ed.

    1995-01-01

    The DOE`s Cooperative Remote Monitoring programs integrate elements from research and development and implementation to achieve DOE`s objectives in arms control and nonproliferation. The contents of this issue are: cooperative remote monitoring--trends in arms control and nonproliferation; Modular Integrated Monitoring System (MIMS); Authenticated Tracking and Monitoring Systems (ATMS); Tracking and Nuclear Materials by Wide-Area Nuclear Detection (WAND); Cooperative Monitoring Center; the International Remote Monitoring Project; international US and IAEA remote monitoring field trials; Project Dustcloud: monitoring the test stands in Iraq; bilateral remote monitoring: Kurchatov-Argonne-West Demonstration; INSENS Sensor System Project.

  16. Remote monitoring demonstration

    International Nuclear Information System (INIS)

    Caskey, Susan; Olsen, John

    2006-01-01

    The recently upgraded remote monitoring system at the Joyo Experimental Reactor uses a DCM-14 camera module and GEMINI software. The final data is compatible both with the IAEA-approved GARS review software and the ALIS software that was used for this demonstration. Features of the remote monitoring upgrade emphasized compatibility with IAEA practice. This presentation gives particular attention to the selection process for meeting network security considerations at the O'arai site. The Joyo system is different from the NNCA's ACPF system, in that it emphasizes use of IAEA standard camera technology and data acquisition and transmission software. In the demonstration itself, a temporary virtual private network (VPN) between the meeting room and the server at Sandia in Albuquerque allowed attendees to observe data stored from routine transmissions from the Joyo Fresh Fuel Storage to Sandia. Image files from a fuel movement earlier in the month showed Joyo workers and IAEA inspectors carrying out a transfer. (author)

  17. Architectures of Remote Monitoring Systems for a Nuclear Power Plant

    International Nuclear Information System (INIS)

    Choi, Yoo Rark; Lee, Jae Cheol; Kim, Jae Hee

    2006-01-01

    Aina(Artificial Intelligence for Nuclear Applications) have developed remote monitoring systems since the 1990's. We have been interested in the safety of reactor vessel, steam generator, pipes, valves and pumps. We have developed several remote inspection systems and will develop some remote care systems for a nuclear power plant. There were critical problems for building remote monitoring systems for mass data processing and remote user interface techniques in the middle of the 1990's. The network capacity wasn't sufficient to transfer the monitoring data to a remote computer. Various computer operating systems require various remote user interfaces. Java provides convenient and powerful interface facilities and the network transfer speed was increased greatly in the 2000's. Java is a good solution for a remote user interface but it can't work standalone in remote monitoring applications. The restrictions of Java make it impossible to build real time based applications. We use Java and a traditional language to improve this problem. We separate the remote user interface and the monitoring application

  18. Nuclear robotics and remote handling at Harwell Laboratory

    International Nuclear Information System (INIS)

    Abel, E.; Brown, M.H.; Fischer, P.J.; Garlick, D.R.; Hanna, T.T.; Siva, K.V.

    1988-01-01

    After reviewing robotics technology and its possible application in nuclear remote handling systems of the future, six main research topics were identified where particular effort should be made. The Harwell Nuclear Robotics Programme is currently establishing sets of demonstration hardware which will allow generic research to be carried out on telerobotics, systems integration, the man machine interface, communications, servo systems and radiation tolerance. The objectives of the demonstrators are to allow validation of the techniques required for successful active facility applications such as decommissioning, decontamination, refurbishment, maintenance and repair, and to act as training aids to encourage plant designers and operators to adopt developments in new technology. (author)

  19. Setting up and managing a remote maintenance operation for fusion

    International Nuclear Information System (INIS)

    Haist, Bernhard

    2008-01-01

    Trying to set up and manage a remote maintenance operation for a thermonuclear fusion reactor is a complex undertaking. There are many problems and challenges which need addressing. This paper tries to guide the reader through this process by composing a list of generic problems and by analysing possible solutions. The first challenge before setting up a remote maintenance operation for a fusion reactor is the systematic analysis of all the remote handling requirements. Based upon this the remote handling concept, including facility layout and equipment, can be defined. The following aspects have to be considered and incorporated into the remote handling concept: - Remote handling task development. - Remote handling task logistics and resource management. - Command, control and human-machine interface system. - Viewing and camera systems. - Virtual reality and Augmented Reality software. - Automatic path planning and collision avoidance. - Remote transfer of heavy loads. - Maintainability of RH equipment. - Reliability, redundant systems and safety. - Rationalisation and modularity in both hardware and software. - Recovery from failure modes. - Condition monitoring and fault detection/prediction. - Ability to deal with unforeseen problems. Oxford Technologies Ltd. has a proven track record in setting up and running the Remote Handling group at the JET Joint Undertaking in Culham, UK. Based on the unique experience gained at JET, Oxford Technologies Ltd. also developed the current design and remote handling concept of the ITER Hot Cell during a study in 2004. Examples of both the JET remote handling experience and the ITER Hot Cell design and layout are given throughout this paper

  20. Setting up and managing a remote maintenance operation for fusion

    International Nuclear Information System (INIS)

    Haist, B.

    2007-01-01

    Trying to set up and manage a remote maintenance operation for a thermonuclear fusion reactor is a complex undertaking. There are many problems and challenges which need addressing. This paper tries to guide the reader through this process by composing a list of generic problems and by analysing possible solutions. The first challenge before setting up a remote maintenance operation for a fusion reactor is the systematic analysis of all the remote handling requirements. Based upon this the remote handling concept, including facility layout and equipment, can be defined. The following aspects have to be considered and incorporated into the remote handling concept: - Remote handling task development - Remote handling task logistics and resource management - Command, control and human-machine interface system - Viewing and camera systems - Virtual Reality and Augmented Reality software - Automatic path planning and collision avoidance - Remote transfer of heavy loads - Maintainability of RH Equipment - Reliability, redundant systems and safety - Rationalisation and modularity in both hardware and software - Recovery from failure modes - Condition monitoring and fault detection/prediction - Ability to deal with unforeseen problems Oxford Technologies Ltd has a proven track record in setting up and running the Remote Handling group at the JET Joint Undertaking in Culham, UK. Based on the unique experience gained at JET, Oxford Technologies Ltd also developed the current design and remote handling concept of the ITER Hot Cell during a study in 2004. Examples of both the JET Remote Handling experience and the ITER Hot Cell design and layout are given throughout this paper. (orig.)

  1. Setting up and managing a remote maintenance operation for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Haist, Bernhard [Oxford Technologies Ltd., 7 Nuffield Way, Abingdon, Oxon OX14 1RJ (United Kingdom)], E-mail: Bernhard.Haist@oxfordtechnologies.co.uk

    2008-12-15

    Trying to set up and manage a remote maintenance operation for a thermonuclear fusion reactor is a complex undertaking. There are many problems and challenges which need addressing. This paper tries to guide the reader through this process by composing a list of generic problems and by analysing possible solutions. The first challenge before setting up a remote maintenance operation for a fusion reactor is the systematic analysis of all the remote handling requirements. Based upon this the remote handling concept, including facility layout and equipment, can be defined. The following aspects have to be considered and incorporated into the remote handling concept: - Remote handling task development. - Remote handling task logistics and resource management. - Command, control and human-machine interface system. - Viewing and camera systems. - Virtual reality and Augmented Reality software. - Automatic path planning and collision avoidance. - Remote transfer of heavy loads. - Maintainability of RH equipment. - Reliability, redundant systems and safety. - Rationalisation and modularity in both hardware and software. - Recovery from failure modes. - Condition monitoring and fault detection/prediction. - Ability to deal with unforeseen problems. Oxford Technologies Ltd. has a proven track record in setting up and running the Remote Handling group at the JET Joint Undertaking in Culham, UK. Based on the unique experience gained at JET, Oxford Technologies Ltd. also developed the current design and remote handling concept of the ITER Hot Cell during a study in 2004. Examples of both the JET remote handling experience and the ITER Hot Cell design and layout are given throughout this paper.

  2. PNC/DOE Remote Monitoring Project at Japan's Joyo Facility

    International Nuclear Information System (INIS)

    Ross, M.; Hashimoto, Yu; Sonnier, C.; Dupree, S.; Ystesund, K.; Hale, W.

    1996-01-01

    The Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan and the US Department of Energy (DOE) are cooperating on the development of a remote monitoring system for nuclear nonproliferation efforts. This cooperation is part of a broader safeguards agreement between PNC and DOE. A remote monitoring system is being installed in a spent fuel storage area at PNC's experimental reactor facility Joyo in Oarai. The system has been designed by Sandia National Laboratories (SNL) and is closely related to those used in other SNL remote monitoring projects. The Joyo project will particularly study the unique aspects of remote monitoring in contribution to nuclear nonproliferation. The project will also test and evaluate the fundamental design and implementation of the remote monitoring system in its application to regional and international safeguards efficiency. This paper will present a short history of the cooperation, the details of the monitoring system and a general schedule of activities

  3. Concept design of divertor remote handling system for the FAST machine

    Energy Technology Data Exchange (ETDEWEB)

    Di Gironimo, G., E-mail: giuseppe.digironimo@unina.it [Association Euratom/ENEA/CREATE, Università di Napoli Federico II, 80125 Napoli (Italy); Labate, C.; Renno, F. [Association Euratom/ENEA/CREATE, Università di Napoli Federico II, 80125 Napoli (Italy); Brolatti, G.; Crescenzi, F.; Crisanti, F. [CR ENEA Frascati, Via E. Fermi 27, Frascati (RM) (Italy); Lanzotti, A. [Association Euratom/ENEA/CREATE, Università di Napoli Federico II, 80125 Napoli (Italy); Lucca, F. [LT Calcoli SaS, Piazza Prinetti 26/B, 23807 Merate (Italy); Siuko, M. [VTT Systems Engineering, Tekniikankatu 1, 33720 Tampere (Finland)

    2013-10-15

    The paper presents a concept design of a remote handling (RH) system oriented to maintenance operations on the divertor second cassette in FAST, a satellite of ITER tokamak. Starting from ITER configuration, a suitably scaled system, composed by a cassette multifunctional mover (CMM) connected to a second cassette end-effector (SCEE), can represent a very efficient solution for FAST machine. The presence of a further system able to open the divertor port, used for RH aims, and remove the first cassette, already aligned with the radial direction of the port, is presumed. Although an ITER-like system maintains essentially shape and proportions of its reference configuration, an appropriate arrangement with FAST environment is needed, taking into account new requirements due to different dimensions, weights and geometries. The use of virtual prototyping and the possibility to involve a great number of persons, not only mechanical designers but also physicist, plasma experts and personnel assigned to remote handling operations, made them to share the multiphysics design experience, according to a concurrent engineering approach. Nevertheless, according to the main objective of any satellite tokamak, such an approach benefits the study of enhancements to ITER RH system and the exploration of alternative solutions.

  4. Remote monitoring of heart failure: benefits for therapeutic decision making.

    Science.gov (United States)

    Martirosyan, Mihran; Caliskan, Kadir; Theuns, Dominic A M J; Szili-Torok, Tamas

    2017-07-01

    Chronic heart failure is a cardiovascular disorder with high prevalence and incidence worldwide. The course of heart failure is characterized by periods of stability and instability. Decompensation of heart failure is associated with frequent and prolonged hospitalizations and it worsens the prognosis for the disease and increases cardiovascular mortality among affected patients. It is therefore important to monitor these patients carefully to reveal changes in their condition. Remote monitoring has been designed to facilitate an early detection of adverse events and to minimize regular follow-up visits for heart failure patients. Several new devices have been developed and introduced to the daily practice of cardiology departments worldwide. Areas covered: Currently, special tools and techniques are available to perform remote monitoring. Concurrently there are a number of modern cardiac implantable electronic devices that incorporate a remote monitoring function. All the techniques that have a remote monitoring function are discussed in this paper in detail. All the major studies on this subject have been selected for review of the recent data on remote monitoring of HF patients and demonstrate the role of remote monitoring in the therapeutic decision making for heart failure patients. Expert commentary: Remote monitoring represents a novel intensified follow-up strategy of heart failure management. Overall, theoretically, remote monitoring may play a crucial role in the early detection of heart failure progression and may improve the outcome of patients.

  5. Demonstration of remotely operated TRU waste size reduction and material handling equipment

    International Nuclear Information System (INIS)

    Looper, M.G.; Charlesworth, D.L.

    1988-01-01

    The Savannah River Laboratory (SRL) is developing remote size reduction and material handling equipment to prepare 238 Pu contaminated waste for permanent disposal at the Waste Isolation Pilot Plant (WIPP) in New Mexico. The waste is generated at the Savannah River Plant (SRP) from normal operation and decommissioning activity and is retrievably stored onsite. A Transuranic Waste Facility for preparing, size-reducing, and packaging this waste for disposal is scheduled for completion in 1995. A cold test facility for demonstrating the size reduction and material handling equipment was built, and testing began in January 1987. 9 figs., 1 tab

  6. International Remote Monitoring Project Embalse Nuclear Power Station, Argentina Embalse Remote Monitoring System

    International Nuclear Information System (INIS)

    Schneider, Sigfried L.; Glidewell, Donnie D.; Bonino, Anibal; Bosler, Gene; Mercer, David; Maxey, Curt; Vones, Jaromir; Martelle, Guy; Busse, James; Kadner, Steve; White, Mike; Rovere, Luis

    1999-01-01

    The Autoridad Regulatoria Nuclear of Argentina (ARN), the International Atomic Energy Agency (IAEA), ABACC, the US Department of Energy, and the US Support Program POTAS, cooperated in the development of a Remote Monitoring System for nuclear nonproliferation efforts. This system was installed at the Embalse Nuclear Power Station last year to evaluate the feasibility of using radiation sensors in monitoring the transfer of spent fuel from the spent fuel pond to dry storage. The key element in this process is to maintain continuity of knowledge throughout the entire transfer process. This project evaluated the fundamental design and implementation of the Remote Monitoring System in its application to regional and international safeguard efficiency. New technology has been developed to enhance the design of the system to include storage capability on board sensor platforms. This evaluation has led to design enhancements that will assure that no data loss will occur during loss of RF transmission of the sensors

  7. Design and construction of γ-rays irradiation facility for remote-handling parts and components of fusion reactor

    International Nuclear Information System (INIS)

    Yagi, Toshiaki; Morita, Yousuke; Seguchi, Tadao

    1995-03-01

    For the evaluation of radiation resistance of remote-handling system for International Thermonuclear Experimental Reactor(ITER), 'high dose-rate and high temperature (upper 350degC) γ-rays irradiation facility' was designed and constructed. In this facility, the parts and components of remote-handling system such as sensing devices, motors, optical glasses, wires and cables, etc., are tested by irradiation with 2x10 6 Roentgen/h Co-60 γ-rays at a temperature up to 350degC under various atmospheres (dry nitrogen gas, argon gas, dry air and vacuum). (author)

  8. Preliminary Analysis of Remote Monitoring and Robotic Concepts for Performance Confirmation

    International Nuclear Information System (INIS)

    McAffee, D.A.

    1997-01-01

    As defined in 10 CFR Part 60.2, Performance Confirmation is the ''program of tests, experiments and analyses which is conducted to evaluate the accuracy and adequacy of the information used to determine with reasonable assurance that the performance objectives for the period after permanent closure will be met''. The overall Performance Confirmation program begins during site characterization and continues up to repository closure. The main purpose of this document is to develop, explore and analyze initial concepts for using remotely operated and robotic systems in gathering repository performance information during Performance Confirmation. This analysis focuses primarily on possible Performance Confirmation related applications within the emplacement drifts after waste packages have been emplaced (post-emplacement) and before permanent closure of the repository (preclosure). This will be a period of time lasting approximately 100 years and basically coincides with the Caretaker phase of the project. This analysis also examines, to a lesser extent, some applications related to Caretaker operations. A previous report examined remote handling and robotic technologies that could be employed during the waste package emplacement phase of the project (Reference 5.1). This analysis is being prepared to provide an early investigation of possible design concepts and technical challenges associated with developing remote systems for monitoring and inspecting activities during Performance Confirmation. The writing of this analysis preceded formal development of Performance Confirmation functional requirements and program plans and therefore examines, in part, the fundamental Performance Confirmation monitoring needs and operating conditions. The scope and primary objectives of this analysis are to: (1) Describe the operating environment and conditions expected in the emplacement drifts during the preclosure period. (Presented in Section 7.2). (2) Identify and discuss the

  9. Failure Mode and Effect Analysis for remote handling transfer systems of ITER

    International Nuclear Information System (INIS)

    Pinna, T.; Caporali, R.; Tesini, A.

    2008-01-01

    A Failure Mode and Effect Analysis (FMEA) at component level was done to study safety-relevant implications arising from possible failures in performing remote handling (RH) operations at ITER facility . Autonomous air cushion transporter, pallet, sealed casks and tractor movers needed for port plug mounting/dismantling operation were analysed. For each sub-system, the breakdown of significant components was outlined and, for each component, possible failure modes have been investigated pointing out possible causes, possible actions to prevent the causes, consequences and actions to prevent or mitigate consequences. Off-normal events which may result in hazardous consequences to the public and the environment have been defined as Postulated Initiating Events (PIEs). Two safety-relevant PIEs have been defined by assessing elementary failures related to the analysed system. Each PIE has been discussed in order to qualitatively identify accident sequences arising from each of them. As an output of this FMEA study, possible incidental scenarios, where the intervention of rescue RH equipments is required to overcome critical situations determined by fault of RH components, were defined as well. Being rescue scenarios of main concern for ITER remote handling activities, such families could be helpful in defining the design requirements of port handling systems in general and on RH transfer system in particular. Furthermore, they could be useful in defining casks and vehicles to be used for rescue activities

  10. Underground ventilation remote monitoring and control system

    International Nuclear Information System (INIS)

    Strever, M.T.; Wallace, K.G. Jr.; McDaniel, K.H.

    1995-01-01

    This paper presents the design and installation of an underground ventilation remote monitoring and control system at the Waste Isolation Pilot Plant. This facility is designed to demonstrate safe underground disposal of U.S. defense generated transuranic nuclear waste. To improve the operability of the ventilation system, an underground remote monitoring and control system was designed and installed. The system consists of 15 air velocity sensors and 8 differential pressure sensors strategically located throughout the underground facility providing real-time data regarding the status of the ventilation system. In addition, a control system was installed on the main underground air regulators. The regulator control system gives indication of the regulator position and can be controlled either locally or remotely. The sensor output is displayed locally and at a central surface location through the site-wide Central Monitoring System (CMS). The CMS operator can review all sensor data and can remotely operate the main underground regulators. Furthermore, the Virtual Address Extension (VAX) network allows the ventilation engineer to retrieve real-time ventilation data on his personal computer located in his workstation. This paper describes the types of sensors selected, the installation of the instrumentation, and the initial operation of the remote monitoring system

  11. User's manual for remote-handled transuranic waste container welding and inspection fixture

    International Nuclear Information System (INIS)

    Hauptmann, J.P.

    1985-09-01

    Rockwell Hanford Operations (Rockwell) has designed built, and tested a prototype remotely operated welding and inspection fixture to be used in making the closure weld on the remote-handled transuranic (RH-TRU) waste container. The RH-TRU waste container has an average TRU concentration in excess of 100 nCi/gm, and a surface radiation dose rate in excess of 200 mrem/h, but not exceeding 100 rem/h. The RH-TRU waste container is to be used by defense waste generator sites in the United States for final packaging of RH-TRU wastes and is compatible with the requirements of the Waste Isolation Pilot Plant (WIPP) and the WIPP handling system. Standard and stacked RH-TRU container designs are available. The standard container is 26 in. in dia. by 121 in. high; the stacked containers are 26 in. in dia. by 61.25 in. high. After loading, two stacked containers are fitted and welded together to form the identical measurements of the standard 121-in. container. The prototype RH-TRU waste container welding and inspection fixture was intended for test and evaluation only, and not for installation in an operating facility. The final RH-TRU waste container welding and inspection fixture drawings (see appendix) incorporate several changes made following operational testing of the original fixture. These modifications are identified in this manual. However, not all modifications have been functionally tested. The purpose of this manual is to aid waste generator sites in designing a remotely operated welding and inspection fixture that will conform to their own requirements. Modifications to the Rockwell design must be evaluated for structural and WIPP handling requirements. This manual also provides design philosophy, component vendor information, and cost estimates

  12. Influence of visual feedback on human task performance in ITER remote handling

    Energy Technology Data Exchange (ETDEWEB)

    Schropp, Gwendolijn Y.R., E-mail: g.schropp@heemskerk-innovative.nl [Utrecht University, Utrecht (Netherlands); Heemskerk Innovative Technology, Noordwijk (Netherlands); Heemskerk, Cock J.M. [Heemskerk Innovative Technology, Noordwijk (Netherlands); Kappers, Astrid M.L.; Tiest, Wouter M. Bergmann [Helmholtz Institute-Utrecht University, Utrecht (Netherlands); Elzendoorn, Ben S.Q. [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM/FOM, Partner in the Trilateral Euregio Clusterand ITER-NL, PO box 1207, 3430 BE Nieuwegein (Netherlands); Bult, David [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM/FOM, Partner in the Trilateral Euregio Clusterand ITER-NL, PO box 1207, 3430 BE Nieuwegein (Netherlands)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer The performance of human operators in an ITER-like test facility for remote handling. Black-Right-Pointing-Pointer Different sources of visual feedback influence how fast one can complete a maintenance task. Black-Right-Pointing-Pointer Insights learned could be used in design of operator work environment or training procedures. - Abstract: In ITER, maintenance operations will be largely performed by remote handling (RH). Before ITER can be put into operation, safety regulations and licensing authorities require proof of maintainability for critical components. Part of the proof will come from using standard components and procedures. Additional verification and validation is based on simulation and hardware tests in 1:1 scale mockups. The Master Slave manipulator system (MS2) Benchmark Product was designed to implement a reference set of maintenance tasks representative for ITER remote handling. Experiments were performed with two versions of the Benchmark Product. In both experiments, the quality of visual feedback varied by exchanging direct view with indirect view (using video cameras) in order to measure and analyze its impact on human task performance. The first experiment showed that both experienced and novice RH operators perform a simple task significantly better with direct visual feedback than with camera feedback. A more complex task showed a large variation in results and could not be completed by many novice operators. Experienced operators commented on both the mechanical design and visual feedback. In a second experiment, a more elaborate task was tested on an improved Benchmark product. Again, the task was performed significantly faster with direct visual feedback than with camera feedback. In post-test interviews, operators indicated that they regarded the lack of 3D perception as the primary factor hindering their performance.

  13. Influence of visual feedback on human task performance in ITER remote handling

    International Nuclear Information System (INIS)

    Schropp, Gwendolijn Y.R.; Heemskerk, Cock J.M.; Kappers, Astrid M.L.; Tiest, Wouter M. Bergmann; Elzendoorn, Ben S.Q.; Bult, David

    2012-01-01

    Highlights: ► The performance of human operators in an ITER-like test facility for remote handling. ► Different sources of visual feedback influence how fast one can complete a maintenance task. ► Insights learned could be used in design of operator work environment or training procedures. - Abstract: In ITER, maintenance operations will be largely performed by remote handling (RH). Before ITER can be put into operation, safety regulations and licensing authorities require proof of maintainability for critical components. Part of the proof will come from using standard components and procedures. Additional verification and validation is based on simulation and hardware tests in 1:1 scale mockups. The Master Slave manipulator system (MS2) Benchmark Product was designed to implement a reference set of maintenance tasks representative for ITER remote handling. Experiments were performed with two versions of the Benchmark Product. In both experiments, the quality of visual feedback varied by exchanging direct view with indirect view (using video cameras) in order to measure and analyze its impact on human task performance. The first experiment showed that both experienced and novice RH operators perform a simple task significantly better with direct visual feedback than with camera feedback. A more complex task showed a large variation in results and could not be completed by many novice operators. Experienced operators commented on both the mechanical design and visual feedback. In a second experiment, a more elaborate task was tested on an improved Benchmark product. Again, the task was performed significantly faster with direct visual feedback than with camera feedback. In post-test interviews, operators indicated that they regarded the lack of 3D perception as the primary factor hindering their performance.

  14. Distributed remote temperature monitoring system for INDUS-2 vacuum chambers

    International Nuclear Information System (INIS)

    Bhange, N.J.; Gothwal, P.; Fatnani, P.; Shukla, S.K.

    2011-01-01

    Indus-2, a 2.5 GeV Synchrotron Radiation Source (SRS) at Indore has a large vacuum system. The vacuum envelope of Indus-2 ring comprises of 16 dipole chambers as vital parts. Each chamber has 4 photon absorbers and three beam line ports blanked with end flanges. Temperature monitoring of critical vacuum components during operation of Indus-2 ring is an important requirement. The paper discusses a distributed, 160 channel remote temperature monitoring system developed and deployed for this purpose using microcontroller based, modular Temperature Monitoring Units (TMU). The cabling has been extensively minimized using RS485 system and keeping trip relay contacts of all units in series. For ensuring proper signal conditioning of thermocouple outputs (K-type) and successful operation over RS485 bus, many precautions were taken considering the close proximity to the storage ring. We also discuss the software for vacuum chamber temperature monitoring and safety system. The software developed using LabVIEW, has important features like modularity, client-server architecture, local and global database logging, alarms and trips, event and error logging, provision of various important configurations, communications handling etc. (author)

  15. Remote Handling behind port plug in ITER

    International Nuclear Information System (INIS)

    Bede, O.; Neuberger, H.

    2006-01-01

    Different Test Blanket Modules (TBM) will be used in succession in the same equatorial ports of ITER. The remote handling operations for connection/disconnection of an interface between the port plug of the EU-HCPB-TBM and the port cell equipment are investigated with the goal to reach a quick and simple TBM exchange procedure. This paper describes the operations and systems which are required for connection of the TBM to its supply lines at this interface. The interface is located inside the free space of the port plug flange between the port plug shield and the bioshield of the port cell behind. The approach of the operation place is only available through a narrow gate in the bioshield opened temporarily during maintenance periods. This gate limits the dimensions of the whole system and its tools. The current design of the EU-HCPB-TBM foresees up to 9 supply lines which have to be connected inside the free space of one half of the port plug flange. The connection operations require positioning and adjustment of the tools for each pipe separately. Despite the strict circumstances it is still possible to find such an industrial jointed-arm robot with sufficient payload, which can penetrate into the working area. A mechanical system is necessary to move the robot from its storing place in the hot cell to the port plug on 6 m distance. Each operation requires different end-of-arm tools. The most special one is a pipe positioner tool, which can position and pull the pipe ends to each other and align the tool before welding and hold them in proper position during the welding process. Weld seams can be made by orbital welding tool. The pipe positioner tool has to provide place for welding tool. Using of inbore tool is impossible because pipes have no open ends where the tool could leave it. Orbital tool must be modified to meet requirements of remote handling because it is designed for human handling. The coolant is helium, so for eliminating the leak of helium it is

  16. Virtual reality applications in remote handling development for tokamaks in India

    International Nuclear Information System (INIS)

    Dutta, Pramit; Rastogi, Naveen; Gotewal, Krishan Kumar

    2017-01-01

    Highlights: • Evaluation of Virtual Reality (VR) in design and operation phases of Remote Handling (RH) equipment for tokamak. • VR based centralized facility, to cater RH development and operation, is setup at Institute for Plasma Research, India. • The VR facility system architecture and components are discussed. • Introduction to various VR applications developed for design and development of tokamak RH equipment. - Abstract: A tokamak is a plasma confinement device that can be used to achieve magnetically confined nuclear fusion within a reactor. Owing to the harsh environment, Remote Handling (RH) systems are used for inspection and maintenance of the tokamak in-vessel components. As the number of in-vessel components requiring RH maintenance is large, physical prototyping of all strategies becomes a major challenge. The operation of RH systems poses further challenge as all equipment have to be controlled remotely within very strict accuracy limits with minimum reliance on the available camera feedback. In both design and operation phases of RH equipment, application of Virtual Reality (VR) becomes imperative. The scope of this paper is to introduce some applications of VR in the design and operation cycle of RH, which are not available commercially. The paper discusses the requirement of VR as a tool for RH equipment design and operation. The details of a comprehensive VR facility that has been established to support the RH development for Indian tokamaks are also presented. Further, various cases studies are provided to highlight the utilization of this VR facility within phases of RH development and operation.

  17. Virtual reality applications in remote handling development for tokamaks in India

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Pramit, E-mail: pramitd@ipr.res.in; Rastogi, Naveen; Gotewal, Krishan Kumar

    2017-05-15

    Highlights: • Evaluation of Virtual Reality (VR) in design and operation phases of Remote Handling (RH) equipment for tokamak. • VR based centralized facility, to cater RH development and operation, is setup at Institute for Plasma Research, India. • The VR facility system architecture and components are discussed. • Introduction to various VR applications developed for design and development of tokamak RH equipment. - Abstract: A tokamak is a plasma confinement device that can be used to achieve magnetically confined nuclear fusion within a reactor. Owing to the harsh environment, Remote Handling (RH) systems are used for inspection and maintenance of the tokamak in-vessel components. As the number of in-vessel components requiring RH maintenance is large, physical prototyping of all strategies becomes a major challenge. The operation of RH systems poses further challenge as all equipment have to be controlled remotely within very strict accuracy limits with minimum reliance on the available camera feedback. In both design and operation phases of RH equipment, application of Virtual Reality (VR) becomes imperative. The scope of this paper is to introduce some applications of VR in the design and operation cycle of RH, which are not available commercially. The paper discusses the requirement of VR as a tool for RH equipment design and operation. The details of a comprehensive VR facility that has been established to support the RH development for Indian tokamaks are also presented. Further, various cases studies are provided to highlight the utilization of this VR facility within phases of RH development and operation.

  18. IAEA perspective on remote monitoring development and implementation

    International Nuclear Information System (INIS)

    Aparo, Massimo

    2006-01-01

    The IAEA has made rapid progress in exploiting remote monitoring in 84 systems and 302 cameras, which are spread over 15 states and Taiwan. The increased use, since 2003, of remote monitoring of VACOSS electronic seals is a new feature. Successful use of remote monitoring to spot potential breakdowns through state-of-health diagnostics on 14 occasions is also an important motivation for further implementation. This paper gave detailed descriptions of installed systems for data acquisition and transmission, particularly the SDIS (up to six cameras) and DMOS (up to 16 cameras). IAEA policy for data security and data sharing raise important issues that are relevant to cooperation in transparency that might be based on sharing of data from safeguards systems. Implementation of new remote monitoring systems may utilize satellite links, as under testing now in cooperation between the IAEA and the European Space Agency (ESA). (author)

  19. Remote monitoring: An implementation on the Gemini System

    International Nuclear Information System (INIS)

    Sheridan, R.; Ondrik, M.; Kadner, S.; Resnik, W.; Chitumbo, K.; Corbell, B.

    1996-01-01

    The Gemini System consists of a sophisticated, digital surveillance unit and a high performance review system. Due to the open architectural design of the Gemini System, it provides an excellent hardware and software platform to support remote monitoring. The present Gemini System provides the user with the following Remote Monitoring features, via a modem interface and powerful support software: state-of-health reporting, alarm reporting, and remote user interface. Future enhancements will contribute significantly to the Gemini''s ability to provide a broader spectrum of network interfaces and remote review

  20. Patient perspective on remote monitoring of cardiovascular implantable electronic devices

    DEFF Research Database (Denmark)

    Versteeg, H; Pedersen, Susanne S.; Mastenbroek, M H

    2014-01-01

    -implantation, other check-ups are performed remotely. Patients are asked to complete questionnaires at five time points during the 2-year follow-up. CONCLUSION: The REMOTE-CIED study will provide insight into the patient perspective on remote monitoring in ICD patients, which could help to support patient......BACKGROUND: Remote patient monitoring is a safe and effective alternative for the in-clinic follow-up of patients with cardiovascular implantable electronic devices (CIEDs). However, evidence on the patient perspective on remote monitoring is scarce and inconsistent. OBJECTIVES: The primary...

  1. Remote monitoring of VRLA batteries for telecommunications systems

    Energy Technology Data Exchange (ETDEWEB)

    Tsujikawa, Tomonobu; Matsushima, Toshio [NTT Facilities Inc., G.H.Y. Building, 2-13-1 Kita-Otsuka, Toshima-ku, Tokyo 170-0004 (Japan)

    2007-05-25

    This paper describes a remote monitoring system that can be set up in an operating center to monitor the state of valve regulated lead acid batteries (VRLA) used as a backup power supply for telecommunications. This system has a battery voltage monitoring function, a lifetime prediction function based on ambient temperature, and a discharge circuit diagnosis function. In addition, the system can be equipped with an internal resistance measurement function and an electrolyte leakage detection function to further insure power-supply reliability. Various states of batteries observed with the system are transmitted to the remote operating center by a remote monitoring function. This function enables obtaining immediate information about the condition of batteries and helps to avoid unexpected failures. (author)

  2. Remote sensing to monitor uranium tailing sites

    International Nuclear Information System (INIS)

    1992-02-01

    This report concerns the feasibility of using remotely-sensed data for long-term monitoring of uranium tailings. Decommissioning of uranium mine tailings sites may require long-term monitoring to confirm that no unanticipated release of contaminants occurs. Traditional ground-based monitoring of specific criteria of concern would be a significant expense depending on the nature and frequency of the monitoring. The objective of this study was to evaluate whether available remote-sensing data and techniques were applicable to the long-term monitoring of tailings sites. This objective was met by evaluating to what extent the data and techniques could be used to identify and discriminate information useful for monitoring tailings sites. The cost associated with obtaining and interpreting this information was also evaluated. Satellite and aircraft remote-sensing-based activities were evaluated. A monitoring programme based on annual coverage of Landsat Thematic Mapper data is recommended. Immediately prior to and for several years after decommissioning of the tailings sites, airborne multispectral and thermal infrared surveys combined with field verification data are required in order to establish a baseline for the long-term satellite-based monitoring programme. More frequent airborne surveys may be required if rapidly changing phenomena require monitoring. The use of a geographic information system is recommended for the effective storage and manipulation of data accumulated over a number of years

  3. Remote handling features of the Fusion Materials Irradiation Test (FMIT) facility

    International Nuclear Information System (INIS)

    Klos, D.B.; Wierman, R.W.; Kelly, V.P.; Yount, J.A.

    1980-01-01

    Initial design of the experimental system provided two modes of access to the test cells. The horizontal mode was the predominant one. However, as the design progressed unacceptable risks were identified that increased personnel exposure to radiation and decreased testing availability of the facility. Consequently, vertical-only access was adopted. Remote handling features of both design concepts are described including the technical basis for the transition from the first to the second concept

  4. A passive-active neutron device for assaying remote-handled transuranic waste

    International Nuclear Information System (INIS)

    Estep, R.J.; Coop, K.L.; Deane, T.M.; Lujan, J.E.

    1990-01-01

    A combined passive-active neutron assay device was constructed for assaying remote-handled transuranic waste. A study of matrix and source position effects in active assays showed that a knowledge of the source position alone is not sufficient to correct for position-related errors in highly moderating or absorbing matrices. An alternate function for the active assay of solid fuel pellets was derived, although the efficacy of this approach remains to be established

  5. The remote handling compatibility analysis of the ITER generic upper port plug structure

    Energy Technology Data Exchange (ETDEWEB)

    Ronden, D.M.S., E-mail: d.m.s.ronden@differ.nl [FOM Institute DIFFER, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Dammann, A. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul-lez-Durance (France); Elzendoorn, B. [FOM Institute DIFFER, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Giacomin, T. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul-lez-Durance (France); Heemskerk, C. [Heemskerk Innovative Technology, Merelhof 2, 2172 HZ Sassenheim (Netherlands); Loesser, D. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451 (United States); Maquet, P. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul-lez-Durance (France); Oosterhout, J. van [FOM Institute DIFFER, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Pak, S.; Pitcher, C.S.; Portales, M.; Proust, M.; Udintsev, V.S.; Walsh, M.J. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul-lez-Durance (France)

    2014-10-15

    Highlights: • We describe the remote handling compatibility of the ITER generic upper port plug. • Concepts are presented of specific design solutions to improve RH compatibility. • Simulation in VR of the GUPP DSM replacement indicates possible collisions. • Specific tooling concepts are proposed for GUPP handling equipment for the hot cell. - Abstract: The ITER diagnostics generic upper port plug (GUPP) is developed as a standardized design for all diagnostic upper port plugs, in which a variety of payloads can be mounted. Here, the remote handling compatibility analysis (RHCA) of the GUPP design is presented that was performed for the GUPP final design review. The analysis focuses mainly on the insertion and extraction procedure of the diagnostic shield module (DSM), a removable cassette that contains the diagnostic in-vessel components. It is foreseen that the DSM is a replaceable component – the procedure of which is to be performed inside the ITER hot cell facility (HCF), where the GUPP can be oriented in a vertical position. The DSM removal procedure in the HCF consists of removing locking pins, an M30 sized shoulder bolt and two electrical straps through the use of a dexterous manipulator, after which the DSM is lifted out of the GUPP by an overhead crane. For optimum access to its internals, the DSM is mounted in a handling device. The insertion of a new or refurbished DSM follows the reverse procedure. The RHCA shows that the GUPP design requires a moderate amount of changes to become fully compatible with RH maintenance requirements.

  6. The remote handling compatibility analysis of the ITER generic upper port plug structure

    International Nuclear Information System (INIS)

    Ronden, D.M.S.; Dammann, A.; Elzendoorn, B.; Giacomin, T.; Heemskerk, C.; Loesser, D.; Maquet, P.; Oosterhout, J. van; Pak, S.; Pitcher, C.S.; Portales, M.; Proust, M.; Udintsev, V.S.; Walsh, M.J.

    2014-01-01

    Highlights: • We describe the remote handling compatibility of the ITER generic upper port plug. • Concepts are presented of specific design solutions to improve RH compatibility. • Simulation in VR of the GUPP DSM replacement indicates possible collisions. • Specific tooling concepts are proposed for GUPP handling equipment for the hot cell. - Abstract: The ITER diagnostics generic upper port plug (GUPP) is developed as a standardized design for all diagnostic upper port plugs, in which a variety of payloads can be mounted. Here, the remote handling compatibility analysis (RHCA) of the GUPP design is presented that was performed for the GUPP final design review. The analysis focuses mainly on the insertion and extraction procedure of the diagnostic shield module (DSM), a removable cassette that contains the diagnostic in-vessel components. It is foreseen that the DSM is a replaceable component – the procedure of which is to be performed inside the ITER hot cell facility (HCF), where the GUPP can be oriented in a vertical position. The DSM removal procedure in the HCF consists of removing locking pins, an M30 sized shoulder bolt and two electrical straps through the use of a dexterous manipulator, after which the DSM is lifted out of the GUPP by an overhead crane. For optimum access to its internals, the DSM is mounted in a handling device. The insertion of a new or refurbished DSM follows the reverse procedure. The RHCA shows that the GUPP design requires a moderate amount of changes to become fully compatible with RH maintenance requirements

  7. Conceptual design for remote handling methods using the HIP process in the Calcine Immobilization Program

    International Nuclear Information System (INIS)

    Berry, S.M.; Cox, C.G.; Hoover, M.A.

    1994-03-01

    This report recommends the remote conceptual design philosophy for calcine immobilization using the hot isostatic press (HIP) process. Areas of remote handling operations discussed in this report include: (1) introducing the process can into the front end of the HIP process, (2) filling and compacting the calcine/frit mixture into the process can, (3) evacuating and sealing the process can, (4) non-destructive testing of the seal on the process can, (5) decontamination of the process can, (6) HIP furnace loading and unloading the process can for the HIPing operation, (7) loading an overpack canister with processed HIP cans, (8) sealing the canister, with associated non-destructive examination (NDE) and decontamination, and (9) handling canisters for interim storage at the Idaho Chemical Processing Plant (ICPP) located on the Idaho National Engineering Laboratory (INEL) site

  8. The remote handling of canisters containing nuclear waste in glass at the Savannah River Plant

    International Nuclear Information System (INIS)

    Callan, J.E.

    1986-01-01

    The Defense Waste Processing Facility (DWPF) is a complete production area being constructed at the Savannah River Plant for the immobilization of nuclear waste in glass. The remote handling of canisters filled with nuclear waste in glass is an essential part of the process of the DWPF at the Savannah River Plant. The canisters are filled with nuclear waste containing up to 235,000 curies of radioactivity. Handling and movement of these canisters must be accomplished remotely since they radiate up to 5000 R/h. Within the Vitrification Building during filling, cleaning, and sealing, canisters are moved using standard cranes and trolleys and a specially designed grapple. During transportation to the Glass Waste Storage Building, a one-of-a-kind, specially designed Shielded Canister Transporter (SCT) is used. 8 figs

  9. Technology of remote nuclear activity monitoring for national safeguards

    International Nuclear Information System (INIS)

    Kwack, Eun Ho; Kim, B. K.; Kim, J. S.; Yoon, W. K.; Kim, J. S.; Kim, J. S.; Cha, H. R.; Na, W. W.; Choi, Y. M.

    2001-07-01

    This project mainly focused on technical development on remote monitoring. It covers optical fiber scintillator to be used as NDA sensor to targets to be applied. Optical fiber scintillator was tested at the high radioactive environment. It is the first try in its kind for spent fuel measurement. It is confirmed that optical fiber sensor can be used for safeguards verification. Its feasibility for spent fuel storage silo at Wolsong reactor was studied. And to optimize remote transmission cost which can be regarded as a major barrier, virtual private network was studied for possible application for safeguards purpose. It can drastically reduce transmission cost and upgrade information surety. As target for remote monitoring, light water reactor and heavy water reactor were feasibly studied. Especially heavy water reactor has much potential for reduction of inspection efforts if remote monitoring is introduced. In overall remote monitoring can play a pivotal role to streamline safeguards inspection

  10. Hardware and software concept of the remote monitoring system for nuclear reactors in Bavaria

    International Nuclear Information System (INIS)

    Gietl, G.

    1981-01-01

    The remote monitoring system for nuclear reactors (KFUe) is a fully automatic system for the measuring and registration of radioactive releases and of operation parameters of the nuclear power plants in Bavaria. It has also to measure the meteorological parameters on the site of a power plant for the purpose of dispersion calculations. The system consists of the network centre and the subsystems with their satellite stations at the nuclear power plants. Process computers in the network centre and in the subsystems perform the automatic operation and they handle the data transmission via data lines. The hardware of the entire system is so conceived that the mesured data can be processed, stored and displayed in an optimal way for the user. The software of the KFUe centre and the subsystems is structured strictly modular. Redunancies are implied in the hardware and software. The automatic remote air quality monitoring system of Bavaria (LUeB) can be operated as a stand-by system for the KFUe and vice versa in case of an emergency. (orig./HP) [de

  11. Data analysis for remote monitoring of safeguarded facilities

    International Nuclear Information System (INIS)

    DeLand, S.M.

    1997-01-01

    The International Remote Monitoring Project (IRMP) sponsored by the US DOE allows DOE and its international partners to gain experience with the remote collection, transmission, and interpretation of safeguards-relevant data. This paper focuses on the interpretation of the data from these remote monitoring systems. Users of these systems need to be able to ascertain that the remote monitoring system is functioning as expected and that the events generated by the sensors are consistent with declared activity. The initial set of analytical tools being provided for IRMP installations this year include a suite of automatically generated views of user-selected data. The baseline set of tools, with illustrative examples, will be discussed. Plans for near-term enhancements will also be discussed. Finally, the applicability of more advanced analytical techniques such as expert systems will be discussed

  12. Design Scheme of Remote Monitoring System Based on Qt

    Directory of Open Access Journals (Sweden)

    Xu Dawei

    2015-01-01

    Full Text Available This paper introduces a design scheme of remote monitoring system based on Qt, the scheme of remote monitoring system based on S3C2410 and Qt, with the aid of cross platform development tools Qt and powerful ARM platform design and implementation. The development of remote video surveillance system based on embedded terminal has practical significance and value.

  13. Laser welding and ablation cutting process for hydraulic connections by remote handling in the ITER diagnostic port plug

    International Nuclear Information System (INIS)

    Pak, S.; Kim, Y.; Park, K.Y.; Lee, K.D.; Cheon, M.S.; Lee, H.G.

    2010-01-01

    To assess hydraulic connections between subcomponents of the International Thermonuclear Experimental Reactor (ITER) diagnostic port plug, we investigated the laser welding and ablation cutting process, which can be applied to remote handling maintenance. In this study, laser ablation cutting, which vaporizes a small amount of solid material directly into gas by focusing a laser beam of high-density energy, is adopted in order to overcome the limitation of the normal laser cutting technology that the head should be placed as close to the work piece as possible to blow out melt metal at a distance. Complete cutting of a work piece is obtained by repetitive multi-passes of the laser beam. The welding and cutting process were tested on the sample work pieces and finally on a prototype of a hydraulic connection module for remote handling. The results showed that this process can be a promising candidate for hydraulic connections by remote handling. Furthermore the design of the hydraulic connection module has been updated to resolve some technical difficulties that were found during the test.

  14. Laser welding and ablation cutting process for hydraulic connections by remote handling in the ITER diagnostic port plug

    Energy Technology Data Exchange (ETDEWEB)

    Pak, S. [National Fusion Research Institute, 52 Eoeun-dong, Yuseong-gu, Daejeon (Korea, Republic of)], E-mail: paksunil@nfri.re.kr; Kim, Y.; Park, K.Y.; Lee, K.D. [Institute for Advanced Engineering, 633-2, Goan-ri, Baegam-myeon, Cheoin-gu, Yongin-si, Gyeonggi-do (Korea, Republic of); Cheon, M.S.; Lee, H.G. [National Fusion Research Institute, 52 Eoeun-dong, Yuseong-gu, Daejeon (Korea, Republic of)

    2010-04-15

    To assess hydraulic connections between subcomponents of the International Thermonuclear Experimental Reactor (ITER) diagnostic port plug, we investigated the laser welding and ablation cutting process, which can be applied to remote handling maintenance. In this study, laser ablation cutting, which vaporizes a small amount of solid material directly into gas by focusing a laser beam of high-density energy, is adopted in order to overcome the limitation of the normal laser cutting technology that the head should be placed as close to the work piece as possible to blow out melt metal at a distance. Complete cutting of a work piece is obtained by repetitive multi-passes of the laser beam. The welding and cutting process were tested on the sample work pieces and finally on a prototype of a hydraulic connection module for remote handling. The results showed that this process can be a promising candidate for hydraulic connections by remote handling. Furthermore the design of the hydraulic connection module has been updated to resolve some technical difficulties that were found during the test.

  15. Availability analysis of the ITER blanket remote handling system

    International Nuclear Information System (INIS)

    Maruyama, Takahito; Noguchi, Yuto; Takeda, Nobukazu; Kakudate, Satoshi

    2015-01-01

    The ITER blanket remote handling system (BRHS) is required to replace 440 blanket first wall panels in a two-year maintenance period. To investigate this capability, an availability analysis of the system was carried out. Following the analysis procedure defined by the ITER organization, the availability analysis consists of a functional analysis and a reliability block diagram analysis. In addition, three measures to improve availability were implemented: procurement of spare parts, in-vessel replacement of cameras, and simultaneous replacement of umbilical cables. The availability analysis confirmed those measures improve the availability and capability of the BRHS to replace 440 blanket first wall panels in two years. (author)

  16. Remote Physical Activity Monitoring in Neurological Disease: A Systematic Review.

    Science.gov (United States)

    Block, Valerie A J; Pitsch, Erica; Tahir, Peggy; Cree, Bruce A C; Allen, Diane D; Gelfand, Jeffrey M

    2016-01-01

    To perform a systematic review of studies using remote physical activity monitoring in neurological diseases, highlighting advances and determining gaps. Studies were systematically identified in PubMed/MEDLINE, CINAHL and SCOPUS from January 2004 to December 2014 that monitored physical activity for ≥24 hours in adults with neurological diseases. Studies that measured only involuntary motor activity (tremor, seizures), energy expenditure or sleep were excluded. Feasibility, findings, and protocols were examined. 137 studies met inclusion criteria in multiple sclerosis (MS) (61 studies); stroke (41); Parkinson's Disease (PD) (20); dementia (11); traumatic brain injury (2) and ataxia (1). Physical activity levels measured by remote monitoring are consistently low in people with MS, stroke and dementia, and patterns of physical activity are altered in PD. In MS, decreased ambulatory activity assessed via remote monitoring is associated with greater disability and lower quality of life. In stroke, remote measures of upper limb function and ambulation are associated with functional recovery following rehabilitation and goal-directed interventions. In PD, remote monitoring may help to predict falls. In dementia, remote physical activity measures correlate with disease severity and can detect wandering. These studies show that remote physical activity monitoring is feasible in neurological diseases, including in people with moderate to severe neurological disability. Remote monitoring can be a psychometrically sound and responsive way to assess physical activity in neurological disease. Further research is needed to ensure these tools provide meaningful information in the context of specific neurological disorders and patterns of neurological disability.

  17. Remote Physical Activity Monitoring in Neurological Disease: A Systematic Review

    Science.gov (United States)

    Block, Valerie A. J.; Pitsch, Erica; Tahir, Peggy; Cree, Bruce A. C.; Allen, Diane D.; Gelfand, Jeffrey M.

    2016-01-01

    Objective To perform a systematic review of studies using remote physical activity monitoring in neurological diseases, highlighting advances and determining gaps. Methods Studies were systematically identified in PubMed/MEDLINE, CINAHL and SCOPUS from January 2004 to December 2014 that monitored physical activity for ≥24 hours in adults with neurological diseases. Studies that measured only involuntary motor activity (tremor, seizures), energy expenditure or sleep were excluded. Feasibility, findings, and protocols were examined. Results 137 studies met inclusion criteria in multiple sclerosis (MS) (61 studies); stroke (41); Parkinson's Disease (PD) (20); dementia (11); traumatic brain injury (2) and ataxia (1). Physical activity levels measured by remote monitoring are consistently low in people with MS, stroke and dementia, and patterns of physical activity are altered in PD. In MS, decreased ambulatory activity assessed via remote monitoring is associated with greater disability and lower quality of life. In stroke, remote measures of upper limb function and ambulation are associated with functional recovery following rehabilitation and goal-directed interventions. In PD, remote monitoring may help to predict falls. In dementia, remote physical activity measures correlate with disease severity and can detect wandering. Conclusions These studies show that remote physical activity monitoring is feasible in neurological diseases, including in people with moderate to severe neurological disability. Remote monitoring can be a psychometrically sound and responsive way to assess physical activity in neurological disease. Further research is needed to ensure these tools provide meaningful information in the context of specific neurological disorders and patterns of neurological disability. PMID:27124611

  18. 76 FR 33277 - Proposed Approval of the Central Characterization Project's Remote-Handled Transuranic Waste...

    Science.gov (United States)

    2011-06-08

    ... disposal of TRU radioactive waste. As defined by the WIPP Land Withdrawal Act (LWA) of 1992 (Pub. L. 102... certification of the WIPP's compliance with disposal regulations for TRU radioactive waste [63 Federal Register... radioactive remote-handled (RH) transuranic (TRU) waste characterization program implemented by the Central...

  19. ORNL shielded facilities capable of remote handling of highly radioactive beta--gamma emitting materials

    International Nuclear Information System (INIS)

    Whitson, W.R.

    1977-09-01

    A survey of ORNL facilities having adequate shielding and containment for the remote handling of experimental quantities of highly radioactive beta-gamma emitting materials is summarized. Portions of the detailed descriptions of these facilities previously published in ORNL/TM-1268 are still valid and are repeated

  20. New System For Tokamak T-10 Experimental Data Acquisition, Data Handling And Remote Access

    International Nuclear Information System (INIS)

    Sokolov, M. M.; Igonkina, G. B.; Koutcherenko, I. Yu.; Nurov, D. N.

    2008-01-01

    For carrying out the experiments on nuclear fusion devices in the Institute of Nuclear Fusion, Moscow, a system for experimental data acquisition, data handling and remote access (further 'DAS-T10') was developed and has been used in the Institute since the year 2000. The DAS-T10 maintains the whole cycle of experimental data handling: from configuration of data measuring equipment and acquisition of raw data from the fusion device (the Device), to presentation of math-processed data and support of the experiment data archive. The DAS-T10 provides facilities for the researchers to access the data both at early stages of an experiment and well afterwards, locally from within the experiment network and remotely over the Internet.The DAS-T10 is undergoing a modernization since the year 2007. The new version of the DAS-T10 will accommodate to modern data measuring equipment and will implement improved architectural solutions. The innovations will allow the DAS-T10 to produce and handle larger amounts of experimental data, thus providing the opportunities to intensify and extend the fusion researches. The new features of the DAS-T10 along with the existing design principles are reviewed in this paper

  1. Conceptual design of divertor cassette handling by remote handling system for JT-60SA

    International Nuclear Information System (INIS)

    Hayashi, Takao; Sakurai, Shinji; Masaki, Kei; Tamai, Hiroshi; Yoshida, Kiyoshi; Matsukawa, Makoto

    2007-01-01

    The JT-60SA aims to contribute and supplement ITER toward DEMO reactor based on tokamak concept. One of the features of JT-60SA is its high power long pulse heating, causing the large annual neutron fluence. Because the expected dose rate at the vacuum vessel (VV) may exceed 1 mSv/hr after 10 years operation and three month cooling, the human access inside the VV is prohibited. Therefore a remote handling (RH) system is necessary for the maintenance and repair of in-vessel components. This paper described the RH system of JT-60SA, especially the expansion of the RH rail and exchange of the divertor modules. The RH rail is divided into nine and three-point mounting. The nine sections can cover 225 degrees in toroidal direction. A divertor module, which is 10 degrees wide in toroidal direction and weighs 500kg itself due to the limitations of port width and handling weight, can be exchanged by heavy weight manipulator (HWM). The HWM brings the divertor module to the front of the other RH port, which is used for supporting the rail and/or carrying in and out equipments. Then another RH device receives and brings out the module by a pallet installed from outside the VV. (author)

  2. Conceptual design of divertor cassette handling by remote handling system of JT-60SA

    International Nuclear Information System (INIS)

    Hayashi, Takao; Sakurai, Shinji; Masaki, Kei; Tamai, Hiroshi; Yoshida, Kiyoshi; Matsukawa, Makoto

    2008-01-01

    The JT-60SA aims to contribute and supplement ITER toward demonstration fusion reactor based on tokamak concept. One of the features of JT-60SA is its high power long pulse heating, causing the large annual neutron fluence. Because the expected dose rate at the vacuum vessel (VV) may exceed 1 mSv/hr after 10 years operation and three month cooling, the human access inside the VV is restricted. Therefore a remote handling (RH) system is necessary for the maintenance and repair of in-vessel components. This paper described the RH system of JT-60SA, especially the expansion of the RH rail and exchange of the divertor cassettes. The RH rail is divided into nine and three-point mounting. The nine sections can cover 225 degrees in toroidal direction. A divertor cassette, which is 10 degrees wide in toroidal direction and weighs 500 kg itself due to the limitations of port width and handling weight, can be exchanged by heavy weight manipulator (HWM). The HWM brings the divertor cassette to the front of the other RH port, which is used for supporting the rail and/or carrying in and out equipments. Then another RH device receives and brings out the cassette by a pallet installed from outside the VV. (author)

  3. Interim design status and operational report for remote handling fixtures: primary and secondary burners

    International Nuclear Information System (INIS)

    Burgoyne, R.M.

    1976-12-01

    The HTGR reprocessing flowsheet consists of two basic process elements: (1) spent fuel crushing and burning and (2) solvent extraction. Fundamental to these elements is the design and development of specialized process equipment and support facilities. A major consideration of this design and development program is equipment maintenance: specifically, the design and demonstration of selected remote maintenance capabilities and the integration of these into process equipment design. This report documents the current status of the development of remote handling and maintenance fixtures for the primary and secondary burners

  4. ICUD-0499 Low-cost remotely sensed environmental monitoring stations

    DEFF Research Database (Denmark)

    Nielsen, Rasmus; Thorndahl, Søren Liedtke

    2017-01-01

    This study contributes with extensive research of applying low-cost remotely sensed monitoring stations to an urban environment. Design requirements are scrutinized, including applications for remote data access, hardware design, and monitoring network design. A network of 9 monitoring stations...... measuring stream water level is deployed during July 2017. Data is streamed to a web page using cellular-based data transmission. Monitoring network performance is quantified with respect to local physical and weather conditions....

  5. Remote Handled Transuranic Sludge Retrieval Transfer And Storage System At Hanford

    International Nuclear Information System (INIS)

    Raymond, Rick E.; Frederickson, James R.; Criddle, James; Hamilton, Dennis; Johnson, Mike W.

    2012-01-01

    This paper describes the systems developed for processing and interim storage of the sludge managed as remote-handled transuranic (RH-TRU). An experienced, integrated CH2M HILL/AFS team was formed to design and build systems to retrieve, interim store, and treat for disposal the K West Basin sludge, namely the Sludge Treatment Project (STP). A system has been designed and is being constructed for retrieval and interim storage, namely the Engineered Container Retrieval, Transfer and Storage System (ECRTS)

  6. Remote Handled Transuranic Sludge Retrieval Transfer And Storage System At Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, Rick E. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Frederickson, James R. [AREVA, Avignon (France); Criddle, James [AREVA, Avignon (France); Hamilton, Dennis [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Johnson, Mike W. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

    2012-10-18

    This paper describes the systems developed for processing and interim storage of the sludge managed as remote-handled transuranic (RH-TRU). An experienced, integrated CH2M HILL/AFS team was formed to design and build systems to retrieve, interim store, and treat for disposal the K West Basin sludge, namely the Sludge Treatment Project (STP). A system has been designed and is being constructed for retrieval and interim storage, namely the Engineered Container Retrieval, Transfer and Storage System (ECRTS).

  7. Remote handling and automation in back end of fuel cycle

    International Nuclear Information System (INIS)

    Nair, K.N.S.

    2010-01-01

    Full text: Indian nuclear programme is readying for a quantum leap and it is essential that technology is available for building advanced fuel recycle plants in the back end and for sustained operation of such plants. Remote technology and automation plays a big role to achieve this goal. With the introduction of advanced fuel cycles in indigenous programme and scenario of international cooperation it is essential to be ready with indigenous technology for meeting all challenges. Work has been progressing to develop locally support technology for remote handling and automation with good success. Essential RH tools such as master slave manipulators, power manipulators and hot cell viewing systems have been developed and commercial production has been established. Customised RH requirements for back end plants have been met and the designs have proven to be worthy for hot operations over the years. In the last few years stress has been on development of equipment and technology to meet the increasing demands of higher throughput plants. Substantial progress has been achieved in the head end and reconversion laboratory systems of reprocessing plants. Similarly successful efforts have also been made for establishing Thoria processing cells and also the RH in the reconversion operations. Custom designed equipment has been developed for decommissioning of ceramic melter, used glove boxes etc. Efforts are on hand to develop automated RH equipment for material handling in underground repositories. This paper aims at bringing out the theme based on some of our own experiences and some reports from plants in operation abroad. (author)

  8. Safe handling and monitoring of tritium in research on nuclear fusion

    International Nuclear Information System (INIS)

    Yoshida, Yoshikazu; Naruse, Yuji

    1978-01-01

    An actual condition of technique of safety handling and monitoring of tritium in the laboratory which treated a great quantity of tritium in relation to nuclear fusion, was described. With respect to the technique of safety handling of tritium, an actual condition of the technique in the U.S.A. which had wide experience in treating a great quantity of 3 H was mainly introduced, and it was helpful to a safety measure and a reduction of tritium effluence. Glovebox, hood, and other component machinery and tools for treating 3 H were also introduced briefly. As a monitoring technique, monitoring of indoor air and air exhaust by ionization chamber-type monitor for continuous monitoring of a great quantity of gaseous tritium was mentioned. Next, monitoring of a room, the surfaces of equipments, and draining, internal exposure of the individual, and monitoring of the environment were introduced. (Kanao, N.)

  9. Remote Working Level Monitor. Final report

    International Nuclear Information System (INIS)

    1977-01-01

    The Remote Working Level Monitor (RWLM) is an instrument used to remotely monitor the RN-daughter concentrations and the Working Level (WL). It is an ac powered, microprocessor based instrument which multiplexes two independent detector units to a single central processor unit (CPU). The CPU controls the actuation of the detector units and processes and outputs the data received from these remote detector units. The remote detector units are fully automated and require no manual operation once they are set up. They detect and separate the alpha emitters of RaA and RaC' as well as detecting the beta emitters of RaB and RaC. The resultant pulses from these detected radioisotopes are transmitted to the CPU for processing. The programmed microprocessor performs the mathematical manipulations necessary to output accurate Rn-daughter concentrations and the WL. A special subroutine within the program enables the RWLM to run and output a calibration procedure on command. The data resulting from this request can then be processed in a separate program on most computers capable of BASIC programming. The calibration program results in the derivation of coefficients and beta efficiencies which provides calibrated coefficients and beta efficiencies

  10. Remote handling and robotic inspections of Palo Verde reactor vessel internals

    International Nuclear Information System (INIS)

    Ryder, W.

    1998-01-01

    Remote visual examinations and handling evolutions in high radiation field environments have required the use of radiation tolerant video systems. These systems involve significant expense and potentially require large envelope deployment structures. Recent events at Palo Verde including Upper Guide Structure damage and Reactor Vessel In-Service Inspections have provided opportunities for research, design and utilization of alternative approaches. Most significant of these, utilization of CCD modules with high magnification capabilities, have produced higher quality viewing, reduced maintenance expenditures, and rapid deployment intervals. (orig.) [de

  11. Remote handling maintenance of ITER

    International Nuclear Information System (INIS)

    Haange, R.

    1999-01-01

    The remote maintenance strategy and the associated component design of the International Thermonuclear Experimental Reactor (ITER) have reached a high degree of completeness, especially with respect to those components that are expected to require frequent or occasional remote maintenance. Large-scale test stands, to demonstrate the principle feasibility of the remote maintenance procedures and to develop the required equipment and tools, were operational at the end of the Engineering Design Activities (EDA) phase. The initial results are highly encouraging: major remote equipment deployment and component replacement operations have been successfully demonstrated. (author)

  12. Equipment for the handling of thorium materials

    International Nuclear Information System (INIS)

    Heisler, S.W. Jr.; Mihalovich, G.S.

    1988-01-01

    The Feed Materials Production Center (FMPC) is the United States Department of Energy's storage facility for thorium. FMPC thorium handling and overpacking projects ensure the continued safe handling and storage of the thorium inventory until final disposition of the materials is determined and implemented. The handling and overpacking of the thorium materials requires the design of a system that utilizes remote handling and overpacking equipment not currently utilized at the FMPC in the handling of uranium materials. The use of remote equipment significantly reduces radiation exposure to personnel during the handling and overpacking efforts. The design system combines existing technologies from the nuclear industry, the materials processing and handling industry and the mining industry. The designed system consists of a modified fork lift truck for the transport of thorium containers, automated equipment for material identification and inventory control, and remote handling and overpacking equipment for material identification and inventory control, and remote handling and overpacking equipment for repackaging of the thorium materials

  13. The application of advanced remote systems technology to future waste handling facilities: Waste Systems Data and Development Program

    International Nuclear Information System (INIS)

    Kring, C.T.; Herndon, J.N.; Meacham, S.A.

    1987-01-01

    The Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory (ORNL) has been advancing the technology in remote handling and remote maintenance of in-cell systems planned for future US nuclear fuel reprocessing plants. Much of the experience and technology developed over the past decade in this endeavor are directly applicable to the in-cell systems being considered for the facilities of the Federal Waste Management System (FWMS). The ORNL developments are based on the application of teleoperated force-reflecting servomanipulators controlled by an operator completely removed from the hazardous environment. These developments address the nonrepetitive nature of remote maintenance in the unstructured environments encountered in a waste handling facility. Employing technological advancements in dexterous manipulators, as well as basic design guidelines that have been developed for remotely maintained equipment and processes, can increase operation and maintenance system capabilities, thereby allowing the attainment of two FWMS major objectives: decreasing plant personnel radiation exposure and increasing plant availability by decreasing the mean-time-to-repair in-cell maintenance and process equipment. 5 refs., 7 figs

  14. Online remote monitoring facilities for the ATLAS experiment

    CERN Document Server

    Kolos, S; The ATLAS collaboration; Feng, E; Hauser, R; Yakovlev, A; Zaytsev, A

    2010-01-01

    ATLAS is one of the 4 LHC experiments which started to be operated in the collisions mode in 2010. The ATLAS apparatus itself as well as the Trigger and the DAQ system are extremely complex facilities which have been built up by the collaboration including 144 institutes from 33 countries. The effective running of the experiment is supported by a large number of experts distributed all over the world. This paper describes the online remote monitoring system which has been developed in the ATLAS TDAQ community in order to support efficient participation of the experts from remote institutes in the exploitation of the experiment. The facilities provided by the remote monitoring system are ranging from the WEB based access to the general status and data quality for the ongoing data taking session to the scalable service providing real-time mirroring of the detailed monitoring data from the experimental area to the dedicated computers in the CERN public network, where this data is made available to remote users t...

  15. Workshop on regional cooperation in remote monitoring for transparency and nonproliferation

    International Nuclear Information System (INIS)

    Olsen, John; Inoue, Naoko; Hori, Masato; Hashimoto, Yu; Mochiji, Toshiro

    2006-06-01

    The Workshop on Regional Cooperation in Remote Monitoring for Transparency and Nonproliferation on 8-9 February at O'arai, Japan, brought together remote monitoring experts to share technical experience and consider potential uses of remote monitoring for nuclear transparency and strengthened nonproliferation. Sponsored by the Nuclear Nonproliferation Science and Technology Center (NPSTC) of the Japan Atomic Energy Agency (JAEA), this event gathered thirty five attendees from the JAEA, the Republic of Korea's National Nuclear Management and Control Agency (NNCA), the International Atomic Energy Agency (IAEA), and U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA). U.S. technical experts represented Sandia National Laboratories (SNL) and Los Alamos National Laboratory (LANL). Workshop discussions and interactions met or surpassed all goals: On the technical front, the JAEA, NNCA, and SNL exchanged presentations on their respective uses and technical approaches to remote monitoring. These included systems for both international safeguards and transparency. The IAEA shared valuable guidance on future remote monitoring system requirements. Following the presentations SNL conducted training in remote monitoring for technical personnel. In parallel project planning discussions, the JAEA, NNCA, SNL and the U.S. DOE reaffirmed mutual interest in regional cooperation in remote monitoring that could eventuate in exchange of safeguards-related data. A productive off-the-record session by all parties considered the path forward and established intermediate steps and time scales. The 15 of the presented papers are indexed individually. (J.P.N.)

  16. A Remote Controlled Robotic Arm That Reads Barcodes and Handles Products

    Directory of Open Access Journals (Sweden)

    Zhi-Ying Chen

    2018-03-01

    Full Text Available In this study, a 6-axis robotic arm, which was controlled by an embedded Raspberry Pi with onboard WiFi, was developed and fabricated. A mobile application (APP, designed for the purpose, was used to operate and monitor a robotic arm by means of a WiFi connection. A computer vision was used to read common one-dimensional barcode (EAN code for the handling and identification of products such as milk tea drinks, sodas and biscuits. The gripper on the end of the arm could sense the clamping force and allowed real-time control of the amount of force used to hold and handle the products. The packages were all made of different material and this control allowed them to be handled without danger of damage or deformation. The maximum handling torque used was ~1.08 Nm and the mechanical design allowed the force of the gripper to be uniformly applied to the sensor to ensure accurate measurement of the force.

  17. NN-SITE: A remote monitoring testbed facility

    International Nuclear Information System (INIS)

    Kadner, S.; White, R.; Roman, W.; Sheely, K.; Puckett, J.; Ystesund, K.

    1997-01-01

    DOE, Aquila Technologies, LANL and SNL recently launched collaborative efforts to create a Non-Proliferation Network Systems Integration and Test (NN-Site, pronounced N-Site) facility. NN-Site will focus on wide area, local area, and local operating level network connectivity including Internet access. This facility will provide thorough and cost-effective integration, testing and development of information connectivity among diverse operating systems and network topologies prior to full-scale deployment. In concentrating on instrument interconnectivity, tamper indication, and data collection and review, NN-Site will facilitate efforts of equipment providers and system integrators in deploying systems that will meet nuclear non-proliferation and safeguards objectives. The following will discuss the objectives of ongoing remote monitoring efforts, as well as the prevalent policy concerns. An in-depth discussion of the Non-Proliferation Network Systems Integration and Test facility (NN-Site) will illuminate the role that this testbed facility can perform in meeting the objectives of remote monitoring efforts, and its potential contribution in promoting eventual acceptance of remote monitoring systems in facilities worldwide

  18. Monitor, the prelude to robotics

    International Nuclear Information System (INIS)

    Grisham, D.L.; Lambert, J.E.

    1985-01-01

    Robots and teleoperator systems will play an important role in future energy systems regardless of the particular energy source. Present remote handling systems were developed for radioactive environments; however, future sources, such as fusion reactors, solar concentrators, and wind generators will also produce environments too hostile for practical ''hands on'' maintenance. Teleoperator systems developed at the Clinton P. Anderson Meson Physics Facility (LAMPF) are a logical prelude to performing remote operations with robots. The ''Monitor'' remote handling systems represented state-of-the-art mechanical hardware and operating techniques - the only elements missing are suitable computer and software interfaces

  19. Remote-Handled Transuranic Waste Content Codes (RH-Trucon)

    International Nuclear Information System (INIS)

    2006-01-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC). The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: (1) A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. (2) A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is ''3''. The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR

  20. Overview of remote handling technologies developed for inspection and maintenance of spent fuel management facilities in France

    Energy Technology Data Exchange (ETDEWEB)

    Desbats, Philippe [CEA - Direction de la Recherche Technologique / LIST, BP 6 - 92265, Fontenay-aux-Roses cedex (France); Piolain, Gerard [COGEMA-HAG/DMCO, AREVA NC SA, 2, rue Paul Dautier, BP 4, 78 141 Velizy Cedex (France)

    2006-07-01

    In the facilities of the end of the nuclear fuel cycle, like spent fuel storage pools, reprocessing plants, Plutonium-based fuel manufacturing plants or waste temporary storage units, materials handling must be carried out remotely, taking into account the nuclear radiating environment. In addition to the automation requirement, robotics equipment in the nuclear industry must be substituted to human operators in order to respect the ALARA principle. More over, remote handling technologies aim to improve the working conditions, as well as the quality of the work achieved by the operators. Ten years ago, COGEMA (AREVA Group) and CEA (French Atomic Energy Agency) started an ambitious R and D program in robotics and remote handling technologies applied to COGEMA spent fuel management facilities in France, with the aim to cover the requirements of the different plant life cycle steps. The paper gives an overview of the important developments that have been carried out by CEA and then transferred to the COGEMA industrial group. The range includes the next generation of servo-manipulators, long range inspection tools and carriers, nuclear versions of industrial robots, radiation hardened electronic systems, interactive environment modeling tools, as well as force-feedback master-slave generic control software for tele-operation systems. Some applications of this development are presented in the paper: - rad-hard electronic modules for robotic equipment which are used by COGEMA in high radiating environment; - long reach articulated carrier for inspection of spent full management blind cells; - new electrical force feedback master/slave system to improve the tele-operation of standard tele-manipulators; - generic control software for tele-manipulators. The results of the robotic program carried out by COGEMA and CEA have been very valuable for the introduction of new technologies inside nuclear industry. Innovative products and sub-systems can be integrated now in a large

  1. 40 CFR 65.161 - Continuous records and monitoring system data handling.

    Science.gov (United States)

    2010-07-01

    ... section. (D) Owners and operators shall retain the current description of the monitoring system as long as... Routing to a Fuel Gas System or a Process § 65.161 Continuous records and monitoring system data handling...) Monitoring system breakdowns, repairs, preventive maintenance, calibration checks, and zero (low-level) and...

  2. High gamma-rays irradiation tests of critical components for ITER (International Thermonuclear Experimental Reactor) in-vessel remote handling system

    International Nuclear Information System (INIS)

    Obara, Kenjiro; Kakudate, Satoshi; Oka, Kiyoshi

    1999-02-01

    In ITER, the in-vessel remote handling is inevitably required to assemble and maintain the activated in-vessel components due to deuterium and tritium operation. Since the in-vessel remote handling system has to be operated under the intense of gamma ray irradiation, the components of the remote handling system are required to have radiation hardness so as to allow maintenance operation for a sufficient length of time under the ITER in-vessel environments. For this, the Japan, European and Russian Home Teams have extensively conducted gamma ray irradiation tests and quality improvements including optimization of material composition through ITER R and D program in order to develop radiation hard components which satisfy the doses from 10 MGy to 100 MGy at a dose rate of 1 x 10 6 R/h (ITER R and D Task: T252). This report describes the latest status of radiation hard component development which has been conducted by the Japan Home Team in the ITER R and D program. The number of remote handling components tested is about seventy and these are categorized into robotics (Subtask 1), viewing system (Subtask 2) and common components (Subtask 3). The irradiation tests, including commercial base products for screening, modified products and newly developed products to improve the radiation hardness, were carried out using the gamma ray irradiation cells in Takasaki Establishment, JAERI. As a result, the development of the radiation hard components which can be tolerable for high temperature and gamma radiation has been well progressed, and many components, such as AC servo motor with ceramics insulated wire, optical periscope and CCD camera, have been newly developed. (author)

  3. Progress on the interface between UPP and CPRHS (Cask and Plug Remote Handling System) tractor/gripping tool for ITER

    International Nuclear Information System (INIS)

    Rosa, Elena V.; Rios, Luis; Queral, Vicente

    2013-01-01

    Highlights: ► UPP interface requirements in the plug RH extraction/insertion for ITER. ► Analyze of maximum misalignment between port duct and port cell. ► Friction study between plug skids and VV port/ramp rails during the plug transfer. ► Definition of the tolerance in the plug skids to avoid the plug jamming. ► Concepts of gripping tools based on one gripping point and avoiding force feedback. -- Abstract: EFDA finances a training programme called Goal Oriented Training Programme for Remote Handling (GOT RH), whose goal is to train engineers in Remote Handling for ITER. As part of this training programme, the conceptual design of the mechanical interface between Upper Port Plug (UPP) and Cask and Plug Remote Handling System (CPRHS) as well as the conceptual design of the needed tools for UPP Remote Handling is carried out. The paper presents the conceptual design of the UPP/Gripping Tool Interface. This includes the conceptual design of the gripping tool for introducing/removing the UPP in/from the ITER port and the mechanical features on both sides of the UPP/Gripping Tool Interface (e.g. alignment features, mechanical connectors, fasteners). In order to develop the design of the interface between UPP and CPRHS it is necessary to first identify the functional requirements of the Transfer Cask System (TCS) and the CPRHS, such as required degrees of freedom (DoF), required performances of system, geometrical constraints, loading conditions, alignment requirements, RAMI requirements. These requirements are the input data for the design of the interface between UPP and gripping tool and some of them are also described in the paper

  4. High gamma-rays irradiation tests of critical components for ITER (International Thermonuclear Experimental Reactor) in-vessel remote handling system

    Energy Technology Data Exchange (ETDEWEB)

    Obara, Kenjiro; Kakudate, Satoshi; Oka, Kiyoshi [Department of Fusion Engineering Research, Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki (Japan)] [and others

    1999-02-01

    In ITER, the in-vessel remote handling is inevitably required to assemble and maintain the activated in-vessel components due to deuterium and tritium operation. Since the in-vessel remote handling system has to be operated under the intense of gamma ray irradiation, the components of the remote handling system are required to have radiation hardness so as to allow maintenance operation for a sufficient length of time under the ITER in-vessel environments. For this, the Japan, European and Russian Home Teams have extensively conducted gamma ray irradiation tests and quality improvements including optimization of material composition through ITER R and D program in order to develop radiation hard components which satisfy the doses from 10 MGy to 100 MGy at a dose rate of 1 x 10{sup 6} R/h (ITER R and D Task: T252). This report describes the latest status of radiation hard component development which has been conducted by the Japan Home Team in the ITER R and D program. The number of remote handling components tested is about seventy and these are categorized into robotics (Subtask 1), viewing system (Subtask 2) and common components (Subtask 3). The irradiation tests, including commercial base products for screening, modified products and newly developed products to improve the radiation hardness, were carried out using the gamma ray irradiation cells in Takasaki Establishment, JAERI. As a result, the development of the radiation hard components which can be tolerable for high temperature and gamma radiation has been well progressed, and many components, such as AC servo motor with ceramics insulated wire, optical periscope and CCD camera, have been newly developed. (author)

  5. Installation of remote-handling typed EBSD-OIM analyzer for heavy irradiated reactor materials

    International Nuclear Information System (INIS)

    Kato, Yoshiaki; Takada, Fumiki; Ohmi, Masao; Nakagawa, Tetsuya; Miwa, Yukio

    2008-06-01

    The remote-handling typed EBSD-OIM analyzer for heavy irradiated reactor materials was installed in the JMTR hot laboratory at the first time in the world. The analyzer is used to study on IASCC (irradiation assisted stress corrosion cracking) or IGSCC (inter granular stress corrosion cracking) in reactor materials. This report describes the measurement procedure, the measured results and the operating experiences on the analyzer in the JMTR hot laboratory. (author)

  6. Application of network technology to Remote Monitoring System

    International Nuclear Information System (INIS)

    Johnson, C.S.; Sorokowski, D.L.; Veevers, K.

    1994-01-01

    The Australian Safeguards Office (ASO) and the US Department of Energy (DOE) have sponsored work under a bilateral agreement to implement a Remote Monitoring System (RMS) at an Australian nuclear site operated by the Australian Nuclear Science and Technology Organization (ANSTO). The RMS, designed by Sandia National Laboratories (SNL), was installed in February 1994 at the Dry Spent Fuel Storage Facility (DSFSF) located at Lucas Heights, Australia. The RMS was designed to test a number of different concepts that would be useful for unattended remote monitoring activities. The DSFSF located in Building 27 is a very suitable test site for a RMS. The RMS uses a network of low cost nodes to collect data from a number of different sensors and security devices. Different sensors and detection devices have been installed to study how they can be used to complement each other for C/S applications. The data collected from the network will allow a comparison of how the various types of sensors perform under the same set of conditions. A video system using digital compression collects digital images and stores them on a hard drive and a digital optical disk. Data and images from the storage area are remotely monitored via telephone from Canberra, Australia and Albuquerque, NM, USA. These remote monitoring stations operated by ASO and SNL respectively, can retrieve data and images from the RMS computer at the DSFSF. The data and images are encrypted before transmission. The Remote Monitoring System field tests have been operational for six months with good test results. Sensors have performed well and the digital images have excellent resolution. The hardware and software have performed reliably without any major difficulties. This paper summarizes the highlights of the prototype system and the ongoing field tests

  7. The development and evaluation of a stereoscopic television system for remote handling

    International Nuclear Information System (INIS)

    Dumbreck, A.A.; Murphy, S.P.; Smith, C.W.

    1990-01-01

    This paper describes the development and evaluation of a stereoscopic television system at Harwell Laboratory. The theory of stereo image geometry is outlined, and criteria for the matching of stereoscopic pictures are given. A stereoscopic television system designed for remote handling tasks has been produced, it provides two selectable angles of view and variable convergence, the display is viewed via polarizing spectacles. Evaluations have indicated improved performance with no problems of operator fatigue over a wide range of applications. (author)

  8. The use of virtual reality and intelligent database systems for procedure planning, visualisation, and real-time component tracking in remote handling operations

    International Nuclear Information System (INIS)

    Robbins, Edward; Sanders, Stephen; Williams, Adrian; Allan, Peter

    2009-01-01

    The organisation of remote handling (RH) operations in fusion environments is increasingly critical as the number of tasks, components and tooling that RH operations teams must deal with inexorably rises. During the recent JET EP1 RH shutdown the existing virtual reality (VR) and procedural database systems proved essential for visualisation and tracking of operations, particularly due to the increasing complexity of remote tasks. A new task planning system for RH operations is in development, and is expected to be ready for use during the next major shutdown, planned for 2009. The system will make use of information available from the remote operations procedures, the RH equipment human-machine interfaces, the on-line RH equipment control systems and also the virtual reality (VR) system to establish a complete database for the location of plant items and RH equipment as RH operations progress. It is intended that the system be used during both preparation and implementation of shutdowns. In the preparations phase the system can be used to validate procedures and overall logistics by allowing an operator to increment through each operation step and to use the VR system to visualise the location and status of all components, manipulators and RH tools. During task development the RH operations engineers can plan and visualise movement of components and tooling to examine handling concepts and establish storage requirements. In the implementation of operations the daily work schedules information will be integrated with the RH operations procedures tracking records to enable the VR system to provide a visual representation of the status of remote operations in real time. Monitoring of the usage history of items will allow estimates of radiation dosage and contaminant exposure to be made. This paper describes the overall aims, structure and use of the system, discusses its application to JET and also considers potential future developments.

  9. Selected solutions and design features from the design of remotely handled filters and the technology of remote filter handling. Previous operating experience with these components in the PASSAT facility

    International Nuclear Information System (INIS)

    Jannakos, K.; Lange, W.; Potgeter, G.; Furrer, J.; Wilhelm, J.G.

    1981-01-01

    In a prototype filter offgas cleaning system for reprocessing plants (PASSAT) built at the Karlsruhe Nuclear Research Center a fullscale filter cell with remotely handled filters for aerosol and iodine removal and the corresponding remote handling systems for exchange, bagging out, packaging and disposal of spent filter elements has been installed and run in trial operation since July 1978. The filters and the replacement techniques have been tested for the past two years or so and so far have always worked satisfactory over the test period involving some 150 replacement events. Neither wear nor corrosion phenomena were found in the filter housings and the replacement systems. The seals and clamping devices were selected so that during operation the prescribed leak rates of -3 Torr l/s were always maintained on the filter lid, the seat of the filter element and the cell lock. The total clamping loads for the filter element and the filter lid amount to approx. 20 kN. The force necessary to separate the filter element from the filter housing is approx. 3.5 kN. No ruptures of seals or gaskets were to be detected. The design of the filters and of the handling systems has been found satisfactorily in the cold test operation so far and can be recommended for use in nuclear facilities. In all experiments conducted until now PASSAT has worked without any failure. All operating data required in the specifications were met in the test period. The maximum pressure loss in the system with loaded filter elements amounts to some 3000 mm of water. After operation with iodine and NO/sub x/, plant components exposed to 100% relative humidity and condensate showed corrosion

  10. Techniques for remote maintenance of in-cell material-handling system in the HFEF/N main cell

    International Nuclear Information System (INIS)

    Tobias, D.A.; Frickey, C.A.

    1975-01-01

    Operations in the main cell of HFEF/N have required development of remote handling equipment and unique techniques for maintaining the in-cell material-handling system. Specially designed equipment is used to remove a disabled crane or electromechanical manipulator bridge from its support rails and place it on floor stands for repair or maintenance. Support areas for the main cell, such as the spray chamber and hot repair area, provide essential decontamination, repair, and staging areas for the in-cell material-handling-system equipment and tools. A combined engineering and technical effort in upgrading existing master-slave manipulators has definitely reduced the requirements for their maintenance. The cell is primarily for postirradiation examination of LMFBR materials and fuel elements

  11. Progress in the conceptual design of the ITER cask and plug remote handling system

    Energy Technology Data Exchange (ETDEWEB)

    Locke, Darren, E-mail: darren.locke@f4e.europa.eu [Fusion for Energy Agency (F4E), Torres Diagonal Litoral B3, Josep Pla 2, 08019 Barcelona (Spain); González Gutiérrez, Carmen; Damiani, Carlo [Fusion for Energy Agency (F4E), Torres Diagonal Litoral B3, Josep Pla 2, 08019 Barcelona (Spain); Friconneau, Jean-Pierre; Martins, Jean-Pierre [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2014-10-15

    Highlights: • The CPRHS is a complex system with a significant number of complicated interfaces. • Significant effort is being made to ensure that the system requirements are clearly defined. • This solution relates to planned operations and also anticipation of rescue operations. • With the CPRHS performing a safety function process control is being put in place. • All these factors will have a significant impact on the success of the CPRHS. - Abstract: One function of the ITER remote maintenance system is the transportation of in-vessel components and remote handling systems to and from the vacuum vessel and docking stations in the Hot Cell via dedicated galleries and lift. The cask and plug remote handling system (CPRHS) has been adopted as the solution to provide this nuclear confinement and transportation. This paper discusses the development of the conceptual design to-date and presents the processes being implemented to effectively control the subsequent CPRHS development. The CPRHS is a complex suite of systems with a significant number of interfaces with other ITER systems. Significant effort is being made to ensure that the system requirements are comprehensively defined and carefully managed and a feasible solution is developed – including planned and rescue operations. With the CPRHS performing a critical confinement function appropriate processes are being put in place to control the system development of the CPRHS. The expectation is that the combination of these factors will have a significant impact on the successful implementation of the CPRHS.

  12. Progress in the conceptual design of the ITER cask and plug remote handling system

    International Nuclear Information System (INIS)

    Locke, Darren; González Gutiérrez, Carmen; Damiani, Carlo; Friconneau, Jean-Pierre; Martins, Jean-Pierre

    2014-01-01

    Highlights: • The CPRHS is a complex system with a significant number of complicated interfaces. • Significant effort is being made to ensure that the system requirements are clearly defined. • This solution relates to planned operations and also anticipation of rescue operations. • With the CPRHS performing a safety function process control is being put in place. • All these factors will have a significant impact on the success of the CPRHS. - Abstract: One function of the ITER remote maintenance system is the transportation of in-vessel components and remote handling systems to and from the vacuum vessel and docking stations in the Hot Cell via dedicated galleries and lift. The cask and plug remote handling system (CPRHS) has been adopted as the solution to provide this nuclear confinement and transportation. This paper discusses the development of the conceptual design to-date and presents the processes being implemented to effectively control the subsequent CPRHS development. The CPRHS is a complex suite of systems with a significant number of interfaces with other ITER systems. Significant effort is being made to ensure that the system requirements are comprehensively defined and carefully managed and a feasible solution is developed – including planned and rescue operations. With the CPRHS performing a critical confinement function appropriate processes are being put in place to control the system development of the CPRHS. The expectation is that the combination of these factors will have a significant impact on the successful implementation of the CPRHS

  13. Optimized hardware design for the divertor remote handling control system

    Energy Technology Data Exchange (ETDEWEB)

    Saarinen, Hannu [Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland)], E-mail: hannu.saarinen@tut.fi; Tiitinen, Juha; Aha, Liisa; Muhammad, Ali; Mattila, Jouni; Siuko, Mikko; Vilenius, Matti [Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland); Jaervenpaeae, Jorma [VTT Systems Engineering, Tekniikankatu 1, 33720 Tampere (Finland); Irving, Mike; Damiani, Carlo; Semeraro, Luigi [Fusion for Energy, Josep Pla 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain)

    2009-06-15

    A key ITER maintenance activity is the exchange of the divertor cassettes. One of the major focuses of the EU Remote Handling (RH) programme has been the study and development of the remote handling equipment necessary for divertor exchange. The current major step in this programme involves the construction of a full scale physical test facility, namely DTP2 (Divertor Test Platform 2), in which to demonstrate and refine the RH equipment designs for ITER using prototypes. The major objective of the DTP2 project is the proof of concept studies of various RH devices, but is also important to define principles for standardizing control hardware and methods around the ITER maintenance equipment. This paper focuses on describing the control system hardware design optimization that is taking place at DTP2. Here there will be two RH movers, namely the Cassette Multifuctional Mover (CMM), Cassette Toroidal Mover (CTM) and assisting water hydraulic force feedback manipulators (WHMAN) located aboard each Mover. The idea here is to use common Real Time Operating Systems (RTOS), measurement and control IO-cards etc. for all maintenance devices and to standardize sensors and control components as much as possible. In this paper, new optimized DTP2 control system hardware design and some initial experimentation with the new DTP2 RH control system platform are presented. The proposed new approach is able to fulfil the functional requirements for both Mover and Manipulator control systems. Since the new control system hardware design has reduced architecture there are a number of benefits compared to the old approach. The simplified hardware solution enables the use of a single software development environment and a single communication protocol. This will result in easier maintainability of the software and hardware, less dependence on trained personnel, easier training of operators and hence reduced the development costs of ITER RH.

  14. Online remote monitoring facilities for the ATLAS experiment

    CERN Document Server

    Kolos, S; The ATLAS collaboration; Feng, E; Hauser, R; Yakovlev, A; Zaytsev, A

    2011-01-01

    ATLAS is one of the 4 LHC experiments which started to be operated in the collisions mode in 2010. The ATLAS apparatus itself as well as the Trigger and the DAQ system are extremely complex facilities which have been built up by the collaboration including 144 institutes from 33 countries. The effective running of the experiment is supported by a large number of experts distributed all over the world. This paper describes the online remote monitoring system which has been developed in the ATLAS Trigger and DAQ(TDAQ) community in order to support efficient participation of the experts from remote institutes in the exploitation of the experiment. The facilities provided by the remote monitoring system are ranging from the WEB based access to the general status and data quality for the ongoing data taking session to the scalable service providing real-time mirroring of the detailed monitoring data from the experimental area to the dedicated computers in the CERN public network, where this data is made available ...

  15. Report of the remote-handled transuranic waste mock retrieval demonstration

    International Nuclear Information System (INIS)

    1987-05-01

    This report documents the results of the mock, onsite retrieval demonstration that was conducted on May 19 and 20, 1987, for representatives of the New Mexico Environmental Evaluation Group (EEG). Demonstration of the retrievability of remote-handled transuranic (RH TRU) waste is part of a milestone included in the Agreement for Consultation and Cooperation between the state of New Mexico and the United States Department of Energy. Retrieval equipment design documents and a retrievability demonstration plan for RH TRU waste were previously transmitted to the EEG. This report documents the results of the demonstration by evaluating the demonstration against the acceptance criteria that were established in the Demonstration Plan. 1 fig., 2 tabs

  16. Study on compact design of remote handling equipment for ITER blanket maintenance

    International Nuclear Information System (INIS)

    Takeda, Nobukazu; Kakudate, Satoshi; Nakahira, Masataka; Shibanuma, Kiyoshi

    2006-03-01

    In the ITER, the neutrons created by D-T reactions activate structural materials, and thereby, the circumstance in the vacuum vessel is under intense gamma radiation field. Thus, the in-vessel components such as blanket are handled and replaced by remote handling equipment. The objective of this report is to study the compactness of the remote handling equipment (a vehicle/manipulator) for the ITER blanket maintenance. In order to avoid the interferences between the blanket and the equipment during blanket replacement in the restricted vacuum vessel, a compact design of the equipment is required. Therefore, the compact design is performed, including kinematic analyses aiming at the reduction of the sizes of the vehicle equipped with a manipulator handling the blanket and the rail for the vehicle traveling in the vacuum vessel. Major results are as follows: 1. The compact vehicle/manipulator is designed concentration on the reduction of the rail size and simplification of the guide roller mechanism as well as the reduction of the gear diameter for vehicle rotation around the rail. Height of the rail is reduced from 500 mm to 400 mm by a parameter survey for weight, stiffness and stress of the rail. The roller mechanism is divided into two simple functional mechanisms composed of rollers and a pad, that is, the rollers support relatively light loads during rail deployment and vehicle traveling while a pad supports heavy loads during blanket replacement. Regarding the rotation mechanism, the double helical gear is adopted, because it has higher contact ratio than the normal spur gear and consequently can transfer higher force. The smaller double helical gear, 996 mm in diameter, can achieve 26% higher output torque, 123.5 kN·m, than that of the original spur gear of 1,460 mm in diameter, 98 kN·m. As a result, the manipulator becomes about 30% lighter, 8 tons, than the original weight, 11.2 tons. 2. Based on the compact design of the vehicle/manipulator, the

  17. Remote Arrhythmia Monitoring System Developed

    Science.gov (United States)

    York, David W.; Mackin, Michael A.; Liszka, Kathy J.; Lichter, Michael J.

    2004-01-01

    Telemedicine is taking a step forward with the efforts of team members from the NASA Glenn Research Center, the MetroHealth campus of Case Western University, and the University of Akron. The Arrhythmia Monitoring System is a completed, working test bed developed at Glenn that collects real-time electrocardiogram (ECG) signals from a mobile or homebound patient, combines these signals with global positioning system (GPS) location data, and transmits them to a remote station for display and monitoring. Approximately 300,000 Americans die every year from sudden heart attacks, which are arrhythmia cases. However, not all patients identified at risk for arrhythmias can be monitored continuously because of technological and economical limitations. Such patients, who are at moderate risk of arrhythmias, would benefit from technology that would permit long-term continuous monitoring of electrical cardiac rhythms outside the hospital environment. Embedded Web Technology developed at Glenn to remotely command and collect data from embedded systems using Web technology is the catalyst for this new telemetry system (ref. 1). In the end-to-end system architecture, ECG signals are collected from a patient using an event recorder and are transmitted to a handheld personal digital assistant (PDA) using Bluetooth, a short-range wireless technology. The PDA concurrently tracks the patient's location via a connection to a GPS receiver. A long distance link is established via a standard Internet connection over a 2.5-generation Global System for Mobile Communications/General Packet Radio Service (GSM/GPRS)1 cellular, wireless infrastructure. Then, the digital signal is transmitted to a call center for monitoring by medical professionals.

  18. Highly active vitrification plant remote handling operational experience and improvements

    International Nuclear Information System (INIS)

    Milgate, I.

    1996-01-01

    All the main process plant and equipment at the Sellafield Waste Vitrification Plant (WVP) is enclosed in heavily shielded concrete walled cells. There is a large quantity of relatively complex plant and equipment which must be remotely operated, maintained or replaced in-cell in a severe environment. The WVP has five in-cell polar cranes which are of modular construction to aid replacement of failed components. Each can be withdrawn into a shielded cell extension for decontamination and hands-on maintenance. The cells have a total of 80 through wall tube positions to receive Master Slave Manipulators (MSMs). The MSMs are used where possible for ''pick and place'' purposes but are often called upon to position substantial pieces of mechanical equipment and thus are subject to heavy loading and high failure rates. An inward flow of air is maintained in the active cells. The discharged air passes through a filter cell where remote damper operation filter changing and maintenance is carried out by means of a PAR3000 manipulator. A Nuclear Engineered Advanced Teleoperated Robot (Neater) swabs the vitrified product container to ensure cleanliness before storage. There is a significant arising of solid radioactive waste from replaced in-cell items which undergoes sorting and size reduction in a breakdown cell equipped with a large reciprocating saw and a hydraulic shear. Improvements to the remote handling facilities made in the light of operational experience are described. (UK)

  19. Neutronic analysis of JET external neutron monitor response

    Energy Technology Data Exchange (ETDEWEB)

    Snoj, Luka, E-mail: luka.snoj@ijs.si [Reactor Physics Division, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Lengar, Igor; Čufar, Aljaž [Reactor Physics Division, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Syme, Brian; Popovichev, Sergey [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, OX14 3DB, United Kingdom (United Kingdom); Batistoni, Paola [ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati, Roma (Italy); Conroy, Sean [VR Association, Uppsala University, Department of Physics and Astronomy, PO Box 516, SE-75120 Uppsala (Sweden)

    2016-11-01

    Highlights: • We model JET tokamak containing JET remote handling system. • We investigate effect of remote handling system on external neutron monitor response. • Remote handling system correction factors are calculated. • Integral correction factors are relatively small, i.e up to 8%. - Abstract: The power output of fusion devices is measured in terms of the neutron yield which relates directly to the fusion yield. JET made a transition from Carbon wall to ITER-Like Wall (Beryllium/Tungsten/Carbon) during 2010–11. Absolutely calibrated measurement of the neutron yield by JET neutron monitors was ensured by direct measurements using a calibrated {sup 252}Cf neutron source (NS) deployed by the in-vessel remote handling system (RHS) inside the JET vacuum vessel. Neutronic calculations were required in order to understand the neutron transport from the source in the vacuum vessel to the fission chamber detectors mounted outside the vessel on the transformer limbs of the tokamak. We developed a simplified computational model of JET and the JET RHS in Monte Carlo neutron transport code MCNP and analyzed the paths and structures through which neutrons reach the detectors and the effect of the JET RHS on the neutron monitor response. In addition we performed several sensitivity studies of the effect of substantial massive structures blocking the ports on the external neutron monitor response. As the simplified model provided a qualitative picture of the process only, some calculations were repeated using a more detailed full 3D model of the JET tokamak.

  20. Versatile cable handling mechanisms for remote operator control

    Energy Technology Data Exchange (ETDEWEB)

    Collie, A.A.; White, T.S.; Christopher, M.D.; Hewer, N.D. [Portech Ltd., Portsmouth (United Kingdom)

    1996-12-31

    This paper describes a system of cable management for keeping the umbilical cables of remote operating vehicles and manipulators tidy and contained without direct intervention by operators. Two distinct types of winding mechanism have been designed. One mechanism is a fixed reel type where the cable is wound onto the reel by a rotating bail arm. The other mechanism consists of a pair of curved belts held against each other between which cable is passed. The complete system includes tension measuring and slack loop take-up devices. The whole system is controlled by a servo system in conjunction with a PC based visual graphic environment which allows a variety of mechanisms to be built up into a system able to handle up to four umbilical cables simultaneously. The control system provides additional tension sensors and cable odometers connected to the control system so that the operator has immediate perception of all the cable parameters, and by defining rules, can set up a variety of alarm situations. (Author).

  1. Versatile cable handling mechanisms for remote operator control

    International Nuclear Information System (INIS)

    Collie, A.A.; White, T.S.; Christopher, M.D.; Hewer, N.D.

    1996-01-01

    This paper describes a system of cable management for keeping the umbilical cables of remote operating vehicles and manipulators tidy and contained without direct intervention by operators. Two distinct types of winding mechanism have been designed. One mechanism is a fixed reel type where the cable is wound onto the reel by a rotating bail arm. The other mechanism consists of a pair of curved belts held against each other between which cable is passed. The complete system includes tension measuring and slack loop take-up devices. The whole system is controlled by a servo system in conjunction with a PC based visual graphic environment which allows a variety of mechanisms to be built up into a system able to handle up to four umbilical cables simultaneously. The control system provides additional tension sensors and cable odometers connected to the control system so that the operator has immediate perception of all the cable parameters, and by defining rules, can set up a variety of alarm situations. (Author)

  2. Versatile cable handling mechanisms for remote operator control

    International Nuclear Information System (INIS)

    Collie, A.A.; White, T.S.; Christopher, M.D.; Hewer, N.D.

    1996-01-01

    This paper describes a system of cable management for keeping the umbilical cables of remote operating vehicles and manipulators tidy and contained without direct intervention by operators. Two distinct types of winding mechanism have been designed. One mechanism is a fixed reel type where the cable is wound onto the reel by a rotating bail arm. The other mechanism consists of a pair of curved belts held against each other, between which cable is passed. The complete system includes tension measuring and slack loop take-up devices. The whole system is controlled by a servo system in conjunction with a PC based visual graphic environment which allows a variety of mechanisms to be built up into a system able to handle up to four umbilical cables simultaneously. The control system provides additional tension sensors and cable odometers connected to the control system so that the operator has immediate perception of all the cable parameters, and by defining rules, can set up a variety of alarm situations. (UK)

  3. Development of a Remote Handling Robot for the Maintenance of an ITER-Like D-Shaped Vessel

    Directory of Open Access Journals (Sweden)

    Peihua Chen

    2014-01-01

    Full Text Available Robotic operation is one of the major challenges in the remote maintenance of ITER vacuum vessel (VV and future fusion reactors as inner operations of Tokamak have to be done by robots due to the internal adverse conditions. This paper introduces a novel remote handling robot (RHR for the maintenance of ITER-like D-shaped vessel. The modular designed RHR, which is an important part of the remote handling system for ITER, consists of three parts: an omnidirectional transfer vehicle (OTV, a planar articulated arm (PAA, and an articulated teleoperated manipulator (ATM. The task of RHR is to carry processing tools, such as the viewing system, leakage detector, and electric screwdriver, to inspect and maintain the components installed inside the D-shaped vessel. The kinematics of the OTV, as well as the kinematic analyses of the PAA and ATM, is studied in this paper. Because of its special length and heavy payload, the dynamics of the PAA is also investigated through a dynamic simulation system based on robot technology middleware (RTM. The results of the path planning, workspace simulations, and dynamic simulation indicate that the RHR has good mobility together with satisfying kinematic and dynamic performances and can well accomplish its maintenance tasks in the ITER-like D-shaped vessel.

  4. Annotated bibliography of remote sensing methods for monitoring desertification

    Science.gov (United States)

    Walker, A.S.; Robinove, Charles J.

    1981-01-01

    Remote sensing techniques are valuable for locating, assessing, and monitoring desertification. Remotely sensed data provide a permanent record of the condition of the land in a format that allows changes in land features and condition to be measured. The annotated bibliography of 118 items discusses remote sensing methods that may be applied to desertification studies.

  5. Development of remote handling tools and equipment

    International Nuclear Information System (INIS)

    Nakahira, Masataka; Oka, Kiyoshi; Taguchi, Kou; Ito, Akira; Fukatsu, Seiichi; Oda, Yasushi; Kajiura, Soji; Yamazaki, Seiichiro; Aoyama, Kazuo.

    1997-01-01

    The remote handling (RH) tools and equipment development in ITER focuses mainly on the welding and cutting technique, weld inspection and double-seal door which are essential factors in the replacement of in-vessel components such as divertor and blanket. The conceptual design of these RH tools and equipment has been defined through ITER engineering design activity (EDA). Similarly, elementary R and D of the RH tools and equipment have been extensively performed to accumulate a technological data base for process and performance qualification. Based on this data, fabrications of full-scale RH tools and equipment are under progress. A prototypical bore tool for pipe welding and cutting has already been fabricated and is currently undergoing integrated performance tests. This paper describes the design outline of the RH tools and equipment related to in-vessel components maintenance, and highlights the current status of RH tools and equipment development by the Japan Home Team as an ITER R and D program. This paper also includes an outline of insulation joint and quick-pipe connector development, which has also been conducted through the ITER R and D program in order to standardize RH operations and components. (author)

  6. Development of Decision Support System for Remote Monitoring of PIP Corn

    Science.gov (United States)

    The EPA is developing a multi-level approach that utilizes satellite and airborne remote sensing to locate and monitor genetically modified corn in the agricultural landscape and pest infestation. The current status of the EPA IRM monitoring program based on remote sensed imager...

  7. Interactive virtual mock-ups for Remote Handling compatibility assessment of heavy components

    Energy Technology Data Exchange (ETDEWEB)

    Oosterhout, J. van, E-mail: j.vanoosterhout@differ.nl [FOM Institute DIFFER (Dutch Institute for Fundamental Energy Research), Association EURATOM-FOM, Partner in the Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Heemskerk, C.J.M.; Koning, J.F. [Heemskerk Innovative Technology B.V., Jonckerweg 12, 2201 DZ Noordwijk 6 (Netherlands); Ronden, D.M.S.; Baar, M. de [FOM Institute DIFFER (Dutch Institute for Fundamental Energy Research), Association EURATOM-FOM, Partner in the Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands)

    2014-10-15

    Highlights: •Specific ITER components require RHCA on hardware mock-ups. •Hardware mock-ups are expensive and have a long lead time. •Interactive Virtual Reality mock-ups are readily available and easily adapted. •This paper analysis and proposes improvements to simulator capabilities. -- Abstract: ITER standards Tesini (2009) require hardware mock-ups to validate the Remote Handling (RH) compatibility of RH class 1- and critical class 2-components. Full-scale mock-ups of large ITER components are expensive, have a long lead time and lose their relevance in case of design changes. Interactive Virtual Reality simulations with real time rigid body dynamics and contact interaction allow for RH Compatibility Assessment during the design iterations. This paper explores the use of interactive virtual mock-ups to analyze the RH compatibility of heavy component handling and maintenance. It infers generic maintenance operations from the analysis and proposes improvements to the simulator capabilities.

  8. Interactive virtual mock-ups for Remote Handling compatibility assessment of heavy components

    International Nuclear Information System (INIS)

    Oosterhout, J. van; Heemskerk, C.J.M.; Koning, J.F.; Ronden, D.M.S.; Baar, M. de

    2014-01-01

    Highlights: •Specific ITER components require RHCA on hardware mock-ups. •Hardware mock-ups are expensive and have a long lead time. •Interactive Virtual Reality mock-ups are readily available and easily adapted. •This paper analysis and proposes improvements to simulator capabilities. -- Abstract: ITER standards Tesini (2009) require hardware mock-ups to validate the Remote Handling (RH) compatibility of RH class 1- and critical class 2-components. Full-scale mock-ups of large ITER components are expensive, have a long lead time and lose their relevance in case of design changes. Interactive Virtual Reality simulations with real time rigid body dynamics and contact interaction allow for RH Compatibility Assessment during the design iterations. This paper explores the use of interactive virtual mock-ups to analyze the RH compatibility of heavy component handling and maintenance. It infers generic maintenance operations from the analysis and proposes improvements to the simulator capabilities

  9. Remote Handling Devices for Disposition of Enriched Uranium Reactor Fuel Using Melt-Dilute Process

    International Nuclear Information System (INIS)

    Heckendorn, F.M.

    2001-01-01

    Remote handling equipment is required to achieve the processing of highly radioactive, post reactor, fuel for the melt-dilute process, which will convert high enrichment uranium fuel elements into lower enrichment forms for subsequent disposal. The melt-dilute process combines highly radioactive enriched uranium fuel elements with deleted uranium and aluminum for inductive melting and inductive stirring steps that produce a stable aluminum/uranium ingot of low enrichment

  10. Testing integrated sensors for cooperative remote monitoring

    International Nuclear Information System (INIS)

    Filby, E.E.; Smith, T.E.; Albano, R.K.; Andersen, M.K.; Lucero, R.L.; Tolk, K.M.; Andrews, N.S.

    1996-01-01

    The Modular Integrated Monitoring System (MIMS) program, with Sandia National Laboratory (SNL) as the lead lab, was devised to furnish sensors and integrated multi-sensor systems for cooperative remote monitoring. The Idaho National Engineering Laboratory (INEL), via the Center for Integrated Monitoring and Control (CIMC), provides realistic field tests of the sensors and sensor-integration approach for the MIMS, and for other similar programs. This has two important goals: it helps insure that these systems are truly read for use, and provides a platform so they can be demonstrated for potential users. A remote monitoring test/demonstration has been initiated at the Idaho Chemical Processing Plant (ICPP) to track the movement of spent nuclear fuel from one storage location to another, using a straddle carrier and shielded cask combination. Radiation monitors, motion sensors, videocameras, and other devices from several US Department of Energy (DOE) labs and commercial vendors were linked on the network. Currently, project personnel are collecting raw data from this large array of sensors, without trying to program any special network activities or other responses. These data will be used to determine which devices can actually provide useful information for a cooperative monitoring situation, versus those that may be redundant

  11. State and outlooks of remote handling and automation techniques use for industrial radioactive operations

    International Nuclear Information System (INIS)

    Guilloteau, R.; Le Guennec, R.; Dumond, S.

    1981-01-01

    Handling in reactors mainly concerns charging and discharging operations and inspection. Specific means are being developed for each operation, with an increasing degree of automation. This serves to reduce exposure of personnel. However, the development of these means conflicts in certain cases with the original plant design, which did not provide for remote maintenance. With regard to fuel reprocessing, handling at the processing level is becoming increasingly automated. The difficulties lie principally in maintenance and waste conditioning operations. These involve less specialized means than is the case with reactors and can only be automated to a limited extent, save in exceptional cases. The greatest progress will be achieved by laying down stringent maintenance principles and taking them into consideration at the design stage

  12. Web based remote monitoring and controlling system for vulnerable environments

    Science.gov (United States)

    Thomas, Aparna; George, Minu

    2016-03-01

    The two major areas of concern in industrial establishments are monitoring and security. The remote monitoring and controlling can be established with the help of Web technology. Managers can monitor and control the equipment in the remote area through a web browser. The targeted area includes all type of susceptible environment like gas filling station, research and development laboratories. The environmental parameters like temperature, light intensity, gas etc. can be monitored. Security is a very important factor in an industrial setup. So motion detection feature is added to the system to ensure the security. The remote monitoring and controlling system makes use of the latest, less power consumptive and fast working microcontroller like S3C2440. This system is based on ARM9 and Linux operating system. The ARM9 will collect the sensor data and establish real time video monitoring along with motion detection feature. These captured video data as well as environmental data is transmitted over internet using embedded web server which is integrated within the ARM9 board.

  13. Real-Time Remote Diagnostic Monitoring Test-bed in JET

    Energy Technology Data Exchange (ETDEWEB)

    Castro, R. [Asociation Euratom/CIEMAT para Fusion, Madrid (Spain); Kneupner, K.; Purahoo, K. [EURATOM/UKAEA Fusion Association, Abingdon (United Kingdom); Vega, J.; Pereira, A.; Portas, A. [Association EuratomCIEMAT para Fusion, Madrid (Spain); De Arcas, G.; Lopez, J.M. [Universidad Politecnica de Madrid (Spain); Murari, A. [Consorzio RFX, Padova (Italy); Fonseca, A. [Associacao URATOM/IST, Lisboa (Portugal); Contributors, J.E. [JET-EFDA, Abingdon (United Kingdom)

    2009-07-01

    Based on the remote experimentation concept oriented to long pulse shots, a test-bed system has been implemented in JET. It integrates 2 functionalities. The first one is the real-time monitoring, on remote, of a reflectometer diagnostic, to visualize different data outputs and status information. The second one is the integration of dotJET (Diagnostic Overview Tool for JET), which internally provides at JET an overview about the current diagnostic systems state, in order to monitor, on remote, JET diagnostics status. The architecture of the system is formed by: the data generator components, the data distribution system, an access control service, and the client applications. In the test-bed there are two data generators: the acquisition equipment associated with the reflectometer diagnostic that generates data and status information, and dotJET server that centralize the access to the status information of JET diagnostics. The data distribution system has been implemented using a publishing-subscribing technology that receives data from data generators and redistributes them to client applications. And finally, for monitoring, a client application based on Java Web Start technology, and a dotJET client application have been used. There are 3 interesting results from this project. The first one is the analysis of different aspects (data formats, data frame rate, data resolution, etc) related with remote real-time diagnostic monitoring oriented to long pulse experiments. The second one is the definition and implementation of a flexible enough architecture, to be applied to different types of data generated from other diagnostics, and that fits with remote access requirements; and the third one is to have achieved a secure system, taking into account internal networks and firewalls aspects in JET, and securing the access from remote users. For this last issue, PAPI technology has been used, enabling access control based on user attributes, enabling mobile users to

  14. Remote handling of the blanket segments: testing of 1/3 scale mock-ups at the Robertino facility

    International Nuclear Information System (INIS)

    Maisonnier, D.; Amelotti, F.; Chiasera, A.; Gaggini, P.; Damiani, C.; Degli Esposti, L.; Gatti, G.; Castillo, E.; Caravati, D.; Farfalletti-Casali, F.; Gritzmann, P.; Ruiz, E.

    1995-01-01

    The remote replacement of blanket segments inside the vacuum vessel of a fusion reactor is probably the most complex task from the maintenance standpoint. Its success will rely on the definition of appropriate handling concepts and equipment, but also on a ''maintenance friendly'' reactor layout and blanket design. The key difficulty is the lack of rigidity of the segments which results in considerable deformations since they cannot be gripped above their centre of gravity. These deformations may be up to five times greater than the assembly clearance and one order of magnitude larger than the required positioning accuracy. Experimental activities have been undertaken to select appropriate handling devices and procedures, to assess the design of the components handled, and to review specific technical issues such as kinematics and dynamics performance, trajectory planning and control and sensors requirement for the handling devices. Work was performed in the Robertino facility where two handling concepts have been tested at a 1/3 scale. (orig.)

  15. Potential uses of remote handling and robotic techniques in the back end of the fuel cycle

    International Nuclear Information System (INIS)

    Reynolds, N.P.; Tabe, T.; Fenton, N.; Baumgartner, P.

    1984-01-01

    Atomic Energy of Canada Limited (AECL) is actively conducting research on used fuel immobilization, used fuel reprocessing, and nuclear fuel waste immobilization and disposal. This paper attempts to identify potential uses of robotics and remote handling techniques in these areas, where their adoption could lead to significant processing, economic and safety advantages

  16. Simulating and visualizing deflections of a remote handling mechanism

    International Nuclear Information System (INIS)

    Saarinen, Hannu; Hämäläinen, Vesa; Karjalainen, Jaakko; Määttä, Timo; Siuko, Mikko; Esqué, Salvador; Hamilton, David

    2013-01-01

    Highlights: ► An infinitesimal transformation represents elastic deflections. ► Equivalent spring factor is used to combine several deformations. ► Initial VR model accuracy improved from 80 to 5 mm. ► The deflection model is capable of adapting to changes in load at the end-effector. ► The algorithms and approach described are generic and can be adopted for other mechanisms. -- Abstract: Continuing ITER divertor second cassette (SC) remote handling (RH) test campaign has been carried out at divertor test platform (DTP2) in Finland. One of the goals has been to develop and implement efficient algorithms and software tools for simulating and visualizing for the operator the non-instrumented deflections of the RH mechanisms under loading conditions. Based on assumptions of the classical beam theory, the presented solution suggests utilization of an infinitesimal transformation to represent elastic deflections in a mechanical structure. Both structural analysis and measurements of the real structure are utilised during the process. The solution suggests one possible implementation strategy of a software component called structural simulator (SS), which is a software component of the remote handling control system (RHCS) architectural model specified by ITER organisation. Utilisation of the proposed SS necessitates modification of the initial virtual reality (VR) model of RH equipment to a format, which can visually represent the structural deflections. In practise this means adding virtual joints into the model. This will improve the accuracy of the VR visualization and will ensure that the virtual representation of the RH equipment closely aligns with the actual RH equipment. Cassette multifunctional mover (CMM) and second cassette end effector (SCEE) carrying SC were selected to be the initial target system for developing the approach. Demonstrations proved that the approach used can give high levels of accuracy even in complex structures such as the CMM

  17. Simulating and visualizing deflections of a remote handling mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Saarinen, Hannu, E-mail: hannu.saarinen@vtt.fi [VTT, Technical Research Centre of Finland, Tekniikankatu 1, 33720 Tampere (Finland); Hämäläinen, Vesa; Karjalainen, Jaakko; Määttä, Timo; Siuko, Mikko [VTT, Technical Research Centre of Finland, Tekniikankatu 1, 33720 Tampere (Finland); Esqué, Salvador [Fusion for Energy, Torres Diagonal Litoral B3, Josep Pla 2, 08019 Barcelona (Spain); Hamilton, David [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2013-10-15

    Highlights: ► An infinitesimal transformation represents elastic deflections. ► Equivalent spring factor is used to combine several deformations. ► Initial VR model accuracy improved from 80 to 5 mm. ► The deflection model is capable of adapting to changes in load at the end-effector. ► The algorithms and approach described are generic and can be adopted for other mechanisms. -- Abstract: Continuing ITER divertor second cassette (SC) remote handling (RH) test campaign has been carried out at divertor test platform (DTP2) in Finland. One of the goals has been to develop and implement efficient algorithms and software tools for simulating and visualizing for the operator the non-instrumented deflections of the RH mechanisms under loading conditions. Based on assumptions of the classical beam theory, the presented solution suggests utilization of an infinitesimal transformation to represent elastic deflections in a mechanical structure. Both structural analysis and measurements of the real structure are utilised during the process. The solution suggests one possible implementation strategy of a software component called structural simulator (SS), which is a software component of the remote handling control system (RHCS) architectural model specified by ITER organisation. Utilisation of the proposed SS necessitates modification of the initial virtual reality (VR) model of RH equipment to a format, which can visually represent the structural deflections. In practise this means adding virtual joints into the model. This will improve the accuracy of the VR visualization and will ensure that the virtual representation of the RH equipment closely aligns with the actual RH equipment. Cassette multifunctional mover (CMM) and second cassette end effector (SCEE) carrying SC were selected to be the initial target system for developing the approach. Demonstrations proved that the approach used can give high levels of accuracy even in complex structures such as the CMM

  18. Current and future technologies for remote monitoring in cardiology and evidence from trial data.

    Science.gov (United States)

    Acosta-Lobos, Andres; Riley, Jillian P; Cowie, Martin R

    2012-05-01

    All major manufacturers of implantable pacing or defibrillator technologies support remote monitoring of their devices. Integration of signals from several monitored variables can facilitate earlier detection of arrhythmia or technical problems, and can also identify patients at risk of deterioration. Meta-analyses of randomized studies of remote monitoring of heart failure using standalone systems suggest considerable clinical benefit when compared with usual care. However, there may be little to be gained by frequently monitoring patients with well-treated stable disease. Trials of implantable monitoring-only devices suggest that there is a subgroup of patients that may benefit from such remote monitoring. Remote monitoring is still not widely adopted due to a number of social, technological and reimbursement issues, but this is likely to change rapidly. Remote monitoring will not replace face-to-face clinical review, but it will be part of the solution to ever increasing numbers of patients with heart failure and/or an implantable device requiring expert input to their care.

  19. Prenatal Remote Monitoring of Women With Gestational Hypertensive Diseases: Cost Analysis.

    Science.gov (United States)

    Lanssens, Dorien; Vandenberk, Thijs; Smeets, Christophe Jp; De Cannière, Hélène; Vonck, Sharona; Claessens, Jade; Heyrman, Yenthel; Vandijck, Dominique; Storms, Valerie; Thijs, Inge M; Grieten, Lars; Gyselaers, Wilfried

    2018-03-26

    Remote monitoring in obstetrics is relatively new; some studies have shown its effectiveness for both mother and child. However, few studies have evaluated the economic impact compared to conventional care, and no cost analysis of a remote monitoring prenatal follow-up program for women diagnosed with gestational hypertensive diseases (GHD) has been published. The aim of this study was to assess the costs of remote monitoring versus conventional care relative to reported benefits. Patient data from the Pregnancy Remote Monitoring (PREMOM) study were used. Health care costs were calculated from patient-specific hospital bills of Ziekenhuis Oost-Limburg (Genk, Belgium) in 2015. Cost comparison was made from three perspectives: the Belgian national health care system (HCS), the National Institution for Insurance of Disease and Disability (RIZIV), and costs for individual patients. The calculations were made for four major domains: prenatal follow-up, prenatal admission to the hospital, maternal and neonatal care at and after delivery, and total amount of costs. A simulation exercise was made in which it was calculated how much could be demanded of RIZIV for funding the remote monitoring service. A total of 140 pregnancies were included, of which 43 received remote monitoring (30.7%) and 97 received conventional care (69.2%). From the three perspectives, there were no differences in costs for prenatal follow-up. Compared to conventional care, remote monitoring patients had 34.51% less HCS and 41.72% less RIZIV costs for laboratory test results (HCS: mean €0.00 [SD €55.34] vs mean €38.28 [SD € 44.08], Pmonitoring than conventional care (mean €209.22 [SD €213.32] vs mean €231.32 [SD 67.09], P=.02), but were 0.69% higher for RIZIV (mean €122.60 [SD €92.02] vs mean €121.78 [SD €20.77], Pmonitoring were mean €4233.31 (SD €3463.31) per person and mean €4973.69 (SD €5219.00) per person for conventional care (P=.82), a reduction of €740.38 (14

  20. Remote patient monitoring: Information reliability challenges

    NARCIS (Netherlands)

    Petkovic, M.

    2009-01-01

    An increasing number of extramural applications in the personal healthcare domain pose new challenges regarding the security of medical data. In this paper, we focus on remote patient monitoring systems and the issues around information reliability. In these systems medical data is not collected by

  1. System for remote routine monitoring of power equipment at TPP and NPP

    International Nuclear Information System (INIS)

    Kantsedalov, V.G.; Samojlenko, V.P.; Doroshenko, V.A.

    1988-01-01

    A system for remote routine monitoring of TPP and NPP pipeline metals is described. The principal functional unit of the system is the unit of remote routine methods and techniques for studying and monitoring the metal and properties. The system is equipped with 5 types of routine monitoring equipment: robots, remote aggregated complexes, periodical diagnostic monitors, other means of metal diagnostics (endoscopes, introscopes). All current information enters the unit for estimating and forecasting the service life of power unit, where it is compared with the standard indices of reliability, duravility and efficiency. The system considered permits to reduce significantly or minimize the scope of works on metal monitoring during overhauls, increase intermonitoring and interrepairing compaigns to 8 years

  2. Study on Remote Monitoring System of Crossing and Spanning Tangent Tower

    Science.gov (United States)

    Chen, Da-bing; Zhang, Nai-long; Zhang, Meng-ge; Wang, Ze-hua; Zhang, Yan

    2017-05-01

    In order to grasp the vibration state of overhead transmission line and ensure the operational security of transmission line, the remote monitoring system of crossing and spanning tangent tower was studied. By use of this system, the displacement, velocity and acceleration of the tower, and the local weather data are collected automatically, displayed on computer of remote monitoring centre through wireless network, real-time collection and transmission of vibration signals are realized. The applying results show that the system is excellent in reliability and accuracy and so on. The system can be used to remote monitoring of transmission tower of UHV power transmission lines and in large spanning areas.

  3. Wearable Sensors for Remote Health Monitoring.

    Science.gov (United States)

    Majumder, Sumit; Mondal, Tapas; Deen, M Jamal

    2017-01-12

    Life expectancy in most countries has been increasing continually over the several few decades thanks to significant improvements in medicine, public health, as well as personal and environmental hygiene. However, increased life expectancy combined with falling birth rates are expected to engender a large aging demographic in the near future that would impose significant  burdens on the socio-economic structure of these countries. Therefore, it is essential to develop cost-effective, easy-to-use systems for the sake of elderly healthcare and well-being. Remote health monitoring, based on non-invasive and wearable sensors, actuators and modern communication and information technologies offers an efficient and cost-effective solution that allows the elderly to continue to live in their comfortable home environment instead of expensive healthcare facilities. These systems will also allow healthcare personnel to monitor important physiological signs of their patients in real time, assess health conditions and provide feedback from distant facilities. In this paper, we have presented and compared several low-cost and non-invasive health and activity monitoring systems that were reported in recent years. A survey on textile-based sensors that can potentially be used in wearable systems is also presented. Finally, compatibility of several communication technologies as well as future perspectives and research challenges in remote monitoring systems will be discussed.

  4. Wearable Sensors for Remote Health Monitoring

    Directory of Open Access Journals (Sweden)

    Sumit Majumder

    2017-01-01

    Full Text Available Life expectancy in most countries has been increasing continually over the several few decades thanks to significant improvements in medicine, public health, as well as personal and environmental hygiene. However, increased life expectancy combined with falling birth rates are expected to engender a large aging demographic in the near future that would impose significant  burdens on the socio-economic structure of these countries. Therefore, it is essential to develop cost-effective, easy-to-use systems for the sake of elderly healthcare and well-being. Remote health monitoring, based on non-invasive and wearable sensors, actuators and modern communication and information technologies offers an efficient and cost-effective solution that allows the elderly to continue to live in their comfortable home environment instead of expensive healthcare facilities. These systems will also allow healthcare personnel to monitor important physiological signs of their patients in real time, assess health conditions and provide feedback from distant facilities. In this paper, we have presented and compared several low-cost and non-invasive health and activity monitoring systems that were reported in recent years. A survey on textile-based sensors that can potentially be used in wearable systems is also presented. Finally, compatibility of several communication technologies as well as future perspectives and research challenges in remote monitoring systems will be discussed.

  5. Monitoring water quality by remote sensing

    Science.gov (United States)

    Brown, R. L. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. A limited study was conducted to determine the applicability of remote sensing for evaluating water quality conditions in the San Francisco Bay and delta. Considerable supporting data were available for the study area from other than overflight sources, but short-term temporal and spatial variability precluded their use. The study results were not sufficient to shed much light on the subject, but it did appear that, with the present state of the art in image analysis and the large amount of ground truth needed, remote sensing has only limited application in monitoring water quality.

  6. Real-time remote diagnostic monitoring test-bed in JET

    International Nuclear Information System (INIS)

    Castro, R.; Kneupner, K.; Vega, J.; De Arcas, G.; Lopez, J.M.; Purahoo, K.; Murari, A.; Fonseca, A.; Pereira, A.; Portas, A.

    2010-01-01

    Based on the remote experimentation concept oriented to long pulse shots, a test-bed system has been implemented in JET. Its main functionality is the real-time monitoring, on remote, of a reflectometer diagnostic, to visualize different data outputs and status information. The architecture of the system is formed by: the data generator components, the data distribution system, an access control service, and the client applications. In the test-bed there is one data generator, which is the acquisition equipment associated with the reflectometer diagnostic that generates data and status information. The data distribution system has been implemented using a publishing-subscribing technology that receives data from data generators and redistributes them to client applications. And finally, for monitoring, a client application based on JAVA Web Start technology has been used. There are three interesting results from this project. The first one is the analysis of different aspects (data formats, data frame rate, data resolution, etc) related with remote real-time diagnostic monitoring oriented to long pulse experiments. The second one is the definition and implementation of an architecture, flexible enough to be applied to different types of data generated from other diagnostics, and that fits with remote access requirements. Finally, the third result is a secure system, taking into account internal networks and firewalls aspects of JET, and securing the access from remote users. For this last issue, PAPI technology has been used, enabling access control based on user attributes, enabling mobile users to monitor diagnostics in real-time, and enabling the integration of this service into the EFDA Federation (Castro et al., 2008 ).

  7. Real-time remote diagnostic monitoring test-bed in JET

    Energy Technology Data Exchange (ETDEWEB)

    Castro, R., E-mail: rodrigo.castro@ciemat.e [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain); Kneupner, K. [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Vega, J. [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain); De Arcas, G.; Lopez, J.M. [Universidad Politecnica de Madrid, Grupo I2A2, Madrid (Spain); Purahoo, K. [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Murari, A. [Associazione EURATOM-ENEA per la Fusione, Consorzio RFX, 4-35127 Padova (Italy); Fonseca, A. [Associacao EURATOM/IST, Lisbon (Portugal); Pereira, A.; Portas, A. [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain)

    2010-07-15

    Based on the remote experimentation concept oriented to long pulse shots, a test-bed system has been implemented in JET. Its main functionality is the real-time monitoring, on remote, of a reflectometer diagnostic, to visualize different data outputs and status information. The architecture of the system is formed by: the data generator components, the data distribution system, an access control service, and the client applications. In the test-bed there is one data generator, which is the acquisition equipment associated with the reflectometer diagnostic that generates data and status information. The data distribution system has been implemented using a publishing-subscribing technology that receives data from data generators and redistributes them to client applications. And finally, for monitoring, a client application based on JAVA Web Start technology has been used. There are three interesting results from this project. The first one is the analysis of different aspects (data formats, data frame rate, data resolution, etc) related with remote real-time diagnostic monitoring oriented to long pulse experiments. The second one is the definition and implementation of an architecture, flexible enough to be applied to different types of data generated from other diagnostics, and that fits with remote access requirements. Finally, the third result is a secure system, taking into account internal networks and firewalls aspects of JET, and securing the access from remote users. For this last issue, PAPI technology has been used, enabling access control based on user attributes, enabling mobile users to monitor diagnostics in real-time, and enabling the integration of this service into the EFDA Federation (Castro et al., 2008 ).

  8. A remote data access architecture for home-monitoring health-care applications.

    Science.gov (United States)

    Lin, Chao-Hung; Young, Shuenn-Tsong; Kuo, Te-Son

    2007-03-01

    With the aging of the population and the increasing patient preference for receiving care in their own homes, remote home care is one of the fastest growing areas of health care in Taiwan and many other countries. Many remote home-monitoring applications have been developed and implemented to enable both formal and informal caregivers to have remote access to patient data so that they can respond instantly to any abnormalities of in-home patients. The aim of this technology is to give both patients and relatives better control of the health care, reduce the burden on informal caregivers and reduce visits to hospitals and thus result in a better quality of life for both the patient and his/her family. To facilitate their widespread adoption, remote home-monitoring systems take advantage of the low-cost features and popularity of the Internet and PCs, but are inherently exposed to several security risks, such as virus and denial-of-service (DoS) attacks. These security threats exist as long as the in-home PC is directly accessible by remote-monitoring users over the Internet. The purpose of the study reported in this paper was to improve the security of such systems, with the proposed architecture aimed at increasing the system availability and confidentiality of patient information. A broker server is introduced between the remote-monitoring devices and the in-home PCs. This topology removes direct access to the in-home PC, and a firewall can be configured to deny all inbound connections while the remote home-monitoring application is operating. This architecture helps to transfer the security risks from the in-home PC to the managed broker server, on which more advanced security measures can be implemented. The pros and cons of this novel architecture design are also discussed and summarized.

  9. Development of a virtual reality simulator for the ITER blanket remote handling system

    International Nuclear Information System (INIS)

    Takeda, Nobukazu; Kakudate, Satoshi; Nakahira, Masataka; Shibanuma, Kiyoshi; Tesini, Alessandro

    2008-01-01

    The authors developed a simulator for the remote maintenance system of the ITER blanket using a general 3D robotic simulation software, ENVISION. The simulator is connected to the control system of the manipulator, which was developed as part of the blanket maintenance system during the Engineering Design Activity (EDA), and can reconstruct the positions of the manipulator and blanket module using position data transmitted from motors through a LAN. In addition, it can provide virtual visual information (e.g., about the interface structures behind the blanket module) by making the module transparent on the screen. It can also be used for confirming a maintenance sequence before the actual operation. The simulator will be modified further, with addition of other necessary functions, and will finally serve as a prototype of the actual simulator for the blanket remote handling system, which will be procured as part of an in-kind contribution

  10. Advanced dust monitoring system applied to new TRU handling facility of JAERI

    International Nuclear Information System (INIS)

    Yabuta, H.; Shigeta, Y.; Sawahata, K.; Hasegawa, K.

    1993-01-01

    In JAERI, a large, scale multipurpose facility is under construction, which consists of a TRU waste management testing installation, a solution fuel treatment installation and critical assemblies with uranium and/or plutonium solution fuel. The facility is also equipped with a lot of gloveboxes for handling and treatment of solution fuel and hot cells for research on reprocessing process. As there may be a relatively high potential of air contamination, it is important to monitor air contamination effectively and efficiently. An advanced dust monitoring system was introduced for convenience of handling and automatical measurement of filter papers, by developing a filter-holder with an IC memory and a radioactivity measuring device with an automatic filter-holder changing mechanism as a part of a centralized monitoring system with a computer

  11. Synthetic viewing: comprehensive work representation, making remote work clearer to the operator

    International Nuclear Information System (INIS)

    Leinemann, K.; Katz, F.; Knueppel, H.; Olbrich, W.; Maisonnier, D.

    1995-01-01

    Maintenance work in fusion plants such as the ITER plant will be carried out fully remotely, without any direct view on to the work scene. The basic sources of information about the state of the work are video monitors. In a first development step, this viewing channel was enhanced by three-dimensional computer graphics controlled by signals of motion sensors (such as joint angle sensors) of the real maintenance devices. However, experience has shown that more information is required about the status of all pieces of equipment involved and about the status of the entire handling task, if the work is to be done properly. Viewing for remote handling applications needs to include the display of such status information in a suitable form. Of special importance in this sense is the representation of the work procedures on the computer display, enabling the operator to grasp at a glance the actual state of the work and the details about the subtask to be executed next. The tool providing this ''synthetic'' viewing but also task-suited to planning, training and controlling support for the operator is the remote handling workstation. The prototype of a remote handling workstation was successfully used in the first complete Karlsruhe experiment for in-torus handling. (orig.)

  12. Remote maintenance development for ITER

    International Nuclear Information System (INIS)

    Tada, Eisuke; Shibanuma, Kiyoshi

    1997-01-01

    This paper both describes the overall design concept of the ITER remote maintenance system, which has been developed mainly for use with in-vessel components such as divertor and blanket, and outlines of the ITER R and D program, which has been established to develop remote handling equipment/tools and radiation hard components. In ITER, the reactor structures inside cryostat have to be maintained remotely because of activation due to DT operation. Therefore, remote-handling technology is fundamental, and the reactor-structure design must be made consistent with remote maintainability. The overall maintenance scenario and design concepts of the required remote handling equipment/tools have been developed according to their maintenance classification. Technologies are also being developed to verify the feasibility of the maintenance design and include fabrication and testing of a fullscale remote-handling equipment/tools for in-vessel maintenance. (author)

  13. Safeguards equipment of the future: Integrated monitoring systems and remote monitoring

    International Nuclear Information System (INIS)

    Sonnier, C.S.; Johnson, C.S.

    1994-01-01

    From the beginning, equipment to support IAEA Safeguards could be characterized as that which is used to measure nuclear material, Destructive Assay (DA) and Non Destructive Assay (NDA), and that which is used to provide continuity of knowledge between inspection intervals, Containment ampersand Surveillance (C/S). C/S equipment has often been thought of as Cameras and Seals, with a limited number of monitors being employed as they became available. In recent years, technology has advanced at an extremely rapid rate, and continues to do so. The traditional film cameras are being replaced by video equipment, and fiber optic and electronic seals have come into rather widespread use. Perhaps the most interesting aspect of this evolution, and that which indicates the wave of the future without much question, is the integration of video surveillance and electronic seals with a variety of monitors. This is demonstrated by safeguards systems which are installed in several nuclear facilities in France, Germany, Japan, the UK, the USA, and elsewhere. The terminology of Integrated Monitoring Systems (IMS) has emerged, with the employment of network technology capable of interconnecting all desired elements in a very flexible manner. Also, the technology for transmission of a wide variety of information to off-site locations, termed Remote Monitoring, is in widespread industrial use, requiring very little adaptation for safeguards use. This paper examines the future of the Integrated Monitoring Systems and Remote Monitoring in International Safeguards, including technical and other related factors

  14. Remote health monitoring for elderly through interactive television

    Science.gov (United States)

    2012-01-01

    Background Providing remote health monitoring to specific groups of patients represents an issue of great relevance for the national health systems, because of the costs related to moving health operators, the time spent to reach remote sites, and the high number of people needing health assistance. At the same time, some assistance activities, like those related to chronical diseases, may be satisfied through a remote interaction with the patient, without a direct medical examination. Methods Moving from this considerations, our paper proposes a system architecture for the provisioning of remote health assistance to older adults, based on a blind management of a network of wireless medical devices, and an interactive TV Set Top Box for accessing health related data. The selection of TV as the interface between the user and the system is specifically targeted to older adults. Due to the private nature of the information exchanged, a certified procedure is implemented for data delivery, through the use of non conditional smart cards. All these functions may be accomplished through a proper design of the system management, and a suitable interactive application. Results The interactive application acting as the interface between the user and the system on the TV monitor has been evaluated able to help readability and clear understanding of the contents and functions proposed. Thanks to the limited amount of data to transfer, even a Set Top Box equipped with a traditional PSTN modem may be used to support the proposed service at a basic level; more advanced features, like audio/video connection, may be activated if the Set Top Box enables a broadband connection (e.g. ADSL). Conclusions The proposed layered architecture for a remote health monitoring system can be tailored to address a wide range of needs, according with each patient’s conditions and capabilities. The system exploits the potentialities offered by Digital Television receivers, a friendly MHP interface

  15. Simulation-based design process for the verification of ITER remote handling systems

    International Nuclear Information System (INIS)

    Sibois, Romain; Määttä, Timo; Siuko, Mikko; Mattila, Jouni

    2014-01-01

    Highlights: •Verification and validation process for ITER remote handling system. •Simulation-based design process for early verification of ITER RH systems. •Design process centralized around simulation lifecycle management system. •Verification and validation roadmap for digital modelling phase. -- Abstract: The work behind this paper takes place in the EFDA's European Goal Oriented Training programme on Remote Handling (RH) “GOT-RH”. The programme aims to train engineers for activities supporting the ITER project and the long-term fusion programme. One of the projects of this programme focuses on the verification and validation (V and V) of ITER RH system requirements using digital mock-ups (DMU). The purpose of this project is to study and develop efficient approach of using DMUs in the V and V process of ITER RH system design utilizing a System Engineering (SE) framework. Complex engineering systems such as ITER facilities lead to substantial rise of cost while manufacturing the full-scale prototype. In the V and V process for ITER RH equipment, physical tests are a requirement to ensure the compliance of the system according to the required operation. Therefore it is essential to virtually verify the developed system before starting the prototype manufacturing phase. This paper gives an overview of the current trends in using digital mock-up within product design processes. It suggests a simulation-based process design centralized around a simulation lifecycle management system. The purpose of this paper is to describe possible improvements in the formalization of the ITER RH design process and V and V processes, in order to increase their cost efficiency and reliability

  16. Remote maintenance development for ITER

    International Nuclear Information System (INIS)

    Tada, Eisuke; Shibanuma, Kiyoshi

    1998-01-01

    This paper describes the overall ITER remote maintenance design concept developed mainly for in-vessel components such as diverters and blankets, and outlines the ITER R and D program to develop remote handling equipment and radiation hard components. Reactor structures inside the ITER cryostat must be maintained remotely due to DT operation, making remote handling technology basic to reactor design. The overall maintenance scenario and design concepts have been developed, and maintenance design feasibility, including fabrication and testing of full-scale in-vessel remote maintenance handling equipment and tool, is being verified. (author)

  17. Remote maintenance development for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Tada, Eisuke [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Shibanuma, Kiyoshi

    1998-04-01

    This paper describes the overall ITER remote maintenance design concept developed mainly for in-vessel components such as diverters and blankets, and outlines the ITER R and D program to develop remote handling equipment and radiation hard components. Reactor structures inside the ITER cryostat must be maintained remotely due to DT operation, making remote handling technology basic to reactor design. The overall maintenance scenario and design concepts have been developed, and maintenance design feasibility, including fabrication and testing of full-scale in-vessel remote maintenance handling equipment and tool, is being verified. (author)

  18. Monitoring of airborne contamination during the handling of technetium-99m and radioiodine

    International Nuclear Information System (INIS)

    Eadie, A.S.; Horton, P.W.; Hilditch, T.E.

    1980-01-01

    Measurements have been made using an air sampler to measure airborne radioactivity produced during the routine handling of large activities of technetium-99m, iodine-125 and iodine-131. The results indicate that 99 Tcsup(m) can be safely handled in environments without direct exhaust of the ventilated air but that 125 I and 131 I should always be handled in a ventilated environment such as a fume cupboard or a down-draught work-station of the total-exhaust type. Monitoring of thyroid uptake proves to be the most reliable means of monitoring airborne contamination by these radionuclides, but burdens and radiation doses for typical procedures are well within the maximum permissible limits of the Code of Practice for the Protection of Persons from Ionizing Radiation arising from Medical and Dental Use. (author)

  19. Hyperspectral remote sensing for light pollution monitoring

    Directory of Open Access Journals (Sweden)

    P. Marcoionni

    2006-06-01

    Full Text Available industries. In this paper we introduce the results from a remote sensing campaign performed in September 2001 at night time. For the first time nocturnal light pollution was measured at high spatial and spectral resolution using two airborne hyperspectral sensors, namely the Multispectral Infrared and Visible Imaging Spectrometer (MIVIS and the Visible InfraRed Scanner (VIRS-200. These imagers, generally employed for day-time Earth remote sensing, were flown over the Tuscany coast (Italy on board of a Casa 212/200 airplane from an altitude of 1.5-2.0 km. We describe the experimental activities which preceded the remote sensing campaign, the optimization of sensor configuration, and the images as far acquired. The obtained results point out the novelty of the performed measurements and highlight the need to employ advanced remote sensing techniques as a spectroscopic tool for light pollution monitoring.

  20. REMOTE AREA RADIATION MONITORING (RARM) ALTERNATIVES ANALYSIS

    International Nuclear Information System (INIS)

    NELSON RL

    2008-01-01

    The Remote Area Radiation Monitoring (RARM) system will be used to provide real-time radiation monitoring information to the operations personnel during tank retrieval and transfer operations. The primary focus of the system is to detect potential anomalous (waste leaks) or transient radiological conditions. This system will provide mobile, real-time radiological monitoring, data logging, and status at pre-selected strategic points along the waste transfer route during tank retrieval operations. The system will provide early detection and response capabilities for the Retrieval and Closure Operations organization and Radiological Control personnel

  1. Evaluation of remote monitoring at the Oak Ridge HEU storage vault -- First thoughts and final application

    International Nuclear Information System (INIS)

    Sheely, K.B.; Whitaker, J.M.

    1996-01-01

    Remote monitoring provides a more timely and comprehensive way to meet national and international requirements for monitoring nuclear material inventories. Unattended monitoring technologies could be used to meet national needs for nuclear material safety, protection, control and accountability. Unattended systems possessing a remote data transmission capability could be used to meet international requirements for nuclear material safeguards and transparency. Even though more enhancements are required to improve system reliability, remote monitoring''s future potential seems great. The key questions are: (1) how will remote monitoring systems be used (configuration and operation); (2) how effective will the system be (vs. current activities); and (3) how much will it cost. This paper provides preliminary answers to these questions based on the experience gained from a joint IAEA-United States Support Program (USSP) task to evaluate remote monitoring at the Oak Ridge HEU Storage vault. This paper also draws on experience gained from US involvement in other remote monitoring projects

  2. Wearable technologies for soldier first responder assessment and remote monitoring (Conference Presentation)

    Science.gov (United States)

    Lee, Stephen

    2017-05-01

    Embedded combat medical personnel require accurate and timely biometric data to ensure appropriate life saving measures. Injured warfighter's operating in remote environments require both assessment and monitoring often while still engaged with enemy forces. Small wearable devices that can be placed on injured personnel capable of collecting essential biometric data, including the capacity to remotely deliver collected data in real-time, would allow additional medical monitoring and triage that will greatly help the medic in the battlefield. These new capabilities will provide a force multiplier through remote assessment, increased survivability, and in freeing engaged warfighter's from direct monitoring thus improving combat effectiveness and increasing situational awareness. Key questions around what information does the medic require and how effective it can be relayed to support personnel are at their early stages of development. A low power biometric wearable device capable of reliable electrocardiogram (EKG) rhythm, temperature, pulse, and other vital data collection which can provide real-time remote monitoring are in development for the Soldier.

  3. Application of GPRS and GIS in Boiler Remote Monitoring System

    OpenAIRE

    Hongchao Wang; Yifeng Wu

    2012-01-01

    Application of GPRS and GIS in boiler remote monitoring system was designed in this paper by combining the advantage of GPRS and GIS in remote data transmission with configuration monitoring technology. The detail information of the operating conditions of the industrial boiler can be viewed by marking the location of boiler on the electronic map dynamically which can realize the unified management for industrial boiler of a region or city conveniently. Experimental application show that the ...

  4. The ITER remote maintenance system

    International Nuclear Information System (INIS)

    Tesini, A.; Palmer, J.

    2007-01-01

    ITER is a joint international research and development project that aims to demonstrate the scientific and technological feasibility of fusion power. As soon as the plasma operation begins using tritium, the replacement of the vacuum vessel internal components will need to be done with remote handling techniques. To accomplish these operations ITER has equipped itself with a Remote Maintenance System; this includes the Remote Handling equipment set and the Hot Cell facility. Both need to work in a cooperative way, with the aim of minimizing the machine shutdown periods and to maximize the machine availability. The ITER Remote Handling equipment set is required to be available, robust, reliable and retrievable. The machine components, to be remotely handle-able, are required to be designed simply so as to ease their maintenance. The baseline ITER Remote Handling equipment is described. The ITER Hot Cell Facility is required to provide a controlled and shielded area for the execution of repair operations (carried out using dedicated remote handling equipment) on those activated components which need to be returned to service, inside the vacuum vessel. The Hot Cell provides also the equipment and space for the processing and temporary storage of the operational and decommissioning radwaste. A conceptual ITER Hot Cell Facility is described. (orig.)

  5. Vulnerability analysis on a VPN for a remote monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Soo; Kim, Jong Soo; Park, Il Jin; Min, Kyung Sik; Choi, Young Myung [KAERI, Taejon (Korea, Republic of)

    2004-08-01

    14 Pressurized Water Reactors(PWR) in Korea use a Remote Monitoring System(RMS), which have been in Korea Since 1998. A memorandum of understanding on remote monitoring, based on enhanced cooperation on PWRs, was signed at the 10th safeguards review meeting in October 2001 between the International Atomic Energy Agency(IAEA) and Ministry Of Science and Technology(MOST). Thereafter, all PWR power plants applied for remote monitoring systems. However, the existing method is high cost (involving expensive telephone costs). So, it was eventually applied to an internet system for remote monitoring. According to the internet-based Virtual Private Network(VPN) applied to remote monitoring, the Korea Atomic Energy Research Institute(KAERI) came to an agreement with the IAEA, using a Member State Support Program(MSSP). Phase I is a lab test. Phase II is to apply it to a target power plant. Phase III is to apply it to all the power plants. This paper reports on the penetration testing of phase I. Phase I involved both domestic testing and international testing. The target of the testing consisted of a Surveillance Digital Integrated system(SDIS) server, IAEA server and TCNC(Technology Center for Nuclear Control) server. In each system, Virtual Private Network(VPN) system hardware was installed. The penetration of the three systems and the three VPNs was tested. The domestic test involved two hacking scenarios: hacking from the outside and hacking from the inside. The international test involved one scenario from the outside. The results of tests demonstrated that the VPN hardware provided a good defense against hacking. We verified that there was no invasion of the system (SDIS server and VPN; TCNC server and VPN; and IAEA server and VPN) via penetration testing.

  6. Vulnerability analysis on a VPN for a remote monitoring system

    International Nuclear Information System (INIS)

    Kim, Jung Soo; Kim, Jong Soo; Park, Il Jin; Min, Kyung Sik; Choi, Young Myung

    2004-01-01

    14 Pressurized Water Reactors(PWR) in Korea use a Remote Monitoring System(RMS), which have been in Korea Since 1998. A memorandum of understanding on remote monitoring, based on enhanced cooperation on PWRs, was signed at the 10th safeguards review meeting in October 2001 between the International Atomic Energy Agency(IAEA) and Ministry Of Science and Technology(MOST). Thereafter, all PWR power plants applied for remote monitoring systems. However, the existing method is high cost (involving expensive telephone costs). So, it was eventually applied to an internet system for remote monitoring. According to the internet-based Virtual Private Network(VPN) applied to remote monitoring, the Korea Atomic Energy Research Institute(KAERI) came to an agreement with the IAEA, using a Member State Support Program(MSSP). Phase I is a lab test. Phase II is to apply it to a target power plant. Phase III is to apply it to all the power plants. This paper reports on the penetration testing of phase I. Phase I involved both domestic testing and international testing. The target of the testing consisted of a Surveillance Digital Integrated system(SDIS) server, IAEA server and TCNC(Technology Center for Nuclear Control) server. In each system, Virtual Private Network(VPN) system hardware was installed. The penetration of the three systems and the three VPNs was tested. The domestic test involved two hacking scenarios: hacking from the outside and hacking from the inside. The international test involved one scenario from the outside. The results of tests demonstrated that the VPN hardware provided a good defense against hacking. We verified that there was no invasion of the system (SDIS server and VPN; TCNC server and VPN; and IAEA server and VPN) via penetration testing

  7. Synergies of multiple remote sensing data sources for REDD+ monitoring

    NARCIS (Netherlands)

    Sy, de V.; Herold, M.; Achard, F.; Asner, G.P.; Held, A.; Kellndorfer, J.; Verbesselt, J.

    2012-01-01

    Remote sensing technologies can provide objective, practical and cost-effective solutions for developing and maintaining REDD+ monitoring systems. This paper reviews the potential and status of available remote sensing data sources with a focus on different forest information products and synergies

  8. Satellite Remote Sensing for Monitoring and Assessment

    Science.gov (United States)

    Remote sensing technology has the potential to enhance the engagement of communities and managers in the implementation and performance of best management practices. This presentation will use examples from U.S. numeric criteria development and state water quality monitoring prog...

  9. The JET experience with remote handling equipment and future prospects

    International Nuclear Information System (INIS)

    Raimondi, T.

    1989-01-01

    The commissioning and testing of numerous pieces of equipment are now in progress at JET. Two microprocessor controlled force feedback MASCOT IV servomanipulators have shown comparable characteristics to those of the previous analogue types. Teach and repeat software permits precision welding and repetitive operations in a robotics mode. Other computer aids are planned to improve the man-machine interface: Tool-weight compensation, constraints along preferred lines or planes, automatic tracking of the TV cameras. The in-vessel transporter, provided with 5 vertical hinges, a pan-tilt-roll extension and special purpose end effectors, has been used under direct visual control to install 32 toroidal limiters and 8 radio frequency antennae. Test of remote installation in teach and repeat were done, using the JET spare octant as a mock-up, achieving repeatability of better than 5 mm. A considerable number of special remote handling tools were used inside the vessel hands-on to align, cut and weld diagnostics ports and water pipes. The cutting and welding trolleys were used hands-on, on a total of 250 m of lip joints. The ex-vessel transporter, a crane-mounted vertical telescope, 17 m high with a 10 m horizontal arm, is being manufactured. It will be equipped with manipulator and TV systems and controlled via joystick or keyboard or in teach and repeat. Image processing for collision avoidance is being studied. A low level transporter was used for turbo-pump replacement and is now being equipped with remote control. Mock-up work has started on the replacement of the Neutral Injector sources. Bench tests on flanges, heating jackets and connectors are being done to identify refinements needed. The in-vessel inspection system has been used at high temperature in vacuum. (orig.)

  10. The Jet experience with remote handling equipment and future prospects

    International Nuclear Information System (INIS)

    Raimondi, T.

    1989-01-01

    The commissioning and testing of numerous pieces of equipment are now in progress at JET. Two microprocessor controlled force feedback MASCOT IV servomanipulators have shown comparable characteristics to those of the previous analogue types. Teach and repeat software permits precision welding and repetitive operations in a robotics mode. Other computer aids are planned to improve the man-machine interface: tool-weight compensation, constraints along preferred lines or planes, automatic tracking of the TV cameras. The in-vessel transporter, provided with 5 vertical hinges, a pan-tilt-roll extension and special purpose end effectors, has been used under direct visual control to install 32 toroidal limiters and 8 radio frequency antennae. Tests of remote installation in teach and repeat were done, using the JET spare octant as a mock-up, achieving repeatability of better than 5mm. A considerable number of special remote handling tools were used inside the vessel hands-on to align, cut and weld diagnostics ports and water pipes. The cutting and welding trolleys were used hands-on, on a total of 250m of lip joints. The ex-vessel transporter, a crane-mounted vertical telescope, 17m high with a 10m horizontal arm, is being manufactured. It will be equipped with manipulator and TV systems and controlled via joystick or keyboard or in teach and repeat. Image processing for collision avoidance is being studied. A low level transporter was used for turbo-pump replacement and is now being equipped with remote control. Mock-up work has started on the replacement of the Neutral Injector sources. Bench tests on flanges, heating jackets and connectors are being done to identify refinements needed. The in-vessel inspection system has been used at high temperature in vacuum

  11. The JET experience with remote handling equipment and future prospects

    International Nuclear Information System (INIS)

    Raimondi, T.

    1989-01-01

    The commissioning and testing of numerous pieces of equipment are now in progress at JET. Two microprocessor controlled force feedback MASCOT IV servomanipulators have shown comparable characteristics to those of the previous analogue types. Teach and repeat software permits precision welding and repetitive operations in a robotics mode. Other computer aids are planned to improve the man-machine interface: tool-weigth compensation, constraints along preferred lines or planes, automatic tracking of the TV cameras. The in-vessel transporter, provided with 5 vertical hinges, a pan-tilt-roll extension and special purpose end effectors, has been used under direct visual control to install 32 toroidal limiters and 8 radio frequency antennae. Tests of remote installation in teach and repeat were done, using the JET spare octant as a mock-up, achieving repeatability of better than 5 mm. A considerable number of special remote handling tools were used inside the vessel hands-on to align, cut and weld diagnostics ports and water pipes. The cutting and welding trolleys were used hands-on, on a total of 250 m of lip joints. The ex-vessel transporter, a crane-mounted vertical telescope, 17 m high with a 10 m horizontal arm, is being manufactured. it will be equipped with manipulator and TV systems and controlled via joystick or keyboard or in teach and repeat. image processing for collision avoidance is being studied. A low level transporter was used for turbo-pump replacement and is now being equipped with remote control. Mock-up work has started on the replacement of the Neutral Injector sources. Bench tests on flanges, heating jackets and connectors are being done to identify refinements needed. The in-vessel inspection system has been used at high temperature in vacuum. (author). 14 refs.; 12 figs

  12. Novel remote monitoring platform for RES-hydrogen based smart microgrid

    International Nuclear Information System (INIS)

    González, I.; Calderón, A.J.; Andújar, J.M.

    2017-01-01

    Highlights: • A remote monitoring platform is developed to monitor an experimental smart microgrid. • Smart microgrid integrates renewable energy sources (solar and wind) and hydrogen. • The platform is implemented using open-source tool Easy Java/Javascript Simulations. • Remote user accesses online to graphical/numerical information of all components. • Results show proper operation of the SMG and prove effective real-time monitoring. - Abstract: In the context of the future power grids – Smart Grids (SGs) – Smart MicroGrids (SMGs) play a paramount role. These ones are very specific portions of the SGs that deal with integration of small-rated distributed energy and storage resources closer to the loads – chiefly within the distribution domain. Data acquisition and monitoring tasks are vital functions that must be developed at every stage of the grid for a proper operation. This paper presents a remote monitoring platform (RMP) to monitor an experimental SMG. It integrates Renewable Energy Sources (RESs) (solar and wind) and hydrogen to operate in isolated regime. The RMP has been developed using the open-source authoring tool Easy Java/Javascript Simulations (EJsS). The interface has been designed to be intuitive and easy-to-use, providing real-time information of all the involved magnitudes over the network. Scalability, easy development, portability and cost effective are the main features of the proposed framework. The microgrid and the proposed monitoring platform are described and the successful results are reported. The remote user executes a ready-to-use file with low computational requirements and is enabled to graphically and numerically track the SMG behaviour. These results prove the suitability of the RMP as an effective means for continuous visualization of the coordinated energy flows of a real SMG.

  13. Improving Remote Health Monitoring: A Low-Complexity ECG Compression Approach.

    Science.gov (United States)

    Elgendi, Mohamed; Al-Ali, Abdulla; Mohamed, Amr; Ward, Rabab

    2018-01-16

    Recent advances in mobile technology have created a shift towards using battery-driven devices in remote monitoring settings and smart homes. Clinicians are carrying out diagnostic and screening procedures based on the electrocardiogram (ECG) signals collected remotely for outpatients who need continuous monitoring. High-speed transmission and analysis of large recorded ECG signals are essential, especially with the increased use of battery-powered devices. Exploring low-power alternative compression methodologies that have high efficiency and that enable ECG signal collection, transmission, and analysis in a smart home or remote location is required. Compression algorithms based on adaptive linear predictors and decimation by a factor B / K are evaluated based on compression ratio (CR), percentage root-mean-square difference (PRD), and heartbeat detection accuracy of the reconstructed ECG signal. With two databases (153 subjects), the new algorithm demonstrates the highest compression performance ( CR = 6 and PRD = 1.88 ) and overall detection accuracy (99.90% sensitivity, 99.56% positive predictivity) over both databases. The proposed algorithm presents an advantage for the real-time transmission of ECG signals using a faster and more efficient method, which meets the growing demand for more efficient remote health monitoring.

  14. Improving Remote Health Monitoring: A Low-Complexity ECG Compression Approach

    Directory of Open Access Journals (Sweden)

    Mohamed Elgendi

    2018-01-01

    Full Text Available Recent advances in mobile technology have created a shift towards using battery-driven devices in remote monitoring settings and smart homes. Clinicians are carrying out diagnostic and screening procedures based on the electrocardiogram (ECG signals collected remotely for outpatients who need continuous monitoring. High-speed transmission and analysis of large recorded ECG signals are essential, especially with the increased use of battery-powered devices. Exploring low-power alternative compression methodologies that have high efficiency and that enable ECG signal collection, transmission, and analysis in a smart home or remote location is required. Compression algorithms based on adaptive linear predictors and decimation by a factor B / K are evaluated based on compression ratio (CR, percentage root-mean-square difference (PRD, and heartbeat detection accuracy of the reconstructed ECG signal. With two databases (153 subjects, the new algorithm demonstrates the highest compression performance ( CR = 6 and PRD = 1.88 and overall detection accuracy (99.90% sensitivity, 99.56% positive predictivity over both databases. The proposed algorithm presents an advantage for the real-time transmission of ECG signals using a faster and more efficient method, which meets the growing demand for more efficient remote health monitoring.

  15. Concentration of remote-handled, transuranic, sodium nitrate-based sludge using agitated thin-film evaporators

    International Nuclear Information System (INIS)

    Walker, J.F. Jr.; Youngblood, E.L.; Berry, J.B.; Pen, Ben-Li

    1991-01-01

    The Waste Handling and Packaging Plant (WHPP) is being designed at Oak Ridge National Laboratory (ORNL) to prepared transuranic waste for final disposal. Once operational, this facility will process, package, and certify remote-handled transuranic waste for ultimate shipment and disposal at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. One of the wastes that will be handled at WHIPP is the transuranic sludge currently stored at ORNL in eight 50,000-gal underground tanks. The use of an Agitated Thin-Film Evaporator (ATFE) for concentration of this waste is being investigated. Tests have shown that the ATFE can be used to produce a thick slurry, a powder, or a fused salt. A computer model developed at the Savannah River Plant (SRP) to simulate the operation of ATFE's on their waste is being modified for use on the ORNL transuranic sludge. This paper summarizes the results of the test with the ATFEs to date, discusses the changes in the SRP model necessary to use this model with the ORNL waste, and compares the results of the model with the actual data taken from the operation of ATFEs at vendors' test facilities. 8 refs., 1 fig., 3 tabs

  16. Joint Working Group-39, Manufacturing Technology Subworking Group-F, remote handling and automation

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, R.D.

    1995-02-01

    The terms of reference were reviewed and continue to encompass the scope of activities of the SUBWOG. No revisions to the terms of reference were proposed. The list of site contacts who should receive copies of SUBWOG correspondence and meeting minutes was reviewed and updated. Documents exchanged related to the meeting include: Minutes of the sixth SUBOG 39F meeting; transactions of the fifth topical meeting on robotics and remote handling; data on manipulators was forwarded to LLNL from the robotics group at AEA Harwell; and the specifications of the duct remediation robot from the Rocky Flats Plant.

  17. A wide range gamma monitor with digital display for remote monitoring

    International Nuclear Information System (INIS)

    Risbud, V.H.; Thiagarajan, A.; Gangadharan, P.

    1976-01-01

    A wide range gamma monitor designed for remote monitoring in nuclear facilities is described. The instrument consists of two GM detectors and pre-amplifiers connected by a long coaxial cable to the power supply, scalers and timers and display devices. Automatic selection of detectors range of exposure rate and display (nixie) are achieved with this set up, radiation levels in active areas can easily be displayed in the control room. Other advantages are also pointed out. (A.K.)

  18. Remote handling of the blanket segments: Testing of 1/3 scale mock-ups on the ROBERTINO facility

    International Nuclear Information System (INIS)

    Maisonnier, D.; Amelotti, F.; Chiasera, A.

    1994-01-01

    The remotized replacement of the blanket segments inside the Vacuum Vessel of a fusion reactor is one of the critical tasks for reactor components design, operational procedures, and safety. This open-quotes hostile environmentclose quotes task must be accomplished by a specific Blanket Handling Device, with a grasping device acting as open-quotes end-effectorclose quotes, because of intervention complexity, of components dimensions and weights, and of consequences of possible accidents during the blanket segments handling operations. Therefore, specific support experimental studies in this field appear to be necessary in order to: select appropriate blanket handling devices and procedures; assess the design of all components involved in the handling operations; perform checks in all field related to the robotized handling control (kinematics and dynamics of the grasping device trajectory planning and motion control, sensing and intelligence of the blanket handling devices, etc.); improve reliability and safety for the replacement sequences; give a realistic estimation of the time duration of the replacement duration. During the test phase, handling operations were carried out on the blanket mock-ups by means of different gripping devices. The operations were driven in the control room by means of the Motion command computer and the real time sensing data display allowed operations' control. The results were analyzed by charting the sensors' data

  19. Remote sensing for environmental monitoring and resource management. Volume 2

    International Nuclear Information System (INIS)

    1992-01-01

    The subject of this volume is remote sensing for environmental monitoring and resource management. This session is divided in eight parts. First part is on general topics, methodology and meteorology. Second part is on geology, environment and land cover. Third part is on disaster monitoring. Fourth part is on operational status of remote sensing. Fifth part is on coastal zones and inland waters. Sixth and seventh parts are on forestry and agriculture. Eighth part is on instrumentation and systems. (A.B.). refs., figs., tabs

  20. Remote intelligent nuclear facility monitoring in LabVIEW

    International Nuclear Information System (INIS)

    Kucewicz, J.C.; Argo, P.E.; Caffrey, M.; Loveland, R.C.; McNeil, P.J.

    1996-01-01

    A prototype system implemented in LabVIEW for the intelligent monitoring of the movement of radioactive' material within a nuclear facility is presented. The system collects and analyzes radiation sensor and video data to identify suspicious movement of material within the facility. The facility system also transmits wavelet- compressed data to a remote system for concurrent monitoring. 2 refs., 2 figs

  1. Online Remote Recording and Monitoring of Sensor Data Using DTMF Technology

    Directory of Open Access Journals (Sweden)

    Niladri Sekhar TRIPATHY

    2011-05-01

    Full Text Available Different wireless application platforms are available for remote monitoring and control of systems. In the present paper a system has been described for online remote recording and monitoring of sensor data using DTMF (Dual Tone Multi Frequency technology where acoustic communication has been implemented. One DTMF transceiver in the sensing system has been used to generate and decode the DTMF tone corresponding to the sensor output which in turn is received from the mobile phone in the user side. A separate DTMF decoder has been used in the user side to decode the received DTMF tone corresponding to the sensor output from the sensor side. Microcontroller has been used to store the decoded data from the sensor and to control the whole operation sequentially. Thus online remote recording and monitoring of the sensor data have been possible at any where in the coverage area of the mobile network. Experimental result shows good linearity between data output taken directly from the sensor side and that remotely from user side.

  2. Development and use of a remote waste handling system for disposal of greater confinement wastes

    International Nuclear Information System (INIS)

    Williams, R.E.

    1985-01-01

    This paper discusses the design and development of a remotely controlled waste handling system (RWHS) for use in radioactive waste disposal operations. A RWHS was developed at the US Department of Energy's (DOE) Nevada Test Site for use in the Greater Confinement Disposal Test (GCDT). The RWHS consists of a remote control console and the following remotely operated features: a crane, a grapple/manipulator module which is suspended by the crane hoist hook, and closed-circuit television cameras. The RWHS was used to safely place high-specific-activity radioactive waste in greater confinement disposal. Between December 15, 1983, and February 23, 1984, five encapsulated sources were open-air transferred from shielded shipping casks and placed 30 m down a 3-m-dia augered shaft using the RWHS. These sources contained approximately 460 kCi of 90 Sr, 21 kCi of 137 Cs, and 390 Ci of 60 Co. Each source was transferred safely and efficiently and operational personnel did not receive any recordable doses. 3 references, 5 figures

  3. An overview of passive remote sensing for post-fire monitoring

    Directory of Open Access Journals (Sweden)

    2005-01-01

    Full Text Available Monitoring of forest burnt areas has several aims: to locate and estimate the extent of such areas; to assess the damages suffered by the forest stands; to check the ability of the ecosystem to naturally recover after the fire; to support the planning of reclamation interventions; to assess the dynamics (pattern and speed of the natural recovery; to check the outcome of any eventual restoration intervention. Remote sensing is an important source of information to support all such tasks. In the last decades, the effectiveness of remotely sensed imagery is increasing due to the advancement of tools and techniques, and to the lowering of the costs, in relative terms. For an effective support to post-fire management (burnt scar perimeter mapping, damage severity assessment, post-fire vegetation monitoring, a mapping scale of at least 1:10000-1:20000 is required: hence, the selection of remotely sensed data is restricted to aerial imagery and to satellite imagery characterized by high (HR and, above all, very high (VHR spatial resolution. In the last decade, HR and VHR passive remote sensing has widespread, providing affordable multitemporal and multispectral pictures of the considered phenomena, at different scales (spatial, temporal and spectral resolutions with reference to the monitoring needs. In the light of such a potential, the integration of GPS field survey and HR (Landsat 7, Spot HVR and VHR satellite imagery (Ikonos, Quickbird, Spot 5 is currently sought as a highly viable option for the post-fire monitoring.

  4. Online remote radiological monitoring during operation of Advance Vitrification System (AVS), Tarapur

    International Nuclear Information System (INIS)

    Deokar, U.V.; Kulkarni, V.V.; Mathew, P.; Khot, A.R.; Singh, K.K.; Kamlesh; Deshpande, M.D.; Kulkarni, Y.

    2010-01-01

    Advanced Vitrification System (AVS) is commissioned for vitrification of high level waste (HLW) by using Joule heated ceramic melter first time in India. The HLW is generated in fuel reprocessing plant. For radiological surveillance of plant, Health Physics Unit (HPU) had installed 37 Area Gamma Monitors (AGM), 7 Continuous Air Monitors (CAM) and all types of personal contamination monitors. Exposure control is a major concern in operating plant. Therefore in addition to installed monitors, we have developed online remote radiation monitoring system to minimize exposures to the surveyor and operator. This also helped in volume reduction of secondary waste. The reliability and accuracy of the online monitoring system is confirmed by calibrating the system by comparing TLD and DRD readings and by theoretical analysis. In addition some modifications were carried in HP instruments to make them user friendly. This paper summarizes different kinds of remote radiological monitoring systems installed for online monitoring of Melter off Gas (MOG) filter, Hood filter, three exhaust filter banks, annulus air sampling and over pack monitoring in AVS. Our online remote monitoring system has helped the plant management to plan in advance for replacement of these filters, which resulted in considerable saving of collective dose. (author)

  5. Remote sensing applications for monitoring rangeland vegetation ...

    African Journals Online (AJOL)

    Remote sensing techniques hold considerable promise for the inventory and monitoring of natural resources on rangelands. A significant lack of information concerning basic spectral characteristics of range vegetation and soils has resulted in a lack of rangeland applications. The parameters of interest for range condition ...

  6. The Argentine remote monitoring and surveillance system

    International Nuclear Information System (INIS)

    Bonino, A.; Roca, J.L.; Perez, A.; Pizarro, L.; Krimer, M.; Teira, R.; Higa, Z.; Saettone, S.; Monzon, J.; Moroni, D.

    1996-01-01

    The Scientific and Technical Support Department of the Argentine National Board of Nuclear Regulation (ENREN) has developed a Remote Monitoring and Surveillance System (RMSS) that provides a media to verify state of variables related to the monitoring and surveillance activities of nuclear facilities, mainly safeguard applications. RMSS includes a variety of on site installed sensors, an authenticated radiofrequency communication link, a receiver processing unit, an active vision set and a user friendly personal computer interface to collect, view and store pertinent histories of events. A real time data base allows consulting, maintenance, updating and checking activities. RMSS could be integrated into a LAN or WAN via modem for use in a remote operation scheme. In this paper a description of the RMSS is provided. Also, an overview of the RMSS operation at one facility under safeguards belonging to the National Commission of Atomic Energy (CNEA) is presented. Results and conclusions of the system associated with this facility are given. (author). 37 figs

  7. The Argentine remote monitoring and surveillance system

    Energy Technology Data Exchange (ETDEWEB)

    Bonino, A; Roca, J L; Perez, A; Pizarro, L; Krimer, M; Teira, R; Higa, Z; Saettone, S; Monzon, J; Moroni, D [Ente Nacional Regulador Nuclear, Buenos Aires (Argentina). Dept. Apoyo Cientifico y Tecnico

    1997-12-31

    The Scientific and Technical Support Department of the Argentine National Board of Nuclear Regulation (ENREN) has developed a Remote Monitoring and Surveillance System (RMSS) that provides a media to verify state of variables related to the monitoring and surveillance activities of nuclear facilities, mainly safeguard applications. RMSS includes a variety of on site installed sensors, an authenticated radiofrequency communication link, a receiver processing unit, an active vision set and a user friendly personal computer interface to collect, view and store pertinent histories of events. A real time data base allows consulting, maintenance, updating and checking activities. RMSS could be integrated into a LAN or WAN via modem for use in a remote operation scheme. In this paper a description of the RMSS is provided. Also, an overview of the RMSS operation at one facility under safeguards belonging to the National Commission of Atomic Energy (CNEA) is presented. Results and conclusions of the system associated with this facility are given. (author). 37 figs.

  8. Concept for a vertical maintenance remote handling system for multi module blanket segments in DEMO

    International Nuclear Information System (INIS)

    Coleman, M.; Sykes, N.; Cooper, D.; Iglesias, D.; Bastow, R.; Loving, A.; Harman, J.

    2014-01-01

    Highlights: •A conceptual architectural model for a vertical maintenance DEMO is presented. •Novel concepts for a set of DEMO remote handling equipment are put forward. •Remote maintenance of a multi module segment blanket is found to be feasible. •The criticality of space in the vertical port is highlighted. -- Abstract: The anticipated high neutron flux, and the consequent damage to plasma-facing components in DEMO, results in the need to regularly replace the tritium breeding and radiation shielding blanket. The current European multi module segment (MMS) blanket concept favours a less invasive small port entry maintenance system over large sector transport concepts, because of the reduced impact on other tokamak systems – particularly the magnetic coils. This paper presents a novel conceptual remote maintenance strategy for a Vertical Maintenance Scheme DEMO, incorporating substantiated designs for an in-vessel mover, to detach and attach the blanket segments, and cask-housed vertical maintenance devices to open and close access ports, cut and join service connections, and extract blanket segments from the vessel. In addition, a conceptual architectural model for DEMO was generated to capture functional and spatial interfaces between the remote maintenance equipment and other systems. Areas of further study are identified in order to comprehensively establish the feasibility of the proposed maintenance system

  9. Remote real-time monitoring of subsurface landfill gas migration.

    Science.gov (United States)

    Fay, Cormac; Doherty, Aiden R; Beirne, Stephen; Collins, Fiachra; Foley, Colum; Healy, John; Kiernan, Breda M; Lee, Hyowon; Maher, Damien; Orpen, Dylan; Phelan, Thomas; Qiu, Zhengwei; Zhang, Kirk; Gurrin, Cathal; Corcoran, Brian; O'Connor, Noel E; Smeaton, Alan F; Diamond, Dermot

    2011-01-01

    The cost of monitoring greenhouse gas emissions from landfill sites is of major concern for regulatory authorities. The current monitoring procedure is recognised as labour intensive, requiring agency inspectors to physically travel to perimeter borehole wells in rough terrain and manually measure gas concentration levels with expensive hand-held instrumentation. In this article we present a cost-effective and efficient system for remotely monitoring landfill subsurface migration of methane and carbon dioxide concentration levels. Based purely on an autonomous sensing architecture, the proposed sensing platform was capable of performing complex analytical measurements in situ and successfully communicating the data remotely to a cloud database. A web tool was developed to present the sensed data to relevant stakeholders. We report our experiences in deploying such an approach in the field over a period of approximately 16 months.

  10. Autonomous profiling device to monitor remote water bodies

    Digital Repository Service at National Institute of Oceanography (India)

    Madhan, R.; Dabholkar, N.A.; Navelkar, G.S.; Desa, E.; Afzulpurkar, S.; Mascarenhas, A.A.M.Q.; Prabhudesai, S.P.

    implications to human health, and requires frequent and effective monitoring, particularly during summer months (March–May) when water consumption is highest. These water bodies are frequently located in remote areas away from human habitation, making...

  11. Innovative design for FAST divertor compatible with remote handling, electromagnetic and mechanical analyses

    Energy Technology Data Exchange (ETDEWEB)

    Di Gironimo, Giuseppe, E-mail: giuseppe.digironimo@unina.it [CREATE, University of Naples Federico II, P.le Tecchio 80, 80125 Napoli (Italy); Cacace, Maurizio [CREATE, University of Naples Federico II, P.le Tecchio 80, 80125 Napoli (Italy); Crescenzi, Fabio [ENEA, Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati, Roma (Italy); Labate, Carmelenzo [CREATE, University of Naples Parthenope, Via Acton 38, 80133 Napoli (Italy); Lanzotti, Antonio [CREATE, University of Naples Federico II, P.le Tecchio 80, 80125 Napoli (Italy); Lucca, Flavio [LT Calcoli srl, Piazza Prinetti 26/B, 23807 Merate, LC (Italy); Marzullo, Domenico; Mozzillo, Rocco [CREATE, University of Naples Federico II, P.le Tecchio 80, 80125 Napoli (Italy); Pagani, Irene [LT Calcoli srl, Piazza Prinetti 26/B, 23807 Merate, LC (Italy); Ramogida, Giuseppe; Roccella, Selanna [ENEA, Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati, Roma (Italy); Viganò, Fabio [LT Calcoli srl, Piazza Prinetti 26/B, 23807 Merate, LC (Italy)

    2015-10-15

    Highlights: • The conceptual design of FAST divertor has been carried out through a continuous process of requirements refinement and design optimization (V-model approach), in order to achieve a design suited to the needs, RH compatible and ITER-like. • Thermal, structural and electromagnetic analyses have been performed, resulting in requirements refinement. • FAST divertor is now characterized by more realistic, reliable and functional features, satisfying thermo-mechanical capabilities and the remote handling (RH) compatibility. - Abstract: Divertor is a crucial component in Tokamaks, aiming to exhaust the heat power and particles fluxes coming from the plasma during discharges. This paper focuses on the optimization process of FAST divertor, aimed at achieving required thermo-mechanical capabilities and the remote handling (RH) compatibility. Divertor RH system final layout has been chosen between different concept solutions proposed and analyzed within the principles of Theory of Inventive Problem Solving (TRIZ). The design was aided by kinematic simulations performed using Digital Mock-Up capabilities of Catia software. Considerable electromagnetic (EM) analysis efforts and top-down CAD approach enabled the design of a final and consistent concept, starting from a very first dimensioning for EM loads. In the final version here presented, the divertor cassette supports a set of tungsten (W) actively cooled tiles which compose the inner and outer vertical targets, facing the plasma and exhausting the main part of heat flux. W-tiles are assembled together considering a minimum gap tolerance (0.1–0.5 mm) to be mandatorily respected. Cooling channels have been re-dimensioned to optimize the geometry and the layout of coolant volume inside the cassette has been modified as well to enhance the general efficiency.

  12. Application of remote monitoring technology in landslides in the Luoshan mining area

    Energy Technology Data Exchange (ETDEWEB)

    Man-chao He; Zhi-gang Tao; Bin Zhang [China University of Mining & Technology, Beijing (China). Research Center of Geotechnical Engineering

    2009-09-15

    With the scale extending of mining, the landslide disaster in the earth's surface will become more and more serious, and these landslide disasters are being threatened to the sustainable safe mining of the underground mine and the open-pit mine. Based on the theory that sliding force is greater than the shear resistance (resisting force) at the potential slip surface is the necessary and sufficient condition to occur the landslide as the sliding criterion, the principle and method for sliding force remote monitoring is presented, and the functional relationship between the human mechanical quantity and the natural sliding force is derived, hereby, the natural sliding force can be calculated according to the human mechanical quantity. Based on above principle and method, a new system of landslide remote monitoring is designed and 53 systems are installed on the landslide body in the Luoshan mining area, which make up the landslide remote monitoring network. According to the results of field test around 8 months, monitoring curves between sliding force and time are obtained, which can describe and forecast the develop trend of landslide. According to above analysis, the results show that this system has some following advantages: (1) real-time monitoring; (2) remote intelligent transmission; (3) landslides early warning. 11 refs., 8 figs., 1 tab.

  13. Guidelines for remote handling maintenance of ITER neutral beam line components: Proposal of an alternate supporting system

    International Nuclear Information System (INIS)

    Cordier, J.J.; Bayetti, P.; Hemsworth, R.; David, O.; Friconneau, J.P.

    2007-01-01

    Remote handling (R/H) maintenance of ITER components is one of the main challenges of the ITER project. This type of maintenance shall be operational for the assembly and nuclear phase of exploitation of ITER. It must be considered at a very early stage since it significantly impacts on the components design, interfaces management, assembly, maintenance and integration aspects. A large part of the R/H equipment will be procured by the EU Participating Team, including the whole Neutral Beam R/H Equipment. The Neutral Beam Heating and Current Drive system (NB and CD) design is being revisited by the ITER project. A vertical maintenance scheme is presently considered which may significantly impact on the reference design and associated components and lead to a new design of the NB and CD vacuum tank. In addition, NB line components remote handling solutions are being studied. The neutral beam test facility ITER to be built in Europe in the near future is also based on the vertical NB maintenance scheme of beam line components. New design guidelines compliant for both the ITER NB and CD system and the NB test facility proposed by the CEA association are described in the paper

  14. Preliminary Project Execution Plan for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2011-05-01

    This preliminary project execution plan (PEP) defines U.S. Department of Energy (DOE) project objectives, roles and responsibilities of project participants, project organization, and controls to effectively manage acquisition of capital funds for construction of a proposed remote-handled low-level waste (LLW) disposal facility at the Idaho National Laboratory (INL). The plan addresses the policies, requirements, and critical decision (CD) responsibilities identified in DOE Order 413.3B, 'Program and Project Management for the Acquisition of Capital Assets.' This plan is intended to be a 'living document' that will be periodically updated as the project progresses through the CD process to construction and turnover for operation.

  15. Preliminary Project Execution Plan for the Remote-Handled Low-Level Waste Disposal Project

    International Nuclear Information System (INIS)

    Duncan, David

    2011-01-01

    This preliminary project execution plan (PEP) defines U.S. Department of Energy (DOE) project objectives, roles and responsibilities of project participants, project organization, and controls to effectively manage acquisition of capital funds for construction of a proposed remote-handled low-level waste (LLW) disposal facility at the Idaho National Laboratory (INL). The plan addresses the policies, requirements, and critical decision (CD) responsibilities identified in DOE Order 413.3B, 'Program and Project Management for the Acquisition of Capital Assets.' This plan is intended to be a 'living document' that will be periodically updated as the project progresses through the CD process to construction and turnover for operation.

  16. Exploring a New Security Framework for Remote Patient Monitoring Devices

    Directory of Open Access Journals (Sweden)

    Brian Ondiege

    2017-02-01

    Full Text Available Security has been an issue of contention in healthcare. The lack of familiarity and poor implementation of security in healthcare leave the patients’ data vulnerable to attackers. The main issue is assessing how we can provide security in an RPM infrastructure. The findings in literature show there is little empirical evidence on proper implementation of security. Therefore, there is an urgent need in addressing cybersecurity issues in medical devices. Through the review of relevant literature in remote patient monitoring and use of a Microsoft threat modelling tool, we identify and explore current vulnerabilities and threats in IEEE 11073 standard devices to propose a new security framework for remote patient monitoring devices. Additionally, current RPM devices have a limitation on the number of people who can share a single device, therefore, we propose the use of NFC for identification in Remote Patient Monitoring (RPM devices for multi-user environments where we have multiple people sharing a single device to reduce errors associated with incorrect user identification. We finally show how several techniques have been used to build the proposed framework.

  17. ITER Remote Maintenance System (IRMS) lifecycle management

    Energy Technology Data Exchange (ETDEWEB)

    Tesini, Alessandro, E-mail: alessandro.tesini@iter.org [ITER Organization, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Otto' , Bede [Oxford Technologies Ltd, 7, Nuffield Way, Abingdon, Oxon OX14 1RJ (United Kingdom); Blight, John [FAAST 31c Allee de la Granette, 13600 Ceyreste (France); Choi, Chang-Hwan; Friconneau, Jean-Pierre; Gotewal, Krishan Kumar; Hamilton, David [ITER Organization, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Heckendorn, Frank [FD Technologies, PO Box 6686, Aiken, SC (United States); Martins, Jean-Pierre [ITER Organization, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Marty, Thomas [Westinghouse, 122, avenue de Hambourg, 13008 Marseille (France); Nakahira, Masataka; Palmer, Jim; Subramanian, Rajendran [ITER Organization, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2011-10-15

    The availability of the ITER machine to perform its scientific program is strongly dependent on the performance of the different Remote Handling (RH) systems constituting the ITER Remote Maintenance System (IRMS). The lifecycle of the IRMS will largely exceed 40 years from initial concept design and proof testing through to machine decommissioning. Such a long lifecycle requires that a rigorous approach is put in place to guarantee the technical capabilities of the highly innovative IRMS, its efficiency and its availability. For this purpose, an IRMS System Engineering and IRMS lifecycle management approach has been adopted by ITER. The approach aims at ensuring the IRMS full operability and availability at an acceptable cost of ownership over the full ITER machine assembly and operations period. The IRMS lifecycle management method described in this paper covers such subjects as specific requirements for IRMS design reviews, monitoring during manufacture, factory and site acceptance testing, integrated commissioning, decontamination, maintenance and re-qualification strategies, requirements for Integrated Logistical Support during operations. The updating and implementation of the IRMS lifecycle strategy and this procedure will be managed and monitored by the Remote Handling Integrated Product Team (RH-IPT). Although developed for the IRMS, the basic principles and procedures of lifecycle management could be applied to other ITER plant systems whose reliability and availability will be essential for the continued operation of the ITER machine.

  18. ITER Remote Maintenance System (IRMS) lifecycle management

    International Nuclear Information System (INIS)

    Tesini, Alessandro; Otto', Bede; Blight, John; Choi, Chang-Hwan; Friconneau, Jean-Pierre; Gotewal, Krishan Kumar; Hamilton, David; Heckendorn, Frank; Martins, Jean-Pierre; Marty, Thomas; Nakahira, Masataka; Palmer, Jim; Subramanian, Rajendran

    2011-01-01

    The availability of the ITER machine to perform its scientific program is strongly dependent on the performance of the different Remote Handling (RH) systems constituting the ITER Remote Maintenance System (IRMS). The lifecycle of the IRMS will largely exceed 40 years from initial concept design and proof testing through to machine decommissioning. Such a long lifecycle requires that a rigorous approach is put in place to guarantee the technical capabilities of the highly innovative IRMS, its efficiency and its availability. For this purpose, an IRMS System Engineering and IRMS lifecycle management approach has been adopted by ITER. The approach aims at ensuring the IRMS full operability and availability at an acceptable cost of ownership over the full ITER machine assembly and operations period. The IRMS lifecycle management method described in this paper covers such subjects as specific requirements for IRMS design reviews, monitoring during manufacture, factory and site acceptance testing, integrated commissioning, decontamination, maintenance and re-qualification strategies, requirements for Integrated Logistical Support during operations. The updating and implementation of the IRMS lifecycle strategy and this procedure will be managed and monitored by the Remote Handling Integrated Product Team (RH-IPT). Although developed for the IRMS, the basic principles and procedures of lifecycle management could be applied to other ITER plant systems whose reliability and availability will be essential for the continued operation of the ITER machine.

  19. Development of radiation hard components for ITER blanket remote handling system

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Makiko, E-mail: saito.makiko@jaea.go.jp; Anzai, Katsunori; Maruyama, Takahito; Noguchi, Yuto; Ueno, Kenichi; Takeda, Nobukazu; Kakudate, Satoshi

    2016-11-01

    Highlights: • Clarify the components that will degrade by gamma ray irradiation. • Perform the irradiation tests to BRHS components. • Optimize the materials to increase the radiation hardness. - Abstract: The ITER blanket remote handling system (BRHS) will be operated in a high radiation environment (250 Gy/h max.) and must stably handle the blanket modules, which weigh 4.5 t and are more than 1.5 m in length, with a high degree of position and posture accuracy. The reliability of the system can be improved by reviewing the failure events of the system caused by high radiation. A failure mode and effects analysis (FMEA) identified failure modes and determined that lubricants, O-rings, and electric insulation cables were the dominant components affecting radiation hardness. Accordingly, we tried to optimize the lubricants and cables of the AC servo motors by using polyphenyl ether (PPE)-based grease and polyether ether ketone (PEEK), respectively. Materials containing radiation protective agents were also selected for the cable sheaths and O-rings to improve radiation hardness. Gamma ray irradiation tests were performed on these components and as a result, a radiation hardness of 8 MGy was achieved for the AC servo motors. On the other hand, to develop the radiation hardness and BRHS compatibility furthermore, the improvement of materials of cable and O ring were performed.

  20. Remote Controlling and Monitoring of Microscopic Slides

    International Nuclear Information System (INIS)

    Mustafa, G.; Qadri, M.T.; Daraz, U.

    2016-01-01

    Remotely controlled microscopic slide was designed using especial Graphical User Interface (GUI) which interfaces the user at remote location with the real microscope using site and the user can easily view and control the slide present on the microscope's stage. Precise motors have been used to allow the movement in all the three dimensions required by a pathologist. The pathologist can easily access these slides from any remote location and so the physical presence of the pathologist is now made easy. This invention would increase the health care efficiency by reducing the time and cost of diagnosis, making it very easy to get the expert's opinion and supporting the pathologist to relocate himself for his work. The microscope is controlled with computer with an attractive Graphical User Interface (GUI), through which a pathologist can easily monitor, control and record the image of the slide. The pathologist can now do his work regardless of his location, time, cost and physically presence of lab equipment. The technology will help the specialist in viewing the patients slide from any location in the world. He would be able to monitor and control the stage. This will also help the pathological laboratories in getting opinion from senior pathologist who are present at any far location in the world. This system also reduces the life risks of the patients. (author)

  1. Remote monitoring of vibrational information in spider webs

    Science.gov (United States)

    Mortimer, B.; Soler, A.; Siviour, C. R.; Vollrath, F.

    2018-06-01

    Spiders are fascinating model species to study information-acquisition strategies, with the web acting as an extension of the animal's body. Here, we compare the strategies of two orb-weaving spiders that acquire information through vibrations transmitted and filtered in the web. Whereas Araneus diadematus monitors web vibration directly on the web, Zygiella x-notata uses a signal thread to remotely monitor web vibration from a retreat, which gives added protection. We assess the implications of these two information-acquisition strategies on the quality of vibration information transfer, using laser Doppler vibrometry to measure vibrations of real webs and finite element analysis in computer models of webs. We observed that the signal thread imposed no biologically relevant time penalty for vibration propagation. However, loss of energy (attenuation) was a cost associated with remote monitoring via a signal thread. The findings have implications for the biological use of vibrations by spiders, including the mechanisms to locate and discriminate between vibration sources. We show that orb-weaver spiders are fascinating examples of organisms that modify their physical environment to shape their information-acquisition strategy.

  2. Remote monitoring of videourodynamics using smart phone and free instant messaging software.

    Science.gov (United States)

    Hsieh, Po-Fan; Chang, Chao-Hsiang; Lien, Chi-Shun; Wu, Hsi-Chin; Hsiao, Po-Jen; Chou, Eric Chieh-Lung

    2013-11-01

    To evaluate the feasibility of using smart phones plus free instant messaging software for remote monitoring of videourodynamics. From November 2011 to October 2012, 85 females with voiding disorders were enrolled for videourodynamic tests. The patients were assigned to videourodynamics remotely monitored by the attending physician by using iPhone/iPad and Skype (group 1) and videourodynamics with the attending physician present (group 2). The procedural time and videourodynamic qualities, assessed by the frequency of adherence to the modified Sullivan criteria, in each group were recorded and compared. There were 44 and 41 patients in group 1 and group 2, respectively. The mean procedural time was comparable between group 1 and group 2 (56.3 vs. 54.4 min, P = 0.25). The frequencies of adherence to the modified Sullivan criteria were similar in each group. The qualities of videourodynamics under the attending physician's remote or direct monitoring were both appropriate. Based on the convenience of Internet, the popularity of smart phones and the intention to make the urologists use their time more efficiently, our study provides remote monitoring as an alternative way for performing videourodynamics. © 2013 Wiley Periodicals, Inc.

  3. Levee Health Monitoring With Radar Remote Sensing

    Science.gov (United States)

    Jones, C. E.; Bawden, G. W.; Deverel, S. J.; Dudas, J.; Hensley, S.; Yun, S.

    2012-12-01

    Remote sensing offers the potential to augment current levee monitoring programs by providing rapid and consistent data collection over large areas irrespective of the ground accessibility of the sites of interest, at repeat intervals that are difficult or costly to maintain with ground-based surveys, and in rapid response to emergency situations. While synthetic aperture radar (SAR) has long been used for subsidence measurements over large areas, applying this technique directly to regional levee monitoring is a new endeavor, mainly because it requires both a wide imaging swath and fine spatial resolution to resolve individual levees within the scene, a combination that has not historically been available. Application of SAR remote sensing directly to levee monitoring has only been attempted in a few pilot studies. Here we describe how SAR remote sensing can be used to assess levee conditions, such as seepage, drawing from the results of two levee studies: one of the Sacramento-San Joaquin Delta levees in California that has been ongoing since July 2009 and a second that covered the levees near Vicksburg, Mississippi, during the spring 2011 floods. These studies have both used data acquired with NASA's UAVSAR L-band synthetic aperture radar, which has the spatial resolution needed for this application (1.7 m single-look), sufficiently wide imaging swath (22 km), and the longer wavelength (L-band, 0.238 m) required to maintain phase coherence between repeat collections over levees, an essential requirement for applying differential interferometry (DInSAR) to a time series of repeated collections for levee deformation measurement. We report the development and demonstration of new techniques that employ SAR polarimetry and differential interferometry to successfully assess levee health through the quantitative measurement of deformation on and near levees and through detection of areas experiencing seepage. The Sacramento-San Joaquin Delta levee study, which covers

  4. Defense Remote Handled Transuranic Waste Cost/Schedule Optimization Study

    International Nuclear Information System (INIS)

    Pierce, G.D.; Wolaver, R.W.; Carson, P.H.

    1986-11-01

    The purpose of this study is to provide the DOE information with which it can establish the most efficient program for the long management and disposal, in the Waste Isolation Pilot Plant (WIPP), of remote handled (RH) transuranic (TRU) waste. To fulfill this purpose, a comprehensive review of waste characteristics, existing and projected waste inventories, processing and transportation options, and WIPP requirements was made. Cost differences between waste management alternatives were analyzed and compared to an established baseline. The result of this study is an information package that DOE can use as the basis for policy decisions. As part of this study, a comprehensive list of alternatives for each element of the baseline was developed and reviewed with the sites. The principle conclusions of the study follow. A single processing facility for RH TRU waste is both necessary and sufficient. The RH TRU processing facility should be located at Oak Ridge National Laboratory (ORNL). Shielding of RH TRU to contact handled levels is not an economic alternative in general, but is an acceptable alternative for specific waste streams. Compaction is only cost effective at the ORNL processing facility, with a possible exception at Hanford for small compaction of paint cans of newly generated glovebox waste. It is more cost effective to ship certified waste to WIPP in 55-gal drums than in canisters, assuming a suitable drum cask becomes available. Some waste forms cannot be packaged in drums, a canister/shielded cask capability is also required. To achieve the desired disposal rate, the ORNL processing facility must be operational by 1996. Implementing the conclusions of this study can save approximately $110 million, compared to the baseline, in facility, transportation, and interim storage costs through the year 2013. 10 figs., 28 tabs

  5. Design and Implementation of a Wireless Sensor Network-Based Remote Water-Level Monitoring System

    Science.gov (United States)

    Li, Xiuhong; Cheng, Xiao; Gong, Peng; Yan, Ke

    2011-01-01

    The proposed remote water-level monitoring system (RWMS) consists of a field sensor module, a base station module, adata center module and aWEB releasing module. It has advantages in real time and synchronized remote control, expandability, and anti-jamming capabilities. The RWMS can realize real-time remote monitoring, providing early warning of events and protection of the safety of monitoring personnel under certain dangerous circumstances. This system has been successfully applied in Poyanghu Lake. The cost of the whole system is approximately 1,500 yuan (RMB). PMID:22319377

  6. Design and implementation of a wireless sensor network-based remote water-level monitoring system.

    Science.gov (United States)

    Li, Xiuhong; Cheng, Xiao; Gong, Peng; Yan, Ke

    2011-01-01

    The proposed remote water-level monitoring system (RWMS) consists of a field sensor module, a base station module, a data center module and a WEB releasing module. It has advantages in real time and synchronized remote control, expandability, and anti-jamming capabilities. The RWMS can realize real-time remote monitoring, providing early warning of events and protection of the safety of monitoring personnel under certain dangerous circumstances. This system has been successfully applied in Poyanghu Lake. The cost of the whole system is approximately 1,500 yuan (RMB).

  7. Design of Remote Power Plant Monitoring System Based on LabVIEW and VC++ Software

    Directory of Open Access Journals (Sweden)

    Dawei Tan

    2013-05-01

    Full Text Available This study designs a real-time remote monitoring system based on LabVIEW and Microsoft Visual C++ for Plant Units. The server written in LabVIEW uses for data acquisition and storage. The server adopts the TCP and DataSocket to communicate with the VC client. The remote VC client can accept real-time data and process data, enabling remote monitoring.

  8. A review on remote monitoring technology applied to implantable electronic cardiovascular devices.

    Science.gov (United States)

    Costa, Paulo Dias; Rodrigues, Pedro Pereira; Reis, António Hipólito; Costa-Pereira, Altamiro

    2010-12-01

    Implantable electronic cardiovascular devices (IECD) include a broad spectrum of devices that have the ability to maintain rhythm, provide cardiac resynchronization therapy, and/or prevent sudden cardiac death. The incidence of bradyarrhythmias and other cardiac problems led to a broader use of IECD, which turned traditional follow-up into an extremely heavy burden for healthcare systems to support. Our aim was to assess the impact of remote monitoring on the follow-up of patients with IECD. We performed a review through PubMed using a specific query. The paper selection process included a three-step approach in which title, abstract, and cross-references were analyzed. Studies were then selected using previously defined inclusion criteria and analyzed according to the country of origin of the study, year, and journal of publication; type of study; and main issues covered. Twenty articles were included in this review. Eighty percent of the selected papers addressed clinical issues, from which 94% referred clinical events identification, clinical stability, time savings, or physician satisfaction as advantages, whereas 38% referred disadvantages that included both legal and technical issues. Forty-five percent of the papers referred patient issues, from which 89% presented advantages, focusing on patient acceptance/satisfaction, and patient time-savings. The main downsides were technical issues but patient privacy was also addressed. All the papers dealing with economic issues (20%) referred both advantages and disadvantages equally. Remote monitoring is presently a safe technology, widely accepted by patients and physicians, for its convenience, reassurance, and diagnostic potential. This review summarizes the principles of remote IECD monitoring presenting the current state-of-the-art. Patient safety and device interaction, applicability of current technology, and limitations of remote IECD monitoring are also addressed. The use of remote monitor should consider

  9. Research plan for integrated ecosystem and pollutant monitoring at remote wilderness study sites

    International Nuclear Information System (INIS)

    Bruns, D.A.; Wiersma, G.B.

    1988-03-01

    This research plan outlines an approach to the measurement of pollutants and ecosystem parameters at remote, high-elevation, wilderness study sites. A multimedia, systems approach to environmental monitoring is emphasized. The primary purpose of the research is to apply and field test a technical report entitled ''Guidelines for measuring the physical, chemical, and biological condition of wilderness ecosystems.'' This document intended to provide Federal Land Managers with information to establish environmental monitoring programs in wilderness areas. To date, this monitoring document has yet to be evaluated under rigorous field conditions at a remote, high-elevation Rocky Mountain site. For the purpose of field testing approaches to monitoring of pollutants and ecosystems in remote, wilderness areas, evaluation criteria were developed. These include useability, cost-effectiveness, data variability, alternative approaches, ecosystems conceptual approach, and quality assurance. Both the Forest Service and INEL environmental monitoring techniques will be evaluated with these criteria. Another objective of this research plan is to obtain an integrated data base on pollutants and ecosystem structure and function at a remote study site. The methods tested in this project will be used to acquire these data from a systems approach. This includes multimedia monitoring of air and water quality, soils, and forest, stream, and lake ecosystems. 71 refs., 1 fig., 9 tabs

  10. Design of remote weather monitor system based on embedded web database

    International Nuclear Information System (INIS)

    Gao Jiugang; Zhuang Along

    2010-01-01

    The remote weather monitoring system is designed by employing the embedded Web database technology and the S3C2410 microprocessor as the core. The monitoring system can simultaneously monitor the multi-channel sensor signals, and can give a dynamic Web pages display of various types of meteorological information on the remote computer. It gives a elaborated introduction of the construction and application of the Web database under the embedded Linux. Test results show that the client access the Web page via the GPRS or the Internet, acquires data and uses an intuitive graphical way to display the value of various types of meteorological information. (authors)

  11. The ITER Remote Maintenance Management System

    International Nuclear Information System (INIS)

    Tesini, Alessandro; Rolfe, A.C.

    2009-01-01

    A major challenge for the ITER project is to develop and implement a Remote Maintenance System, which can deliver high Tokamak availability within the constraints of the overall ITER programme objectives. Much of the maintenance of ITER will be performed using remote handling methods and some with combined manual and remote activities working together. The organization and management of the ITER remote handling facilities will be of a scale unlike any other remote handling application in the world. The ITER remote handling design and procurement activities will require co-ordination and management across many different sites throughout the world. It will be a major challenge for the ITER project to ensure a consistent quality and technical approach in all of the contributing parties. To address this issue the IO remote handling team are implementing the ITER Maintenance Management Plan (IMMP) comprising an overarching document defining the policies and methodologies (ITER Remote Maintenance Management System or IMMS) and an associated ITER remote handling code of practise (IRHCOP). The IMMS will be in document form available as a pdf file or similar. The IRHCOP will be implemented as a web based application and will provide access to the central resource of the entire code of practise from any location in the world. The IRHCOP data library will be centrally controlled in order that users can be assured of the data relevance and authenticity. This paper will describe the overall approach being taken to deal with this challenge and go on to detail the structure and content of both the IMMS and the IRHCOP.

  12. Remote communications technology redefines integrity verification and monitoring of low pressure isolation

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-01-15

    In 2007, a ship collided with the southeast face of a satellite platform jacket in the North Sea, damaging the 12-inch export riser. Emergency shutdown valves immediately shut-in production from the platform, leaving the pressure in the pipeline at approximately 4 barg. The riser had to be repaired before production could resume. TDW Offshore Services (TDW) was hired to develop a low pressure solution to isolate the damaged section of the pipeline riser from the export pipeline gas inventory. TDW used its range of specialist pipeline pigging, pig tracking and remote communications technology to solve the problem. The solution consisted of a custom-designed TDW pig trap and pigging spread; a high friction pig train furnished with the SmartTrack remote tracking and pressure-monitoring system; a SmartTrack subsea remote tracking and pressure-monitoring system; a SmartTrack topside tracking and monitoring system with radio link to the dive support vessel; and a pipeline isolation ball valve. TDW was able to monitor the downstream pressure of each isolation pig continuously throughout the operation using its innovative technology that sends isolation integrity data by radio link to a dive support vessel through pipe wall communications. The use of remote tracking and pressure monitoring technology enabled TDW to make repairs to the damaged riser while maintaining a continuous flow throughout the duration of the operation. 4 figs.

  13. A Telehealth System for Remote Auditory Evoked Potential Monitoring

    OpenAIRE

    Millan, Jorge; Yunda, Leonardo

    2013-01-01

    A portable, Internet-based EEG/Auditory Evoked Potential (AEP) monitoring system was developed for remote electrophysiological studies during sleep. The system records EEG/AEP simultaneously at the subject?s home for increased comfort and flexibility. The system provides simultaneous recording and remote viewing of EEG, EMG and EOG waves and allows on-line averaging of auditory evoked potentials. The design allows the recording of all major AEP components (brainstem, middle and late latency E...

  14. Pseudohyperglycemia: Effects of Unwashed Hand after Fruit Peeling or Handling on Fingertips Blood Glucose Monitoring Results.

    Science.gov (United States)

    Olamoyegun, M A; Oloyede, T; Adewoye, O G; Abdulkarim, S O; Adeleke, A A

    2016-01-01

    Self-monitoring of blood glucose (SMBG) is an important component of management for diabetes mellitus (DM), especially in T1DM and T2DM patients who are on insulin therapy. Adequate blood glucose monitoring and prompt intervention are necessary to prevent blood glucose (BG) fluctuation and delay long-term diabetes complications. People with DM are advised to clean their hands before SMBG to remove any dirt or food residue that might affect the reading. The study tested the hypothesis that falsely elevated BG levels from fingertip occur after peeling or handling fruits in an unwashed hand. Fifty apparently healthy nondiabetes volunteers were enrolled. Capillary BG samples were collected from the fingertips after peeling or handling apple, orange, banana, watermelon, and pawpaw, followed by no hand washing for 1 h, cleaning the fingertip with alcohol swab once, five times, and washing hand thoroughly with tap water and drying. These samples were then analyzed with two different glucose meters. The mean BG values, measured from fingertip blood samples after peeling, and handling any of the fruits followed by no hand washing were significantly high, even after cleaning fingertip with a swab of alcohol once. However, there were no significant difference in BG levels measured after peeling and handling fruits followed by hand washing and the level of BG before peeling and handling fruits. Handling of peeled fruits with no hand washing with tap water is associated with overestimation of capillary BG (Pseudohyperglycemia) monitored with glucose meters.

  15. Research and implementation of a Web-based remote desktop image monitoring system

    International Nuclear Information System (INIS)

    Ren Weijuan; Li Luofeng; Wang Chunhong

    2010-01-01

    It studied and implemented an ISS (Image Snapshot Server) system based on Web, using Java Web technology. The ISS system consisted of client web browser and server. The server part could be divided into three modules as the screen shots software, web server and Oracle database. Screen shots software intercepted the desktop environment of the remote monitored PC and sent these pictures to a Tomcat web server for displaying on the web at real time. At the same time, these pictures were also saved in an Oracle database. Through the web browser, monitor person can view the real-time and historical desktop pictures of the monitored PC during some period. It is very convenient for any user to monitor the desktop image of remote monitoring PC. (authors)

  16. Remote handling of decentralized power generation plants; Fernwirken von dezentralen Energieerzeugungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Conrad, Michael [IDS GmbH, Ettlingen (Germany). Geschaeftsbereich Entwicklung-Prozessautomatisierung; Thomas, Ralf [IDS GmbH, Ettlingen (Germany). Bereich Business Development und Marketing

    2011-05-15

    The incresing number of decentral power generation systems requires new grid solutions, i.e. the so-called smart grids. One important function is the monitoring and control, e.g. of decentral PV, wind power and cogeneration systems. The data interfaces used are highly diverse and as a rule are taken from measuring and automation technology, i.e. they must be adapted to the data models and transmission procedures of remote control and guidance systems. A compact protocol gateway enables standardized control and diagnosis.

  17. The ITER EC H and CD upper launcher: Analysis of remote handling compatibility

    International Nuclear Information System (INIS)

    Ronden, D.M.S.; Baar, M. de; Chavan, R.; Elzendoorn, B.S.Q.; Goodman, T.; Heemskerk, C.J.M.; Henderson, M.A.; Koning, J.F.; Saibene, G.; Spaeh, P.; Strauss, D.

    2011-01-01

    Research highlights: → RH class 1 requires a full RH compatible design and a detailed maintenance plan that needs to be demonstrated through hardware mockup testing. → RH class 2 requires a full RH compatible design and a detailed and verified maintenance plan. → RH class 3 requires a RH compatible design and a basic maintenance plan. - Abstract: The present design of the ECH (Electron Cyclotron Heating) upper port launcher has been evaluated in light of the ITER remote handling (RH) requirements. Changes to the launcher design associated with the accessibility, maintainability and manageability of replaceable components are presented. Captive bolts were placed along the flange of the Blanket Shielding Module (BSM). A hinge mechanism was integrated to simplify the (dis-)mounting of the BSM and a frame with incorporated cooling and actuation lines was suggested for simplified mounting and replacement of the steerable mirrors. Rotating the upper port plug upside-down improves maintenance access and component handling. Tools are proposed for manipulation of the port plug and its sub-components. The RH compatibility analysis can improve a design. Early consideration of RH requirements and implementation of necessary features is therefore vital.

  18. Preliminary concept design of the divertor remote handling system for DEMO power plant

    Energy Technology Data Exchange (ETDEWEB)

    Carfora, D., E-mail: dario.carfora@gmail.com [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland); Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland); ENEA/CREATE/University of Naples Federico II, 80125 Naples (Italy); Di Gironimo, G. [ENEA/CREATE/University of Naples Federico II, 80125 Naples (Italy); Järvenpää, J. [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland); Huhtala, K. [Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland); Määttä, T.; Siuko, M. [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland)

    2014-11-15

    Highlights: • Concept design of the RH system for the DEMO fusion power plant. • Divertor Mover: Hydraulic telescopic boom concept design. An alternative solution to ITER rack and pinion divertor mover (CMM). • Divertor cassettes end effector studies. • Transportation cask conceptual studies and logistic. - Abstract: This paper is based on the remote maintenance system project (WPRM) for the demonstration fusion power reactor (DEMO). Following ITER, DEMO aims to confirm the capability of generating several hundred of MW of net electricity by 2050. The main objective of these activities is to develop an efficient and reliable remote handling (RH) system for replacing the divertor cassettes. This paper presents the preliminary results of the concept design of the divertor RH system. The proposed divertor mover is a hydraulic telescopic boom driven from the transportation cask through the maintenance tunnel of the reactor. The boom is divided in three sections of 4 m each, and it is driving an end-effector in order to perform the scheduled operations of maintenance inside the vacuum vessel. Two alternative design of the end effector to grip and manipulate the divertor cassette are also presented in this work. Both the concepts are hydraulically actuated, basing on the ITER previous studies. The divertor cassette end-effector consists of a lifting arm linked to the divertor mover, a tilting plate, a cantilever arm and a hook-plate. The main objective of this paper is to illustrate the feasibility of DEMO divertor remote maintenance operations.

  19. ENVIRONMENTAL SAMPLING USING LOCATION SPECIFIC AIR MONITORING IN BULK HANDLING FACILITIES

    Energy Technology Data Exchange (ETDEWEB)

    Sexton, L.; Hanks, D.; Degange, J.; Brant, H.; Hall, G.; Cable-Dunlap, P.; Anderson, B.

    2011-06-07

    Since the introduction of safeguards strengthening measures approved by the International Atomic Energy Agency (IAEA) Board of Governors (1992-1997), international nuclear safeguards inspectors have been able to utilize environmental sampling (ES) (e.g. deposited particulates, air, water, vegetation, sediments, soil and biota) in their safeguarding approaches at bulk uranium/plutonium handling facilities. Enhancements of environmental sampling techniques used by the IAEA in drawing conclusions concerning the absence of undeclared nuclear materials or activities will soon be able to take advantage of a recent step change improvement in the gathering and analysis of air samples at these facilities. Location specific air monitoring feasibility tests have been performed with excellent results in determining attribute and isotopic composition of chemical elements present in an actual test-bed sample. Isotopic analysis of collected particles from an Aerosol Contaminant Extractor (ACE) collection, was performed with the standard bulk sampling protocol used throughout the IAEA network of analytical laboratories (NWAL). The results yielded bulk isotopic values expected for the operations. Advanced designs of air monitoring instruments such as the ACE may be used in gas centrifuge enrichment plants (GCEP) to detect the production of highly enriched uranium (HEU) or enrichments not declared by a State. Researchers at Savannah River National Laboratory in collaboration with Oak Ridge National Laboratory are developing the next generation of ES equipment for air grab and constant samples that could become an important addition to the international nuclear safeguards inspector's toolkit. Location specific air monitoring to be used to establish a baseline environmental signature of a particular facility employed for comparison of consistencies in declared operations will be described in this paper. Implementation of air monitoring will be contrasted against the use of smear

  20. Designing remote monitoring systems for long term maintenance and reliability

    International Nuclear Information System (INIS)

    Davis, G.E.; Johnson, G.L.; Schrader, F.D.; Stone, M.A.; Wilson, E.F.

    2001-01-01

    Full text: As part of the effort to modernize safeguards equipment, the IAEA is continuing to acquire and install equipment for upgrading obsolete surveillance systems with digital technology; and providing remote-monitoring capabilities where and when economically justified. Remote monitoring is expected to reduce inspection effort, particularly at storage facilities and reactor sites. Remote monitoring technology will not only involve surveillance, but will also include seals, sensors, and other unattended measurement equipment. LLNL's experience with the Argus Security System offers lessons for the design, deployment, and maintenance of remote monitoring systems. Argus is an integrated security system for protection of high-consequence U.S. Government assets, including nuclear materials. Argus provides secure transmission of sensor data, administrative data, and video information to support intrusion detection and access control functions. LLNL developed and deployed the Argus system on its own site in 1988. Since that time LLNL has installed, maintained, and upgraded Argus systems at several Department of Energy and Department of Defense sites in the US as well as at the original LLNL site. Argus has provided high levels of reliability and integrity, as well as reducing overall lifecycle cost through incremental improvements to hardware and software. This philosophy permits expansion of functional capability, hardware upgrade and software upgrade without system outages and with minimum outage of local functions. This presentation will describe Argus design strategies and lessons learned from the Argus program as they apply to the design, development, and maintenance of a remote monitoring network. Hardware failures, software failures, and communication outages are expected and must be addressed by astute selection of system architecture. A combination of redundancy, diversity, and effective functional allocation between field and system level components should

  1. Wearable Antennas for Remote Health Care Monitoring Systems

    Directory of Open Access Journals (Sweden)

    Laura Corchia

    2017-01-01

    Full Text Available Remote monitoring of the elderly in telehealth applications requires that the monitoring must not affect the elderly’s regular habits. To ensure this requirement, the components (i.e., sensor and antenna necessary to carry out such monitoring should blend in with the elderly’s daily routine. To this end, an effective strategy relies on employing wearable antennas that can be fully integrated with clothes and that can be used for remotely transmitting/receiving the sensor data. Starting from these considerations, in this work, two different methods for wearable antenna fabrication are described in detail: the first resorts to the combined use of nonwoven conductive fabrics and of a cutting plotter for shaping the fabric, whereas the second considered fabrication method resorts to the embroidery of conductive threads. To demonstrate the suitability of the considered fabrication techniques and to highlight their pros and cons, numerical and experimental results related to different wearable antennas are also reported and commented on. Results demonstrate that the presented fabrication techniques and strategies are very flexible and can be used to obtain low-cost wearable antennas with performance tailored for the specific application at hand.

  2. A Self-Calibrating Remote Control Chemical Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Jessica Croft

    2007-06-01

    The Susie Mine, part of the Upper Tenmile Mining Area, is located in Rimini, MT about 15 miles southwest of Helena, MT. The Upper Tenmile Creek Mining Area is an EPA Superfund site with 70 abandoned hard rock mines and several residential yards prioritized for clean up. Water from the Susie mine flows into Tenmile Creek from which the city of Helena draws part of its water supply. MSE Technology Applications in Butte, Montana was contracted by the EPA to build a treatment system for the Susie mine effluent and demonstrate a system capable of treating mine waste water in remote locations. The Idaho National Lab was contracted to design, build and demonstrate a low maintenance self-calibrating monitoring system that would monitor multiple sample points, allow remote two-way communications with the control software and allow access to the collected data through a web site. The Automated Chemical Analysis Monitoring (ACAM) system was installed in December 2006. This thesis documents the overall design of the hardware, control software and website, the data collected while MSE-TA’s system was operational, the data collected after MSE-TA’s system was shut down and suggested improvements to the existing system.

  3. General Guidelines for Remote Operation and Maintenance of Pyroprocess Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. H.; Park, B. S.; Park, H. S.; Lee, H. J.; Choi, C. W.; Lee, J. K

    2007-12-15

    As the pyroprocess handle the high radioactive materials, a high radioactive material handling facility required high safety, radioactive shielding, strict quality control, and the remote handling equipment of high technology. This report describes the guidelines of for pyroprocess based the design guides for radioactive material handling facility and equipment from American Nuclear Society(ANS), design guidelines for remotely maintained equipment from Oak Ridge National Laboratory(ORNL), and the experience of design for ACP equipment installed at the ACPF(Advanced Conditioning Process Facility). The General guidelines in this report are as follows. The General guidelines for remote operation and maintenance of pyroprocess equipment: Pyroprocess, Remote handling equipment for pyroprocess, General guide for remote operation and maintenance, general guidelines for the design of remotely operated and maintained equipment, Estimation and analysis for remote maintenance.

  4. A Remote Monitoring System for Greenhouse Based on the Internet of Things

    Directory of Open Access Journals (Sweden)

    Xu Zhenfeng

    2016-01-01

    Full Text Available The Internet of Things (IOT is considered as a great opportunity for the development in the information field nowadays, and has been applied widely in many fields. The IOT can be applied to monitor and control the microclimate factors of greenhouse remotely. In this paper, a wireless monitoring network is designed in the perception layer of the IOT. The nodes are developed based on the Mica2 hardware and the TinyOS software. The LPL (low power listening technology is adopted to reduce the energy consumption of the relay node which is powered by a solar panel. The ACK (Acknowledgement mechanism is used in the software to improve the quality of wireless communications. A remote monitoring terminal is developed by using Java technology. The monitoring terminal is easy to operate with good interactivity. The system has been installed in a glass greenhouse. The actual operation results show that the system is stable and reliable, which lays a good foundation for the development of remote control strategies in future.

  5. Affordable Remote Health Monitoring System for the Elderly Using Smart Mobile Device

    Directory of Open Access Journals (Sweden)

    Matthew CLARK

    2015-01-01

    Full Text Available Aging population has been growing as life expectancy increases. In the years to come a much larger percentage of the population will be dependent on others for their daily care. According to a recent report more than 11 million seniors live alone in the USA. These seniors may face serious consequences when they have an emergency situation. However health-monitoring systems are often not affordable for many seniors. The remote health monitoring system presented in this paper addresses the challenge to provide caregivers an emergency alert system for the elderly based on monitoring of their heart rates, breathing activities, and room temperature measurements. The device also allows the dependents to make on demand request for assistance. The remote communication is enabled through the cellular telephone services; so there is no special or additional subscription services needed. This is essential to make the device more affordable for the elderly. We expect that this affordable remote health-monitoring system can be used to help seniors who live alone be safer and healthier.

  6. 5. symposium on nuclear reactor remote monitoring

    International Nuclear Information System (INIS)

    1987-01-01

    17 papers deal with the data-technological concept and mode of operation of nuclear-reactor remote-monitoring (RM) systems from the perspectives of users in Baden-Wurttemberg, Sleswig-Holstein, Bavaria and Belgium, with the requirements on measuring devices and equipment in NRM systems, computer-controlled evaluation and processing of measured data, in particular the LASAT and OLDES systems. (DG) [de

  7. Technology Development And Deployment Of Systems For The Retrieval And Processing Of Remote-Handled Sludge From Hanford K-West Fuel Storage Basin

    International Nuclear Information System (INIS)

    Raymond, R.E.

    2011-01-01

    In 2011, significant progress was made in developing and deploying technologies to remove, transport, and interim store remote-handled sludge from the 105-K West Fuel Storage Basin on the Hanford Site in south-central Washington State. The sludge in the 105-K West Basin is an accumulation of degraded spent nuclear fuel and other debris that collected during long-term underwater storage of the spent fuel. In 2010, an innovative, remotely operated retrieval system was used to successfully retrieve over 99.7% of the radioactive sludge from 10 submerged temporary storage containers in the K West Basin. In 2011, a full-scale prototype facility was completed for use in technology development, design qualification testing, and operator training on systems used to retrieve, transport, and store highly radioactive K Basin sludge. In this facility, three separate systems for characterizing, retrieving, pretreating, and processing remote-handled sludge were developed. Two of these systems were successfully deployed in 2011. One of these systems was used to pretreat knockout pot sludge as part of the 105-K West Basin cleanup. Knockout pot sludge contains pieces of degraded uranium fuel ranging in size from 600 μm to 6350 μm mixed with pieces of inert material, such as aluminum wire and graphite, in the same size range. The 2011 pretreatment campaign successfully removed most of the inert material from the sludge stream and significantly reduced the remaining volume of knockout pot product material. Removing the inert material significantly minimized the waste stream and reduced costs by reducing the number of transportation and storage containers. Removing the inert material also improved worker safety by reducing the number of remote-handled shipments. Also in 2011, technology development and final design were completed on the system to remove knockout pot material from the basin and transport the material to an onsite facility for interim storage. This system is scheduled

  8. Genotoxic monitoring of nurses handling cytotoxic drugs

    Directory of Open Access Journals (Sweden)

    Anna Tompa

    2016-01-01

    Full Text Available Objective: Several biomarkers may be used to detect harmful exposure and individual susceptibility to cancer. Monitoring of biomarkers related to exposure may have a significant effect on early detection of cell transformation, thereby aiding the primary prevention of various chronic and malignant diseases. Nurses who handle cytotoxic drugs are exposed to carcinogenic agents, which have the potential to interrupt the cell cycle and to induce chromosomal aberrations. The presence of high chromosomal aberrations indicates the need for intervention even when exposure to these carcinogens is low. Methods: Nationally representative samples of 552 nurses were investigated by a follow-up monitoring system. The measured biomarkers were clinical laboratory routine tests, completed with genotoxicological (chromosome aberrations [CAs] and sister chromatid exchanges [SCEs] and immunotoxicological monitoring (ratio of lymphocyte subpopulations and lymphocyte activation markers measured on peripheral blood lymphocytes. Results were compared to the data of 140 healthy, age-matched controls. Results: In nurses exposed to cytostatics, we observed a significantly increased frequency of CAs and SCEs compared with those in the controls. Cytostatic drug exposure also manifested itself in an increased frequency of helper T lymphocytes. Genotoxicological and immunotoxicological changes, as well as negative health effects (i.e., iron deficiency, anemia, and thyroid diseases, increased among cytostatic exposed subjects. Conclusions: These results raised concerns about the protection of nursing staff from chemical carcinogens in the working environment.

  9. Field experience with remote monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Desrosiers, A.E. [Bartlett Services, Inc., Plymouth, MA (United States)

    1995-03-01

    The Remote Monitoring System (RMS) is a combination of Merlin Gerin detection hardware, digital data communications hardware, and computer software from Bartlett Services, Inc. (BSI) that can improve the conduct of reactor plant operations in several areas. Using the RMS can reduce radiation exposures to radiation protection technicians (RPTs), reduce radiation exposures to plant maintenance and operations personnel, and reduce the time required to complete maintenance and inspections during outages. The number of temporary RPTs required during refueling outages can also be reduced. Data from use of the RMS at a two power plants are presented to illustrate these points.

  10. Remote physiological monitoring in an austere environment: a future for battlefield care provision?

    Science.gov (United States)

    Smyth, Matthew J; Round, J A; Mellor, A J

    2018-05-14

    Wearable technologies are making considerable advances into the mainstream as they become smaller and more user friendly. The global market for such devices is forecasted to be worth over US$5 billion in 2018, with one in six people owning a device. Many professional sporting teams use self-monitoring to assess physiological parameters and work rate on the pitch, highlighting the potential utility for military command chains. As size of device reduces and sensitivity improves, coupled with remote connectivity technology, integration into the military environment could be relatively seamless. Remote monitoring of personnel on the ground, giving live updates on their physiological status, would allow commanders or medical officers the ability to manage their soldiers appropriately and improve combat effectiveness. This paper explores a proof of concept for the use of a self-monitoring system in the austere high altitude environment of the Nepalese Himalayas, akin to those experienced by modern militaries fighting in remote locations. It also reviews, in part, the historical development of remote monitoring technologies. The system allowed for physiological recordings, plotted against GPS position, to be remotely monitored in Italy. Examples of the data recorded are given and the performance of the system is discussed, including limitations, potential areas of development and how systems like this one could be integrated into the military environment. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. A new system for continuous and remote monitoring of patients receiving home mechanical ventilation.

    Science.gov (United States)

    Battista, L

    2016-09-01

    Home mechanical ventilation is the treatment of patients with respiratory failure or insufficiency by means of a mechanical ventilator at a patient's home. In order to allow remote patient monitoring, several tele-monitoring systems have been introduced in the last few years. However, most of them usually do not allow real-time services, as they have their own proprietary communication protocol implemented and some ventilation parameters are not always measured. Moreover, they monitor only some breaths during the whole day, despite the fact that a patient's respiratory state may change continuously during the day. In order to reduce the above drawbacks, this work reports the development of a novel remote monitoring system for long-term, home-based ventilation therapy; the proposed system allows for continuous monitoring of the main physical quantities involved during home-care ventilation (e.g., differential pressure, volume, and air flow rate) and is developed in order to allow observations of different remote therapy units located in different places of a city, region, or country. The developed remote patient monitoring system is able to detect various clinical events (e.g., events of tube disconnection and sleep apnea events) and has been successfully tested by means of experimental tests carried out with pulmonary ventilators typically used to support sick patients.

  12. Torus sector handling system

    International Nuclear Information System (INIS)

    Grisham, D.L.

    1981-01-01

    A remote handling system is proposed for moving a torus sector of the accelerator from under the cryostat to a point where it can be handled by a crane and for the reverse process for a new sector. Equipment recommendations are presented, as well as possible alignment schemes. Some general comments about future remote-handling methods and the present capabilities of existing systems will also be included. The specific task to be addressed is the removal and replacement of a 425 to 450 ton torus sector. This requires a horizontal movement of approx. 10 m from a normal operating position to a point where its further transport can be accomplished by more conventional means (crane or floor transporter). The same horizontal movement is required for reinstallation, but a positional tolerance of 2 cm is required to allow reasonable fit-up for the vacuum seal from the radial frames to the torus sector. Since the sectors are not only heavy but rather tall and narrow, the transport system must provide a safe, stable, and repeatable method fo sector movement. This limited study indicates that the LAMPF-based method of transporting torus sectors offers a proven method of moving heavy items. In addition, the present state of the art in remote equipment is adequate for FED maintenance

  13. Cyber security for remote monitoring and control of small reactors

    Energy Technology Data Exchange (ETDEWEB)

    Trask, D., E-mail: dave.trask@cnl.ca [Atomic Energy of Canada Limited, Chalk River, ON (Canada); Jung, C. [Canadian Nuclear Safety Commission, Ottawa, ON (Canada); MacDonald, M., E-mail: marienna.macdonald@cnl.ca [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    There is growing international interest and activity in the development of small nuclear reactor technology with a number of vendors interested in building small reactors in Canada to serve remote locations. A common theme of small reactor designs proposed for remote Canadian locations is the concept of a centrally located main control centre operating several remotely located reactors via satellite communications. This theme was echoed at a recent IAEA conference where a recommendation was made to study I&C for remotely controlled small modular reactors, including satellite links and cyber security. This paper summarizes the results of an AECL-CNSC research project to analyze satellite communication technologies used for remote monitoring and control functions in order to provide cyber security regulatory considerations. The scope of this research included a basic survey of existing satellite communications technology and its use in industrial control applications, a brief history of satellite vulnerabilities and a broad review of over 50 standards, guidelines, and regulations from recognized institutions covering safety, cyber security, and industrial communication networks including wireless communications in general. This paper concludes that satellite communications should not be arbitrarily excluded by standards or regulation from use for the remote control and monitoring of small nuclear reactors. Instead, reliance should be placed on processes that are independent of any particular technology, such as reducing risks by applying control measures and demonstrating required reliability through good design practices and testing. Ultimately, it is compliance to well-developed standards that yields the evidence to conclude whether a particular application that uses satellite communications is safe and secure. (author)

  14. Cyber security for remote monitoring and control of small reactors

    International Nuclear Information System (INIS)

    Trask, D.; Jung, C.; MacDonald, M.

    2014-01-01

    There is growing international interest and activity in the development of small nuclear reactor technology with a number of vendors interested in building small reactors in Canada to serve remote locations. A common theme of small reactor designs proposed for remote Canadian locations is the concept of a centrally located main control centre operating several remotely located reactors via satellite communications. This theme was echoed at a recent IAEA conference where a recommendation was made to study I&C for remotely controlled small modular reactors, including satellite links and cyber security. This paper summarizes the results of an AECL-CNSC research project to analyze satellite communication technologies used for remote monitoring and control functions in order to provide cyber security regulatory considerations. The scope of this research included a basic survey of existing satellite communications technology and its use in industrial control applications, a brief history of satellite vulnerabilities and a broad review of over 50 standards, guidelines, and regulations from recognized institutions covering safety, cyber security, and industrial communication networks including wireless communications in general. This paper concludes that satellite communications should not be arbitrarily excluded by standards or regulation from use for the remote control and monitoring of small nuclear reactors. Instead, reliance should be placed on processes that are independent of any particular technology, such as reducing risks by applying control measures and demonstrating required reliability through good design practices and testing. Ultimately, it is compliance to well-developed standards that yields the evidence to conclude whether a particular application that uses satellite communications is safe and secure. (author)

  15. Design of Remote Monitoring System of Irrigation based on GSM and ZigBee Technology

    Science.gov (United States)

    Xiao xi, Zheng; Fang, Zhao; Shuaifei, Shao

    2018-03-01

    To solve the problems of low level of irrigation and waste of water resources, a remote monitoring system for farmland irrigation based on GSM communication technology and ZigBee technology was designed. The system is composed of sensors, GSM communication module, ZigBee module, host computer, valve and so on. The system detects and closes the pump and the electromagnetic valve according to the need of the system, and transmits the monitoring information to the host computer or the user’s Mobile phone through the GSM communication network. Experiments show that the system has low power consumption, friendly man-machine interface, convenient and simple. It can monitor agricultural environment remotely and control related irrigation equipment at any time and place, and can better meet the needs of remote monitoring of farmland irrigation.

  16. Winter wheat quality monitoring and forecasting system based on remote sensing and environmental factors

    International Nuclear Information System (INIS)

    Haiyang, Yu; Yanmei, Liu; Guijun, Yang; Xiaodong, Yang; Chenwei, Nie; Dong, Ren

    2014-01-01

    To achieve dynamic winter wheat quality monitoring and forecasting in larger scale regions, the objective of this study was to design and develop a winter wheat quality monitoring and forecasting system by using a remote sensing index and environmental factors. The winter wheat quality trend was forecasted before the harvest and quality was monitored after the harvest, respectively. The traditional quality-vegetation index from remote sensing monitoring and forecasting models were improved. Combining with latitude information, the vegetation index was used to estimate agronomy parameters which were related with winter wheat quality in the early stages for forecasting the quality trend. A combination of rainfall in May, temperature in May, illumination at later May, the soil available nitrogen content and other environmental factors established the quality monitoring model. Compared with a simple quality-vegetation index, the remote sensing monitoring and forecasting model used in this system get greatly improved accuracy. Winter wheat quality was monitored and forecasted based on the above models, and this system was completed based on WebGIS technology. Finally, in 2010 the operation process of winter wheat quality monitoring system was presented in Beijing, the monitoring and forecasting results was outputted as thematic maps

  17. A component-based system for agricultural drought monitoring by remote sensing.

    Science.gov (United States)

    Dong, Heng; Li, Jun; Yuan, Yanbin; You, Lin; Chen, Chao

    2017-01-01

    In recent decades, various kinds of remote sensing-based drought indexes have been proposed and widely used in the field of drought monitoring. However, the drought-related software and platform development lag behind the theoretical research. The current drought monitoring systems focus mainly on information management and publishing, and cannot implement professional drought monitoring or parameter inversion modelling, especially the models based on multi-dimensional feature space. In view of the above problems, this paper aims at fixing this gap with a component-based system named RSDMS to facilitate the application of drought monitoring by remote sensing. The system is designed and developed based on Component Object Model (COM) to ensure the flexibility and extendibility of modules. RSDMS realizes general image-related functions such as data management, image display, spatial reference management, image processing and analysis, and further provides drought monitoring and evaluation functions based on internal and external models. Finally, China's Ningxia region is selected as the study area to validate the performance of RSDMS. The experimental results show that RSDMS provide an efficient and scalable support to agricultural drought monitoring.

  18. The Department of Energy Nevada Test Site Remote Area Monitoring System

    International Nuclear Information System (INIS)

    Sanders, L.D.; Hart, O.F.

    1993-01-01

    The Remote Area Monitoring System was developed by Los Alamos National Laboratory (LANL) for DOE test directors at the Nevada Test Site (NTS) to verify radiological conditions are safe after a nuclear test. In the unlikely event of a venting as a result of a nuclear test, this system provides radiological and meteorological data to Weather Service Nuclear Support Office (WSNSO) computers where mesoscale models are used to predict downwind exposure rates. The system uses a combination of hardwired radiation sensors and satellite based data acquisition units with their own radiation sensors to measure exposure rates in remote areas of the NTS. The satellite based data acquisition units are available as small, Portable Remote Area Monitors (RAMs) for rapid deployment, and larger, Semipermanent RAMs that can have meteorological towers. The satellite based stations measure exposure rates and transmit measurements to the GOES (Geostationary Operational Environmental Satellite) where they are relayed to Direct Readout Ground Stations (DRGS) at the NTS and Los Alamos. Computers process the data and display results in the NTS Operations Coordination Center. Los Alamos computers and NTS computers are linked together through a wide area network, providing remote redundant system capability. Recently, LANL, expanded the system to take radiological and meteorological measurements in communities in the western United States. The system was also expanded to acquire data from Remote Automatic Weather Stations (RAWS) that transmit through GOES. The addition of Portable and Semipermanent RAMs to the system has vastly expanded monitoring capabilities at NTS and can be used to take measurements anywhere in this hemisphere

  19. On the control performance of motors driven by long cables for remote handling at ITER

    International Nuclear Information System (INIS)

    Sol, Enrique del; Meek, Richard; Ruiz Morales, Emilio; Vitelli, Ricardo; Esqué, Salvador

    2016-01-01

    Highlights: • We show the dangerous effects of reflections on the actuator’s system. • We prove how to solve the reflections issue with a commercial LC filter. • We study the filter influence for short cables on two control modes. • We show the filter performance under a real remote handling operation. • We study the excellent performance of the filter for different cable lengths. - Abstract: Pulse Width Modulation (PWM) is nowadays the most used method for controlling a servo-motor. When combining PWM with motors and long cables, such as the ones that will be found at ITER, the standing waves originated are potentially very harmful for both actuator’s life span and control performance. Several methods have been investigated to cope with this issue, such as the use of chokes, filters, snubbers or active modification of the PWM signal. Of all possible locations where an electrical servo-motor could be used at ITER, the most critical scenario arises when mounting a low power motor, with a low gear ratio, in a dexterous manipulator for bilateral teleoperation. In those circumstances cable lengths of more than 150 m are expected between manipulator and control cubicle. In this paper, the effects of long cables in the system safety are analysed on a custom made test bench. The most common solutions to cope with this issue are analysed and a commercial LC filter is selected for further experimentation. An extensive set of experiments are carried out in order to validate the proposed solution for being used on remote handling equipment at ITER.

  20. On the control performance of motors driven by long cables for remote handling at ITER

    Energy Technology Data Exchange (ETDEWEB)

    Sol, Enrique del, E-mail: enrique.delsol@oxfordtechnologies.co.uk [Oxford Technologies Ltd., 7 Nuffield Way, Abingdon OX141RL (United Kingdom); Meek, Richard [Oxford Technologies Ltd., 7 Nuffield Way, Abingdon OX141RL (United Kingdom); Ruiz Morales, Emilio; Vitelli, Ricardo; Esqué, Salvador [Fusion for Energy, Josep Pla, 2, Barcelona 08019 (Spain)

    2016-06-15

    Highlights: • We show the dangerous effects of reflections on the actuator’s system. • We prove how to solve the reflections issue with a commercial LC filter. • We study the filter influence for short cables on two control modes. • We show the filter performance under a real remote handling operation. • We study the excellent performance of the filter for different cable lengths. - Abstract: Pulse Width Modulation (PWM) is nowadays the most used method for controlling a servo-motor. When combining PWM with motors and long cables, such as the ones that will be found at ITER, the standing waves originated are potentially very harmful for both actuator’s life span and control performance. Several methods have been investigated to cope with this issue, such as the use of chokes, filters, snubbers or active modification of the PWM signal. Of all possible locations where an electrical servo-motor could be used at ITER, the most critical scenario arises when mounting a low power motor, with a low gear ratio, in a dexterous manipulator for bilateral teleoperation. In those circumstances cable lengths of more than 150 m are expected between manipulator and control cubicle. In this paper, the effects of long cables in the system safety are analysed on a custom made test bench. The most common solutions to cope with this issue are analysed and a commercial LC filter is selected for further experimentation. An extensive set of experiments are carried out in order to validate the proposed solution for being used on remote handling equipment at ITER.

  1. Service models for remote healthcare monitoring systems.

    Science.gov (United States)

    Moorman, Bridget A

    2010-01-01

    These scenarios reflect where the future is heading for remote health monitoring technology and service expectations. Being able to manage a "system of systems" with timely service hand-off over seams of responsibility and system interfaces will become very important for a BMET or clinical engineer. These interfaces will include patient homes, clinician homes, commercial/civilian infrastructure, public utilities, vendor infrastructure as well as internal departmental domains. Concurrently, technology is changing rapidly resulting in newer software delivery modes and hardware appliances as well as infrastructure changes. Those who are able to de-construct the complex systems and identify infrastructure assumptions and seams of servicing responsibility will be able to better understand and communicate the expectations for service of these systems. Moreover, as identified in Case 1, prodigious use of underlying system monitoring tools (managing the "meta-data") could move servicing of these remote systems from a reactive approach to a proactive approach. A prepared healthcare organization will identify their current and proposed future service combination use cases and design service philosophies and expectations for those use cases, while understanding the infrastructure assumptions and seams of responsibility. This is the future of technical service to the healthcare clinicians and patients.

  2. Development of a remote monitoring and control system for nuclear power plants

    International Nuclear Information System (INIS)

    Lee, Seung Jun; Kim, Jong Hyun; Seong, Poong Hyun

    2002-01-01

    Nuclear Power Plants (NPPs) will be highly connected network enabled system and need to be monitored and controlled round the clock for high safety and availability. Using the network and web enabled tools, NPPs can be monitored remotely by operators at anytime from any place connected to the network via a general web browser. However, there are security and performance issues associated with such tools, as will be further discussed further. We developed a web-based Remote Monitoring and Control System (RMCS) that uses prevalent web technology. This work, as a preliminary study, performed the conceptual design of the web-based RMCS and developed the prototype

  3. [Design and application of user managing system of cardiac remote monitoring network].

    Science.gov (United States)

    Chen, Shouqiang; Zhang, Jianmin; Yuan, Feng; Gao, Haiqing

    2007-12-01

    According to inpatient records, data managing demand of cardiac remote monitoring network and computer, this software was designed with relative database ACCESS. Its interface, operational button and menu were designed in VBA language assistantly. Its design included collective design, amity, practicability and compatibility. Its function consisted of registering, inquiring, statisticing and printing, et al. It could be used to manage users effectively and could be helpful to exerting important action of cardiac remote monitoring network in preventing cardiac-vascular emergency ulteriorly.

  4. Remote Blood Glucose Monitoring in mHealth Scenarios: A Review

    Directory of Open Access Journals (Sweden)

    Giordano Lanzola

    2016-11-01

    Full Text Available Glucose concentration in the blood stream is a critical vital parameter and an effective monitoring of this quantity is crucial for diabetes treatment and intensive care management. Effective bio-sensing technology and advanced signal processing are therefore of unquestioned importance for blood glucose monitoring. Nevertheless, collecting measurements only represents part of the process as another critical task involves delivering the collected measures to the treating specialists and caregivers. These include the clinical staff, the patient’s significant other, his/her family members, and many other actors helping with the patient treatment that may be located far away from him/her. In all of these cases, a remote monitoring system, in charge of delivering the relevant information to the right player, becomes an important part of the sensing architecture. In this paper, we review how the remote monitoring architectures have evolved over time, paralleling the progress in the Information and Communication Technologies, and describe our experiences with the design of telemedicine systems for blood glucose monitoring in three medical applications. The paper ends summarizing the lessons learned through the experiences of the authors and discussing the challenges arising from a large-scale integration of sensors and actuators.

  5. Training in remote monitoring technology. Digital camera module-14(DCM-14)

    International Nuclear Information System (INIS)

    Caskey, Susan

    2006-01-01

    The DCM-14 (Digital Camera Module) is the backbone of current IAEA remote monitoring surveillance systems. The control module is programmable with features for encryption, authentication, image compression and scene change detection. It can take periodic or triggered images under a variety of time sequences. This training session covered the DCM-14 features and related programming in DCMSET. It also described the processes for receiving, archiving and backing up the camera images using DCMPOLL and GEMINI software. Setting up a DCM-14 camera controller in the configuration of the remote monitoring system at Joyo formed an exercise. (author)

  6. Multi-terminal remote monitoring and warning system using Micro Air Vehicle for dangerous environment

    Science.gov (United States)

    Yu, Yanan; Wang, Xiaoxun; He, Chengcheng; Lai, Chenlong; Liu, Yuanchao

    2015-11-01

    For overcoming the problems such as remote operation and dangerous tasks, multi-terminal remote monitoring and warning system based on STC89C52 Micro Control Unit and wireless communication technique was proposed. The system with MCU as its core adopted multiple sets of sensor device to monitor environment parameters of different locations, such as temperature, humidity, smoke other harmful gas concentration. Data information collected was transmitted remotely by wireless transceiver module, and then multi-channel data parameter was processed and displayed through serial communication protocol between the module and PC. The results of system could be checked in the form of web pages within a local network which plays a wireless monitoring and warning role. In a remote operation, four-rotor micro air vehicle which fixed airborne data acquisition device was utilized as a middleware between collecting terminal and PC to increase monitoring scope. Whole test system has characteristics of simple construction, convenience, real time ability and high reliability, which could meet the requirements of actual use.

  7. Remote handling in nuclear fusion research

    International Nuclear Information System (INIS)

    Removille, J.

    1989-01-01

    When the Joint European Torus (JET) commences operation in 1992, the neutron flux will increase by 2 or 3 orders of magnitude activating the components of the machine to such an extent as to prohibit the access of personnel into the machine hall to carry out maintenance tasks. This paper lists operations which will have to be carried out remotely either because they are essential to the routine running of the machine or in emergencies. Remotely operated equipment which has been developed to perform these tasks is described. It is based on a system of conveyors which carry manipulators and tools to their point of operation. The principal conveyors are: a telescopic articulated mast carried on a bridge over the machine enabling tasks around and above the torus to be performed; conveyors running on rails which can reach otherwise inaccessible regions beneath the machine; an articulated arm which can position a manipulator within the torus; and a radio controlled support vehicle running on caterpillar tracks carrying a camera and tools for connecting cables to other conveyors. The main features of the control room from which the conveyors, manipulators, tools and cameras are remotely operated is also described. (UK)

  8. Remote monitoring of cardiovascular implanted electronic devices: a paradigm shift for the 21st century.

    Science.gov (United States)

    Cronin, Edmond M; Varma, Niraj

    2012-07-01

    Traditional follow-up of cardiac implantable electronic devices involves the intermittent download of largely nonactionable data. Remote monitoring represents a paradigm shift from episodic office-based follow-up to continuous monitoring of device performance and patient and disease state. This lessens device clinical burden and may also lead to cost savings, although data on economic impact are only beginning to emerge. Remote monitoring technology has the potential to improve the outcomes through earlier detection of arrhythmias and compromised device integrity, and possibly predict heart failure hospitalizations through integration of heart failure diagnostics and hemodynamic monitors. Remote monitoring platforms are also huge databases of patients and devices, offering unprecedented opportunities to investigate real-world outcomes. Here, the current status of the field is described and future directions are predicted.

  9. Monitor update: 1979

    International Nuclear Information System (INIS)

    Grisham, D.L.; Ekberg, E.L.; Lambert, J.E.; Meyer, R.E.; Stroik, P.J.; Wickham, M.D.

    1980-01-01

    The Clinton P. Anderson Meson Physics Facility (LAMPF) has developed an advanced remote-handling system (Monitor) that is routinely used to perform complex tasks required to maintain, replace, and improve highly radioactive experimental facilities and components. This advanced system is based on the use of first-generation, force-reflecting servomanipulators that are placed at the remote-task site by a commercial hydraulic crane. A number of television cameras provide the viewing for the operations. Although LAMPF is now able to perform all the maintenance necessary on our main experimental beam line, advancements in manipulator dexterity and capacity, television viewing, and master-slave control links are required to develop the speed and dexterity necessary for general use. These developments should be undertaken as soon as possible to provide a means of routine handling of toxic and dangerous materials, as well as a capability to respond to disasters

  10. Scaling-up camera traps: monitoring the planet's biodiversity with networks of remote sensors

    Science.gov (United States)

    Steenweg, Robin; Hebblewhite, Mark; Kays, Roland; Ahumada, Jorge A.; Fisher, Jason T.; Burton, Cole; Townsend, Susan E.; Carbone, Chris; Rowcliffe, J. Marcus; Whittington, Jesse; Brodie, Jedediah; Royle, Andy; Switalski, Adam; Clevenger, Anthony P.; Heim, Nicole; Rich, Lindsey N.

    2017-01-01

    Countries committed to implementing the Convention on Biological Diversity's 2011–2020 strategic plan need effective tools to monitor global trends in biodiversity. Remote cameras are a rapidly growing technology that has great potential to transform global monitoring for terrestrial biodiversity and can be an important contributor to the call for measuring Essential Biodiversity Variables. Recent advances in camera technology and methods enable researchers to estimate changes in abundance and distribution for entire communities of animals and to identify global drivers of biodiversity trends. We suggest that interconnected networks of remote cameras will soon monitor biodiversity at a global scale, help answer pressing ecological questions, and guide conservation policy. This global network will require greater collaboration among remote-camera studies and citizen scientists, including standardized metadata, shared protocols, and security measures to protect records about sensitive species. With modest investment in infrastructure, and continued innovation, synthesis, and collaboration, we envision a global network of remote cameras that not only provides real-time biodiversity data but also serves to connect people with nature.

  11. Remote-Handled Transuranic Content Codes

    International Nuclear Information System (INIS)

    2001-01-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document represents the development of a uniform content code system for RH-TRU waste to be transported in the 72-Bcask. It will be used to convert existing waste form numbers, content codes, and site-specific identification codes into a system that is uniform across the U.S. Department of Energy (DOE) sites.The existing waste codes at the sites can be grouped under uniform content codes without any lossof waste characterization information. The RH-TRUCON document provides an all-encompassing description for each content code and compiles this information for all DOE sites. Compliance with waste generation, processing, and certification procedures at the sites (outlined in this document foreach content code) ensures that prohibited waste forms are not present in the waste. The content code gives an overall description of the RH-TRU waste material in terms of processes and packaging, as well as the generation location. This helps to provide cradle-to-grave traceability of the waste material so that the various actions required to assess its qualification as payload for the 72-B cask can be performed. The content codes also impose restrictions and requirements on the manner in which a payload can be assembled. The RH-TRU Waste Authorized Methods for Payload Control (RH-TRAMPAC), Appendix 1.3.7 of the 72-B Cask Safety Analysis Report (SAR), describes the current governing procedures applicable for the qualification of waste as payload for the 72-B cask. The logic for this classification is presented in the 72-B Cask SAR. Together, these documents (RH-TRUCON, RH-TRAMPAC, and relevant sections of the 72-B Cask SAR) present the foundation and justification for classifying RH-TRU waste into content codes. Only content codes described in thisdocument can be considered for transport in the 72-B cask. Revisions to this document will be madeas additional waste qualifies for transport. Each content code uniquely

  12. Enhancement of the use of digital mock-ups in the verification and validation process for ITER remote handling systems

    Energy Technology Data Exchange (ETDEWEB)

    Sibois, R., E-mail: romain.sibois@vtt.fi [VTT Technical Research Centre of Finland, P.O. Box 1300, 33101 Tampere (Finland); Salminen, K.; Siuko, M. [VTT Technical Research Centre of Finland, P.O. Box 1300, 33101 Tampere (Finland); Mattila, J. [Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland); Määttä, T. [VTT Technical Research Centre of Finland, P.O. Box 1300, 33101 Tampere (Finland)

    2013-10-15

    Highlights: • Verification and validation process for ITER remote handling system. • Verification and validation framework for complex engineering systems. • Verification and validation roadmap for digital modelling phase. • Importance of the product life-cycle management in the verification and validation framework. -- Abstract: The paper is part of the EFDA's programme of European Goal Oriented Training programme on remote handling (RH) “GOT-RH”. The programme aims to train engineers for activities supporting the ITER project and the long-term fusion programme. This paper is written based on the results of a project “verification and validation (V and V) of ITER RH system using digital mock-ups (DMUs)”. The purpose of this project is to study efficient approach of using DMU for the V and V of the ITER RH system design utilizing a system engineering (SE) framework. This paper reviews the definitions of DMU and virtual prototype and overviews the current trends of using virtual prototyping in the industry during the early design phase. Based on the survey of best industrial practices, this paper proposes ways to improve the V and V process for ITER RH system utilizing DMUs.

  13. Remote in vivo stress assessment of aquatic animals with microencapsulated biomarkers for environmental monitoring

    Science.gov (United States)

    Gurkov, Anton; Shchapova, Ekaterina; Bedulina, Daria; Baduev, Boris; Borvinskaya, Ekaterina; Meglinski, Igor; Timofeyev, Maxim

    2016-11-01

    Remote in vivo scanning of physiological parameters is a major trend in the development of new tools for the fields of medicine and animal physiology. For this purpose, a variety of implantable optical micro- and nanosensors have been designed for potential medical applications. At the same time, the important area of environmental sciences has been neglected in the development of techniques for remote physiological measurements. In the field of environmental monitoring and related research, there is a constant demand for new effective and quick techniques for the stress assessment of aquatic animals, and the development of proper methods for remote physiological measurements in vivo may significantly increase the precision and throughput of analyses in this field. In the present study, we apply pH-sensitive microencapsulated biomarkers to remotely monitor the pH of haemolymph in vivo in endemic amphipods from Lake Baikal, and we compare the suitability of this technique for stress assessment with that of common biochemical methods. For the first time, we demonstrate the possibility of remotely detecting a change in a physiological parameter in an aquatic organism under ecologically relevant stressful conditions and show the applicability of techniques using microencapsulated biomarkers for remote physiological measurements in environmental monitoring.

  14. Challenges for remote monitoring and control of small reactors

    Energy Technology Data Exchange (ETDEWEB)

    Trask, D., E-mail: traskd@aecl.ca [Atomic Energy of Canada Limited, Fredericton, New Brunswick (Canada)

    2013-07-01

    This paper considers a model for small, unmanned, remotely located reactors and discusses the ensuing cyber security and operational challenges for monitoring and control and how these challenges might be overcome through some of AECL's research initiatives and experience. (author)

  15. Test-bed for the remote health monitoring system for bridge structures using FBG sensors

    Science.gov (United States)

    Lee, Chin-Hyung; Park, Ki-Tae; Joo, Bong-Chul; Hwang, Yoon-Koog

    2009-05-01

    This paper reports on test-bed for the long-term health monitoring system for bridge structures employing fiber Bragg grating (FBG) sensors, which is remotely accessible via the web, to provide real-time quantitative information on a bridge's response to live loading and environmental changes, and fast prediction of the structure's integrity. The sensors are attached on several locations of the structure and connected to a data acquisition system permanently installed onsite. The system can be accessed through remote communication using an optical cable network, through which the evaluation of the bridge behavior under live loading can be allowed at place far away from the field. Live structural data are transmitted continuously to the server computer at the central office. The server computer is connected securely to the internet, where data can be retrieved, processed and stored for the remote web-based health monitoring. Test-bed revealed that the remote health monitoring technology will enable practical, cost-effective, and reliable condition assessment and maintenance of bridge structures.

  16. Satellite monitoring of remote volcanoes improves study efforts in Alaska

    Science.gov (United States)

    Dean, K.; Servilla, M.; Roach, A.; Foster, B.; Engle, K.

    Satellite monitoring of remote volcanoes is greatly benefitting the Alaska Volcano Observatory (AVO), and last year's eruption of the Okmok Volcano in the Aleutian Islands is a good case in point. The facility was able to issue and refine warnings of the eruption and related activity quickly, something that could not have been done using conventional seismic surveillance techniques, since seismometers have not been installed at these locations.AVO monitors about 100 active volcanoes in the North Pacific (NOPAC) region, but only a handful are observed by costly and logistically complex conventional means. The region is remote and vast, about 5000 × 2500 km, extending from Alaska west to the Kamchatka Peninsula in Russia (Figure 1). Warnings are transmitted to local communities and airlines that might be endangered by eruptions. More than 70,000 passenger and cargo flights fly over the region annually, and airborne volcanic ash is a threat to them. Many remote eruptions have been detected shortly after the initial magmatic activity using satellite data, and eruption clouds have been tracked across air traffic routes. Within minutes after eruptions are detected, information is relayed to government agencies, private companies, and the general public using telephone, fax, and e-mail. Monitoring of volcanoes using satellite image data involves direct reception, real-time monitoring, and data analysis. Two satellite data receiving stations, located at the Geophysical Institute, University of Alaska Fairbanks (UAF), are capable of receiving data from the advanced very high resolution radiometer (AVHRR) on National Oceanic and Atmospheric Administration (NOAA) polar orbiting satellites and from synthetic aperture radar (SAR) equipped satellites.

  17. A component-based system for agricultural drought monitoring by remote sensing.

    Directory of Open Access Journals (Sweden)

    Heng Dong

    Full Text Available In recent decades, various kinds of remote sensing-based drought indexes have been proposed and widely used in the field of drought monitoring. However, the drought-related software and platform development lag behind the theoretical research. The current drought monitoring systems focus mainly on information management and publishing, and cannot implement professional drought monitoring or parameter inversion modelling, especially the models based on multi-dimensional feature space. In view of the above problems, this paper aims at fixing this gap with a component-based system named RSDMS to facilitate the application of drought monitoring by remote sensing. The system is designed and developed based on Component Object Model (COM to ensure the flexibility and extendibility of modules. RSDMS realizes general image-related functions such as data management, image display, spatial reference management, image processing and analysis, and further provides drought monitoring and evaluation functions based on internal and external models. Finally, China's Ningxia region is selected as the study area to validate the performance of RSDMS. The experimental results show that RSDMS provide an efficient and scalable support to agricultural drought monitoring.

  18. Safety Evaluation of an Automated Remote Monitoring System for Heart Failure in an Urban, Indigent Population.

    Science.gov (United States)

    Gross-Schulman, Sandra; Sklaroff, Laura Myerchin; Hertz, Crystal Coyazo; Guterman, Jeffrey J

    2017-12-01

    Heart Failure (HF) is the most expensive preventable condition, regardless of patient ethnicity, race, socioeconomic status, sex, and insurance status. Remote telemonitoring with timely outpatient care can significantly reduce avoidable HF hospitalizations. Human outreach, the traditional method used for remote monitoring, is effective but costly. Automated systems can potentially provide positive clinical, fiscal, and satisfaction outcomes in chronic disease monitoring. The authors implemented a telephonic HF automated remote monitoring system that utilizes deterministic decision tree logic to identify patients who are at risk of clinical decompensation. This safety study evaluated the degree of clinical concordance between the automated system and traditional human monitoring. This study focused on a broad underserved population and demonstrated a safe, reliable, and inexpensive method of monitoring patients with HF.

  19. Applications of optical fiber to remote laser fluorescence analysis

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Shin, Jang Soo; Lee, Sang Mock; Kim, Jeong Moog; Kim, Duk Heon; Hong, Seok Kyung

    1991-12-01

    Fluorescence analysis using time-resolved laser fluorimetry has been used for trace uranium analysis because this method shows high sensitivity and low detection limit and is less matrix dependent than any other fluorimetric measurement. By this time, the uranium analyses in the solution of reprocessing process or high radioactive area have been primarily analyzed by sampling of the solution, but recently, a study on a remote uranium fluorescence analysis using optical fiber has been setting out based on the development of an optical fiber with radiation resistivity and of an advanced laser excitation source. Laser fluorimetry developed by our laboratory for trace uranium analyses in uranium handling process or in urine samples of workers in a nuclear facility has been used in our institute since 1988. A development of the system for remote control of uranium fluorescence analysis will be expected to contribute to an on-line uranium concentration monitoring in the cooling water of reconversion stream. In this report, we summarize the information related to fluorescence analyses and remote fluorescence monitoring methods established by foreign countries and our laboratory. We also present a future research direction for remote on-line monitoring of uranium in conversion or reconversion process. (Author)

  20. Remote Sensing of Coral Reefs for Monitoring and Management: A Review

    Directory of Open Access Journals (Sweden)

    John D. Hedley

    2016-02-01

    Full Text Available Coral reefs are in decline worldwide and monitoring activities are important for assessing the impact of disturbance on reefs and tracking subsequent recovery or decline. Monitoring by field surveys provides accurate data but at highly localised scales and so is not cost-effective for reef scale monitoring at frequent time points. Remote sensing from satellites is an alternative and complementary approach. While remote sensing cannot provide the level of detail and accuracy at a single point than a field survey, the statistical power for inferring large scale patterns benefits in having complete areal coverage. This review considers the state of the art of coral reef remote sensing for the diverse range of objectives relevant for management, ranging from the composition of the reef: physical extent, benthic cover, bathymetry, rugosity; to environmental parameters: sea surface temperature, exposure, light, carbonate chemistry. In addition to updating previous reviews, here we also consider the capability to go beyond basic maps of habitats or environmental variables, to discuss concepts highly relevant to stakeholders, policy makers and public communication: such as biodiversity, environmental threat and ecosystem services. A clear conclusion of the review is that advances in both sensor technology and processing algorithms continue to drive forward remote sensing capability for coral reef mapping, particularly with respect to spatial resolution of maps, and synthesis across multiple data products. Both trends can be expected to continue.

  1. TPX in-vessel remote maintenance tooling

    International Nuclear Information System (INIS)

    Rennich, M.J.; Silke, G.W.

    1995-01-01

    The Tokamak Physics Experiment (TPX) has used the lessons learned from successful remote maintenance and remote handling facilities to develop both a concept and philosophy for incorporation of remote design from the earliest phases of the project. Initiation of mockup testing during the conceptual design phase leads to significant improvements in the basic maintenance equipment configuration. In addition, remote handling features and capabilities have been incorporated into the design of the plasma-facing components (PFCs) as part of the total PFC design effort

  2. Critical element development of standard pipe connector for remote handling

    International Nuclear Information System (INIS)

    Taguchi, Kou; Kakudate, Satoshi; Kanamori, Naokazu; Oka, Kiyoshi; Nakahira, Masataka; Obara, Kenjiro; Tada, Eisuke; Shibanuma, Kiyoshi; Seki, Masahiro

    1994-08-01

    In fusion experimental reactors such as ITER, the in-vessel components such as blanket and divertor are actively cooled and a large number of cooling pipes are located around the core of reactor, where personnel access is prohibited. Mechanical pipe connectors are highly required as standard components for easy and reliable connection/disconnection of cooling pipe by remote handling. For this purpose, a clamping chain type connector has been developed with special mechanisms such as plate springs and guide structures so as to enable concentric and axial movement of clamping chain for easy mounting and dismounting. The basic performance test of a prototypical connector for a 80-A pipe shows sufficient leak tightness and proof pressure capability as well as simple connection/disconnection operation. In addition to the clamp chain type connector, design efforts have been made to develop a quick coupling type connector and a preliminary model of air-actuated quick connector has been fabricated for further investigations. This paper gives the design concept of mechanical pipe connectors such as clamping chain type and quick coupler type, and the basic performance tests results of clamping chain type connector. (author)

  3. Interoperability of remote handling control system software modules at Divertor Test Platform 2 using middleware

    International Nuclear Information System (INIS)

    Tuominen, Janne; Rasi, Teemu; Mattila, Jouni; Siuko, Mikko; Esque, Salvador; Hamilton, David

    2013-01-01

    Highlights: ► The prototype DTP2 remote handling control system is a heterogeneous collection of subsystems, each realizing a functional area of responsibility. ► Middleware provides well-known, reusable solutions to problems, such as heterogeneity, interoperability, security and dependability. ► A middleware solution was selected and integrated with the DTP2 RH control system. The middleware was successfully used to integrate all relevant subsystems and functionality was demonstrated. -- Abstract: This paper focuses on the inter-subsystem communication channels in a prototype distributed remote handling control system at Divertor Test Platform 2 (DTP2). The subsystems are responsible for specific tasks and, over the years, their development has been carried out using various platforms and programming languages. The communication channels between subsystems have different priorities, e.g. very high messaging rate and deterministic timing or high reliability in terms of individual messages. Generally, a control system's communication infrastructure should provide interoperability, scalability, performance and maintainability. An attractive approach to accomplish this is to use a standardized and proven middleware implementation. The selection of a middleware can have a major cost impact in future integration efforts. In this paper we present development done at DTP2 using the Object Management Group's (OMG) standard specification for Data Distribution Service (DDS) for ensuring communications interoperability. DDS has gained a stable foothold especially in the military field. It lacks a centralized broker, thereby avoiding a single-point-of-failure. It also includes an extensive set of Quality of Service (QoS) policies. The standard defines a platform- and programming language independent model and an interoperability wire protocol that enables DDS vendor interoperability, allowing software developers to avoid vendor lock-in situations

  4. A remotely interrogatable sensor for chemical monitoring

    Science.gov (United States)

    Stoyanov, P. G.; Doherty, S. A.; Grimes, C. A.; Seitz, W. R.

    1998-01-01

    A new type of continuously operating, in-situ, remotely monitored sensor is presented. The sensor is comprised of a thin film array of magnetostatically coupled, magnetically soft ferromagnetic thin film structures, adhered to or encased within a thin polymer layer. The polymer is made so that it swells or shrinks in response to the chemical analyte of interest, which in this case is pH. As the polymer swells or shrinks, the magnetostatic coupling between the magnetic elements changes, resulting in changes in the magnetic switching characteristics of the sensor. Placed within a sinusoidal magnetic field the magnetization vector of the coupled sensor elements periodically reverses directions, generating magnetic flux that can be remotely detected as a series of voltage spikes in appropriately placed pickup coils. one preliminary sensor design consists of four triangles, initially spaced approximately 50 micrometers apart, arranged to form a 12 mm x 12 mm square with the triangle tips centered at a common origin. Our preliminary work has focused on monitoring of pH using a lightly crosslinked pH sensitive polymer layer of hydroxyethylmethacrylate and 2-(dimethylamino) ethylmethacrylate. As the polymer swells or shrinks the magnetostatic coupling between the triangles changes, resulting in measurable changes in the amplitude of the detected voltage spirits.

  5. Potential to monitor plant stress using remote sensing tools

    CSIR Research Space (South Africa)

    Ramoelo, Abel

    2014-01-01

    Full Text Available simple ratio indices were selected for mapping leaf water potential and leaf N for wet and dry season using RapidEye data. We conclude that remote sensing images can be applied for the long term vegetation monitoring for future biodiversity conservation...

  6. Development and application of remote video monitoring system for combine harvester based on embedded Linux

    Science.gov (United States)

    Chen, Jin; Wang, Yifan; Wang, Xuelei; Wang, Yuehong; Hu, Rui

    2017-01-01

    Combine harvester usually works in sparsely populated areas with harsh environment. In order to achieve the remote real-time video monitoring of the working state of combine harvester. A remote video monitoring system based on ARM11 and embedded Linux is developed. The system uses USB camera for capturing working state video data of the main parts of combine harvester, including the granary, threshing drum, cab and cut table. Using JPEG image compression standard to compress video data then transferring monitoring screen to remote monitoring center over the network for long-range monitoring and management. At the beginning of this paper it describes the necessity of the design of the system. Then it introduces realization methods of hardware and software briefly. And then it describes detailedly the configuration and compilation of embedded Linux operating system and the compiling and transplanting of video server program are elaborated. At the end of the paper, we carried out equipment installation and commissioning on combine harvester and then tested the system and showed the test results. In the experiment testing, the remote video monitoring system for combine harvester can achieve 30fps with the resolution of 800x600, and the response delay in the public network is about 40ms.

  7. Wireless remote monitoring system for sleep apnea

    Science.gov (United States)

    Oh, Sechang; Kwon, Hyeokjun; Varadan, Vijay K.

    2011-04-01

    Sleep plays the important role of rejuvenating the body, especially the central nervous system. However, more than thirty million people suffer from sleep disorders and sleep deprivation. That can cause serious health consequences by increasing the risk of hypertension, diabetes, heart attack and so on. Apart from the physical health risk, sleep disorders can lead to social problems when sleep disorders are not diagnosed and treated. Currently, sleep disorders are diagnosed through sleep study in a sleep laboratory overnight. This involves large expenses in addition to the inconvenience of overnight hospitalization and disruption of daily life activities. Although some systems provide home based diagnosis, most of systems record the sleep data in a memory card, the patient has to face the inconvenience of sending the memory card to a doctor for diagnosis. To solve the problem, we propose a wireless sensor system for sleep apnea, which enables remote monitoring while the patient is at home. The system has 5 channels to measure ECG, Nasal airflow, body position, abdominal/chest efforts and oxygen saturation. A wireless transmitter unit transmits signals with Zigbee and a receiver unit which has two RF modules, Zigbee and Wi-Fi, receives signals from the transmitter unit and retransmits signals to the remote monitoring system with Zigbee and Wi-Fi, respectively. By using both Zigbee and Wi-Fi, the wireless sensor system can achieve a low power consumption and wide range coverage. The system's features are presented, as well as continuous monitoring results of vital signals.

  8. Remote handling procedures in JET

    International Nuclear Information System (INIS)

    Raimondi, T.; Huguet, M.

    1976-01-01

    Remote maintenance will be needed in the second phase of operation due to the structural activation produced by deuterium-tritium discharges. Priority will be given to tasks which require frequent intervention, but efforts will be made also to tackle larger operations such as replacement of an octant. Owing to the variety and unpredictability of the operations which may be required, general purpose telemanipulator and TV systems will be used, mounted on versatile articulated supports capable of reaching the various parts of the machine. An experimental programme is planned to test the envisaged equipment and develop procedures for carrying out the various tasks as they are more clearly identified. Design of peripheral equipment for easy accessibility, choice of simple connection methods, development of auxiliary tools, as well as careful programming of the operations, will be essential for successful remote maintenance. The effort put into these areas will, however, also result in considerable time saving during the assembly and maintenance in non-active conditions. Preliminary feasibility tests of some difficult operations have already been done with a force-reflecting servo-manipulator and two TV sets for front and side viewing. Leak identification and precision welding for vacuum tightness were demonstrated

  9. Nuclear fuel handling apparatus

    International Nuclear Information System (INIS)

    Andrea, C.; Dupen, C.F.G.; Noyes, R.C.

    1977-01-01

    A fuel handling machine for a liquid metal cooled nuclear reactor in which a retractable handling tube and gripper are lowered into the reactor to withdraw a spent fuel assembly into the handling tube. The handling tube containing the fuel assembly immersed in liquid sodium is then withdrawn completely from the reactor into the outer barrel of the handling machine. The machine is then used to transport the spent fuel assembly directly to a remotely located decay tank. The fuel handling machine includes a decay heat removal system which continuously removes heat from the interior of the handling tube and which is capable of operating at its full cooling capacity at all times. The handling tube is supported in the machine from an articulated joint which enables it to readily align itself with the correct position in the core. An emergency sodium supply is carried directly by the machine to provide make up in the event of a loss of sodium from the handling tube during transport to the decay tank. 5 claims, 32 drawing figures

  10. Remote handling equipment for laboratory research of fuel reprocessing in Nuclear Research Institute at Rez

    International Nuclear Information System (INIS)

    Fidler, J.; Novy, P.; Kyrs, M.

    1985-04-01

    Laboratory installations were developed for two nuclear fuel reprocessing methods, viz., the solvent extraction process and the fluoride volatility process. The apparatus for solvent extraction reprocessing consists of a pneumatically driven rod-chopper, a dissolver, mixer-settler extractors, an automatic fire extinguishing device and other components and it was tested using irradiated uranium. The technological line for the fluoride volatility process consists of a fluorimater, condensers, sorption columns with NaF pellets and a distillation column for the separation of volatile fluorides from UF 6 . The line has not yet been tested using irradiated fuel. Some features of the remote handling equipment of both installations are briefly described. (author)

  11. Development of Ethernet Based Remote Monitoring and Controlling of MST Radar Transmitters using ARM Cortex Microcontroller

    Directory of Open Access Journals (Sweden)

    Lakshmi Narayana ROSHANNA

    2013-01-01

    Full Text Available The recently emerging Web Services technology has provided a new and excellent solution to Industrial Automation in online control and remote monitoring. In this paper, a Web Service Based Remote Monitoring & Controlling of Radar Transmitters for safety management (WMCT developed for MST Radar is described. It achieved the MST radar transmitters’ remote supervisory, data logging and controlling activities. The system is developed using an ARM Cortex M3 processor to monitor and control the 32 triode-based transmitters of the 53-MHz Radar. The system controls transmitters via the internet using an Ethernet client server and store health status in the Database for radar performance analysis. The system enables scientists to operate and control the radar transmitters from a remote client machine Webpage.

  12. Remote operations in a Fusion Engineering Research Facility (FERF)

    International Nuclear Information System (INIS)

    Doggett, J.N.

    1975-01-01

    The proposed Fusion Engineering Research Facility (FERF) has been designed for the test and evaluation of materials that will be exposed to the hostile radiation environment created by fusion reactors. Because the FERF itself must create a very hostile radiation environment, extensive remote handling procedures will be required as part of its routine operations as well as for both scheduled and unscheduled maintenance. This report analyzes the remote-handling implications of a vertical- rather than horizontal-orientation of the FERF magnet, describes the specific remote-handling facilities of the proposed FERF installation and compares the FERF remote-handling system with several other existing and proposed facilities. (U.S.)

  13. Development of Remote Monitoring and a Control System Based on PLC and WebAccess for Learning Mechatronics

    Directory of Open Access Journals (Sweden)

    Wen-Jye Shyr

    2013-02-01

    Full Text Available This study develops a novel method for learning mechatronics using remote monitoring and control, based on a programmable logic controller (PLC and WebAccess. A mechatronics module, a Web-CAM and a PLC were integrated with WebAccess software to organize a remote laboratory. The proposed system enables users to access the Internet for remote monitoring and control of the mechatronics module via a web browser, thereby enhancing work flexibility by enabling personnel to control mechatronics equipment from a remote location. Mechatronics control and long-distance monitoring were realized by establishing communication between the PLC and WebAccess. Analytical results indicate that the proposed system is feasible. The suitability of this system is demonstrated in the department of industrial education and technology at National Changhua University of Education, Taiwan. Preliminary evaluation of the system was encouraging and has shown that it has achieved success in helping students understand concepts and master remote monitoring and control techniques.

  14. B cell remote-handled waste shipment cask alternatives study

    International Nuclear Information System (INIS)

    RIDDELLE, J.G.

    1999-01-01

    The decommissioning of the 324 Facility B Cell includes the onsite transport of grouted remote-handled radioactive waste from the 324 Facility to the 200 Areas for disposal. The grouted waste has been transported in the leased ATG Nuclear Services 3-82B Radioactive Waste Shipping Cask (3-82B cask). Because the 3-82B cask is a U.S. Nuclear Regulatory Commission (NRC)-certified Type B shipping cask, the lease cost is high, and the cask operations in the onsite environment may not be optimal. An alternatives study has been performed to develop cost and schedule information on alternative waste transportation systems to assist in determining which system should be used in the future. Five alternatives were identified for evaluation. These included continued lease of the 3-82B cask, fabrication of a new 3-82B cask, development and fabrication of an onsite cask, modification of the existing U.S. Department of Energy-owned cask (OH-142), and the lease of a different commercially available cask. Each alternative was compared to acceptance criteria for use in the B Cell as an initial screening. Only continued leasing of the 3-82B cask, fabrication of a new 3-82B cask, and the development and fabrication of an onsite cask were found to meet all of the B Cell acceptance criteria

  15. Patient perceptions of a remote monitoring intervention for chronic disease management.

    Science.gov (United States)

    Wakefield, Bonnie J; Holman, John E; Ray, Annette; Scherubel, Melody

    2011-04-01

    Use of telecommunications technology to provide remote monitoring for people with chronic disease is becoming increasingly accepted as a means to improve patient outcomes and reduce resource use. The purpose of this project was to evaluate patient perceptions of a nurse-managed remote monitoring intervention to improve outcomes in veterans with comorbid diabetes and hypertension. Postintervention evaluation data were collected using a 12-item questionnaire and an open-ended question. Participants rated the program as generally positive on the questionnaire, but responses to the open-ended question revealed criticisms and suggestions for improvement not captured on the questionnaire. Interviewing participants in these programs may offer richer data for identifying areas for program improvement. Copyright 2011, SLACK Incorporated.

  16. Exploiting Novel Radiation-Induced Electromagnetic Material Changes for Remote Detection and Monitoring: Final Progress Report

    Science.gov (United States)

    2016-04-01

    Exploiting Novel Radiation -Induced Electromagnetic Material Changes for Remote Detection and Monitoring: Final Progress Report Distribution...assess the effects of ionizing radiation on at least three classes of electromagnetic materials. The proposed approach for radiation detection was...that was desired to be monitored remotely. Microwave or low millimeter wave electromagnetic radiation would be used to interrogate the device

  17. Remote Sensing Monitoring Methods for Detecting Invasive Weed Coverage in Delta Waterways and Bay Marshlands

    Science.gov (United States)

    Potter, Christopher

    2018-01-01

    This presentation is part of the Independent Science Board of the State of California Delta Stewardship Council brown bag seminar series on the "How the Delta is Monitored", followed with a panel discussion. Various remote sensing approaches for aquatic vegetation will be reviewed. Key research and application issues with remote sensing monitoring in the Delta will be addressed.

  18. Automated Remote Monitoring of Depression: Acceptance Among Low-Income Patients in Diabetes Disease Management

    OpenAIRE

    Ramirez, Magaly; Wu, Shinyi; Jin, Haomiao; Ell, Kathleen; Gross-Schulman, Sandra; Myerchin Sklaroff, Laura; Guterman, Jeffrey

    2016-01-01

    Background Remote patient monitoring is increasingly integrated into health care delivery to expand access and increase effectiveness. Automation can add efficiency to remote monitoring, but patient acceptance of automated tools is critical for success. From 2010 to 2013, the Diabetes-Depression Care-management Adoption Trial (DCAT)?a quasi-experimental comparative effectiveness research trial aimed at accelerating the adoption of collaborative depression care in a safety-net health care syst...

  19. 3.5G based mobile remote monitoring system.

    Science.gov (United States)

    Bajracharya, Aman; Gale, Timothy J; Stack, Clive R; Turner, Paul

    2008-01-01

    Low bandwidth has long been a reason for the unsuitability of wireless internet in telemedicine. However with the advent of extended third generation wireless as an economically accessible high speed network, more opportunities are being created in this area of telemedicine. This paper explores the opportunity created by the latest wireless broadband technology for remote monitoring of patients in the home.

  20. Emergency protection and nuclear power station remote monitoring

    International Nuclear Information System (INIS)

    Nowak, K.; Wolf, H.

    1986-01-01

    The States of the Federal Republic of Germany are planning emergency protection measures for the environment of nuclear power stations based on their statutory duty of care. In this connection the paper explains to what extent remote monitoring of nuclear power stations practised by the Federal Supervisory Authorities may support the design and implementation of emergency protection measures. (orig.) [de

  1. Mesh Network Design for Smart Charging Infrastructure and Electric Vehicle Remote Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Shepelev, Aleksey; Chung, Ching-Yen; Chu, Chi-Cheng; Gadh, Rajit

    2013-10-14

    Plug-In Electric Vehicle (PEV) charging today happens with little knowledge of the state of the vehicle being charged. In order to implement smart charging algorithms and other capabilities of the future smart grid, provisions for remote PEV monitoring will have to be developed and tested. The UCLA Smart-grid Energy Research Center (SMERC) is working on a smart charging research platform that includes data acquired in real time from PEVs being charged in order to investigate smart charging algorithms and demand response (DR) strategies for PEVs in large parking garage settings. The system outlined in this work allows PEVs to be remotely monitored throughout the charging process by a smart-charging controller communicating through a mesh network of charging stations and in-vehicle monitoring devices. The approach may be used for Vehicle to Grid (V2G) communication as well as PEV monitoring.

  2. A simple, remote, video based breathing monitor.

    Science.gov (United States)

    Regev, Nir; Wulich, Dov

    2017-07-01

    Breathing monitors have become the all-important cornerstone of a wide variety of commercial and personal safety applications, ranging from elderly care to baby monitoring. Many such monitors exist in the market, some, with vital signs monitoring capabilities, but none remote. This paper presents a simple, yet efficient, real time method of extracting the subject's breathing sinus rhythm. Points of interest are detected on the subject's body, and the corresponding optical flow is estimated and tracked using the well known Lucas-Kanade algorithm on a frame by frame basis. A generalized likelihood ratio test is then utilized on each of the many interest points to detect which is moving in harmonic fashion. Finally, a spectral estimation algorithm based on Pisarenko harmonic decomposition tracks the harmonic frequency in real time, and a fusion maximum likelihood algorithm optimally estimates the breathing rate using all points considered. The results show a maximal error of 1 BPM between the true breathing rate and the algorithm's calculated rate, based on experiments on two babies and three adults.

  3. Remote monitoring technical review for light water reactors (Phase 1)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung Sik; Yoon, Wan Ki; Na, Won Woo; Kwack, Eun Ho [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-10-01

    The IAEA has been conducting a field trial of a Remote Monitoring System (RMS) at the spent fuel storage, Younggwang 3 nuclear power plant. The system installation plan was initiated after the agreement in the 7th ROK-IAEA safeguards Implementation Review Meeting that was held in Soul, 1998. It describes that IAEA and Korea proceed RM tasks Implementation of RMS at LWRs in the ROK for field trials. The project of RMS is conducting through 3 stages with timing. RMS has been installed for the Phase I of field trial, one of two stages at Younggwang Unit 3 in October 1998. The RMS consists of video systems and a seal at the spent fuel pond area. This report provides a description of the monitoring system and its functions focusing on several technical points of the installation and its 6 month operation at Younggwang Unit 3. Subjects are selected and analyzed in the three chapters, IAEA safeguards policy on Remote Monitoring, the technology, and field test experiences. 8 refs., 12 figs., 12 tabs. (Author)

  4. Calibration and compensation of deflections and compliances in remote handling equipment configurations

    International Nuclear Information System (INIS)

    Kivelae, Tuomo; Saarinen, H.; Mattila, J.; Haemaelaeinen, V.; Siuko, M.; Semeraro, L.

    2011-01-01

    This paper presents a generic method of calibrating and compensating remote handling system configurations subject to manufacturing and assembly tolerances, deflections and compliances. A method consists of kinematic part and non-kinematic part. A kinematic calibration algorithm is presented for finding the values of kinematic model errors by measuring the end-effector Cartesian position. This is a conventional way to calibrate industrial robots. However, in this case the kinematic calibration is not able to compensate flaws fully due to large deflections and compliances caused by a massive Cassette payload (approx. 9 ton). Positioning error at the furthest point of the cassette before any compensation was 80 mm. Therefore, extra compensation must be introduced in addition to a kinematic calibration. A kinematic calibration together with an extra compensation is a demanding task to carry out. The resulting complex compensation function has to be such that it can be implemented in real-time Cassette Multifunctional Mover (CMM) control system software.

  5. Development of blanket remote maintenance system

    International Nuclear Information System (INIS)

    Kakudate, Satoshi; Nakahira, Masataka; Oka, Kiyoshi; Taguchi, Kou

    1998-01-01

    ITER in-vessel components such as blankets are scheduled maintenance components, including complete shield blanket replacement for breeding blankets. In-vessel components are activated by 14 MeV neutrons, so blanket maintenance requires remote handling equipment and tools able to handle heavy payloads of about 4 tons within a positioning accuracy of 2 mm under intense gamma radiation. To facilitate remote maintenance, blankets are segmented into 730 modules and rail-mounted vehicle remote maintenance was developed. According to the ITER R and D program, critical technology related to blanket maintenance was developed extensively through joint efforts of the Japan, EU, and U.S. home teams. This paper summarizes current blanket maintenance technology conducted by the Japan Home Team, including development of full-scale remote handling equipment and tools for blanket maintenance. (author)

  6. Development of blanket remote maintenance system

    Energy Technology Data Exchange (ETDEWEB)

    Kakudate, Satoshi; Nakahira, Masataka; Oka, Kiyoshi; Taguchi, Kou [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-04-01

    ITER in-vessel components such as blankets are scheduled maintenance components, including complete shield blanket replacement for breeding blankets. In-vessel components are activated by 14 MeV neutrons, so blanket maintenance requires remote handling equipment and tools able to handle heavy payloads of about 4 tons within a positioning accuracy of 2 mm under intense gamma radiation. To facilitate remote maintenance, blankets are segmented into 730 modules and rail-mounted vehicle remote maintenance was developed. According to the ITER R and D program, critical technology related to blanket maintenance was developed extensively through joint efforts of the Japan, EU, and U.S. home teams. This paper summarizes current blanket maintenance technology conducted by the Japan Home Team, including development of full-scale remote handling equipment and tools for blanket maintenance. (author)

  7. Measurement and control system for ITER remote maintenance equipment

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Kiyoshi; Kakudate, Satoshi; Takeda, Nobukazu; Takiguchi, Yuji; Akou, Kentaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-04-01

    ITER in-vessel components such as blankets and divertors are categorized as scheduled maintenance components because they are subjected to severe plasma heat and particle loads. Blanket maintenance requires remote handling equipment and tools able to handle Heavy payloads of about 4 tons within a 2 mm precision tolerance. Divertor maintenance requires remote replacement of 60 cassettes with a dead weight of about 25 tons each. In the ITER R and D program, full-scale remote handling equipment for blanket and divertor maintenance has been designed and assembled for demonstration tests. This paper reviews the measurement and control system developed for full-scale remote handling equipment, the Japan Home Team contribution. (author)

  8. Measurement and control system for ITER remote maintenance equipment

    International Nuclear Information System (INIS)

    Oka, Kiyoshi; Kakudate, Satoshi; Takeda, Nobukazu; Takiguchi, Yuji; Akou, Kentaro

    1998-01-01

    ITER in-vessel components such as blankets and divertors are categorized as scheduled maintenance components because they are subjected to severe plasma heat and particle loads. Blanket maintenance requires remote handling equipment and tools able to handle Heavy payloads of about 4 tons within a 2 mm precision tolerance. Divertor maintenance requires remote replacement of 60 cassettes with a dead weight of about 25 tons each. In the ITER R and D program, full-scale remote handling equipment for blanket and divertor maintenance has been designed and assembled for demonstration tests. This paper reviews the measurement and control system developed for full-scale remote handling equipment, the Japan Home Team contribution. (author)

  9. Safeguards equipment of the future integrated monitoring systems and remote monitoring

    International Nuclear Information System (INIS)

    Sonnier, C.S.; Johnson, C.S.

    1994-01-01

    Becoming aware of the significant events of the past four years and their effect on the expectations to international safeguards, it is necessary to reflect on which direction the development of nuclear safeguards in a new era needs to take and the implications. The lime proven monitoring techniques, based on quantitative factor's and demonstrated universal application, have shown their merit. However, the new expectations suggest a possibility that a future IAEA safeguards system could rely more heavily on the value of a comprehensive, transparent and open implementation regime. Within such a regime, the associated measures need to be determined and technological support identified. This paper will identify the proven techniques which, with appropriate implementation support, could most quickly make available additional measures for a comprehensive, transparent and open implementation regime. In particular, it will examine the future of Integrated Monitoring Systems and Remote Monitoring in international safeguards, including technical and other related factors

  10. Wireless Networked Sensors for Remote Monitoring in Propulsion Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA Phase I SBIR program would fabricate wireless networked nanomembrane (NM) based surface pressure sensors for remote monitoring in propulsion systems, using...

  11. Mechanism and look-alikes analysis of oil spill monitoring with optical remote sensing

    Science.gov (United States)

    Lan, Guoxin; Ma, Long; Li, Ying; Liu, Bingxin

    2011-12-01

    Remote Sensing surveillance constitutes an important component of oil spill disaster management system, but subject to monitoring accuracy and ability, which suffered from resolution, environmental conditions, and look-alikes. So this article aims to provide information of identification and distinguishing of look-alikes for optical sensors, and then improve the monitoring precision. Although limited by monitoring conditions of the atmosphere and night, optical satellite remote sensing can provide the intrinsic spectral information of the film and the background sea, then affords the potentiality for detailed identification of the film thickness, oil type classification (crude/light oil), trends, and sea surface roughness by multi-type data products. This paper focused on optical sensors and indicated that these false targets of sun glint, bottom feature, cloud shadow, suspend bed sediment and surface bioorganic are the main factors for false alarm in optical images. Based on the detailed description of the theory of oil spill detection in optical images, depending on the preliminary summary of the feature of look-alikes in visible-infrared bands, a discriminate criteria and work-flow for slicks identification are proposed. The results are helpful to improve the remote sensing monitoring ability and the contingency planning.

  12. Remote device control and monitor system for the LHD deuterium experiments

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Hideya, E-mail: nakanisi@nifs.ac.jp [National Institute for Fusion Science (NIFS), Toki, Gifu 509-5292 (Japan); Dept. Fusion Science, SOKENDAI (The Graduate University for Advanced Studies), Toki, Gifu 509-5292 (Japan); Ohsuna, Masaki; Ito, Tatsuki; Nonomura, Miki; Imazu, Setsuo; Emoto, Masahiko; Iwata, Chie; Yoshida, Masanobu; Yokota, Mitsuhiro; Maeno, Hiroya; Aoyagi, Miwa; Ogawa, Hideki; Nakamura, Osamu; Morita, Yoshitaka; Inoue, Tomoyuki; Watanabe, Kiyomasa [National Institute for Fusion Science (NIFS), Toki, Gifu 509-5292 (Japan); Ida, Katsumi; Ishiguro, Seiji; Kaneko, Osamu [National Institute for Fusion Science (NIFS), Toki, Gifu 509-5292 (Japan); Dept. Fusion Science, SOKENDAI (The Graduate University for Advanced Studies), Toki, Gifu 509-5292 (Japan)

    2016-11-15

    Highlights: • Device remote control will be significant for the LHD deuterium experiments. • A central management GUI to control the power distribution for devices. • For safety, power management is separated from operational commanding. • Wi-Fi was tested and found to be not reliable with fusion plasmas. - Abstract: Upon beginning the LHD deuterium experiment, the opportunity for maintenance work in the torus hall will be conspicuously reduced such that all instruments must be controlled remotely. The LHD data acquisition (DAQ) and archiving system have been using about 110 DAQ front-end, and the DAQ central control and monitor system has been implemented for their remote management. This system is based on the “multi-agent” model whose communication protocol has been unified. Since DAQ front-end electronics would suffer from the “single-event effect” (SEE) of D-D neutrons, software-based remote operation might become ineffective, and then securely intercepting or recycling the electrical power of the device would be indispensable for recovering from a non-responding fault condition. In this study, a centralized control and monitor system has been developed for a number of power distribution units (PDUs). This system adopts the plug-in structure in which the plug-in modules can absorb the differences among the commercial products of numerous vendors. The combination of the above-mentioned functionalities has led to realizing the flexible and highly reliable remote control infrastructure for the plasma diagnostics and the device management in LHD.

  13. Remote handling equipment for the decommissioning of the Windscale Advanced Gas Cooled Reactor

    International Nuclear Information System (INIS)

    Barker, A.; Birss, I.R.; Fish, G.

    1984-01-01

    A decision to decommission the Windscale Advanced Gas Cooled Reactor was taken shortly after reactor shutdown in 1981. The fuel has now been discharged and the decommissioning programme will last about 10-12 years. The paper describes the programme and objectives and deals with methods of handling and disposing of the radioactive waste material. The main new facility required is a Waste Packaging Building adjacent to the existing reactor in which the waste boxes will be filled, active waste encapsulated in concrete and the boxes cleaned, swabbed and monitored to comply with IAEA transport regulations. The handling machine concept and features are described. The assaying and packaging of the waste material, the control of box movement and the process of concrete encapsulation is described. The paper concludes with a description of the development programme to support the Project. The tasks include a study of cutting techniques, production and control of dust and smoke, viewing and lighting methods, filtration, decontamination and fixing of contamination

  14. The operational challenge of remote maintenance

    International Nuclear Information System (INIS)

    Forsythe, L.

    2015-01-01

    Full text of publication follows. With the declining supply of fossil fuels that are used in power stations today, and the ongoing concern over climate change, nuclear fusion is one of the most promising options for generating large amounts of carbon-free energy in the future. Fuel supplies for fusion will be available for millions of years, with 1 kg of fusion fuel providing the same amount of energy as 10 thousand tonnes of fossil fuel. Unlike conventional fission reactors, the radioactive waste produced from fusion is short-lived, and will be safe to dispose of conventionally within 100 years. Although fusion has the huge advantage of being a carbon free energy source, there are complexities when it comes to maintaining the machine. Due to the nature of the fusion reaction, the components within the area of the reactor vacuum vessel become radioactive, which requires maintenance and modifications to be conducted remotely to protect human operators. Remote maintenance is the use of manipulators to carry out tasks in challenging or hostile environments, which would otherwise cause harm to humans. Remote handling slave manipulators do the work of a human by mimicking the movements from a master robotic manipulator that is controlled by a human operator. This means that remote handling can be used in many other areas other too, such as space; fission power plants; sub-sea; and nuclear material handling or in adverse environments such as: low or high temperature; chemically contaminated; combustible and low oxygen environments. Remote maintenance requires specialist engineers to take into consideration many aspects normally taken for granted when carrying out a task manually. Constraints such as the space around us; viewing and lighting; the human body's dexterity and flexibility; the weight and centre of gravity of tools and components, and how we securely grip and handle them; and access to fixings and fastenings. All these are factors that require careful

  15. Interoperability of remote handling control system software modules at Divertor Test Platform 2 using middleware

    Energy Technology Data Exchange (ETDEWEB)

    Tuominen, Janne, E-mail: janne.m.tuominen@tut.fi [Tampere University of Technology, Department of Intelligent Hydraulics and Automation, Tampere (Finland); Rasi, Teemu; Mattila, Jouni [Tampere University of Technology, Department of Intelligent Hydraulics and Automation, Tampere (Finland); Siuko, Mikko [VTT, Technical Research Centre of Finland, Tampere (Finland); Esque, Salvador [F4E, Fusion for Energy, Torres Diagonal Litoral B3, Josep Pla2, 08019, Barcelona (Spain); Hamilton, David [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2013-10-15

    Highlights: ► The prototype DTP2 remote handling control system is a heterogeneous collection of subsystems, each realizing a functional area of responsibility. ► Middleware provides well-known, reusable solutions to problems, such as heterogeneity, interoperability, security and dependability. ► A middleware solution was selected and integrated with the DTP2 RH control system. The middleware was successfully used to integrate all relevant subsystems and functionality was demonstrated. -- Abstract: This paper focuses on the inter-subsystem communication channels in a prototype distributed remote handling control system at Divertor Test Platform 2 (DTP2). The subsystems are responsible for specific tasks and, over the years, their development has been carried out using various platforms and programming languages. The communication channels between subsystems have different priorities, e.g. very high messaging rate and deterministic timing or high reliability in terms of individual messages. Generally, a control system's communication infrastructure should provide interoperability, scalability, performance and maintainability. An attractive approach to accomplish this is to use a standardized and proven middleware implementation. The selection of a middleware can have a major cost impact in future integration efforts. In this paper we present development done at DTP2 using the Object Management Group's (OMG) standard specification for Data Distribution Service (DDS) for ensuring communications interoperability. DDS has gained a stable foothold especially in the military field. It lacks a centralized broker, thereby avoiding a single-point-of-failure. It also includes an extensive set of Quality of Service (QoS) policies. The standard defines a platform- and programming language independent model and an interoperability wire protocol that enables DDS vendor interoperability, allowing software developers to avoid vendor lock-in situations.

  16. Radiation exposure control by estimation of multiplication factors for online remote radiation monitoring systems at vitrification plant

    International Nuclear Information System (INIS)

    Deokar, U.V.; Kulkarni, V.V.; Khot, A.R.; Mathew, P.; Kamlesh; Purohit, R.G.; Sarkar, P.K.

    2012-01-01

    Vitrification Plant is commissioned for vitrification of high level liquid waste (HLW) generated in nuclear fuel cycle operations by using Joule Heated Ceramic Melter first time in India. Exposure control is a major concern in operating plant. Therefore in addition to installed monitors, we have developed online remote radiation monitoring system to minimize number of entries in amber areas and to reduce the exposure to the surveyor and operator. This also helped in volume reduction of secondary waste. The reliability and accuracy of the online monitoring system is confirmed with actual measurements and by theoretical shielding calculations. The multiplication factors were estimated for remote on line monitoring of Melter Off Gas (MOG) filter, Hood filter, three exhaust filter banks, and over-pack monitoring. This paper summarizes - how the online remote monitoring system helped in saving of 128.52 person-mSv collective dose (14.28% of budgeted dose). The system also helped in the reduction of 2.6 m 3 of Cat-I waste. Our online remote monitoring system has helped the plant management to plan in advance for replacement of these filters, which resulted in considerable saving in collective dose and secondary waste

  17. Development of remote operated floor contamination monitor

    International Nuclear Information System (INIS)

    Sreekumar, K.; Gangamohan, M.; Kannan, R.K.; Rajan, S.

    2005-01-01

    Contamination check of floors and walkways in and around Reactor building areas forms an integral part of Radiation Protection Program in Power Stations. Though random swipe check method is adopted for the detection of loose contamination, this method has the disadvantage of leaving the fixed contamination and hotspots undetected. Hence, scanning the area with a sensitive detector, held close to the surface provides positive means for the detection of contamination. Checking large areas and walkways by holding the detector close to the surface involves physical work. Also, areas which are unapproachable due to congestion of equipment, may go uncovered by contamination monitoring in order to eliminate the physical strain involved in such contamination monitoring and to cover unapproachable areas, a small size prototype device that can be operated remotely was fabricated. This device detects contamination instantaneously and accurately. This paper describes design and fabrication of the device used for floor contamination monitoring. (author)

  18. High-frequency remote monitoring of large lakes with MODIS 500 m imagery

    Science.gov (United States)

    McCullough, Ian M.; Loftin, Cynthia S.; Sader, Steven A.

    2012-01-01

    Satellite-based remote monitoring programs of regional lake water quality largely have relied on Landsat Thematic Mapper (TM) owing to its long image archive, moderate spatial resolution (30 m), and wide sensitivity in the visible portion of the electromagnetic spectrum, despite some notable limitations such as temporal resolution (i.e., 16 days), data pre-processing requirements to improve data quality, and aging satellites. Moderate-Resolution Imaging Spectroradiometer (MODIS) sensors on Aqua/Terra platforms compensate for these shortcomings, although at the expense of spatial resolution. We developed and evaluated a remote monitoring protocol for water clarity of large lakes using MODIS 500 m data and compared MODIS utility to Landsat-based methods. MODIS images captured during May–September 2001, 2004 and 2010 were analyzed with linear regression to identify the relationship between lake water clarity and satellite-measured surface reflectance. Correlations were strong (R² = 0.72–0.94) throughout the study period; however, they were the most consistent in August, reflecting seasonally unstable lake conditions and inter-annual differences in algal productivity during the other months. The utility of MODIS data in remote water quality estimation lies in intra-annual monitoring of lake water clarity in inaccessible, large lakes, whereas Landsat is more appropriate for inter-annual, regional trend analyses of lakes ≥ 8 ha. Model accuracy is improved when ancillary variables are included to reflect seasonal lake dynamics and weather patterns that influence lake clarity. The identification of landscape-scale drivers of regional water quality is a useful way to supplement satellite-based remote monitoring programs relying on spectral data alone.

  19. Use of a microprocessor in a remote working level monitor

    International Nuclear Information System (INIS)

    Keffe, D.J.; McDowell, W.P.; Groer, P.G.

    1975-01-01

    A remote working level monitor was designed to measure short-lived radon-daughter concentrations in sealed chambers having potentially high radiation levels (up to 2000 WL). The system is comprised of surface barrier detectors, multiplexer and buffers, microprocessor and teletype

  20. Remote monitoring using technologies from the Internet and World Wide Web

    International Nuclear Information System (INIS)

    Puckett, J.M.; Burczyk, L.

    1997-01-01

    Recent developments in Internet technologies are changing and enhancing how one processes and exchanges information. These developments include software and hardware in support of multimedia applications on the World Wide Web. In this paper the authors describe these technologies as they have applied them to remote monitoring and show how they will allow the International Atomic Energy Agency to efficiently review and analyze remote monitoring data for verification of material movements. The authors have developed demonstration software that illustrates several safeguards data systems using the resources of the Internet and Web to access and review data. This Web demo allows the user to directly observe sensor data, to analyze simulated safeguards data, and to view simulated on-line inventory data. Future activities include addressing the technical and security issues associated with using the Web to interface with existing and planned monitoring systems at nuclear facilities. Some of these issues are authentication, encryption, transmission of large quantities of data, and data compression

  1. Remote, under-sodium fuel handling experience at EBR-II

    International Nuclear Information System (INIS)

    King, R.W.; Planchon, H.P.

    1995-01-01

    The EBR-II is a pool-type design; the reactor fuel handling components and entire primary-sodium coolant system are submerged in the primary tank, which is 26 feet in diameter, 26 feet high, and contains 86,000 gallons of sodium. Since the reactor is submerged in sodium, fuel handling operations must be performed blind, making exact positioning and precision control of the fuel handling system components essential. EBR-II operated for 30 years, and the fuel handling system has performed approximately 25,000 fuel transfer operations in that time. Due to termination of the IFR program, EBR-II was shut down on September 30, 1994. In preparation for decommissioning, all fuel in the reactor will be transferred out of EBR-II to interim storage. This intensive fuel handling campaign will last approximately two years, and the number of transfers will be equivalent to the fuel handling done over about nine years of normal reactor operation. With this demand on the system, system reliability will be extremely important. Because of this increased demand, and considering that the system has been operating for about 32 years, system upgrades to increase reliability and efficiency are proceeding. Upgrades to the system to install new digital, solid state controls, and to take advantage of new visualization technology, are underway. Future reactor designs using liquid metal coolant will be able to incorporate imaging technology now being investigated, such as ultraviolet laser imaging and ultrasonic imaging

  2. Remote support services using condition monitoring and online sensor data for offshore oilfield

    OpenAIRE

    Du, Baoli

    2013-01-01

    Master's thesis in Offshore technology Based on advanced technology in condition monitoring and online sensor data, a new style of operation and maintenance management called remote operation and maintenance support services has been created to improve oil and gas E&P performance. This master thesis will look into how the remote support service is conducted including the concept, design, technology and management philosophies; the current implementation of remote support services in China,...

  3. Remote controlled stud bolt handling device for reactor pressure vessel

    International Nuclear Information System (INIS)

    Shindo, Takenori; Shigehiro, Katsuya; Ito, Morio; Okada, Kenji

    1988-01-01

    In nuclear power stations, at the time of regular inspection, the works of opening and fixing the upper covers of reactor pressure vessels are carried out for inspecting the inside of reactor pressure vessels and exchanging fuel rods. These upper covers are fastened with many stud bolts, therefore, the works of opening and fixing require a large amount of labor, and are done under the restricted condition of wearing protective clothings and masks. Babcock Hitachi K.K. has completed the development of a remotely controlled automatic bolt tightenig device for this purpose, therefore, its outline is reported. The conventional method of these works and the problems in it are described. The design of the new device aimed at the parallel execution of cleaning screw threads, loosening and tightening nuts, and taking off and putting on nuts and washers, thus contributing to the shortening of regular inspection period, the reduction of the radiation exposure of workers, and the decrease of the number of workers. The function, reliability and endurance of the new device were confirmed by the verifying test using a device made for trial. The device is composed of a stand, a rail and four stations each with a cleaning unit, a stud tensioner and a nut handling unit. (K.I.)

  4. Remote monitoring improves outcome after ICD implantation: the clinical efficacy in the management of heart failure (EFFECT) study.

    Science.gov (United States)

    De Simone, Antonio; Leoni, Loira; Luzi, Mario; Amellone, Claudia; Stabile, Giuseppe; La Rocca, Vincenzo; Capucci, Alessandro; D'onofrio, Antonio; Ammendola, Ernesto; Accardi, Francesco; Valsecchi, Sergio; Buja, Gianfranco

    2015-08-01

    Internet-based remote interrogation systems have been shown to reduce emergency department and in-office visits in patients with implantable cardioverter defibrillators (ICDs), resulting in increased efficiency for healthcare providers. Nonetheless, studies sized to demonstrate the impact of remote monitoring on patients' outcome have been lacking. The EFFECT study was a multicentre clinical trial aimed at measuring and comparing the outcome of ICD patients conventionally followed-up by means of in-clinic visits (Standard arm) or by remote monitoring (Remote arm) in the clinical practice of 25 Italian centres. From 2011 to 2013, 987 consecutive patients were enrolled and followed up for at least 12 months. The primary endpoint was the rate of death and cardiovascular hospitalizations. Remote monitoring was adopted by 499 patients. Patients in the Standard and Remote arms did not differ significantly in terms of baseline clinical characteristics, except for a more frequent use of ICD with cardiac resynchronization therapy (CRT-D) in the Remote arm (48 vs. 36%, P Remote arm (incident rate ratio, 0.55; 95% CI, 0.41-0.73; P Remote arms were 0.27 and 0.08 events/year, respectively, among CRT-D recipients (P Remote arm. Compared with the standard follow-up through in-office visits, remote monitoring is associated with reduced death and cardiovascular hospitalizations in patients with ICD in clinical practice. URL: http://clinicaltrials.gov/ Identifier: NCT01723865. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  5. Evaluating ITER remote handling middleware concepts

    NARCIS (Netherlands)

    Koning, J. F.; Heemskerk, C. J. M.; Schoen, P.; Smedinga, D.; Boode, A. H.; Hamilton, D. T.

    2013-01-01

    Remote maintenance activities in ITER will be performed by a unique set of hardware systems, supported by an extensive software kit. A layer of middleware will manage and control a complex set of interconnections between teams of operators, hardware devices in various operating theatres, and

  6. Web-based Java application to advanced JT-60 Man-Machine Interfacing System for remote experiments

    International Nuclear Information System (INIS)

    Totsuka, Toshiyuki; Suzuki, Yoshio; Sakata, Shinya; Oshima, Takayuki; Iba, Katsuyuki

    2008-01-01

    Since remote participation in ITER experiments is planned, it is expected to demonstrate that the JT-60SA experiment is controlled from a Japanese remote experiment center located in Rokkasho-mura, Aomori-ken, Japan as a part of the ITER-BA project. Functions required for this experiment are monitoring of the discharge sequence status, handling of the discharge parameter, checking of experiment data, and monitoring of plant data, all of which are included in the existing JT-60 Man-Machine Interfacing System (MMIF). The MMIF is now only available to on-site users at the Naka site due to network safety. The motivation for remote MMIF is prompted by the issue of developing and achieving compatibility with network safety. The Java language has been chosen to implement this task. This paper deals with details of the JT-60 MMIF for the remote experiment that has evolved using the Java language

  7. Analysis of Unmanned Aerial Vehicle (UAV) hyperspectral remote sensing monitoring key technology in coastal wetland

    Science.gov (United States)

    Ma, Yi; Zhang, Jie; Zhang, Jingyu

    2016-01-01

    The coastal wetland, a transitional zone between terrestrial ecosystems and marine ecosystems, is the type of great value to ecosystem services. For the recent 3 decades, area of the coastal wetland is decreasing and the ecological function is gradually degraded with the rapid development of economy, which restricts the sustainable development of economy and society in the coastal areas of China in turn. It is a major demand of the national reality to carry out the monitoring of coastal wetlands, to master the distribution and dynamic change. UAV, namely unmanned aerial vehicle, is a new platform for remote sensing. Compared with the traditional satellite and manned aerial remote sensing, it has the advantage of flexible implementation, no cloud cover, strong initiative and low cost. Image-spectrum merging is one character of high spectral remote sensing. At the same time of imaging, the spectral curve of each pixel is obtained, which is suitable for quantitative remote sensing, fine classification and target detection. Aimed at the frontier and hotspot of remote sensing monitoring technology, and faced the demand of the coastal wetland monitoring, this paper used UAV and the new remote sensor of high spectral imaging instrument to carry out the analysis of the key technologies of monitoring coastal wetlands by UAV on the basis of the current situation in overseas and domestic and the analysis of developing trend. According to the characteristic of airborne hyperspectral data on UAV, that is "three high and one many", the key technology research that should develop are promoted as follows: 1) the atmosphere correction of the UAV hyperspectral in coastal wetlands under the circumstance of complex underlying surface and variable geometry, 2) the best observation scale and scale transformation method of the UAV platform while monitoring the coastal wetland features, 3) the classification and detection method of typical features with high precision from multi scale

  8. Conceptual design of Blanket Remote Handling System for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Jianghua, E-mail: weijh@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Song, Yuntao, E-mail: songyt@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); University of Science and Technology of China, Hefei (China); Pei, Kun; Zhao, Wenlong; Zhang, Yu; Cheng, Yong [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China)

    2015-11-15

    Highlights: • The concept for the blanket maintenance is carried out, including three sub-systems. • The basic maintenance procedure for blanket between VV and hot cell is carried out. • The primary kinematics study is used to verify the feasibility of BRHS. • Virtual reality is adopted as another approach to verify the concept design. - Abstract: The China Fusion Engineering Testing Reactor (CFETR), which is a new superconducting tokamak device being designed by China, has a mission to achieve a high duty time (0.3–0.5). To accomplish this great mission, the big modular blanket option has been adopted to achieve the high efficiency of the blanket maintenance. Considering this mission and the large and heavy blanket module, a novel conceptual blanket maintenance system for CFETR has been carried out by us over the past year. This paper presents the conceptual design of the Blanket Remote Handling System (BRHS), which mainly comprises the In-Vessel-Maintenance-System (IVMS), Lifting System and Blanket-Tool-Manipulator System (BTMS). The BRHS implements the extraction and replacement between in-vessel (the blanket module operation configuration location) and ex-vessel (inside of the vertical maintenance cask) by the collaboration of these three sub systems. What is more, this paper represents the blanket maintenance procedure between the docking station (between hot cell building and tokamak building) and inside the vacuum vessel, in tokamak building. Virtual reality technology is also used to verify and optimize our concept design.

  9. Conceptual design of Blanket Remote Handling System for CFETR

    International Nuclear Information System (INIS)

    Wei, Jianghua; Song, Yuntao; Pei, Kun; Zhao, Wenlong; Zhang, Yu; Cheng, Yong

    2015-01-01

    Highlights: • The concept for the blanket maintenance is carried out, including three sub-systems. • The basic maintenance procedure for blanket between VV and hot cell is carried out. • The primary kinematics study is used to verify the feasibility of BRHS. • Virtual reality is adopted as another approach to verify the concept design. - Abstract: The China Fusion Engineering Testing Reactor (CFETR), which is a new superconducting tokamak device being designed by China, has a mission to achieve a high duty time (0.3–0.5). To accomplish this great mission, the big modular blanket option has been adopted to achieve the high efficiency of the blanket maintenance. Considering this mission and the large and heavy blanket module, a novel conceptual blanket maintenance system for CFETR has been carried out by us over the past year. This paper presents the conceptual design of the Blanket Remote Handling System (BRHS), which mainly comprises the In-Vessel-Maintenance-System (IVMS), Lifting System and Blanket-Tool-Manipulator System (BTMS). The BRHS implements the extraction and replacement between in-vessel (the blanket module operation configuration location) and ex-vessel (inside of the vertical maintenance cask) by the collaboration of these three sub systems. What is more, this paper represents the blanket maintenance procedure between the docking station (between hot cell building and tokamak building) and inside the vacuum vessel, in tokamak building. Virtual reality technology is also used to verify and optimize our concept design.

  10. Development of a remote handling system for replacement of armor tiles in the Fusion Experimental Reactor

    International Nuclear Information System (INIS)

    Adachi, J.; Kakudate, S.; Oka, K.; Seki, M.

    1995-01-01

    The armor tiles of the Fusion Experimental Reactor (FER) planned by JAERI are categorized as scheduled maintenance components, since they are damaged by severe heat and particle loads from the plasma during operation. A remote handling system is thus required to replace a large number of tiles rapidly in the highly activated reactor. However, the simple teaching-playback method cannot be adapted to this system because of deflection of the tiles caused by thermal deformation and so on. We have developed a control system using visual feedback control to adapt to this deflection and an end-effector for a single arm. We confirm their performance in tests. (orig.)

  11. Nuclear-reactor remote-monitoring systems - concepts and implementations

    International Nuclear Information System (INIS)

    Rudolf, A.

    1987-01-01

    The paper presents general concepts and some examples of implemented nuclear-reactor remote-monitoring (RM) systems. Some functions and tasks of RM systems are demonstrated and three concepts are described in detail and assessed globally. Three examples of implemented RM systems are discussed using the Baden-Wurttemberg RM system for a description in greater detail. A brief prognosis of the future development of RM systems is made. (orig./DG) [de

  12. U.S. SUPPORT PROGRAM CONTRIBUTIONS TO REMOTE MONITORING

    International Nuclear Information System (INIS)

    PEPPER, S.E.

    2000-01-01

    Since 1993, the IAEA has made great progress in the implementation of remote monitoring. Equipment has been developed and tested, and installed systems are being used for safeguards purposes. The cost of equipment, the complexity of communication technology, and maintenance of the equipment are challenges that still face the IAEA. Resolution of these challenges will require significant effort. The USSP is committed to assisting the IAEA to overcome these challenges

  13. Design, fabrication, and mockup testing in the remote maintenance development facility

    International Nuclear Information System (INIS)

    Carter, J.A.; Jacobs, R.T.; Bingham, G.E.

    1978-01-01

    The Remote Maintenance Development Facility at the Idaho National Engineering Laboratory was installed and used extensively for full-scale development, mockup, and testing of remote maintenance requirements for the New Waste Calcining Facility (NWCF). By performing remote handling tests, the NWCF handling concepts, techniques, and remote capabilities were proven workable prior to construction. A description of the RMDF and its purpose, functions, and handling capabilities as they were used in support of the NWCF is presented

  14. Printed soft-electronics for remote body monitoring

    Science.gov (United States)

    Mantysalo, Matti; Vuorinen, Tiina; Jeihani, Vala; Vehkaoja, Antti

    2017-08-01

    Wearable electronics has emerged into the consumer markets over the past few years. Wrist worn and textile integrated devices are the most common apparatuses for unobtrusive monitoring in sports and wellness sectors. Disposable patches and bandages, however, represent the new era of wearable electronics. Soft and stretchable electronics is the enabling technology of this paradigm shift. It can conform to temporary transfer tattoo and deform with the skin without detachment or fracture. In this paper, we focus on screen-printed soft-electronics for remote body monitoring. We will present a fabrication process of a skin conformable electrode bandage designed for long-term outpatient electrocardiography (ECG) monitoring. The soft bandage is designed to be attached to the patient chest and miniaturized data collection device is connected to the bandage via Micro-USB connector. The fabricated bandage is tested in short exercise as well as continued long-term (72 hours) monitoring during normal daily activities. The attained quality of the measured ECG signals is fully satisfactory for rhythm-based cardiac analysis also during moderate-intensity exercise. After pre-processing, the signals could be used also for more profound morphological analysis of ECG wave shapes.

  15. Personalized and automated remote monitoring of atrial fibrillation.

    Science.gov (United States)

    Rosier, Arnaud; Mabo, Philippe; Temal, Lynda; Van Hille, Pascal; Dameron, Olivier; Deléger, Louise; Grouin, Cyril; Zweigenbaum, Pierre; Jacques, Julie; Chazard, Emmanuel; Laporte, Laure; Henry, Christine; Burgun, Anita

    2016-03-01

    Remote monitoring of cardiac implantable electronic devices is a growing standard; yet, remote follow-up and management of alerts represents a time-consuming task for physicians or trained staff. This study evaluates an automatic mechanism based on artificial intelligence tools to filter atrial fibrillation (AF) alerts based on their medical significance. We evaluated this method on alerts for AF episodes that occurred in 60 pacemaker recipients. AKENATON prototype workflow includes two steps: natural language-processing algorithms abstract the patient health record to a digital version, then a knowledge-based algorithm based on an applied formal ontology allows to calculate the CHA2DS2-VASc score and evaluate the anticoagulation status of the patient. Each alert is then automatically classified by importance from low to critical, by mimicking medical reasoning. Final classification was compared with human expert analysis by two physicians. A total of 1783 alerts about AF episode >5 min in 60 patients were processed. A 1749 of 1783 alerts (98%) were adequately classified and there were no underestimation of alert importance in the remaining 34 misclassified alerts. This work demonstrates the ability of a pilot system to classify alerts and improves personalized remote monitoring of patients. In particular, our method allows integration of patient medical history with device alert notifications, which is useful both from medical and resource-management perspectives. The system was able to automatically classify the importance of 1783 AF alerts in 60 patients, which resulted in an 84% reduction in notification workload, while preserving patient safety. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  16. Remote-Sensing Time Series Analysis, a Vegetation Monitoring Tool

    Science.gov (United States)

    McKellip, Rodney; Prados, Donald; Ryan, Robert; Ross, Kenton; Spruce, Joseph; Gasser, Gerald; Greer, Randall

    2008-01-01

    The Time Series Product Tool (TSPT) is software, developed in MATLAB , which creates and displays high signal-to- noise Vegetation Indices imagery and other higher-level products derived from remotely sensed data. This tool enables automated, rapid, large-scale regional surveillance of crops, forests, and other vegetation. TSPT temporally processes high-revisit-rate satellite imagery produced by the Moderate Resolution Imaging Spectroradiometer (MODIS) and by other remote-sensing systems. Although MODIS imagery is acquired daily, cloudiness and other sources of noise can greatly reduce the effective temporal resolution. To improve cloud statistics, the TSPT combines MODIS data from multiple satellites (Aqua and Terra). The TSPT produces MODIS products as single time-frame and multitemporal change images, as time-series plots at a selected location, or as temporally processed image videos. Using the TSPT program, MODIS metadata is used to remove and/or correct bad and suspect data. Bad pixel removal, multiple satellite data fusion, and temporal processing techniques create high-quality plots and animated image video sequences that depict changes in vegetation greenness. This tool provides several temporal processing options not found in other comparable imaging software tools. Because the framework to generate and use other algorithms is established, small modifications to this tool will enable the use of a large range of remotely sensed data types. An effective remote-sensing crop monitoring system must be able to detect subtle changes in plant health in the earliest stages, before the effects of a disease outbreak or other adverse environmental conditions can become widespread and devastating. The integration of the time series analysis tool with ground-based information, soil types, crop types, meteorological data, and crop growth models in a Geographic Information System, could provide the foundation for a large-area crop-surveillance system that could identify

  17. Remote Multi-layer Soil Temperature Monitoring System Based on GPRS

    Directory of Open Access Journals (Sweden)

    Ming Kuo CHEN

    2014-02-01

    Full Text Available There is the temperature difference between the upper and lower layer of the shallow soil in the forest. It is a potential energy that can be harvested by thermoelectric generator for the electronic device in the forest. The temperature distribution at different depths of the soil is the first step for thermoelectric generation. A remote multi-layer soil temperature monitoring system based on GPRS is proposed in this paper. The MSP430F149 MCU is used as the main controller of multi-layer soil temperature monitoring system. A temperature acquisition module is designed with DS18B20 and 4 core shielded twisted-pair cable. The GPRS module sends the measured data to remote server through wireless communication network. From the experiments in the campus of Beijing Forestry University, the maximum error of measured temperature in this system is 0.2°C by comparing with professional equipment in the same condition. The results of the experiments show that the system can accurately realize real-time monitoring of multi-layer soil temperature, and the data transmission is stable and reliable.

  18. Application of remote debugging techniques in user-centric job monitoring

    International Nuclear Information System (INIS)

    Dos Santos, T; Mättig, P; Harenberg, T; Volkmer, F; Beermann, T; Kalinin, S; Ahrens, R; Wulff, N

    2012-01-01

    With the Job Execution Monitor, a user-centric job monitoring software developed at the University of Wuppertal and integrated into the job brokerage systems of the WLCG, job progress and grid worker node health can be supervised in real time. Imminent error conditions can thus be detected early by the submitter and countermeasures can be taken. Grid site admins can access aggregated data of all monitored jobs to infer the site status and to detect job misbehaviour. To remove the last 'blind spot' from this monitoring, a remote debugging technique based on the GNU C compiler suite was developed and integrated into the software; its design concept and architecture is described in this paper and its application discussed.

  19. Haptic shared control improves hot cell remote handling despite controller inaccuracies

    International Nuclear Information System (INIS)

    Oosterhout, J. van; Abbink, D.A.; Koning, J.F.; Boessenkool, H.; Wildenbeest, J.G.W.; Heemskerk, C.J.M.

    2013-01-01

    Highlights: Haptic shared control is generally based upon perfect environment information. A realistic implementation holds model errors with respect to the environment. Operators were aided with inaccurate guiding forces during a peg-in-hole task. The results showed that small guiding inaccuracies still aid the operator. -- Abstract: A promising solution to improve task performance in ITER hot cell remote handling is the use of haptic shared control. Haptic shared control can assist the human operator along a safe and optimal path with continuous guiding forces from an intelligent autonomous controller. Previous research tested such controllers with accurate knowledge of the environment (giving flawless guiding forces), while in a practical implementation guidance forces will sometimes be flawed due to inaccurate models or sensor information. This research investigated the effect of zero and small (7.5 mm) errors on task performance compared to normal (unguided) operation. In a human factors experiment subjects performed a three dimensional virtual reality peg-in-hole type task (30 mm diameter; 0.1 mm clearance), with and without potentially flawed haptic shared control. The results showed that the presence of guiding forces, despite of small guiding errors, still improved task performance with respect to unguided operations

  20. Haptic shared control improves hot cell remote handling despite controller inaccuracies

    Energy Technology Data Exchange (ETDEWEB)

    Oosterhout, J. van, E-mail: J.vanOosterhout@differ.nl [Delft University of Technology, Faculty of 3mE, BioMechanical Engineering Department, Mekelweg 2, 2628 CD Delft (Netherlands); Abbink, D.A. [Delft University of Technology, Faculty of 3mE, BioMechanical Engineering Department, Mekelweg 2, 2628 CD Delft (Netherlands); Koning, J.F. [Heemskerk Innovative Technology B.V., Jonckerweg 12, 2201 DZ Noordwijk (Netherlands); Boessenkool, H. [FOM Institute DIFFER (Dutch Institute for Fundamental Energy Research), Association EURATOM-FOM, Partner in the Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Wildenbeest, J.G.W. [Delft University of Technology, Faculty of 3mE, BioMechanical Engineering Department, Mekelweg 2, 2628 CD Delft (Netherlands); Heemskerk Innovative Technology B.V., Jonckerweg 12, 2201 DZ Noordwijk (Netherlands); Heemskerk, C.J.M. [Heemskerk Innovative Technology B.V., Jonckerweg 12, 2201 DZ Noordwijk (Netherlands)

    2013-10-15

    Highlights: Haptic shared control is generally based upon perfect environment information. A realistic implementation holds model errors with respect to the environment. Operators were aided with inaccurate guiding forces during a peg-in-hole task. The results showed that small guiding inaccuracies still aid the operator. -- Abstract: A promising solution to improve task performance in ITER hot cell remote handling is the use of haptic shared control. Haptic shared control can assist the human operator along a safe and optimal path with continuous guiding forces from an intelligent autonomous controller. Previous research tested such controllers with accurate knowledge of the environment (giving flawless guiding forces), while in a practical implementation guidance forces will sometimes be flawed due to inaccurate models or sensor information. This research investigated the effect of zero and small (7.5 mm) errors on task performance compared to normal (unguided) operation. In a human factors experiment subjects performed a three dimensional virtual reality peg-in-hole type task (30 mm diameter; 0.1 mm clearance), with and without potentially flawed haptic shared control. The results showed that the presence of guiding forces, despite of small guiding errors, still improved task performance with respect to unguided operations.